Untanglling the wires: A strategie to trace functional interactions in signaling and gene networks.

B.N. Kholodenko, A. Kiyatkin, F.J. Bruggeman, E. Sontag, H.V. Westerhoff, J.B. Hoek

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Emerging technologies have enabled the acquisition of large genomics and proteomics data sets. However, current methodologies for analysis do not permit interpretation of the data in ways that unravel cellular networking. We propose a quantitative method for determining functional interactions in cellular signaling and gene networks. It can be used to explore cell systems at a mechanistic level or applied within a "modular" framework, which dramatically decreases the number of variables to be assayed. This method is based on a mathematical derivation that demonstrates how the topology and strength of network connections can be retrieved from experimentally measured network responses to successive perturbations of all modules. Importantly, our analysis can reveal functional interactions even when the components of the system are not all known. Under these circumstances, some connections retrieved by the analysis will not be direct but correspond to the interaction routes through unidentified elements. The method is tested and illustrated by using computer-generated responses of a modeled mitogen-activated protein kinase cascade and gene network.
Original languageEnglish
Pages (from-to)12841-12846
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
DOIs
Publication statusPublished - 2002

Fingerprint

Dive into the research topics of 'Untanglling the wires: A strategie to trace functional interactions in signaling and gene networks.'. Together they form a unique fingerprint.

Cite this