TY - JOUR
T1 - Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1)
AU - Greijer, A.E.
AU - van der Groep, P.
AU - Kemming, D.
AU - Shvarts, A.
AU - Semenza, G.L.
AU - Meijer, G.J.
AU - van de Wiel, M.A.
AU - Belien, J.A.M.
AU - Van Diest, P
AU - van der Wall, E.E.
PY - 2005/7
Y1 - 2005/7
N2 - The hypoxia-inducible factor 1 (HIF-1) plays a critical role in cellular responses to hypoxia. The aim of the present study was to evaluate which genes are induced by hypoxia, and whether this induction is mediated by HIF-1, by expression microarray analysis of wt and HIF-1α null mouse fibroblasts. Forty-five genes were up-regulated by hypoxia and 40 (89%) of these were regulated by HIF-1. Of the 114 genes down-regulated by hypoxia, 19 (17%) were HIF-1-dependent. All glycolytic enzymes were strongly up-regulated by hypoxia in a HIF-1-dependent manner. Genes already known to be related to hypoxia, such as glucose transporter 1, BNIP3, and hypoxia-induced gene 1, were induced. In addition, multiple new HIF-1-regulated genes were identified, including genes involved in metabolism (adenylate kinase 4, galactokinase), apoptosis (galectin-3 and gelsolin), and invasion (RhoA). Genes down-regulated by hypoxia were involved in cytoskeleton maintenance (Rho kinase), mRNA processing (heterogeneous nuclear ribonucleoprotein H1 and splicing factor), and DNA repair (REV3). Furthermore, seven cDNAs from genes with unknown function or expressed sequence tags (ESTs) were up-regulated and 27 such cDNAs were down-regulated. In conclusion, hypoxia causes down- rather than up-regulation of gene expression and HIF-1 seems to play a major role in the regulation of hypoxia-induced genes. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
AB - The hypoxia-inducible factor 1 (HIF-1) plays a critical role in cellular responses to hypoxia. The aim of the present study was to evaluate which genes are induced by hypoxia, and whether this induction is mediated by HIF-1, by expression microarray analysis of wt and HIF-1α null mouse fibroblasts. Forty-five genes were up-regulated by hypoxia and 40 (89%) of these were regulated by HIF-1. Of the 114 genes down-regulated by hypoxia, 19 (17%) were HIF-1-dependent. All glycolytic enzymes were strongly up-regulated by hypoxia in a HIF-1-dependent manner. Genes already known to be related to hypoxia, such as glucose transporter 1, BNIP3, and hypoxia-induced gene 1, were induced. In addition, multiple new HIF-1-regulated genes were identified, including genes involved in metabolism (adenylate kinase 4, galactokinase), apoptosis (galectin-3 and gelsolin), and invasion (RhoA). Genes down-regulated by hypoxia were involved in cytoskeleton maintenance (Rho kinase), mRNA processing (heterogeneous nuclear ribonucleoprotein H1 and splicing factor), and DNA repair (REV3). Furthermore, seven cDNAs from genes with unknown function or expressed sequence tags (ESTs) were up-regulated and 27 such cDNAs were down-regulated. In conclusion, hypoxia causes down- rather than up-regulation of gene expression and HIF-1 seems to play a major role in the regulation of hypoxia-induced genes. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
U2 - 10.1002/path.1778
DO - 10.1002/path.1778
M3 - Article
SN - 0022-3417
VL - 206
SP - 291
EP - 304
JO - Journal of Pathology
JF - Journal of Pathology
IS - 3
ER -