UV Light Causes Structural Changes in Microplastics Exposed in Bio-Solids

Somayye Sadat Alavian Petroody, Seyed Hossein Hashemi, Luka Škrlep, Branka Mušič, Cornelis A.M. van Gestel, Andrijana Sever Škapin*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied the effect of UV-A and UV-C, applied at 70 °C, on three types of MPs, polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET), that are commonly found in sewage sludge, using three shapes (fibers, lines, granules). The MPs were exposed to UV radiation in bio-solid suspensions, and to air and water as control. The structural changes in and degradation of the MPs were investigated using Attenuated Total Reflectance–Fourier Transform Infrared Spectrometry (ATR-FTIR) and surface morphology was performed with SEM analysis. UV exposure led to the emergence of carbonyl and hydroxyl groups in all of the PP samples. In PE and PET, these groups were formed only in the bio-solid suspensions. The presence of carbonyl and hydroxyl groups increased with an increasing exposure time. Overall, UV radiation had the greatest impact on the MPs in the bio-solids suspension. Due to the surface-to-volume ratio of the tested samples, which influences the degradation rate, the fibers were more degraded than the other two plastic shapes. UV-A was slightly more effective at degrading the MPs than UV-C. These findings show that ultraviolet radiation in combination with an elevated temperature affects the structure of polymers in wastewater bio-solids, which can accelerate their degradation.

Original languageEnglish
Article number4322
Pages (from-to)1-16
Number of pages16
JournalPolymers
Volume15
Issue number21
DOIs
Publication statusPublished - 4 Nov 2023

Bibliographical note

This article belongs to the Special Issue Degradation and Stability of Polymer Based Systems

Funding Information:
L. Škrlep: B. Mušič and A. Sever Škapin acknowledge the financial support provided by the Slovenian Research Agency (grant No. J1-50014 and No. P2-0273).

Publisher Copyright:
© 2023 by the authors.

Keywords

  • carbonyl
  • degradation
  • hydroxyl
  • microplastics
  • ultraviolet light

Fingerprint

Dive into the research topics of 'UV Light Causes Structural Changes in Microplastics Exposed in Bio-Solids'. Together they form a unique fingerprint.

Cite this