TY - JOUR
T1 - Which factors prognosticate rotational instability following lumbar laminectomy?
AU - Bisschop, A.
AU - Kingma, I.
AU - Bleys, R.L.
AU - van der Veen, A.J.
AU - Paul, C.P.
AU - van Dieen, J.H.
AU - van Royen, B.J.
PY - 2013
Y1 - 2013
N2 - Purpose: Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters. Method: Radiographs and MRI of ten human cadaveric lumbar spines (mean age 75.5, range 59-88 years) were obtained to quantify geometry and degeneration of the motion segments. Additionally, dual X-ray absorptiometry (DXA) scans were performed to measure bone mineral content and density. Facet-sparing lumbar laminectomy was performed either on L2 or L4. Spinal motion segments were dissected (L2-L3 and L4-L5) and tested in torsion, under 1,600 N axial compression. Torsion moment to failure (TMF), early torsion stiffness (ETS, at 20-40 % TMF) and late torsion stiffness (LTS, at 60-80 % TMF) were determined and bivariate correlations with all parameters were established. For dichotomized parameters, independent-sample t tests were used. Results: Univariate analyses showed that a range of geometric characteristics and disc and bone quality parameters were associated with torsion biomechanical properties of lumbar segments. Multivariate models showed that ETS, LTS and TMF could be predicted for segments without laminectomy (r
AB - Purpose: Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters. Method: Radiographs and MRI of ten human cadaveric lumbar spines (mean age 75.5, range 59-88 years) were obtained to quantify geometry and degeneration of the motion segments. Additionally, dual X-ray absorptiometry (DXA) scans were performed to measure bone mineral content and density. Facet-sparing lumbar laminectomy was performed either on L2 or L4. Spinal motion segments were dissected (L2-L3 and L4-L5) and tested in torsion, under 1,600 N axial compression. Torsion moment to failure (TMF), early torsion stiffness (ETS, at 20-40 % TMF) and late torsion stiffness (LTS, at 60-80 % TMF) were determined and bivariate correlations with all parameters were established. For dichotomized parameters, independent-sample t tests were used. Results: Univariate analyses showed that a range of geometric characteristics and disc and bone quality parameters were associated with torsion biomechanical properties of lumbar segments. Multivariate models showed that ETS, LTS and TMF could be predicted for segments without laminectomy (r
U2 - 10.1007/s00586-013-3002-3
DO - 10.1007/s00586-013-3002-3
M3 - Article
SN - 0940-6719
VL - 22
SP - 2897
EP - 2903
JO - European Spine Journal
JF - European Spine Journal
IS - 12
ER -