TY - JOUR
T1 - Why is countermovement jump height greater than squat jump height?
AU - Bobbert, Maarten F.
AU - Gerritsen, Karin G M
AU - Litjens, Maria C A
AU - Van Soest, Arthur J.
PY - 1996/11
Y1 - 1996/11
N2 - In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic energy to the enhancement of performance in CMJ compared with SJ. Six male volleyball players performed CMJ and SJ. Kinematics, kinetics, and muscle electrical activity (EMG) from six muscles of the lower extremity were monitored. It was found that even when the body position at the start of push-off was the same in SJ as in CMJ, jump height was on average 3.4 cm greater in CMJ. The possibility that nonoptimal coordination in SJ explained the difference in jump height was ruled out; there were no signs of movement disintegration in SJ, and toe-off position was the same in SJ as in CMJ. The greater jump height in CMJ was attributed to the fact that the countermovement allowed the subjects to attain greater joint moments at the start of push-off. As a consequence, joint moments were greater over the first part of the range of joint extension in CMJ, so that more work could be produced than in SJ. To explain this finding, measured and manipulated kinematics and electromyographic activity were used as input for a model of the musculoskeletal system. According to simulation results, storage and reutilization of elastic energy could be ruled out as explanation for the enhancement of performance in CMJ over that in SJ. The crucial contribution of the countermovement seemed to be that it allowed the muscles to build up a high level of active state (fraction of attached cross-bridges) and force before the start of shortening, so that they were able to produce more work over the first part of their shortening distance.
AB - In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic energy to the enhancement of performance in CMJ compared with SJ. Six male volleyball players performed CMJ and SJ. Kinematics, kinetics, and muscle electrical activity (EMG) from six muscles of the lower extremity were monitored. It was found that even when the body position at the start of push-off was the same in SJ as in CMJ, jump height was on average 3.4 cm greater in CMJ. The possibility that nonoptimal coordination in SJ explained the difference in jump height was ruled out; there were no signs of movement disintegration in SJ, and toe-off position was the same in SJ as in CMJ. The greater jump height in CMJ was attributed to the fact that the countermovement allowed the subjects to attain greater joint moments at the start of push-off. As a consequence, joint moments were greater over the first part of the range of joint extension in CMJ, so that more work could be produced than in SJ. To explain this finding, measured and manipulated kinematics and electromyographic activity were used as input for a model of the musculoskeletal system. According to simulation results, storage and reutilization of elastic energy could be ruled out as explanation for the enhancement of performance in CMJ over that in SJ. The crucial contribution of the countermovement seemed to be that it allowed the muscles to build up a high level of active state (fraction of attached cross-bridges) and force before the start of shortening, so that they were able to produce more work over the first part of their shortening distance.
KW - ELASTIC ENERGY
KW - FORCE DEVELOPMENT
KW - MUSCLE MODELING
KW - PRE-STRETCH
UR - http://www.scopus.com/inward/record.url?scp=0029912768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029912768&partnerID=8YFLogxK
U2 - 10.1097/00005768-199611000-00009
DO - 10.1097/00005768-199611000-00009
M3 - Article
C2 - 8933491
AN - SCOPUS:0029912768
SN - 0195-9131
VL - 28
SP - 1402
EP - 1412
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 11
ER -