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Abstract

Despite decades of research, the consistent estimation of structural forward looking
macroeconomic equations remains a formidable empirical challenge because of perva-
sive endogeneity issues. Prominent cases —the estimation of Phillips curves, Euler
equations, or monetary policy rules— have typically relied on using pre-determined
variables as instruments, with mixed success. In this work, we propose a new approach
that consists in using sequences of independently identified structural shocks as instru-
mental variables. Our approach is robust to weak instruments and is valid regardless of
the shocks’ variance contribution. We estimate a Phillips curve using monetary shocks
as instruments and find that conventional methods substantially under-estimate the
slope of the Phillips curve.
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1 Introduction

The estimation of structural forward-looking macroeconomic equations is a central task of

macroeconomic research. Prominent examples include the estimation of New Keynesian

Phillips curves (e.g. Gali and Gertler, 1999), Euler equations (e.g. Deaton, 1992; Fuhrer

and Rudebusch, 2004), monetary policy rules (e.g. Clarida, Gaĺı and Gertler, 2000) and

consumption-based asset pricing equations (e.g. Campbell, 2003).

Obtaining reliable estimates for the structural coefficients of forward looking equations

has proved challenging because of pervasive endogeneity issues. Take as an example the case

of the Phillips curve, which postulates that inflation is determined by three main factors:

expected future inflation, the output gap – the difference between the level of economic

activity and its natural flexible-price level –, and supply factors. All three factors lead to

endogeneity-related biases: (i) inflation expectations are unobserved, (ii) the natural level of

output (and thus the output gap) is unobserved and (iii) supply shocks lead to confounding.

Similar issues affect other macro equations like the Euler equations or monetary policy rules.

Going back at least to Frisch (1934) and Reiersol (1941), the literature has traditionally

addressed endogeneity concerns in macro by using predetermined variables as instruments,

i.e. lags of observable macro variables as instruments. This approach, which was popularized

by the seminal contributions of Hansen and Singleton (1982) and Hansen (1982), has had

mixed success however. Despite decades of research, estimates display both high sampling

uncertainty and high specification uncertainty, as minor specification changes can lead to

very different estimates (e.g., Yogo, 2004; Mavroeidis, 2010; Kleibergen and Mavroeidis,

2009; Mavroeidis, Plagborg-Møller and Stock, 2014). A common explanation is that pre-

determined variables are weak, possibly even invalid, instruments.

In this work, we propose a new approach to estimate forward-looking macro equations.

Our approach consists in projecting the structural equation of interest on the space spanned

by the present and past values of some well chosen structural shocks. Taking again the

Phillips curve as an example, we show that independently identified aggregate demand
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shocks, for instance monetary policy shocks, can be used to identify the parameters of the

Phillips curve. Intuitively, projecting inflation and unemployment on past monetary shocks

can address the endogeneity issues by projecting out (i) the influence of supply shocks, (ii)

the measurement error in expected future inflation, and (iii) the measurement error in the

natural level of output.1

Our approach amounts to an instrumental variable (IV) regression, where, and this is

our key contribution, the set of instruments is a sequence of past structural shocks. For the

Phillips curve monetary policy shocks are appropriate instruments, but different structural

shocks will be called for depending on the structural equation of interest. For instance, an

aggregate demand relation like the intertemporal IS curve could be identified with aggregate

supply shocks.

Using sequences of structural shocks as instruments has an intuitive interpretation as a

“regression in impulse response space”. By projecting a macro equation on a space spanned

by some past structural shocks, our approach can be seen as a regression where the vari-

ables of the macro equation are replaced by their impulse responses to the structural shock.

Identification then comes from variation across the horizons of the impulse responses, i.e.,

as the regression of an impulse response on other impulse responses.

Because structural shocks are not necessarily strong instruments, we rely on weak in-

strument robust methods for conducting inference, see Andrews, Stock and Sun (2019) for

a recent review of the literature. Intuitively, in our setting the weak-IV robust approach

amounts to inferring how the residual of the macro equation of interest, say the Phillips

curve, responds over time to an innovation in the structural shock, for instance a monetary

shock. For values of the Phillips curve parameters close to their true values, the impulse

response of the residual to a monetary shock should be not be different from zero. But for

values away from the truth, the impulse response of the residual should be a combination

1In a static AD/AS setting, the intuition is straightforward: aggregate shocks that shift the (AD) curve
will allow us to trace out the (AS) curve, i.e., identify the coefficient on the unemployment gap. In a
dynamic setting, we will see that aggregate demand shocks can separately identify the coefficients on the
unemployment gap and on inflation expectations as long as they have different dynamic effects on future
inflation and the output gap.
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of the impulse responses of inflation and unemployment (the variables of the Phillips curve

equation) and be non-zero.

We exploit this impulse response interpretation to improve the power of weak-IV robust

tests. If the responses of macro variables to structural shocks are smooth, as is typically

believed, the impulse response of the equation residual should also be smooth and we can

exploit this “smoothness” to reduce the noise in the weak-IV robust statistics. Specifically,

we parametrize the residual impulse response as a quadratic polynomial function which

reduces the number of instruments but does not affect the exogeneity of the instruments.

Thanks to this dimension reduction, the model becomes just-identified, which allows us to

rely on the AR (Anderson and Rubin, 1949) statistic for inference, which is known to be the

uniformly most accurate unbiased test in this setting, see Moreira (2009). Moreover, when

the instruments are strong, the AR test is asymptotically efficient in the usual sense, and

so does not sacrifice power relative to the conventional t-test based on the Two-Stage Least

Squares (2SLS) estimator (see Andrews, Stock and Sun, 2019).

Equipped with our new approach, we revisit the literature on the New-Keynesian Phillips

curve, where we use Romer and Romer (2004) narrative monetary shocks as instruments

to identify the structural coefficients over 1969-2007. We find that the coefficient on the

forcing variable (the slope of the Phillips curve), measured by either the output gap or

the unemployment rate, is significantly different from zero and substantially larger than

when using predetermined variables as instruments. In contrast, the role of forward-looking

inflation expectations is smaller than estimated with the standard approach. We then study

the Phillips curve over the more recent period by using high-frequency identified monetary

surprises (e.g., Kuttner, 2001) as instruments over 1990-2017. Over that period, the slope of

the Phillips curve is smaller but still significant, while forward-looking inflation expectations

play a larger role.

Our approach for estimating structural equations bridges two large literatures: the lit-

erature on the estimation of structural equations using limited-information methods (see

Mavroeidis, Plagborg-Møller and Stock, 2014) and the literature on the identification of
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macroeconomic shocks and their impulse responses (e.g., Ramey, 2016; Stock and Watson,

2016).

The use of structural shocks as instruments considerably broadens the scope of identifica-

tion schemes when compared to using predetermined variables, i.e., lags of macro variables,

as instruments. While some specific literatures have taken advantage of structural shocks

for identification, see for instance Hall (1988b) in the context of production function estima-

tion, modern forward looking structural equations such as the Phillips curve and the Euler

equation have not been identified using structural shocks. Moreover, the key new insight, as

derived from the impulse response intuition, is that sequences of current and past structural

shocks need to be used to induce sufficient variation in the endogenous macro variables.

While structural shocks are generally not observable, the recent literature has produced

a variety of proxies for structural shocks, which are sufficient for conducting instrumental

variable based inference (e.g. Stock and Watson, 2018). Such proxies have been derived using

a variety of methods requiring different modeling assumptions. In addition to the monetary

shocks already discussed, examples include oil price shocks (Hamilton, 2003; Kilian, 2008),

TFP shocks (Fernald, 2012), government spending shocks (Ramey and Zubairy, 2018) and

potentially many others. All these shocks and notably their lags can potentially be exploited

for identifying different structural equations.2 That being said, the use of proxies for the

structural shocks introduces measurement error which can reduce the power of the hypothesis

tests and can cloud the impulse response interpretation (see e.g., Stock and Watson, 2018).

The remainder of this paper is organized as follows. In Section 2 we review the empirical

issues faced by limited-information methods and we discuss the traditional solution that is

based on lagged instruments. Section 3 outlines the use of independently identified structural

shocks for identification. The estimation methodology is developed in Section 4 and the

empirical findings for the Phillips curve are presented in Section 5. Section 6 concludes.

2In our limited-information context, the most appealing shock proxies are identified with little to no
additional restriction on the data generating process. That being said, shocks derived from SVARs identified
with exclusion or sign restrictions are also possible, depending on the researcher’s tolerance for additional
modeling restrictions.
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2 Structural equations and endogeneity issues

In this section we consider general forward looking structural equations and discuss the

different sources of endogeneity that are present in such equations. We then outline the

predominant approach in the literature for conducting inference in this setting: using lagged

observables as instrumental variables. Our exposition is brief and is merely intended to lay

the ground for the next section where we introduce our new approach. More details can be

found in for example Mavroeidis (2005).

Consider the general forward looking equation

yt = γbyt−1 + γfEt(yt+1) + λxt + et , (1)

where yt is the variable of interest that depends on its own lag, its expected value Et(yt+1),

the forcing variable xt and the disturbance et. The expectation Et(·) is taken with respect

to the time t information set Ft. The forcing variable xt is typically not observable as it

is often formulated in deviation from some natural rate. For example, when xt is taken as

the unemployment gap it depends on the natural flexible price level which is unobserved.

The structural coefficients of interest are γb, γf and λ. The estimation of these parameters

is complicated due to a variety of endogeneity issues. To highlight the different sources of

endogeneity we rewrite equation (1) as follows

yt = γbyt−1 + γfyt+1 + λx̂t + et − γf (yt+1 − Et(yt+1))− λ(x̂t − xt)︸ ︷︷ ︸
ut

, (2)

where x̂t is an observable proxy for the forcing variable.3 In this way the first three variables

on the right hand side of equation (2) are observable and ut is the unobserved error term.

Three potential sources of endogeneity in equation (2) can be distinguished.

1. Simultaneous equation bias and confounding with the error term: The error

3Other observable proxies for the expectation term, such as expectation measures from surveys, can
equally well be considered.
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term may simultaneously affect yt and x̂t through a system of simultaneous equations,

in which case we have E(x̂tut) 6= 0.

2. Measurement error in the forcing variable: Since the forcing variable is unob-

served and thus subject to measurement error we have E(x̂tut) 6= 0.

3. Unobserved inflation expectations: Since Et(yt+1) is unobserved and thus subject

to measurement error we have E (yt+1ut) 6= 0.

This collection of endogeneity problems implies that we cannot use ordinary least squares

to consistently estimate the structural parameters in (2).

The traditional approach for handling the endogeneity problems is to treat yt−1 as pre-

determined and to use lags of the observed macro variables as instruments. To illustrate,

we let zlt = (yt−2, x̂t−1)′, and we discuss the conditions under which the three sources of

endogeneity bias disappear when we use zlt as an instrument.

1. E(etz
l
t) = 0 since Et−1(et) = 0 provided that the error term et has no serial correlation.

2. E
(
(yt+1 − Et(yt+1))zlt

)
= 0 since Et(yt+1 − Et(yt+1)) = 0 under rational expectations

and by applying the law of iterated expectations.

3. E
(
(x̂t − xt)zlt

)
= 0 provided that the measurement error x̂t−xt has no serial correlation

This implies that E(utz
l
t) = 0 and zlt satisfies the exogeneity condition. Moreover, the same

can be shown for all zlt−j with j ≥ 0.

Unfortunately, this approach faces challenges, as it is difficult to find lagged economic

variables that are both exogenous and strongly correlated with expected future variables.

First, lagged macro instruments are typically weak instruments, which can lead to con-

siderable sampling uncertainty and to sensitivity of parameter estimates to minor changes

in specification choices, in the set of right-hand side variables or in the sample period (e.g.,

Mavroeidis, Plagborg-Møller and Stock, 2014). Moreover, conventional inference methods
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for computing standard errors and confidence bounds break down when instruments are

weak and robust methods need to be adopted, see Kleibergen and Mavroeidis (2009).

Second, using lagged macro variables as instruments requires that none of the compo-

nents in the error term ut are autocorrelated.4 A potential way of avoiding this concern

is to increase the lag length of the instruments. For instance, to use zt−4 instead of zt as

instruments. Unfortunately, this solution leads to a trade-off between the exogeneity condi-

tion and the relevance condition as increasing the lag length dramatically worsens the weak

instrument problem (Mavroeidis, Plagborg-Møller and Stock, 2014, p163).

3 Aggregate structural shocks as instruments

In this section we show that sequences of (well chosen) structural shocks are valid instruments

to identify the coefficients in equations like (2). Let εit denote the mean zero structural shock

of type i for time period t.5 Depending on the application εit can be either a monetary, fiscal,

technology, credit, oil price, or some other structural shock. The idea in this work is to

use sequences of past structural shocks for identifying the coefficients in (2). To this extent

define εit:t−H ≡ (εit, . . . , ε
i
t−H)′.

The following two conditions must be verified in order for the structural shocks εit:t−H to

be characterized as valid instruments:

E(εit:t−Hut) = 0 (Exogeneity)

E
(
εit:t−H(yt−1, yt+1, x̂t)

)
full column rank (Relevance)

4This can happen if the disturbance et is auto-correlated, or if the measurement error in yt or xt are
serially correlated. This problem is likely to be very relevant in practice. For instance, in the context of the
Phillips curve, Zhang and Clovis (2010) show that the residual in the Gali and Gertler (1999) specification
of the Phillips curve is serially correlated. This can happen with autocorrelation in cost-push shocks (Gaĺı,
2015) or with autocorrelation in the measurement error of the natural rates of of inflation expectations (e.g.,
Coibion, Gorodnichenko and Ulate, 2017).

5We refer to Ramey (2016), Blanchard and Watson (1986) and Bernanke (1986) for more discussion
regarding the definition of a structural shock.
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The exogeneity and relevance conditions imply that the validity of the instruments depends

on the structural equation of interest. For instance, aggregate demand shocks will typically

be valid instruments to identify an aggregate supply equation, and aggregate supply shocks

will be valid to identify an aggregate demand equation. We provide specific examples for

important macro equations below, but first we discuss the intimate connection between the

exogeneity and relevance conditions, and the identification of impulse response functions.

3.1 Identification using structural shocks: Intuition

In this section, we provide some intuition by showing how our approach recasts the prob-

lem of identifying structural coefficients as a well-known problem in macroeconomics: the

identification of impulse responses to aggregate structural shocks.

We start by rewriting the exogeneity and relevance conditions in terms of impulse re-

sponses to the structural shocks εit:t−H . To do this in a simple way we assume for the moment

that all variables are stationary, that the structural shocks are mutually uncorrelated and

that the macro variables (yt−1, yt+1, x̂t) and the residual ut can be written as linear functions

of the structural shocks. Under these assumptions, the exogeneity and relevance conditions

can be restated as

Ru
h = 0 ∀ h = 0, . . . , H (Exogeneity)

[
Ry
h−1,R

y
h+1,R

x̂
h

]H
h=0

linearly independent (Relevance)

where Rj
h is the impulse response of jt, for j = u, y, x̂, to the structural shock εit−h. We

provide a formal derivation in the web-appendix.

The reformulated exogeneity condition implies that the impulse response function of the

residual ut to the structural shock is equal to zero. Intuitively, when the macro parameters

(λ, γf , γb) are set at their true values, the impulse response of the residual ut should be zero

(under correct specification). The reformulated relevance condition states that the impulse
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response of the observed forcing variable x̂ and the impulse responses of past and future y

are not linearly dependent.

Next, post-multiply the forward looking equation (2) by εit−h, take the expectation, and

use the exogeneity condition to obtain:6

Ry
h = γbRy

h−1 + γfRy
h+1 + λRx̂

h , ∀ h = 0, . . . , H . (3)

Expression (3) implies that all the information needed to recover the coefficients of the

structural equation is encoded in the impulse response functions to the structural shocks. In

fact, we can identify the coefficients of the macro equation from an OLS regression – across

h – of the impulse response of the outcome variable on its own lag and lead, and on the

impulse response of the forcing variable, i.e., from a regression in “impulse response space”.7

The relevance condition can then be seen as the no multicollinearity condition of OLS: the

dynamics of the impulse responses of (yt−1, yt+1, x̂t) have to be rich enough such that there

exist a unique parameter vector (λ, γf , γb) satisfying (3).

3.2 Identification using structural shocks: Examples

To illustrate our approach we discuss three important structural equations: the Phillips

curve, the Euler equation (for output or consumption) and the central bank’s monetary

policy rule. In each case, we argue that sequences of well-chosen structural shocks can form

valid instruments under relatively mild assumptions.

6Consider ytε
i
t−h = γbyt−1ε

i
t−h + γfyt+1ε

i
t−h + λx̂tε

i
t−h + utε

i
t−h. Now taking expectations on both sides

E(ytε
i
t−h) = γbE(yt−1ε

i
t−h)+γfE(yt+1ε

i
t−h)+λE(x̂tε

i
t−h)+E(utε

i
t−h). The last term is zero by the exogeneity

assumption and the other expectations are the impulse responses of yt−1, yt+1 and x̂t to εit−h.
7Specifically, by minimizing the sum of squared residuals

∑H
h=0

(
Ryh − γbR

y
h−1 − γfR

y
h+1 − λRx̂h

)2
, we

can find the structural coefficients that best fit equation (3) for any h. This is an OLS regression in “impulse
response space”, i.e., a regression across the horizon h of the impulse responses. While the “regression
in impulse response space” interpretation is helpful to get the intuition behind our instrumental variable
approach, we do not advocate estimating the coefficients in this way in practice. While the approach is
consistent, it is not efficient. In fact, it can be easily verified that the OLS estimates obtained from (3) after
replacing Ryh and Rx̂h by their sample counterparts are equivalent to computing the GMM estimator for the
structural equation (1) with instruments {εit, . . . , εit−H} and with the GMM weighting matrix equal to the
identity matrix. This choice is not efficient and not robust to many and weak instruments. Our preferred
methodology is described in the estimation section.
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The Phillips curve

Consider the hybrid New-Keynesian Phillips curve (e.g. Gali and Gertler, 1999) given by

πt = γbπt−1 + γfEt(πt+1) + λxt + εst , (4)

where πt is inflation, the output gap xt = gt − gnt depends on the natural level of output gnt ,

and εst denotes some (possibly autocorrelated) exogenous cost-push factors. The parameters

of interest γb, γf , and λ are typically functions of deep structural parameters of an underlying

model (see e.g., Gaĺı, 2015). Notice that the Phillips curve fits naturally in our general

framework (1).

Re-writing (4) to highlight the endogeneity issues, we have

πt = γbπt−1 + γfπt+1 + λx̂t + εst − γf (πt+1 − Et(πt+1))− λ(x̂t − xt)︸ ︷︷ ︸
ut

. (5)

The Phillips curve includes all three sources of endogeneity discussed in section 2: (i) cost

push factors can simultaneously affect inflation and the forcing variable through the sys-

tematic response of monetary policy to inflation developments (Kareken and Solow, 1963;

McLeay and Tenreyro, 2018), (ii) measurement error in the forcing variable since the natural

level of output is unobserved, and (iii) unobserved inflation expectations.

We now argue that monetary shocks εmt:t−H —deviations of the central bank from its

typical behavior (e.g., Romer and Romer, 2004; Cochrane, 2004)— are valid instruments to

identify the Phillips curve, i.e., that they are both (i) exogenous and (ii) relevant.

Exogeneity: The exogeneity condition E(εit:t−Hut) = 0 is satisfied if monetary shocks

are orthogonal to (i) cost-push factors, (ii) measurement error in the output gap, and (iii)

measurement error in inflation expectations. While the systematic response of monetary

policy to inflation can create a correlation between the output gap and cost-push factors,

monetary shocks are innovations to the systematic conduct of monetary policy (e.g., Gaĺı,

2015; McLeay and Tenreyro, 2018), and should thus be orthogonal to cost-push factors and
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satisfy condition (i).8 Condition (ii) holds under the assumption that money is neutral under

flexible prices, a relatively mild and uncontroversial assumption.9 Condition (iii) holds under

rational expectation or provided that survey measures of inflation expectations are available

and accurate up to some additive (and possibly autocorrelated) measurement error term.10

Relevance: Monetary shocks are relevant instruments if they affect inflation and the

output gap. This implies that (in addition to the Phillips curve (4)), there must exist an

underlying IS curve, i.e., an equation linking the output gap to the level of interest rate

(and thus to monetary shocks). Our approach does not rely on specifying any parametric IS

curve, only that such a curve exists so that the policy rate affects the output gap. Since the

existence of an IS curve is a cornerstone of most macro models, we view this condition as mild

and uncontroversial. In addition, because the Phillips curve (4) involves three endogenous

variables (lagged inflation, future inflation and the output gap), satisfying the rank condition

requires that the first-stage predicted values of the endogenous variables are not linearly

dependent. From the intuition in Section 3.1 it follows that the relevance condition holds if

and only if the impulse responses of lagged inflation, future inflation and the output gap are

not linear functions of one another. With a hybrid Phillips curve (γb > 0), this is ensured

even if the output gap xt follows only a basic iid process (see appendix A for a formal

derivation), so we again view this condition as mild and uncontroversial. Naturally however,

as emphasized in the literature (Kleibergen and Mavroeidis, 2009), the rank condition is not

8This is true as long as monetary policy has no effect on aggregate supply. While this is a commonly
held assumption, some cost effects of monetary policy are possible. For instance, if firms need to finance
wage payments or need to hold inventory, a higher interest rate can raise firms’ real marginal costs, the
so called cost channel of monetary policy (e.g., Barth III and Ramey, 2001). In that case, the exogeneity
condition (i) is no longer verified, and one should include the interest rate on the right hand-side (Ravenna
and Walsh, 2006) and instrument it with monetary shocks. Another example whereby monetary policy can
have cost-push effects is when oil prices respond to US monetary policy. In that case, one would need to add
(and instrument) oil price on the right-hand side. More generally, the set of valid instruments depends on the
specification of the Phillips curve posited by the researcher. Here, we focus on the standard New-Keynesian
Phillips curve encountered in most empirical studies (e.g., Mavroeidis, Plagborg-Møller and Stock, 2014).

9The exogeneity condition E
(
εmt−j(x̂t − xt)

)
= 0 is verified, if E

(
εmt−j(ĝ

n
t − gnt )

)
= 0, which holds if

monetary policy is neutral under flexible prices.
10The exogeneity condition E

(
εmt−j(πt+1 − Etπt+1)

)
= 0 is satisfied under rational expectations, since the

law of iterated expectations implies E
(
εmt−j(πt+1 − Etπt+1)

)
= E

(
εmt−jEt(πt+1 − Etπt+1)

)
= 0. For depar-

tures of rational expectations, we can we still obtain consistent estimates, as long as the survey measurement
error term is orthogonal to monetary shocks, a relatively mild assumption.
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sufficient for reliable estimation and inference because of the problem of weak instruments.

We will come back to this point in the estimation section.

The Euler equation

Consider a linearized Euler equation of the form

xt = γbxt−1 + γfEt(xt+1)− λ(it − Et(πt+1)− rnt ) , (6)

with rnt the real natural rate of interest and where xt can be the (log) output gap as in

the output Euler equation, or (log) aggregate consumption as in the consumption Euler

equation.11 This equation forms the basis of numerous empirical works on the dynamic IS

curve underlying the New-Keynesian model (e.g., Fuhrer and Rudebusch, 2004), or on the

elasticity of intertemporal substitution (e.g., Hall, 1988a; Yogo, 2004; Ascari, Magnusson

and Mavroeidis, 2016).

Rewriting the Euler equation to highlight the endogeneity issues gives

x̂t = γbx̂t−1 + γf x̂t+1 − λ (it − πt+1) + ut , (7)

where the residual ut captures endogeneity bias from (i) confounding from movements in the

real rate of interest (e.g., from productivity shocks, Gaĺı, 2015), (ii) measurement error in

the output gap and (iii) unobserved inflation expectations and output gap expectations.12

Again, monetary shocks are good candidates for valid instruments to identify (7). The

reasons are similar to the case of the Phillips curve and we do not repeat them. The only

11Compared to the conventional Euler equation implied by the baseline New-Keynesian model (e.g., Gaĺı,
2015), specification (6) features the lag of the output gap as an explanatory variable. This added persistence
can arise with habit formation in consumption, see Fuhrer (2000) for instance.

12The residual ut satisfies

ut = λrnt − λ(πt+1 − Et(πt+1))− γf (x̂t+1 − Et(xt+1)) +
∑
j=0,1

(−γb)j(x̂t−j − xt−j).

Equation (6) admits the general form discussed in section 2, but with one additional source of endogeneity
compared to the Phillips curve: Because the left-hand side variable in (6) is the unobserved variable xt,
serially correlated measurement error in xt will imply E(x̂t−1ut) 6= 0.
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difference is that the confounding factors are no longer cost-push shocks, but instead shocks

to the natural real rate of interest, for instance productivity shocks (e.g., Gaĺı, 2015). Again,

the common assumption that monetary policy is neutral under flexible prices implies that

monetary shocks are orthogonal to movements in the natural rate of interest, which means

that monetary shocks satisfy the exogeneity condition for the Euler equation as well.

Another set of possible candidates for exogenous instruments are cost-push shocks. These

shocks are relevant instruments as long as there exist some underlying Phillips curve and

monetary rule with rich enough dynamics (that need not be specified), such that the impulse

responses to a cost-push shock of the three endogenous variables in the Euler equation —

inflation, the output gap and the nominal interest rate— are not linear functions of one

another.

The monetary policy rule

The final example that we discuss is a simplified version of the interest rate rule from Clarida,

Gaĺı and Gertler (2000) and Mavroeidis (2010) that is given by

it = γbit−1 + γfEt(πt+1) + λxt + εmt , (8)

where it denotes the nominal interest rate, xt the output gap and εmt the monetary policy

shock.

We rewrite (8) in terms of the observables to obtain

it = γbit−1 + γfπt+1 + λx̂t + ut . (9)

The sources of endogeneity bias in (9) are confounding from monetary shocks, unobserved

inflation expectations, and measurement error in the output gap.13 In this case, productivity

shocks are valid instruments as long as there exist some underlying Phillips curve and IS curve

with rich enough dynamics (that need not be specified), such that the impulse responses of

13The residual is given by ut = εmt + γf (Et(πt+1)− πt+1) + λ(xt − x̂t)
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inflation and the output gap to those shocks are not linear functions of one another.

4 Estimation methodology

In this section we discuss inference for the parameters of the general forward looking model

(2) using structural shocks as instruments. For ease of exposition consider the following

compact model representation

yt = w′tδ + ut , (10)

where

wt = (yt−1, yt+1, x̂t)
′ and δ = (γb, γf , λ)′ .

While structural shocks are typically not observed, the literature has produced a variety of

proxies for structural shocks, which are sufficient for conducting instrumental variable based

inference (e.g. Stock and Watson, 2018). To distinguish between the structural shocks and

their proxies we denote the latter by ξit and work under the assumption that ξit correlates

only with εit and not with other structural shocks. Hence, the identification arguments of

the previous section are assumed to hold when we replace εit:t−H by ξit:t−H .

4.1 Naive moment estimators

Given the sequence of proxies ξit:t−H , a straightforward approach for estimating δ is to use

method of moment estimators. In general, following the textbook treatment of White (2000),

we can consider estimators of the form

δ̂IV =
(
S ′ξwΩ̂ξSξw

)−1

S ′ξwΩ̂ξsξy , (11)

where Sξw = 1
n

∑n
t=1 ξ

i
t:t−Hw

′
t, sξy = 1

n

∑n
t=1 ξ

i
t:t−Hyt and Ω̂ξ is some positive definite weight

matrix. A set of general assumptions under which
√
n(δ̂IV − δ0) converges to a normal

distribution is given in White (2000) (see for instance Theorem 5.23). Based on such normal

15



limiting approximation we may conduct hypothesis tests and construct confidence intervals.14

This naive approach suffers from two problems however: weak instruments and many

instruments.

First, structural shocks need not explain a large share of the variance of macro variables

(e.g., Gorodnichenko and Lee, 2019; Plagborg-Møller and Wolf, 2018), which implies that in

such cases the shocks are weak instruments. Consequently, the conventional normal limiting

distribution of the moment estimator δ̂IV provides a poor description of the finite sample

behavior of the estimator (e.g. Staiger and Stock, 1997).

Second, we typically want to consider the number of structural shocks between H = 12

and H = 20 for quarterly data as this is the horizon for which macroeconomic impulse

responses are typically found to be significantly different from zero. When the number of

instruments used is large relative to sample size, we face a many instruments problem, and

again the traditional asymptotic approximation for the moment estimator δ̂IV provides a

poor description of its finite sample behavior (e.g. Bekker, 1994). Moreover, with many

instruments, tests based on conventional weak instrument robust statistics have poor power

and size properties, see Andrews and Stock (2007).

4.2 Inference with the Almon-restricted AR statistic

Our preferred inference approach follows the weak instrument robust literature (e.g. An-

drews, Stock and Sun, 2019) by considering test statistics for which the limiting distribution

does not depend on the strength of the instruments. Additionally, we exploit the impulse re-

sponse intuition from Section 3.1 to reduce the number of effective instruments, thus avoiding

the many instruments problem.

Consider testing the hypothesis H0 : δ = δ0. From the exogeneity condition E(ξit:t−Hut) =

14A special case of this naive approach is a two-step approach where in the first step the structural impulse
responses of wt to the structural shock proxies ξit:t−H are estimated using SVAR-IV or LP-IV (see Stock and
Watson (2018) and Mertens and Ravn (2013)), and in the second step the estimated impulse responses are
regressed on each other based on equation (3).
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0, we can test H0 based on the distributed lag model

yt − w′tδ0 = θ′ξit:t−H + ηt , (12)

where θ is the (H + 1)× 1 impulse response of the macro equation residual ut to the proxies

ξit:t−H , and ηt is a disturbance term.15 Under H0 the exogeneity condition implies that the

impulse response θ is zero. So a test for H0 : δ = δ0 can be implemented by testing θ = 0.

Intuitively, for values of the macro parameters close to their true values, the impulse response

of the residual ut = yt−w′tδ0 to the structural shock proxies should be not be different from

zero. Conversely, for values away from the truth the impulse response of the residual should

be a combination of the impulse responses of yt (the left-hand side variable of the macro

equation) and the impulse responses of x̂t, future and past yt (the right-hand side variables

of the macro equation) and thus be non-zero.16

This approach to conduct inference goes back to Anderson and Rubin (1949), and we

can test H0 : δ = δ0 by testing θ = 0 using an Anderson-Rubin (AR) type statistic

AR[δ0] = θ̂′Σ̂−1
θ θ̂ , (13)

where θ̂ is the OLS estimate for θ based on equation (12) and Σ̂θ denotes any heteroskedas-

ticity and serial correlation robust estimator for the variance of θ̂.

The important feature of such AR-type statistic is that its limiting distribution does not

depend on the strength of the instruments (e.g. Staiger and Stock, 1997).17

Unfortunately, hypothesis tests based on the standard AR-statistic have poor power and

15Note that we changed the impulse response notation from R to θ to highlight that this is the impulse
response to the proxies for the structural shocks instead of the structural shocks themselves.

16For instance, if the parameters of the Phillips curve equation are set to zero, the impulse response of
the residual corresponds to the impulse response of inflation, the left-hand variable of the Phillips curve
equation.

17In the homoskedastic case under random sampling the AR test statistic is equivalent to the F -statistic
of the regression of yt − w′tδ0 on ξit:t−H . More general forms that allow for, among others, dependent data
can be found in for example Stock and Wright (2000). Other popular test statistics for H0 : δ = δ0 include
the Lagrange multiplier (LM) statistic of Kleibergen (2002) and the conditional likelihood ratio statistic of
Moreira (2003).
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size properties when, as in our setting, the number of instruments is large relative to the

sample size (Andrews, Stock and Sun, 2019). To reduce the dimension of the problem, we

exploit the fact that the impulse responses of macro variables are typically believed to be

smooth functions, and we draw from Almon (1965) and parametrize the elements of the

impulse response θ as a polynomial function

θh = a+ bh+ ch2 , for h = 0, . . . , H , (14)

where a, b and c are the polynomial coefficients. While alternative basis functions for θh

can also be considered, polynomial basis functions are attractive in our setting, because the

resulting estimation problem remains linear.

With the Almon parametrization we reduce the number of instruments to three with

zit =

(
H∑
h=0

ξit−h,
H∑
h=0

hξit−h,
H∑
h=0

h2ξit−h

)′
(15)

and we can re-write our distributed lag model (12) as

yt − w′tδ0 = θ′az
i
t + ηt , (16)

where the parameters to estimate are the three Almon-polynomial coefficients θa = (a, b, c)′.

Notice that our new set of instruments zit is merely a deterministic linear function of the

exogenous structural shocks and hence zit inherits the exogeneity properties of ξit:t−H , i.e. we

have E(zit(yt − w′tδ0)) = 0 under H0. This implies that our approach remains valid even if

the true impulse responses are not smooth functions and a quadratic polynomial provides a

poor approximation. In such cases the Almon-restriction will only impose a cost in terms of

lower power.

With the number of instruments equal to the number of endogenous variables,18 we can

18In such just-identified settings Chernozhukov, Hansen and Jansson (2009) have shown that the Anderson
and Rubin (1949) statistic for testing H0 : δ = δ0 is admissible. Intuitively, this means that we can be robust
to weak instruments without sacrificing power. Moreover, Moreira (2009) shows that the AR test is uniformly
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construct an “Almon-restricted” AR statistic given by

ARa[δ0] = θ̂′aΣ̂
−1
θa
θ̂ , (17)

where

θ̂a =

(
n∑

t=H+1

zitz
i′

t

)−1 n∑
t=H+1

zit(yt − w′tδ0) , Σ̂θa =

(
n∑

t=H+1

zitz
i′

t

)−1

ŝ2
u ,

and ŝ2
u is any consistent estimate for the long run variance of ut = yt − w′tδ0. The form of

the variance estimate Σ̂θa is motivated by our asymptotic theory in which we let the number

of instruments increase with the sample size, e.g. H/n→ c ∈ (0, 1) as n→∞.

When the structural shocks are strictly exogenous, i.e. E(utξ
i
s) = 0 for all s, t, we show in

Appendix B that the Almon restricted AR statistic converges in distribution to a χ2(3) under

mild regularity conditions, in particular allowing for auto-correlation and heteroskedasticity

in both the macro equation residual ut and in the shock proxy ξit. Confidence sets for δ

are then computed by inverting the ARa statistic for different values of δ0 ∈ D ⊂ R3. We

provide a detailed implementation guide in the web-appendix.

Finally, note that the Almon restriction can also be used to reduce the number of in-

struments for the naive moment estimator of section 4.1. In particular, we can consider the

Almon restricted moment estimator

δ̂IVa = S−1
zw szy , (18)

where Szw = 1
n

∑n
t=H+1 z

i
tw
′
t and szy = 1

n

∑n
t=H+1 z

i
tyt. This simple IV estimator does not

suffer from the many instrument problem, thanks to the Almon-restriction, but it is not

robust to weak instruments. Therefore our preferred approach is based on the ARa[δ0]

statistic, which is robust to weak instruments and does not suffer from the many instruments

problem.

most accurate unbiased in this setting.

19



4.3 Inference with the subset Almon-restricted AR statistic

Often we are interested in conducting inference on a subset of parameters. For instance, a

researcher may only be interested in getting a confidence interval for the effect of the forcing

variable.

To conduct subset inference we partition the parameters δ as follows δ = (β′, α′)′. The

subset hypothesis of interest is given by H0 : β = β0 and we may regard the parameters α as

nuisance parameters. To test the null hypothesis, without assuming strong identification, we

propose a subset version of the Almon-restricted AR statistic, building on Stock and Wright

(2000), Kleibergen and Mavroeidis (2009) and Guggenberger et al. (2012).

In particular, we consider

ARa,s[β0] = min
α∈Rdim(α)

ARa[(β
′
0, α

′)′] . (19)

We show in appendix B that ARa,s[β0] is upper-bounded by a chi-squared random variable

with degrees of freedom equal to the dimension of β.19 To compute the subset AR statistic

we minimize ARa[(β
′
0, α

′)′] with respect to α and subsequently we compare ARa,s[β0] with

the critical values of the χ2(dim(β)) distribution. Again, see the detailed implementation

guide in the web-appendix for more details.

In certain applications it may be desirable to use more shock instruments when compared

to the number of endogenous variables. To make our approach suited for such settings

Appendix C generalizes our methodology to cover structural equations with an arbitrary

number of structural parameters and multiple Almon-restricted structural shock instruments.

For these settings we may continue to use the (subset) Almon-restricted AR statistic as long

as the effective number of instruments is at least as large as the number of endogenous

variables.

19Note that if we assume that α is strongly identified, we have that ARa,s[β0]
d→ χ2(dim(β)), see Stock and

Wright (2000). When identification is weak, the χ2(dim(β) distribution provides merely an upper bound,
implying that inference based on the subset statistic is conservative (e.g. Guggenberger et al., 2012).
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4.4 Summary of the simulation study

In this section we briefly discuss the findings from a simulation study that we conducted to

assess the finite sample performance of our proposed methodology. A full description of the

simulation study is presented in Appendix D.

We simulated data from model (1) where the forcing variable followed an AR(2) process.

The structural shocks were chosen such that their variance contributions mimic the recent

empirical findings for monetary policy shocks (e.g., Gorodnichenko and Lee, 2019; Plagborg-

Møller and Wolf, 2018), and notably the fact that monetary shocks may account for a

relatively small share of the variance of macro variables. Based on this data generating

process we compared the standard Wald test (based on the 2SLS estimator in (11)), the

Wald test computed with Almon restricted instruments (based on the IV moment estimator

with Almon restriction (18)), the standard AR test (13), and the Almon-restricted ARa

test (17). We vary H = 20, 40 to investigate the sensitivity of the methodology to different

choices for H.

We compared the empirical rejection frequencies of these tests and found that only the

ARa test has correct size. All other tests severely over-reject. For the standard Wald test

this is caused by both many and weak instruments, for the Almon-restricted Wald test this

is caused only by weak instruments and for the standard AR test this is caused by the use of

many instruments relative to the sample size. Importantly, our proposed Almon-restricted

ARa test has correct size regardless of the strength of the instruments and the value of H.

For the subset Almon restricted ARa,s test we find that if the instruments are strong

the size of the subset test is correct. When the instruments are weak the subset statistic

is conservative. These findings hold for all combinations of H and n considered and corre-

spond with the asymptotic theory outlined in appendix B. Additional simulation results are

provided in the web-appendix.
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5 The US Phillips curve

In this section we illustrate our approach by estimating the New Keynesian Phillips curve

using quarterly data for the United States. We consider a standard hybrid Phillips curve of

the form

πt = γbπ
4
t−1 + γfEt(π

4
t+4) + λxt + εst , (20)

with πt (annualized) quarter-to-quarter inflation and π4
t−1 = 1

4
(πt−1 + πt−2 + πt−3 + πt−4)

average inflation over the past year.

In section 3.2 we showed that one can identify the parameters of the Phillips curve

(20) by using monetary policy shocks as instrumental variables. To operationalize the use of

monetary shocks for identification we rely on two different proxies for monetary policy shocks.

Our baseline estimates are based on the Romer and Romer (2004) narrative measure of

exogenous monetary policy changes, which has the advantage of covering the longest sample

period thanks to Tenreyro and Thwaites (2016)’s extension of the Romer and Romer series

(1969-2007). As an alternative, we will also rely on the recent high-frequency identification

(HFI) approach, pioneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005), and

use surprises in futures/bond prices around FOMC announcement as proxies for monetary

shocks.

Before presenting our results, we note that these monetary shock proxies have limitations,

both in terms of the validity of the exogeneity condition, and in terms of the instrument

strength. Regarding the exogeneity condition, Romer and Romer (2004) identify monetary

shocks holding constant the staff’s Greenbook forecasts for output and inflation, but one

concern is that policy makers respond to information beyond what is in the Greenbook. If

this response is in reaction to cost-push factors, the exogeneity condition could be violated.

For HFI surprises, the limitation comes from a possible Federal Reserve information effect,

whereby an FOMC announcement releases some information that was known by the Federal

Reserve but not by private agents (Romer and Romer, 2000; Nakamura and Steinsson, 2017).

If some of the Fed informational advantage is related to cost-push factors, the exogeneity
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condition could be violated. In terms of instrument strength, if monetary policy has been

set more systematically in the post 1990 period (see Ramey, 2016; McLeay and Tenreyro,

2018), this would leave only a limited amount of true exogenous variations to identify the

Phillips curve over that period. While the asymptotic distribution of our test statistics does

not depend on the strength of the instruments, the power of our tests will be lower when

the instruments are weaker.

5.1 Identification from Romer-Romer monetary shocks, 1969–2007

We first present our results based on using the Romer and Romer monetary shocks as

instruments with H = 20 over 1969-2007. For our baseline results, we measure inflation

from changes in the PCE price level excluding food and energy prices (core PCE), and

as forcing variable we use detrended unemployment or detrended real GDP gap, with the

underlying trend estimated from an HP-filter with λhp = 1600. We later consider alternative

specifications.

In Table III we show the results for the Phillips curve coefficients γb, γf and λ. We

report the Almon-restricted IV point estimates (18) for the individual parameters γb, γf and

λ, and we use the subset ARa,s statistic, as in (19), to obtain the weak-IV robust confidence

intervals. Finally, we complement our study by reporting the same set of estimates computed

under the restriction that γb+γf = 1, a restriction that is often imposed in empirical studies

and is consistent with the existence of a vertical long-run Phillips curve.

The slope of the Phillips curve (λ) is significantly different from zero, regardless of the

forcing variable, while lagged inflation (γb) and expected future inflation (γf ) are equally

important in determining inflation. In fact, the coefficient on lagged inflation is always

positive and significant, indicating that the hybrid Phillips curve is preferable to the strictly

forward looking Phillips curve.

To better capture the interaction between the coefficient estimates, Figure I shows two-

dimensional confidence regions. The top row shows the two-dimensional confidence regions

for γf and λ, obtained by using the subset ARa,s statistic, where only lagged inflation was
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integrated out.20 Overall, we can exclude zero for the slope of the Phillips curve for most

values of γf , but we have difficulty rejecting combinations of a large (absolute) slope and a

small (in absolute value) coefficient on expected future inflation.

The bottom row of Figure I shows the confidence sets for (γb, γf ), i.e., after differentiating

out the forcing variable. Our results support a vertical long-run Phillips curve, as the

confidence sets for (γb, γf ) lie on the γb + γf = 1 line. In fact, consistent with that result,

imposing the common restriction γb + γf = 1 (e.g. Kleibergen and Mavroeidis, 2009) barely

changes our IV point estimates and confidence sets for (λ, γf ), except that the sets become

slightly smaller (Figure II and Table III). Again however, we have a hard time discarding

large (absolute) values for λ when |γf | is small.

Intuition

To get some intuition behind this last result and more generally to better understand how we

construct our confidence sets from the impulse responses of the residual, Figure III displays

the heatmap of the ARa statistic for our restricted (γf + γb = 1) estimates based on using

the unemployment gap as the forcing variable. Intuitively, the ARa statistic can be seen

an F-test of overall significance for the impulse response of the Phillips curve residual to

a monetary shock. Darker (bluer) values indicate values of the ARa statistic close to zero

—impulse responses of the residual close to zero— and thus more “likely” parameter values.

For values away from the truth, the impulse response of the residual should be a combination

of the impulse responses of inflation and the unemployment gap and thus be non-zero.

To illustrate how the impulse response of the residual changes with parameter values,

the bottom panel of Figure III plots the impulse responses of the residual for nine different

values of (λ, γf ), first unsmoothed (in blue) and then smoothed with an Almon restriction

(in red). The small red dots in the top panel of Figure III denote the different parameter

values corresponding to the nine impulse responses. For λ and γf at their the IV estimates

(center red dot in top panel), the impulse response of the residual is close to zero, consistent

20Formally, in the notation of the subset statistic (19) we take α = γb and construct confidence set for
β = (γf , λ)′ by inverting the subset-AR based test β = 0 for different values of β.
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with the idea that the point estimates are close to their true values. As we move away from

these values, the impulse response of the residual becomes a combination of the impulse

responses of inflation and unemployment. For instance, with λ = 0 and γf = 0 (impulse

response in the right-bottom panel), one can show that the residual is simply ∆πt. Since

∆πt decreases following a positive (i.e., contractionary) monetary shock, this allows us to

discard this parameter pair. As we decrease λ however (moving to the impulse response in

the left-bottom panel), the residual becomes a (weighted) sum of ∆πt and ut, two variables

that move in opposite direction following a monetary shock. With the impulse responses of

∆πt and ut partially canceling out each other, it becomes difficult to reject H0, i.e., difficult

to reject combinations of a large (absolute) slope |λ| and a small (absolute) γf .

Comparison with traditional methods

To put our results in the context of the literature, we also estimated the New-Keynesian

Phillips curve in the traditional way, i.e., using lagged macro variables as instruments. Our

implementation follows Kleibergen and Mavroeidis (2009), and we use four lags of inflation

and the forcing variable.

In addition, to more systematically explore how our estimates differ from those based

on the traditional approach, we repeated our estimation procedure using different inflation

measures and different gap measures. Specifically, we considered five popular measures of

inflation: core PCE, PCE, core CPI, CPI and the GDP deflator. For the unemployment

gap, we considered the raw unemployment rate, the CBO unemployment gap, unemployment

detrended with an HP-filter with λhp = 1600, and unemployment detrended with a smoother

HP-filter with λhp = 105. For the output gap, we considered the CBO output gap, the output

gap from an HP-filter with λhp = 1600 and the output gap from an HP-filter with λhp = 105.

Figure IV reports the IV point estimates for the different combinations of inflation and

gap measures. Two main conclusions emerge. First, our estimates for the slope of the

Phillips curve are substantially larger (in absolute value) than the estimates based on using

lagged macro variables as instruments. This finding is in line with what one would expect if
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the “lagged macro instruments” violate the exclusion restriction because of serial correlation

in the cost push factors (Mavroeidis, Plagborg-Møller and Stock, 2014) or because of serial

correlation in the measurement error in the forcing variable.21 Second, our estimates for the

coefficient on expected future inflation are substantially smaller than the estimates based

on using lagged macro variables as instruments. This indicates that earlier methods have

tended to over-estimate the role of forward-looking inflation expectations.

5.2 Identification from HFI monetary surprises, 1990–2017

Our results based on the full 1969-2007 sample mix very different policy regimes. In fact, a

number of Phillips curve-based studies have suggested substantial changes in the persistence

of inflation as well as in the magnitude of the inflation-unemployment trade-off; from the

close to unit-root behavior of inflation in the 1970s (e.g., King and Watson (1994)) to the

flattening of the Phillips curve in the post-1990 period (e.g., Ball and Mazumder (2011) and

Blanchard (2016)).

In this section, we use HFI monetary surprises —changes in bond/futures prices around

FOMC announcements— to estimate the Phillips curve over the more recent 1990-2017

period, a period with a relatively stable policy regime. As instrument, we take the sum of

the three month ahead monthly fed funds futures, which capture variations in the fed funds

futures prior to the zero-lower-bound period (see Gertler and Karadi, 2015), and surprises to

the 10-year yield, which capture interest rate variations from slope policies in the post-2007

period (see Eberly, Stock and Wright, 2019).22 Given the short sampling period, we impose

the restriction γf + γl = 1.

Table IV displays the Almon-restricted IV point estimates for γf and λ along with the

21Confounding with supply factors will lead to a downward bias in the lagged macro instrument esti-
mates, because supply shocks lead to a positive correlation between inflation and the unemployment gap.
Measurement error in the forcing variable will also lead to downward bias coming from attenuation.

22Intuitively, since the relevant interest rate for economic decisions is a longer-term yield like the 10-year
yield, our goal is to capture as much exogenous variations in the 10-year yield as possible. While taking the
sum of FF4 and 10-year yield surprises is a crude way to capture exogenous variations in the 10-year yield
over the 1990-2017 period, a regression of the 10-year yield on these two surprises show that both terms
enter significantly and with roughly equal coefficients.
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weak-IV robust confidence intervals derived from the subset ARa,s statistic. Similarly to

Figure II, Figure V also plots the confidence sets for γf and λ.

Before we contrast our HFI results based on the more recent 1990-2017 period with our

results based on the 1969-2007 Romer and Romer (RR) monetary shocks, we note that com-

paring estimates across different identification schemes (HFI vs. RR) can be challenging. As

we saw earlier, HFI and RR instruments have potential imperfections. Since these imper-

fections are different for HFI and for RR, differences in results across identification schemes

could be caused by differences in imperfections and not by genuine changes in the underlying

Phillips curve.

With this caveat in mind, we note two main differences. First, in terms of point estimates,

the slope of the Phillips curve is substantially smaller with the HFI identification scheme,

about half as large but still marginally significant, whereas the coefficient on expected future

inflation is larger. In terms of confidence sets, the sets obtained with HFI instruments are

markedly different from those obtained with the RR instruments, notably in terms of their

shape and main orientation. Specifically, while the confidence sets in Figure II clearly exclude

large values for γf , the opposite holds in Figure V where the confidence sets are in positive

territory for γf and in fact cannot exclude large values for γf . Although only suggestive,

these results are consistent with a change in the main determinants of inflation since 1990,

with forward-looking inflation expectations playing a larger role, and slack playing a smaller

role.

6 Conclusion

In this paper, we used sequences of structural shocks as instrumental variables to address

endogeneity issues and obtain consistent estimates of forward looking structural equations

including the Phillips curve, the dynamic IS curve and the interest rate rule. We showed

that the Anderson-Rubin statistic can be used to conduct inference in a powerful way that

is robust to the weak instruments problem. In our empirical work we have shown that the
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methodology is able to give new insights into the Phillips curve literature.

Looking beyond the current paper, the impulse response interpretation associated with

using sequences of structural shocks allows for further methodological developments. While

we propose one refinement based on parameterizing the residual impulse response as a poly-

nomial function, using structural shocks as instruments allows to exploit many other features

of impulse response functions. Examples include: (i) combining different types of structural

shocks (for instance, different types of aggregate demand shocks) so as to also exploit vari-

ation across impulse responses to improve inference, (ii) exploiting nonlinearities in the

impulse responses to structural shocks and (iii) exploiting time-variation in the impulse

responses to shocks (e.g. Magnusson and Mavroeidis, 2014).

Moreover, while the present paper focuses on estimating linear equations, using shocks

as instruments instead of pre-determined variables can be also used to estimate non-linear

forward-looking equations, which is of high relevance for the asset pricing literature (Hansen

and Singleton, 1982).

28



References

Alloza, Mario, Jesus Gonzalo, and Carlos Sanx. 2019. “Dynamic Effects of
Persistent Shocks.” working paper.

Almon, Shirley. 1965. “The Distributed Lag Between Capital Appropriations and
Expenditures.” Econometrica, 33(1): 178–196.

Anderson, Theodore W., and Herman Rubin. 1949. “Estimation of the Parameters
of a Single Equation in a Complete System of Stochastic Equations.” Ann. Math.
Statist., 20(1): 46–63.

Andrews, Donald W. K. 1991. “Heteroskedasticity and Autocorrelation Consistent
Covariance Matrix Estimation.” Econometrica, 59(3): 817–858.

Andrews, Donald W.K., and James H. Stock. 2007. “Testing with many weak
instruments.” Journal of Econometrics, 138(1): 24 – 46.

Andrews, Isaiah, James Stock, and Liyang Sun. 2019. “Weak Instruments in IV
Regression: Theory and Practice.” Annual Review of Economics. forthcoming.

Ascari, Guido, Leandro M. Magnusson, and Sophocles Mavroeidis. 2016.
“Empirical evidence on the Euler equation forconsumption and output in the US.”
Working Paper.

Ball, Laurence, and Sandeep Mazumder. 2011. “Inflation Dynamics and the Great
Recession.” Brookings Papers on Economic Activity, 337–405.

Barth III, Marvin J, and Valerie A Ramey. 2001. “The cost channel of monetary
transmission.” NBER macroeconomics annual, 16: 199–240.

Bekker, Paul A. 1994. “Alternative Approximations to the Distributions of Instrumental
Variable Estimators.” Econometrica, 62(3): 657–681.

Bernanke, Ben S. 1986. “Alternative explanations of the money-income correlation.”
Carnegie-Rochester Conference Series on Public Policy, 25: 49 – 99.

Blanchard, Olivier. 2016. “The Phillips Curve: Back to the ’60s?” American Economic
Review, 106(5): 31–34.

Blanchard, Olivier, and Mark W. Watson. 1986. “Are Business Cycles All Alike?” In
The American Business Cycle: Continuity and Change. 123–180. National Bureau of
Economic Research, Inc.

Caldara, Dario, and Edward Herbst. 2018. “Monetary Policy, Real Activity, and
Credit Spreads: Evidence from Bayesian Proxy SVARs.” American Economic Journal:
Macroeconomics. forthcoming.

Campbell, John Y. 2003. “Consumption-based asset pricing.” Handbook of the
Economics of Finance, 1: 803–887.

29



Chernozhukov, Victor, Christian Hansen, and Michael Jansson. 2009.
“Admissible Invariant Similar Tests for Instrumental Variable Regression.” Econometric
Theory, 25(3): 806–818.
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Gaĺı, Jordi. 2015. Monetary policy, inflation, and the business cycle: an introduction to
the new Keynesian framework and its applications. Princeton University Press.

Gali, Jordi, and Mark Gertler. 1999. “Inflation dynamics: A structural econometric
analysis.” Journal of Monetary Economics, 44: 195–222.

Gallant, A. Ronald, and Halbert L. Jr. White. 1987. A Unified Theory of Estimation
and Inference for Nonlinear Dynamic Models. Basil Blackwell Ltd., Oxford.

Gertler, Mark, and Peter Karadi. 2015. “Monetary Policy Surprises, Credit Costs,
and Economic Activity.” AEJ: Macroeconomics, 7: 44–76.

30



Gorodnichenko, Yuriy, and Byoungchan Lee. 2019. “A Note on Variance
Decomposition with Local Projections.” Journal of Business and Economic Statistics.
forthcoming.

Guggenberger, Patrik, Frank Kleibergen, Sophocles Mavroeidis, and Linchun
Chen. 2012. “On the Asymptotic Sizes of Subset Anderson-Rubin and Lagrange
Multiplier Tests in Linear Instrumental Variables Regression.” Econometrica,
80(6): 2649–2666.

Gürkaynak, Refet, S., Brian Sack, and Eric Swanson. 2005. “The Sensitivity of
Long-Term Interest Rates to Economic News: Evidence and Implications for
Macroeconomic Models.” American Economic Review, 95: 425–436.

Hall, Robert E. 1988a. “Intertemporal substitution in consumption.” Journal of political
economy, 96(2): 339–357.

Hall, Robert E. 1988b. “The Relation between Price and Marginal Cost in U.S.
Industry.” Journal of Political Economy, 96(5): 921–947.

Hamilton, James D. 2003. “What is an oil shock?” Journal of Econometrics,
113(2): 363–398.

Hansen, Lars Peter. 1982. “Large sample properties of generalized method of moments
estimators.” Econometrica, 50: 1029–1054.

Hansen, Lars Peter, and Kenneth J Singleton. 1982. “Generalized instrumental
variables estimation of nonlinear rational expectations models.” Econometrica,
1269–1286.

Kareken, John, and Robert M Solow. 1963. “Lags in monetary policy.” Stabilization
policies, 14–96.

Kilian, Lutz. 2008. “Exogenous Oil Supply Shocks: How Big Are They and How Much
Do They Matter for the U.S. Economy?” The Review of Economics and Statistics,
90(2): 216–240.

King, Robert G., and Mark W. Watson. 1994. “The post-war U.S. phillips curve: a
revisionist econometric history.” Carnegie-Rochester Conference Series on Public Policy,
41: 157–219.

Kleibergen, Frank. 2002. “Pivotal Statistics for Testing Structural Parameters in
Instrumental Variables Regression.” Econometrica, 70(5): 1781–1803.

Kleibergen, Frank, and Sophocles Mavroeidis. 2009. “Weak Instrument Robust
Tests in GMM and the New Keynesian Phillips Curve.” Journal of Business and
Economic Statistics, 27: 293–311.

Kuttner, Kenneth N. 2001. “Monetary policy surprises and interest rates: Evidence
from the Fed funds futures market.” Journal of Monetary Economics, 47(3): 523–544.

31



Magnusson, Leandro, and Sophocles Mavroeidis. 2014. “Identification using
stability restrictions.” Econometrica, 82: 1799–1851.

Mavroeidis, Sophocles. 2005. “Identification Issues in Forward-Looking Models
Estimated by GMM, with an Application to the Phillips Curve.” Journal of Money,
Credit and Banking, 37(3): 421–448.

Mavroeidis, Sophocles. 2010. “Monetary Policy Rules and Macroeconomic Stability:
Some New Evidence.” American Economic Review, 100(1): 491–503.

Mavroeidis, Sophocles, Mikkel Plagborg-Møller, and James H. Stock. 2014.
“Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve.”
Journal of Economic Literature, 52: 124–188.

McLeay, Michael, and Silvana Tenreyro. 2018. “Optimal Inflation and the
Identification of the Phillips Curve.” Centre for Macroeconomics (CFM) Discussion
Papers 1815.

Mertens, Karel, and Morten O. Ravn. 2013. “The Dynamic Effects of Personal and
Corporate Income Tax Changes in the United States.” American Economic Review,
103(4): 1212–1247.

Moreira, Marcelo J. 2003. “A Conditional Likelihood Ratio Test for Structural Models.”
Econometrica, 71(4): 1027–1048.

Moreira, Marcelo J. 2009. “Tests with correct size when instruments can be arbitrarily
weak.” Journal of Econometrics, 152(2): 131 – 140.

Nakamura, Emi, and Jón Steinsson. 2017. “Identification in Macroeconomics.”
National Bureau of Economic Research, Inc NBER Working Papers 23968.

Newey, Whitney K., and Kenneth D. West. 1987. “A Simple, Positive Semi-Definite,
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix.” Econometrica,
55(3): 703–708.

Park, Joon Y., and Peter C. B. Phillips. 1988. “Statistical Inference in Regressions
with Integrated Processes: Part 1.” Econometric Theory, 4(3): 468–497.

Plagborg-Møller, Mikkel, and Christian K. Wolf. 2018. “Instrumental Variable
Identification of Dynamic Variance Decompositions.” working paper.

Ramey, Valerie. 2016. “Macroeconomic Shocks and Their Propagation.” In Handbook of
Macroeconomics. , ed. J. B. Taylor and H. Uhlig. Amsterdam, North Holland:Elsevier.

Ramey, Valerie A., and Sarah Zubairy. 2018. “Government Spending Multipliers in
Good Times and in Bad: Evidence from U.S. Historical Data.” Journal of Political
Economy, 126.

Ravenna, Federico, and Carl E Walsh. 2006. “Optimal monetary policy with the cost
channel.” Journal of Monetary Economics, 53(2): 199–216.

32



Reiersol, Olav. 1941. “Confluence Analysis by Means of Lag Moments and Other
Methods of Confluence Analysis.” Econometrica, 9(1): 1–24.

Richardson, Matthew, and James H. Stock. 1989. “Drawing inferences from statistics
based on multiyear asset returns.” Journal of Financial Economics, 25(2): 323 – 348.

Romer, Christina D., and David H. Romer. 2000. “Federal Reserve Information and
the Behavior of Interest Rates.” American Economic Review, 90(3): 429–457.

Romer, Christina D., and David H. Romer. 2004. “A New Measure of Monetary
Shocks: Derivation and Implications.” American Economic Review, 94: 1055–1084.

Staiger, Douglas, and James H. Stock. 1997. “Instrumental variables regression with
weak instruments.” Econometrica, 65: 557–586.

Stock, James H., and Jonathan H. Wright. 2000. “GMM with Weak Identification.”
Econometrica, 68(5): 1055–1096.

Stock, James H., and Mark W. Watson. 2016. “Chapter 8 - Dynamic Factor Models,
Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in
Macroeconomics.” In . Vol. 2 of Handbook of Macroeconomics, , ed. John B. Taylor and
Harald Uhlig, 415 – 525. Elsevier.

Stock, James H., and Mark W. Watson. 2018. “Identification and Estimation of
Dynamic Causal Effects in Macroeconomics Using External Instruments.” The Economic
Journal, 128(610): 917–948.

Tenreyro, Silvana, and Gregory Thwaites. 2016. “Pushing on a String: US Monetary
Policy Is Less Powerful in Recessions.” American Economic Journal: Macroeconomics,
8(4): 43–74.

Valkanov, Rossen. 2003. “Long-horizon regressions: theoretical results and applications.”
Journal of Financial Economics, 68(2): 201 – 232.

White, Halbert L. Jr. 2000. Asymptotic Theory for Econometrians - 2nd edition. San
Diego, California:Academic Press.

Wooldridge, Jeffrey M., and Halbert L. Jr. White. 1988. “Some Invariance
Principles and Central Limit Theorems for Dependent Heterogeneous Processes.”
Econometric Theory, 4(2): 210–230.

Yogo, Motohiro. 2004. “Estimating the Elasticity of Intertemporal Substitution When
Instruments Are Weak.” The Review of Economics and Statistics, 86(3): 797–810.

Zhang, Chengsi, and Joel Clovis. 2010. “The New Keynesian Phillips Curve of
rational expectations: A serial correlation extension.” Journal of Applied Economics,
13(1): 159–179.

33



Appendix A: The rank condition for a forward looking

structural equation

Consider the general forward looking structural equation

yt = γbyt−1 + γfEtyt+1 + λxt + et (21)

and for tractability assume that the forcing variable follows an AR(1)

xt = ρxt−1 + εt + νet. (22)

with et and εt some iid shocks, and γb, γf , λ, ρ and ν parameters of the model.

Proposition 1. The model characterized by (21) and (22) can be identified using the se-
quence of shocks zt = εt:t−3 as instruments if and only if γb 6= 0 and δ1 6= −ρ− ρ(ρ+ 1) with
δ1 the stable root of the second order-difference equation (21).

Proof. Solving for xt and yt, we get{
xt =

∑∞
j=0 ρ

j (εt−j + νet−j)

yt = δ1yt−1 + λ
δ2γf

∑∞
j=0

(
1
δ2

)j
Etxt+j

with α some no-zero parameter and where δ1 and δ2 are the stable and unstable roots of the
second order-difference equation given by (21).23

Some simple algebra for zt = εt:t−3 then gives

Γ = E(wtz
′
t) =

 1 ρ ρ2

δ1κ+ ρκ δ1(δ1κ+ ρκ) + ρ2κ δ1κ(ρ2 + ρδ1 + δ2
1) + ρ3κ

0 κ δ1κ+ ρκ


with κ = E(πtεt) = λ

δ2γf (1−ρ/δ2)
6= 0.24 det Γ = κδ2

1 (ρ+ δ1 + ρ(ρ+ 1)), so that the rank

condition is satisfied if δ1 6= 0, i.e., if γb 6= 0.

Although based on a simple DGP for the output gap, Proposition 1 shows that a necessary
condition for our approach to be valid is that past inflation helps determine future inflation,
i.e., that inflation cannot be strictly forward-looking (γb 6= 0). We can relax this assumption
at the expense of assuming more elaborate dynamics for the forcing variable. In particular,
γb can be equal to zero if the forcing variable follows an AR(2) process.

Appendix B: Asymptotic theory

We discuss an asymptotic theory for the Almon-restricted AR statistic ARa and its subset
counterpart ARa,s in which we allow the number of lags H to increase with the sample size,
e.g. H/n → c ∈ (0, 1) as n → ∞. This is important as H corresponds to the number

23We have δ1 =
1−
√

1−4γbγf
2γf

and δ2 =
1+
√

1−4γbγf
2γf

.
24This follows from the recursion Eπtε

m
t−j = δ1Eπtε

m
t−j+1 + ρjκ, for j > 0.
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of lagged structural shocks included, and since we typically want to allow for H ≈ 20 to
capture sufficient variation in the endogenous variables, our theory needs to reflect that H
is proportional to n, see also Richardson and Stock (1989) and Valkanov (2003) for similar
arguments.

The ARa and ARa,s statistics both depend on the long run variance estimate ŝ2
u which

we assume to be the form ŝ2
u = 1

n−H
∑n

t=H+1

∑n
s=H+1 ûtûsκ((t − s)/bn), where ût = (yt −

w′tδ)− zi
′
t θ̂a and the kernel function k() has bandwidth parameter bn which is increasing in

n.25 The exact assumptions for κ() are spelled out below, but include the standard Newey
and West (1987) approach and many others.

The limiting distributions of ARa[δ0] and ARa,s[β0] can be characterized in terms of the
behavior of the partial sums of the disturbances and structural shock proxies. To ensure the
applicability of a functional central limit theorem we impose mild moment and dependence
assumptions. Our dependence assumptions rely on the concept of near epoch dependent
(NED) stochastic processes for which we use the following definition (Davidson, 1994, Defi-
nition 17.1), see also Gallant and White (1987).

Definition 1. A sequence of integrable random vectors {Xt} is L2-NED on a stochastic
sequences {Vt} on probability space (Ω,F , P ) if for m ≥ 0

‖Xt − E(Xt|F t+mt−m )‖2 < dtνm

where F ts = σ(Vs, . . . , Vt) ⊂ F , t ≥ s, dt is a sequence of constants and νm → 0 as m→∞.

We will say that the sequence is L2-NED of size −s when νm = O(m−s−ε) for some ε > 0.
Using this definition we impose the following assumptions.

Assumption 1. The observations {yt, wt} are generated by the linear IV model

yt = w′tδ + ut
= w′β,tβ + w′α,tα + ut(

wβ,t
wα,t

)
︸ ︷︷ ︸

wt

=

(
Π′β
Π′α

)
︸ ︷︷ ︸

Π′

zit +

(
vβ,t
vα,t

)
︸ ︷︷ ︸

vt

, t = H + 1, . . . , n ,

where wt = (w′β,t, w
′
α,t)
′ and δ = (β′, α′)′ are m× 1, with m = 3, β, wβ,t and vβ,t are mβ × 1,

α, wα,t and vα,t are mα × 1, m = mα + mβ, Π is 3 × m, Πα is 3 × mα, Πβ is 3 × mβ,

zit =
(∑H

h=0 ξ
i
t−h,

∑H
h=0 hξ

i
t−h,

∑H
h=0 h

2ξit−h

)′
and let ηt = (ξit, ut, v

′
t)
′. We assume that

1. for all t, s we have (i) E(ηt) = 0, (ii) E(utξ
i
s) = 0 and (iii) E(vtξ

i
s) = 0,

2. for some r > 2 and finite constant ∆ we have supt ‖ηt‖2r ≤ ∆,

3. ηt is L2-NED of size −(r − 1)/(r − 2) with dt = 1 on Vt, where {Vt} is an α-mixing
process of size −r/(r − 2),

25Alternatively, we can also directly impose H0 and consider s2u = 1
n−H

∑n
t=H+1

∑n
s=H+1 utusκ((t−s)/bn),

where ut = yt − w′tδ0. These variance estimates are asymptotically equivalent as proven in Lemma 5 in the
web-appendix.
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4. for integers p, q ≥ 0 we have uniformly in n and H, with H < n, that

ω2
ξ,p,n,H = Var

(
n∑

t=H+1

tpξit

)
= ω2

ξ,p(n−H)2p+1 + o
(
(n−H)2p+1

)
Ωuv,q,n,H = Var

(
n∑

t=H+1

tq(ut, v
′
t)
′

)
= Ωuv,q(n−H)2q+1 + o

(
(n−H)2q+1

)
, with finite ω2

ξ,p > 0 and Ωuv,q � 0.

5. bn = o(n) and κ(·) ∈ K where

K =

{
κ(·) : R→ [−1, 1], κ(0) = 1, κ(x) = κ(−x) ∀x ∈ R,

∫ ∞
−∞
|κ(x)|dx <∞,∫ ∞

−∞

∣∣∣∣ 1

2π

∫ ∞
−∞

κ(x)eivxdx

∣∣∣∣ dv <∞,
κ(·) is continuous at 0 and all but a finite number of points.}

Note that no assumptions are placed on the matrix Π which leaves the strength of the
instruments zit unrestricted. The first assumption imposes that the shocks are mean zero
and more importantly that the structural shock proxies are uncorrelated, at all leads and
lags, with ut and vt. Note that these conditions correspond to the definition of a structural
shock in Ramey (2016) and are the same as in the lp-iv and svar-iv literature (see condition
lp-iv in Stock and Watson (2018) on page 924). Parts 2 and 3 of the assumption impose mild
restrictions on the dependence, heterogeneity and moments of ηt. Importantly, they allow for
serial correlation and heteroskedasticity in the structural shock proxies ξit and the error term
ut, which is deemed important in Alloza, Gonzalo and Sanx (2019) and Zhang and Clovis
(2010), respectively. Part 4 defines the convergence rate of the long run variance, which
is standard apart from the additional rescaling to account for the fact that the standard
deviations are proportional to tp, see also Wooldridge and White (1988) example 2.12. In
our setting this form of explosive variance is caused by the polynomial instruments zit. Part
5 allows for a rich class of kernel functions for the estimation of ŝ2

u. In particular, the class
includes the Barlett, Parzen, Quadratic Spectral and Tukey-Hanning kernels, see de Jong
and Davidson (2000). Also, the assumption bounds the bandwidth parameter at a rate that
is similar as in Andrews (1991) and de Jong and Davidson (2000).

To formalize the result for the subset statistic we follow Guggenberger et al. (2012) and
define the parameter space Φ for the parameters (α,Πα,Πβ, F ), where β is omitted as it is
fixed under the subset hypothesis H0 : β = β0 and F summarizes the distribution of the
shocks {ηt}, with ηt = (ξit, ut, v

′
t)
′. We define Φ, under H0 : β = β0, as follows

Φ = {φ = (α,Πα,Πβ, F ) : α ∈ Rmα ,Πα ∈ R3×mα ,Πβ ∈ R3×mβ ,
F satisfies Assumptions 1.1-1.4} .

The asymptotic size of the subset AR statistic is defined as

AsySzARa,s = lim sup
n→∞,H/n→c∈(0,1)

sup
φ∈Φ

Pφ
(
ARa,s[β0] > χ2

1−α(mβ)
)
,
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where Pφ denotes the probability of an event when the null data generating process is pinned
down by φ ∈ Φ and χ2

1−α(mβ) denotes the 1 − α critical value of the χ2 distribution with
mβ degrees of freedom.

Give these definitions we have the following result.

Theorem 1. Let Assumption 1 hold. Under H0 : δ = δ0 for H/n → c ∈ (0, 1) as n → ∞
we have that

ARa[δ0]
d→ χ2(3) ,

and also, under H0 : β = β0, we have that

AsySzARa,s = α .

The proof of this result is deferred to the web-appendix. Intuitively, the first result in
Theorem 1 is very similar to Park and Phillips (1988) (see their Theorem 5.4), where it is
shown that under a strict exogeneity assumption the Wald statistic defined by a regression
with non-stationary explanatory variables has a χ2 limit. The differences in our setting are
caused by the non-standard integration limits and the explosive variances, but the intuition
for the result is similar. The second result in Theorem 1 follows similarly as in Guggenberger
et al. (2012), where the key insight is that for H/n → c ∈ (0, 1) the limiting distribution
of the appropriately scaled sums

∑n
t=H+1 z

i
t(ut, v

′
t)
′ convergences to a normally distributed

random vector whose variance, conditionally on the instruments, has a kroneker product
structure. The latter is a key requirement for the second result in Theorem 1 and hinges
crucially on the strict exogeneity of the instruments.

Appendix C: General structural equations

In general, the structural macro equation of interest may not have three coefficients, or
the researcher may want to use multiple sequences of structural shock proxies. To out-
line our methodology for this more general case let wt be an arbitrary L × 1 vector of
endogenous variables and let zt denote the dim(z)× 1 vector of structural shock polynomial
instruments. For instance, if {ξ1

t } and {ξ2
t } are two sequences of structural shocks we may

consider zt =
(∑H

h=0 ξ
1
t−h,

∑H
h=0 hξ

1
t−h,

∑H
h=0 h

2ξ1
t−h,

∑H
h=0 ξ

2
t−h,

∑H
h=0 hξ

2
t−h,

∑H
h=0 h

2ξ2
t−h

)′
.

We require that dim(zt) ≥ L and may compute the ARa statistic for testing H0 : δ = δ0 sim-

ilarly as in (17) with zt replacing zit. In this case we have that ARa[δ0]
d→ χ2(dim(zt)) when

H/n → c ∈ (0, 1) as n → ∞. Further, if we are interested in testing the subset hypothesis
H0 : β = β0 given δ = (α′, β′)′ we consider the subset Almon-AR statistic ARa,s[β0]. Under
similar assumptions as in the previous section we then have that the limiting distribution
of the ARa,s[β0] statistic is upper bounded by a χ2 random variable with dim(zt)− dim(α)
degrees of freedom. Note that in our baseline theorem 1, with exact identification, we have
that dim(zt)− dim(α) = dim(β).

In over-identified settings the degrees of freedom increases proportionally to the number
of instruments. Hence it might be advantageous to rely on alternative weak instrument
robust statistics, such as the conditional likelihood ratio statistic, see Andrews, Stock and
Sun (2019) for more discussion.
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Appendix D: Simulation evidence

In this section we discuss the results from a simulation study that is designed to evaluate
the finite sample performance of the methodology. We concern ourselves with testing the
hypothesis H0 : δ = δ0 and the subset hypothesis H0 : λ = λ0 using different methods based
on using structural shocks as instruments. The web-appendix provides additional simulation
results for different data generating processes.

Simulation design

We consider the following data generating process

yt = γbyt−1 + γfEt(yt+1) + λxt + et

xt = ρ1xt−1 + ρ2xt−2 + εit + νet ,
(23)

where the forcing variable xt follows an AR(2) process. Model (23) has two shocks: et and
εit. We assume, without loss of generality, that ξit, our instrument for εit satisfies εit = ξit.
Further, we emphasize that although model (23) is highly stylized it includes all the elements
that are required to evaluate our methodology. The choice of an AR(2) process is motivated
by the time series properties of the output and unemployment gaps.

The following parameter configurations are considered. For the structural equation we
fix λ = 0.4, γb = 0.6 and γf = 0.3. These parameters are close to our empirical findings for
the Phillips curve. For the forcing variable we match ρ1 and ρ2 to the fitted values that are
obtained from considering the unemployment gap: ρ1 = 1.2 and ρ2 = −0.4. We fix ν = −1
to mimic the intuition that cost-push shocks should increase inflation and reduce output.

To consider realistic values for the structural shock variances we match the configuration
of the shocks to the recent findings for monetary policy shocks from Gorodnichenko and Lee
(2019), Plagborg-Møller and Wolf (2018) and Caldara and Herbst (2018). Using different
methodologies, they find that monetary shocks are able to explain only a small portion of
the variance observed in output and inflation. For instance, Gorodnichenko and Lee (2019)
find that at least between 10% and 20% of the fluctuations in output are driven by monetary
policy shocks and about 10% of the fluctuations in inflation.26 Similarly, Plagborg-Møller
and Wolf (2018) find that, under weaker assumptions, the monetary policy shocks can explain
at most 30% of the variation in output and 8% of the variation in inflation, but cannot reject
zero influence of monetary policy shocks.

To match these numbers we proceed as follows. The shocks are generated from εit ∼
N(0, σ2

i ), with standard deviation σi = 0.1, 0.25, 0.5, 1, and et = ρet−1 +
√

1− ρ2ζt with
ζt ∼ N(0, 1). This implies that we can distinguish between different scenarios. When
σi = 0.1 the structural shock-instrument explains approximately 1% of the variance in the
outcome variable yt and 2% of the variance in the forcing variable xt. These percentages
increase when we increase σi. In Table I we provide the details. The last scenario where
σi = 1 is perhaps over optimistic as the structural shock explains over 50% of the variation,
but scenarios where σi = 0, 1, 0.25, 0.5 all correspond to empirical findings for monetary
policy shocks, e.g. Gorodnichenko and Lee (2019), Plagborg-Møller and Wolf (2018) and

26When using local projection methods they find substantially larger influences of the monetary shocks.
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Caldara and Herbst (2018). The parameter ρ allows for serial correlation in the disturbance
et and we consider the values ρ = 0 or ρ = 0.5.

For each combination of parameter values and sample sizes n = 200, 500 we simulate
5.000 datasets and for each dataset we test the hypotheses H0 : δ = δ0 and H0 : λ = λ0 using
the methodology outlined in Section 4. The choice for λ is arbitrary and similar results can
be obtained for subset tests for γb and γf . For the hypothesis H0 : δ = δ0 we consider the
standard Wald test based on the two stage least squares estimator27, the standard Wald test
based on the Almon-restricted IV estimator (18), the standard AR test given in equation
(13) and our preferred Almon (1965) restricted ARa test as defined in equation (17). For
the subset hypothesis H0 : λ = λ0 we consider the ARa,s statistic. All tests are implemented
using H = 20 or H = 40 shocks-as-instruments. Note that for the Almon restricted Wald
test, the ARa test and the ARa,s test the effective number of instruments remains 3 regardless
of the value of H. We vary the value of H to investigate the influence of the persistence in
the Almon-restricted instruments.

Results

We report the average rejection frequencies (α = 0.05 level) for the different test statistics
for H0 : δ = δ0 in Table II. We find the following patterns. First, the standard Wald statistic
based on the normal limiting distribution of the two stage least squares estimator is severely
over-sized when the strength of the instruments is small. This holds for both the Almon-
restricted Wald test and the unrestricted version that uses H instruments. The empirical
rejection frequency is much larger when compared to the nominal size when the variance
of the structural shocks is relatively small, e.g. σi = 0.1, 0.25, 0.5. The Almon-restricted
version performs slightly better as it only suffers from the weak instruments problem and
not from the many instruments problem. The unrestricted Wald test is unreliable across all
specifications.

Further, the conventional AR statistic (denoted by AR) based on H structural shocks is
severely over-sized. This corresponds to the theoretical derivations of Andrews and Stock
(2007) who show that the AR test is only correctly sized when H3/n→ 0, this is clearly not
the case in the current setting where H = 20, 40 and n = 200, 500.

In contrast, Table II clearly shows that the AR test with Almon restriction, is always
correctly sized. That is, for any combination of n, H, σ2

i and ρ the empirical rejection
frequency is close to the nominal α = 0.05 level. This indicates that ARa test with Almon
restriction can be used for empirical work.

The average rejection frequencies for the subset statistic for H0 : λ = λ0 are shown in the
rightmost column of Table II. We find that the subset ARa,s statistic has rejection frequency
close to 0.05 for strong instruments, i.e. σi = 1. When the instruments are weak the ARa,s

statistic is conservative having rejection frequencies that are smaller then 0.05. This is in
line with our asymptotic theory which shows that the ARa,s statistic is asymptotically upper
bounded by a χ2(1) random variable. Note that when H increases the effective strength of
the instruments goes down, because in the underlying model the influence of the structural
shocks dies out exponentially fast. This implies that distant shocks do not explain much

27That is we consider δ̂IV as in equation (11), where the weighting matrix is taken as S−1ξξ where Sξξ =
1
n

∑n
t=1 ξt:t−Hξ

′

t:t−H . Different choices for the weighting matrix do not change the conclusions below.
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variance in the endogenous variables, thus making the Almon type instruments weaker and
leading to a more conservative subset test.

In the web-appendix that accompanies this paper we show a number of additional results.
First, we consider scenarios with different forms of heteroskedasticity and serial correlation
in the structural shocks ut. The results for these cases are the same as in Table II. Second,
in a recent paper Eberly, Stock and Wright (2019) adopt the methodology of this paper and
extend it by considering an alternative way of reducing the number of instruments by an
exponential weighted moving average approach. In the web-appendix we discuss the results
from a simulation study that compares the different approaches. We find both methods
excellently control the size of the Anderson-Rubin statistic and do not differ much in power.
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TABLE I: Simulation design: variance decomposition for structural shocks

σ2
i V(y) V(x)

0.10 1% 2%
0.25 6% 11%
0.50 20% 30%
1.00 50% 67%

Notes: The table reports the details for the different simulation designs considered. We show the average
percentage of variance explained by the structural shock in the variables yt and xt, respectively. The
remainder of the variance is explained by the shock et. See Appendix D for more details.
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TABLE II: Simulation results: Rejection frequencies

n H σ2
i ρ IV-ε IVa-ε AR ARa ARa,s

200 20 0.10 0.0 0.528 0.352 0.590 0.057 0.007
200 20 0.25 0.0 0.369 0.352 0.586 0.066 0.026
200 20 0.50 0.0 0.140 0.212 0.991 0.056 0.049
200 20 1.00 0.0 0.001 0.048 0.993 0.067 0.057
200 40 0.10 0.0 0.773 0.370 0.990 0.048 0.000
200 40 0.25 0.0 0.574 0.336 0.990 0.051 0.005
200 40 0.50 0.0 0.140 0.192 0.097 0.058 0.012
200 40 1.00 0.0 0.024 0.060 0.094 0.052 0.027
500 20 0.10 0.0 0.507 0.426 0.259 0.055 0.013
500 20 0.25 0.0 0.346 0.382 0.262 0.060 0.039
500 20 0.50 0.0 0.047 0.242 0.260 0.061 0.059
500 20 1.00 0.0 0.000 0.060 0.250 0.059 0.057
500 40 0.10 0.0 0.732 0.444 0.722 0.052 0.003
500 40 0.25 0.0 0.518 0.398 0.732 0.048 0.012
500 40 0.50 0.0 0.072 0.245 0.716 0.050 0.033
500 40 1.00 0.0 0.000 0.052 0.708 0.052 0.042
200 20 0.10 0.5 0.781 0.560 0.530 0.042 0.009
200 20 0.25 0.5 0.694 0.567 0.534 0.040 0.016
200 20 0.50 0.5 0.500 0.508 0.533 0.044 0.038
200 20 1.00 0.5 0.108 0.315 0.538 0.041 0.046
200 40 0.10 0.5 0.948 0.578 0.981 0.055 0.000
200 40 0.25 0.5 0.915 0.586 0.981 0.051 0.003
200 40 0.50 0.5 0.745 0.515 0.980 0.059 0.011
200 40 1.00 0.5 0.160 0.318 0.980 0.060 0.028
500 20 0.10 0.5 0.739 0.589 0.216 0.039 0.009
500 20 0.25 0.5 0.669 0.610 0.219 0.037 0.026
500 20 0.50 0.5 0.386 0.527 0.216 0.039 0.041
500 20 1.00 0.5 0.042 0.319 0.227 0.040 0.047
500 40 0.10 0.5 0.930 0.651 0.629 0.052 0.001
500 40 0.25 0.5 0.896 0.655 0.635 0.052 0.008
500 40 0.50 0.5 0.655 0.561 0.642 0.049 0.028
500 40 1.00 0.5 0.061 0.350 0.659 0.060 0.044

Notes: The table reports the empirical rejection frequencies for H0 : δ = δ0 and (in the rightmost column)
H0 : λ = λ0, both with level α = 0.05. For the IV-ε estimator these correspond to the Wald statistic
based on the limiting distribution of the 2SLS estimator (11) with H instruments. The IVa-ε corresponds to
the Wald statistic based on the limiting distribution of the Almon-restricted 2SLS estimator (18). The AR
column corresponds to the test based on the Anderson-Rubin statistic that was computed using H structural
shocks as instruments. The ARa column corresponds the test based on the Anderson-Rubin statistic with
Almon restriction as defined in equation (17). The ARa,s column corresponds the test based on the subset
Anderson-Rubin statistic with Almon restriction as defined in equation (19).
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TABLE III: The Phillips curve – 1969-2007, RR id.

Unrestricted Restricted
γb 0.51 [ 0.11, 1.02]
γf 0.53 [ 0.07, 0.89] 0.53 [ 0.11, 0.88]
λU -0.42 [−1.61,−0.05] -0.45 [−1.57,−0.07]

γb 0.62 [ 0.18, 3.31]
γf 0.42 [−2.05, 0.83] 0.40 [−1.62, 0.82]
λY 0.28 [ 0.03, 2.95] 0.31 [ 0.05, 2.53]

Notes: The table reports the parameter estimates and weak-IV robust confidence intervals for the US Phillips

curve (1969-2007). We show the Almon-restricted IV point estimates based on the Romer and Romer (2004)

shocks as instruments (H = 20) and the ARa,s based 95% confidence bounds. The forcing variables is the

unemployment gap λU or the output gap λY.
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TABLE IV: The Phillips curve – 1990-2017 – HFI id.

γf 0.96 [−∞ 0.50 , ∞ 14.88]
λU -0.24 [−∞ −6.72 , ∞ −0.02]

γf 0.71 [ 0.34 0.40 , 1.86 1.38]
λY 0.12 [−0.01 0.01 , 0.56 0.37]

Notes: The table reports the parameter estimates and weak-IV robust confidence intervals for the US Phillips

curve (1990-2017). We show the Almon-restricted IV point estimates based on the high frequency identified

(HFI) monetary surprises as instruments, the ARa,s based 95% confidence bounds and in lower case the the

ARa,s based 90% confidence bounds. The forcing variables is the unemployment gap λU or the output gap

λY.
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Figure I: The Phillips curve — 1969-2007, RR id.
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Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the ARa,s statistic.

Top row: 95, 90 and 68 percent confidence sets for λ (the slope of the Phillips curve) and γf (the loading on

inflation expectations). Bottom row: confidence sets for γf and γb (the loading and lagged inflation) in the

bottom row. The dashed line depicts the γf + γb = 1 set. Estimation is based on using the Romer-Romer

(RR) monetary shocks as instruments for 1969-2007. The red dot is the Almon-restricted IV estimate.

Specification with the unemployment gap (left column) or the output gap (right column) as the forcing

variable.
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Figure II: The Phillips curve — 1969-2007, RR id., γf + γb = 1
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Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the ARa test. 95,

90 and 68 percent confidence sets for λ (the slope of the Phillips curve) and γf (the loading on inflation

expectations). Estimation based on using the Romer-Romer (RR) monetary shocks as instruments for 1969-

2007. The red dot is the Almon-restricted IV estimate. Specification imposing γf + γb = 1 and with the

output gap (left column) or the unemployment gap (right column) as the forcing variable.
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Figure III: The Phillips curve — 1969-2007, RR id., γf + γb = 1
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Notes: Top panel: Heatmap of the Almon AR statistic (ARa) across the parameter space of λ (the slope of

the Phillips curve) and γf (the loading on inflation expectations). Estimation based on using the Romer-

Romer (RR) monetary shocks as instruments over 1969-2007. The red dots denote the parameter values

corresponding to the nine impulse responses plotted in the bottom panel, with the center dot corresponding

to the Almon-restricted IV estimate. Bottom panel: Impulse responses (“IR” in blue) of the Phillips curve

residual for different values of λ and γf . The impulses responses smoothed with an Almon restriction (“sIR”)

are reported in red.
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Figure IV: Point estimates using shocks or lagged macro variables as instruments — 1969-
2007
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Notes: Phillips curve IV estimates for λ (the slope of the Phillips curve) and γf (the loading on inflation

expectations) for different inflation and gap measures. The instruments are the Romer and Romer (2004)

shocks (“IVε”, blue circles) or lagged macro variables (“macro IV”, red diamonds).
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Figure V: The Phillips curve — 1990-2017, HFI id., γf + γb = 1
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Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the ARa test. 95, 90

and 68 percent confidence sets for λ (the slope of the Phillips curve) and γf (the loading on inflation expec-

tations). Estimation based on using the high frequency identified (HFI) monetary surprises as instruments

for 1990-2017. The red dot is the Almon-restricted IV estimate. Specification imposing γf + γb = 1 and

with the output gap (left column) or the unemployment gap (right column) as the forcing variable.
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