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Abstract. The research presented in this paper is motivated by the growing interest in the
analysis of networks found in theWorldWideWeb and of social networks. In this paper, we
elaborate on the Kemeny constant as a measure of connectivity of the weighted graph
associated with a Markov chain. For finite Markov chains, the Kemeny constant can be
computed by means of simple algebra via the deviation matrix and the ergodic projector of
the chain. Using this fact, we introduce a new decomposition algorithm for Markov chains
that splits the graph theMarkov chain is defined on into subgraphs, such that the connectivity
of the chain measured by the Kemeny constant is maximally decreased.We discuss applications
of ourdecomposition algorithm to influence ranking in social networks, decompositionof a social
network into subnetworks, identification of nearly decomposable chains, and cluster analysis.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2018.1813.

Keywords: Markov influence graphs • social networks • deviation matrix • Markov multichains • Kemeny decomposition algorithm •
nearly decomposable Markov chains

1. Introduction
Consider a directed graph with finite node set S �
{1, . . . ,n} and set of edges % ⊂ S × S. Let a Markov
chain P be defined on S such that P(i, j)> 0, for (i, j) ∈ %,
where P(i, j) denotes the transition probability of going
from i to j, and P(i, j) � 0, for (i, j) �∈ %. For the sake of
technical simplicity, we equip isolated nodes with a
self-loop—that is, when for i ∈ S there exists no j ∈ S

such that (i, j) ∈ %, then we artificially add edge (i, i)
to %. We call P a Markovian chain on graph (S,%), and
we consider in the following the weighted directed
graph (S,%,P), called a Markov influence graph.

The interest in Markov influence graphs—that is, in
research that elaborates on the relation between the graph
structure (S,%) and theMarkov chain P—stems from the
analysis of hyperlink networks found on theWorldWide
Web and the growing interest in the analysis of social
networks. For example, the acclaimed PageRank algo-
rithmused byGoogle’s search engine to rankwebsites on
the internet (see Brin and Page 1998, Langville andMeyer
2011) relies on a Markov chain constructed from the
actual graph constituted by the hyperlink information.
In social network theory, the interaction graph between
social agents provides themeans for studying naive belief
updating in social networks, where P(i, j) models the
strength of the belief that agent i has in the assessments
of agent j (see DeGroot 1974). Study of the wisdom-of-
crowdsphenomenon relies on application of the asymptotic

theory ofMarkov chains to social networks [seeGolub and
Jackson (2010) and the references therein].
In this paper, we consider general finite Markov chains.

Here generalmeans that theMarkov chainmayhave several
ergodic classes and transient states and may be periodic.
The deviationmatrix of a generalMarkov chainP is given by

DP � (I − P +ΠP)−1 −ΠP,

where I is an appropriately sized identitymatrix, andΠP �
(ΠP(i, j))S×S is called the ergodic projector of P, given by

ΠP � lim
N→∞

1
N

∑N−1

n�0
Pn,

where element ΠP(i, j) gives the long-term fraction
of visits of the Markov chain to j when started at i.
The fundamental role of the deviation matrix is best
expressed by C. D. Meyer (1975, p.1) who wrote that
“virtually everything that one would want to know
about Markov chains can be determined by com-
puting the deviation matrix.” For example, the de-
viation matrix allows one to analyze mean first
passage times, thereby providing information on the
distance between states, where the distance of state i to
state j is measured by the mean number of transitions
required to go from i to j. As an illustration, a set of
strongly connected nodes may be decomposable into,
say, two subsets, where (1) a subset contains all nodes
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that are relatively close to each other and (2) nodes
from different subsets have a relatively large distance
between them. The phenomenon that aMarkov chain P
has sets of nodes that are relatively more close has been
frequently observed in the literature: It is called homophily
in social networks (Mcpherson et al. 2001) and is known
as nearly decomposability1 in Markov chain theory (Meyer
1989, Stewart 1994).

Evaluating DP allows for the computation of a net-
work connectivity measure called the Kemeny constant.
The Kemeny constant is a weighted average of mean
first passage times (to be formally defined later). A
network modeled by a Markov chain with a small
Kemeny constant has relatively good connectedness and
vice versa.Wewill exploit this insight for identifying the
(weak) links in a network, the removal of which would
reveal the actual subsets of nodes driving the network
dynamic. This is of great interest in the analysis of the
limiting behavior of Markov chains and has a wide
range of further applications discussed in Section 2.

We show in this paper that one can take the deriv-
ative of the Kemeny constant with respect to any entry
of P. This allows us to identify an entry (i, j) of P such
that the derivative of the Kemeny constant with respect
to this entry has the smallest negative value—that is, we
find the link (i, j) that has the largest impact on de-
creasing the Kemeny constant. In other words, one can
identify the edge (i, j) ∈ % such that removing the pos-
sibility of going from i to j leads to a maximal decrease
in connectivity of the network modeled by the Markov
chain. This leads to ourKemeny decomposition algorithm for

Markov chains, which allows us to split a Markov chain
on graphs into subgraphs such that the connectivity of the
chain measured by the Kemeny constant is maximally
decreased. The rationale is that this leads to a “natural”
decomposition into subclasses, which brings the true
network dynamics to the fore. Furthermore, our algorithm
can be applied to nearly decomposable Markov chains,
decomposition of a social network into subgraphs, and
cluster analysis. Although themotivation of this research
and our leading examples stem from the analysis of social
networks, we would like to emphasize that the methods
and results developed in this paper can be applied to any
finite weighted (di)graph (see also Section 5).
The rest of this paper is organized as follows. In

Section 2, we illustrate howmean recurrence times and
the Kemeny constant lead to natural decompositions of
Markov chains. Section 3 formally introduces Markov
chain concepts used in our analysis and extends the
concept of the Kemeny constant to multichains. Our
Kemeny decomposition algorithm is presented in
Section 4, and numerical experiments are provided
in Section 5. Topics of further research are discussed in
Section 6. Some of the proofs and additional examples
are provided in the online appendix.

2. “Natural” Decomposition of
Markov Chains

Consider the small social network shown in Figure 1.
This network consists of 13 social agents, numbered
from 1 to 13—that is, S � {1, . . . , 13}. There is a directed
edge from agent i to agent j if the opinions/beliefs of

Figure 1. (Color online) Figures of the Social Network Example from Section 2
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agent i are influenced by the opinions/beliefs of agent j.
A (chaotic) plot of the network is given in Figure 1(a).

Figure 1(b) is obtained from analysis of the graph
structure and shows that there are three strongly con-
nected subgraphs, the first consisting of social agents 1,
2, and 3, and the second consisting of social agents
4, 5, . . . , 10, and 11. The third strongly connected sub-
graph, containing social agents 12 and13, turns out to have
no influence on other agents. In Markov chain termi-
nology, agents 12 and 13 represent transient states, and
the other two strongly connected subgraphs are ergodic
classes of P (see also Figure 1(b)). Weights can be at-
tached to the directed edges reflecting the strength of
influence (seeDeGroot 1974,WinkelmannandHaselmann
2010).Normalizing the weights, one obtains a transition
probability matrix P for the Markov influence graph.
Details on the construction of P will be provided in
Section 5. For our primary social network example, we
will be using the derived transition matrix P as given in
Section EC.1 of the online appendix.

An interpretation of P can be given via the so-called
random walk model, which models a random walk on
the social network. When the walk is at agent i, the
random walk is continued at agent j with probability
given by entry (i, j) of P [in the context of internet
networks, this was called the random surfer model in
Brin and Page (1998)]. The ergodic projector for the
social network from Figure 1 with P as given in Section
EC.1 of the online appendix can be computed to be
(rounded to two decimals):

which shows that P has ergodic classes {1, 2, 3} and
{4, . . . , 11} and transient states {12, 13}.

The ergodic projector allows for ranking agents
according to their influence through the values of the

ergodic projectorΠP inside the ergodic classes. Specifically,
ΠP(1, 1)>ΠP(1, 2) � ΠP(1, 3) implies that the influence
ranking inside ergodic class 1 is

1 � 2 ∼ 3,

meaning that 1 is more influential (�) than 2 and 3, and
2 and 3 are equally influential (∼). This is intuitively
clear because both 2 and 3 point toward 1, meaning
that 1 influences two agents, while 2 and 3 both only
influence 1 (which finds 2 and 3 equally interesting/
important). Similarly for ergodic class 2, it holds for the
influence ranking therein that

6 ∼ 7 � 5 � 4 � 9 ∼ 11 � 8 ∼ 10,

which is reasonable because 6 and 7 form the hub in this
ergodic class, meaning that they can be seen as the most
influential agents inside ergodic class 2. The ranking be-
tween the ergodic classes is not clear because there is
no direct connection between these classes. In order to
achieve a global ranking, the bored random surfer ap-
proach can be applied (Brin and Page 1998, Langville and
Meyer 2011), or a weighted ranking of the ergodic classes
together with the transient nodes can be considered
(Berkhout 2016, Berkhout and Heidergott 2017).
The mean first passage times between nodes gives in-

sight into distances between nodes. Let M(i, j) denote the
mean first passage time from i to j, provided i and j belong
to the same ergodic class. In the social network context,
entryM(i, j) can be interpreted as the directed distance of
social agent i to social agent j. Kemeny and Snell (1976)
show that for Markov chains with a single ergodic class
and no transient states, the corresponding mean first
passage timematrix, denotedbyM, canbe calculated from
the ergodic projector ΠP and the deviation matrix DP as

M � (I −DP + 1̄1̄
 · dg(DP)) · dg(ΠP)−1,
where 1̄ is an appropriately sized vector of ones, and
dg(A) results fromA by setting off-diagonal entries equal
to zero. Particularly for the social network example,
calculatingM for the ergodic states (i.e., the transient part
is left out) gives (rounded to one decimal)

Berkhout and Heidergott: Analysis of Markov Influence Graphs
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where ”−” indicates that there is no path connecting the
corresponding nodes. Themean first passage timematrix
reveals via the dotted rectangles that the second ergodic
class can be decomposed into two subclasses because
the values ofM have significantly larger values for paths
between the subclasses compared with paths within the
subclasses. In particular, inspection shows that there
exists a weak connection between 4 and 5 on the one
hand and nodes 6–11 on the other hand. This illustrates
the potential of using M for community detection inside
ergodic classes.

Applications of the decomposition of ergodic classes
into appropriate subclasses are manifold. For example,
in marketing, targeting the most influential agents is of
importance. Indeed, community detection provides an
interesting tool for identifying the most relevant agent
in a subclass. As our social network example shows,
agents 6 and 7 are most influential in the second er-
godic class, which makes them natural candidates to
be targeted by advertisement, but a closer look at the
dormant structure of the second ergodic class shows
that both agents belong to the same subclass, and tar-
geting agents 6 and 4, the two most influential agents
in the respective subclasses, will lead to much better
information spread. Another type of application is net-
work security, where a given network is divided into
subclasses to avoid, for example, the spread of computer
viruses. Recently, the controlled growth of networks has
caught interest. In this line of research, a controller can
either add or remove links between agents in order
to maximize connectivity or maximize the number of
strongly connected subgraphs (see, e.g., D’Souza and
Nagler 2015).

Evaluating ΠP together with DP allows for the
computation ofM. Moreover, the Kemeny constant of an
ergodic class can be evaluated as well. The Kemeny
constant of a Markov chain P consisting of one ergodic
class with no transient states, denoted by KP, is given by

KP � ∑
j∈S

M(i, j)πP( j), ∀i ∈ S, (2)

where πP is the unique stationary distribution of P. In
words, KP gives the expected number of steps until
reaching a state that is randomly chosen according to
the stationary distribution of the Markov chain. Some-
what surprisingly, KP is a constant regardless of the
initial state. An alternative perspective on the Kemeny
constant is that it is a πP-weighted average over the
entries in M. Consequently, it places more emphasis on
the relatively more relevant nodes in the network as
measured by πP. These interpretations ofKP motivate its
use as a connectivity measure of a network: The smaller
(larger) is KP, the better (worse) is the connectivity of the
network. For our social network example, it can be
calculated that the Kemeny constant value in the second

ergodic class equals 321.5. This means that it takes 321.5
transitions in expectation before reaching a randomly
drawn destination with probability distribution accord-
ing to ΠP in the second ergodic class. With only eight
states in ergodic class 2, one may conclude that the
connectivity inside this class is rather poor.
In Section 4, the Kemeny constant derivatives will be

calculated by perturbing P in the direction of existing
edges. In this way, the criticality of edges with respect
to the connectivity as measured by KP can be mapped.
For the second ergodic class, it turns out that the
smallest derivatives of the Kemeny constant are in the
direction of edges (8, 5), (10, 5) (both value −6,574),
(5, 6), and (5, 7) (both value −49,491). For example, a
relative increase in transition probability P(8, 5) with
some small δ> 0 leads to a connectivity improvement
of 6574 · δ. For the second ergodic class of the social
network example, cutting the four mentioned edges
with the smallest Kemeny constant derivatives leads to
the already-identified community decomposition of nodes
4 and 5 and nodes 6–11. If we normalize the submatrices
on these communities to stochastic matrices, the Kemeny
constants can be calculated to be equal to 1.5 and 6.2,
respectively, a significant reduction compared with the
original Kemeny constant of 321.5.
To summarize, fromM it becomes apparent whether

P has dormant subclasses or not. However, although
M(i, j) represents information over all paths from i to j,
M(i, j)<∞ does not imply that there exists a link from
i to j and thus offers no direct means of assessing the
impact of an individual link (i, j) on connectivity. The
key idea of this paper is that the impact of an individual
link can be expressed via the sensitivity of the Kemeny
constant (a function of M) with respect to the link;
details will be provided in Section 4.

3. Basic Results for Markov Multichains
A Markov chain with only one closed irreducible set
of states and a (possibly empty) set of transient states
is called aMarkov unichain (in short, unichain). A closed
irreducible set of states is also referred to as an ergodic
class. For unichains, the unique stationary distribution
ofP, denoted asπ


P , can be found by solvingπ

PP � π


P . It
holds for unichains that (1) the chain will eventually be
trapped in the (unique) ergodic class, independent of the
initial state, and (2) all rows of ergodic projectorΠP equal
π

P . Note that if P is aperiodic, the stationary distribution

is the unique limiting distribution of the unichain.
Markov multichains (in short, multichains) have

multiple ergodic classes and a (possibly empty) set of
transient states. Unlike unichains, the initial state has
an impact on the long-run average number of visits in
multichains, which stems from the fact that once the
chain enters one of the several ergodic classes, it remains
there forever. To study the long-run behavior of a mul-
tichain, one first has to uncover the ergodic classes and

Berkhout and Heidergott: Analysis of Markov Influence Graphs
Operations Research, 2019, vol. 67, no. 3, pp. 892–904, © 2019 INFORMS 895



the transient states using, for example, the algorithm
in Fox and Landi (1968). After possible relabeling of the
states, the transition matrix and the ergodic projector can
be written in the following canonical forms, respectively:

P �

P1 0 0 · · · 0

0 P2 0 · · · 0

..

. . .
. . .

. . .
. ..

.

0 · · · 0 PE 0

PT1 PT2 · · · PTE PTT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

ΠP �

Π1 0 0 · · · 0

0 Π2 0 · · · 0

..

. . .
. . .

. . .
. ..

.

0 · · · 0 ΠE 0

R1 R2 · · · RE 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

where E denotes the number of ergodic classes, T the
possible empty set of transient states, andΠi the square
matrix of which all rows equal the unique stationary
distribution of the chainwith transitionmatrix Pi inside
ergodic class i. Furthermore, Ri(j, k) is the expected
long-run number of visits of the chain to state k in
ergodic class i when started in transient state j. For
more details, see Berkhout and Heidergott (2019) and
Kemeny and Snell (1976).

Note thatwhether a state i is ergodic or transient can be
decided from ΠP(i, i) because the diagonal values of ΠP

are zero if and only if i is a transient state. This has been
called diagonal criterion in Berkhout andHeidergott (2019)
and allows for the identification of ergodic classes and
transient states throughΠP or an approximation thereof.

The deviation matrix DP � (I − P +ΠP)−1 −ΠP, the
existence of which is proven in Puterman (1994), plays
a key role in many applications, including Markov de-
cision processes (Puterman 1994, Koole and Spieksma
2001), simulation (Glynn 1984, Whitt 1992), perturbation
theory (Schweitzer 1968, Hunter 2005), first-passage time
analysis (Meyer 1975, Hunter 1982), control of road
networks (Crisostomi et al. 2011), series expansions of
Markov chains (Heidergott et al. 2007, 2010), ranking
methodologies (Berkhout 2016, Berkhout and Heidergott
2017), and speed of convergence to stationarity (Coolen-
Schrijner and van Doorn 2002). Via a controlled Markov
decision process, the deviation matrix even plays an
important role in the connection between Markov
chains and the Hamiltonian cycle problem (Litvak and
Ejov 2009, Borkar et al. 2012). Existence of DP is
guaranteed for finite-state aperiodic Markov chains;

see Heidergott et al. (2007) for a proof. The deviation
matrix is closely related to the so-called fundamental
matrix (Kemeny and Snell 1976), and in fact, the fun-
damental matrix equals DP +ΠP. As observed in Meyer
(1975), wherever the fundamental matrix appears, it
can be directly replaced by DP. Furthermore, denoting
the identity matrix of appropriate size with I, the de-
viation matrix is known as the group inverse for I − P in
the literature (Meyer 1975, 1982).
The deviation matrix is only explicitly known in a

few special cases. For example, Koole and Spieksma
(2001) provide an explicit expression for the deviation
matrix of the M/M/s/N and M/M/s/∞ queues. In
Abbas et al. (2016), the deviation matrix is computed
for Markov influence graphs having a simple topology,
such as a ring or star-shaped topology.
Elaborating on the canonical form of ΠP in (3), the

deviation matrix can be written as

DP �

DP1 0 0 · · · 0

0 DP2 0 · · · 0

..

. . .
. . .

. . .
. ..

.

0 · · · 0 DPE 0

DPT1 DPT2 · · · DPTE DPTT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where

DPi � (I − Pi +ΠPi )−1 −ΠPi , i � 1, 2, . . . ,E,

and

DPTT � (I − PTT)−1,
because ΠPTT � 0. Moreover, for i � 1, 2, . . . ,E, it
holds that

DPTi � (I − PTT)−1 · (PTi − Ri) · (I − Pi +ΠPi)−1 − Ri.

An equivalent representation of the Kemeny constant
KP � ∑n

i�1 M(i, j)πP( j) [introduced in (2)] is

KP � tr(DP) + 1, (5)

where tr(A) indicates the trace of a matrix A, which is
the sum of all diagonal elements; see also Kirkland
(2010). The advantage of (5) over (2) is that the devi-
ation matrix is well defined for Markov chains with
several ergodic classes and transient states, whereas M
can be only meaningfully defined for a single ergodic
class. The Kemeny constant can be extended toMarkov
multichains as follows. From (5) and (4), it follows that

KP � tr(DP) + 1

� ∑E
i�1

tr(DPi ) + tr(DPTT ) + 1

� ∑E
i�1

KPi + tr(DPTT ) − E + 1.
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Denoting the set of states from ergodic class i by Ei, one
can replace KPi with

KPi �
∑
j∈Ei

M(k, j)πPi ( j), ∀k ∈ Ei.

In words, a Markov multichain Kemeny constant is
equivalent to the sum of (1) the Kemeny constants per
ergodic class i, (2) the total sum for DPTT ( j, j) over all
transient states j, and (3) a correction factor for the
number of ergodic classes E − 1.

The trace of DPTT occurs in KP because DPTT has the
following probabilistic interpretation: DPTT (i, j) is the
expected total number of times that the process is in state j
when starting in state i; for more details, see Kemeny and
Snell (1976). Hence, the trace provides an indication of
the stay duration inside the transient part and therefore
provides another interpretation of KP as a connectivity
measure, this time regarding transient states. It holds for
the social network example from Section 2 that

DPTT � 1.028 0.342

0.085 1.028

[ ]
;

for example, (transient) state 13 is visited 0.342 times in
expectation when starting in (transient) state 12. This
shows that the transient part is relatively strongly
connected to the ergodic classes. However, when PTT is
chosen such that its row sums are close to one, values in
DPTT would be significantly larger, indicating that the
transient part is only weakly connected to the ergodic
classes. Also, when transient subcomponents are weakly
connected, relabeling will identify a similar pattern of
large values in DPTT as seen in (1) for M.

The Kemeny constant can also be written as a map-
ping of the eigenvalues of P (see Kirkland 2010) or as
a function involving the square root and the inverse
square root of ΠP (see Agharkar et al. 2014). For more
background on the Kemeny constant, see Catral et al.
(2010) and Hunter (2014). For an interpretation in terms
of a random surfer on the internet who is disorientated,
we refer to the navigation problem in Levene and Loizou
(2002). Matrices that obtain minimal values for KP are
characterized in Kirkland (2010, 2014).

A Markov chain P is called nearly decomposable if P is
irreducible and, after possible relabeling of states, can
be written in the form

P �

P11 P12 · · · P1k

P21 P22
. .
. ..

.

..

. . .
. . .

.
P(k−1)k

Pk1 · · · Pk(k−1) Pkk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the diagonal blocks Pii, i � 1, 2, . . . , k, are square
and have rows that sum up to 1 − ε, with ε> 0 small
(see, e.g., Stewart 1994, Meyer 1989). The multichain
and nearly decomposability characteristic are not mu-
tually exclusive. Indeed, a Markov chain may be a
multichain with transient states and may have an er-
godic class (or a transient part) that in itself constitutes
a nearly decomposable chain.

4. Decomposition of Markov Chains
In this section, a decomposition algorithm for Markov
chains is developed called the Kemeny decomposition
algorithm (KDA). In the following example, the rela-
tion between the Kemeny constant and connectivity is
illustrated.

Example 1. Consider the following simple net-
work with transition probability μ ∈ (0, 1], that is,

P � 1 − μ μ
μ 1 − μ

[ ]
.

In Figure 2, the Kemeny constant is plotted as a
mapping of μ for μ ∈ (0, 1]. It shows that when μ is
close to 0, the Kemeny constant becomes arbitrarily
large, as path lengths from 1 to 2 and vice versa tend
to infinity, representing poor connectivity—that is, the
network becomes nearly decomposable into two al-
most isolated states. On the contrary, for μ � 1, the
smallest value of the Kemeny constant is obtained
corresponding to best connectivity.

Figure 2. Plot of KP � 1 + 1
2μ for μ ∈ (0, 1] with P as in

Example 1

Note. In case μ � 0, KP � 0.
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Because the Kemeny constant reflects connectedness
of a network, it has a wide range of applications. For
example, in road networks, small values of KP indicate
small average travel times (see Crisostomi et al. 2011).
In Agharkar et al. (2014), KP is the basis for stochastic
surveillance strategies for quickest detection of anomalies
in networks. Lastly, the Kemeny constant might provide
insight in the information dissemination throughout a
social network.

In Section 4.1, the derivative of the Kemeny constant
with respect to (w.r.t.) the transition matrix in a convex
combination model is computed. This derivative of the
Kemeny constant is the main tool of analysis used in
Section 4.2 for developing the KDA.

4.1. Graph Derivatives of the Kemeny Constant
In this section, we introduce a model that allows us to
scale the weight of edges in P. With this model, we can
define the directed derivative of the Kemeny constant,
which gives insight into the effect of increasing the
transition probability from i to j in terms of network
connectedness as measured by the Kemeny constant.

For each edge (i, j) ∈ %, we introduce a Markov chain
with transition matrix

Rij � P − eie
i P + eie
j � P − ei(e
i P − e
j ),
where ei indicates the ith column of the identity matrix.
In words, Rij equals P but with the ith row replaced by
the jth row of the identity matrix. We now perturb P by
Rij and consider the mixed chain Pij(θ), where

Pij(θ) � (1 − θ)P + θRij, for θ∈ (0, 1).
In words, for θ> 0, the chain Pij(θ) for θ> 0 takes mass
away from the transition probabilities from i to the
neighboring states and shifts this mass to the transition
probability from state i to state j. The following theorem
provides an expression for the derivative of K Pij(θ)( )
with respect to θ at θ � 0. The proof of the theorem is
provided in Section EC.2 of the online appendix.

Theorem 1. For each edge (i, j) ∈ %, it holds that

d
dθ

KPij(θ) � (DPij(θ))2( j, i) − (P(DPij(θ))2)(i, i),

where ei is the ith column of the identity matrix. In matrix
form, at θ � 0,

d
dθ

KPij(θ)
∣∣∣∣
θ�0

( )
(i,j)∈%

� ((DP)2)
 − dg(P(DP)2)1̄1̄
,

where dg(A) denotes matrix A with the off-diagonal entries
replaced by zeros, and 1̄ is a vector of ones.

In words, d
dθKPij(θ) gives insight in the network con-

nectedness as measured by KP when the transition
probability of an edge (i, j) relatively increases. Put
differently, d

dθKPij(θ) measures how important existing

edge (i, j) is for the connectedness of the network. This
insight will be made fruitful in the Kemeny decom-
position algorithm to be introduced below.

4.2. Decomposition of Markov Chains
By using the concept of the Kemeny constant deriva-
tives, our KDAwill be presented in the following. KDA
relies on the following related hypotheses.

Hypothesis 1. K(P) is a suitable connectivity measure of
a Markov influence graph described by P.

Hypothesis 2. An edge (i, j) ∈ % with a small negative value
for d

dθK Pij(θ)( )∣∣
θ�0 implies that increasing the transition

probability from i to j has a large positive impact on connec-
tivity. Vice versa, setting P(i, j) to zero, in other words cutting
edge (i, j) ∈ %, and normalizing the row afterward uncouples
the network most significantly.

The idea of the decomposition algorithm is to con-
tinue cutting edges until some stopping criterion holds—for
example, a predefined number of ergodic classes or
strongly connected components is reached. After each
cut, the network dynamics will change, yielding a new
Markov chain P̃(θ) that lives only on the remaining
edges. Then d

dθK P̃ij(θ)
( )∣∣∣

θ�0
has to be computed for the

adjusted Markov chain for all remaining edges (i, j).
This iteration is repeated until the stopping criterion is
met. Although, intuitively, it might be worthwhile to
iteratively calculate d

dθK Pij(θ)( )∣∣
θ�0 after each cut in order

to obtain a decomposition, this may be computationally
too costly for large Markov chains. In that case, one can
rely on the following experimentally verified hypothesis.

Hypothesis 3. Cutting edges in ascending order w.r.t.
d
dθK Pij(θ)( )∣∣

θ�0, for all (i, j) ∈ %—that is, without recom-
puting the Markov chain—yields a natural decomposition of
the network.

The intuition behind this observation is that the
relative criticality of edges w.r.t. connectivity will not
alter too much after cutting multiple edges in general.
Therefore, cutting multiple edges at once based on
values d

dθK Pij(θ)( )∣∣
θ�0 will still lead to a reasonable

decomposition.
KDA is a general approach that allows a tradeoff

between iteratively calculating d
dθK Pij(θ)( )∣∣

θ�0 and

Table 1. Possibilities for Conditions CO_A and CO_B in the
KDA

Condition Label Specification

CO_A CO_A_1(i) Number of times performed < i
CO_A_2(E) Number of ergodic classes in Pc is <E

CO_B CO_B_1(e) Number of edges cut is < e
CO_B_2(E) Number of ergodic classes in Pc is <E
CO_B_3(q) Not all edges with d

dθK(Pc
ij(θ))< q are cut
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computational intensity. The pseudocode for KDA is
presented below for a given Markov influence graph
with transition matrix P. It leads to Markov influence
graphs with transition matrix Pc.

Kemeny Decomposition Algorithm
FUNCTION KDA(P, CO_A, CO_B, SC):
INPUT:
P = Markov chain transition matrix
CO_A = condition A
CO_B = condition B
SC = True, when edges are symmetrically cut (SC),

False otherwise.
START:
• Initialize cut transitionmatrix Pc � P, and setE � %.
• While CO_A: (Derivative updating loop)

◦ For all (i, j) ∈ E, calculate d
dθK(Pc

ij(θ))
∣∣∣
θ�0.

◦ While CO_B: (Edge cutting loop)
8 Determine (i�, j�) � argmin(i,j)∈E

d
dθK(Pc

ij·(θ))|θ�0.
8 Set Pc(i�, j�) � 0 and normalize the i�th

row of Pc.
8 Set E � E \ {(i�, j�)}.
8 If SC = True: (Symmetric network)

� Set Pc( j�, i�) � 0 and normalize the
j�th row of Pc.

� Set E � E \ {( j�, i�)}.
◦ End While

• End While
OUTPUT:
Pc = Decomposed Markov chain transition matrix

The goal of the double while loop in KDA is to al-
low for the described tradeoff between computational
intensity and accuracy of the decomposition algorithm.
Possibilities for conditions A and B in the KDA—that is,
CO_A and CO_B—are given (and labeled) in Table 1.

Remark 1. Instead of the number of ergodic classes, one
might consider the number of strongly connected com-
ponents. This allows decomposing a transient part into
several strongly connected components. It is a topic of
further researchwhether this canbe fruitful in applications.

Some general recommendations regarding the input
of the KDA in case of different instances will be given in
the following. The choice for SC depends on whether
symmetrically cutting makes sense for the instance at
hand. For example, in case the transition probabilities
are based on distances, SC = TRUE might be suitable and
will ensure faster convergence for the KDA. The data-
clustering examples are examples of distance-based
transition probabilities. Another example for which
SC = TRUE is appropriate is the social network of
Zachary’s karate club data below. In case a graph is clearly
asymmetric regarding the directed weights—for exam-
ple, the Courtois matrix later on—SC = FALSE is more

appropriate. For the rest of the input, the following rec-
ommendations can be given per instance type given
by P:
• Largeunknown instance:KDA(P, CO_A=CO_A_1(1),

CO_B = CO_B_3(0), SC).
• Large instance where the natural/required num-

ber of ergodic classes is given by E: KDA(P, CO_A =
CO_A_1(1), CO_A_2(E), SC).
• Medium/small unknown instance: iteratively per-

form KDA(P, CO_A = CO_A_1(1), CO_B = CO_B_1(1),
SC) until satisfied. Alternatively: KDA(P, CO_A =
CO_A_1(1), CO_B = CO_B_3(0), SC).
• Medium/small where the natural/required num-

ber ergodic classes is given by E: KDA(P, CO_A_2(E),
CO_B = CO_B_1(1), SC)

5. Applications
In this section, the application of our KDA introduced
in the preceding section is illustrated by a series of nu-
merical examples. Four examples are considered: the
Courtois matrix from Stewart (1994), a social network
from Zachary (1977), two weakly connected social
networks, and an application to data clustering includ-
ing a comparison with different common clustering
techniques.

5.1. Nearly Decomposable Markov Chains
The Courtois matrix is a notorious transition matrix
that is often used in the context of nearly decompos-
ability (see Stewart 1994). It is given by

P �

.85 0 .149 .0009 0 .00005 0 .00005

.1 .65 .249 0 .0009 .00005 0 .00005

.1 .8 .0996 .0003 0 0 .0001 0

0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0

0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999

0 .00005 0 0 .00005 .1999 .25 .55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with stationary distribution

π

P �

[
0.089 0.093 0.04 0.159 0.119 0.12 0.278 0.102

]
.

Applying KDA(P, CO_A_2(2), CO_B_1(1), FALSE)—
that is, updating the Kemeny constant derivatives after
each cut and stopping when two ergodic classes are
found—cuts the edges in the following order before
termination:

(7, 3), (7, 1), (7, 4), (4, 7), (5, 6), (6, 5), (6, 2), (8, 5),
(8, 2), (2, 6), (2, 8), (1, 8), (1, 6), (3, 7),
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which leads to

ΠPc �

.175 .182 .08 .322 .241 0 0 0

.175 .182 .08 .322 .241 0 0 0

.175 .182 .08 .322 .241 0 0 0

.175 .182 .08 .322 .241 0 0 0

.175 .182 .08 .322 .241 0 0 0

0 0 0 0 0 .241 .556 .204

0 0 0 0 0 .241 .556 .204

0 0 0 0 0 .241 .556 .204

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After the first 13 edges are cut (all edges in the list above
except for (3, 7)), the graph as shown in Figure 3(a) can
be drawn, where the ergodic class is given by circles
and the transient states by rectangles. Afterward, edge
(3, 7) is cut, leading to Figure 3(b). This illustrates that
the KDA is also suitable when transient states are
present. Furthermore, it is worth noting that KDA(P,
CO_A_1(1), CO_B_2(2), FALSE) —that is, evaluating the
Kemeny constant derivatives once and cutting until
two ergodic classes arise—cuts exactly the same edges
(only three edge-pairs in a different order). This numeri-
cally verifies Hypothesis 3 from the preceding section.

Further cutting—that is, choosing CO_A_2(E � 3)
instead of choosing CO_A_2(E � 2) in the KDA—cuts
additionally

(4, 2), (5, 3), (5, 1), (2, 5), (1, 4), (3, 4),
leading to Figure 3(c) and

ΠPc �

.402 .417 .182 0 0 0 0 0

.402 .417 .182 0 0 0 0 0

.402 .417 .182 0 0 0 0 0

0 0 0 .571 .429 0 0 0

0 0 0 .571 .429 0 0 0

0 0 0 0 0 .241 .556 .204

0 0 0 0 0 .241 .556 .204

0 0 0 0 0 .241 .556 .204

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, Hypothesis 3 can be verified because KDA(P,
CO_A_1(1), CO_B_2(3), FALSE) cuts the same edges.
Normalizing π


P on the states of the found ergodic
classes in case of E � 2 and E � 3 illustrates that the
long-termdynamics inside the classes are not significantly
affected by the cutting algorithm. It is worth noting that
the algorithm only cuts edges between the eventually
found ergodic classes. Moreover, not necessarily the

smallest edges of P are cut first—for example, edge
P(4, 7) � .0001 was cut beforeP(1, 8) � .00005. This shows
that the decoupling algorithm takes the network dy-
namics into account instead of superficial indications.
Lastly, it holds that KDA(P, CO_A_2(3), CO_B_1(1),
FALSE) = KDA(P, CO_A_1(1), CO_B_3(0), FALSE).
In words, iteratively cutting edges until E � 3 ergodic

classes arise (the natural number of ergodic classes in the
Courtois matrix) leads to the same decomposition as
cutting all edges with a negative Kemeny constant de-
rivative at once. This suggests that the sign of the Kemeny
constant derivative might be used as an indicator to de-
termine the natural decomposition of a network.

5.2. Social Network in a Karate Club
An interesting question is whether the KDA does in-
deed find a natural decomposition. To that end, data
describing a social network from Zachary (1977) is con-
sidered. The paper provides a case study investigating
fission in small groups: a university-based karate club
is considered in which a factional division led to a
formal separation of the club into two organizations. In
other words, the “natural” decomposition of the social
network consisting of the members of the karate club is
known, a unique feature. Over time, the number of
contact moments, such as joint training, participation in
tournaments, etc., between the karate club members is
counted. This leads to a positive symmetrically weighted
adjacency matrix; see also figure 3 in Zachary (1977). For
the following experiments, this adjacency matrix is nor-
malized, so all rows sum up to one, to obtain a transition
matrix P.
Figure 4 shows the results of KDA(P, CO_A_1(1),

CO_B_3(0), FALSE)—that is, nonsymmetrically cutting
all edges for which the Kemeny constant derivatives
of the original P are negative. Inspecting the weakly
connected components, we see that the KDA correctly
identifies the factions after the club fission. The indi-
vidual club member represented by node 9 indeed be-
longed more strongly to the faction represented by the
nodes with black font. However, he joined the faction
with white font to obtain his black belt more easily. See
also the discussion in Zachary (1977). Again, this is an
indication that the sign of the Kemeny constant deriv-
atives is a suitable measure to determine the natural de-
composition. Results for KDA(P, CO_A_2(E), CO_B_1(1),
TRUE), for E � 2 and E � 3, can be found in Section
EC.3.1 of the online appendix. This leads to comparable
conclusions as for the experiment in Figure 4.

5.3. Decomposition of Social Networks
We now perform a similar but larger experiment in the
context of an abstract social network. In particular, we
set up two social networks: a preferential attachment
(PA) network of 500 states as described in Barabási and
Albert (1999) and a 400-state Kleinberg (Kl) network
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from Kleinberg (2000). The CONTEST Toolbox from
Taylor and Higham (2009) was used for computation,
wherewe used the default degree parameter of 2 for the
PA network, and for the Kl network we used a distance
parameter of 1, two large range connections per state,
and exponent parameter 1.5. Then we randomly add
400 directed edges in the adjacency matrix to connect

the two social subnetworks: 200 edges from the PA
network to the Kl network and 200 edges vice versa.
The randomly added edges are assigned weight 0.02
instead of 1, and the adjacency matrix is afterward nor-
malized to obtain P. The objective, then, is to identify the
original PA and Kl networks in the strongly connected
social network by using our KDA.

Figure 4. KDA(P, CO_A_1(1), CO_B_3(0), FALSE)

Note. Node colors correspond to strongly connected components, and its font colors (black andwhite) indicate the two formed factions after the
fission.

Figure 3. Convergence Progress KDA(P, CO_A_2(3), CO_B_1(1), FALSE)

Notes. Ergodic states are represented by circles and transient states by squares. The colors correspond with strongly connected components.
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Figure 5 presents the results for KDA(P, CO_A_1(1),
CO_B_2(2), FALSE). On the left side, the 900-state net-
work is plotted as described by the original P, and the
right sides gives a version of the cut network Pc where
nodes have been arranged in such a way that the original
PA andKl networks emerge, with the cut edges indicated
in red.

As can be seen from the results, the decomposition
algorithm successfully identifies the two subnetworks
without cutting many edges inside the remaining sub-
networks. By varying parameters in this example, we
observed that there are different aspects that determine
whether the decomposition algorithm uncovers the PA
and Kl subnetworks (i.e., whether the decomposition
algorithm leads to a natural uncoupling). These aspects
include the number of randomly added edges (fewer
edges means that the subnetworks come forward more
easily), the probability of the added edges (smaller
probabilities stimulate detection of added edges by the
algorithm), the connectivity degree inside subnetworks,
and the location of randomly added edges (if key players
are connected from multiple subnetworks, the con-
nectivity between the subnetworks could be large

and consequently may complicate original subnetwork
detection).

5.4. Data Clustering
A natural application of the KDA is to the clustering
technique used for exploratory data analysis. More
specifically, consider n data vectors x1, x2, . . . , xn of
arbitrary dimension. The main objective in data clus-
tering is to divide the data into C clusters, where C is
given. In applied data clustering, the problem is that
it is unusual for the user to know the value of C be-
forehand. A related question is that of the most natural
choice of C.
Before applying the KDA, the transition matrix P has

to be set up according to the data. This is done by con-
structing the so-called similarity matrix, whose goal is to
model the local neighborhood relationships between the
data vectors. In particular, a similarity matrix S is con-
structed such that its (i, j)th element gives the similarity
between data points xi and xj. The similarity matrix S
afterward can be normalized to obtain the transition
probabilities of a random walk induced over the data
points; mathematically, P � (dg(S1̄))−1S, where dg(S1̄)

Figure 6. KDA(P, CO_A_1(1), CO_B_3(0), TRUE) Applied to Four Different Data Sets (δ � 6.5)

Figure 5. Results for KDA(P, 10−7, CO_A_1(1), CO_B_2(2), FALSE) Where P Describes a Social Network of 900 Nodes
Consisting of the Weakly Connected PA and Kl Subnetworks
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is a zeros matrix of appropriate size where the diagonal
is replaced by vector S1̄. Transition matrix P is then
used in the KDA.

There are several popular constructions to transform
a given set x1, x2, . . . , xn of data points into a similarity
matrix. For an overview and discussion of common
similarity matrices used in spectral clustering, see
section 2.2 in Luxburg (2006). For the following ex-
periments, the so-called Gaussian similarity function is
used to construct S, which is a common approach in the
literature, according to Meyer et al. (2013). In particular,
an n × n symmetric similaritymatrix S is consideredwith
elements

S(i, j) � exp − ‖xi − xj‖2
σ2/δ

( )
, for all i, j � 1, 2, . . . , n,

where

δ> 0, σ2 � 1
n − 1

∑n
i�1

‖xi − μ‖2 and μ � 1
n

∑n
i�1

xi.

Here ‖ · ‖ represents the Euclidean norm, and δ> 0 is a
user-defined scale that controls the width of the data
vector neighborhoods determined by σ2/δ. Larger values
of δ mean smaller neighborhoods, and vice versa.

In Figure 6, we apply the KDA to four generated data
sets consisting of 1,500 data points each. The natural
clusters in the three data sets on the left-hand side are
visible to the eye, and the data set on the right-hand
side has no cluster because the data are generated in a
uniform manner. For an appropriate choice of δ, the
KDA identifies the present clusters without having to
specify the number of clusters beforehand. Figure 6
shows the results for KDA(P, CO_A_1(1), CO_B_3(0),
TRUE) with P corresponding to the four data sets, re-
spectively, and δ � 6.5. In words, the KDA cuts all
edges with a negative Kemeny constant derivative and
returns the decomposition.

It is worth noting that the KDA identifies two extra
clusters consisting of one node each between the “moons”
from the second data set and some small clusters between
the two lowest bulbs in the third data set. This seems to
be a specific feature for this KDA setting. Other settings
and other similarity matrices most likely lead to dif-
ferent results.

The data sets are taken from the Scikit-learn (2017)
web page, which is part of scikit-learn from Pedregosa
et al. (2011), a machine learning package written in the
programming language Python. On the Scikit-learn (2017)
webpage, eight common clustering techniques are plotted,
and we compared the KDA with these data clustering
techniques; the KDA shows similar results as DBSCAN
from Ester et al. (1996) for the considered data sets and
settings. For details, we refer to Section EC.3.2 in the
online appendix.

6. Conclusion
This paper introduces the KDA, which allows one to
decompose Markov influence graphs to uncover the
true underlying network dynamics. The KDA is based
on a structural perturbation of the Kemeny constant
that can be computed via the fundamental deviation
matrix from Markov chain theory. Relying on classical
Markov chain concepts, the KDA succeeds in uncov-
ering the true underlying network dynamics in a wide
range of applications. By taking all possible weighted
paths into account, the KDA accurately measures the
criticality of existing edges. We therefore believe that it
provides a new, promisingway of decomposing/clustering
networks in an increasingly data-driven society. Future
research includes the possible application of the sign
switch of the Kemeny constant derivative as a (network-
based) natural KDA stopping criterion and elaboration of
the KDA ideas in an algorithmic framework suitable for
really large real-life networks for which a matrix inver-
sion is impracticable.

Endnote
1 Some authors use the terminology nearly completely decomposable
or nearly completely reducible.
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