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� Parkinson’s disease (PD) patients rely more on visual information than healthy controls when control-
ling their balance.

� We determined cortical activity with event-related EEG during a weight-shifting task with (in)con-
gruent visual feedback.

� Alpha/beta modulation in primary visual/motor areas discriminated between PD and controls.

a b s t r a c t

Objective: In patients with Parkinson’s disease (PD), augmented visual feedback (VF) can improve func-
tional motor performance. Conversely, they appear to rely more on visual information than healthy sub-
jects, which is unfavorable when this information is unreliable. Cortical beta activity is thought to be
associated with the need for motor adaptation. We here compared event-related EEG parameters during
a whole-body postural weight-shifting task between congruent and incongruent feedback conditions.
Methods: Twenty-four patients with PD and fifteen healthy, age- and gender-matched controls per-
formed rhythmic swaying movements. VF was presented in real-time (congruent), delayed (incongruent),
or was entirely absent. We estimated source activity in four regions-of-interest and determined motor-
related spectral power and power modulation in alpha and beta frequency bands.
Results: For congruent VF no significant differences in cortical activity between the two groups were pre-
sent. For incongruent VF, the PD group showed significantly higher beta modulation in primary motor
cortex, and higher alpha modulation in primary visual cortex.
Conclusions: Event-related beta modulation in the motor network and alpha modulation in visual areas
discriminated between groups, suggesting altered visuomotor processing in PD patients.
Significance: This study finds evidence for increased modulation of alpha/beta activity during perceptual-
motor tasks in PD, possibly indicating an unwarranted higher confidence in VF.

� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Balance performance is not exclusively controlled at a subcorti-
cal level but requires non-trivial contributions from the cerebral
cortex (Jacobs and Horak, 2007). Dual-task paradigms have
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revealed that balance performance deteriorates when an additional
cognitive load is added (Maki and McIlroy, 2007; Woollacott and
Shumway-Cook, 2002). On the other hand, cognitive strategies
can also facilitate motor performance, including those related to
balance performance (Morris et al., 2009). Accordingly, cognitive
strategies are included in the guidelines for physiotherapy in
patients with PD (Bloem et al., 2010), for whom postural instability
presents one of the major motor impairments (Rogers, 1996). Such
strategies may range from memorizing explicit step-by-step
instructions on how to best initiate and/or maintain a movement
(Morris et al., 2009) to cueing, in which one tries to synchronize
one’s movements with a (rhythmic) external stimulus (Lim et al.,
2005; van Wegen et al., 2014). Besides the use of cognitive strate-
gies, motor function can also improve when movement-related
feedback is provided (Huang et al., 2006). Augmented visual feed-
back (VF) helps both healthy subjects and patients with PD to bet-
ter coordinate their movements with an external target (van den
Heuvel et al., 2016). These and related technologies are hence
increasingly adopted within therapeutic settings (Dockx et al.,
2016).

The improvements in gait and gait-related activities in patients
with PD due to cueing and VF raise the question which neural
pathways and/or processes might be involved in facilitating these
improvements (Jahanshahi et al., 1995). Over the past two decades
it has become clear that motor symptoms in PD are associated with
abnormally high levels of neural activity in the basal ganglia in a
frequency range of 13–30 Hz, otherwise known as the beta band
(Brown, 2007). Such oscillatory activity in the central nervous sys-
tem arises from the synchronized firing patterns of local popula-
tions of neurons, and is typically studied in terms of (changes in)
spectral power. Intriguingly, in patients with PD, exaggerated beta
power (in basal ganglia) correlates with the degree of motor
impairment (Brown, 2007; Jenkinson and Brown, 2011;
Neumann et al., 2016) and it tends back to normal with dopamine
replacement therapy (Hammond et al., 2007; Kühn et al., 2009;
2006; van Wijk et al., 2016). With respect to the positive effects
of cueing on motor behavior, it is of particular interest that salient
cues have been found to modulate ‘‘reactive” beta activity in the
period prior to movement (Oswal et al., 2012). In the cortex, rhyth-
mic stimulus presentation in a finger-tapping task was seen to pro-
duce an increase in post-movement beta-synchronization (te
Woerd et al., 2015). It remains unclear, however, whether the role
of beta power is functional or whether the activity is merely an
epiphenomenon. That being said, beta power does provide an
interesting window into the task-related changes in neural activity
prior to, during, and following motor activity.

At present, there are no studies that have addressed the influ-
ence of VF on beta band activity. There are two reasons why such
an influence is expected: first, VF and cueing both produce
improvements at a behavioral level; second, it has been shown
that, at the cortical level, movement error is negatively correlated
to beta band activity (Tan et al., 2014). VF provides the subject with
an explicit movement error and might therefore affect the beta
band activity in similar ways. Importantly, in the current study,
we focus on whole-body movement as cueing strategies have thus
far been implemented in, and shown greatest benefits for, gross
motor tasks. Specifically, we asked participants to perform a rhyth-
mic swaying task with and without VF.

While VF may be a useful avenue for promoting motor behavior
and learning, there is also evidence that subjects with PD overly
rely on visual information (see for instance Azulay et al., 2002;
Bronstein et al., 1990; De Nunzio et al., 2007). This makes them
particularly vulnerable to incongruent visual information, in which
the mapping between executed movement and the visual conse-
quences of that movement is corrupted. In a previous study we
found that patients with PD are less proficient in adapting to situ-
ations with incongruent VF than healthy controls (van den Heuvel
et al., 2016). Recent research suggests that beta activity may
indeed have a role in assessing the reliability of such sensory feed-
back. Tan et al. (2016) suggested that post-movement beta syn-
chronization over the sensorimotor cortex negatively correlated
with the uncertainty in feedforward estimations. In the present
study, we therefore also contrasted motor-related activation in
the cortex between conditions of incongruent and congruent VF
comparing a group of patients with PD with a group of healthy
controls. In line with the aforementioned findings we hypothesized
beta activity to alter in the presence of congruent VF dependent on
group (hypothesis 1). More importantly, we expected group-
specific differences in cortical activity in the presence of incongru-
ent VF (hypothesis 2).
2. Methods

2.1. Design

We performed a cross-sectional study of neurophysiological
responses during a postural sway task in a group of patients with
PD and a group of age- and gender-matched healthy controls. Data
were derived from baseline assessments performed in a random-
ized clinical trial (RCT), registration number ISRCTN47046299
(van den Heuvel et al., 2013). The protocol was approved by the
Medical Ethics Committee of VU University Medical Centre (VUmc)
Amsterdam. All participants signed informed consent. A posturo-
graphic analysis as well as the results from the RCT have been
reported elsewhere (van den Heuvel et al., 2014, 2016).

2.2. Participants

Subjects with PD were recruited from the Department of Reha-
bilitation Medicine of VUmc. Inclusion criteria were (i) a diagnosis
of idiopathic PD according to the UK Brain Bank criteria (Gibb and
Lees, 1988), mild to moderate stage (i.e. Hoehn & Yahr stages II and
III), (ii) able to participate in the training programs associated with
the RCT, and (iii) written and verbal informed consent. Exclusion
criteria were: (i) presence of (other) neurological, orthopedic, or
cardiopulmonary problems that could impair participation, (ii)
Mini Mental State Examination score below 24 points, (iii) a recent
change in dopaminergic medication, and (iv) cognitive, visual, and/
or language problems impeding participation. Patients underwent
the assessment in the ON-phase of levodopa medication, approxi-
mately 1.5 hours after intake of the last medication dosage. Control
subjects were recruited from the social environment of the partic-
ipating PD patients.

2.3. EEG-acquisition

All subjects wore a 64-electrode EEG headcap (TMSi, Enschede,
The Netherlands), mounted in accordance with the 10–20 standard
electrode placement. Electrode gel was applied between scalp and
Ag/AgCl electrodes in order to minimize impedance below 10 kX,
with an impedance of <20 kX considered acceptable. EEG signals
were recorded against the common average using a 64-channel
amplifier (Refa, TMSI, Enschede, The Netherlands) and sampled at
2048 Hz.

2.4. Performance measure and procedures

The postural assessment consisted of a lateral weight-shifting
task in which participants stood upright and shifted their center
of mass in a rhythmic fashion. The task was performed while
standing on a force plate (Kistler 9281B, Ostfildern, Germany,
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600 � 400 mm, sampled at 1 kHz) and facing a computer monitor
(1500-LCD at eye-height about 80 cm away). Trials consisted of
100 s of voluntary rhythmic swaying in the frontal plane (i.e. side-
ways) under different feedback conditions. Before and after each
trial the subject stood quietly for 20 s. During a trial, a target circle
moved from side to side at a frequency of 0.5 Hz. The task was to
track the motion of this target by swaying the body sideways.
The movement frequency of 0.5 Hz was selected as pilot measure-
ments had shown this to be a frequency at which the task could be
carried out comfortably throughout the duration of the experi-
ment. Visual feedback consisted of the participant’s center-of-
pressure (COP) motion, which was indicated on the screen by a
red circle. COP feedback was limited to motions along the medio-
lateral (ML) axis and smoothed using an online low-pass filter
(25 Hz cut-off). Feedback was presented either in real time, or
delayed by 250 or 500 ms, further referred to as VFrt, VF250, and
VF500, respectively. In the control condition, only the target signal
was visible (i.e. feedback was absent, VFno) and participants were
asked to match the motion of the target by swaying comfortably.
After familiarization, every condition was repeated three times,
with repetitions presented in randomized blocks.

2.5. Data analysis

Full details with respect to the posturographic data analysis can
be found in van den Heuvel et al. (2016). In brief, along the ML axis
the difference between the normalized COP and target time series
served to define a tracking error (Error). Tracking stability was
quantified as the circular variance (Varc) of the relative Hilbert
phase between COP and target motion (Mardia and Jupp, 2000).
The normalized amplitude (Anorm) was determined as the COP’s
average peak excursion during each trial. For the sake of complete-
ness, conventional posturographic outcomes related to quiet
standing are provided in the supplementary materials.

2.6. Preprocessing

EEG data processing was performed in Matlab (The Mathworks,
Natick, MA, version R2016b) using the fieldtrip toolbox
(www.fieldtriptoolbox.org, Oostenveld et al., 2010). Data were first
resampled to 1 kHz for compatibility with the co-registered force
plate. Data were notch-filtered at k�50 Hz, (k = 1. . .5, bandwidth
±½ Hz) to remove power line hum and subsequently band-pass fil-
tered with a second-order bi-directional Butterworth band-pass
filter (1.5–250 Hz) to reduce movement artifacts and high-
frequency noise. Bad channels were detected on the basis of too
large or too small means or standard deviations, and if necessary,
interpolated via the surrounding channels using spheric splines.

For every trial, data were subjected to an independent compo-
nent (IC) analysis (fastICA, Hyvärinen (1999)). ICs were considered
artifacts if (i) median frequency <1 Hz (�movement artifact), (ii)
median frequency >60 Hz (�EMG activity), (iii) if topography was
dominated by the prefrontal channels (�EOG activity, i.e. eye
movements). After omitting these ICs in the mixing matrix, the
sensor EEG was reconstructed for further analysis.

2.7. Source reconstruction

We determined spatial filters in terms of linearly constrained
minimum variance beamformers (Hillebrand and Barnes, 2003;
Van Veen et al., 1997). An MRI template from the fieldtrip toolbox
was used, segmented using a boundary element method. The lead
field was computed using standard conductances of the different
tissues (gray/white matter, skull, scalp). The MRI was parcellated
using the automated anatomical labeling (AAL) atlas containing
90 regions-of-interest (ROIs). In line with our two hypotheses
listed below under Statistical analysis, and given the limited resolu-
tion of EEG, we restricted the analysis to bilateral primary motor
cortex (M1), primary sensory cortex (S1), primary visual cortex
(V1), and auditory areas (STS/STG). In the AAL atlas these regions
correspond to the precentral gyrus, postcentral gyrus, the calcarine
fissure, and superior temporal gyrus, respectively (Schmahmann
et al., 1999; Tzourio-Mazoyer et al., 2002). Since no consistent
activity was observed in other brain areas across participants these
activities were not further analyzed and reported.

After broad-band filtering (1–80 Hz), spatial filters were com-
puted for each ROI using EEG-covariance estimates in an event-
related design. Events were defined as the moments of maximum
right sway excursion and epochs were defined at ±400 ms around
events. In the case of quiet stance, events are constructed by ran-
domly taking non-overlapping epochs at set intervals. After aver-
aging the obtained beamformer weights within a ROI, EEG
signals were projected to obtain source time series for every ROI
and further assessed for their spectral contents. Since visual
inspection did not suggest signs of lateralization we combined
power values of homologous ROIs.

2.8. Spectral analysis

Spectrograms were estimated by means of a short-time Fourier
transform using a 1-s sliding Hamming window (see Fig. 1A and B
for illustration). To stabilize normality, spectrograms were log-
transformed. The mean power of the quiet stance condition (base-
line condition) was subtracted for normalization per subject. Next
to the beta frequency band (15–30 Hz) we also considered alpha
activity (8–14 Hz); the gamma frequency band (30–80 Hz) was
analyzed as well but poor signal-to-noise ratio and large inter-
subject variability hampered consistency in the results of this anal-
ysis. We note that we abstained from analyzing theta band activity
(4–8 Hz) in view of the influence of residual movement artifacts. In
every frequency band the spectrograms were averaged yielding the
following alpha and beta power outcomes: (i) the mean power
over time and (ii) the standard deviation over time, with the latter
serving as measure of power modulation. Recall that we combined
homologous ROIs.

2.9. Statistical analysis

All statistical assessments were realized using IBM SPSS Statis-
tics 24. Outcomes were tested for departures from normality using
the Shapiro-Wilk test and inspected for outliers. Differences in
spectral power and power modulation were tested using multiple
mixed-design ANOVAs, one for each frequency band and type of
outcome (mean power, power modulation). To examine group dif-
ferences in EEG activity with and without feedback, we used the
between-subjects factor group and the within-subjects factor feed-
back, which only contained the conditions VFno and VFrt (hypothe-
sis 1, group � feedback).

Since differences in motor performance may confound the anal-
ysis of the influence of incongruent VF, data were normalized with
respect to VFno. We examined group differences in EEG activity as a
function of feedback congruency (hypothesis 2, group � congru-
ency), using the between-subjects factor group and the within-
subjects factor congruency, containing the conditions VFrt, VF250,
and VF500. Huynh-Feldt corrections are reported if Mauchly’s test
of sphericity was significant. For every ANOVA, group differences
for outcomes with a significant interaction effect were analyzed
by computing simple main effects, whereas group differences for
outcomes without a significant interaction effect were analyzed
using the main, between-subjects, effects reported by the ANOVA.
A sequential Bonferroni-type procedure was applied to each
ANOVA to control the false discovery rate, thus giving rise to cor-

http://www.fieldtriptoolbox.org
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Fig. 1. Mean spectrograms for patients with PD (A) and healthy age-matched controls (B) for the four regions-of-interest (in columns) and the four feedback conditions (in
rows). Spectral power is shown ±400 ms around the event (i.e. the time of maximal right COP discursion to the right-hand side). We restricted our analysis to alpha (8–14 Hz)
and beta bands (15–30 Hz).
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rected significance criteria of various magnitude (Benjamini and
Hochberg, 1995).

3. Results

3.1. Participants

Table S1 in the supplementary materials shows the participants’
characteristics. Data of one healthy and one PD subject deviated
from the mean by more than five times the standard deviation
and were therefore excluded from the analyses. A total of 24
patients (8F/16 M, 67.6 ± 8.7 yrs) and 15 healthy age-matched con-
trols (7F/8M, 66.9 ± 6.8 yrs) were entered in the final analyses.

3.2. Posturography

Hypothesis 1. Fig. 2 shows the effects of congruent (i.e. VFno vs
VFrt). Patients with PD had significant higher Error (F(1,37) = 8.887,
p = 0.003) and higher Var (F(1,37) = 8.897, p = 0.001), than healthy
controls. The amplitude Anorm did not differ significantly between
groups (F(1,37) = 0.973, p = 0.417). Significant group � VF interac-
tion effects for sway performance were absent.
Hypothesis 2. The interaction effects of group � congruency were
significant at the corrected significance level a = 0.0333 for nor-
malized Error and Var (F(1.577,61.250) = 13.115, p < 0.001, and
F(1.769,68.988) = 22.051, p < 0.001, respectively), but not for nor-
malized Anorm (F(1.319,51.443) = 2.783, p = 0.142). Both normal-
ized Error and Var were significantly higher in healthy controls
than in patients with PD: for Error in the conditions VF250
(F(1,37) = 8.149, p = 0.003) and VF500 (F(1,37) = 31.940, p < 0.001),
and for Var in VF500 (F(1,37) = 26.001, p < 0.001); see Fig. 3. Recall
that for this test the three outcomes were normalized to VFno
and that the non-normalized error was significantly higher in PD
(also see Discussion). Normalized Anorm did not differ significantly
between groups (F(1,37) = 0.648, p = 0.289).
3.3. EEG

Hypothesis 1. No significant interaction effects were present, and
neither mean power nor power modulation displayed a significant
main effect of group in any of the four ROIs; see Fig. S2 in the
supplementary materials.
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Fig. 2. Posturographic outcomes summarizing the effect of congruent VF (VFno vs VFrt).
error; Var: circular variance; Anorm: normalized amplitude. Error bars indicate the standa
statistical analysis was performed on Fisher-transformed data.
Hypothesis 2. None of the normalized outcome measures dis-
played a significant group � congruency interaction effect (cor-
rected significance level a = 0.00313). Normalized alpha
modulation in S1 showed a pronounced trend towards a significant
interaction of group and delay (F(2,74) = 5.280, p = 0.007).
Between-subject effects were tested against a corrected signifi-
cance level of a = 0.00625. Both normalized alpha modulation in
V1 (F(1,37) = 9.480, p = 0.004 and normalized beta modulation in
M1 (F(1,37) = 9.293, p = 0.004) were found to be significantly
higher in PD than in healthy controls (Fig. 4B). For normalized
mean power, none of the effects were significant in any of the ROIs
(Fig. 4A).
4. Discussion

We investigated cortical synchronization and desynchroniza-
tion accompanying the performance of a standing postural sway-
ing task in the presence of VF. Task-related spectral power and
modulations thereof were examined under various feedback condi-
tions. When congruent VF was provided, no significant differences
in spectral power and power modulation between the patient
group and healthy controls were found. However, as hypothesized,
we observed a differential response in cortical activity under con-
ditions of incongruent VF.

Our first hypothesis was based on the notion that changes in
motor function in PD are associated with changes in cortical activa-
tion (van Wijk et al., 2012). In PD, the availability of external cues
and/or task-related feedback can improve motor function (Lim
et al., 2010; Nieuwboer et al., 2007; Rubinstein et al., 2002). Postur-
ographic results did reveal an impaired task performance in
patients with PD (Fig. 3), but this disparity was not reflected in
any of the EEG measures, presumably because clear patterns of
movement-related desynchronization and synchronization did
not emerge. Typically, right before movement onset the amplitude
of beta oscillations decrease and they remain suppressed until a
post-movement rebound, that can exceed the baseline activity
level (Pfurtscheller and Lopes da Silva, 1999; for a review see van
Wijk et al., 2012). However, these findings mostly come from stud-
ies on movements of the upper extremity (i.e. hand or finger). Far
fewer studies have investigated cortical activity during postural
and gait-related tasks, (see e.g. Bruijn et al., 2015; Gwin et al.,
2011). Nevertheless, taken at face value, the present results sug-
gest that for this rhythmic swaying task with congruent VF beta
activity did not differ for subjects with PD and healthy controls.
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By extension, this may suggest that peripheral, PD-related effects
like an increased rigidity were of greater significance for diminish-
ing task performance.

Our second hypothesis was based on the assumption that
patients with PD are more dependent on VF (Azulay et al., 2002;
Bronstein et al., 1990; De Nunzio et al., 2007). If so, their task per-
formance would suffer more from incongruent VF than that of
healthy controls and show altered beta modulation in M1.
Whereas congruent VF may enable subjects with PD to establish
some form of voluntary control to overrule disturbed automatic
reflexes, such a strategy would not work in conditions with incon-
gruent VF. We therefore expected that both sway performance and
cortical activity would reflect the increased task complexity. Our
results revealed significantly greater event-related normalized
beta modulation in the motor cortex for patients with PD. With
incongruent VF, the PD group showed an increase in M1 beta acti-
vation relative to VFno (Fig. 4B). On the other hand, healthy controls
showed a decrease in the level of M1 activation relative to VFno. It
thus appears that in the presence of incongruent VF, the modula-
tion of beta activity was suppressed in the healthy controls, but
not in the patients with PD. This was expected, as beta synchro-
nization has been found to be related to movement error (Tan
et al., 2014) and here increased with incongruent VF (see Fig. 3).
In conditions of unfamiliar or unreliable feedback, (pre-)existing
motor programs become invalidated. Current sensory feedback
needs to be integrated in order to update the internal model
(Shadmehr et al., 2010). Post-movement beta synchronization
has been shown to negatively correlate with the uncertainty in
feedforward estimations derived from the internal model (Tan
et al., 2016). Beta power modulation might thus reflect the relative
usability of the VF and, thereby, the need for motor adaptation. The
present results might therefore be interpreted as indicating that
the relative uncertainty in the feedforward estimations in healthy
controls is higher in conditions with VF than without VF. VF
instilled relative lower confidence in the motor execution, thereby
reflecting the need for adaptive behavior. The PD group, in con-
trast, may rely more on the existing internal model, and thus have
a relatively lower need for updating the feedforward control. This
fits with the behavioral observations: for healthy controls Var is
higher for VFrt than for VFno and increases with VF250 and VF500;
see Figs. 1 and 2, respectively, indicating much more variable
tracking patterns that are reflective of active adaptive behavior.
For PD patients, this effect on Var was not nearly that compelling,
suggesting that they much less tried to adapt their motor behavior.
It may reflect a difficulty to ‘uncouple’ the movement from the tar-
get motion. It may also reflect a general inability to generate a
proper response, as was explored by other studies on motor perse-
veration in PD (see e.g. Stoffers et al., 2001; Mohammadi et al.,
2015). We must admit that these interpretations remain specula-
tive as a single, conclusive view of the role of beta synchronization
has not yet emerged (van Wijk et al., 2012).

The PD group showed greater normalized alpha modulation in
V1; see Fig. 4B. Again, this suggests that with incongruent VF, the
modulation of V1-activity was reduced in healthy controls, but
not in the patients with PD. Modulation of synchronized alpha
activity in this region (i.e. event-related desynchronization) has
been ascribed to (anticipation of) processing of visual information
and feature extraction (Pfurtscheller et al., 1994). It remains
unclear whether the alpha and beta modulation are in some way
related or whether they represent different phenomena.
4.1. Limitations

Next to the already acknowledged limitations in terms of spatial
resolution, which precludes the reliable analysis of activity in
smaller brain areas (e.g. supplementary motor area, cingulate
motor area), and movement artifacts, we here remark on a few
other design-related issues. The alignment of neural activity took
place with respect to the maximum amplitude of the COP of suc-
cessive swaying movements. It is debatable to what extent this
parameter – and not, for example, the point of maximal COP veloc-
ity – is the best choice to which to align cortical activity. It should
also be kept in mind that, in contrast to many other studies on
event-related synchronization and desynchronization, the task
studied here is a continuous task; after all, VF was provided contin-
uously, giving the participant an ongoing indication of the error. If
beta power is indeed a function of the extent to which a motor plan
requires updating (Brittain and Brown, 2014; Tan et al., 2014), neu-
ral desynchronization/synchronization might have been taking
place unsystematically, at various points in the sway circle, ulti-
mately getting obscured through the averaging over events.

We would like to note that one of the premises of our study was
that VF helps improve performance. Although at first glance it
seemed that task performance did not appear to improve under
conditions of VFrt, this is not entirely true: detailed analysis
revealed learning effects that took place over the course of the
assessment (van den Heuvel et al., 2016). Given that performance
was not (yet) at a steady state level for all subjects, this could very
well have led to increased variability in the EEG activation pat-
terns. Although it would certainly have been rather interesting to
investigate learning effects in the EEG data as well, the number
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of events needed for a reliable analysis of spectral power unfortu-
nately did not allow for such an analysis.

Lastly, we point out that we did not formally assess visual acu-
ity, vestibular function, proprioceptive function, and sensitivity of
cutaneous mechanoreceptors in the foot, all of which can influence
the maintenance of posture through their respective pathways.
5. Conclusion

The goal of the present study was to investigate the effects of VF
on cortical activation during a postural sway task. When congruent
VF was provided, no significant differences in synchronized oscilla-
tory activity were present between patients with PD and healthy
controls. In contrast, when incongruent VF was provided, increased
event-related alpha and beta modulation across the motor network
were found in the PD group. This supports previous findings on
altered movement-related modulations of alpha/beta activity in
patients with PD, and is consistent with data showing greater reli-
ance on congruent VF in PD patients. We can confirm the notion of
beta modulation as a cortical controller of (rhythmic) motor per-
formance (Brittain and Brown, 2014; Houweling et al., 2010; van
Wijk et al., 2012).
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