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A B S T R A C T

We study social learning in a social network setting where agents receive independent noisy signals about the
truth. Agents naïvely update beliefs by repeatedly taking weighted averages of neighbors’ opinions. The weights
are fixed in the sense of representing average frequency and intensity of social interaction. However, the way
people communicate is random such that agents do not update their belief in exactly the same way at every point
in time. Our findings, based on Theorem 1, Corollary 1 and simulated examples, suggest the following. Even if
the social network does not privilege any agent in terms of influence, a large society almost always fails to
converge to the truth. We conclude that wisdom of crowds seems an illusive concept and bares the danger of
mistaking consensus for truth.

1. Introduction

Social networks play a central role in sharing information and the
formation of opinions. They carry news about products, events and job
opportunities. They shape opinions and expectations, drive the spread
of rumours and influence decision such as voting, smoking, education
and consumption behavior. The nearly limitless set of situations in
which social networks play a crucial role makes it important to un-
derstand how the architecture of the network impacts the evolution of
beliefs and behavior over time.

A well established line of research studies how to extend rational
learning theory into social network settings when individual decision
making is based on observations from neighbors as e.g. in Bala and
Goyal (1998), Gale and Kariv (2003). Since communication in a social
network often involves repeated transfers of knowledge among a large
number of agents, theories based on rational learning soon become
infeasible even for small numbers of agents. Nonetheless, individuals
may use fairly simple updating rules for their beliefs and still arrive at
outcomes like those achievable under fully rational learning. In the
context of social networks, such a naïve learning process is studied by
Golub and Jackson (2010) based on the seminal network interaction
model of DeGroot (1974). Here, the social structure of a society is de-
scribed by a weighted and possibly directed network. Agents start with

an individual belief, say, the probability of an outcome of an election.
The belief updating mechanism is that agents communicate with
neighbors in a social network. At each date, the new belief of an agent is
the weighted average of her neighbors’ belief from the previous period.
For strongly connected networks1 and under some weak condition of
aperiodicity, the updating process converges to a common belief, which
is called reaching a consensus. Golub and Jackson (2010) study the
DeGroot process for the setting when there is some true state of nature.
Each agent's initial belief is an independent zero-mean noisy signal
about the true value. The question is for which social network struc-
tures this naïve updating process converges to the truth. Their main
finding is that a large society converges to the truth if and only if the
influence of the most influential agent vanishes as the society grows.
This result is referred to as wisdom of crowds.

Our article challenges this conclusion. In fact, our results suggest the
opposite. The crowd is wrong almost always even in absence of ex-
cessively influential agents. Our substantive point is that the wisdom of
crowds result hinges on an invalid model assumption about how social
networks orchestrate social learning. Let us elaborate. The key as-
sumption of DeGroot influence dynamics is that agents continue to use
the very same updating rules at every point in time. In particular, the
weights that agents place on other's opinions are constant and used at
every single time step. This is a behavioral assumption based on a
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bounded rationality argument which is discussed at length by DeMarzo
et al. (2003). In a nutshell, the justification for constant weights is that
agents fail to adjust correctly for repetitions and dependencies in in-
formation they hear multiple times.

We do not attempt to tackle the assumption of bounded rationality.
Our substantive point is that the assumption of constant weights is in-
valid from an entirely different perspective which zooms in on the ac-
tual meaning of the weight in a social matrix. Here, the weight is meant
to describe the frequency or intensity of social interaction and as such
represents an average over some time of observation. This approach
stems from the usual way social network data is collected, say, when
the weight measures the observed frequency of interaction over some
time or it rolls out of a questionnaire attempting to quantify the im-
portance agents assign to each others opinions. However, unlike phy-
sical networks such as fixed electrical grids, the network of social
communication has an inherent variable character as it is a process of
interaction with different people at different times. One may keep in
touch with some friends on a monthly basis, but need not talk to all
friends every day. We bump into colleagues by chance, meetings are
scheduled at different days at different time spots and we listen to the
opinion of experts sequentially as opposed to all at the same time.
Although the interaction patterns captured through the interaction
weights might be stable as averaged over some time period, they do not
reveal the actual order of interactions. The latter, however, depends on
various exogenous factors and is hence of rather random nature.

As we will show in our simple variant of the DeGroot model, this
sequential aspect has a fundamental impact on consensus. Instead, our
finding is that the crowd is wrong almost always even if all agents have
vanishing network influence as the society grows. We establish this
argument by a simple model of randomization. At each date of belief
updating, nature chooses randomly from a set of social networks. In
expectation, however, the social network is fixed as in the setting of the
DeGroot model.

The importance of the sequential aspect of belief updating is a well-
known result in the field of information cascades and herding as de-
veloped in Banerjee (1992), Bikhch et al. (1992) and Welch (1992).
Consider, for example, a hiring committee that needs to decide whether
to make a job offer to candidate A or B.2 The usual procedure is to go
around the table and ask each committee member's opinion. Assume it
is common knowledge that all members have roughly the same insight
in the qualities of the members. Now consider the scenario that the first
two members expressed their preference for candidate A, following
their own private signals. Suppose the signal of the third member was in
favor of B. She could argue, on rational grounds, that the two signals of
the first two members outweigh her own with respect to informational
content and join their opinion. Now consider the fourth member. She
knows that the choice of the third member conveys no reliable in-
formation. As a result, she is in the same situation as the third member
and might disregard her own signal. This will continue with all sub-
sequent members with an ever growing committee. An information
cascade has taken place. No one is under the illusion that it means that
every single member received the same private signal favoring A. Still,
it is rational to join the decision of the first two members. Of course,
this phenomenon is even more likely under naïve updating when agents
fail to recognize that the guess from agent three on conveys no reliable
information. From the perspective of social networks, all members pay
equal attention to all other members and hence every agent has van-
ishing influence in a growing committee. The crowd, however, is not
wise for the simple reason that the consensus is largely determined by
the noise of the first few agents. It is not the network, but the sequential
aspect of the process that prevents averaging out the initially zero-mean
noise of the private signals.

This sequential aspect suggests to reconsider the concept of

influence on collective consensus. In the DeGroot model, influence is
usually measured by a concept of eigenvector centrality. It roots back to
sociological measure of concept and prestige introduced by Katz (1953)
and refined by Bonacich (1987). Eigenvector centrality is based on the
average social network of the dynamic process which forms a sharp
contrast to the result of our random communication model. We will
show that the consensus level is largely determined by the first few
random draws of the social network. This is easy to understand. In the
process of random meetings, agents with highest possible beliefs will
sooner or later have a meeting with an agent of lower belief. Similarly,
agents with lowest beliefs will at some time adjust their belief by a
neighbor with higher belief. As a result, the set of possible beliefs forms
a sequence of shrinking subsets over time. This implies that as time goes
on, an agent has decreasing impact on neighbors’ beliefs.

We will show that consensus is reached almost always under some
mild conditions on connectedness and aperiodicity. This leads to the
question whether consensus is close to the truth, arbitrarily close for a
growing society respectively. The answer we give is negative. We de-
monstrate by simulation that the consensus level is determined by the
sample path of random updating and that beliefs behave highly volatile
in unpredictable directions during the updating process. Instead, the
large variety of possible sample paths leads to a consensus distribution
around the truth level with possibly large deviation and skewness.

The implication is as follows. Suppose consensus is observed in a
large society or organization after some time of discussion. Also assume
that all agents seem to have more of less the same influence in terms of
the social network. We claim that observed consensus should by no
means be seen as representative for the truth, or even close to the truth.
Instead, consensus contains no reliable information about the truth as it
is highly susceptible to even minor changes in the dynamics of com-
munication. A second insight is that consensus is largely determined by
the early rounds of discussion.

The paper is structured as follows. Section 2 introduces the classic
DeGroot model of updating and defines the random draw of initial
beliefs that forms the starting point of all dynamics discussed in this
paper. In Section 3, we introduce our randomization model which
covers the DeGroot model as a special case. In Section 4, we discuss
issues of convergence and develop conditions for all agents's belief to
reach a consensus in our setup of random updating. We will also discuss
speed of convergence. Section 5 introduces the concept of wisdom of
the crowds in the randomized setup. Section 6 illustrates and discusses
randomization as an obstacle to wisdom by means of simple examples.
Section 7 concludes.

2. DeGroot model of social learning

Consider a society of agents = … n{1, , } interacting as a social
network. The interaction patterns are captured by a n× n row-sto-
chastic matrix P. The interpretation is that Pij≥0 indicates the weight
or trust that agent i places on the current opinion or belief of agent j
when forming i's new belief for the next period. The matrix P may be
asymmetric such that Pji can be different to Pij.

In the social learning model of DeGroot (1974), each agent i forms
her belief for the next period by taking a weighted average of beliefs of
neighbors in the social network. In particular, let fi

t( ) denote the belief
of i at time t∈ {0, 1, …}. Assume that each belief fi

t( ) lies in a finite
interval a b[ , ] .3 Beliefs are updated over time according to the
following rule

= = …f f fP P t, {1, 2, }.t t t( ) ( 1) (0) (1)

The DeGroot model is a natural starting point to understand how net-
work structures influence the formation of opinions, where opinion can

2 This example is taken from Easly and Kleinberg (2010).

3 The results of this paper can be extended to multidimensional Euclidean
spaces while maintaining the findings.
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be expressed as an element in the opinion interval [a, b], say, from left
to right in terms of political attitudes. Another application is to let fi

t( )

express the believed quality of a given product or the likelihood that a
given individual engages in an activity. In the context of social learning
of the present paper, we will interpret beliefs in the context of in-
formation and discuss the evolution of beliefs in terms of information
diffusion. In particular, we assume that there is some true state of
nature. Each agent's initial belief is equal to the true state of nature plus
some idiosyncratic zero-mean noise. Following DeMarzo et al. (2003)
and Golub and Jackson (2010), this translates into the model as follows.
At time t=0, initial beliefs are given as

= +f µ e a b[ , ]i i
(0) (2)

for each i , where constant μ is said to be the true state of nature
and ei is an additive noise term sampled from a distribution with
bounded support, zero mean and positive variance. The initial signals
fi

(0) are independently drawn at time t=0.
There are a few main questions that arise naturally about system

(1):

(i) Under what conditions is there convergence?
(ii) Under what conditions is there consensus in the sense of all agents

arriving at the same limiting belief?
(iii) Who has influence?
(iv) Under what conditions does consensus equal μ when the initial

beliefs are given by (2)?

These questions have been addressed in DeGroot (1974), DeMarzo
et al. (2003) and Golub and Jackson (2010). Mathematically, system (1)
represents iterated multiplication with a fixed stochastic matrix. This
allows to make use of the well-established analytical toolbox of Markov
chains. In particular, precise conditions for convergence and closed
form solutions for measures of influence on consensus can be translated
directly to the context of social learning. In Section 4, we will provide a
brief overview when we revisit questions (i)–(iv) in the context of our
model of random communication.

3. Randomization approach of social learning

The key assumption for (1) is that agents keep using the same up-
dating rule throughout the entire learning process. The crude assump-
tion of P being constant reflects the usual way social network data is
collected, where the strength or weight Pij of a connection between two
agents i and j is an observed frequency aggregated over some time.
However, even Pij is constant in expectation, it does not imply that
agents always update their belief in exactly the same way. For instance,
consider data collected from online communication taken over one year
in order to estimate the connections in a given group of users. Alter-
natively, consider splitting the period into two half years or four quarter
years. Obviously, the estimated networks will be different while pro-
viding the same averaged data over one year. Consequently, there is
aleatoric uncertainty about the actual pattern of belief updating. In
particular, the aggregated data P is more likely a (linear) combination
of (different) matrices, say, X and Y such that P= αX+(1− α)Y. Fig. 1
illustrates this superposition of two networks. Note that the set of
possible decompositions of a network P is usually infinite.4

To incorporate this aleatoric feature of random communication into
the model, we consider a random sequence = …P t{ ˆ : 1, 2, }t( ) whose
elements are independently drawn from a set of n× n row-stochastic
matrices according to a probability distribution R over with

= =P P R A AE[ ˆ ] ( )·t
A

( ) for every t > 0. The corresponding belief

process f̂ t( ) is defined by

= = +f fP f µ eˆ ˆ ˆ , ˆ .t t t
i i

( ) ( ) ( 1) (0)
(3)

In the iterative process (3), a matrix P̂ t( ) is multiplied from the left5 such
that

=f P P P fˆ ˆ ˆ ˆ ˆ .t t t
i

( ) ( ) ( 1) (1) (0)
(4)

Naturally, (1) is covered by the special case of a degenerate dis-
tribution where R chooses only one element of with positive prob-
ability. Note that (3) comprises two independent random processes. The
first is the draw of the initial beliefs f̂ (0) defined by (2). The second is
the random sequence of updating = …P t{ ˆ : 1, 2, }t( ) . When a collection

and a distribution R over are given, we call the corresponding
average P the superposition of and

= …P t{ ˆ : 1, 2, }t( ) (5)

a randomization of , where P̂ t( ) is drawn from R. For notational
simplicity, we use P̂ t( ) instead of (5) when there is no risk of ambiguity.

4. Reaching a consensus

We first discuss the long run behavior of the belief vectors f(t) and
f̂ t( ), as defined in (1) and (3) respectively. Given the interaction matrix
P, we say there exists a path from i to j if there exists some k > 0 such
that the (i, j) element of matrix Pk is positive. The matrix P is strongly
connected if for every ordered pair of indices (i, j) there exists a path
from i to j. We say that P is primitive6 if there exists some k > 0 such
that >P( ) 0k

ij for all i j, . Let 1 denote a column vector with all
components equal to 1.

Definition 1. A matrix P is convergent if fPlim
t

t (0) exists for all f(0) ∈ [a,
b]n.

This definition requires the belief updating process to be convergent
for all initial beliefs. The following result is standard in Markov chain
theory.

Proposition 1. If P be strongly connected, the following statements are
equivalent:

(i) P is convergent.
(ii) P is primitive.
(iii) There is a unique left eigenvector π of P to eigenvalue 1 with π⊤1=1

such that

= 1Plim ,
t

t
(6)

where convergence is exponentially fast.

A proof can be found in Seneta (1981). Note that π is the stationary
distribution of P.

If an influence matrix P is primitive, then the corresponding belief
f(t) in system (1) converges to the limit

= =f fP flim ( ) ,
t

t
i

j
j j

(0) (0) (0)

for all 1≤ i≤ n. Hence, the limiting beliefs are all equal in which case
we refer to the limiting belief as the consensus. The latter is a weighted

4 Assume there exists a Pij ∈ (0, 1). Put Xij= Pij+ ϵ1 ∈ (0, 1) and
Yij= Pij− ϵ2 ∈ (0, 1). It is easy to show that the set of ϵ1 and ϵ2 satisfying
Pij= αXij+(1− α)Yij is infinite.

5 This is in contrast to the classic Markov chain models where each update of
state probabilities is modeled by a matrix multiplication from the right. Note
that in (3), beliefs are aggregated from neighbors instead of transitioning to
neighbors.

6 For strongly connected networks P, primitivity is analogous to P being
aperiodic. In graph theoretic terms, it means that the greatest common divisor
of the length of P's simple cycles is 1. See e.g. Perkins (2008).
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average of the initial beliefs, with agent i's weight given by πi. There-
fore, the weight πi can be seen as the influence of agent i when the
interaction matrix P is constant in each period.

The following proposition assures primitivity of the superposition if
it is composed of primitive matrices. The intuition is that if a non-ne-
gative matrix A is primitive, and another non-negative matrix Ã has the
same dimensions as A and has positive elements in the same positions
as A, it holds that Ã is also primitive.

Proposition 2. If a finite collection of influence matrices contains only
primitive matrices, then the corresponding superposition =P R A A( )·A
with any distribution R on is also primitive.

A proof can be found in Seneta (1981).
We now turn to learning under randomization (3). The following

simple example illustrates that the updating process does not necessa-
rily converge even when consists of primitive matrices.

Example 1. Consider a group of 3 agents and two networks A and B
given by

× × ×

× × ×
=

× × ×

0 1 0
0 0 1 · 1 0 0

0 1 0

1 0 0
0 1 0

A B A B
primitive primitive

·
notstronglyconnected

Here, the rows [×, ×, ×] of A and B indicate any weight vector
(probability distribution, respectively) such all × are positive. The
networks are illustrated in Fig. 2. Note that although A and B are
primitive, the resulting network A · B is not. In fact, the resulting
network A · B is not even strongly connected.

× × ×

× × ×1 0 0
0 1 0 1 0 0

0 1 0
A B B A B( · ) ·( · )k k

for any k > 0.
The key to failure of convergence in Example 1 is that part of the

agents keep imitating each other in such a way that beliefs are passed
on without being effectively updated. In other words, the updating
process is periodic, and this allows the process to cycle back and forth.

In order to understand under what conditions learning under ran-
domization converges, it is helpful to work with the concept of range of
beliefs. This range will be defined by a closed interval bounded by the
highest and smallest belief present at every round. Since the belief
updating system is endogenous process, these ranges can never get
larger, but, if at all, shrink over time. The observation is that con-
vergence to consensus is equivalent to these intervals shrinking to
length zero, containing the consensus value exclusively.

To be more specific, let Ω denote the set of all possible infinite se-
quences that can be drawn from . Consider any sequence =A{ }t

t
( )

1 of
networks representing a realization ω∈ Ω. Let f(0) denote the vector of
initial beliefs. Beliefs at any time t follow as

=f fA A Aˆ ( ) .t t t( ) ( ) ( 1) (1) (0) (7)

The range of beliefs at time t is defined by

= =f f fI I( ) ( ˆ ) [min(ˆ ), max( ˆ )],t
t t t( ) ( ) ( ) (8)

for all t≥0.7 Note also that It+1(ω)⊆ It(ω) for any t≥0. We will now
provide structural sufficient conditions for this range to keep shrinking
in the updating process.

Consider any primitive network A with

= =1 Alim ,AA
k

k

where πA is the stationary distribution of A. From standard Markov
chain theory,8 we know that A is geometrically ergodic, i.e., there exists
a certain T such for k≥ T the rows of Ak are almost equal to πA. In other
words, for all ϵ > 0 there exists an Tϵ such that for all k≥ Tϵ

1A|| || ,A
k

where Tϵ is called the ϵ-transient time of A. In terms of (7), geometric
ergodicity implies that updating with A sufficiently many times in a row
enforces the belief range (8) to shrink.

Consider a sequence of updating networks =A{ }t
t

( )
1 defined on the

Fig. 1. Superposition of two networks: the weight associated with a link is illustrated by the thickness of the link.

Fig. 2. A nonconvergent updating process.

7 In order to simplify notation, the argument ω is omitted at the right side of
(8).

8 See e.g. Kemeny and Snell (1983).
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same state-space, and denote by the set of possible values of A(t), i.e.,
= A{ }t t( ) . Let P be primitive and denote the ϵ-transient time of

P by Tϵ. We say that P is consensus enabling for =A{ }t
t

( )
1 if it happens

infinitely many times that P is chosen at least Tϵ times in a row. In
formal terms, if there is a sequence of times ={ }k

k
( )

1 such that
τk+1 > τk+ Tϵ and

= = = =++A A A P.T( ) ( ) 1k k k1 (9)

If there exists at least one P such that P is consensus enabling for
=A{ }t

t
( )

1, we call the sequence =A{ }t
t

( )
1 consensus enabling.

Theorem 1. Let ω ∈ Ω denote an infinite (not necessarily) random
sequence of matrices drawn from set of Markov matrices . If the
updating sequence is consensus enabling, then

(i) the successive ranges of beliefs constitute a shrinking sequence of in-
tervals

+I I( ) ( ),t t1

for all t≥0;
(ii) consensus

=f flim ˆ ( ) ˆ ( )
t

t( ) ( )

exists and is path dependent.

For the proof see Appendix A.
Note that the converse statement of Theorem 1 is not true.

Inspecting the proof, we see that the contraction property required for
convergence may also hold if is not consensus enabling. However,
the ϵ-transient time represents a uniform upper bound for the con-
traction property.

In the following, we extend the setting of our main theorem to the
stochastic setting. In case the updating networks in (7) are chosen ran-
domly in an i.i.d. fashion, a sufficient condition for any realization ω to
be consensus enabling is that there is at least on P in that is consensus
enabling and that occurs with positive probability. The i.i.d. assumption
can be relaxed to the more general assumption that there exists a con-
sensus enabling P which is chosen in every round with positive prob-
ability. The latter ensures (9) to hold for infinitely many repeated times.

Corollary 1. Let ω∈ Ω denote an infinite sequence of networks drawn in an
i.i.d. fashion from . Assume that there exists an A that is consensus
enabling and that = >P A( ˆ ) 0t( ) . Then it holds for the limiting belief

= = =f f f fP I fE[lim ˆ ˆ ] lim ˆ · ˆ anda. s. ( ) { ˆ ( ) }.
t

t

t
t

t t
( ) (0) (0) (0)

0
( )

For a proof see Appendix B.
The i.i.d. case has been studied in the literature before. Anthonisse

and Tijms (1977) provide sufficient conditions for convergence of
random sequence of Markov matrices. For matrices with positive di-
agonals, Tahbaz-Salehi and Jadbabaie (2008) establish a necessary and
sufficient condition for i.i.d. sequences of belief update matrices to
converge to consensus.

5. Wisdom of crowds revisited

A central question of social learning is under what circumstances
the decentralized communication of the network correctly aggregates
diverse individual information. Golub and Jackson (2010) discuss this
question for the DeGroot process (1) for large societies. To make this
idea work at a technical level, it is necessary to be precise about what
“large” means. It turns out that the cleanest way to formalize the
question is to consider infinite networks.9 To be precise, they consider a

sequence of growing networks =P n{ ( )}n n0 where each P(n) is a row-
stochastic n× n matrix representing the network with associated left
eigenvectors =n{ ( )}n n0 . It is hence a setup of a double limit. For each
finite n, the network reaches a consensus (or not) in the DeGroot pro-
cess (1) of updating for t→∞. Subsequently, the networks =P n{ ( )}n n0
grow in size n with n→∞.

The following definition says that a sequence of networks is wise
when the limiting beliefs converge jointly in probability to the true
state μ.

Definition 2. Golub and Jackson (2010)

The sequence of networks =P n{ ( )}n n0 is said to be wise if

> =f n µlim Pr[max | ( ) | ] 0
n

i n i
( )

(10)

for any ε > 0.

Proposition 3. Golub and Jackson (2010)

If =P n{ ( )}n n0 is a sequence of primitive stochastic matrices, then it is wise
if and only if the associated left eigenvectors =n{ ( )}n n0 are such that

nmax ( ) 0i n i (11)

as n→∞.
We now turn to the randomization model. Let n( ) denote a finite

collection of influence matrices of size n× n. The collection of networks
= … =P n t{ ˆ ( ): 1, 2, }t

n n
( )

0 is said to be a randomization of =n{ ( )}n n0 if
for each n≥ n0, the outcome of P nˆ ( )t( ) is independently chosen from

n( ) for t=1, 2, … according to some probability distribution Rn over
n( ). We denote by Ω(n) the collection of all infinite sequences whose

members are chosen from n( ). The corresponding superposition
=P n{ ( )}n n0 is given by =P n R A A( ) ( )·A n n( ) for n≥ n0. Wisdom of

crowds under randomization is defined as follows.

Definition 3. The sequence of randomized networks
= … =P n t{ ˆ ( ): 1, 2, }t

n n
( )

0 is said to be wise if

(i) for all n and for every sample path ω(n) ∈ Ω(n) the limit f n( ˆ ( ))n i( )
( )

exists for all i=1, …, n, n≥ n0, and for any given initial beliefs;
and

(ii) for any sequence of sample paths =n{ ( )}n n0

> =f n µlim Pr[max |( ˆ ( )) | ] 0
n

i n n i( )
( )

(12)

for any ε > 0.

It is straightforward to provide sufficient conditions for a society to
be wise under randomization, for instance, if =n{ ( )}n n0 consists of
symmetric matrices for every n. However, superposition (measured
data) =P R A A( )·A usually stems from a plethora of all kinds of
possible random communication structures A . The following sec-
tion illustrates that this represents an obstacle to wisdom.

6. Superposition versus randomization

In this section, we demonstrate by a simple example how rando-
mization prevents a society from being wise. In our setup, the super-
position P(n) is symmetric and hence wise for growing n. As the fol-
lowing example shows, however, wisdom fails when P(n) is interpreted
as expectation of two non-wise networks.

Example 2. Consider a ring network as depicted in Fig. 3. Every agent
has a link to herself which is omitted in the figure. The influence matrix
P(n) of size n (both odd and even) is given as follows:9 For finite n, every statement on consensus being close to truth or not de-

pends in a cumbersome way on n without adding much insight.
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=P n( )

1/2 1/4 1/4
1/4 1/2 0 1/4
1/4 0 1/2 0 1/4

1/4 0 1/2 0 1/4
1/4 0 1/2 1/4

1/4 1/4 1/2

.

This matrix is the superposition of two other influence matrices X(n)
and Y(n) such that P(n)= αX(n)+ (1− α)Y(n) for some α∈ (0, 3/4),
where for n=2m+1, X(n) and Y(n) are given by

+ =X m(2 1)

1/2 1/4 1/4
1/3 1/2 0 1/6
1/3 0 1/2 0 1/6

1/3 0 1/2 0 1/6
1/3 0 1/2 1/6

1/3 1/6 1/2

,

and

+ =Y m

c d
c d

c d
c d

c d

(2 1)

1/2 1/4 1/4
1/2 0

0 1/2 0

0 1/2 0
0 1/2

1/2

,

with c=(3−4α)/(12−12α) and d=1/2− c=(3−2α)/
(12− 12α). In network X(n), agents attach more weight to upwards
located agents than agents down the circle. In contrast, lower located
agents get more weight in network Y(n). Both X(n) and Y(n) are
primitive and the corresponding left hand eigenvectors πX and πY from
(6) follow as

+ =

+ = + = = …+

+

+

m

m m i m

(2 1) ,

(2 1) (2 1) · for 1, ,

X X

X i X i X

:1
2

2 3 :1

:2 :2 1
3

2 :1

m
m

i

2

1 (13)

and

+ =

+ = + = = …+

+m

m m i m

(2 1) ,

(2 1) (2 1) · for 1, ,

Y
c c

c c Y

Y i Y i
c
c Y

:1
(1 4 )(2 )

(1 2 ) 2(2 ) :1

:2 :2 1
(1 2 )

2·(2 ) :1

m
m m

i
i

1

1

(14)

For even n=2(m+1), X(n) and Y(n) are defined in a similar way with
slightly modified (13) and (14).10

For symmetry reasons, the sequence =P n{ ( )}n n0 in Example 2 is wise
according to Definition 2 (and the more general Definition 3). For the
other two networks we get

+ =mlim (2 1) 1
4

,
m

X :1

and

+ = + = = >+m m c
c

lim (2 1) lim (2 1) 1 4
2 4 3 2

0.
m

Y m
m

Y m:2 :2 1

From (11), we conclude that =X n{ ( )}n n0 and =Y n{ ( )}n n0 are non-wise.
We now turn to the corresponding randomization Rn of Example 2.

At each time t > 0, the belief updating (3) is a random draw such that
X(n) is chosen with probability α, Y(n) with probability 1− α, respec-
tively. Note that both networks are strongly connected and aperiodic
and therefore primitive. Corollary 1 assures that consensus is reached
for every path ω (a.s.). Due to a lack of closed form solutions we will
test wisdom of crowds by simulation.

Let network size n=25, and the probability of choosing X(n) be 0.3,
i.e. α=0.3. We generate 5 sample paths:

…
…
…
…
…

X X Y Y Y Y Y Y X X X X Y Y X Y X Y Y Y
X Y X X Y Y Y Y Y Y X Y X Y X X Y Y Y X
Y Y Y Y Y Y X X Y Y Y Y Y Y Y Y Y Y Y Y
X X X X Y Y Y X Y X Y Y Y Y Y Y Y Y Y Y
Y X Y Y X Y Y Y Y Y Y Y Y X Y Y Y X X Y

Samplepath1:
Samplepath2:
Samplepath3:
Samplepath4:
Samplepath5: .

In order to focus on the impact of random network structures, the initial
beliefs are

Fig. 3. Ring networks with odd and even number of nodes. Self links exist but are omitted in the figures.

10 For even n=2(m+1), all πX:k and πY:k are similar to (13) and (14) for
k=1, …, 2m+1. For the last element follows πX:2(m+1)= 2−m πX:1 and
πY:2(m+1)= (1−2c)m πY:1/(2c)m.
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=f n i nˆ ( ) 1 2( 1)/( 1)i
(0)

for i for all sample paths. Under this construction, the initial be-
liefs are equally distributed on [−1, 1] with mean 0. Agent 1 has the
highest belief, agent n the lowest respectively.

We start with illustrating convergence to consensus under X(n), as
well as Y(n), and the corresponding superposition P(n). Fig. 4 depicts
the distributions of individual beliefs at points in time using box plots.
Although consensus is reached for every network, the actual levels
differ substantially. Recall that by design of X(n), agents with low index
i receive more weight than agents with higher index. The opposite holds
for Y(n). The comparatively high consensus level of (a) reflects that
agents with low index i push belief updating towards the positive di-
rection of their initial beliefs. In contrast, beliefs in (b) is dragged down
to a negative consensus level. In (c), these different tendencies are
averaged out in the belief updating of superposition P(n).

Fig. 5(a) and (b) illustrates belief evolution under sample paths 1
and 3 of the randomization model. Convergence to consensus is verified
as expected. The consensus levels, on the other hand, are path depen-
dent. Average beliefs of five sample paths are plotted in Fig. 5(c). Here,
average beliefs seem to behave in a somehow erratic way at early times
of updating. This illustrates the random draw feature as X(n) and Y(n)
push beliefs into different directions. The dynamics, however, shows
decreasing volatility over time before the beliefs settle down at con-
sensus level (at around t=200).

The dynamics suggests that early updates have a larger impact on
the consensus value than later updates. Recall from Theorem 1(i) that

the range of possible beliefs is shrinking over time which is illustrated
by the shrinking boxplots of Figs. 4 and 5 . The speed of this con-
vergence process is largely determined by the amount of the second
eigenvalue of each stochastic matrix.11

This volatile shrinking process sheds a new light on measuring an
agent's influence. Recall that agent 1 is the most influential agent in X
(n) and least influential in Y(n) as measured by πX and πY. If the path ω
starts with sufficiently many draws of Y(n), however, agent 1 might
only have a negligible effect consensus. This holds in particular if the
range of possible beliefs It(ω) shrinks fast over time.

Fig. 5 shows that wisdom of crowds cannot be confirmed in the
randomization model, even if the superposition is wise. The consensus
level is path dependent and deviation from the truth level 0 largely
depends on early draws. Fig. 6 illustrates histograms of consensus levels
of 5000 sample paths with the randomization model, where n=25 and
α is 0.02 for subfigure (a) and 0.73 for subfigure (b). A small α means
that network X(n) is relatively rare. Since the beliefs are influenced by Y
(n) almost all the time, the consensus level is more likely to be negative
which coincides with the findings of Fig. 4(b). A large α affects the
consensus distribution in the opposite way.

In order to illustrate that our result is not dependent on the size of
the network, we ran the simulation of Example 2 for different sizes

Fig. 4. Convergence of beliefs under fixed influence matrices with n=25 and α=0.3.

Fig. 5. Path wise convergence of beliefs under randomization with n=25 and α=0.3.

11 For an overview on techniques see Jackson (2010). A technique for un-
derstanding rates of convergence that is particularly relevant to the setting of
social networks has recently been developed in Golub and Jackson (2012).
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n ∈ {25, 50, 75, …, 500} and α=0.3.12 In Fig. 7, consensus levels are
plotted against growing network size. As benchmark, consensus out-
comes under the corresponding superposed networks are included. The
sample paths illustrate that a growing network size does not lead to
consensus levels closer to the truth. In fact, we can elaborate this
finding by the following simple example.

Example 3. Consider the scenario in which the learning dynamics starts
with the crowd largely influenced by one single agent. For instance,
consider an exogenous shock and the expertise of agent 1 happens to be
the first heard by large media presence. In the setup of our
randomization model, assume the outcome of the first random draw
is given by the influence matrix

=X n( )

1
1 0 0
1 0 0 0

1 0 0
1 0
1 0

,

with δ∈ (0, 1). For sufficiently small δ, convergence to consensus
happens almost immediately as every agent follows essentially the

belief of agent 1. However, it also means that the range of possible
beliefs I1(ω) after one round of updating is a set largely determined by
the idiosyncratic error of agent 1. For sufficiently small δ, this set does
not contain the truth 0 (a.s.), but will contain only positive or only
negative beliefs. Since belief updating implies that It(ω)⊆ I1(ω) for all
future t, distance of consensus to the truth is bounded by I1(ω) and
cannot be improved, regardless of future random draws of updating.

We close this session by a comment on network measurement.
Consider the superposition P= αX+(1− α)Y. For given measured P,
identifying X and Y from observations leads to an unwieldy statistical
estimation problem. The problem is that for each given P, there is a
huge variety of possible decompositions which may be even broken
down to a mixture over a set of matrices where each matrix represent
the belief update between two agents only. The randomization model of
this paper is therefore not suited for empirical calibration but rather
points out the danger of drawing conclusions from a measured average
P.

7. Conclusion

The main topic of this paper concerns a fundamental question in
social learning: under what conditions will a society of agents who
communicate and naïvely update in a decentralized way reach a con-
sensus that represents the truth? In other words, which conditions en-
sure wisdom of crowds? We show that consensus is reached almost
always, however, the actual level is highly sensitive with respect to the
way the social network orchestrates early communication. In contrast
to much of the previous literature, our result demonstrates that

Fig. 6. Histograms of consensus levels under randomization with different values of α.

Fig. 7. Consensus levels of growing networks.

12 For each n, we start the belief updating process from f nˆ ( )(0) where initial
individual beliefs are sampled from the standard normal distribution with zero
mean (the truth) and then sorted by descending order. Each simulation run
stops at time τ(n) so that < =f n f n|max [ˆ ( )] min [ˆ ( )]| 10i i

n
i i

n( ( )) ( ( )) 3.
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consensus can by no means be taken to carry any reliable information
about the truth. In particular, our result suggests that the crowd is
wrong almost always even for social networks in which no agent is
privileged in terms of influence.

We used an extension of the classic DeGroot model to demonstrate
this finding. However, our main message does not depend on the pre-
cise mechanics of belief updating and is not even challenged by alter-
native rationality assumptions. Our message is that, yes, social net-
works influence how smart societies are in the aggregate. Their impact,
however, is almost impossible to predict due to the inherent random
nature of social interaction. The stylized metaphor that we offer is that
society starts with a range of unbiased beliefs around the true value.
The likelihood that it stays unbiased, however, is practically zero as this
would assume that the temporary (finite) neighborhood of agents
happens to be unbiased at every date of updating.

From a technical perspective, the DeGroot model with fixed
weighted matrices provides a tractable framework for what happens in
expectation if the social interaction is of more of less stable frequency
and recognition of neighbors. In this interpretation, Golub and Jackson
(2010) showed that the updating process stays unbiased in expectation
if and only if the influence of the most influential agent is vanishing as
the society grows. Here, influence is measured by a principal eigen-
vector of the fixed social network matrix. Our point is that, never-
theless, due to the countless ways of representing a fixed matrix as
average and the huge variety of possible sample paths, the likelihood of
consensus resembling the truth is zero. This large variety also stresses
that our model is not suited for empirical calibration. We do not

advocate to use advanced statistics to find ‘right’ decomposition of a
given network measurement based on average interaction. Our con-
tribution is a methodological one and can be seen as part of the large
class of network models in which individuals can interact randomly.

Our results suggest new insights for several contexts of collective
modelling. In situations in which the crowd produces bad judgment
such as for example economic bubbles, one aspect might be the mere
randomness of endogenous belief updating. This is an entirely different
explanation than the classic arguments such as cognitive biases, con-
formity moves or herding behavior. (For a broad discussion and over-
view see e.g. Surowiecki (2005); see e.g. Jarrow et al. (2011) for fi-
nancial markets.)

Our result also suggests to reconsider the measurement of influence
in collective dynamics. Measures based on fixed social networks such as
centrality measures do not capture the profound impact of early in-
teractions. These early updates, however, serve as an “anchor” followed
by decreasing opportunities of belief adjustment. When it comes to
setting up a process for collective consensus formation, say in large
organizations, it is important to realize that there is an inherent tension
in the collective process. On the one hand, there is the need to reveal
private information as a valuable trace in search of the truth. On the
other hand, it is inevitable that the sequence of expressing beliefs has a
significant impact on opinion formation.

The main lesson to be learned from our study is to be careful in
drawing conclusions about the truth or best course of action from the
opinion or behavior of a crowd as it bares the danger of mistaking
consensus for truth.

Appendix A. Proof of Theorem 1

Proof. Recall that for x n we let x⊤ =max(xi : 1≤ i≤ n), x♯ =min(xi : 1≤ i≤ n). We now let

= x xspan(x) . (15)

Note that span(x)= 0 does not imply xi=0, for 1≤ i≤ n, and span(x) is a pseudo norm. □
We have the following properties.

(i) For any x n and any square matrix A with equal rows over n it holds that

=span(A x) 0. (16)

(ii) For any row stochastic matrix A, we have

x A x x A xspan(A x) span( ), ( ) , and ( ) .k x (17)

Let A be consensus enabling for A n n{ ( ): } with ϵ-transient time N. Let T1 be the first time that A(k)=A for N consecutive times. Note that
since span(ΠAx)= 0, see property (i), we have that

f fA A Aspan( ) span( ).T T T N( ) ( 1) (1) (0) ( )1 1 1

For a proof, use that ΠA f(T1−N) has span zero. Since span(f(t)) is bounded by span(f(0)) for all t, we obtain

f fspan( ) span( ),T l( ) (0)l

where Tl denotes the lth time that =A At( ) for N consecutive times. Since A is consensus enabling for Aω, Tl tends to infinity for l to infinity and we
have

=flim span( ) 0.
t

t( )

Since (ii) the values of f(t) are bounded, i.e.,

f f f f( ) ( ) ( ) ( ) ,t t t t( 1) ( ) ( ) ( 1)

for all t. This implies

=f flim lim ( ) .
t

t
t

t( ) ( )

To summarize, if Tl tends to infinity for l to infinity, then the believe vector converges to a vector with all components equal. In other words we reach
consensus.
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Appendix B. Proof of Corollary 1

Recall that under superposition, the process (1) becomes deterministic after initial beliefs fi
(0) 's being drawn. However, in (3) each f̂ t( ), t=1, 2,

…, is a random variable with bounded support provided that f̂ (0) is given. The following Lemma follows from Lebesgue's dominated convergence
theorem, see e.g. Doob (1994).

Lemma 1 (Dominated convergence). If there exists a random variable f̂ : n such that f f| ˆ | ˆt( ) for all t and <fE[ ˆ ] , and converges to f̂ almost
surely as t→∞, then it holds that

= =f f f 1 fPE[lim ˆ ˆ ] lim ˆ · · ˆ .
t

t

t
t( ) (0) (0) (0)

Appendix C. Perturbation analysis under superposition

Here we consider a non-wise sequence =X n{ ( )}n n0 and a wise sequence =Y n{ ( )}n n0 . Let =P n{ ( )}n n0 be the blended sequence of {X(n)} and {Y(n)}
with respect to θ(n) ∈ (0, 1), i.e. P(n)= θ(n)X(n)+ (1− θ(n))Y(n) for all n≥ n0. We assume both X(n) and Y(n) are primitive for n≥ n0. It holds that

= + = +P n n X n n Y n Y n n X n Y n( ) ( ) ( ) (1 ( )) ( ) ( ) ( )( ( ) ( )). (18)

Of interest here is under what conditions =P n{ ( )}n n0 will be wise. In the following discussion we drop variable n for convenience.
The deviation matrix associated with a Markov chain characterized by transition matrix P̃ is defined by

=
=
= +
=

=

= ( )
( )

D P
P

I P
F

( ˜ )
˜

˜
,

P n
n

P

n P
n

P

P P

P P

˜ 0 ˜

0 ˜ ˜

˜ 1 ˜

˜ ˜

where +( )F I P̃P P˜ ˜ 1 is the fundamental matrix of P̃ . For any two primitive A and B, one has A= B+(A− B) and

= + A B D( ) ,A B A B (19)

which is shown in Heidergott et al. (2007). Inserting (19) into ΠA on the right-hand side of (19) recursively, one has

= +
=

+A B D A B D{( ) } {( ) }A B
k

t

B
k

A B
t

0

1

for all t≥0. By defining H(t) and R(t) as

=
=

=
+

H t A B D
R t A B D

( ) {( ) } ,
( ) {( ) } ,

B k
t

B
k

A B
t

0
1

one can approximate ΠA by H(t) as t→∞ where the remainder term R(t) is shown to be convergent with an upper bound that decays to zero at a
geometric rate, provided the following technical condition holds.

(C): There exists a finite number T such that we can find δT ∈ (0, 1) that satisfies

<A B D(( ) ) ,B
T

v T

where · v is the v-norm of matrices on ×S S, such that with function v S: [1, ),

=A
v s

A v ssup 1
( )

| | ( ).v
s S s S

ss

Note that by letting =v s( ) 1 for s∈ S, the v-norm recovers the supremum norm.
Similarly, with Eq. (18) it can be obtained that

= + X Y D( ) ,P Y X Y (20)

and correspondingly

= +
=

X Y D R t{ ( ) } ( , )P Y
k

t

Y
k

0

where R(t, θ)=ΠX{θ(X− Y)DY}t+1. Here R(t, θ) can also be shown to be convergent with an upper bound that decays to zero at a geometric rate,
under a slightly modified version of condition (C). Define δ(n) by

n
X n Y n D n

( ) 1
( ( ) ( )) ( )

.
Y 1

Theorem 2. Given =X n{ ( )}n n0 is non-wise and =Y n{ ( )}n n0 is wise, =P n{ ( )}n n0 is wise if

=n
n

lim ( )
( )

0.
n

Proof. Eq. (20) can be rewritten as
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= +n n n n n X n Y n D n( ( ), ) ( ) ( ) ( )( ( ) ( )) ( ).P Y X Y

Since every element of the second term on the right-hand side is bounded by ∥θ(n)ΠX(n)(X(n)− Y(n))DY(n) ∥ 1, taking the (j, i) element of the above
equation yields that

+
= +

n n n n n X n Y n D
n n X n Y n D

( ( ), ) ( ) ( ) ( ) ( ( ) ( ))
( ) ( ) ( ( ) ( )) ,

P i Y i X Y n

Y i Y n

, , 1 ( ) 1

, ( ) 1 (21)

where the first inequality is due to the sub-multiplicativity of the operator norm · v, that is A BAB ·v v v, and the last equality follows from
the fact that ∥ΠX(n) ∥ 1= 1. By definition,

=X n Y n D
n

( ( ) ( )) 1
( )

.Y n( ) 1

Letting n tend to infinity in (21) yields

+n n n n
n

0 lim ( ( ), ) lim ( ) lim ( )
( )

.
n

P i
n

Y i
n

, ,

The first term on the right-hand side of the above inequality tends to zero since we have assumed that =Y n{ ( )}n n0 is wise, and the second term tends
to zero by assumption. We may thus conclude that

=n nlim ( ( ), ) 0.
n

P i,

The above argument can be applied to any agent i and we arrive at

=n nlim max ( ( ), ) 0,
n

i P i,

which then proves the claim. Note that taking the maximum in the above limit takes care of the effect that the maximizing index may depend on θ(n).
□

References

Anthonisse, J.M., Tijms, H., 1977. Exponential convergence of products of stochastic
matrices. J. Math. Anal. Appl.

Bala, V., Goyal, S., 1998. Learning from neighbours. Rev. Econ. Stud. 65, 595–621.
Banerjee, A., 1992. A simple model of herd behavior. Q. J. Econ. 107 (3), 797–817.
Bikhchandani, S., Hirshleifer, D., Welch, I., 1992. A theory of fads, fashion, custom and

cultural change as information cascades. J. Polit. Econ. 100 (5), 992–1026.
Bonacich, P., 1987. Power and centrality: a family of measures. Am. J. Sociol. 92 (5),

1170–1182.
DeGroot, M.H., 1974. Reaching a consensus. J. Am. Stat. Assoc. 69 (345), 118–121.
DeMarzo, P., Vayanos, D., Zwiebel, J., 2003. Persuasion bias, social influence, and uni-

dimensional opinions. Q. J. Econ. 118, 909–968.
Doob, J.L., 1994. Measure Theory, number 143. Graduate Texts in Mathematics. Springer,

New York.
Easly, D., Kleinberg, J., 2010. Networks, Crowds and Markets. Cambridge University

Press.
Gale, D., Kariv, S., 2003. Bayesian learning in social networks. Games Econ. Behav. 45,

329–346.
Golub, B., Jackson, M.O., 2010. Naïve learning in social networks and the wisdom of

crowds. Am. Econ. J.: Microecon. 2 (1), 112–149.

Golub, B., Jackson, M.O., 2012. How homophily affects the speed of learning and best-
response dynamics. Q. J. Econ. 127 (3), 1287–1338.

Heidergott, B., Hordijk, A., van Uitert, M., 2007. Series expansions for finite-state Markov
chains. Probab. Eng. Inform. Sci. 21 (3), 381–400.

Jackson, M.O., 2010. Social and Economic Networks, 2nd ed. Princeton University Press.
Jarrow, R., Kchia, Y., Protter, P., 2011. How to detect an asset bubble. SIAM J. Finan.

Math. 2, 839–865.
Katz, L., 1953. A new status index derived from derived from sociometric analysis.

Psychometrika 18 (1), 39–43.
Kemeny, J.G., Snell, J.L., 1983. Finite Markov Chains: With a New Appendix,

Generalization of a Fundamental Matrix. Springer.
Perkins, P., 2008. A necessary and sufficient condition for consensus over random net-

works. IEEE Trans. Autom. Control 3, 791–7953.
Seneta, E., 1981. Non-negative Matrices and Markov Chains, 2nd ed. Springer-Verlag.
Surowiecki, J., 2005. The Wisdom of Crowds: Why the Many Are Smarter Than the Few

and How Collective Wisdom Shapes Business, Economies, Societies and Nations, 1st
ed. Anchor Books.

Tahbaz-Salehi, A., Jadbabaie, A., 2008. A necessary and sufficient condition for consensus
over random networks. IEEE Trans. Autom. Control 3 (53), 791–795.

Welch, I., 1992. Sequential sales, learning and cascades. J. Finan. 47 (2), 695–732.

J.-P. Huang et al. Social Networks 58 (2019) 1–11

11

http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0005
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0005
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0010
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0015
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0020
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0020
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0025
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0025
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0030
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0035
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0035
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0040
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0040
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0045
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0045
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0050
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0050
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0055
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0055
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0060
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0060
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0065
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0065
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0070
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0075
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0075
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0080
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0080
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0085
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0085
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0090
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0090
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0095
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0100
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0100
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0100
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0105
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0105
http://refhub.elsevier.com/S0378-8733(18)30092-3/sbref0110

	Naïve learning in social networks with random communication
	Introduction
	DeGroot model of social learning
	Randomization approach of social learning
	Reaching a consensus
	Wisdom of crowds revisited
	Superposition versus randomization
	Conclusion
	Proof of Theorem 1
	Proof of Corollary 1
	Perturbation analysis under superposition
	References




