
VU Research Portal

Ranking nodes in general networks

Berkhout, Joost; Heidergott, Bernd F.

published in
Discrete Event Dynamic Systems
2018

DOI (link to publisher)
10.1007/s10626-017-0248-7

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Berkhout, J., & Heidergott, B. F. (2018). Ranking nodes in general networks: a Markov multi-chain approach.
Discrete Event Dynamic Systems, 28(1), 3-33. https://doi.org/10.1007/s10626-017-0248-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Mar. 2024

https://doi.org/10.1007/s10626-017-0248-7
https://research.vu.nl/en/publications/d68893c7-af7e-426b-b7a3-17600f52b3a0
https://doi.org/10.1007/s10626-017-0248-7


Discrete Event Dyn Syst (2018) 28:3–33
DOI 10.1007/s10626-017-0248-7

Ranking nodes in general networks: a Markov
multi-chain approach

Joost Berkhout1 ·Bernd F. Heidergott2

Received: 28 September 2016 / Accepted: 31 March 2017 / Published online: 27 May 2017
© Springer Science+Business Media New York 2017

Abstract The basis of Google’s acclaimed PageRank is an artificial mixing of the Markov
chain representing the connectivity structure of the network under study with a maximally
connected network where every node is connected to every other node. The rate with which
the original network is mixed with the strongly connected one is called damping factor.
The choice of the damping factor can influence the ranking of the nodes. As we show in
this paper, the ranks of transient nodes, i.e., nodes not belonging to a strongly connected
component without outgoing links in the original network, tend to zero as the damping
factor increases. In this paper we develop a new methodology for obtaining a meaningful
ranking of nodes without having to resort to mixing the network with an artificial one. Our
new ranking relies on an adjusted definition of the ergodic projector of the Markov chain
representing the original network. We will show how the new ergodic projector leads to
a more structural way of ranking (transient) nodes. Numerical examples are provided to
illustrate the impact of this new ranking approach.
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1 Introduction

Google’s PageRank was developed in 1998 (Brin and Page 1998) to provide a ranking of
webpages in terms of importance based on the underlying hyperlink-network of the web.
The success of the PageRank algorithm in Google’s search engine, its simplicity, the gener-
ality of the mathematics, its uniqueness and guaranteed existence are features that ensured
that PageRank is nowadays widely used in a variety of other application areas, includ-
ing in social and behavioral science, economics, marketing, biology and security. For a
recent review concerning PageRank and its applications see Gleich (2015), other reviews
are (Berkhin 2005; Franceschet 2011; Langville and Meyer 2004; Bianchini et al. 2005).
Google’s PageRank is an eigenvector method, for a survey of this type of methods in
the light of the web see (Langville and Meyer 2005). From an even broader perspective,
Google’s PageRank falls into the class of centrality measures for networks, for a recent
mathematical classification see Boldi and Vigna (2014).

PageRank on a general network can be explained via the so-called random surfer model.
In this model a random surfer randomly chooses an available edge at her current location
and moves to the connected node. At arrival she again chooses a new node based on the
available edges and continues moving towards the new node, and so forth. Most real-life
networks are not connected, e.g., the internet web as was shown in Broder et al. (2000).
In order to make a ranking over all nodes possible for reducible networks, PageRank has
been extended so as to model a bored random surfer on the network: before choosing a new
node to move to, she flips a d-coin; with probability d she randomly moves to a new node
based on the network structure, and with probability 1 − d she jumps (possibly random)
to a page independent of her current location. The probability d is an input parameter of
the PageRank algorithm and is called damping factor. The resetting of the random search
as modeled by the damping factor can be interpreted as model for the behavior of a typical
human internet-surfer who “gets bored” and abandons her search.

A well known problem of Google’s PageRank is that the choice of d may highly effect
the ranking and computational performance, see, for example, (Langville and Meyer 2011).
A choice of d near 1 places much greater emphasis on the network structure and therefore,
perhaps, gives a “truer” ranking. On the other hand, a value of d near 1 gives in to the conver-
gence speed of the power method often used for computation as observed in (Avrachenkov
et al. 2008; Langville and Meyer 2003). Moreover, sensitivity issues may arise when d is
large, which means that the PageRank scores becomes more and more sensitive to small
changes in P , for more details see Section 4.4 in Langville and Meyer (2003). In general,
the choice of d affects the resulting ranking, (Bressan and Peserico 2010; Fu et al. 2006),
especially on the subtop of the ranked nodes which by the implementation of PageRank in
Google’s search engine may have significant consequences, see also (Langville and Meyer
2003). As comes forward in Gleich (2015), choosing appropriate values for d allows for
tailoring Google’s PageRank to particular application areas. However, how to choose the
factor in general remains an open question.

In this paper, the focus is on the unclear score trade-off made between certain type of
nodes based on the network structure when choosing d in Google’s PageRank. Arguable
important nodes of transient nature can get little score when choosing d inaccurate as was
also observed in, e.g., (Avrachenkov and Litvak 2006; Boldi et al. 2005, 2009). Nodes of
transient nature are common in real-life data, e.g., in the web network as shown in Broder
et al. (2000) and voting networks such as for the Wikipedia example from Berkhout (2016).
To the best of our knowledge, this structural dependency is underexposed in Google’s
PageRank literature.
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Focusing on the network structure, this paper proposes a random-surfer-based rank-
ing that does not depend on a user-dependent non-transparent factor that is critical. Our
approach can be described in a nutshell as follows. First, rankings are obtained for tran-
sient nodes (transient states in Markov chain terms), and non-transient strongly connected
components (in short s.c.c. or ergodic classes in Markov chain terms), separately. These
rankings are based on the scores obtained from the newly introduced extended ergodic pro-
jector. Then, via a majority principle, these rankings can be combined to obtain a ranking
over the whole network. Alternatively, personalized rankings can be efficiently computed
via the extended ergodic projector.

This paper is the extended version of the conference paper (Berkhout 2016), and results
are proved in this paper more rigorously and statements are richer. In addition, new results
on the impact of the damping factor in Google’s PageRank are provided and the con-
cept of extended ergodic projector from Berkhout (2016) is generalized, which allows a
more careful score transfer from transient nodes to non-transient nodes (in Markov chain
terms ‘transient states’ and ‘ergodic states’, respectively). Furthermore, the paper reports on
applications of our new ranking concept to a real-life network.

This paper is organized as follows. The mathematical details of Google’s PageRank and
Markov multi-chains are discussed in Section 2. After analyzing the impact of the damp-
ing factor in Google’s PageRank, the Generalized Ranking is introduced in Section 3. In
that same section the Generalized Ranking is analyzed. A real-life numerical example is
presented in Section 4 which illustrates the practical impact. Section 5 concludes the paper.

2 Preliminaries on Google’s PageRank and Markov multi-chains

General networks can typically be modeled as directed graphs with weighted edges. In
particular, let G = (V ,E) describe a directed graph with finite vertex set V and edge set
E ⊆ V × V . By convention, |V | = n and |E| = m (where |A| indicates the cardinality of
a set A). All edges are weighted by a positive function w based on the underlying network
dynamics1, i.e., w : E → (0, ∞). An edge e = (i, j) means that there is a directed relation
from i to j and the relation-strength described by weight w(e). E.g., in a social network
w(i, j) > w(i, k) might imply that social agent i is more engaged with agent j than with
agent k. In the definition of PageRank in Berkhout (2016) it holds that w(e) = 1 for all
e ∈ E, meaning that the analysis here is more general.

The location of a random surfer2 on the graph-modeled-network will be described by a
discrete-time Markov chain (Xt : t = 0, 1, 2, . . . ) on state space V . Particularly, Xt ∈ V is
the location of the random surfer at time t . Write P as the transition matrix of the Markov
chain of which the (i, j)-th element is given by

P(i, j) = w(i, j)
∑

(i,k)∈E w(i, k)
, for all (i, j) ∈ E,

and P(i, j) = 0 for all (i, j) /∈ E. In case
∑

j∈V P (i, j) = 0, i.e., the so-called ‘dangling’
node i has no directed edges towards other nodes, we set P(i, i) = 1 as the authors believe

1Positivity of w is needed for the row normalization later on. Possibly a scaling is required to make the
weights positive in practical applications.
2The term random walk also applies, but since the ranking is inspired by Google’s
PageRank we will use their concept of random surfer.
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that this adjustment, to ensure that P is a stochastic matrix, leads to an interpretation most
close to that of a random surfer on the original network structure. Alternatively one might
replace the i-th row of P with v�, where v represents some preference of the random
surfer on the nodes, or a uniform distribution. Another option is to direct all dangling nodes
towards an artificial node, i.e., making all dangling nodes transient of nature. For an analysis
of the different approaches of dealing with dangling nodes see (Bianchini et al. 2005). We
would like to emphasize that the analysis in this paper does not depend on the particular
choice of how to deal with dangling nodes. In any case, networks remain reducible and all
arguments regarding dangling nodes still apply to connected groups of nodes without any
outgoing edges. For example, two connected nodes without any outgoing links suffer from
the same problem as dangling nodes; a random surfer might get stuck inside this component
in the long-run.

The t-step transition probabilities are given by P t = P t−1P , for t ∈ N, in which

(P t )(i, j) = Pr(Xt = j | X0 = i), for all (i, j) ∈ V × V.

Let us assume for simplicity that Markov chain (Xt : t = 0, 1, 2, . . . ) is aperiodic, else,
without affecting the results too much, mix P with a small proportion of the identify matrix
I . The so-called ergodic projector �P is obtained via

�P = lim
t→∞ P t , (1)

and its (i, j)-th element, i.e., �P (i, j), describes the long-term probability that the random
surfer can be found in node j ∈ V when starting in node i ∈ V . It is known, see for example
(Aldous and Fill 2002), that irreducibility together with aperiodicty of the Markov chain
implies that all rows of �P are equal to the unique stationary distribution π�

P that can be
solved from

π�
P P = π�

P , and π�
P 1̄ = 1, (2)

where 1̄ is a column vector with n ones.
Google’s PageRank (Brin and Page 1998) modifies the transition matrix P so that the

Markov chain is guaranteed to be irreducible and thus is known to have a unique stationary
distribution. To that end, PageRank considers a bored random surfer that at each discrete
time step gets bored with probability 1 − d, with d ∈ [0, 1). Once bored the random surfer
randomly selects a new node from the network according to some personalization vector
v where we assume that v is stochastic, i.e., v is a probability vector on V . Specifically,
PageRank constructs this irreducible transition matrix Pd out of P via

Pd := Pd(v) = dP + (1 − d)1̄v�, (3)

where d ∈ [0, 1), and v is a stochastic vector. By construction, Pd for d ∈ [0, 1) is irre-
ducible and has a unique stationary distribution π�

Pd
. Initially, the founders of Google’s

PageRank suggested a uniform stochastic vector for v. Later this was relaxed to general
stochastic vectors to allow for more flexibility. As noted in (Langville and Meyer 2005), the
choice of v does not affect the mathematical nor computational aspects, but it does alter the
ranking in a predictable way. In particular, via v the user can discriminate between nodes
in the network. This can be used, e.g., to control spamming on the internet which is the
result of users setting up dummy websites to fool the ranking mechanisms and purposefully
increase the ranking of certain websites, see also (Langville and Meyer 2003). Once the
dummy websites are uncovered, the corresponding values in v can be made small to dimin-
ish their impact. Moreover, based on the interest of a particular user, the weights in v can be
shifted to ensure a personalized ranking.



Discrete Event Dyn Syst (2018) 28:3–33 7

In contrast to PageRank we do not consider a bored random surfer, i.e., the transition
matrix P is not modified so that the Markov chain may fail to be irreducible and has no
unique stationary distribution satisfying (2). An aperiodic reducible Markov chain with mul-
tiple closed sets of communicating states, in short ergodic classes, and possible transient
states will be called a Markov multi-chain. Without losing on generality, after relabeling
the states, P and �P of a Markov multi-chain can be rewritten in the following canonical
forms, respectively

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P1 0 0 · · · 0
0 P2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 PE 0
PT 1 PT 2 · · · PT E PT T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and �P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

�1 0 0 · · · 0
0 �2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 �E 0
R1 R2 · · · RE 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where E is the number of ergodic classes. For the i-th ergodic class, Pi gives the one step
transition probabilities between ergodic states from the i-th ergodic class, PT i gives the one
step probabilities from transient states towards ergodic states from ergodic class i, and �i

gives a square matrix of which all rows equal the unique stationary distribution of the chain
inside the i-th ergodic class, i.e., all rows in �Pi

equal π�
Pi

which is the unique distribution

satisfying π�
Pi

Pi = π�
Pi
. In the canonical form of �P , Ri(j, k) gives the equilibrium prob-

ability of visiting ergodic state k (which is part of the i-th ergodic class) when starting in
transient state j . It holds, see, e.g., (Berkhout and Heidergott 2014), that

Ri = (I − PT T )−1PT i 1̄π
�
Pi

,

where I is an appropriate sized identity matrix, and 1̄ is an appropriate sized vector of ones
(of size equal to the number of states in ergodic class i). If a Markov multi-chain P is known
to start with a fixed initial distribution μ�, then the unique stationary distribution of the
system becomes μ��P .

Via the following diagonal criterion from (Berkhout and Heidergott 2015) one can clas-
sify a state via the diagonal elements of �P : When �P (i, i) > 0 state i is an ergodic state
else state i is transient. Based on the nature of the corresponding states, i.e., transient or
ergodic, we subdivide all nodes from V into two sets. Set VT denotes the set of all ‘transient’
nodes, i.e.,

VT = {i ∈ V : �P (i, i) = 0},
and similarly, VE denotes the set of all ‘ergodic’ nodes, i.e., VE = V \ VT . Using this
notation the number of transient (ergodic) states based on graph G is |VT | (|VE |).

The alternative page ranking builds on the deviation matrix, where the deviation matrix
DP of P is given by

DP =
∞∑

t=0

(P t − �P ), (5)

or alternatively
DP = (I − P + �P )−1 − �P ,

Existence ofDP is guaranteed for finite-state aperiodicMarkov chains, see (Heidergott et al.
2007) for a proof. It holds that DP +�P equals the fundamental matrix, (Kemeny and Snell
1976). As was observed in (Meyer 1975), wherever the fundamental matrix appears it can
be directly replaced by DP . Furthermore, the deviation matrix is known as the group inverse
of I − P in the literature (Meyer 1975; 1982). In (Meyer 1975) (Section 5) it is shown
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that the computation of DP can be done efficiently without knowing �P in advance in case
of aperiodic and irreducible Markov chains; see also (Xia and Glynn 2016) for a recent
paper.

Denote the transient part of DP by DPT T
. Then it follows from Eq. 5 that

DPT T
=

∞∑

t=0

((PT T )t − �PT T︸ ︷︷ ︸
=0

) =
∞∑

t=0

(PT T )t = (I − PT T )−1, (6)

where we used that �PT T
= 0 by the transient nature, see also Eq. 4. Note that all elements

of DPT T
are non-negative since all elements of (PT T )t for t = 0, 1, 2, . . . are non-negative.

A probabilistic interpretation for DPT T
is as follows: for transient states i and j , DPT T

(i, j)

is the expected total number of times that the process visits state j when starting in state i.
For details see (Kemeny and Snell 1976).

The goal of analyzing the long-term behavior of a random surfer is to score the nodes
such that a ranking can be obtained. We will now formalize how - based on a general score
vector π - one can obtain a ranking. Let π[i] denote the i-th order statistic (in descending
order) of score vector π . Then the j -th element of ranking r(π), denoted by rj (π), is given
through π by

rj (π) = i ⇔ π(i) = π[j ], j ∈ V,

where we assume that ties are arbitrarily broken. Specifically for Google’s PageRank (GP)
it holds

rGP := r(πPd(v)),

with Pd(v) as in Eq. 3, i.e., rGP is a function of P , d and v.

3 Generalized ranking

Before introducing the extension of the Generalized Ranking from (Berkhout 2016) we will
first discuss the shortcomings of Google’s PageRank in more detail by analyzing the impact
of damping factor d.

3.1 Analysis of Google’s PageRank

The following proposition provides a new perspective on Google’s PageRank. It essentially
follows from Theorem 3.1 in (Berkhout 2016) but with a different focus. It will be used to
uncover some properties of Google’s PageRank and to relate it later-on to the new ranking.
Moreover, in contrast to what was stated in (Berkhout 2016) it is not necessary that all
elements in the personalization vector v are greater than zero.

Proposition 1 For Google’s PageRank’s Pd(v) as defined in Eq. 3, with v a stochastic
vector and d ∈ [0, 1), it holds that the ergodic projector is equal to

�Pd(v) = 1̄v�
E[P X1−d ] = 1̄v�(1 − d)

∞∑

t=0

dtP t , (7)

where X1−d is a geometrically distributed random variable with success parameter 1 − d.

Proof Using that the rows of Pd(v) sum up to one shows that

(dP + (1 − d)1̄v�)1̄v� = 1̄v�,
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and thus it holds for finite t ∈ N that

(Pd)t = (dP )t + (1 − d)1̄v�
t−1∑

i=0

(dP )i .

Letting in the previous equation t → ∞ gives for d ∈ [0, 1)

�Pd
= lim

t→∞(Pd)t = 1̄v�(1 − d)

∞∑

i=0

(dP )i,

which can be rewritten using the definition of X1−d .

Equation 7 shows that �Pd
has equal rows. In words: the stationary distribution is equal

for every initial state, i.e., ultimately the chain will reach the unique ergodic class with a
unique stationary distribution. Equality of rows of an ergodic projector is a fundamental
property of a Markov uni-chain which leads to the following corollary.

Corollary 1 The Markov chain with Pd has only one ergodic class and possibly transient
states for all d ∈ [0, 1).

It follows from Eq. 7 that Google’s PageRank can be written in terms of the so-called
resolvent from (Kartashov 1996) with discounting factor d. Particularly, the resolvent of P

as defined in (Kartashov 1996) is

(1 − d)

∞∑

k=0

(dP )k.

The resolvent of P can be rewritten as E[P X1−d ], which via (1) intuitively explains the
following limit property

lim
d↑1(1 − d)

∞∑

k=0

(dP )k = �P ,

for a formal proof see (Kartashov 1996). Inserting this limit result into Eq. 7 yields

lim
d↑1 �Pd

= 1̄v��P , (8)

which shows by the canonical form of �P for Markov multi-chains, see Eq. 4, that transient
states do not receive any score in this extreme case with respect to d ∈ [0, 1). For the other
extreme case regarding d ∈ [0, 1) it directly follows from Eq. 7 that

for d = 0 : �Pd
= 1̄v�,

i.e., the scores are completely based on personalization vector v (and independent of P ).
A value for d commonly recommended in the literature is d = 0.85, which originates

from (Brin and Page 1998). As noticed in (Langville and Meyer 2011), this seems to be
a “workable compromise between efficiency and effectiveness”; taking a large fraction of
the underlying network into account as well as providing a reasonable convergence rate for
computation with the power method. However, (Gleich 2015) shows that different instances
require different values for d to ensure an effective analysis with Google’s PageRank. In
(Avrachenkov et al. 2008) perturbation analysis was used to study the choice for d which
satisfies certain fairness criterion. In particular, backed by a numerical study, the authors
argue that a value of d approximately equal to 1/2 can mitigate the score trade-off issues
for certain instances, such as for the web and other large networks. A similar value of d =
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1/2 was recommended in (Bressan and Peserico 2010) for certain type of applications.
Moreover, in (Bressan and Peserico 2010) it is shown that a graph exists for which the top
k nodes assume all possible k! orderings as the damping factor varies in an arbitrarily small
interval, (e.g., [0.85 − ε, 0.85 + ε] for a ε > 0). Although being an academic theoretical
graph, it shows that d can have significant impact.

The following example illustrates that a fixed choice of d may lead to unsatisfactory
rankings and, moreover, it illustrates the impact of the choice for d.

Example 1 Consider the following graph G = (V ,E) consisting of n = 5 nodes:

and for whichw(e) = 1 for all e ∈ E. Since node 1 is a dangling node, i.e.,
∑

j∈V P (1, j) =
0, we set P(1, 1) = 1. For personalization vector

v = [1 1 1 1 1]�/5

this leads to

P =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1
4 0 1

4
1
4

1
4

0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

and Pd(v) =

⎡

⎢
⎢
⎢
⎢
⎣

1+4d
5

1−d
5

1−d
5

1−d
5

1−d
5

4+d
20

1−d
5

4+d
20

4+d
20

4+d
20

1−d
5

1+4d
5

1−d
5

1−d
5

1−d
5

1−d
5

1+4d
5

1−d
5

1−d
5

1−d
5

1−d
5

1+4d
5

1−d
5

1−d
5

1−d
5

⎤

⎥
⎥
⎥
⎥
⎦

.

It holds for d ∈ [0, 1) that
π�

Pd(v) =
[

4+d

5(4−3d2)
4+8d−12d2

5(4−3d2)
(1−d)(4+d)

5(4−3d2)
(1−d)(4+d)

5(4−3d2)
(1−d)(4+d)

5(4−3d2)

]
,

which is plotted in Fig. 1.
Figure 1 shows that increasing d ultimately leads to less mass for the transient states

compared to the ergodic state. Furthermore, it illustrates that different values of d lead to
different rankings. In particular, for d ∈ (0.6, 1] state 1 is ranked first while intuitively
looking at the in-degrees, state 2 is the authority and should be ranked first.

Although Example 1 is simple, the principle findings can be generalized to more real-
istic graphs. The key observation is that in choosing d a trade-off is made between the
relative importance of the different classes of the reducible Markov multi-chain, a fea-
ture that best to the author’s knowledge is underexposed in Google’s PageRank literature.
Even though no perfect ranking exists as was proven by Arrow’s impossibility theorem,
(Langville and Meyer 2012), we believe that taking the Markov chain structure into account
leads to intuitively better rankings.

For now let us focus on the fraction of the total score awarded by Google’s PageRank
to transient states. Denote this d-dependent fraction (Fr) of the total score by FrGP(d) and
assume that v = 1̄/n, i.e., v is a uniform stochastic vector. It follows from Proposition 1 that

FrGP(d) = 1 − d

n
1̄�

∞∑

t=0

dt (PT T )t 1̄, (9)
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Fig. 1 Plot of π�
Pd (v), d ∈ [0, 1], for Example 1 in case v is a uniform stochastic vector

where 1̄ denotes an appropriate sized column vector of ones, i.e., in this case of size |VT |,
and recall that PT T denotes the transient part of P (see also (4)). The following proposition
explores properties regarding FrGP(d) from Eq. 9.

Proposition 2 For v = 1̄/n it holds that

(i) FrGP(0) =
|VT |
n

(ii) limd↑1 FrGP(d) = 0
(iii) ∀d ∈ [0, 1) : FrGP′(d) < 0
(iv) ∀d ∈ [0, 1) : FrGP′′(d) ≤ 0
(v) ∀d ∈ [0, 1) : FrGP(d) ≥ (1−d)|VT |

n
,

where Fr′GP(d) and Fr′′GP(d) denote the first and second order derivatives of FrGP(d) w.r.t.
d, respectively.

Proof Part (i) follows immediately from the definition in Eq. 9 by noting that

1̄�(PT T )01̄ = 1̄�1̄ = |VT |,
and (ii) is a consequence of the analysis regarding (8) (recall that �PT T

= 0).
To prove part (iii) one shows that

Fr′GP(d) = 1 − d

n

∞∑

t=1

(

t − d

1 − d

)

dt−1at − |VT |
n

, (10)

where we defined the sequence (an)
∞
n=0 given by

at = 1̄�(PT T )t 1̄, t ≥ 0.

Note that a0 = |VT | and by the transient nature it holds that a0 > at for all t ∈ N. Moreover,
it holds that

at+1 ≤ at , ∀t ∈ N (11)
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which follows by rewriting at+1 = 1̄�(PT T )tPT T 1̄ and observing that all elements of non-
negative vector PT T 1̄ are ≤ 1 and that there exists at least on element < 1, else it would
violate its transient nature.

Using these properties we will prove (iii) by showing that the first term on the right hand
side of Eq. 10 can be bounded from above by |VT |/n. In particular, splitting the infinity
sum at

t� =
⌊

d

1 − d

⌋

,

where x� is the largest integer less than or equal to x (note that t� ≥ 0 for d ∈ [0, 1)), gives
for the first term on the right hand side of (10)

1 − d

n

∞∑

t=1

(

t − d

1 − d

)

dt−1at

= 1 − d

n

⎛

⎝
t�∑

t1=1

(

t1 − d

1 − d

)

dt1−1at1 +
∞∑

t2=t�+1

(

t2 − d

1 − d

)

dt2−1at2

⎞

⎠ (12)

of which all terms of the first summation are non-positive and those of the second sum-
mation non-negative. Using property (11), this enables us to bound the terms of the first
summation as

(

t1 − d

1 − d

)

dt1−1at1 ≤
(

t1 − d

1 − d

)

dt1−1at�+1, for t1 = 1, 2, . . . , t�,

and similar for the second summation terms
(

t2 − d

1 − d

)

dt2−1at2 ≤
(

t2 − d

1 − d

)

dt2−1at�+1,

for t2 = t� + 1, t� + 2, . . . , ∞. Applying these upperbounds for the summation terms in
Eq. 12 leads to

1 − d

n

∞∑

t=1

(

t − d

1 − d

)

dt−1at ≤ (1 − d)at�+1

n

∞∑

t=1

(

t − d

1 − d

)

dt−1

= (1 − d)at�+1

n

⎛

⎝
∞∑

t1=1

t1d
t1−1 −

∞∑

t2=1

d

1 − d
dt2−1

⎞

⎠

= (1 − d)at�+1

n

(
1

(1 − d)2
− d

(1 − d)2

)

= at�+1

n

<
|VT |
n

,

where we used after some standard calculus arguments in the last bound that at�+1 < a0 =
|VT |, which proves via (10) part (iii).
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Regarding part (iv) it follows from Eq. 10 that the second order derivative Fr′′GP(d) equals

Fr′′GP(d) = −1

n

∞∑

t=1

(

t − d

1 − d

)

dt−1at

+1 − d

n

∞∑

t=1

(

t (t − 1) − d2

(1 − d)2
− td

1 − d

)

dt−2at

= 1 − d

n

∞∑

t=1

dt−2at

(

t (t − 1) − 2dt

1 − d

)

,

similar as for the first order derivative, splitting the last summation at t� =
⌊
1+d
1−d

⌋
reveals

that we can bound Fr′′GP(d) via

Fr′′GP(d) ≤ (1 − d)at�+1

n

∞∑

t=1

dt−2
(

t (t − 1) − 2dt

1 − d

)

,

which, using standard calculus arguments, can be rewritten as

Fr′′GP(d) ≤ (1 − d)at�+1

n

⎛

⎝
∞∑

t1=1

dt1−2t1(t1 − 1) − 2

1 − d

∞∑

t2=1

t2d
t2−1

⎞

⎠

= (1 − d)at�+1

n

(
2

(1 − d)3
− 2

1 − d

1

(1 − d)2

)

= 0

which shows that Fr′′GP(d) ≤ 0.
For part (v) note that PT T ≥ 0 (where 0 indicates a |VT | × |VT | zeros matrix) implies

via (9) that

FrGP(d) ≥ 1 − d

n
a0 = (1 − d)|VT |

n
.

Remark 1 Since all elements of PT T are ≥ 0 it can be concluded from (9) that

d ∈ (0, 1) : FrGP(d) = (1 − d)|VT |
n

if and only if PT T = 0,

with 0 an appropriate sized matrix of zeros.

As a consequence of Proposition 2, it holds in general for any d ∈ [0, 1) that
(1 − d)|VT |

n
≤ FrGP(d) ≤ |VT |

n
, (13)

which also means that FrGP(d) ∈ (0, |VT |/n] for all d ∈ [0, 1). These insights regarding
FrGP(d) are illustrated in Fig. 2 specifically. In Fig. 2, for different instances with same n

and |VT | the values for FrGP(d) are plotted for d ∈ [0, 1). The range for FrGP(d) dictated
by (13) is marked with the gray area, and furthermore, all graphs of FrGP(d) are decreasing
throughout interval d ∈ [0, 1). Moreover, due to Proposition 2 (iv), the derivative of FrGP(d)

does not increase for increasing d ∈ [0, 1).
Figure 2 illustrates that the fraction of score awarded to transient states strongly depends

on the choice of d ∈ [0, 1), i.e., a user implicitly has to trade-off the score distribution over
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Fig. 2 For all instances with n nodes of which |VT | are of transient nature, the graph for FrGP(d) lies in the
gray area and is decreasing for d ∈ [0, 1)

transient and ergodic states. In particular, Fig. 2 uncovers that certain instances in combi-
nation with a relative large value of d tend to be very sensitive with respect to the specific
choice of d, i.e., a small shift in d may lead to a completely different score distribution over
the transient and ergodic states. This is basically in line with the observations in (Bressan
and Peserico 2010) regarding the volatility of the rankings for certain instances. So in con-
clusion, as the type of instance is generally unknown beforehand, any general advice for
a fixed d is unsatisfactory regarding the score distribution between transient and ergodic
states.

A minimal example illustrating Fig. 2 is the following graph where the edges are labeled
with the transition probabilities of the random surfer.

So the corresponding θ -dependent transition matrix, denoted by Pθ , equals

Pθ =
[

1 0
1 − θ θ

]

. (14)

In Fig. 3, FrGP(d) is plotted for Pθ with varying values for θ . Note that FrGP(d) equals the
second element in vector π�

Pd(u) with P = Pθ in this simple example of size n = 2. For
each choice of θ , Pθ represents a different ‘instance’.

The example from Fig. 3 shows that when θ becomes larger, line FrGP(d) for d ∈ [0, 1)
approaches the right angle starting in coordinate (0,0.5) then to (1,0.5) and ending in (1,0).
In other words, for relative large θ , the fraction of score awarded to transient states approx-
imately equals |VT |/n = 1/2 for d ∈ [0, d0], where d0 approaches 1 for increasing θ . For
d > d0 the fraction falls rapidly and thus leads to extra sensitivity issues.

3.2 Motivation and developments of revised generalized ranking

The problem of the choice of damping factor d in Google’s PageRank was addressed in
(Berkhout 2016) by focusing on the network structure. Via the introduction of the so-called
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Fig. 3 Plots of FrGP(d) with P = Pθ as given in Eq. 14 for varying θ

extended ergodic projector this lead to the Generalized Ranking (GR) in (Berkhout 2016).
We will first discuss the philosophies behind GR and sketch how these are incorporated into
GR. Subsequently a shortcoming of GR is identified, and eventually a generalized version
of the extended ergodic projector is introduced that leads to a refined version of GR that
addresses this shortcoming.

The key philosophy of GR is the following:

Keep the underlying network structure in tact.

This means that in contrast to Google’s PageRank Pd(v) for d ∈ (0, 1), no modifications
are made to P . Generally, this leads to a Markov multi-chain described by P as in Eq. 4.

The idea behind GR can be explained as follows. Each state gets initially a share of the
total score (which equals 1) according to v. Based on the network structure, all these ‘initial
scores’ are redistributed over reachable states. E.g., state i can redistribute v(i) score.

The initial scores of all ergodic states inside an ergodic class are redistributed accord-
ing to the location of a random surfer in the long-term. This is in line with the following
philosophy:

The most intuitive way to obtain rankings inside an ergodic class is to analyze the
long-term location of a random surfer.

Regarding transient states a different randomsurfer philosophy is adopted sinceby thevery
nature of transient states, the unmodified random surfer approach is inadequate, see also the
zerosmatrix in the transient part of�P in Eq. 4. Particularly, per transient state the following,
random surfer inspired, philosophy is adopted to obtain scores for transient states:

A transient state is more important when the random surfer visits this particular state
relatively more often (compared to other transient states) before leaving the transient
part.

Using the information of deviation matrix DP this philosophy can be implemented. Par-
ticularly, per transient state i, element (i, j) of DPT T

gives the expected number of visits
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to transient state j when starting in i. Normalizing this vector gives a ranking per transient
state. For more details regarding the deviation matrix see Section 2.

As transient states lead to ergodic states a score transfer from the transient part to
the ergodic part is appropriate. Regarding this the following philosophy was adopted in
(Berkhout 2016):

Score should be transfered from the transient states to directly reachable ergodic
states. Moreover, the amount of score that is transfered should be negatively corre-
lated with the stay duration inside the transient part before moving to the ergodic
part.

The implementation of this philosophy in the extended ergodic projector circumvents the
opaque choice of d ∈ [0, 1). In other words, the score trade-off between transient and
ergodic states is solely based on the network structure. Note that DPT T

contains information
about the stay duration of the random surfer inside the transient part.

After all states have redistributed their initial scores, the final ranking can be based on the
end scores. In case v = 1̄/n, i.e., a uniform stochastic vector, a democracy principle applies
as each state gets an equal ‘vote’ (initial score) that can be divided over different states. This
way larger connected components have more ‘voting power’/authority in the score division
that leads to the ranking.

In this paper, GR from (Berkhout 2016), with the principles as discussed above, is
improved to ensure a more subtle ranking. In particular, the improvement ensures that score-
mass not only flows from the transient part to particular ergodic states (that can be reached
directly from transient states), but to the complete ergodic class to which that ergodic state
belongs to. This way, the increase in importance of an ergodic state due to its ‘popular-
ity’ among transient states has also an effect for other states in the particular ergodic class.
The following example illustrates this shortcoming of GR from (Berkhout 2016) that the
improved version of GR from this paper overcomes.

Example 2 Consider the following example represented by graph G = (V ,E) consisting
of n = 8 nodes of which nodes 1, 2 and 3 constitute a single ergodic class and nodes 4, 5,
6, 7 and 8 are transient (i.e., E = 1, |VE | = 3 and |VT | = 5).

We assume that w(e) = 1 for all e ∈ E so that the corresponding transition matrix equals

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)



Discrete Event Dyn Syst (2018) 28:3–33 17

Calculating the extended ergodic projector �̃P from (Berkhout 2016) (more details will
follow later on) and averaging over the rows give the following ranking (with most important
node first)

(1; 0.4375), ({2, 3}; 0.125), ({4, 5, . . . , 8}; 0.0625),

where in (i; x), i denotes the node and x its score, where nodes in curly brackets {· · · }
obtained the same score. Obviously node 1 is the ‘star’ in this network, so this justifies to
rank node 2 above node 3 as node 2 is directly pointed to by ‘star’-node 1. This effect does
not come forward in the extended ergodic projector from (Berkhout 2016).

In order to ensure a more subtle score transfer from transient states to ergodic states we
adopt the following philosophy:

Score from the transient part received by an ergodic state should be shared on a
discounted way with other states of the corresponding ergodic class according to the
network structure.

This is reasonable since the ergodic states to which the ergodic state points to are part
of the reason why she is ‘popular’ among transient states. Moreover, an ergodic state can
in turn also obtain extra mass in a similar way. However, a significant discounting should
apply to the score division where ‘further away’ states should receive a lower share.

In the following, we redefine the extended ergodic projector so that the above philosophy
is adopted. Letting

Q =

⎡

⎢
⎢
⎢
⎢
⎣

P1 0 · · · 0

0 P2
. . .

...
...

. . .
. . . 0

0 · · · 0 PE

⎤

⎥
⎥
⎥
⎥
⎦

,

i.e., Q is the ‘ergodic’ part of transition matrix P in Eq. 4, define for k ∈ N

Wk = DPT T
[PT 1 PT 2 · · · PT E ]Qk,

or alternatively after rewriting DPT T

Wk =
∞∑

t=0

(PT T )t [PT 1 PT 2 · · · PT E ]Qk,

where the (i, j)-th element reads as:

Wk(i, j) = the probability that a random surfer, when starting from transient state i,
reaches ergodic state j if it is k discrete-time steps ago that the random surfer left the
transient part,

and where [PT 1 PT 2 · · · PT E ] denotes the |VT | × |VE | matrix as given in the canonical
form of P in Eq. 4. For γ ∈ [0, 1), let

W(γ ) = (1 − γ )

∞∑

k=0

γ kWk,

or, after inserting Wk ,

W(γ ) = DPT T
[PT 1 PT 2 · · · PT E ](1 − γ )

∞∑

k=0

γ kQk. (16)
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Remark 2 Note that by definition, W from (Berkhout 2016) equals W(0) = W0. Fur-
thermore, since Wk is a stochastic matrix for k = 0, 1, 2, . . . this implies that W(γ ) is a
stochastic matrix.

Using the above definitions, we can now formally introduce the Generalized Ranking
(GR) that satisfies all previously mentioned principles. In the following dg(β) denotes a
zeros matrix with on the diagonal vector β.

Generalized ranking (GR)

Step 1: Uncover the Markov chain structure (i.e., identify ergodic classes and transient
states), and calculate �Q (the ergodic part of �P ) and DPT T

.
Step 2: Choose γ ∈ [0, 1) small and compute W(γ ).
Step 3: Compute the extended ergodic projector

where β is a vector with elements

β(i) = (DPT T
(i, ·)1̄ + 1)−1, for i = 1, 2, . . . , |VT |,
Y = dg(DPT T

1̄)−1DPT T

and

W(γ ) = DPT T
[PT 1 PT 2 · · · PT E ](1 − γ )

∞∑

k=0

γ kQk.

Step 4: Choose personalization vector v and return ranking

rGR := r(v��̃P (γ )).

Remark 3 Note that we may write

�Q =

⎡

⎢
⎢
⎢
⎢
⎣

�1 0 · · · 0

0 �2
. . .

...
...

. . .
. . . 0

0 · · · 0 �E

⎤

⎥
⎥
⎥
⎥
⎦

,

so that

Choosing v = 1̄/n (a uniform stochastic vector) gives the unprejudiced ranking
r(1̄�̃P /n). Alternatively, in case of personalization vector v (entries not necessarily > 0),
ranking r(v��̃P ) prioritizes states from the preferred communicating components of the
network.
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Recall that all elements of DPT T
are non-negative, and moreover, all diagonal elements

ofDPT T
are≥ 1. This ensures that β and Y exist. Furthermore, it shows that Y is a stochastic

matrix. As discussed previously, each row of matrix Y provides scores for a ranking over
the transient states.

Vector β contains the information about the stay duration inside the transient part. In
particular, from the interpretation of DPT T

it follows that value 1/β(i)− 1 = DPT T
1̄ equals

the expected number of steps in the transient part before entering an ergodic state when
starting in transient state i. Since 1 ≤ DPT T

1̄ < ∞, note that

0 < β(i) ≤ 1

2
, for i = 1, 2, . . . , |VT |. (17)

Vector β determines how much score is transfered from the transient part to the ergodic part.
Transient state i awards a fraction β(i) of its initial score v(i) to ergodic states. The divi-
sion of score-share β(i)v(i) over the ergodic states is proportional to the i-th row of W(γ )

denoted by W(γ )(i, ·). The remaining score of (1 − β)v(i) is divided over the transient
states according to Y (i, ·).

One might argue that again a user-dependent value is introduced with γ ∈ [0, 1), bring-
ing us to similar problems as with the choice of damping factor d ∈ [0, 1). However, the
choice for γ has far less consequences than the choice of d. Particularly, the score fraction
appointed to the different ergodic classes and the transient part is fixed in advanced (as we
will formalize in Eq. 18 later on). The effect of γ only applies to the redistribution of score
from the transient part over the ergodic class, to enable more subtle scoring inside ergodic
classes. The main contribution of scores inside ergodic classes however, comes from other
states inside the ergodic class and thus the effect of γ is limited regarding the global scor-
ing. In practice, our advice is to take γ not too small so that only nearby nodes benefit from
the extra popularity of an ergodic state.

In the following we revisit Example 1 to illustrate GR.

Example 1 (Continued) It holds that

DPT T
= (I − PT T )−1 =

⎡

⎢
⎢
⎣

4 1 1 1
4 2 1 1
4 1 2 1
4 1 1 2

⎤

⎥
⎥
⎦ .

We note that DPT T (2, 3) = 1 means that the random surfer is expected to visits transient
state 4 one time before leaving the transient part when starting in transient state 3. Using the
result for DPT T

gives, respectively,

β = [
1
8

1
9

1
9

1
9

]�
,

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4
7

1
7

1
7

1
7

1
2

1
4

1
8

1
8

1
2

1
8

1
4

1
8

1
2

1
8

1
8

1
4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and

W(γ ) = [
1 1 1 1

]�
,
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i.e., W(γ ) is in this simple example independent of γ as the ergodic class is of size 1.
Combining the above leads to

�̃P (γ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1
8

1
2

1
8

1
8

1
8

1
9

4
9

2
9

1
9

1
9

1
9

4
9

1
9

2
9

1
9

1
9

4
9

1
9

1
9

2
9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which leads to the unprejudiced scoring (i.e., with a uniform stochastic vector as v)

1̄�̃P (γ )/4 ≈ [
0.29 0.37 0.11 0.11 0.11

]
,

which leads to ranking 2, 1, {3, 4, 5}, i.e., state 2 is ranked first.

The following illustrates the effect that γ has on the extended ergodic projector in
Example 2.

Example 2 (Continued) Rewriting P as given in (15) in canonical block-form gives

where Q is a 3 × 3 matrix, 0 represents a 3 × 5 zeros matrix, PT 1 a 5 × 3 matrix, and PT T

a 5 × 5 matrix. Since PT T = 0 it holds that

DPT T
= (I − PT T )−1 = I

with I an identify matrix of size 5, which gives β = 1̄/2, Y = I and W = (1− γ )PT 1(I −
γQ)−1 = 1̄

[
1

γ 2+γ+1
γ

γ 2+γ+1
γ 2

γ 2+γ+1

]
. This leads to

The ranking, with the most important state in front, that follows from averaging the rows of
�̃P (γ ) (i.e., v is a uniform stochastic vector) for γ ∈ [0, 1) is

1, 2, 3, {4, 5, . . . , 8},
i.e., it ranks 2 above 3 in contrast to the ranking based on �̃P = �̃P (0) as shown previously.
In particular, the scores for states 1, 2 and 3 are, respectively,

1

8
+ 3

16
· 1

γ 2 + γ + 1
,

1

8
+ 3

16
· γ

γ 2 + γ + 1
,

1

8
+ 3

16
· γ 2

γ 2 + γ + 1
,
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where the scores for transient states 4, 5, . . . , 8 are still 1/16. Note that inserting γ = 0
leads to the same results as previously.

We conclude this subsection with an investigation of properties of the extended ergodic
projector �̃P (γ ).

In light of Proposition 2, it is interesting to analyze fraction FrGR of the total score that
is awarded by GR to transient states. It holds for a general instance with n states of which
|VT | are transient, that this fraction equals

FrGR =
∑|VT |

i=1 (1 − βi)

n
(18)

which shows that it is a fixed fraction independent of γ . Moreover, for each instance with n

nodes of which |VT | of them are transient it holds that

|VT |
2n

≤ FrGR <
|VT |
n

,

where FrGR = |VT |
2n if and only if PT T = 0 (where 0 represents an appropriate sized matrix

of zeros). It can be concluded that FrGR is solely based on the dynamics inside the transient
part of the network.

Remark 4 We may rewrite �̃P (γ ) as

where π�
Qγ (W0(i,·)), for i = 1, 2, . . . , |VT |, is the unique stationary distribution of the

Markov chain
Qγ (W0(i, ·)) = γQ + (1 − γ )1̄W0(i, ·).

Note that the aboveMarkov chain is equal to Google’s PageRank transition matrix for damp-
ing factor γ , personalization vector W0(i, ·) and original transition matrix Q. In words, the
division of score (that originates from the transient part) inside the ergodic class is based
on the stationary distribution of the Google’s PageRank transition matrix with different
personalization vectors per transient state and a common damping factor γ .

The following proposition investigates the behavior of �̃P (γ ) regarding the extreme
values of γ ∈ [0, 1). In particular, it uncovers the connection of �̃P (γ ) with the extended
ergodic projector �̃P from (Berkhout 2016).

Proposition 3 Inserting γ = 0 into

gives
�̃P (0) = �̃P , (20)
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with �̃P as in (Berkhout 2016), and

lim
γ↑1 �̃P (γ ) = �P +

[
0

(I − dg(β)) [−R1 −R2 · · · −RE Y ]

]

. (21)

Proof Expression (20) follows directly from Eq. 19 by observing that W(0) = W0 = W ,
with W as defined in (Berkhout 2016).

Regarding (21), it follows from Eq. 16 that

lim
γ↑1W(γ ) = DPT T

[PT 1 PT 2 · · · PT E ] lim
γ↑1(1 − γ )

∞∑

k=0

γ kQk

using the limit result for the modified resolvent from (Kartashov 1996)

= DPT T
[PT 1 PT 2 · · · PT E ]�Q

inserting the canonical block form of �Q

= DPT T
[PT 1�P1 PT 2�P2 · · · PT E�PTE ]

= [R1 R2 · · · RE ],
where we used in the last equation that Ri = DPT T

PT i�Pi
, for i = 1, 2, . . . , E, see also

Eq. 4. Inserting the above expression for limγ↑1 W(γ ) into limγ↑1 �̃P (γ ) gives

which can be rewritten to Eq. 21 using the canonical form of �P from Eq. 4.

Remark 5 Expression (21) shows that for γ ↑ 1, �̃P (γ ) has ergodic projector �P as basis.
Then, based on the stay duration inside the transient part (i.e., dg(β)) score is transferred
from the ergodic part (indicated by the minuses) to the transient part. Particularly, the score
transfer from the transient part to an ergodic state is redivided over the entire correspond-
ing ergodic class proportionally to the unique stationary distribution inside this ergodic
class.

3.3 Analysis of the generalized ranking

In the following we provide a detailed analysis of GR that leads to an insightful analytical
interpretation of GR. As a first step we define per transient state j Markov chain P �

j which
describes the location of a random surfer with the following surfing behavior. On the tran-
sient part, the random surfer chooses her next location according to the transient part from
P . Once the random surfer moves out of the transient part, say she wants to move to ergodic
state k, she flips a (1 − γ )-coin (head with chance 1 − γ ). When the coin shows head her
next location will be indeed ergodic state k. Else she randomnly chooses a next potential
location according to P(k, ·), say ergodic state l, and again flips a coin. In case the outcome
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is head, the next location of the random surfer after leaving the transient part is ergodic
state l (so not the initial state k). She repeats this procedure until she throws head. Once the
location of the random surfer is an ergodic state, she directly jumps back to transient state
j afterwards. The precise definition of P �

j that describes the location of this random surfer
is provided below.

Definition 1 For transient state j let

where 1̄ is a column-vector of ones of size |VE |, and I (j, ·) is the j -th row of an identity
matrix of size |VT |.

Lemma 1 establishes ergodicity of P �
j .

Lemma 1 Given transient state j, theMarkov chainP �
j has a unique stationary distribution.

Proof By construction, the set of transient and ergodic states that can be reached from j

forms a communicating class, and this class has a unique stationary distribution according to
the Perron-Frobenius theorem. Further, all remaining transient states will eventually in finite
time lead to an ergodic state for γ ∈ (0, 1) which in turn will lead to the communicating
class, i.e., these states in the artificial Markov chain become transient.

Elaborating on Lemma 1, Theorem 1 provides an interpretation of �̃P (γ ) in terms of
“local” stationary distributions.

Theorem 1 It holds for �̃P (γ ) for any γ ∈ [0, 1) that:
(i) �̃P (γ ) is a stochastic matrix.
(ii) For every ergodic state i: the i-th row of �̃P (γ ) is the unique stationary distribution

inside the corresponding ergodic class.
(iii) For every transient state j : the j -th row of �̃P (γ ) is the unique stationary distribution

of P �
j .

Proof It holds that Y is a stochastic matrix (see also the discussion after the introduction of
GR). Also matrix W(γ ) is stochastic as was argued in Remark 2. Since 0 < β(i) ≤ 1/2 for
all i = 1, 2, . . . , |VT | (see also Eq. 17), this proves that all rows of �̃P (γ ) corresponding
to transient states are stochastic. As the rows of ergodic states are clearly stochastic, this
proves Statement (i). Moreover, the first quadrant of �̃P (γ ) coincides with that of �P so
that Statement (ii) readily follows.

To prove Statement (iii), we will denote �̃P (γ ) by �̃
γ

P for notational easiness, e.g., the
j -th row of �̃P (γ ) can be written as �̃

γ

P (j, ·). Similar, we will denote W(γ ) with Wγ .
Because of Statement (i) and Lemma 1, proving that for transient state j

�̃
γ

P (j, ·)(P �
j ) = �̃

γ

P (j, ·) (22)

shows that �̃γ

P (j, ·) is the unique stationary distribution of P �
j (third statement).
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In particular, multiplying the left hand side of Eq. 22 with 1
1−βj

(to make the proof more
clear) and rewriting gives in case of transient state j

1

1 − βj

�̃
γ

P (j, ·)(P �
j )

=
[

βj

1 − βj

Wγ (j, ·)
∣
∣
∣
∣ Y (j, ·)

]

(P �
j )

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Y (j, ·) [PT 1 PT 2 · · · PT E ] (1 − γ )

∞∑

k=0

(γQ)k

︸ ︷︷ ︸
(�)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Y (j, ·)P j−
T T︸ ︷︷ ︸

(��)

βj

1 − βj

Wγ (j, ·)1̄ + Y (j, ·)PT T (·, j)

︸ ︷︷ ︸
(���)

Y (j, ·)P j+
T T︸ ︷︷ ︸

(��)

⎤

⎥
⎥
⎥
⎦

,

where 1̄ denotes a ones vector of size |VE |, P j−
T T denotes matrix PT T left of column j and,

vice versa, P j+
T T denotes matrix PT T right of column j . Specifically,

P
j−
T T = [PT T (·, 1) PT T (·, 2) · · · PT T (·, j − 1)]

and
P

j+
T T = [PT T (·, j + 1) PT T (·, j + 2) · · · PT T (·, |VT |)] .

We will prove (22) stepwise by showing that the three parts (�), (��), (���) indicated above
are equal to

1

1 − βj

�̃
γ

P (j, ·) =
[

βj

1 − βj

Wγ (j, ·)
∣
∣
∣
∣ Y (j, ·)

]

. (23)

Note that in case j = 1 the term P
j−
T T from part (��) does not apply, just as P

j+
T T from part

(��) does not apply when j = |VT |.
Since by definition

Y (j, ·) = 1

DPT T
(j, ·)1̄ = 1

1/βj − 1
DPT T

(j, ·) (24)

it holds for (�) that

Y (j, ·) [PT 1 PT 2 · · · PT E ] (1 − γ )

∞∑

k=0

(γQ)k

= 1

1/βj − 1
DPT T

(j, ·) [PT 1 PT 2 · · · PT E ] (1 − γ )

∞∑

k=0

(γQ)k

= 1

1/βj − 1
Wγ (j, ·)

= βj

1 − βj

Wγ (j, ·),

which shows that (�) equals the corresponding part in Eq. 23.
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For an arbitrary transient state k �= j , we will show that Y (j, ·)PT T (·, k) = Y (j, k) (i.e.,
parts (��) equal the corresponding parts in Eq. 23) which proves (22) for both parts (��). It
holds that

Y (j, ·)PT T (·, k) = 1

1/βj − 1
DPT T

(j, ·)PT T (·, k)

= 1

1/βj − 1

∞∑

t=1

(PT T )t (j, k)

= 1

1/βj − 1
DPT T

(j, k)

= Y (j, k)

where we used in the second equation that element (j, k) of (PT T )t can be written as

(PT T )t (j, k) = (PT T )t−1(j, ·)PT T (·, k),

for t ∈ N, and the third equation follows because

(PT T )0(j, k) = I (j, k) = 0, for j �= k.

Lastly, for part (���) it should be proven that it equals Y (j, j), see also Eq. 23. In particular,

(� � �) = βj

1 − βj

Wγ (j, ·)1̄ + Y (j, ·)PT T (·, j)

using that [PT 1 PT 2 · · · PT E ] 1̄ = 1̄ − PT T 1̄ (rows P sum up to 1)

= βj

1 − βj

DPT T
(j, ·)(I − PT T )1̄ + Y (j, ·)PT T (·, j)

since DPT T
= (I − PT T )−1 it holds that DPT T

(j, ·)(I − PT T ) = I (j, ·) and furthermore
using Eq. 24 gives

= βj

1 − βj

+ 1

1/βj − 1
DPT T

(j, ·)PT T (·, j)

because DPT T
(j, ·)PT T (·, j) = ∑∞

t=1(PT T )t (j, j) = DPT T
(j, j) − 1

= βj

1 − βj

+ 1

1/βj − 1
(DPT T

(j, j) − 1)

again using Eq. 24

= βj

1 − βj

+ Y (j, j) − 1

1/βj − 1

= Y (j, j).

Since we showed that parts (�), (��) and (���) equal the corresponding parts of Eq. 23, this
ends the proof of Statement (iii).

The extended ergodic projector has the following interpretation. The stochastic matrix
�̃P (γ ) provides the stationary distributions for the ergodic classes and that of the Markov
chains constructed for the transient states, which model a random surfer on the transient
states that restarts at the specific transient state after an ergodic state is reached. Eventually,
all scores can be uniformly combined to obtain an unprejudiced ranking, or a personalization
vector v can be used for a personalized ranking.

We would like to close this section by commenting on the computational aspects of GR.
First of all, one has to uncover the Markov chain structure in step 1. This can be done in
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linear time (O(n + m)) by applying Tarjan’s algorithm (Tarjan 1972) from graph theory
for finding the strongly connected components of a graph. Then for each ergodic class, one
has to calculate the stationary distribution inside that ergodic class. This requires solving E
times a system of linear equations of varying sizes corresponding to the ergodic class sizes.
Alternatively, one might apply the power method per ergodic class for an approximation.
Recall that all rows of the ergodic projector corresponding to states from an ergodic class
are equal. Regarding DPT T

, we have to invert matrix I −PT T (of size |VT |×|VT |) as shown
in Eq. 6 (recall that �P on the transient part is zero). In step 2 of GR, one has to compute
W(γ ) which requires a matrix inverse for each ergodic class. However, when choosing γ

small (which is advised), it may be sufficient to replace inside W(γ )

∞∑

k=0

γ kQk by
K∑

k=0

γ kQk

forK a small integer. This way the unwanted scenario as sketched in Example 2 is addressed
with least amount of computational effort. So in conclusion, GR is surely computationally
more involved than Google’s PageRank. However, the reward is a more structural way of
ranking and, as the following section illustrates, GR is still applicable to large real-life
instances.

4 Real-life numerical experiment

In this section the new ranking approach GR is applied to the Wikipedia vote network
dataset as given by Leskovec and Krevl (2014). In the words of Leskovec and Krevl (2014),
Wikipedia is an online free encyclopedia written collaboratively by users around the world.
A small part of Wikipedia contributors are administrators, who are users with access to
additional technical features that aid in maintenance. In order for a user to become an
administrator a request for adminship is issued and the Wikipedia community decides via
an election who to promote to adminship. The voting history until January 3 2008 was col-
lected by Leskovec and Krevl (2014) consisting of 2794 elections captured in a vote network
given by G = (V ,E).

Nodes V in the vote network represent Wikipedia users and a directed edge e = (i, j) ∈
E indicates that user i voted for user j to become admin. There are n = 7115 nodes (users)
and |E| = 103689 directed edges (votes). For the construction of a Markov chain described
by P we take w(e) = 1 for all e ∈ E. There are |VE | = 1005 ergodic states and all of
them are dangling nodes since they did not vote on other nodes (i.e., they are absorbing of
nature). In total, |VT | = 6110 of all states are transient, and the major strongly connected
component consists of 1300 transient states. The remaining 4810 transient states did not get
any votes but did vote on others. To give an impression of the instance, a plot of all edges in
the vote network can be found in Fig. 4 in which each dot corresponds to a vote.

In the following two ranking methods are compared, i.e., Google’s PageRank (GP) with
d = 0.85 (which is the most common value for d in literature) and GR with γ = 0 (as all
ergodic states are dangling nodes the choice of γ does not matter in this instance), both for
a uniform personalization vector v = 1̄/n. For notational easiness we define u := 1̄/n.

As ‖πP0.85(u) − u��P (0)‖∞ ≈ 0.64 (‖ · ‖∞ is the sum of absolute values which is a
value ranging from 0 to 2) it follows that GP and GR lead to different scores. Specifically,
numerical findings on the top 5 rankings of ergodic and transient states, respectively, are
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Fig. 4 Plot of all edgesE, i.e., votes, in theWikipedia vote network dataset from (Leskovec and Krevl 2014).

presented in Tables 1 and 2. Per method the top 5 indexes are provided in logical order. The
two numbers in brackets provide the score of the node and its overall ranking.

The main observation is that GP significantly favors ergodic states above transient states
compared to GR. E.g., the highest GP ranked transient state, i.e., state 3650, is ranked
56 while GR ranks the same transient state as third. The in-degree (i.e., number of votes
received) of this transient state 3650 is 457 with 1̄�P(·, 3650) ≈ 68, while ergodic state
2270, i.e., the 2nd ranked state by GP, has in-degree 150 and 1̄�P(·, 2270) ≈ 44. Based on
these first-order dynamics, it is thus questionable whether this ranking gap is reasonable.
Furthermore, the preference of ergodic states by GP compared to GR follows from Fig. 5
which plots the score vectors of GP versus GR. Particularly, a distinction is made between
transient and ergodic states in Fig. 5 by using dots and crosses, respectively. Placing your

Table 1 Top 5 rankings of
ergodic states for the Wikipedia
vote network dataset

Ranking Approach Top 5: index (score, overall ranking)

GP (d = 0.85 and v = u) 2411 (9.14E−3, #1)

2270 (7.03E−3, #2)

6538 (6.04E−3, #3)

1087 (5.67E−3, #4)

6585 (5.38E−3, #5)

GR (γ = 0 and v = u) 2411 (3.89E−3, #1)

2270 (3.41E−3, #4)

1087 (2.79E−3, #6)

6538 (2.52E−3, #8)

4366 (2.33E−3, #9)
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Table 2 Top 5 rankings of
transient states for the Wikipedia
vote network dataset

Ranking Approach Top 5: index (score, overall ranking)

GP (d = 0.85 & v = u) 3650 (1.92E−3, #56)

13 (1.54E−3, #85)

5807 (1.50E−3, #92)

2205 (1.09E−3, #174)

2057 (1.04E−3, #188)

GR (γ = 0 and v = u) 5807 (3.87E−3, #2)

3650 (3.82E−3, #3)

13 (3.24E−3, #5)

2205 (2.52E−3, #7)

6059 (2.03E−3, #15)

hand on Fig. 5 and moving the hand from right to left reveals that only at the end the tran-
sient crosses come into sight in case of GP with d = 0.85, whereas moving the hand from
top to bottom shows that GR mixes transient and ergodic states in the ranking, i.e., dots and
crosses appear together. In particular, the top 10 ranking of GR consists of 4 transient states
and 6 ergodic states and it holds that:

– 97% of the top 100 of GP are ergodic states.
– 44% of the top 100 of GR are ergodic states.

In the following, the preference of GP with d = 0.85 towards transient states are made
more apparent by looking at the vote network in which the node sizes are based on the
given scores. Particularly, more score means larger nodes and vice versa. Moreover, the
ergodic states are indicated by green nodes and placed on the left side of the network and
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Fig. 5 For every ergodic state i: plots (πP0.85(u)(i), (u
��̃P (0))(i)). For every transient state j : plots

(πP0.85(u)(j), (u��̃P (0))(j))
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Fig. 6 Wikipedia vote network where node sizes are based on GP scores (d = 0.85 & v = u)

the transient states are red nodes which are placed on the right side of the network. These
voting networks in which node sizes are based on the scorings from GP and GR can be
found in Figs. 6 and 7, respectively. The node sizes clearly show that GP gives significantly
more score to ergodic states than to transient states compared to GR.

In order to get more insight into the question whether this is reasonable or not the vote
network with node sizes based on in-degrees (i.e., the number of votes a node gets) is shown
in Fig. 8. Note that as each vote counts equally in case the scoring is based on in-degrees
this is a democracy. Figure 8 uncovers that there is a lot of voting going on among transient

Fig. 7 Wikipedia vote network where node sizes are based on GR scores (γ = 0 & v = u)
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Fig. 8 Wikipedia vote network where node sizes are based on in-degrees

states and in fact theWikipedia users with the most votes are transient of nature. This clearly
indicates that intuitively GP tends to undervalue transient states, while the score distribution
provided by GR seems to give a better score-balance between ergodic and transient states
while also taking long-term dynamics into account. So overall for this instance, GR seems
to give more appropriate importance score to the transient states compared to the GP for the
fixed d = 0.85, which seems intuitively appealing.

GP with an alternative value for d provides most likely a more appropriate score dis-
tribution between transient and ergodic states. It holds that FrGP(0.85) ≈ 0.315 whereas
FrGR ≈ 0.635 and the fraction of transient states compared to total number of states is
|VT |/n ≈ 0.859. Figure 9 shows numerically what FrGP(d) for d ∈ [0, 1) in this instance
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Fig. 9 Development of FrFr(d) for d ∈ [0, 1) in the Wikipedia vote network
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looks like. It shows that GP with d ≈ 0.55 gives approximately the same fraction of score
to transient states as GR.

5 Conclusion

The choice of the damping factor of Google’s PageRank might have a large impact on the
valuation of nodes that are of transient nature, a common feature in real-life networks. By
keeping the underlying network intact, an approach is proposed that uses structural net-
work dynamics to determine an appropriate score-distribution between transient and ergodic
nodes. This way it takes away the unclear score trade-off in Google’s PageRank between
transient and ergodic nodes that is nestled in the choice of the damping factor. The newly
introduced Generalized Ranking values transient states more appropriately than Google’s
PageRank (for a fixed damping factor) while maintaining the random walk interpretation,
which is one of the strong points of Google’s PageRank.

Ranking methodologies are mostly applied to large-scale data, computational aspects are
thus of importance. As this article does not focus on computational issues, a direction of fur-
ther research is to investigate how the Generalized Ranking can be implemented efficiently.
Another topic of further research, is to analyze the extent to which the Generalized Ranking
can be used for analyzing different type of instances in practice.
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