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SUMMARY OF FINDINGS

This thesis evaluated specific problems of statistical validation of machine learning 
models, identified shortcomings of the current practice, and provided solutions to 
avoid them. The general introduction section introduced machine learning methods 
and  their  application  to  psychiatry,  together  with  specific  problems  of  their 
evaluation.

Chapter 2 contains the development of a machine learning predictive model of two-
year depression remission and chronicity in the NESDA dataset on 804 subjects 
with  a  depressive  disorder.  Subjects  were  assessed  based  on  81  clinical, 
psychological,  and biological  variables,  which were used to  create  a  predictive 
model using an elastic net logistic regression. The focus of this chapter was to 
evaluate which of the wide range of variables were important for prediction. This 
was  assessed  using  a  stability  selection  approach.  Stability  selection  is  the 
probability  that  a variable will  be selected in  a machine learning model,  and it  
provides a family-wise type I error control for the selected variables(Meinshausen 
and Bühlmann 2010). Only one variable, IDS score, was statistically significant, 
and no other variable substantially improved model predictions. This finding is in 
line  with  results  reported  by  (Chekroud  et  al.  2016).  For  a  machine  learning 
prediction of remission of depressive symptoms followed by 12-week citalopram 
treatment. Their model selected a shortened version of the IDS questionnaire as 
the  most  important  predictor  form  a  range  of  sociodemographic  and  clinical 
features.  Our  findings  contrast  findings  from other  cross-sectional  studies  that 
showed group level  association vitamin D  (Milaneschi  et  al.  2014) and cortisol 
(Vreeburg et al. 2013) to depression chronicity. This demonstrates that group-level 
associations,  as  discovered,  does  not  necessarily  translate  to  better  machine 
learning predictions.

Chapter 3 contains a methodological replication of a prominent study identifying 
biotypes of depression  (Drysdale et al. 2017). We identified shortcomings of the 
methods used in this study, questioned the validity of some of the results, and 
provided  recommendations  for  future  studies.  In  the  original  study,  authors 
performed  canonical  correlation  analysis  (CCA)  between  resting-state  fMRI 
features and clinical  symptoms of  depression in a sample of  currently severely 
depressed,  treatment-resistant  participants.  CCA identified two biological-clinical 
factors related to anhedonia and anxiety. Next, they used hierarchical clustering to 
identify  four  subtypes  of  depression  according  to  these  two  factors.  These 
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subtypes  had  different  clinical  profiles,  including  different  average  response  to 
transcranial magnetic stimulation treatment in an independent dataset.

Our  replication was conducted on 187 participants with  depression,  anxiety, or 
depression anxiety comorbidity from NESDA and MOTAR datasets. The original 
analytical  pipeline was followed as closely as possible,  including finding a low-
dimensional  representation  of  clinical  and  resting-state  data  using  canonical 
correlation analysis, and hierarchical clustering to identify biotypes. In this chapter, 
several problems of the original analytical pipelines that lead to biased and overly  
confident results were identified. Mainly, resting-state features were selected based 
on their correlation with the clinical variables, which leads to overly optimistic p-
values  for  the  subsequent  canonical  correlation  analysis  between the  selected 
resting-state  features  and  clinical  symptoms.  Next,  we  demonstrated  that  the 
criteria for defining "biotypes" would produce spurious biotypes even if there are no 
real  clusters  in  the  data.  Last,  we  showed  that  due  to  the  overfitting  of  the 
canonical correlation analysis, the biological and clinical canonical variates and, 
therefore,  subtypes  could  be  extremely  unstable.  Due to  these  methodological 
limitations, we concluded that the presented analysis does not provide sufficient 
evidence for biotypes of depression.

Chapter  4 contains  an  evaluation  of  performance  measures  used  in  machine 
learning studies. We showed that the most commonly used measure has the worst 
statistical  properties,  and it  is  also suboptimal  for  clinical  settings compared to 
alternatives. We highlighted that there is no one best performance measure, but 
that the selection of appropriate performance measures should be based on the 
specific  goals  of  the  machine  learning  model.  We  reviewed  four  types  of 
performance measures focusing on their applications in neuroimaging and clinical 
settings.  Next,  using  simulated  and  real  datasets,  we  evaluated  the  statistical  
properties  of  these  measures,  including  statistical  power,  detecting  model 
improvement,  selecting  informative  features,  and  reliability  of  results.  Accuracy, 
although the most commonly used performance measure, had the worst statistical 
properties  compared  to  alternatives,  therefore  it  should  be  avoided  when  the 
statistical  inference  is  the  primary  goal  of  the  machine  learning  model. 
Furthermore, accuracy should also be avoided when evaluating machine learning 
models in a clinical setting because it does not take into account the uncertainty of 
predictions  and  the  relative  cost  of  false  positive  and  false  negative 
misclassifications.
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Chapter 5 focuses on an evaluation of machine learning models in the presence of 
confounding variables. We showed that the most commonly used method does not 
sufficiently control for confounding variables and thus can lead to wrong results 
and  introduced  an  alternative  approach  that  does  not  have  this  problem. 
Confounding is an important problem in machine learning. For the translation of 
machine  learning  models  to  clinical  practice,  it  is  important  to  know  that  the 
machine learning model is predicting the clinical variable of interest and not some 
other variable such as age, gender, or scan-site. The most common method to 
correct for confounds in machine learning models is to regress out confounding 
variables from each input variable separately(Fortin et al. 2017; Snoek et al. 2019). 
We show that  this method cannot sufficiently  correct  for  confounds in machine 
learning studies, because machine learning methods can learn information from 
the  data  that  cannot  be  removed  using  the  traditional  method.  We propose  a 
simple method where confounds are controlled for on the level of machine learning 
predictions and not input variables. We show in simulated and real datasets that 
this method correctly controls for confounds even in situations where the traditional 
approach fails.
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