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a b s t r a c t

We propose a new class of score-driven time series models that allows for a more
flexible weighting of score innovations for the filtering of time varying parameters.
The parameter for the score innovation is made time-varying by means of an updating
equation that accounts for the autocorrelations of past innovations. We provide the
theoretical foundations for this acceleration method by showing optimality in terms
of reducing Kullback–Leibler divergence. The empirical relevance of this accelerated
score-driven updating method is illustrated in two empirical studies. First, we include
acceleration in the generalized autoregressive conditional heteroskedasticity model. We
adopt the new model to extract volatility from exchange rates and to analyze daily
density forecasts of volatilities from all individual stock return series in the Standard &
Poor’s 500 index. Second, we consider a score-driven acceleration for the time-varying
mean and use this new model in a forecasting study for US inflation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Economic and financial time series often exhibit intricate dynamic features. When the time series is analyzed by use of
a parametric dynamic model, it needs to be sufficiently flexible to describe its salient features. Oftentimes, time-varying
parameter models provide the necessary flexibility. However, for such dynamic models, the estimation and forecasting
can become subject to particular challenges. A possible challenge for parameter estimation (or filtering) is to account for
the varying amount of information that is contained in past observations. For example, when filtering the conditional
volatility of daily financial returns by means of the well-known GARCH model of Engle (1982) and Bollerslev (1986), we
can describe well smooth changes in volatility. However, in the event of a financial crisis or a major news event, the
volatility level may change suddenly and the GARCH model may not be suited to properly describe such changes. We
introduce a dynamic specification which allows us to update the time-varying parameter (in the example, conditional
volatility) quickly when the data is informative and slowly when the data is less informative.

We base our developments on score-driven time series models which are also referred to as generalized autoregressive
score (GAS) models in Creal et al. (2013) and dynamic conditional score (DCS) models in Harvey (2013). The class of GAS
models encompasses many well-known dynamic models, including GARCH and related models but also facilitates the
formulation of new dynamic models. Recent examples of score-driven models are provided by Harvey and Luati (2014)
and Andres (2014) who consider location and scale models for fat-tailed distributions, Creal et al. (2014) who explore
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dynamic factor models, and Creal et al. (2011), Oh and Patton (2017) and De Lira Salvatierra and Patton (2015) who adopt
different dynamic copula models with time-varying coefficients. A collection of recent developments on score-driven
models is provided online at http://gasmodel.com.

We propose a generalization of the GAS model by introducing a more flexible weighting scheme for the score
innovation: the accelerating GAS (aGAS) model. This key generalization allows the weighting parameter of the score
innovation in GAS models to be time-varying with an updating function that is similar to GAS itself but with the score
innovation replaced by the product of the score innovation and its lagged value. This product is the ingredient for the
estimate of the first-order autocorrelation of score innovations and it provides some indication of the importance of the
score innovation for volatility updating. When recent score innovations have the same sign, the adjustment of the current
dynamic parameter needs to accelerate faster than in a period where these innovations have mixed signs. The former hints
towards a positive first-order autocorrelation in innovations while the latter hints towards a negative autocorrelation. To
allow the weighting parameter to be a function of the local estimate of autocorrelation, the updating will accelerate when
a set of consecutive innovations have the same sign.

We discuss the intuition behind the accelerating mechanism through several illustrations and provide the theoretical
justification for the proposed method. In particular, we follow Blasques et al. (2015) and show that acceleration in updating
is more optimal in terms of reducing Kullback–Leibler divergence when compared to fixed updating. Furthermore, we
present a simulation study to illustrate how acceleration can be effective, how it lets the models become more flexible,
and how it can improve the approximation of the unknown data generating process. The empirical relevance of aGAS
models is first investigated for GARCH models with the applications of extracting volatility from exchange rate time series
and of investigating daily density forecasts of volatilities from all stocks present in the Standard & Poor’s 500 index. The
two applications show that the accelerating mechanism can be useful in capturing sudden changes in the volatility level.
The method is also shown to provide benefits in terms of density forecasts of daily stock returns. Finally, in the context
of location and scale models, we consider an empirical application for the modeling and forecasting of the quarterly time
series of US CPI inflation. Our proposed model is based on a fat-tailed density with time-varying conditional mean and
volatility. The accelerating updating equation renders our aGAS model capable of jointly describing the fast changes in
the inflation level during the 1970s and 1980s, but also, the smooth and slow dynamic behavior of the conditional mean
during the great moderation of two decades that followed the early 1980s.

The paper is structured as follows. Section 2 presents the general aGAS framework. Section 3 develops the optimality
properties for the aGAS model. Section 4 discusses the results of our simulation study. Section 5 presents an application
for an Asian exchange rate series and for all stock returns in the S&P500 index. Section 6 presents an application to US
inflation. Section 7 concludes.

2. Accelerated score-driven time series models

We introduce the accelerated score-driven model which generalizes the score-driven time series model of Creal et al.
(2013) and Harvey (2013). For a time series variable {yt}t∈Z, the basic GAS model is given by

yt ∼ p(yt |λt; θ ), λt+1 = ωλ + βλλt + αλsλ,t , (1)

where p(·|λt; θ ) is a parametric conditional density with λt as the time-varying parameter of interest and θ as an unknown
vector containing all static parameters in the model, including ωλ, βλ, and αλ, and sλ,t is an innovation term. The time-
varying parameter evolves as an autoregressive process of order 1 with intercept ωλ, autoregressive coefficient βλ and
scale parameter α. The distinguishing feature of a GAS model is the choice of the innovation sλ,t as the local score or
gradient of density p(yt |λt; θ ) with respect to λt . We specify the scaled innovation by

sλ,t = Sλ,t uλ,t , uλ,t =
∂ log p(yt |λt; θ )

∂λt
,

where Sλ,t is a strictly positive scaling factor and uλ,t is the innovation term defined as the first derivative of the conditional
density contribution for a single observation at time t . Many standard models can be derived from this framework as is
shown by Creal et al. (2013).

The accelerated GAS (aGAS) model is defined as the GAS model (1) with a time-varying αλ coefficient that we specify
as

αλ,t = g(ft+1; θ ), ft+1 = ωf + βf ft + αf sf ,t , (2)

where g(·) is a strictly increasing link function and the time-varying variable ft+1 determines the time-variation of αλ,t ,
for all time indices t , and it evolves according to an autoregressive process of order 1 with innovation term sf ,t , intercept
ωf , autoregressive coefficient βf , and scale parameter αf . The time-varying αλ,t is subject to a link function but the overall
framework is similar to the GAS model itself. The scaled innovation term depends on the first derivative of the conditional
density contribution at time t , that is

sf ,t = Sf ,t uf ,t , uf ,t =
∂ log p(yt |λt; θ )

∂ ft
, (3)

http://gasmodel.com
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where Sf ,t is a strictly positive scaling factor and uf ,t is the innovation term defined as the first derivative of the conditional
density contribution for a single observation at time t . The time index t for the time-varying parameters λt and ft indicates
that the parameters are functions of past observations up to time t − 1, that is {yt−1, yt−2, . . .}. It is straightforward to
show that the innovation sf ,t in (3) can be expressed as

sf ,t = Cf ,tuλ,tuλ,t−1, (4)

where Cf ,t is a positive scaling factor and is a function of the scaling factors Sλ,t and Sf ,t . Note that the derivation of this
expression follows from the fact the derivative of the log density is taken with respect to ft and therefore unfolding the
GAS recursion in (3) is not needed. This is the equivalent of implicitly taking ∂λt−1/∂ ft = 0 in the calculation of the
derivative of the unfolded process. The expression (4) for sf ,t is highly convenient as it is expressed directly in terms of
uλ,t and hence there is no need to derive and compute other derivatives. Perhaps even more importantly, the expression
(4) shows that the score-driven update is a local estimate of the first-order autocorrelation of the innovation term of the
time-varying parameter of interest λt . The innovation term uf ,t of the dynamic ft is driven by the standardized product
of current and past score innovations. The parameter αt increases when there is positive autocorrelation in past score
innovations. Positive correlation means that past score innovations tend to have the same sign. Therefore, it is natural to
think that the step size αt should increase as this is an indication that the parameter αt is being updated too slowly.

The use of scaling factors Sλ,t and Sf ,t for the score innovation terms is standard practice in analyses based on GAS
models. The choice typically depends on the model at hand. Creal et al. (2013) propose the use of the Fisher information
It to account for the curvature of the score. For example, we can consider the inverse of the Fisher Information, the square
root of the Fisher Information inverse or simply the identity matrix as scaling factors. The use of the inverse of the square
root of It as the scaling factor implies that the conditional variance of the score innovation equals the unity matrix. It has
the convenient implication that the variability of the innovation of the autoregressive process in (1) is determined solely
by αλ,t .

3. Optimality properties

We provide a theoretical justification for the aGAS specification in (1) and (2). Blasques et al. (2015) have developed
a framework from which optimality features for the GAS updating can be derived. We build on these developments and
show that the use of the score-based innovation in (4) for αt has an optimality justification. Furthermore, we show that,
under certain conditions, the updating mechanism of the aGAS model outperforms standard GAS updating in terms of its
local Kullback–Leibler (KL) divergence reduction. The results are based on a misspecified model setting where the objective
is to consider the dynamic specification that allows to minimize the KL divergence between a postulated conditional
distribution and the unknown distribution of the DGP. Section 3.1 introduces this framework, Section 3.2 delivers the
optimality of the score update for αλ,t and Section 3.3 shows how flexible GAS models can outperform standard GAS
models.

3.1. A general updating mechanism

Assume that the sequence of observed data {yt}Tt=1 with values in Y ⊆ R is generated by an unknown stochastic
process that satisfies

yt ∼ pot (yt ), t ∈ N,

where pot is the true unknown conditional density. We consider a conditional density for the observations as in (1),
yt ∼ p(yt |λt; θ ), where θ ∈ Θ is a static parameter and λt is a time-varying parameter that takes values in Λ ⊆ R.
Note that also the model density p(·|λt; θ ) is allowed to be misspecified and there may not exist a true λo

t and θ0 such
that pot = p(·|λo

t ; θ0).
The objective is to specify the dynamics of the time-varying parameter λt in such a way that the conditional density

p(·|λt; θ ) implied by the model is as close as possible to the true conditional density pot . To evaluate the distance between
these two conditional densities, a classical approach is to consider the Kullback–Leibler (KL) divergence introduced
in Kullback and Leibler (1951) as a measure of divergence, or distance, between probability distributions. The KL
divergence plays an important role in information theoretic settings (Jaynes, 1957, 2003) as well as in the world of
statistics (Kullback, 1959; Akaike, 1973). The importance of the KL divergence in econometric applications is reviewed
in Maasoumi (1986) and Ullah (1996, 2002).

The ideal specification of λt minimizes the KL divergence between the true conditional density pot and the model-
implied conditional density p(·|λt; θ ). In other words, a sequence {λt}t∈N is optimal if for each t ∈ N, the value of λt
minimizes the following KL divergence

KLY
(
pot , p(·|λt; θ )

)
=

∫
Y
pot (y) log

pot (y)
p(y|λt; θ )

dy, (5)

where Y denotes the set over which the local KL divergence is evaluated; see Hjort and Jones (1996), Ullah (2002)
and Blasques et al. (2015) for applications of the local KL divergence. Assuming that {λ∗

t }t∈N is an optimal sequence that
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minimizes the KL divergence for any t ∈ N, we would like our model to deliver a filtered time-varying parameter {λt}t∈N
that approximates arbitrarily well the trajectory of {λ∗

t }t∈N.
From the outset, there is no reason to suppose that the score-driven recursion

λt+1 = ωλ + βλλt + αλsλ,t

would ever deliver such a result. Lemma 1 reminds us that the time-varying update

λt (ft ) = ωλ + βλλt−1 + g(ft )sλ,t−1,

could deliver a better approximation to {λ∗
t }t∈N.

Lemma 1. If an optimal sequence {λ∗
t }t∈N exists, then for any given initialization, λ0 ∈ Λ there exists a sequence {ft}t∈N

of points such that λt (ft ) = λ∗
t ∀t ∈ N. Moreover, ft is almost surely constant if and only if there is some c ∈ R such that

sλ,t = (λ∗

t+1 − ωλ − βλλt )/g(c) almost surely for every t ∈ N.

3.2. Optimality of score innovations

In practice, the problem is how to specify the dynamics of ft . We will address this issue by providing a theoretical
justification for the score-based update for ft . We build on the work of Blasques et al. (2015) that provides optimality
arguments for a score-based updating equation. Specifically, Blasques et al. (2015) show that considering an updating
scheme of the form

λt+1 = λt + αλsλ,t

reduces locally the KL divergence between the model density and the true probability density, in particular, they show
that the variation in the KL divergence obtained by updating the time-varying parameter from λt to λt+1 satisfies

KLY
(
pot , p(·|λt+1; θ )

)
− KLY

(
pot , p(·|λt; θ )

)
< 0,

when the update is local λt ≈ λt+1 and the set Y is a neighborhood of yt . This result is subject to the fact that the
parameter αλ has to be positive because otherwise the information provided by the score is distorted. Clearly, as this
optimality concept regards only the direction of the update we can conclude that the optimality holds also when αλ is
time-varying as long as it is positive. This justifies the use of a positive link function g in (2), which ensures the positivity
of g(ft ).

It is also worth mentioning that the optimality concept in Blasques et al. (2015) is shown to hold for (ωλ, βλ) ≈ (0, 1).
This is because the reduction of local KL divergence from the update is considered with respect to pot . In practice, what
we really want is to reduce the KL divergence with respect to pot+1 as the updated time-varying parameter λt+1 is used
to specify the conditional probability measure of yt+1. The problem is that λt is updated using information from pot and
therefore, without imposing any restriction on the true sequence of conditional densities, it is impossible to say if the
updating scheme makes any sense with respect to pot+1. Blasques et al. (2015) show that having (ωλ, βλ) ≈ (0, 1) is
optimal also with respect to the density pot+1 only if the true conditional density varies sufficiently smoothly over time.
This justifies the possibility that in practice it may be reasonable to consider also (ωλ, βλ) ̸= (0, 1).

We now add to the results of Blasques et al. (2015) by considering the more flexible updating scheme in (2) for the
time-varying parameter ft and showing that it has a similar optimality justification. More specifically, we provide an
optimality reasoning for the updating scheme in (2) setting (ωf , βf ) ≈ (0, 1),

ft+1 = ft + αf sf ,t . (6)

At time t − 1, the parameter ft is used to update λt−1 by the recursion in (1), namely

λt (ft ) = ωλ + βλλt−1 + g(ft )sλ,t−1,

then, at time t we observe yt and the parameter ft is updated to ft+1. We consider optimal an updating mechanism that
processes properly the information provided by yt . The idea is that ft has to be updated in such a way that the model
density with the updated ft is closer to the true density pot than the model density p(·|λt (ft ); θ ). We consider the following
definition.

Definition 1. The realized KL variation for the parameter update from ft to ft+1 is

∆t+1
f ,t = KLY

(
pot , p(·|λt (ft+1); θ )

)
− KLY

(
pot , p(·|λt (ft ); θ )

)
.

A parameter update for ft is said to be optimal in local realized KL divergence if and only if ∆t+1
f ,t < 0 almost surely for

any (ft , θ ) ∈ F × Θ .
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The results we present are local in the sense that we will show that at each step the score update gives the right
direction to reduce a local realized KL divergence. As in Blasques et al. (2015), we focus on sets of the form

Y = B(yt , ϵy) = {y ∈ Y : |yt − y|< ϵy},

F = B(ft , ϵf ) = {ft+1 ∈ R : |ft − ft+1|< ϵf }.

We set some regularity assumptions on the score sλ,t . In particular, the score is nonzero with probability 1 to ensure that
parameter ft is always updated, and it also has some differentiability properties.

Assumption 1. The score uλ,t = uλ(yt , λt , θ ) is continuously differentiable in yt and λt , and almost surely uλ(yt , λt , θ ) ̸= 0
for any (λt , θ ) ∈ Λ × Θ and t ∈ N.

The next proposition states that the score update for ft is optimal in the sense of Definition 1.

Proposition 1. Let Assumption 1 hold, then the update from ft to ft+1 in (6) is optimal in local realized KL divergence as long
as αf is positive.

The next proposition stresses that only the score uf ,t delivers the right direction to update ft .

Proposition 2. Let Assumption 1 hold, then any parameter update from ft to ft+1 is optimal in local realized KL divergence if
and only if sign(ft+1 − ft ) = sign(sf ,t ) almost surely for any ft ∈ F .

3.3. Relative optimality

The optimality concept developed in the previous section is only related to the update of ft , but, in practice, the update
of ft is only a tool to improve the update of λt (ft ). The idea is to compare the score update from λt (ft ) to λt+1(ft+1) with
the score update from λt (ft ) to λt+1(ft ). As before, the quality of the updates is measured in terms of KL reduction. We are
thus interested in comparing the variation in KL divergence obtained by updating the parameter from λt (ft ) to λt+1(ft+1),

∆t+1
λ,t+1 = KLY

(
pot , p(·|λt+1(ft+1); θ )

)
− KLY

(
pot , p(·|λt (ft ); θ )

)
,

against the variation in KL divergence obtained under the parameter update from λt (ft ) to λt+1(ft )

∆t
λ,t+1 = KLY

(
pot , p(·|λt+1(ft ); θ )

)
− KLY

(
pot , p(·|λt (ft ); θ )

)
.

Clearly, the first type of update is better if it can ensure a greater reduction in KL divergence.

Definition 2. The parameter update from λt (ft ) to λt+1(ft+1) is said to dominate the parameter update from λt (ft ) to
λt+1(ft ) in local realized KL divergence, if and only if

∆t+1
λ,t+1 − ∆t

λ,t+1 < 0.

The notion of dominance in local realized KL divergence in Definition 2 provides a line of comparison for the parameter
updates. We can say that the parameter update from λt (ft ) to λt+1(ft+1) outperforms the parameter update from λt (ft ) to
λt+1(ft ) if ∆t+1

λ,t+1 < ∆t
λ,t+1. The results we obtain are local in the sense that the KL divergence is evaluated locally and

the innovations sλ,t−1 and sλ,t are in a neighborhood of zero. Moreover, we also impose that the observation yt lies in a
neighborhood of yt−1. More formally, the realized KL divergence in Definition 1 is evaluated as sets of the form

Y = B(yt , ϵy) = {y ∈ Y : |yt − y|< ϵy},

with yt ∈ B(yt−1, ϵy) and sλ,t−1, sλ,t ∈ B(0, ϵλ). The result is stated in the following proposition.

Proposition 3. Let Assumption 1 hold. Then, the parameter update from λt (ft ) to λt+1(ft+1) generated by (6) dominates the
parameter update from λt (ft ) to λt+1(ft ) in local realized KL reduction for every λt−1 ∈ Λ and ft ∈ R.

The result in Proposition 3 is related to the fact that when the updating steps are small enough and the information
provided by the data changes smoothly, yt−1 is close to yt , then the update from λt−1 to λt (ft ) and the update from λt (ft )
to λt+1(ft ) are in the same direction. In this situation, the score update for ft leads to ft+1 > ft and therefore an update
from λt (ft ) to λt+1(ft+1) in the same direction as the update from λt (ft ) to λt+1(ft ) but larger in absolute value. This means
that for some small enough sλ,t and sλ,t+1 the update from λt (ft ) to λt+1(ft+1) reduces the local KL divergence more than
the update from λt (ft ) to λt+1(ft ).

We can summarize the optimality properties derived in this section as follows. Proposition 1 shows that the GAS
model with ft updated using (6) has locally a smaller KL divergence with respect to the true DGP, than the model with
a non-updated ft . Then, Proposition 2 shows that the any parameter update that delivers this optimal result must be
locally equivalent to (6), i.e. the sign has to be the same as the score in (6). Finally, Proposition 3 extends the results in
Proposition 1 by studying the optimality in KL divergence of the overall update of λt instead of ft only. The proofs are
presented in Appendix A.
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Fig. 1. A realized time series of length T = 1000 from the DGP (7)–(8) with δ = 3 and γ = 2. The solid thick (red) line represents the deterministic
mean µo

t .

4. Monte Carlo experiment

We present a simulation study as an intuitive illustration of the role that the time-varying parameter αt can play. The
simulation study has a simple design. We generate time series from a stochastic process and we subsequently compare
the predictive ability of GAS and aGAS models. The time series are generated by the data generation process (DGP) as
given by

yt = µo
t + ηt , t ∈ Z, (7)

where µo
t is a deterministic mean and {ηt}t∈Z is an i.i.d. sequence of Gaussian random variables with zero mean and unit

variance. The deterministic mean µo
t takes values in {0, δ}, δ > 0, and is defined to switch every γ × 102 time periods

from 0 to δ and vice versa. More formally, µo
t is specified as

µo
t =

{
0 if sin

(
γ −110−2(π t − 1)

)
≥ 0

δ if sin
(
γ −110−2(π t − 1)

)
< 0.

(8)

Fig. 1 shows a realization from the DGP with δ = 3 and γ = 2. We consider this particular DGP to provide an intuition for
the circumstances under which the time-varying αt of the aGAS model can be relevant. In time periods where the true
µo

t is constant, the noise component ηt should not affect the filtered path of the mean very much. This situation requires
a small value for αt . On the other hand, when a break in the level occurs, we need to attain a new level of µo

t rapidly.
This situation requires a relatively large value for αt .

To estimate the time-varying mean µo
t from each simulated series, we consider the GAS model (1) with p(yt |λt; θ ), for

any t ∈ Z, as a Gaussian density with time-varying mean λt = µt and time-invariant variance σ 2. The full specification
of this GAS model is given by

yt = µt + ϵt , ϵt
i.i.d
∼ N(0, σ 2), (9)

with time-varying mean µt given by the updating equation

µt+1 = µt + αµsµ,t ,

where αµ is a fixed unknown coefficient and sµ,t is the scaled score function which reduces to the scaled prediction error
sµ,t = yt − µt . This local level GAS model can be represented as an ARIMA(0, 1, 1) model; we can show this by taking
first differences and by observing that we obtain the MA(1) model yt − yt−1 = (αµ − 1)ϵt−1 + ϵt . The accelerated GAS
model replaces αµ by a time-varying parameter that, after a transformation, has the updating equation

αt = exp(ft+1/2), ft+1 = ωf + βf ft + αf sf ,t ,

where ωf , βf and αf are treated as fixed unknown coefficients, sµ,t = yt − µt and sf ,t = sµ,tsµ,t−1. These expressions for
innovations sµ,t and sf ,t are obtained as special cases of the general treatment for (1) and (2). In this model specification,
the Fisher information is constant and therefore the scaling of the score is irrelevant as it only leads to a reparametrization
of the model. The GAS model is simply obtained by treating αt of the aGAS model as a static parameter, that is αt = αµ

for any t ∈ Z.
In our Monte Carlo study we generate 1,000 time series of sample size T = 1, 000 from the data generation process,

DGP, (7) for different values of δ and γ . For each of the 1,000 generated series, we estimate by maximum likelihood the
parameters in the aGAS model (9) and its standard GAS counterpart. To evaluate the performance of the models, the
filtered means for µt of these two models are compared with the true mean µo

t . We compute the square root of the mean
square error (MSE) between the filtered µt and true mean µo

t , over all time points t and all Monte Carlo replications. The
results of the experiment are collected in Table 1. We learn from these results that the aGAS model can outperform the
GAS model. In particular, the MSE of the aGAS model is smaller for all DGPs except for the DGP with δ = 0.
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Table 1
We present the square root of the mean squared error (MSE) where the error is between the true µo

t
and the filtered parameter µt from GAS and aGAS models, for different true values of δ and γ . The
mean is over all time points t and all Monte Carlo replications.

γ = 1.0 γ = 1.5 γ = 2.0 γ = 2.5

GAS aGAS GAS aGAS GAS aGAS GAS aGAS

δ = 0.0 3.86 3.99 3.86 3.99 3.86 3.99 3.86 3.99
δ = 0.5 22.34 22.33 20.19 20.19 18.17 18.13 17.05 16.94
δ = 1.0 31.69 31.40 28.57 28.07 25.70 24.91 23.99 22.89
δ = 2.0 45.78 43.50 41.05 37.62 36.81 31.97 34.21 28.47
δ = 3.0 57.38 53.09 51.18 45.02 45.75 37.58 42.40 32.83

Fig. 2. First plot: the solid lines represent µo
t (in red) and the 90% variability bounds for the GAS µt , and the dotted lines represent 90% variability

bounds for the aGAS µt . Second plot: cumulative squared error difference between the aGAS and the GAS. The shadowed area denotes a 90%
confidence region. Third plot: the solid line is the average estimate of α for the GAS, and the dotted line is the average estimate of αt for the aGAS.
All estimates are smoothed to reduce Monte Carlo uncertainty.

To gain more insights into the effect of the dynamic parameter αt , Fig. 2 reports various simulation results for the DGP
with δ = 3 and γ = 2. In the upper graph, we can see that the 90% variability bounds for the aGAS are narrower than
those for the GAS in time periods when µo

t is constant. It implies that the true mean is predicted with greater accuracy by
the aGAS model and that the corresponding filter is less exposed to the noise component. The opposite situation occurs
right after the breaks: the variability bounds of the aGAS are larger for a few time periods. It is a consistent finding as the
aGAS filter is reacting faster to the change in the level and is then more exposed to the noise component. In the middle
graph of Fig. 2, the mean squared errors tend to be larger for the GAS model in most time periods. Furthermore, the 90%
level confidence bounds show that the aGAS model seems to outperform the GAS not only on average but for almost all
individual Monte Carlo draws. Finally, the bottom graph illustrates the behavior of the time-varying αt . In particular, the
dashed line is the average filtered αt from the aGAS model and the solid line is the average estimate of the static αµ from
the GAS model. The dynamic αt is close to zero when µo

t is constant and it increases after the breaks. The aGAS model
clearly offers the flexibility for which it is designed for: it allows the filtered mean to be updated at different speeds in
different time periods, where needed.

5. Accelerating GARCH and related models

In this section we motivate our extension for score-driven time-varying parameter models by introducing the
accelerated updating mechanism for some GARCHmodels. A natural updating function of current and past squared-returns
is proposed and discussed. The empirical relevance of our extension is investigated in an illustrative application concerning
an Asian exchange rate and in a forecasting study concerning 436 stock return series for US companies that are present
in the S&P500 stock index.
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5.1. Model formulation

The GARCH model of Engle (1982) and Bollerslev (1986) treats the clustering of large, but also small, shocks in time
series of financial returns {yt}t∈Z. The variable yt typically represents daily differences of logged closure prices of assets
traded at financial markets. A time series of financial returns can also be based on stock indices, exchange rates, commodity
prices and related variables. The basic GARCH model is given by

yt =

√
htεt , ht+1 = ω + βht + α(y2t − ht ), (10)

where the volatility {ht}t∈Z is the time-varying scaling for yt and the locally scaled return {εt}t∈Z is assumed to be an
independent identically distributed (i.i.d) sequence of random variables with zero mean and unity variance. The model
in (10) is a special case of GAS models when the error distribution is standard normal and the score is rescaled with the
inverse of the Fisher information, see the discussion in Creal et al. (2013).

In the following we focus on the coefficient α that determines the level of changes in the volatility ht ; the coefficient
determines how fast the volatility responds to changes in the amount of clustering in the time series of returns yt . For
given values of ω and β , we may question whether the constancy of α is appropriate when we need to determine locally
how quickly the volatility ht must adapt to changes in the amount of clustering, especially when we have a longer time
series. A relatively small value for α can be appropriate when the current level of volatility is appropriate. But in a more
turbulent period, the α may need to be larger so that ht can adjust faster to new information. To address this empirical
feature in financial time series, we present an extension of the GARCH model in which α is allowed to vary over time.
We refer to this extended GARCH model as the accelerated GARCH model, or the aGARCH model.

We introduce a time-varying coefficient for αt and we express the GARCH updating equation in (10) in its innovation
form, that is,

ht+1 = ω + β ht + αt ht (ε2
t − 1), (11)

where we have replaced y2t by htε
2
t as implied by the model for yt . The time-varying coefficient αt is specified using the

accelerating GAS framework introduced in Section 2 as

αt = β logit(ft+1), ft+1 = ωf + βf ft + αf (ε2
t − 1)(ε2

t−1 − 1), (12)

where logit(·) is the logistic function such that logit(a) = exp(a) / (1 + exp(a)) for any a ∈ R.
The aGARCH model (11) and (12) is a special case of the aGAS model (1) and (2) when considering λt as the time-

varying variance of the Gaussian conditional density p(yt |λt; θ ). The time-varying process for αt is driven by the product
of current and lagged volatility innovations. The product of the contemporaneous and lagged standardized volatility
innovations is treated as indicative of whether or not αt needs to change more quickly or slowly. When two consecutive
volatility innovations have the same sign, it may indicate that the level of volatility is either too low or too high and that
the model needs to adapt to this change more quickly. Hence a larger value for αt is necessary. The parameters αf and
βf determine the relative importance of past products of scaled volatility innovations. For instance, if βf is close to 1 and
αf close to zero, then αt is driven by all the accumulated history of products of volatility innovations. Instead, if βf is
close to zero, then αt is driven only by the most recent products of volatility innovations. The parameter ωf determines
the average level of αt . In particular, the unconditional expectation of ft is given by ωf /(1 − βf ). The resulting model
is a straightforward extension of the GARCH model with the addition of two coefficients only, αf and βf , since ωf is
effectively replacing the static α coefficient in the GARCH model (10). In case αf = βf = 0, the aGARCH model reduces
to the standard GARCH model.

Models with other densities than the Gaussian can also be considered. For example, we can replace the Gaussian by
the Student’s t density that has fatter tails than the normal. In the case of the GARCH model, we obtain the t-GARCH
model as explored by Bollerslev (1986). The accelerated version of the t-GARCH is simply obtained by introducing the
time-varying process αt which is driven by the product of the current and lagged volatility innovation. However, when
considering the GAS model (1) with λt = ht as the time-varying variance of the Student’s t conditional density p(yt |λt; θ ),
we do not obtain the t-GARCH model since the score function is not simply y2t − ht . In this case, we obtain the t-GAS
model of Creal et al. (2013). We extend the t-GAS model by introducing a time-varying αt to obtain the accelerated t-GAS
(at-GAS) model

yt =

√
htεt , ht+1 = ω + βht + αthtsh,t ,

αt = β logit(ft+1), ft+1 = ωf + βf ft + αf sh,tsh,t−1,

where {εt}t∈Z is an i.i.d. sequence of Student’s t distributed random variables with zero mean unit variance and ν degrees
of freedom. As in Creal et al. (2013), the score innovation sh,t has the following expression

sh,t =
(ν + 1)ε2

t

(ν − 2) + ε2
t

− 1.

The limiting case of ν → ∞ for the at-GAS model coincides with the aGARCH model. Furthermore, setting αt = α to a
static parameter reduces the model to the t-GAS model.
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Fig. 3. The first plot shows the exchange rate between the Thai Bat and the US dollar from January 1985 to December 2017. The second plot shows
the log differences of the exchange rate.

Table 2
Parameter estimates for all considered models with their standard errors in brackets. The last three columns contain
respectively the maximized log-likelihood value, the BIC and the AIC criteria. The parameters δ and δf are given by
δ = ω/(1 − β) and δf = ωf /(1 − βf ).

δ β δf βf αf ν log-lik BIC AIC

at-GAS 0.170 0.996 −1.843 0.939 0.061 3.029 −438.1 930.3 888.2
(0.053) (0.001) (0.123) (0.026) (0.020) (0.113)

t-GAS 0.264 0.997 −1.550 – – 2.989 −449.5 935.1 907.1
(0.073) (0.001) (0.085) (0.110)

at-GARCH 0.006 0.910 −2.211 0.740 0.004 3.016 −474.1 1002.3 960.2
(0.001) (0.007) (0.066) (0.027) (0.001) (0.129)

t-GARCH 0.007 0.876 −2.121 – – 2.998 −567.4 1170.9 1142.8
(0.001) (0.008) (0.080) (0.116)

a-GARCH 0.758 0.992 −1.436 0.902 0.002 – −2457.3 4959.6 4924.6
(0.117) (0.001) (0.068) (0.012) (0.000)

GARCH 0.697 0.990 −1.333 – – – −2517.5 5062.0 5041.0
(0.128) (0.002) (0.069)

5.2. Application for an asian exchange rate time series

We illustrate how the accelerating parameter αt can enhance the performance of GARCH models in an empirical
application for an Asian exchange rate. Exchange rates play an important role in understanding macroeconomic policies.
It is well known that most Asian exchange rates were in fact pegged to the US dollar before the Asian crisis in 1997; see
for instance Patnaik et al. (2011), Pan et al. (2007) and Frankel and Wei (2007). After the crisis hit, most Asian countries
gave up the peg with the US dollar and the regime of their exchange rates suddenly changed not only in the level but
also in volatility. A similar shift of regime, though with a milder impact, is also encountered in the financial crisis in
2008. In the following we show that accelerating GARCH models can better capture these sudden changes in volatility
regimes. In particular, we consider the daily exchange rate between the Thai Bat and the US dollar from January 1985 to
December 2017. A similar behavior can be encountered in several other Asian exchange rates; see Patnaik et al. (2011).
Fig. 3 presents the time series of exchange rates and the log differences. The rapidly evolving break before July 1997 in
the exchange rate series, both for level and volatility, can be clearly observed.

Table 2 reports the parameter estimates of the GARCH, t-GARCH and t-GAS models and their accelerating counterparts.
The best model in terms of AIC and BIC is the at-GAS model. The reported results highlight that the accelerating parameter
αt is useful to describe some of the dynamic features in the time series. The t-GAS models perform overall better than
the GARCH models in terms of log-likelihood, AIC and BIC. This finding is most likely due to the provided robustness in
variance updating against outliers in the time series.

Finally, Fig. 4 illustrates how the at-GAS model is capable of better adapting to the rapidly evolving change in the
volatility level that occurs in the period before the Thai Bat loses the peg against the US dollar (2 July 1997). In particular,
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Fig. 4. The first plot shows the absolute log differences of the exchange rate and the filtered standard deviations
√
ht for the t-GAS and at-GAS

models for the period between 15 April and 15 June, 1997. The second plot shows the corresponding estimated αt for the two models.

the first plot in Fig. 4 shows the absolute log variations of the exchange rate and the filtered standard deviations from
the at-GAS and the t-GAS models during the period between 15 April and 15 June, 1997. When the sudden increase in
the volatility level occurs, the at-GAS filter is able to adapt to the new volatility level faster than the standard t-GAS
filter. The second plot presents the estimated time-varying coefficient αt of the at-GAS model against the estimated static
coefficient of the t-GAS model. The estimate of αt shows an increase when the change in volatility occurs and this enables
the filter of the at-GAS model to adjust quicker that the one of the t-GAS model. This empirical illustration shows that
the accelerated GAS models can be useful to describe sudden changes in volatility levels for GARCH and related models.

5.3. Application to all series in the S&P500 stock index

We evaluate the performance of the accelerated GARCH models through a comparison using all the stocks that are
currently in the S&P500 index. Daily stock returns from January 2005 to December 2017 are considered. The series of
the S&P500 that are not available since 2005 are excluded from the study. The resulting number of time series is 436.
The performances of the GARCH models are evaluated both in-sample and out-of-sample. The in-sample evaluation is
based on fit and the AIC. We have opted for the AIC statistic because GARCH models can be viewed as filters in a
misspecified modeling framework for which the AIC provides a meaningful interpretation. The out-of-sample exercise
consists of comparing density forecasts of daily log-returns. The performance evaluation is based on the log-score criterion
as given by n−1 ∑n

i=1 log pT+i(yT+i), where T is the in-sample time series length, n is the out-of-sample length and pt (·)
is the conditional density of yt given the past observations up to t − 1. This criterion is widely known and is regularly
used in the context of evaluating density forecasts; see, for example, Geweke and Amisano (2011). The log-score criterion
delivers a consistent ranking of models in terms of KL divergence under standard regularity conditions, see Lemma 2 in
Appendix B. Hence our results do not suffer from the inconsistency problem as discussed in Patton (2011) for volatility
forecasts. The in-sample evaluation is based on the whole sample, whereas, the out-of-sample is based on three yearly
periods: the daily observations in 2015, 2016 and 2017. For the out-of-sample evaluation, the ‘‘training sample’’ is based
on a rolling window approach where all models are re-estimated monthly (every 20 working days).

Table 3 reports the number of series in the S&P500 index where a model outperforms the others. The degrees of
freedom parameter ν of the Student-t models are estimated along with the other parameters. The results are reported
separately for models with Gaussian and Student-t innovations since Student-t models have a better performance than
Gaussian models for all series. This is due to the fact that the Student-t distribution can account for the heavy tails of
stock return data. However, the estimation of models with a Gaussian distribution can be regarded as quasi maximum
likelihood (QML). QML has the advantage of delivering consistent estimates of the conditional volatility even when the
error distribution is misspecified. Instead, this is not the case when a Student-t likelihood is used; see Straumann (2005).

When we focus on models with Gaussian innovations, the GARCH and aGARCH models, we can conclude that the
aGARCH model performs better than the GARCH model for the majority of the series. This improvement can only be
due to the accelerating mechanism that allows fast adjustment towards a new volatility level after a break, in a similar
way as we have discussed for the exchange rate series. The same argument applies when outliers are present the series;
in this case, the linear filter of the GARCH model is heavily affected and it takes possibly a long period to return to
its natural level. The aGARCH model helps in this respect by making the impact of the outlier to vanish faster. Also,
when we consider the models with Student-t errors, the t-GARCH, at-GARCH, t-GAS and at-GAS models, we find that
the accelerating mechanism gives better results for a significant proportion of the 436 daily return series, both in-sample
and out-of-sample. In this setting, the improvement is mainly due to sudden changes in volatility levels because outliers
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Table 3
The number and percentage of series in the S&P500 index where each model outperforms the others.
The in-sample performance is measured by AIC. The out-of-sample performance is based on a log-score
criterion and considered separately for the years 2015, 2016 and 2017. In the first panel, the comparison
is among models with Gaussian error distributions. In the second panel, the comparison is among models
with Student-t error distributions.

In-sample Out-of-sample

2005–2017 2015 2016 2017

No. Pct. No. Pct. No. Pct. No. Pct.

GARCH 134 30.7% 233 53.4% 250 57.3% 219 50.2%
aGARCH 302 69.3% 203 46.6% 186 42.7% 217 49.8%
Total 436 100.0% 436 100.0% 436 100.0% 436 100.0%

t-GARCH 68 15.6% 118 27.1% 83 19.1% 56 12.8%
at-GARCH 31 7.1% 115 26.4% 62 14.2% 49 11.2%
t-GAS 246 56.4% 103 23.6% 202 46.3% 182 41.8%
at-GAS 91 20.9% 100 22.9% 89 20.4% 149 34.2%
Total 436 100.0% 436 100.0% 436 100.0% 436 100.0%

Fig. 5. Daily log returns of stock Charles Schwab Corp. from January 2005 to December 2017.

are already handled by the robust filter of t-GAS models. In particular, the impact of extreme return observations on ht
is attenuated as discussed in Creal et al. (2013). Therefore, the number series where the accelerating parameter is useful
is lower than in the Gaussian case.

We finally provide a further illustration to better understand under which circumstances the accelerating mechanism
delivers better results. We consider a random series from the S&P500 index for which the at-GAS outperforms the t-GAS
model: the daily log returns of the stock Charles Schwab Corp. (SCHW, a bank and brokerage firm in San Francisco). The
results presented below are indicative for many series in the S&P500 index. Fig. 5 shows the daily log returns of the series
from January 2005 to December 2017. We observe a sudden increase in the volatility level from 2008 which is caused by
the financial crisis of 2008.

The first plot in Fig. 6 presents the absolute log returns together with the filtered standard deviations from the t-GAS
and the at-GAS models from July to October 2008. It is clearly visible that the filtered variance of the at-GAS model adapts
more promptly than the filtered variance of the standard t-GAS model. The second plot in Fig. 6 presents the filtered
estimates for the time-varying αt and it shows a strong increase after the change in the volatility level. This increase in
αt enables the variance of the at-GAS to adjust quicker to the new volatility level.

6. Accelerated location and scale model for heavy tailed data

6.1. The model

We consider a heavy tailed distribution with a time-varying mean (location) and a time-varying variance (scale) using
the score-driven approach and for which the parameter that determines the magnitude of the update of the mean process
is also time-varying. More specifically, we consider a Student’s t conditional distribution for yt where both the mean and
the variance are time-varying. An exponential link function is used for the specification of the conditional variance. The
resulting model has some similarities with the stochastic volatility model of Stock and Watson (2007), see also Stock and
Watson (2016) for an extension with heavy tailed distributions. The Student’s t distribution in a GAS framework allows
us to handle outliers by attenuating their impact on the filtered parameters. Applications in the literature of the Student’s
t GAS models for location and scale parameters can be found in Creal et al. (2013), Harvey (2013) and Harvey and Luati
(2014). In particular, Harvey (2013) has considered a Student’s t model with both time-varying mean and variance. The key
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Fig. 6. The first plot shows the absolute log returns of the stock SCHW and the filtered standard deviations
√
ht for the t-GAS (dotted line) and

at-GAS (solid line) models for the period between July and October 2008. The second plot shows the estimated αt for the two corresponding models.

novelty of the model in our current study is the inclusion of a time-varying parameter αt in order to let the time-varying
location capture a wider range of dynamic specifications.

We consider the aGAS model with time-varying conditional location and scale as given by

yt = µt + σtεt , (13)

where µt is the time-varying location for yt , σt is the time-varying scale for yt , and {εt}t∈Z is an i.i.d. sequence of Student’s
t distributed random variables with zero mean, unit variance and ν degrees of freedom. The time-varying parameters are
described by the following equations

µt+1 = µt + αtsµ,t ,

αt = exp(ft+1/2), ft+1 = ωf + βf ft + αf sf ,t ,
σt = exp(gt/2), gt+1 = ωσ + βσ gt + ασ sσ ,t ,

where ωf , βf , αf , ωσ , βσ and ασ are static unknown parameters which we estimate by maximum likelihood, and where
sµ,t , sf ,t and sσ ,t are the score-based innovations of the processes. The innovation sµ,t of the location process µt is obtained
by setting the scaling factor Sµ,t equal to the square root of the inverse Fisher information, that is sµ,t takes the form

sµ,t =
(ν + 1)(yt − µt )σ−1

t

(ν − 2) + (yt − µt )2σ−2
t

.

The relationship between εt and sµ,t is nonlinear and the impact of extreme values of εt on sµ,t is attenuated. The degree
of attenuation depends on the degrees of freedom parameter ν: a smaller value for ν delivers a lower sensitivity of sµ,t on
outliers; also see Harvey and Luati (2014) for a more detailed discussion. The innovation sf ,t can be obtained from Eq. (4);
by setting Cf ,t = Sµ,tSµ,t−1, we obtain

sf ,t = sµ,tsµ,t−1.

We learn that sf ,t is positive when εt and εt−1 have the same sign and negative when εt and εt−1 have opposite signs.
Furthermore, extreme values of εt and εt−1 are detected as outliers and their impact on sf ,t is attenuated. The innovation
of the process σt takes the form

sσ ,t =
(ν + 1)(yt − µt )2σ−2

t

(ν − 2) + (yt − µt )2σ−2
t

− 1.

For this case, the Fisher information is constant and so it does not affect the functional form of sσ ,t . The update for sσ ,t is
the same as in the Beta-t-EGARCH model of Harvey (2013).

When the degrees of freedom of the Student’s t distribution get closer to infinity, ν → ∞, the Student’s t distribution
approaches the standard Gaussian distribution. In this limiting case, the model (13) reduces to a Gaussian score-driven
model where the innovation for µt is simply given by sµ,t = (yt − µt )σ−1

t while the innovation for σ 2
t is given by

sσ ,t = (yt − µt )2σ−2
t − 1.

6.2. Empirical illustration

In our final empirical illustration we consider the US quarterly consumer price (CP) index, which is obtained from the
FRED dataset. We mention that GAS models with robust updates have already been considered in modeling US inflation,
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Fig. 7. Quarterly consumer price US inflation series.

Table 4
The second column indicates the specification of the model. The third column provides a possible
reference for the constrained model, as a special case of our full model (13).

Description Reference

Model t.1 Our full model (13)
Model t.2 βσ = 0 and ασ = 0
Model t.3 βf = 0 and αf = 0 Harvey (2013, p. 139)
Model t.4 βσ = 0, ασ = 0, βf = 0 and αf = 0 Harvey and Luati (2014)
Model n.i Limiting case of Model t.i with v → ∞

for i = 1, 2, 3, 4

Table 5
Parameter estimates for the models in Table 4, together with their standard errors in brackets. The last three columns contain respectively the
maximized log-likelihood value, the Bayesian information criterion (BIC) and the Akaike information criterion (AIC). The bold values for BIC and AIC
indicate their smallest values amongst all considered models. The parameters δf and δσ are given by δf = ωf /(1 − βf ) and δσ = ωσ /(1 − βσ ).

δf βf αf δσ βσ ασ ν log-lik BIC AIC

Model t.1 −1.518 0.967 0.258 1.055 0.861 0.215 5.571 −475.4 989.4 964.7
(0.799) (0.027) (0.113) (0.236) (0.092) (0.089) (1.572)

Model t.2 −1.493 0.914 0.294 1.182 – – 3.826 −482.7 993.0 975.4
(0.402) (0.028) (0.071) (0.178) (0.553)

Model t.3 −0.468 – – 1.080 0.869 0.163 7.583 −481.8 991.4 973.6
(0.280) (0.207) (0.126) (0.099) (2.399)

Model t.4 −0.305 – – 1.111 – – 5.639 −488.8 994.3 983.7
(0.213) (0.134) (1.431)

Model n.1 −1.366 0.969 0.182 1.169 0.937 0.088 – −504.2 1041.6 1020.4
(0.618) (0.022) (0.072) (0.203) (0.030) (0.033)

Model n.2 −0.304 0.971 0.060 1.251 – – – −515.3 1052.7 1038.6
(0.416) (0.028) (0.036) (0.089)

Model n.3 −0.231 – – 1.213 0.939 0.054 – −510.2 1042.5 1028.4
(0.314) (0.161) (0.026) (0.021)

Model n.4 −0.080 – – 1.264 – – – −516.8 1044.7 1037.7
(0.266) (0.089)

see for instance Delle Monache and Petrella (2017) for an application of an adaptive filter to quarterly CPI inflation. The
inflation time series yt is computed as the annualized log-difference of the price index series pt , we adopt the standard
transformation yt = 400 log(pt/pt−1). The inflation series is computed from the first quarter of 1952 to the first quarter
of 2015. The resulting time series is presented in Fig. 7. We consider several specifications for the aGAS model which are
listed in Table 4.

The parameter estimates for all Models t.1-t.4 and Models n.1-n.4 are presented in Table 5, together with the
maximized log-likelihood value, the BIC and AIC. We can conclude from the reported results that the inclusion of the
time-varying scale σt as well as the time-varying αt is relevant for our US inflation series. In particular, the model with
the lowest BIC and AIC is Model t.1. The reported AIC and BIC statistics also indicate that the Student’s t specifications,
Models t.1-t.4, have a better fit than their limiting counterparts, Models n.1-n.4. This is confirmed by the estimates for
the degrees of freedom ν which are all small for the four Student’s t models.

Fig. 8 presents the filtered estimates of µt , σt and αt for our preferred Model t.1. The graph of the filtered µt shows
the robustness of the model in its handling of outliers. For example, in the fourth quarter of 2008, the extreme peak in
US inflation time series hardly affects the filtered path of µt . The graph of the filtered estimate of αt shows that during
the enduring period of exceptional high inflation, approximately between 1972 and 1983, also the filtered αt takes high
values. Clearly, during periods of persistent and sudden changes in the location for yt , the parameter µt required fast
updating to capture the changes. The time-varying αt plays a key role in accommodating the fast updating for location.
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Fig. 8. The filtered estimates of the time-varying parameters in Model t.1 (solid lines): upper plot is for µt , with US inflation (dotted line) and NBER
recession datings (gray areas) , middle plot is for αt , with fixed α estimate from Model t.4 (dotted line, α̂ = exp(−0.305/2) = 0.86), and lower plot
is for σt , with fixed σ estimate from Model t.4 (dotted line, σ̂ = exp(1.111/2) = 1.74).

The third graph in Fig. 8 indicates or suggests that the variability σt appears to increase in periods of lasting economic
recessions in the US; see the NBER recession datings in the first graph.

To investigate in detail the effect of the inclusion of the time-varying parameter αt on the filtered estimate of µt , we
present in Fig. 9 the filtered estimates µt from Model t.1 and Model t.3. Both models include the time-varying scale σt , the
only difference between the two models is that αt is not time-varying in Model t.3. We consider two periods where the
inflation series exhibit different behavior: the first graph in Fig. 9 is for the period from 1973 to 1982, while the second
graph is for the period from 1999 to 2008. In the first period 1973–1982, the time series appears to be subject to a fast
changing location. It may imply a low persistence in US inflation for this period. We observe that the filtered estimate of
αt contains some large values; see the second graph in Fig. 8. This allows the µt of Model t.1 to react more promptly to
the changes in the level of the series. The filtered estimate of µt from Model t.1 exceeds its counterpart from Model t.3
when the inflation level is increasing and vice versa when the inflation level is decreasing. For the period between 1999
and 2008, the second graph in Fig. 9 shows that the inflation series seems to change location more slowly: it appears as a
slow and lightly trending filtered µt subject to much noise. In this case, we have small values for the time-varying filtered
estimate of αt ; see the second graph in Fig. 8. This allows the µt of Model t.1 to change slowly, capturing the increasing
trend but not being too much affected by the noise. The benefit of having a time-varying αt can also be illustrated by the
filtered µt of Model t.3 which is more noisy than the filtered µt of Model t.1. The two graphs in Fig. 9 show how the
inclusion of the time-varying αt allows the dynamic model to be more accurate in adapting to a changing behavior of the
series. The improvements in terms of in-sample fit are also confirmed by AIC and BIC.

Finally, we have carried out a limited pseudo out-of-sample forecasting study to compare the performances of the
models in Table 4. For this part of the study we include two other models to facilitate forecast comparisons: the well-
known autoregressive integrated moving average, the ARIMA(P,D,Q ) model with orders P = 4,D = 1,Q = 0 and
P = 1,D = 1,Q = 1. The root mean squared error (FRMSE) is computed using the last 100 observations and parameter
estimation for the different model specifications is performed using a fixed rolling window. A split of the out-of-sample
dataset in three sub-samples is also considered to evaluate the performance of the models in different periods. We obtain
h-steps ahead forecasts, for h = 1, 2, 3, 4. Differences in forecast accuracy are verified by means of the Diebold Mariano
(DM) test, see Diebold and Mariano (1995). The DM test is used to test the null hypothesis that Model t.1 has the same
FRMSE as the other models against the alternative of different FRMSE.

The results are presented in Table 6. We find that either Model n.1 or Model t.1 have the best FRMSE for all forecasting
horizons when we consider the entire out-of-sample window. For the forecasting horizon of 1 year (h = 4 quarters), Model
t.1 significantly outperforms most of the models at a 5% or 10% significance level. With regard to the other forecasting
horizons, we conclude that the differences in terms of forecasting accuracy are not significant. Finally, when we focus on
the different sub-samples, we can see that results are more mixed and differences tend to be statistically insignificant.
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Fig. 9. The filtered estimates of µt from Model t.1 and Model t.3 for two different time periods. The gray line is US inflation, the dashed line is the
filtered estimate µt from Model t.3 and the solid line is the filtered estimate µt from our preferred Model t.1.

Table 6
FRMSE ratio for different sub-periods of the out-of-sample window. The benchmark is Model t.1: the FRMSE of Model t.1 is the denominator of the
ratios. Asterisk indicates the significance level of the Diebold Mariano test: ∗ indicates 10% level and ∗∗ indicates 5% level.

1990–2015 (full sample) 1990–1998 1998–2006 2006–2015

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Model t.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model t.2 1.01 1.01 1.01 1.02 1.02 1.01 0.98 0.98∗∗ 1.00 1.00 1.00 1.01∗ 1.01 1.01 1.02 1.03∗∗

Model t.3 1.05 1.07 1.05 1.08∗∗ 1.00 1.07 0.98 1.01 1.07 1.08 1.02 1.08∗ 1.06 1.07 1.07 1.08∗

Model t.4 1.06∗ 1.08∗ 1.05 1.09∗∗ 1.04 1.11 1.00 1.02∗∗ 1.07∗ 1.08 0.98 1.07∗ 1.06 1.07 1.07 1.10∗∗

Model n.1 0.98 1.00 1.00 1.01 0.96 1.01 0.97 0.98 1.06 1.09∗ 1.08∗ 1.10∗∗ 0.97 0.99 0.98 0.98
Model n.2 1.01 1.11 1.09 1.08∗∗ 0.97 1.05 0.98 0.99 1.07 1.08 1.03 1.09∗ 1.00 1.12 1.12 1.10∗

Model n.3 1.02 1.07 1.05 1.07 0.98 1.05 0.97 1.00 1.12∗ 1.15∗ 1.09 1.15∗∗ 1.00 1.05 1.05 1.05
Model n.4 1.01 1.11 1.09 1.08∗∗ 0.97 1.05 0.98 0.99 1.07 1.08 1.03 1.09∗ 1.00 1.12 1.12 1.10∗

ARMA(4,0) 1.03 1.13 1.16 1.13∗∗ 0.92 0.99 1.02 1.01 1.19 1.08 1.07 1.14 1.02 1.16 1.20 1.14∗∗

ARMA(1,1) 0.99 1.09 1.07 1.07∗ 0.97 1.05 0.97 0.98∗∗ 1.08 1.07 1.02 1.07 0.98 1.10 1.10 1.08

In the first sub-sample (1990–1998) there is not a clear winner and Mondel n.1 and the ARMA models have a similar
performance. Instead, in the second (1998–2006) and third (2006–2015) sub-samples the best performance is given by
Mondel t.1 and Mondel n.1, respectively, for all forecasting horizons. Overall, the results suggest that the accelerating
models have a satisfactory forecasting performance.

7. Conclusion

We have introduced a novel class of score-driven models that allows for locally changing the weights for updating the
time-varying parameters. We have provided theoretical and simulation-based evidence that these so-called accelerated
GAS models can outperform corresponding GAS models with time-invariant weights for updating. We have considered
two sets of illustrations: the first set is based on volatility models applied to an exchange rate series and to all daily return
series that are part of the S&P 500 index; the second set is based on a time-varying location and scale model applied to
an US inflation time series. For these relevant illustrations, we find that the proposed accelerating framework is capable
of improving the in-sample and out-of-sample fit for GAS and related models.

Appendix A. Proofs

Proof of Lemma 1. The first statement follows by noting that λt (ft ) = λ∗
t if {ft}t∈N is a random sequence such that

ft = g−1
(
(λ∗

t+1 − ωλ − βλλt )/sλ,t
)
for any t ∈ N. As concerns the second statement, the if part is immediately proved

when we notice that sλ,t = (λ∗

t+1 − ωλ − βλλt )/g(c) implies ft = c . Finally, to prove the only if part of the statement,
suppose that, for some t ∈ N, there exists no c ∈ R such that sλ,t = (λ∗

t+1 − ωλ − βλλt )/g(c), then, setting ft = c ∀ t
implies that λt (ft ) ̸= λ∗

t for some t ∈ N, for any possible c ∈ R. □
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Proof of Proposition 1. The proof follows the same argument as in Blasques et al. (2015). By an application of the mean
value theorem, the local realized KL divergence can be expressed as

∆t+1
f ,t =

∫
B(yt ,ϵy)

pot (y) log
p(y|λt (ft ))

p(y|λt (ft+1))
dy

=

∫
B(yt ,ϵy)

pot (y)
∂ log p(y|λt (ḟt ))

∂ ḟt
(ft − ft+1)dy

= −

∫
B(yt ,ϵy)

pot (y)αf Cf ,tSλ,t−1uλ

(
yt−1, λt−1

)2uλ

(
y, λt (ḟt )

)
uλ

(
yt , λt (ft )

)
dy

= −

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
y, λt (ḟt )

)
uλ

(
yt , λt (ft )

)
dy,

where C̃t = αf Cf ,tSλ,t−1uλ(yt−1, λt−1)2 and ḟt is a point between ft and ft+1. By again applying the mean value theorem,
we obtain

∆t+1
f ,t = −

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
y, λt (ḟt )

)
uλ

(
yt , λt (ft )

)
dy

= −

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
yt , λt (ft )

)2dy (14)

−

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
yt , λt (ft )

)∂uλ

(
ẏt , λt (f̈t )

)
∂ ẏt

(y − yt )dy (15)

−

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
yt , λt (ft )

)∂uλ

(
ẏt , λt (f̈t )

)
∂ f̈t

(ḟt − ft )dy, (16)

where f̈t is a point between ḟt and ft , and ẏt is a point between y and yt . The desired result follows since the term (14)
is a.s. negative and the terms (15) and (16) can be made arbitrary small in absolute value compared to the first term by
selecting the ball radius ϵy and ϵf small enough. □

Proof of Proposition 2. The if part of the proposition follows immediately from a similar argument as in the proof of
Proposition 1. As concerns the only if part, we first note that if sign(ft+1 − ft ) = sign(sf ,t ) does not hold with probability 1
for any ft ∈ F , then there exists an ft ∈ F such that sign(ft+1 − ft ) ̸= sign(sf ,t ) holds with positive probability. By repeated
applications of the mean value theorem we obtain that

∆t+1
f ,t =

∫
B(yt ,ϵy)

pot (y) log
p(y|λt (ft ))

p(y|λt (ft+1))
dy =

∫
B(yt ,ϵy)

pot (y)
∂ log p(y|λt (ḟt ))

∂ ḟt
(ft − ft+1)dy

= −

∫
B(yt ,ϵy)

pot (y)αf Sλ,t−1uλ

(
yt−1, λt−1

)
uλ

(
y, λt (ḟt )

)
(ft+1 − ft )dy

= −

∫
B(yt ,ϵy)

pot (y)αf Sλ,t−1uλ

(
yt−1, λt−1

)
uλ

(
yt , λt (ft )

)
(ft+1 − ft )dy (17)

−

∫
B(yt ,ϵy)

pot (y)αf Sλ,t−1uλ

(
yt−1, λt−1

)∂uλ

(
ẏt , λt (f̈t )

)
∂ ẏt

(ft+1 − ft )(y − yt )dy (18)

−

∫
B(yt ,ϵy)

pot (y)αf Sλ,t−1uλ

(
yt−1, λt−1

)∂uλ

(
ẏt , λt (f̈t )

)
∂ f̈t

(ft+1 − ft )(ḟt − ft )dy, (19)

where ḟt is a point between ft and ft+1, f̈t is a point between ḟt and ft , and ẏt is a point between y and yt . The term
in (17) is positive with positive probability since sign(ft+1 − ft ) ̸= sign(sf ,t ) with positive probability and the factor
uλ

(
yt−1, λt−1

)
uλ

(
yt , λt (ft )

)
has the same sign as the score sf ,t . Therefore, ∆t+1

f ,t > 0 holds with positive probability since
the terms (18) and (19) can be made arbitrary small in absolute value compared to the first term by selecting the ball
radius ϵy and ϵf small enough. This concludes the proof. □

Proof of Proposition 3. The line of argument is similar as in the proof of Proposition 1, the result follows by repeated
applications of the mean value theorem. The difference in local KL variation can be expressed as

∆t+1
λ,t+1 − ∆t

λ,t+1 =

∫
B(yt ,ϵy)

pot (y) log
p(y|λt+1(ft ))

p(y|λt+1(ft+1))
dy

=

∫
B(yt ,ϵy)

pot (y)
∂ log p(y|λt+1(ḟt ))

∂ ḟt
(ft − ft+1)dy
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= −

∫
B(yt ,ϵy)

pot (y)αf Cf ,tSλ,t−1uλ

(
yt , λt (ft )

)2uλ

(
yt−1, λt−1

)
uλ

(
y, λt+1(ḟt )

)
dy

= −

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
yt−1, λt−1

)
uλ

(
y, λt (ḟt )

)
dy,

where C̃t = αf Cf ,tSλ,t−1uλ

(
yt , λt (ft )

)2 and ḟt is a point between ft and ft+1. Applying again the mean value theorem it
results

∆t+1
λ,t+1 − ∆t

λ,t+1 = −

∫
B(yt ,ϵy)

pot (y)C̃tuλ

(
y, λt (ḟt )

)
uλ

(
yt−1, λt−1

)
dy

= −

∫
B(yt ,ϵy)

pot (y)C̃tU1,tU2,tdy,

where U1,t and U2,t are respectively given by

U1,t = uλ

(
yt , λt (ft )

)
+

∂uλ(ẏt , λ̇t )
∂λ̇t

(λt+1(ḟt ) − λt (ft )) +
∂uλ(ẏt , λ̇t )

∂ ẏt
(y − yt ),

U2,t = uλ

(
yt , λt (ft )

)
+

∂uλ(ÿt , λ̈t )
∂λ̈t

(λt−1 − λt (ft )) +
∂uλ(ÿt , λ̈t )

∂ ÿt
(yt−1 − yt ),

with ẏt a point between yt and y, λ̇t a point between λt (ft ) and λt+1(ḟt ), ÿt a point between yt−1 and yt and λ̈t a point
between λt−1 and λt (ft ). From Assumption 1, the score uλ

(
yt , λt (ft )

)
is nonzero with probability 1, and the second and third

terms in the expressions of U1,t and U2,t can be made arbitrary small in absolute value with respect to the first term by
selecting the ball radius ϵy and ϵλ small enough. Hence the product U1,tU2,t can be made positive for any ẏt , y ∈ B(yt , ϵy).
This, together with the positivity of pot (y) and C̃t , implies that ∆t+1

λ,t+1 − ∆t
λ,t+1 is negative. □

Appendix B. Consistent model ranking

We have that pot denotes the true conditional density of yt given its past. In the following lemma we consider two
models, Model 1 and Model 2. We suppose that these models are indexed by the parameter vectors θ1 and θ2, respectively.
Further, we let p1t (θ

1) and p2t (θ
2) denote the conditional density of yt as implied by models 1 and 2, under the parameters

θ1 and θ2, respectively. Additionally, we let θ1
0 and θ2

0 denote the pseudo-true parameters of models 1 and 2, i.e. these
are the best parameters of each model in KL divergence.

We assume that the model parameters are estimated using a sample of size T and the forecasting performance is
evaluated using a different sample of size N . We suppose that the pseudo-true parameters can be consistently estimated
by the ML estimates θ̂1

T and θ̂2
T . Finally, we have

ℓ1N (θ̂
1
T ) = N−1

N∑
t=1

log p1t (θ̂
1
T ), ℓ2N (θ̂

2
T ) = N−1

N∑
t=1

log p2t (θ̂
2
T ),

which are the logarithmic scoring rules evaluated at the corresponding ML estimates θ̂1
T and θ̂2

T , respectively.

Lemma 2 (Consistent Model Ranking). Let a uniform law of large numbers apply to the logarithmic scoring rules as the sample
N diverges

(i) supθ1∈Θ1 |ℓ1N (θ
1) − E log p1t (θ

1)|
a.s.
→ 0 as N → ∞;

(ii) supθ2∈Θ2 |ℓ2N (θ
2) − E log p2t (θ

2)|
a.s.
→ 0 as N → ∞;

where the limit functions E log p1t (·) and E log p2t (·) are continuous. Furthermore, let the ML estimates be consistent as the
estimation sample T diverges to infinity

(iii) θ̂1
T

a.s.
→ θ1

0 as T → ∞;
(iv) θ̂2

T
a.s.
→ θ2

0 as T → ∞.

Then the difference in logarithmic scoring rules converges almost surely to the difference in KL divergences between the two
models,

lim
T ,N→∞

(
ℓ1N (θ̂

1
T ) − ℓ2N (θ̂

2
T )

)
= KL

(
pot , p

2
t (θ

2
0 )

)
− KL

(
pot , p

1
t (θ

1
0 )

)
.
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Proof of Lemma 2. Given the uniform convergence of the logarithmic scoring rules and given the consistency of the ML
estimator, the result follows immediately by letting T and N diverge to infinity either jointly or sequentially

lim
T ,N→∞

(
ℓ1N (θ̂

1
T ) − ℓ2N (θ̂

2
T )

)
= E log p1t (θ

1
0 ) − E log p2t (θ

2
0 ) = E log

(
pot

p2t (θ2
0 )

)
− E log

(
pot

p1t (θ1
0 )

)
= KL

(
pot , p

2
t (θ

2
0 )

)
− KL

(
pot , p

1
t (θ

1
0 )

)
. □

References

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B., Caski, F. (Eds.), Proceedings of the Second
International Symposium on Information Theory, Armenian SSR. Akademiai Kiado, Budapest, pp. 267–281.

Andres, P., 2014. Computation of maximum likelihood estimates for score driven models for positive valued observations. Comput. Statist. Data Anal.
76, 34–43.

Blasques, F., Koopman, S.J., Lucas, A., 2015. Information-theoretic optimality of observation-driven time series models for continuous responses.
Biometrika 102, 325–343.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307–327.
Creal, D., Koopman, S.J., Lucas, A., 2011. A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. J. Bus. Econom.

Statist. 29 (4), 552–563.
Creal, D., Koopman, S.J., Lucas, A., 2013. Generalized autoregressive score models with applications. J. Appl. Econometrics 28 (5), 777–795.
Creal, D., Schwaab, B., Koopman, S.J., Lucas, A., 2014. Observation driven mixed-measurement dynamic factor models with an application to credit

risk. Rev. Econ. Stat. 96, 898–915.
De Lira Salvatierra, I., Patton, A.J., 2015. Dynamic copula models and high frequency data. J. Empir. Financ. 30, 120–135.
Delle Monache, D., Petrella, I., 2017. Adaptive models and heavy tails with an application to inflation forecasting. Int. J. Forecast. 33 (2), 482–501.
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econom. Statist. 13, 253–265.
Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50, 987–1007.
Frankel, J.A., Wei, S.-J., 2007. Assessing china’s exchange rate regime. Econ. Policy 22 (51), 576–627.
Geweke, J., Amisano, G., 2011. Optimal prediction pools. J. Econometrics 164, 130–141.
Harvey, A., 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge University

Press, New York.
Harvey, A., Luati, A., 2014. Filtering with heavy tails. J. Amer. Statist. Assoc. 109, 1112–1122.
Hjort, N.L., Jones, M.C., 1996. Locally parametric nonparametric density estimation. Ann. Statist. 24 (4), 1433–1854.
Jaynes, E.T., 1957. Information theory and statistical mechanics. Phys. Rev. 106, 620–630.
Jaynes, E.T., 2003. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge.
Kullback, S., 1959. Information Theory and Statistics. Wiley, New York.
Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Stat. 22 (1), 79–86.
Maasoumi, E., 1986. The measurement and decomposition of multidimensional inequality. Econometrica 54, 991–997.
Oh, D.H., Patton, A.J., 2017. Time-varying systemic risk: evidence from a dynamic copula model of cds spreads. J. Bus. Econom. Statist. (forthcoming).
Pan, M.-S., Fok, R.C.-W., Liu, Y.A., 2007. Dynamic linkages between exchange rates and stock prices: evidence from east asian markets. Int. Rev. Econ.

Finance 16 (4), 503–520.
Patnaik, I., Shah, A., Sethy, A., Balasubramaniam, V., 2011. The exchange rate regime in asia: from crisis to crisis. Int. Rev. Econ. Finance 20 (1),

32–43.
Patton, A.J., 2011. Volatility forecast comparison using imperfect volatility proxies. J. Econometrics 160 (1), 246–256.
Stock, Watson, 2007. Why has u.s. inflation become harder to forecast? journal of money. Credit Bank. 39, 3–33.
Stock, J.H., Watson, M.W., 2016. Core inflation and trend inflation. Rev. Econ. Stat. 98 (4), 770–784.
Straumann, D., 2005. Estimation in Conditionally Heteroschedastic Time Series Models. Springer, New York, p. 181.
Ullah, A., 1996. Entropy, divergence and distance measures with econometric applications. J. Statist. Plann. Inference 69, 137–162.
Ullah, A., 2002. Uses of entropy and divergence measures for evaluating econometric approximations and inference. J. Econometrics 107 (1–2),

313–326.

http://refhub.elsevier.com/S0304-4076(19)30055-7/sb1
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb1
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb1
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb2
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb2
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb2
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb3
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb3
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb3
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb4
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb5
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb5
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb5
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb6
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb7
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb7
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb7
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb8
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb9
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb10
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb11
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb12
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb13
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb14
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb14
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb14
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb15
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb16
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb17
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb18
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb19
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb20
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb21
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb22
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb23
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb23
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb23
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb24
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb24
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb24
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb25
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb26
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb27
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb28
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb29
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb30
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb30
http://refhub.elsevier.com/S0304-4076(19)30055-7/sb30

	Accelerating score-driven time series models
	Introduction
	Accelerated score-driven time series models
	Optimality properties
	A general updating mechanism
	Optimality of score innovations
	Relative optimality

	Monte Carlo experiment
	Accelerating GARCH and related models
	Model formulation
	Application for an asian exchange rate time series
	Application to all series in the SP500 stock index

	Accelerated location and scale model for heavy tailed data
	The model
	Empirical illustration

	Conclusion
	Appendix A. Proofs
	Appendix B. Consistent model ranking
	References


