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Abstract
We present a framework for processing formulas in automatic theorem provers, with gener-
ation of detailed proofs. The main components are a generic contextual recursion algorithm
and an extensible set of inference rules. Clausification, skolemization, theory-specific sim-
plifications, and expansion of ‘let’ expressions are instances of this framework. With suitable
data structures, proof generation adds only a linear-time overhead, and proofs can be checked
in linear time.We implemented the approach in the SMT solver veriT. This allowed us to dra-
matically simplify the code base while increasing the number of problems for which detailed
proofs can be produced, which is important for independent checking and reconstruction in
proof assistants. To validate the framework, we implemented proof reconstruction in Isabelle/
HOL.
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1 Introduction

An increasing number of automatic theorem provers can generate certificates, or proofs, that
justify the formulas they derive. These proofs can be checked by other programs and shared
across reasoning systems. It might also happen that a human user would want to inspect this
output to understand why a formula holds. Proof production is generally well understood
for the core proving methods and for many theories commonly used in satisfiability mod-
ulo theories (SMT). But most automatic provers also perform some formula processing or
preprocessing—such as clausification and rewriting with theory-specific lemmas—and proof
production for this aspect is less mature.

Formost provers, the code for processing formulas is lengthy and deals with amultitude of
cases, some of which are rarely executed. Although it is crucial for efficiency, this code tends
to be given less attention than other aspects of provers. Developers are reluctant to invest
effort in producing detailed proofs for such processing, since this requires adapting a lot of
code. As a result, the granularity of inferences for formula processing is often coarse. To
avoid gaps in the proofs, it might also sometimes be necessary to simply disable processing
features, at a high cost in proof search performance.

Fine-grained proofs are important for a variety of applications. We propose a framework
to generate such proofs without slowing down proof search. Proofs are expressed using an
extensible set of inference rules (Sect. 3). The succedent of a rule is an equality between
the original term and the processed term. (It is convenient to consider formulas a special
case of terms.) The rules have a fine granularity, making it possible to cleanly separate
theories. Clausification, theory-specific simplifications, and expansion of ‘let’ expressions
are instances of this framework. Skolemization may seem problematic, but with the help of
Hilbert’s choice operator, it can also be integrated into the framework. Some provers provide
very detailed proofs for parts of the solving, but we are not aware of any prior publications
about practical attempts to provide easily reconstructible proofs for processing formulas
containing quantifiers and ‘let’ expressions.

At the heart of the framework lies a generic contextual recursion algorithm that traverses
the terms to process (Sect. 4). The context fixes some variables, maintains a substitution,
and keeps track of polarities or other data. The transformation-specific work, including the
generation of proofs, is performed by plugin functions that are given as parameters to the
framework. The recursion algorithm, which is critical for the performance and correctness
of the generated proofs, needs to be implemented only once. Another benefit of this modular
architecture is that we can easily combine several transformations in a single pass, without
complicating the code unduly or compromising the level of detail of the proof output. For
very large inputs, this can improve performance.

The inference rules and the contextual recursion algorithmenjoymany desirable properties
(Sect. 5). We show that the rules are sound and that the treatment of binders is correct even
in the presence of name clashes. Moreover, assuming suitable data structures, we show that
proof generation adds an overhead that is proportional to the time spent processing the terms.
Checking proofs represented as directed acyclic graphs (DAGs) can be performed with a
time complexity that is linear in their size.

We implemented the approach in veriT (Sect. 6), an SMT solver that is competi-
tive on problems combining equality, linear arithmetic, and quantifiers [1]. Compared
with other SMT solvers, veriT is known for its very detailed proofs [2], which are
reconstructed in the proof assistants Coq [3] and Isabelle/HOL [4] and in the GAPT

123



Scalable Fine-Grained Proofs for Formula Processing 487

system [5]. As a proof of concept, we extended the smt proof method in Isabelle/HOL
with proof reconstruction for veriT, in addition to the existing support for Z3 [6].

By adopting the new framework, we were able to remove large amounts of complicated
code in the solver, while enabling detailed proofs for more transformations than before. The
contextual recursion algorithm had to be implemented only once and is more thoroughly
tested than any of the monolithic transformations it subsumes. Our empirical evaluation
reveals that veriT is as fast as before even though it now generates finer-grained proofs.

A shorter version of this article was presented at the CADE-26 conference as a system
description [7]. The current article includes proof reconstruction in Isabelle’s smt method,
more explanations and examples, detailed justifications of the metatheoretical claims, and
extensive coverage of related work. The side condition of theBind rule has also been repaired
to avoid variable capture.

2 Conventions

Our setting is a many-sorted classical first-order logic as defined by the SMT-LIB standard
[8] or TPTP TFF [9]. Our results are also applicable to richer formalisms such as higher-order
logic (simple type theory) with polymorphism [10]. A signature� = (S ,F ) consists of a set
S of sorts and a setF of function symbols over these sorts.Nullary function symbols are called
constants. We assume that the signature contains a Bool sort and constants true, false : Bool,
a family (� : σ × σ → Bool)σ∈S of function symbols interpreted as equality, and the
connectives ¬, ∧, ∨, and −�→. Formulas are terms of type Bool, and equivalence is equality
(�) on Bool. Terms are built over function symbols from F and variables from a fixed family
of infinite sets (Vσ )σ∈S . In addition to ∀ and ∃, we rely on two more binders: Hilbert’s choice
operator εx .ϕ and a ‘let’ construct, let x̄n � s̄n in t , which simultaneously assigns n variables
that can be used in the body t .

We use the symbol = for syntactic equality on terms and =α for syntactic equality up
to renaming of bound variables. We reserve the names a, c, f,g,p,q for function symbols;
x, y, z for variables; r , s, t, u for terms (which may be formulas); ϕ,ψ for formulas; and
Q for quantifiers (∀ and ∃). We use the notations ān and (ai )ni=1 to denote the tuple, or vector,
(a1, . . . , an). We write [n] for {1, . . . , n}.

Given a term t , the sets of its free and bound variables are writtenFV(t) andBV(t), respec-
tively. The notation t[x̄n] stands for a term that may depend on distinct variables x̄n ; t[s̄n]
is the corresponding term where the terms s̄n are simultaneously substituted for x̄n . Bound
variables in t are renamed to avoid capture. Following these conventions, Hilbert choice and
‘let’ are characterized by requiring interpretations to satisfy the following properties:

|	 (∃x . ϕ[x]) −�→ ϕ[εx . ϕ] (ε1)

|	 (∀x . ϕ � ψ) −�→ (εx . ϕ) � (εx . ψ) (ε2)

|	 (let x̄n � s̄n in t[x̄n]) � t[s̄n] (let)

Substitutions ρ are functions from variables to terms such that ρ(xi ) 
= xi for at most
finitely many variables xi . We write them as {x̄n �→ s̄n}; the omitted variables are mapped to
themselves. The substitution ρ[x̄n �→ s̄n] or ρ[x1 �→ s1, . . . , xn �→ sn]maps each variable xi
to the term si and otherwise coincides with ρ. The application of a substitution ρ to a term
t is denoted by ρ(t). It is capture-avoiding; bound variables in t are renamed as necessary.
Composition ρ′ ◦ ρ is defined as for functions (i.e., ρ is applied first).
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488 H. Barbosa et al.

3 Inference System

The inference rules used by our framework depend on a notion of context defined by the
grammar

	 ::= ∅ | 	, x | 	, x̄n �→ s̄n

The empty context ∅ is also denoted by a blank. Each context entry either fixes a variable x
or defines a substitution {x̄n �→ s̄n}. Any variables arising in the terms s̄n will typically have
been introduced in the context 	 on the left, but this is not required. If a context introduces
the same variable several times, the rightmost entry shadows the others.

Abstractly, a context 	 fixes a set of variables and specifies a substitution subst (	). The
substitution is the identity for ∅ and is defined as follows in the other cases:

subst (	, x) = subst (	) [x �→ x] subst
(
	, x̄n �→ t̄n

) = subst (	) ◦ {x̄n �→ t̄n}
In the first equation, the [x �→ x] update shadows any replacement of x induced by 	. The
examples below illustrate this subtlety:

subst (x �→ 7, x �→ g(x)) = {x �→ g(7)}
subst (x �→ 7, x, x �→ g(x)) = {x �→ g(x)}

We write 	(t) to abbreviate the capture-avoiding substitution subst (	) (t).
Transformations of terms (and formulas) are justified by judgments of the form	 � t � u,

where	 is a context, t is an unprocessed term, and u is the corresponding processed term. The
free variables in t and u must appear in the context 	. Semantically, the judgment expresses
the equality of the terms 	(t) and u, universally quantified on variables fixed by 	. Crucially,
the substitution applies only on the left-hand side of the equality.

The inference rules for the transformations covered in this article are presented below,
followed by explanations.

TautT if |	T 	(t) � u
	 � t � u

	 � s � t 	 � t � u
Trans if 	(t) = t

	 � s � u
(
	 � ti � ui

)
n
i=1

Cong

	 � f(t̄n) � f(ūn)

	, y, x �→ y � ϕ � ψ
Bind if y /∈ FV(Qx . ϕ) ∪ V(	)

	 � (Qx . ϕ) � (Qy. ψ)

	, x �→ (εx . ϕ) � ϕ � ψ
Sko ∃

	 � (∃x . ϕ) � ψ

	, x �→ (εx . ¬ϕ) � ϕ � ψ
Sko∀

	 � (∀x . ϕ) � ψ
(
	 � ri � si

)
n
i=1 	, x̄n �→ s̄n � t � u

Let if 	(si ) = si for all i ∈ [n]
	 � (let x̄n � r̄n in t) � u

– TautT relies on an oracle |	T to derive arbitrary lemmas in a theory T . In practice,
the oracle will produce some kind of certificate to justify the inference. An important
special case, for which we use the name Refl, is syntactic equality up to renaming of
bound variables; the side condition is then 	(t) =α u. (We use =α instead of = because
applying a substitution can rename bound variables.)

– Trans needs the side condition because the term t appears both on the left-hand side of
� (where it is subject to 	’s substitution) and on the right-hand side (where it is not).
Without it, the two occurrences of t in the antecedent could denote different terms.

– Cong can be used for any function symbol f, including the logical connectives.
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Scalable Fine-Grained Proofs for Formula Processing 489

– Bind is a congruence rule for quantifiers. The rule also justifies the renaming of the bound
variable (from x to y). In the antecedent, the renaming is expressed by a substitution in
the context. If x = y, the context is 	, x, x �→ x , which has the same meaning as 	, x .
The side condition prevents an unwarranted variable capture: The new variable should
not be a free variable in the formula where the renaming occurs (y /∈ FV(Qx . ϕ)), and
should be fresh in the context (y /∈ V(	), where V(	) denotes the set of all variables
occurring in 	). In particular, y should not appear fixed or on either side of a substitution
in the context.

– Sko ∃ and Sko∀ exploit (ε1) to replace a quantified variable with a suitable witness,
simulating skolemization. We can think of the ε expression in each rule abstractly as a
fresh function symbol that takes any fixed variables it depends on as arguments. In the
antecedents, the replacement is performed by the context.

– Let exploits (let) to expand a ‘let’ expression. Again, a substitution is used. The terms r̄n
assigned to the variables x̄n can be transformed into terms s̄n .

The antecedents of all the rules inspect subterms structurally, without modifying them.
Modifications to the term on the left-hand side are delayed; the substitution is applied only
in Taut. This is crucial to obtain compact proofs that can be checked efficiently. Some of
the side conditions may look computationally expensive, but there are techniques to compute
them fairly efficiently. Furthermore, by systematically renaming variables in Bind, we can
satisfy most of the side conditions trivially, as we will prove in Sect. 5.

The set of rules can be extended to cater for arbitrary transformations that can be expressed
as equalities, using Hilbert choice to represent fresh symbols if necessary. The usefulness of
Hilbert choice for proof reconstruction is well known [6,11,12], but we push the idea further
and use it to simplify the inference system and make it more uniform.

Example 1 The following derivation tree justifies the expansion of a ‘let’ expression:

Cong

� a � a

Refl

x �→ a � x � a
Refl

x �→ a � x � a
Cong

x �→ a � p(x, x) � p(a, a)
Let

� (let x � a in p(x, x)) � p(a, a)

It is also possible to further process the substituted term, as in this derivation:

Taut+� a + 0 � a

...
Cong

x �→ a � p(x, x) � p(a, a)
Let

� (let x � a + 0 in p(x, x)) � p(a, a)

Example 2 The following derivation tree, in which εx abbreviates εx . ¬p(x), justifies the
skolemization of the quantifier in the formula ¬∀x . p(x):

Refl

x �→ εx � x � εx
Cong

x �→ εx � p(x) � p(εx )
Sko∀� (∀x . p(x)) � p(εx )
Cong

� (¬∀x . p(x)) � ¬p(εx )

TheCong inference aboveSko ∀ is optional; we could also have closed the derivation directly
with Refl. In a prover, the term εx would be represented by a fresh Skolem constant c, and
we would ignore c’s connection to εx during proof search.
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490 H. Barbosa et al.

Skolemization can be applied regardless of polarity. Usually, we skolemize only positive
existential quantifiers and negative universal quantifiers. However, skolemizing other quan-
tifiers is sound in the context of proving and hence allowed by our inference system. The
trouble is that unrestricted skolemization is generally incomplete, unless the prover can rea-
son about Hilbert choice. To paraphrase Orwell, all quantifiers are skolemizable, but some
quantifiers are more skolemizable than others.

Example 3 The next derivation tree illustrates the interplay between the theory rule TautT
and the equality rules Trans and Cong:

Cong

� k � k
Taut×� 1×0 � 0
Cong

� k + 1×0 � k + 0
Taut+� k + 0 � k
Trans

� k + 1×0 � k
Cong

� k � k
Cong

� (k + 1×0 < k) � (k < k)

We could extend the tree at the bottom with an extra application of Trans and Taut< to
simplify k < k further to false. The example demonstrates that theories can be arbitrarily
fine-grained, which usually simplifies proof checking. At the other extreme, we could have
derived � (k + 1×0 < k) � false using a single Taut+ ∪ × ∪< inference.

Example 4 The tree below illustrates what can go wrong if we ignore side conditions:

Refl

	1 � f(x) � f(x)

Refl

	2 � x � f(x)
Refl

	3 � p(y) � p(f(f(x)))
Let*

	2 � (let y � x in p(y)) � p(f(f(x)))
Let

	1 � (let x � f(x) in let y � x in p(y)) � p(f(f(x)))
Bind

� (∀x . let x � f(x) in let y � x in p(y)) � (∀x . p(f(f(x))))

In the above, 	1 = x, x �→ x ; 	2 = 	1, x �→ f(x); and 	3 = 	2, y �→ f(x). The inference
marked with an asterisk (*) is illegal, because 	2(f(x)) = f(f(x)) 
= f(x). We exploit this to
derive an invalid judgment, with a spurious application of f on the right-hand side. To apply
Let legally, we must first rename the universally quantified variable x to a fresh variable z
using the Bind rule:

Refl

	1 � f(x) � f(z)

Refl

	2 � x � f(z)
Refl

	3 � p(y) � p(f(z))
Let

	2 � (let y � x in p(y)) � p(f(z))
Let

	1 � (let x � f(x) in let y � x in p(y)) � p(f(z))
Bind

� (∀x . let x � f(x) in let y � x in p(y)) � (∀z. p(f(z)))

This time, we have 	1 = z, x �→ z; 	2 = 	1, x �→ f(z); and 	3 = 	2, y �→ f(z). Let’s
side condition is satisfied: 	2(f(z)) = f(z).

Example 5 The dangers of capture are illustrated by the following tree, where εy stands for
εy. p(x) ∧ ∀x . q(x, y):

Refl*
x, y �→ εy � (p(x) ∧ ∀x . q(x, y)) � (p(x) ∧ ∀x . q(x, εy))

Sko ∃
x � (∃y. p(x) ∧ ∀x . q(x, y)) � (p(x) ∧ ∀x . q(x, εy))

Bind

� (∀x . ∃y. p(x) ∧ ∀x . q(x, y)) � (∀x . p(x) ∧ ∀x . q(x, εy))
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The inference marked with an asterisk would be legal if Refl’s side condition were stated
using capturing substitution. The final judgment is unwarranted, because the free variable x
in the first conjunct of εy is captured by the inner universal quantifier on the right-hand side.

To avoid the capture, we rename the inner bound variable x to z. Then it does not matter
whether substitution is capturing or capture-avoiding:

Refl

x, y �→ εy � p(x) � p(x)

Refl

x, y �→ εy, x �→ z � q(x, y) � q(z, εy)
Bind

x, y �→ εy � (∀x . q(x, y)) � (∀z. q(z, εy))
Cong

x, y �→ εy � (p(x) ∧ ∀x . q(x, y)) � (p(x) ∧ ∀z. q(z, εy))
Sko ∃

x � (∃y. p(x) ∧ ∀x . q(x, y)) � (p(x) ∧ ∀z. q(z, εy))
Bind

� (∀x . ∃y. p(x) ∧ ∀x . q(x, y)) � (∀x . p(x) ∧ ∀z. q(z, εy))

4 Contextual Recursion

We propose a generic algorithm for term transformations, based on structural recursion.
The algorithm is parameterized by a few simple plugin functions embodying the essence
of the transformation. By combining compatible plugin functions, we can perform several
transformations in one traversal. Transformations can depend on some context that encapsu-
lates relevant information, such as bound variables, variable substitutions, and polarity. Each
transformation can define its own notion of context that is threaded through the recursion.

The output is generated by a proof module that maintains a stack of derivation trees. The
procedure apply(R, n, 	, t, u) pops n derivation trees D̄n from the stack and pushes the
tree

D1 · · · Dn
R

	 � t � u

onto the stack. The plugin functions are responsible for invoking apply as appropriate. We
will show in Sect. 5 that the side conditions of the inference system in the previous section
are all satisfied, by construction.

4.1 The Generic Algorithm

The algorithm takes as arguments a context and a term, initially respectively the empty
context and the term to process, and returns the processed term. It performs a depth-first
postorder contextual recursion on the term to process. Subterms are processed first; then the
term together with the rewritten subterms are processed in turn. The context 
 is updated
in a transformation-specific way with each recursive call. This context is abstract from the
point of view of the algorithm. It is only used and updated in the plugin functions.

The plugin functions are divided into two groups: ctx_let, ctx_quant, and ctx_app update
the context when entering the body of a binder or when moving from a function symbol to
one of its arguments; build_let, build_quant, build_app, and build_var return the processed
term and produce the corresponding derivation as a side effect.

function process(
, t)
match t
case x :
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492 H. Barbosa et al.

return build_var(
, x)
case f(t̄n):

̄′

n ← (ctx_app(
, f, t̄n, i))ni=1
return build_app

(

, 
̄′

n, f, t̄n, (process(
′
i , ti ))

n
i=1

)

case Qx . ϕ:

′ ← ctx_quant(
, Q, x, ϕ)

return build_quant(
, 
′, Q, x, ϕ, process(
′, ϕ))

case let x̄n � r̄n in t ′:

′ ← ctx_let(
, x̄n, r̄n, t ′)
return build_let(
, 
′, x̄n, r̄n, t ′, process(
′, t ′))

4.2 ‘Let’ Expansion and˛-Conversion

The first instance of the contextual recursion algorithm expands ‘let’ expressions and renames
bound variables systematically to avoid capture. Skolemization and theory simplification,
presented below, assume that this transformation has been performed.

The context consists of a list of fixed variables and variable substitutions, as in Sect. 3.
The plugin functions are as follows:

function ctx_let(	, x̄n, r̄n, t)
return 	, x̄n �→ (process(	, ri ))ni=1

function ctx_app(	, f, t̄n, i)
return 	

function build_let(	, 	 ′, x̄n, r̄n, t, u)

apply(Let, n+ 1, 	, let x̄n � r̄n in t, u)

return u

function build_app(	, 	̄ ′
n, f, t̄n, ūn)

apply(Cong, n, 	, f(t̄n), f(ūn))
return f(ūn)

function ctx_quant(	, Q, x, ϕ)

y ← fresh variable
return 	, y, x �→ y

function build_quant(	, 	 ′, Q, x, ϕ, ψ)

y ← 	 ′(x)
apply(Bind, 1, 	, Qx . ϕ, Qy. ψ)

return Qy. ψ

function build_var(	, x)
apply(Refl, 0, 	, x, 	(x))
return 	(x)

The ctx_let and build_let functions process ‘let’ expressions. In ctx_let, the substituted terms
are processed further before they are added to a substitution entry in the context. In build_let,
the Let rule is applied and the transformed term is returned. Analogously, the ctx_quant
and build_quant functions rename quantified variables systematically. This ensures that
any variables that arise in the range of the substitution specified by ctx_let will resist cap-
ture when the substitution is applied (cf. Example 4). Finally, the ctx_app, build_app, and
build_var functions simply reproduce the term traversal in the generated proof; they perform
no transformation-specific work.

Example 6 Following up on Example 1, assume ϕ = let x � a in p(x, x). Given the above
plugin functions, process(∅, ϕ) returns p(a, a). It is instructive to study the evolution of the
stack during the execution of process. First, in ctx_let, the term a is processed recursively;
the call to build_app pushes a nullary Cong step with succedent � a � a onto the stack.
Then the term p(x, x) is processed. For each of the two occurrences of x , build_var pushes
a Refl step onto the stack. Next, build_app applies a Cong step to justify rewriting under p:
The two Refl steps are popped, and a binary Cong is pushed. Finally, build_let performs a
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Let inference with succedent � ϕ � p(a, a) to complete the proof: The two Cong steps on
the stack are replaced by the Let step. The stack now consists of a single item: the derivation
tree of Example 1.

4.3 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have been expanded
and bound variables have been renamed apart. The context is a pair 
 = (	, p), where 	 is
as defined in Sect. 3 and p is the polarity (+, −, or ?) of the term being processed. The main
plugin functions are those that manipulate quantifiers:

function ctx_quant((	, p), Q, x, ϕ)

if (Q, p) ∈ {(∃, +), (∀, −)} then
	 ′ ← 	, x �→ sko_term(	, Q, x, ϕ)

else
	 ′ ← 	, x

return (	 ′, p)

function build_quant((	, p), 
′, Q, x, ϕ, ψ)

if (Q, p) ∈ {(∃, +), (∀, −)} then
apply(SkoQ , 1, 	, Qx . ϕ, ψ)

return ψ

else
apply(Bind, 1, 	, Qx . ϕ, Qx . ψ)

return Qx . ψ

The polarity component of the context is updated by ctx_app, which is not shown. For
example, ctx_app((	, −), ¬, ϕ, 1) returns (	, +), because if ¬ϕ occurs negatively in a
larger formula, then ϕ occurs positively. The ? polarity emerges when ctx_app analyzes the
arguments of connectives such as equivalence (←→) and of uninterpreted predicates. The
plugin functions build_app and build_var are as for ‘let’ expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All other quanti-
fiers are kept as they are. The sko_term function returns an applied Skolem function symbol
following some reasonable scheme; for example, outer skolemization [13] creates an appli-
cation of a fresh function symbol to all variables fixed in the context. To comply with the
inference system, the application of Sko ∃ or Sko∀ in build_quant instructs the proofmodule
to systematically replace the Skolem term with the corresponding ε term in the derivation
tree. In this way, the Skolem symbol is used during proof search, whereas the ε term is used
to record the derivation.

Example 7 Let ϕ = ¬∀x . p(x). The call process((∅, +), ϕ) skolemizes ϕ into ¬p(c),
where c is a fresh Skolem constant. The initial process call invokes ctx_app on ¬ as the
second argument, making the context negative, thereby enabling skolemization of ∀. The
substitution x �→ c is added to the context. Applying Sko ∀ instructs the proof module to
replace c with εx . ¬p(x). The resulting derivation tree is as in Example 2.

The difference between inner and outer skolemization [13] is essentially only in the
variables introduced in the Skolem terms. The proof itself is not sensitive to the type of
skolemization used, since Skolem terms are replaced in the derivation by the corresponding
ε terms. Also, mini- or maxi-scoping does not require any special processing. It amounts
to formula rewriting, which can be understood as simplifications (as described in the next
subsection) that are performed before skolemization is applied.

4.4 Theory Simplification

All kinds of theory simplification can be performed on formulas. We restrict our focus to a
simple yet quite characteristic instance: the simplification of u+0 and 0+u to u. We assume
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that ‘let’ expressions have been expanded. The context is a list of fixed variables. The plugin
functions ctx_app and build_var are as for ‘let’ expansion (Sect. 4.2) the remaining ones are
presented below:

function ctx_quant(	, Q, x, ϕ)

return 	, x

function build_quant(	, 	 ′, Q, x, ϕ, ψ)

apply(Bind, 1, 	, Qx . ϕ, Qx . ψ)

return Qx . ψ

function build_app(	, 	̄ ′
n, f, t̄n, ūn)

apply(Cong, n, 	, f(t̄n), f(ūn))
if f(ūn) has form u + 0 or 0+ u then
apply(Taut+, 0, 	, f(ūn), u)

apply(Trans, 2, 	, f(t̄n), u)

return u
else
return f(ūn)

The quantifier manipulation code, in ctx_quant and build_quant, is straightforward. The
interesting function is build_app. It first applies the Cong rule to justify rewriting the argu-
ments. Then, if the resulting term f(ūn) can be simplified further into a term u, it performs a
transitive chain of reasoning: f(t̄n) � f(ūn) � u.

Example 8 Let ϕ = k+ 1× 0 < k. Assuming that the framework has been instantiated with
theory simplification for additive and multiplicative identity, invoking process(∅, ϕ) returns
the formula k < k. The generated derivation tree is as in Example 3.

4.5 Combinations of Transformations

Theory simplification can be implemented as a family of transformations, each member of
which embodies its own set of theory-specific rewrite rules. If the union of the rewrite rule
sets is confluent and terminating, a unifying implementation of build_app can apply the rules
in any order until a fixpoint is reached. Moreover, since theory simplification modifies terms
independently of the context, it is compatible with ‘let’ expansion and skolemization. This
means that we can replace the build_app implementation from Sect. 4.2 or 4.3 with that of
Sect. 4.4. In particular, this allows us to perform arithmetic simplification in the substituted
terms of a ‘let’ expression in a single pass (cf. Example 1).

The combination of ‘let’ expansion and skolemization is less straightforward. Consider
the formula ϕ = let y � ∃x . p(x) in y −�→ y. When processing the subformula ∃x . p(x),
we cannot (or at least should not) skolemize the quantifier, because it has no unambiguous
polarity; indeed, the variable y occurs both positively and negatively in the ‘let’ expression’s
body. We can of course give up and perform two passes: The first pass expands ‘let’ expres-
sions, and the second pass skolemizes and simplifies terms. The first pass also provides an
opportunity to expand equivalences, which are problematic for skolemization.

There is also away to perform all the transformations in a single instance of the framework.
The most interesting plugin functions are ctx_let and build_var:

function ctx_let((	, p), x̄n, r̄n, t)
for i = 1 to n do
apply(Refl, 0, 	, xi , 	(ri ))

	 ′ ← 	, x̄n �→ (	(ri ))ni=1
return

(
	 ′, p)

function build_var((	, p), x)
apply(Refl, 0, 	, x, 	(x))
u ← process((	, p), 	(x))
apply(Trans, 2, 	, 	(x), u)

return u

In contrast to the corresponding function for ‘let’ expansion (Sect. 4.2), ctx_let does not
process the terms r̄n , which is reflected by the n applications of Refl, and it must thread
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through polarities. The call to process is in build_var instead, where it can exploit the more
precise polarity information to skolemize the formula.

The build_let function is essentially as before. The ctx_quant and build_quant functions
are as for skolemization (Sect. 4.3), except that the else cases rename bound variables apart
(Sect. 4.2). The ctx_app function is as for skolemization, whereas build_app is as for theory
simplification (Sect. 4.4).

For the formulaϕ given above, process((∅, +), ϕ) returns (∃x .p(x)) −�→ p(c), where c is
a fresh Skolem constant. The substituted term ∃x .p(x) is put unchanged into the substitution
used to expand the ‘let’ expression. It is processed each time y arises in the body y −�→ y.
The positive occurrence is skolemized; the negative occurrence is left as is. Using caching
and a DAG representation of derivations, we can easily avoid the duplicated work that would
arise if y occurred several times with positive polarity.

4.6 Scope and Limitations

Other possible instances of contextual recursion are the clause normal form (CNF) transfor-
mation and the elimination of quantifiers using one-point rules. CNF transformation is an
instance of rewriting of Boolean formulas and can be justified by a TautBool rule. Just like
Skolem terms are placeholders for ε expressions, Tseytin variables can be seen as placehold-
ers for the formulas they represent, and all definitions of Tseytin variables simply become
tautologies. This technique to produce proofs for CNF transformation has been implemented
for long in veriT [14]. One-point rules—e.g., the transformation of ∀x . x � a −�→ p(x) into
p(a)—are similar to ‘let’ expansion and can be represented in much the same way in our
framework. To eliminate one-point quantifiers, we would simply extend the inference system
with the following rules:

	 � s � t 	, x �→ t � ϕ � ψ
1Pt∀ if x /∈ FV(s) and 	(t) = t

	 � (∀x . x � s −�→ ϕ) � ψ

	 � s � t 	, x �→ t � ϕ � ψ
1Pt ∃ if x /∈ FV(s) and 	(t) = t

	 � (∃x . x � s ∧ ϕ) � ψ

The plugin functions used by process would also be similar to those for ‘let’ expansion,
except that ctx_quant would need to examine the quantified formula’s body to determine
whether a one-point rule is applicable.

Some transformations, such as symmetry breaking [15] and rewriting based on global
assumptions, require a global analysis of the problem that cannot be captured by local substitu-
tion of equals for equals. They are beyond the scope of the framework. Other transformations,
such as simplification based on associativity and commutativity of function symbols, require
traversing the terms to be simplified when applying the rewriting. Since process visits terms
in postorder, the complexity of the simplifications would be quadratic, while a processing
that applies depth-first preorder traversal can perform the simplifications with a linear com-
plexity. Consider the formula a1 ∧ (a2 ∧ (· · · ∧an) · · · ). Flattening it to an n-ary conjunction
with a postorder algorithm would simplify each subterm to a sequence of flat conjunctions
ai ∧ · · · ∧ an (for i = n − 2 to 1), while a preorder algorithm could generate a1 ∧ · · · ∧ an
in a single traversal. Therefore, applying such transformations optimally is also beyond the
scope of the framework.
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5 Theoretical Properties

Before proving any properties of contextual recursion or proof checking, we establish the
soundness of the inference rules they rely on. We start by encoding the judgments in a
well-understood theory of binders: the simply typed λ-calculus. This provides a convenient
standard basis to reason about them. In particular, it adequately captures the subtle combi-
nation of variable fixing, substitution, and shadowing that is embodied by a judgment.

A context and a term will be encoded together as a single λ-term. We call these somewhat
nonstandard λ-terms metaterms. They are defined by the grammar

M ::= t | λx . M | (λx̄n . M) t̄n

where xi and ti are of the same sort for each i ∈ [n]. A metaterm is either a term t decorated
with a box , a λ-abstraction, or the application of an uncurried λ-abstraction that simulta-
neously binds n distinct variables to an n-tuple of terms. The box’s role is to clearly delimit
a term from its context.

We let =αβ denote syntactic equality modulo α- and β-equivalence (i.e., up to renaming
of bound variables and reduction of applied λ-abstractions). We use the letters M, N , P to
refer to metaterms. The notion of type is as expected for simply typed λ-terms: The type of
t is the sort of t ; the type of λx . M is σ → τ , where σ is the sort of x and τ the type of
M ; and the type of (λx̄n . M) t̄n is the type of M . It is easy to see that all metaterms contain
exactly one boxed term. M t denotes a metaterm whose box contains t , and M[N ] denotes
the same metaterm after its box has been replaced with the metaterm N . To lighten notation,
we abbreviate the replacement M

[
u

]
to M u . Finally, V(M) is defined as the set of all free

and bound variables occurring in M .
Encoded judgments will have the form M � N , for some metaterms M, N . The λ-abs-

tractions and applications represent the context, whereas the box stores the term. To invoke
the theory oracle |	T , we will need to reify equalities on metaterms—i.e., map them to
equalities on terms. Let M, N be metaterms of type σ1 → · · · → σn → σ , where σ is a
(non-function) sort. We define reify(M � N ) as ∀x̄n . t � u, where M =αβ λx1. . . . λxn . t
and N =αβ λx1. . . . λxn . u . Because the right-hand sides of the two equivalences are in
β-normal form, t and u are characterized uniquely up to the names of the bound variables.
For example, if M = λu. (λv. p(v) ) u and N = λw. q(w) , we have M =αβ λx . p(x)
and N =αβ λx . q(x) , and the reification of M � N is ∀x . p(x) � q(x).

The inference rules presented in Sect. 3 can now be encoded as follows. We refer to these
new rules collectively as the encoded inference system:

TautT if |	T reify(M � N )
M � N

M � N N ′ � P
Trans if N =αβ N ′

M � P

(
M ti � N ui

)
n
i=1

Cong

M f(t̄n) � N f(ūn)

M
[
λy. (λx . ϕ ) y

] � N
[
λy. ψ

]

Bind if y /∈ FV(Qx . ϕ) ∪ V(M)
M Qx . ϕ � N Qy. ψ

M
[
(λx . ϕ ) (εx . ϕ)

] � N
Sko ∃

M ∃x . ϕ � N

M
[
(λx . ϕ ) (εx . ¬ϕ)

] � N
Sko∀

M ∀x . ϕ � N
(
M ri � N si

)
n
i=1 M

[
(λx̄n . t ) s̄n

] � N u
Let if M si =αβ N si for all i ∈ [n]

M let x̄n � r̄n in t � N u
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Lemma 9 If the judgment M � N is derivable using the encoded inference system with the
theories T1, . . . ,Tn , then |	T reify(M � N ) with T = T1 ∪ · · · ∪ Tn ∪ � ∪ ε ∪ let.

Proof By structural induction on the derivation of M � N . For each inference rule, we
assume |	T reify(Mi � Ni ) for each judgment Mi � Ni in the antecedent and show that
|	T reify(M � N ). In most of the cases, we implicitly rely on basic properties of the
λ-calculus to reason about reify.

Case TautT ′ : This is trivial because T ′ ⊆ T by definition of T .

Cases Trans, Cong, and Bind: These follow from the theory of equality (�).

Cases Sko ∃, Sko∀, and Let: These follow from (ε1) and (ε2) or (let) and from the congru-
ence of equality. ��

A judgment 	 � t � u is encoded as L(	)[t] � R(	)[u], where
L(∅)[t] = t R(∅)[u] = u

L(x, 	)[t] = λx . L(	)[t] R(x, 	)[u] = λx . R(	)[u]
L(x̄n �→ s̄n, 	)[t] = (λx̄n . L(	)[t]) s̄n R(x̄n �→ s̄n, 	)[u] = R(	)[u]

The L function encodes the substitution entries of 	 as λ-abstractions applied to tuples.
Reducing the applied λ-abstractions effectively applies subst (	). For example:

L(x �→ 7, x �→ g(x))[x] = (λx . (λx . x ) (g(x))) 7 =αβ g(7)

L(x �→ 7, x, x �→ g(x))[x] = (λx . λx . (λx . x ) (g(x))) 7 =αβ λx . g(x)

For any derivable judgment 	 � t � u, the terms t and u must have the same sort, and the
metaterms L(	)[t] and R(	)[u] must have the same type. Another property is that L(	)[t] is
of the form M t for some M that is independent of t and similarly for R(	)[u], motivating
the suggestive brackets around L’s and R’s term argument.

Lemma 10 Let x̄n be the variables fixed by 	 in order of occurrence. Then L(	)[t] =αβ

λx1. . . . λxn . 	(t) .

Proof By induction on 	.

Case ∅: L(∅)[t] = t = ∅(t) .

Case x, 	: Let ȳn be the variables fixed by 	.

L(x, 	)[t] = λx . L(	)[t]
=αβ λx .λy1. . . . λyn . 	(t) {by the induction hypothesis}
= λx .λy1. . . . λyn . (x, 	)(t) {by (∗), below}

where (∗) is the property that subst (	) = subst (x, 	) for all x and 	, which is easy to prove
by structural induction on 	.

Case x̄n �→ s̄n, 	: Let ȳn be the variables fixed by 	, and let ρ = {x̄n �→ s̄n}.
L(x̄n �→ s̄n, 	)[t] = (λx̄n . L(	)[t]) s̄n

=αβ (λx̄n .λy1. . . . λyn . 	(t) ) s̄n {by the induction hypothesis}
=αβ λy1. . . . λyn . ρ(	(t)) {by β-reduction}
= λy1. . . . λyn . (x̄n �→ s̄n, 	)(t) {by (∗∗), below}
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where (∗∗) is the property that ρ ◦ subst (	) = subst (x̄n �→ s̄n, 	) for all x̄n , s̄n , and 	,
which is easy to prove by structural induction on 	. The β-reduction step above is possible
since, by construction, the variables ȳn do not occur in x̄n �→ s̄n . ��
Lemma 11 If the judgment 	 � t � u is derivable using the original inference system, then
L(	)[t] � R(	)[u] is derivable using the encoded inference system.
Proof By structural induction on the derivation of 	 � t � u.

Case TautT : We have |	T 	(t) � u. Using Lemma 10, we can easily show that |	T

	(t) � u is equivalent to |	T reify(L(	)[t] � R(	)[u]), the side condition of the encoded
TautT rule.

Case Bind: The encoded antecedent is M
[
λy. (λx . ϕ ) y

] � N
[
λy. ψ

]
(i.e., L(	, y,

x �→ y)[ϕ] � R(	, y, x �→ y)[ψ]), and the encoded succedent is M Qx . ϕ � N Qy. ψ .
By the induction hypothesis, the encoded antecedent is derivable. Thus, by the encoded Bind
rule, the encoded succedent is derivable.

Cases Cong, Sko ∃, and Sko ∀: Similar to Bind.

Case Trans: If 	(t) = t , the substitution entries of 	 affect only variables that do not occur
free in t . Hence, R(	)[t] =αβ L(	)[t], as required by the encoded Trans rule.

Case Let: Similar to Trans. ��
Incidentally, the converse of Lemma 11 does not hold, since the encoded inference rules

allow metaterms that contain applied λ-abstractions on the right-hand side of �, which do
not correspond to any original inference.

Theorem 12 (Soundness of inferences) If the judgment 	 � t � u is derivable using the
original inference system with the theories T1, . . . ,Tn , then |	T 	(t) � u with T = T1 ∪
· · · ∪ Tn ∪ � ∪ ε ∪ let.

Proof This follows from Lemmas 9 and 11. The equivalence of |	T 	(t) � u and |	T

reify(L(	)[t] � R(	)[u]) can be shown along the lines of case TautT of Lemma 11. ��
We turn to the contextual recursion algorithm that generates derivations in that system.

The first question is, Are the derivation trees valid? In particular, it is not obvious from the
code that the side conditions of the inference rules are always satisfied.

First, we need to introduce some terminology. A term is shadowing-free if nested binders
always bind variables with different names, and if bound variables do not also occur free; for
example, ∀x . (∀y. p(x, y)) ∧ (∀y. q(y)) is shadowing-free, whereas ∀x . (∀x . p(x, y)) ∧
(∀y. q(y)) is not. The set of variables fixed by 	 is written fix(	), and the set of variables
replaced by 	 is written repl(	). They are defined as follows:

fix(∅) = {} repl(∅) = {}
fix(	, x) = {x} ∪ fix(	) repl(	, x) = repl(	)

fix(	, x̄n �→ s̄n) = fix(	) repl(	, x̄n �→ s̄n) = {xi | si 
= xi } ∪ repl(	)

Trivial substitutions x �→ x are ignored by repl, since they have no effect. The set of variables
introduced by 	 is defined by intr(	) = fix(	) ∪ repl(	). A context 	 is consistent if all
the fixed variables are mutually distinct and the two sets of variables are disjoint—i.e.,
fix(	) ∩ repl(	) = {}.

A judgment 	 � t � u is canonical if 	 is consistent, FV(t) ⊆ intr(	), FV(u) ⊆ fix(	),
and BV(u) ∩ V(	) = {}. The canonical inference system is a variant of the system of
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Sect. 3 in which all judgments are canonical and the rules Trans, Bind, and Let have no
side conditions.

Lemma 13 Any inference in the canonical inference system is also an inference in the original
inference system.

Proof It suffices to show that the side conditions of the original rules are satisfied.

Case Trans: Since the first judgment in the antecedent is canonical, FV(t) ⊆ fix(	). By
consistency of	, we have fix(	) ∩ repl(	) = {}. Hence,FV(t) ∩ repl(	) = {} and therefore
	(t) = t .

Case Bind: Since the succedent is canonical, we have (1) FV(Qx . ϕ) ⊆ intr(	) and (2)
BV(Qy. ψ) ∩ V(	) = {}. From (2), we deduce y /∈ intr(	). Hence, by (1), we get y /∈
FV(Qx . ϕ) and y /∈ V(	).

Case Let: Similar to Trans. ��
Theorem 14 (Total correctness of recursion) For the instances presented in Sects. 4.2–4.4
the contextual recursion algorithm always produces correct proofs.

Proof The algorithm terminates because process is called initially on a finite input and recur-
sive calls always have smaller inputs.

For the proof of partial correctness, only the 	 part of the context is relevant. We will
write process(	, t) even if the first argument actually has the form (	, p) for skolemization.
The pre- and postconditions of a process(	, t) call that returns the term u are

Pre1 	 is consistent;
Pre2 FV(t) ⊆ intr(	);
Pre3 BV(t) ∩ fix(	) = {};

Post1 u is shadowing-free;
Post2 FV(u) ⊆ fix(	);
Post3 BV(u) ∩ V(	) = {}.

For skolemization and simplification, we may additionally assume that bound variables have
been renamed apart by ‘let’ expansion, and hence that the term t is shadowing-free.

The initial call process(∅, t) trivially satisfies the preconditions on an input term t that
contains no free variable. We must show that the preconditions for each recursive call
process(	 ′, t ′) are satisfied and that the postconditions hold at the end of process(	, t).

Pre1 (	 ′ is consistent): First, we show that the fixed variables are mutually distinct. For ‘let’
expansion (Sect. 4.2), all fixed variables are fresh, since all bound variables are replaced
by fresh ones (see ctx_quant). For skolemization (Sect. 4.3) and simplification (Sect. 4.4),
the input is assumed to be shadowing-free. Hence, for any two fixed variables in 	 ′, the
input formula must contain two quantifiers, one in the scope of the other. Thus, the variables
must be distinct. Second, we show that fix(	 ′) ∩ repl(	 ′) = {}. For ‘let’ expansion, all fixed
variables are fresh. For skolemization, the condition is a direct consequence of the fact that the
input is shadowing-free. For simplification, the context is never extended with a substitution,
thus repl(	 ′) = {} since the context is empty in the initial call.

Pre2 (FV(t ′) ⊆ intr(	 ′)): We have FV(t) ⊆ intr(	). The desired property holds because
the ctx_let and ctx_quant functions add to the context any bound variables that become free
when entering the body t ′ of a binder.
Pre3 (BV(t ′) ∩ fix(	 ′) = {}): The only function that fixes variables is ctx_quant. For ‘let’
expansion, all fixed variables are fresh. For skolemization and simplification, the condition
is a consequence of the shadowing-freedom of the input.

Post1 (u is shadowing-free): The only function that builds quantifiers is build_quant. The
process(	 ′, ϕ) call that returns the processedbodyψ of the quantifier is such that y ∈ intr(	 ′)
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in the ‘let’ expansion case and x ∈ intr(	 ′) in the other two cases. The induction hypothesis
ensures that ψ is shadowing-free and BV(ψ) ∩ V(	 ′) = {}; hence, the result of build_quant
(i.e., Qy. ψ or Qx . ψ) is shadowing-free. Quantifiers can also emerge when applying a
substitution in build_var. This can happen only if ctx_let has added a substitution entry to
the context, in which case the substituted term is the result of a call to process and is thus
shadowing-free.

Post2 (FV(u) ⊆ fix(	)): In most cases, this condition follows directly from the induction
hypothesisPost2. The only casewhere a variable appears fixed in the context	 ′ of a recursive
call to process and not in 	 is when processing a quantifier, and then that variable is bound
in the result. For variable substitution, it suffices to realize that the context in which the
substituted term is created (and which fixes all the free variables of the term) is a prefix of
the context when the substitution occurs.

Post3 (BV(u) ∩ V(	) = {}): Inmost cases, this condition follows directly from the induction
hypothesis Post3: For every recursive call, V(	) ⊆ V(	 ′). Two cases require attention.
For ‘let’ expansion, a variable may be replaced by a term with bound variables. Then the
substituted term’s bound variables are all fresh. The variables introduced by 	 will be other
fresh variables or variables from the input. The second case is when a quantified formula
is built. For ‘let’ expansion, a fresh variable is used. For skolemization and simplification,
since the input is shadowing-free, x is unused in 	.

It is easy to see that each apply call generates a rule with an antecedent and a succedent
of the right form, ignoring the rules’ side conditions. Moreover, all calls to apply generate
canonical judgments thanks to the pre- and postconditions proved above. Correctness follows
from Lemma 13. ��
Observation 15 (Complexity of recursion) For the instances presented in Sects. 4.2–4.4, the
‘process’ function is called at most once on every subterm of the input.

Justification It suffices to notice that a call to process(
, t) induces at most one call for each
of the subterms in t . ��

As a corollary, if all the operations performed in process excluding the recursive calls can
be accomplished in constant time, the algorithm has linear-time complexity with respect to
the input. There exist data structures for which the following operations take constant time:
extending the context with a fixed variable or a substitution, accessing direct subterms of a
term, building a term from its direct subterms, choosing a fresh variable, applying a context
to a variable, checking if a term matches a simple template, and associating the parameters
of the template with the subterms. Thus, it is possible to have a linear-time algorithm for ‘let’
expansion and simplification.

On the other hand, construction of Skolem terms is at best linear in the size of the
context and of the input formula in process. Hence, skolemization is at best quadratic
in the worst case. This is hardly surprising because the formula ∀x1. ∃y1. . . . ∀xn .
∃yn . ϕ[x̄n, ȳn], whose size is proportional to n, is skolemized to ∀x1. . . . ∀xn . ϕ[x̄n, f1(x̄1),
f2(x̄2), . . . , fn(x̄n)], whose size is quadratic in n.

Observation 16 (Overhead of proof generation) For the instances presented in Sects. 4.2–
4.4, the number of calls to the ‘apply’ procedure is proportional to the number of subterms
in the input.

Justification This is a corollary ofObservation 15, since the number of apply calls per process
call is bounded by a constant (3, in build_app for simplification). ��
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Notice that all arguments to apply must be computed regardless of the apply calls. If an
apply call takes constant time, the proof generation overhead is linear in the size of the input.
To achieve this performance, it is necessary to use sharing to represent contexts and terms
in the output; otherwise, each call to apply might itself be linear in the size of its arguments,
resulting in a nonlinear overhead on the generation of the entire proof.

Observation 17 (Cost of proof checking) Checking an inference step can be performed in
constant time if checking the side condition takes constant time.

Justification The inference rules involve only shallow conditions on contexts and terms,
except in the side conditions.Using suitable data structureswithmaximal sharing, the contexts
and terms can be checked in constant time. ��

The above statement may appear weak, since checking the side conditions might itself be
linear, leading to a cost of proof checking that can be at least quadratic in the size of the proof
(measured as the number of symbols that represent it). Fortunately,most of the side conditions
can be checked efficiently. For example, for simplification (Sect. 4.4), theBind rule is always
applied with x = y, which implies the side condition y /∈ FV(Qx .ϕ); and since no other rule
contributes to the substitution, subst (	) is the identity. Thus, simplification proofs can be
checked in linear time. Moreover, certifying a proof by checking each step locally is not the
only possibility. An alternative is to use an algorithm similar to the process function to check
a proof in the same way as it has been produced. Such an algorithm can exploit sophisticated
invariants on the contexts and terms.

6 Implementation

We implemented the contextual recursion algorithm and the transformations described in
Sect. 4 in the SMT solver veriT [16], showing that replacing the previous ad hoc code
with the generic proof-producing framework had no significant detrimental impact on the
solving times. In addition, we developed two tools for Isabelle/HOL [17]. The first tool is a
prototypical proof checker for the inference system described in Sect. 3, which we used to
convince ourselves that the inference rules made sense. The second tool is an extension of
the smt proof method with reconstruction of veriT-generated proofs.

6.1 veriT

We implemented the contextual recursion framework in the SMT solver veriT,1 replacing
large parts of the previous non-proof-producing, hard-to-maintain code. Even though it offers
more functionality (proof generation), the preprocessing module is about 20% smaller than
before and consists of about 3000 lines of code. There are now only two traversal functions
instead of 10. This is, for us, a huge gain in maintainability.

Proofs Previously, veriT provided detailed proofs for the resolution steps performed by
the SAT solver and the lemmas added by the theory solvers and instantiation module. All
transformations performed in preprocessing steps were represented in the proof in a very
coarse manner, amounting to gaps in the proof. For example, when ‘let’ expressions were

1 http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz.

123

http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz


502 H. Barbosa et al.

expanded in a formula, the only information present in the proof would be the formula before
and after ‘let’ expansion. ��

When extending veriT to generate more detailed proofs, we were able to reuse its existing
proof module and proof format [2]. A proof is a list of inferences, each of which consists
of an identifier (e.g., .c0), the name of the rule, the identifiers of the dependencies, and the
derived clause. The use of identifiers makes it possible to represent proofs as DAGs. We
extended the format with the inference rules of Sect. 3. The rules that augment the context
take a sequence of inferences—a subproof—as a justification. The subproof occurs within
the scope of the extended context. Following this scheme, the skolemization proof for the
formula ¬∀x . p(x) from Example 2 is presented as

(.c0 (sko_forall :conclusion ((∀x . p(x)) � p(εx . ¬p(x)))
:args (x �→ (εx . ¬p(x)))
:subproof ((.c1 (refl :conclusion (x � (εx . ¬p(x)))))

(.c2 (cong :clauses (.c1) :conclusion (p(x) � p(εx . ¬p(x))))))))
(.c3 (cong :clauses (.c0) :conclusion ((¬∀x . p(x)) � ¬p(εx . ¬p(x)))))

Formerly, no details of these transformations would be recorded. The proof would have
contained only the original formula and the skolemized result, regardless of how many
quantifiers appeared in the formula.

In contrast to the abstract proof module described in Sect. 4, veriT leaves Refl steps
implicit for judgments of the form 	 � t � t . The other inference rules are generalized
to cope with missing Refl judgments. In addition, when printing proofs, the proof module
can automatically replace terms in the inferences with some other terms. This is necessary
for transformations such as skolemization and ‘if–then–else’ elimination. We must apply a
substitution in the replaced term if the original term contains variables. In veriT, efficient
data structures are available to perform this.

Transformations The implementation of contextual recursion uses a single global context,
augmented before processing a subterm and restored afterwards. The context consists of a set
of fixed variables, a substitution, and a polarity. In our setting, the substitution satisfies the
side conditions by construction. If the context is empty, the result of processing a subterm is
cached. For skolemization, a separate cache is used for each polarity. No caching is attempted
under binders.

Invoking process on a term returns the identifier of the inference at the root of its trans-
formation proof in addition to the processed term. These identifiers are threaded through the
recursion to connect the proof. The proofs produced by instances of contextual recursion are
inserted into the larger resolution proof produced by veriT. Consider an input formula ϕ,
processed using the framework in this article into ψ . The framework provides a derivation
D of � ϕ � ψ . Insertion of this proof into the larger resolution proof is achieved, using
resolution, through an inference of the form

ϕ D
Taut�¬ (ϕ � ψ) ∨ ¬ϕ ∨ ψ
Resolve

ψ

Transformations performing theory simplification were straightforward to port to the new
framework: Their build_app functions simply apply rewrite rules until a fixpoint is reached.
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Porting transformations that interact with binders required special attention in handling the
context and producing proofs. Fortunately, most of these aspects are captured by the infer-
ence system and the abstract contextual recursion framework, where they can be studied
independently of the implementation.

Some transformations are performed outside of the framework. Proofs of CNF transfor-
mation are expressed using the inference rules of veriT’s underlying SAT solver, so that
any tool that can reconstruct SAT proofs can also reconstruct these proofs. Simplification
based on associativity and commutativity of function symbols is implemented as a dedicated
procedure, for efficiency reasons (Sect. 4.6). It currently produces coarse-grained proofs.

Evaluation To evaluate the impact of the new contextual recursion algorithm and of pro-
ducing detailed proofs, we compare the performance of different configurations of veriT.
Our experimental data is available online.2 We distinguish three configurations. Basic only
applies transformations for which the old code provided some (coarse-grained) proofs.
Extended also applies transformations for which the old code did not provide any proofs,
whereas the new code provides detailed proofs. Complete applies all transformations avail-
able, regardless of whether they produce proofs.

More specifically, Basic applies the transformations for ‘let’ expansion, skolemization,
elimination of quantifiers based on one-point rules, elimination of ‘if–then–else’, theory sim-
plification for rewriting n-ary symbols as binary, and elimination of equivalences and exclu-
sive disjunctions with quantifiers in subterms. Extended adds Boolean and arithmetic sim-
plifications to the transformations performed byBasic.Complete performs global rewriting
simplifications and symmetry breaking in addition to the transformations in Extended.

The evaluation was carried out on two main sets of benchmarks from SMT-LIB [8]: the
20 916 benchmarks in the quantifier-free (QF) categories QF_ALIA, QF_AUFLIA, QF_IDL,
QF_LIA, QF_LRA, QF_RDL, QF_UF, QF_UFIDL, QF_UFLIA, and QF_UFLRA; and the
30 250 benchmarks labeled as unsatisfiable in the non-QF categories AUFLIA, AUFLIRA,
UF, UFIDL, UFLIA, and UFLRA. The categories with bit vectors and nonlinear arithmetic
are not supported by veriT. Our experiments were conducted on servers equipped with two
Intel Xeon E5-2630 v3 processors, with eight cores per processor, and 126 GB of memory.
Each run of the solver uses a single core. The time limit was set to 30s, a reasonable value
for interactive use within a proof assistant.

The tables below indicate the number of benchmark problems solved by each configuration
for the quantifier-free and non-quantifier-free benchmarks:

edocweNedocdlOFQ

BASIC without proofs 13 489 13 496
with proofs 13 360 13 352

EXTENDED without proofs 13 539 13 537
with proofs N/A 13 414

COMPLETE without proofs 13 826 13 819
with proofs N/A N/A

2 http://matryoshka.gforge.inria.fr/pubs/processing/.
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NON-QF Old code New code

BASIC without proofs 28 746 28 762
with proofs 28 744 28 766

EXTENDED without proofs 28 785 28 852
with proofs N/A 28 857

COMPLETE without proofs 28 759 28 794
with proofs N/A N/A

These results indicate that the new generic contextual recursion algorithm and the produc-
tion of detailed proofs do not impact performance negatively in any significant way compared
with the old code. In addition, fine-grained proofs are now provided, whereas before only
the original formula and the result were given after each set of transformations, without any
further details, which arguably did not even constitute a proof. The time difference is less
than 0.1%, and the small changes in the number of solved problems are within the range one
can observe with any irrelevant perturbations (e.g., when renaming symbols or reordering
axioms). These perturbations arise because the old and new algorithms may produce slightly
different formulas. Due to its reliance on heuristics, SMT solving, like first-order proving
and SAT solving, is well known for its somewhat chaotic behavior with respect to perturba-
tions. The slight increase in the number of solved problems on non-QF benchmarks can be
explained by such effects.

Allowing Boolean and arithmetic simplifications leads to some improvements, especially
for the quantifier-free benchmarks. Currently, when outputting proofs, global transformations
are just turned off. Producing proofs on these transformations would allow further simpli-
fications of the input formulas, and we would expect many more benchmarks, especially
quantifier-free ones, to be within reach of the SMT solver with detailed proof production.

6.2 Isabelle

Prototypical Encoding of Derivation Trees Isabelle/HOL is a proof assistant based on
classical higher-order logic (HOL) [10], a variant of the simply typed λ-calculus. Its primary
implementation language is Standard ML.

Thanks to the availability of λ-terms, we could follow the lines of the encoded inference
system of Sect. 5 to represent judgments in HOL. The resulting prototypical proof checker
is included in the official version of Isabelle.3 In this simple prototype, derivations are rep-
resented by a recursive ML datatype. A derivation is a tree whose nodes are labeled by rule
names. Rule TautT also carries a theorem that represents the oracle |	T , and rules Trans
and Let are labeled with the terms that occur only in the antecedent (t and s̄n).

Terms and metaterms are translated to HOL terms, and judgments M � N are translated
to HOL equalities t � u, where t and u are HOL terms. For example, the judgment x, y �→
g(x) � f(y) � f(g(x)) is represented by the HOL equality (λx .(λy.f y)(gx)) � (λx .f(gx)).
Uncurried λ-applications are encoded by means of a polymorphic “uncurry” combinator
case× : (α → β → γ ) → α × β → γ ; in Isabelle/HOL, λ(x, y). t is syntactic sugar
for case× (λx .λy. t). This scheme is iterated to support n-tuples, represented by nested
pairs (t1, (. . . (tn−1, tn) · · · )). To implement the inference rules, it is necessary to be able to
locate any metaterm’s box. There is an easy criterion: Translated metaterms are of the form
(λ. . . .) . . . or case× . . . , which is impossible for a translated term.

3 http://isabelle.in.tum.de/repos/isabelle/file/Isabelle2018/src/HOL/ex/veriT_Preprocessing.thy.

123

http://isabelle.in.tum.de/repos/isabelle/file/Isabelle2018/src/HOL/ex/veriT_Preprocessing.thy


Scalable Fine-Grained Proofs for Formula Processing 505

Because reconstruction is not verified, it is not guaranteed to always succeed, but when it
does, the result is certified by Isabelle’s LCF-style inference kernel [18]. We hand-coded a
few dozen examples to test various cases. For example, given the HOL terms t = ¬ ∀x . p ∧
∃x . ∀x . q x x and u = ¬ ∀x . p ∧ ∃x . q (εx . ¬ q x x) (εx . ¬ q x x) and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko_All, [N (Refl, [])])])])])]))
the reconstruction function returns the HOL theorem t � u.

A Proof Reconstruction Method Following the publication of our CADE-26 paper [7], we
developed a usable integration of veriT proofs, including a parser and efficient reconstruction.
It is part of the development version of Isabelle4 and is expected to be included in the next
official release (Isabelle2019).

Isabelle’s smt proof method, implemented by Böhme [6], translates a proof goal to SMT-
LIB and invokes an SMT solver. If the solver reports “unsatisfiable,” the user can either trust
the result (in which case the solver is called an oracle) or, for Z3, let smt replay the proof in
Isabelle. Weaknesses in the reconstruction code may lead to timeouts, but unless there is a
bug in Isabelle’s kernel, invalid proofs will be rejected. Reconstruction is not a perfect art,
but for Z3, success rates above 99% were observed in practice [19, Sect. 3.4.1].

We have now extended smt to reconstruct proofs generated by veriT in addition to Z3. The
veriT proof language currently includes 71 inference rules. We distinguish four categories
of rules:

1. Some rules correspond to a single Isabelle inference or to the instantiation of an Isabelle
theorem or a combination of theorems.

2. Some rules correspond to a theory decision procedure.
3. Some rules can be reconstructed using a combination of inferences, decision procedures,

and heuristic proof procedures.
4. Some rules can be safely ignored, because they cannot appear in proofs of Isabelle-

generated goals.

The first category largely consists of rules for tautologies such as � (rule true), ¬⊥
(rule false), and

(∨
i vi

) ∨ ¬ v j (rule or_neg), and basic properties of connectives. To
reconstruct these in Isabelle, we cannot simply apply the corresponding HOL theorems,
because veriT-generated formulas may remove double negations and duplicate literals, and
they may reorient equalities. Even the input rule, which references an existing assumption,
might introduce such modifications and therefore requires nontrivial work on the Isabelle
side.

The second category most prominently includes arithmetic steps. We reuse the proof
method developed for the Z3 reconstruction [6]. It abstracts over nonarithmetic subterms
before invoking Isabelle’s procedure for linear arithmetic.

Rules belonging to the third category are themost difficult to reconstruct. For example, the
rule connective_equiv, which is described as “logical equivalence,” includes theory
rewriting and simple arithmetic. For these rules, we use general-purpose Isabelle automation,
such as the auto proofmethod, which combines a tableau prover, a simplifier, and arithmetic
procedures.

For reference, the categorization of veriT’s rules is given below:

1. true, false, and_pos, and_neg, and_pos, and, not_and, not_or, or,
or_pos, or_neg, implies_pos, implies_neg1, implies_neg2,implies,

4 http://isabelle.in.tum.de/repos/isabelle/file/8050734eee3e/src/HOL/Tools/SMT/.
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not_implies1, not_implies2, equiv1, equiv2, not_equiv1, not_
equiv2, equiv_pos1, equiv_pos2, equiv_neg1, equiv_neg2, ite_pos1,
ite_pos2, ite_neg1, ite_neg2, ite1, ite2, not_ite1, not_ite2,
eq_reflexive, eq_transitive, eq_congruent, eq_congruent_pred,
refl, trans, la_totality, la_tautology, bind, qnt_join, qnt_rm_
unused, sko_ex, sko_forall, input, suproof, ite_intro;

2. la_rw_eq, la_generic, lia_generic, nla_generic, la_disequality,
th_resolution, resolution;

3. connective_equiv, tmp_AC_simp, tmp_bfun_elim, tmp_skolemize,
qnt_simplify, forall_inst;

4. xor_pos1, xor_pos2, xor_neg1, xor_neg2, distinct_elim, xor1, xor2,
not_xor1, not_xor2, let.

To test our integration, we attempted to replay the proofs from Isabelle’s SMT_Examples
theory file.5 This revealed some weaknesses in veriT’s output, which we quickly addressed.
Our integration now successfully reconstructs all 60 goals from SMT_Examples that do not
rely on Z3-specific extensions. Altogether, finding the proofs takes 1.1 s, whereas reconstruc-
tion takes 5.4 s. The most prominent rule is cong (680 applications, replayed in 184ms) and
(th)resolution (700 applications, replayed in 911ms). The rule that takes the longest to
replay isla_generic (143 applications, 2256ms).We initially reconstructedite_intro
(13 applications) as a rule from the third category. We then optimized it, moving it to the first
category. The reconstruction time went down from 2753 to 15ms.

For comparison, Z3 takes 1.1 s to find 68 proofs, and reconstruction takes 5.1 s. Z3 includes
a rule, th-lemma, that indicates that the proposition was derived by theory-specific means,
without specifying which theory was used. Reconstructing such steps in Isabelle amounts to
testing various theories in turn. In this respect, veriT’s output is superior.

7 RelatedWork

Two chapters in the Handbook of Automated Reasoning [13,20] are dedicated to aspects
of formula preprocessing. Reger et al. [21] describe a one-pass algorithm implemented in
the Vampire prover, together with an extension [22] to unfold ‘let’ expressions and “first-
class” Boolean constructs. The focus is on producing small formulas, quickly. In contrast, our
algorithm proceeds in several passes, with a focus on producing detailed, structured proofs.
We discussed in Sect. 4.5 how to adapt our algorithm to also proceed in one pass, but the
benefits of having a single pass do not necessarily compensate for the drawbacks.

Most automatic provers that support the TPTP syntax for problems generate proofs in
TSTP (Thousands of Solutions for Theorem Provers) format [23]. Like a veriT proof, a
TSTP proof consists of a list of inferences. TSTP does not mandate any inference system;
the meaning of the rules and the granularity of inferences vary across systems. For example,
E [24] combines clausification, skolemization, and variable renaming into a single inference,
whereas Vampire [25] appears to cleanly separate preprocessing transformations. SPASS’s
[26] proof format does not record preprocessing steps; reverse engineering is necessary to
make sense of its output, and optimizations ought to be disabled [4, Sect. 7.3].

Most SMT solvers can parse the SMT-LIB [8] format, but each solver has its own out-
put syntax. Z3’s proofs can be quite detailed [27], but rewriting steps often combine many
rewrites rules. CVC4’s format is an instance of LF [28] with Side Conditions (LFSC) [29];

5 http://isabelle.in.tum.de/repos/isabelle/file/44e1c9f93755/src/HOL/SMT_Examples/SMT_Examples.thy.
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despite recent progress [30,31], neither skolemization nor quantifier instantiation are cur-
rently recorded in the proofs. Proof production in Fx7 [32] is based on an inference system
whose formula processing fragment is subsumed by ours; for example, skolemization is more
ad hoc, and there is no explicit support for rewriting.

Proof assistants for dependent type theory, includingAgda, Coq, Lean, andMatita, provide
very precise proof terms that can be checked by relatively simple checkers, meeting De
Bruijn’s criterion [33]. Via the Curry–Howard correspondence, a proof term is a λ-term
whose type is the proposition it proves; for example, the term λx . x , of type A → A, is
a proof that A implies A. Proof terms have also been implemented in Isabelle [34], but
they slow down the system and are normally disabled. Frameworks such as LF, LFSC, and
Dedukti [35] provide a way to specify inference systems and proof checkers based on proof
terms. Our encoding into λ-terms is vaguely reminiscent of LF. The encoded rules also bear
a superficial resemblance to deep inference [36].

Isabelle and the proof assistants from the HOL family (HOL4, HOL Light, HOL Zero,
and ProofPower–HOL) are based on the LCF architecture [18]. Theorems are represented by
an abstract data type. A small set of primitive inferences derives new theorems from exist-
ing ones. This architecture is also the inspiration behind automatic systems such as Psyche
[37]. In Cambridge LCF, Paulson introduced an idiom, conversions, for expressing rewriting
strategies [38]. A conversion is an ML function from terms t to theorems of the form t � u.
Basic conversions perform β-reduction and other simple rewriting. Higher-order functions
combine conversions. Paulson’s conversion library culminates with a function that replaces
Edinburgh LCF’s monolithic simplifier. Conversions are still in use today in Isabelle and the
HOL systems. They allow a style of programming that focuses on the terms to rewrite—the
proofs arise as a side effect. Our framework is related, but we trade programmability for effi-
ciency on very large problems. Remarkably, both Paulson’s conversions and our framework
emerged as replacements for earlier monolithic systems.

Over the years, there have been many attempts at integrating automatic provers into proof
assistants. To reach the highest standards of trustworthiness, some of these bridges translate
the proofs found by the automatic provers so that they can be checked by the proof assistant,
as we have done for Isabelle/HOL and veriT (Sect. 6.2). The Tramp subsystem of �mega is
one of the finest examples [39]. For integrating superposition provers with Coq, De Nivelle
studied how to build efficient proof terms for clausification and skolemization [40]. For SMT,
the main integrations with proof reconstruction are CVC Lite in HOL Light [41], haRVey
(veriT’s predecessor) in Isabelle/HOL [42], Z3 in HOL4 and Isabelle/HOL [6,43], veriT in
Coq [3], and CVC4 in Coq [44]. Some of these simulate the proofs in the proof assistant
using dedicated tactics, in the style of the smt method. Others employ reflection, a technique
whereby the checker is specified in the proof assistant’s formalism and proved correct; in
systems based on dependent type theory, this can help keep proof terms to a manageable size.
A third approach is to translate the SMT output into a proof text that can be inserted in the
user’s formalization; Isabelle/HOL supports Z3 and earlier versions of veriT in this way [4].

Proof assistants are not the only programs used to check machine-generated proofs. Otter-
fier [45] invokes the Otter prover to check TSTP proofs from various sources. GAPT [5,46]
imports proofs generated by resolution provers with clausifiers to a sequent calculus and uses
other provers and solvers to transform the proofs. Dedukti’s λ�-calculus modulo [35] has
been used to encode resolution and superposition proofs [47], among others. λProlog [48]
provides a general proof-checking framework that allows nondeterminism, enabling flexible
combinations of proof search and proof checking.
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8 Conclusion

We presented a framework to represent and generate proofs of formula processing and its
implementation in veriT and Isabelle/HOL. The framework centralizes the delicate issue
of manipulating bound variables and substitutions soundly and efficiently, and is flexible
enough to accommodate many interesting transformations. Although it was implemented in
an SMT solver, there appears to be no intrinsic limitation that would prevent its use in other
kinds of first-order, or even higher-order, automatic provers. The framework covers many
preprocessing techniques and can be part of a larger toolbox.

Detailed proofs have been a defining feature of veriT for many years. The solver now
producesmore detailed justifications than ever, but there are still some global transformations
for which the proofs are nonexistent or leave much to be desired. In particular, supporting
rewriting based on global assumptions would be essential for proof-producing inprocessing,
and symmetry breaking would be interesting in its own right.
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