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Assessing the Predictive Value
of Traffic Count Data in the Imputation
of On-Street Parking Occupancy
in Amsterdam

Pablo Martı́n Calvo1 , Bas Schotten2 , and Elenna R. Dugundji3,4

Abstract
On-street parking policies have a huge impact on the social welfare of citizens. Accurate parking occupancy data across time
and space is required to properly set such policies. Different imputation and forecasting models are required to obtain this
data in cities that use probe vehicle measurements, such as Amsterdam. In this paper, the usage of traffic data as an explana-
tory variable is assessed as a potential improvement to existing parking occupancy prediction models. Traffic counts were
obtained from 164 traffic cameras throughout the city. Existing models for predicting parking occupancy were reproduced in
experiments with and without traffic data, and their performance was compared. Results indicated that (i) traffic data are
indeed a useful predictor and improves performance of existing models; (ii) performance does not improve linearly with an
increase in the number of counting points; and (iii) placement of the cameras does not have a significant impact on
performance.

On-street parking can be found in most cities around the
world. It is a key service for urban mobility, whereby
drivers can conveniently reach many locations of the city
with their vehicles door to door. Usually being a public
service, authorities are responsible for executing appro-
priate policy making to optimize this scarce resource.
One of the main concerns is the increase in traffic con-
gestion owing to high occupancy of on-street parking
space (1, 2). This relationship serves as the seed for the
motivation of this research: if high parking occupancy
leads to traffic congestion, could traffic data serve as a
predicting feature for parking occupancy?

This paper proposes assessing traffic data as a predic-
tive feature for parking occupancy. This is observed in
two different cases: in imputation models for completing
the sparse spatial-temporal view of the city obtained
through probe vehicles and in forecasting the future
occupancy in short-term time steps. Imputation models
are relevant for cities that have chosen probe vehicles as
their occupancy monitoring tool, a promising solution to
the parking occupancy monitoring problem in relation
to effectiveness and cost (3–5). This is because the spar-
sity of the monitoring leads to data gaps across time and
space. Without imputing those gaps, authorities are left
with a partial view of occupancy. Short-term forecasting

models are required when authorities want to decide on
policies for the near future (6).

This leads to the following research questions:

� Can sensor-gathered data about traffic flows
reduce prediction error in existing imputation and
forecasting models for on-street parking occu-
pancy in the city of Amsterdam?

� How does the number of sensors affect the predic-
tion error?

� How does the geographical position of sensors
affect the prediction error?

The city of Amsterdam, in the Netherlands, was chosen
for experiments given the access to both data and models
related to the topic provided by the municipality. To
answer empirically the proposed research questions, traf-
fic counts obtained through street cameras were
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acquired, and the predictive model proposed by Schmidt
was reproduced with and without using this data as a
predicting feature (7). The results of these experiments
showed the impact of the traffic data on the performance
of the model. Additional experiments provided insight
into the impact of camera quantity and placement.

The rest of the paper is organized as follows: Related
Work provides an overview of the existing research on
the need for occupancy data in parking economics and a
selection of data and methods that have been tried pre-
sented in literature. Methodology presents the data,
model, and evaluation approach that were used in this
research. Results presents the empirical results obtained
through the performed experiments. The Discussion sec-
tion contains reflections on the knowledge that can be
drawn from the obtained results and their implications.
The Conclusion section presents the conclusions of the
paper.

Related Work

Related work is reviewed from three angles in the follow-
ing subsections: the models and theories around on-street
parking and how occupancy prediction is relevant, the
relationship between parking occupancy and traffic con-
gestion, and finally how models and data have been used
in the past, with a special focus on the works that have
attempted to use traffic data.

On-Street Parking Economics and Policy

On-street parking, also known as curb parking, has been
modeled many times with some formulation of total
social welfare as the variable to maximize through park-
ing policy (8–10). This approach allows for taking into
account all of the economical aspects of parking as well as
its main externalities, such as space occupation, increased
traffic, or time wasted cruising. (Cruising refers to the situ-
ation in which a driver cannot find a free spot in his desti-
nation and keeps driving around the area while waiting
for a spot to become available.) Some authors have given
explicit guidelines related to occupancy: Shoup recom-
mends aiming for having all blocks almost full, but not
full. This leads to a drastic reduction in cruising, which in
turn improves the resulting overall welfare (1).

Pricing is often proposed as one of the main tools for
pursuing target occupancy levels. Several authors agree
that on-street parking is underpriced in most cities in the
world (1, 8, 9) and that prices should be increased to
reach the aforementioned occupancy goals. When differ-
ences in time and space for parking demand are also
taken into account, the need for dynamic spatial-
temporal pricing appears. This idea was already pro-
posed decades ago by Vickrey, but technological and

data collection constraints made this idea infeasible at
the time (11). However, nowadays the state of technol-
ogy allows for applying Vickrey’s proposals. In 2011, in
San Francisco, the SFPark project deployed a pricing
system that adjusted parking meter prices once every 6
weeks depending on the mean occupancy being in a spe-
cific range (60% to 80%) (6). Different prices were set
across blocks, different times of the day, and weekdays
and weekends. After a year of activity, the average price
across the entire project area was the same, but the spa-
tial patterns allowed for 67% of the previously underused
areas to increase occupancy, whereas 68% of overoccu-
pied blocks reduced their average occupancy level.

The main takeaway from this section is that there is
plenty of work to be done around on-street parking pol-
icy and the social benefit to be obtained through it, but
this is only possible with data that is both accurate and
complete across time and space.

On-Street Parking and Traffic

On-street parking and traffic have a close relationship.
Several studies have shown that significant proportions
of traffic congestion can be produced by drivers cruising
while searching for a spot. Shoup listed a total of 16 stud-
ies on cruising performed during the 20th century (1).
The aggregated results of these studies show that, in the
worst conditions, drivers take on average 8.1min to find
a suitable spot and 30% of the traffic volume is cruising
for a spot. Van Ommeren et al. worked on measuring the
same problem for the Netherlands (12). In their 2011
paper, empirical data from the Dutch National Travel
Survey on cruising behavior for the Netherlands was
studied. Their analysis of the data highlighted that 30%
of car trips end with some time spent cruising, with a
mean cruising time of 37 s. This low value could be
explained by the way that many Dutch local governments
enforce on-street prices as high as the off-street garages,
relatively discouraging on-street parking. The authors
also noted that the mean cruising time is 3 s longer in cit-
ies of above 100,000 inhabitants. Unfortunately, no spe-
cific details were given for downtown areas of the major
Dutch cities, where cruising is often assumed to be a
much bigger problem than in other areas.

All this knowledge serves as motivation for the main
hypothesis of this paper: that information about parking
occupancy can be gained from traffic data, and thus it
could be a useful predictive feature.

Imputation and Forecasting Methods and Traffic as an
Explanatory Variable

In this section, two distinct problems are reviewed: impu-
tation of parking occupancy in areas and times that have
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not been monitored (as in the Amsterdam case) and fore-
casting of future parking occupancy. Previous attempts at
using traffic data for these challenges are also reviewed.

Imputation Methods. Imputation methods for the case of
sparse occupancy monitoring are rare, as Schmidt
pointed out in his recent work on the topic (7). A few
papers that deal with this issue directly, or with similar
problems, have been identified.

Bock is one of the authors that has worked on the
topic. In his work with Di Martino and Sester in 2016,
he evaluated the effectiveness of a fleet of probe vehicles
by composing a synthetic occupancy dataset from the
full sensor data of SFPark, assuming only a 30% obser-
vation rate across time and space (4). The work used a
random forest classifier that could predict whether road
segments would be full or not full in several future hori-
zons, up to 60min. This model used data from the same
road segment as well as the neighboring ones. The
authors concluded that, although the scenario with sen-
sor monitoring (leading to a 100% coverage on space
and time) had the best performance in the prediction
results, the simulated probe vehicle data led to a very
close performance. This seems to indicate that it is possi-
ble to execute forecasting with a sparse view of the occu-
pancy across the city, and that predictions for a specific
road segment can be made with data from neighboring
ones. The conclusion that nearby road segments can pro-
vide information on the occupancy of a specific one was
also supported in another work by Bock and Sester in
the same year (13).

Ionita et al. developed a model for predicting occu-
pancy in completely unmonitored areas (14). The chosen
approach was to cluster areas in the city based on what
the authors called ‘‘city data,’’ which was composed with
geolocated amenities and points of interest obtained from
OpenStreetMaps. Once these clusters had been made,
occupancy data from areas that were monitored, together
with the developed clusters, were used to train a model
that could output predictions for the areas that were not
monitored. Different machine learning models were used,
with experiments being executed using occupancy data
from the SFPark project.

Forecasting Methods. Whereas the works in the imputation
field for street parking are rather scarce, there are plenty
of methods in the forecasting area. Performing a com-
plete review of this field and all the existing literature
would be beyond the scope of this paper. Thus, a selec-
tion of representative works will be presented.

Pullola et al. also tried to predict the occupancy of a
parking lot, as part of a wider GPS system for recom-
mending optimal parking destinations for drivers (15).
The future occupancy of the parking lot is modeled as a

Poisson process. No evaluation was performed on real
data, with only a synthetic dataset being used for show-
casing the behavior of the proposed system.

Ji et al. developed a wavelet neural network for pre-
dicting the available parking spaces in parking lots in the
short term (16). The model is designed to use previous
occupancy data from the same parking lots. An evalua-
tion was performed using data from a parking lot in
Newcastle, showing promising results with little error,
measured as Mean Squared Error.

Zheng et al. compared the result of several machine
learning models on a dataset from the SFPark project
and a dataset from the city of Melbourne (17). Their goal
was to predict the occupancy rate of street parking in 15-
min steps. The compared models were regression trees,
support vector regression, and neural networks. Using
only previous occupation data, they concluded that
regression trees had the least error out of the three com-
pared models.

Rajabioun and Ioannou proposed a vector autore-
gressive model intended for both on-street and off-street
parking, which accounted for both temporal and spatial
relationships between the different parking areas and
points in time (18). The forecasts were produced for
short-term periods under an hour. The model was tested
with data from the SFPark project for validation.

Badii et al. developed several forecasting models
(BRANN, RNN, ARIMA, and SVM) for predicting
available spaces in gated garages and tested them on sev-
eral garages of the city of Florence, Italy (19). A mixture
of data sources, obtained from the city open-data sys-
tem, were used as predictive features for the models.

Finally, Fan et al. recently proposed a long short-term
memory (LSTM) model based solely on time-series data,
which could execute multistep, short-term forecasts on
garage vacant space (20). The model was benchmarked
against other common machine learning models with real
time-series data obtained from two garages. The obtained
results showed extremely accurate forecasts for short
time spans, with a Mean Absolute Error value below 5%
for forecasts with a horizon of 15min.

Use of Traffic Data. Finally, three papers in which traffic
data were considered as a potential feature for predicting
parking occupancy are presented. These deserve a special
focus since they are highly related to this paper. All three
focused on the forecasting problem. No research was
found in which traffic data were used for imputation
purposes.

The earliest work in which traffic data were used as a
predicting variable for parking occupancy was developed
by Ziat et al. in 2016 (21). In their paper, the authors pro-
posed a model to solve the problem of ‘‘cross-forecasting
of road-traffic prediction and parking occupancy.’’ Their
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motivation was similar to the authors as they stated that
‘‘a broader approach encompassing both parking and
traffic could lead to better prediction because of the inter-
relation between traffic fluidity and parking availability.’’
The main difference with the current research is that
whereas here parking occupancy is the only concern,
their proposed model made forecasts for both traffic con-
gestion and parking occupancy. The presented model
was a multilayer perceptron, and it was tested with
sensor-obtained data from the 50 busiest roads and the
30 busiest garages in the French city of Lyon. The empiri-
cal results of their experiments showed that their pro-
posed model’s forecasts had a smaller error than other
baselines. And the main finding that is relevant to our
work is that the error on parking occupancy prediction
was significantly lower when using both parking and traf-
fic data, as compared to simply using parking data. This
seems to confirm that traffic data can indeed improve
predictions on parking occupancy. An important aspect
to keep in mind is that the authors worked with garages,
and not on-street parking, so whether the same effect
could be obtained for street parking was uncertain.

A second work in 2019 by Yang et al. also attempted
to use traffic data (22). In this study, the authors’ goal
was to develop a model for forecasting street parking
occupancy on a block level with a 30min horizon. The
proposed model is a complex deep learning design that
includes usage of graph convolutional- (GCNN), LSTM-
and multilayer feed forward neural networks. One of the
innovative proposals of the authors was to model the
spatial dependencies of data through the use of graphs
and GCNN. The final output of the model is the fore-
casted occupancy for every block of parking spaces. The
model is designed to be able to flexibly include multiple
data sources, and in the scope of the paper several are
used: parking meter transactions, road network, weather,
parking occupancy, and traffic speed. The model was
evaluated with data from the downtown area of the city
of Pittsburgh. The general results of the experiments
were promising, since all proposed baselines were outper-
formed by a significant margin. Focusing on the effect of
traffic speed, the experiments showed a significant
improvement when using traffic congestion data in com-
parison to not using it. The authors valued the effects
positively and concluded that ‘‘The speed profile of the
network reflects the real-time demand and congestion of
both parking and traffic flow. This confirms our assump-
tion that the correlation between traffic congestion and
parking occupancy is significant.’’

Finally, a 2012 paper by Hössinger et al. proposed a
model that aimed to predict occupancy for short-term
time horizons up to 90min ahead (23). Initially, the
authors considered traffic count data as a predicting fea-
ture, but this was discarded during exploratory analysis.

They stated that ‘‘although we found some large correla-
tions among the numerous candidates, they have differ-
ent signs and don’t reveal any recognizable geographical
pattern.’’ Because of this, they deemed the relationship
between traffic and parking occupancy ‘‘too fragile’’ and
decided not to include it in their final model. This state-
ment seems to be in conflict with the views and findings
by Ziat et al. (21) and Yang et al. (22). It is worth obser-
ving the following statement from the paper by the latter
that managed to successfully use similar data: ‘‘Clearly,
it is inappropriate to model the relationship between
traffic speed and parking arrivals via models with low
complexities, while a deep neural network may have the
potential to learn this complicated relationship.’’ The
outcomes of both works seem to indicate that traffic and
parking occupancy have highly complex relationships
across time and space that might not be easy to spot
through conventional methods.

The works by Ziat et al. (21) and Yang et al. (22) show
successful use of traffic data, both traffic counts and
speeds, in forecasting future occupancy. Can these results
be translated to Amsterdam’s case successfully? And
could a similar performance be achieved in imputing val-
ues for the sparse spatial-temporal view that the City of
Amsterdam obtains through its probe vehicles?

Methodology

Different combinations of data sources, preprocessing
techniques, and models were brought together in several
experiments to obtain empirical measurements on the
effectiveness of traffic data for estimating parking occu-
pancy. Two baselines were proposed to compare perfor-
mance with the obtained results. The following
subsections describe these components in detail.

Data Sources and Preprocessing

Parking Occupancy. In this paper, parking occupancy (also
known as parking pressure, or simply occupancy for the
sake of brevity) is defined as the fraction of on-street
parking spots that are occupied by vehicles as part of the
total number of available parking spots. This needs to be
bound to a certain geographical area, a, at a point in
time, t.

occupancyt, a =
occupiedt, a

availablet, a
ð1Þ

In this context, ‘‘available’’ means that the spot can be
used by a vehicle, regardless of whether it is actually
being used. In contrast, parking spots are unavailable
when the municipality of Amsterdam temporarily for-
bids parking in them, such as when a house moving
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company requests a temporary permit to use those spots
to park their trucks.

Occupancy was the target data in the executed experi-
ments: in all of them, occupancy at a certain point in
space and time was either imputed or forecasted.
Occupancy observations in this work were obtained by
grouping several ‘‘point occupancies.’’ A point occu-
pancy (p) is an occupancy value for a specific road seg-
ment, r, at a certain point in time, t. Point occupancies
were obtained through a combination of scan observa-
tions provided by Amsterdam’s probe vehicles, maps of
the existing parking spots in the city maintained by the
municipality, and geographical descriptions of the road
network obtained through OpenStreetMaps.

The chosen geographical space unit for the experi-
ments was the neighborhood. Neighborhoods are one of
Amsterdam’s official administrative spatial divisions
(24). The main motivation for using this unit was to
maintain comparability with the research done by
Schmidt (7). Furthermore, several benefits make this a
suitable unit: it covers the entire city of Amsterdam
seamlessly, it is an official and widely adopted division
of space, and it strikes a balance between areas that are
too expansive, like the entire city, which would make
results uninteresting, and areas that are too small, such
as individual road segments, which would make results
unstable and extremely sparse in relation to space. Most
neighborhoods have areas between 0.01 and 2.5 km2,
with a few outliers being larger than 2.5 km2.

In the time dimension, data were obtained by group-
ing point occupancies in hourly intervals. Specifically,
occupancy was computed as the mean of the set of point
occupancies, P, observed in a road segment, r, belonging
to neighborhood, b, and at time, t, contained in the span
of hour, h. Since point occupancies were observed for
road segments of different sizes in relation to total park-
ing spots, for fairness, the mean was weighted by the
number of spots available in each road segment. The
resulting values indicated the mean occupancy of every
neighborhood during each hour interval,

occupancyb, h(P)=

PP
p occupiedp

PP
p availablep

s:t:

rp 2 b, 8P
tp 2 ½h, h+ 1), 8P
p 2 P

ð2Þ

Only parking spots belonging to the fiscaal category were
selected. Fiscaal spots require a valid parking right, be it
long-term or a temporary ticket, and thus are the only
ones that are monitored by the city’s probe vehicles. This
is because the original purpose of this probe vehicle fleet

was to enforce parking regulations. The generation of the
occupancy data used in this project was an unintended
result of their main activity.

The dataset for this paper was provided by the park-
ing department of the City of Amsterdam. These data
were collected through the probe vehicles used by the
municipality, which drive through Amsterdam monitor-
ing paid parking. The exact schedules and policies of
their routes are confidential and the City of Amsterdam
requires them to be kept undisclosed. The dataset was
composed by aggregating 4,262,693 point occupancies
along 340 neighborhoods in Amsterdam. These were
observed between 1 June 2019 and 28 February 2020,
with 7 days lacking in between owing to missing data in
the data sources. Some 27,934 were removed as a result
of containing incomplete data of the scanned road seg-
ments; 49,003 observations were removed because they
were labeled as outliers for having occupancy values
higher than 120%. Occupancy values above 120% can
occur either because of illegal parking on unauthorized
spaces or because of several, smaller than usual vehicles
being parked in the same street segment. The specific
choice of 120% as the threshold was made to ensure con-
sistency with Schmidt (7). The resulting aggregation
yielded 323,377 occupancy observations per neighbor-
hood and hour. This number decreased to 91,596 after
removing neighborhood and hour combinations in which
less than 80% of the neighborhood parking spots had
been observed by the probe vehicles. The motivation for
this was to ensure that the observations accurately esti-
mated the actual occupancy of the neighborhood. The
specific choice of an 80% threshold was also made to
keep results consistent with the work by Schmidt (7). A
final filter was executed to remove the combinations of
neighborhood and hour that had fewer than 10 point
occupancy samples. The remaining data comprise 61,269
observations. The sparsity of the data across time and
space was very high: out of all the possible combinations
of neighborhood and hour for the selected time span and
neighborhoods, only 3.24% of them had observed val-
ues. The final data comprises, for each observation, a
neighborhood code, a date and hour, and the corre-
sponding observed occupancy.

Parking Tickets. Data from the Dutch National Parking
Database were provided by the City of Amsterdam and
used in this work to reproduce the predictive features
proposed by Schmidt (7) with the aim of comparing their
performance. The original motivation to use this data
was the hypothesis that patterns in the acquisition of
tickets could hold signals related to the state of parking
occupancy in the city. (In the context of this paper, park-
ing tickets, or simply tickets, always refers to temporary
parking rights purchased at parking meters or through
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mobile applications, and never to fines resulting from
illegal parking.)

The features include several metrics related to the
number of tickets sold and available in each neighbor-
hood in the hours previous to the one that is to be pre-
dicted. Only some of the features were necessary for the
experiments in our research. Preprocessing of the data
and the building of these features were executed in the
same fashion as Schmidt and resulted in the same fea-
tures being available. Table 1 indicates the features that
were used.

Traffic Counts. The aim of this study was to find out
whether traffic data could be used as an explanatory
variable for parking occupancy. Taking another look at
the challenge, ‘‘traffic data’’ might come across as a
rather vague term. What data are going to be used, out
of the complex underlying reality of thousands of citizens
driving around the city every day?

The two works by Ziat et al. (21) and Yang et al. (22)
used two different types of traffic data: traffic counts in the
former and mean speed of traffic in the latter. In this work,
traffic counts were selected as the experimental data, given
their accessibility from the City of Amsterdam (see Table
2). Other types of data, such as speed data or vehicle typol-
ogy, could also be interesting features to explore are not in
the scope of this paper.

For the experiments, a dataset with traffic counts
throughout Amsterdam was obtained. This dataset was
gathered through 336 cameras, known as mobility cam-
eras, distributed throughout the city (see Figure 1). These
cameras are used for several purposes, but one of the
results is a database that records a new entry every time a
vehicle drives through its line of sight. These counts were
aggregated to hourly intervals, summing the total num-
ber of vehicles that were detected by the camera. Thus,
the data span the time period from 1 June 2019 to 28
February 2020 and hold the number of vehicles counted
by every camera each hour. Hourly bins were used to
keep the traffic data at the same aggregation level as

parking occupancy data. Shorter time steps were not
explored but could be an interesting topic area for future
research. No spatial aggregation was performed, keeping
individual time-series for each camera. Out of the 364
cameras, 164 were selected because of having continuous
data through more than 95% of the time span. The data
from the other cameras were discarded.

From this main dataset, the following six different
views were created to perform different experiments:

1. One hour: for every hour in the period, the corre-
sponding counts from every camera.

2. Twelve surrounding hours: for every hour in the
period, the counts of the previous 6 h and the
next 6 h were appended. Thus, the feature set
becomes the traffic count of the 12 h surround-
ing the target time step for the 164 cameras. The

Table 1. National Parking Database Feature Description, Where h 2 f0, 1, 2, 3g

Columns Description

Neighborhood code Unique ID for the neighborhood
Date Corresponding date for the data point
Hour (h) Corresponding hour for the data point
Ticket count at time step h-i Number of temporary parking tickets purchased per neighborhood (e.g., via parking

machine or mobile app)
Ticket percentage at time step h-i Number of purchased tickets divided by the total number of available parking spots

per neighborhood
Ticket occupancy at time step h-i Number of parking spots occupied by vehicles with purchased tickets, weighted by

their duration as a proportion of the hour

Figure 1. Positioning of mobility cameras. Colored markers
correspond to the four groups of cameras used in the experiment
with geographical groups.
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motivation for this longer time window was the
hypothesis that models could find more complex
patterns in longer representations of traffic
behavior.

3. Twelve previous hours: same as the 12 surround-
ing hours view, but using the 12 h preceding the
time step instead of 6 h before and the 6 h after.

4. Random 50 cameras: same as the 12 surrounding
hours view, but using 50 selected cameras instead
of the 164 cameras. Five groups were built in this
pattern. In all groups, the cameras were chosen at
random, with equal probability for each candidate.
Reported error metrics on this experiment corre-
spond to the mean across these five random
groups. This experiment was aimed at understand-
ing the effects of low availability of traffic cameras.

5. Random 10 cameras: same as the 50 random
cameras view, but using only groups of 10 cam-
eras. The same selection procedure was used.
Reported error metrics on this experiment also
correspond to the mean across these five ran-
dom groups.

6. Geographical groups: for this view, four groups of
cameras were selected depending on their position
in the city: north, south, east, and west (see Figure
1). Each group contained 10 cameras (except for
the north, which had nine, owing to no more cam-
eras being available in that area). Cameras within
each area were selected randomly.

Feature extraction was performed on the raw traffic
counts before being used for model training. The motiva-
tion for this was twofold: on the one hand, it was deemed
possible that the high dimensionality of the data could
lead to negative side effects related to the ‘‘curse of
dimensionality’’ (25). On the other hand, reducing the
dimensionality of data to a constant number of features
made it possible to keep the structure of the model
unchanged across experiments that used different views
of the traffic data. The tool of choice to extract the fea-
tures was a feedforward autoencoder.

Model

To maintain comparability with the findings by Schmidt
(7), gradient boosting machines (GBM), one of the mod-
els used in that work, was chosen.

GBM was proposed by Friedman (26). This machine
learning technique is suitable for both regression (desired
for the task at hand) and classification. It belongs to the
family of boosting algorithms (27). The algorithm
sequentially generates weak learners, updating the
weights of training observations in the loss function to
increase those with the biggest error, and thus increases

focus on the worst performing areas of the target space.
The implementation found in the scikit-learn package
(28) was used in the experiments.

GBM was specifically chosen out of the several models
evaluated in that work as it was the one that obtained the
best performance among the candidates. Furthermore, as
it was found to be best performing in the previous work
(7), model training was performed on a neighborhood
level. This means one independent model was created,
trained, and evaluated for each of the neighborhoods in
the data set, and was only trained with occupancy obser-
vations belonging to that neighborhood.

Finally, a hyperparameter choice was made and kept
constant throughout the project. No tuning was consid-
ered necessary given that the task at hand was assessing
traffic data, and not aiming at maximum performance in
the predictions.

Performance Metrics and Evaluation

The task at hand was a regression problem. For every
combination of neighborhood and hour, the percentage
of occupied spots out of the total needed to be generated.
This translated to the range between 0 and 1, with values
superior to 1 being possible given that, occasionally,
more vehicles than spots are found on the streets.

Given this, the chosen metrics for evaluating perfor-
mance of the different experiments were R2 and the root
mean squared error (RMSE). In addition, K-Fold cross
validation was performed with K = 5 to better estimate
the out of sample performance. The splits were stratified
across the different neighborhoods and times of the day
to ensure a proportional distribution of the observations
across space and time among the splits.

The reported error metrics in the following sections
consist of the mean of such metrics across all folds and
individual neighborhood models. For Experiments 6 and
7 (see Table 3), metrics were also averaged across the five
random subsets created for each experiment. The exact
equation matches precisely Equation 3a in Schmidt’s
research (7).

Experiments

The chosen data, model, and evaluation approach have
been detailed in the previous sections. These different
components were combined in several ways to obtain
data to answer the proposed questions. Table 3 describes
the different experiments that were performed.

Results

The R2 and RMSE metrics for Experiments 1 to 8 are
presented in Figure 2. All experiments performed better
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than the baseline when looking at median R2 and RMSE.
The results obtained in Experiment 2, which replicated
the methodology by Schmidt (7), obtained slightly worse
results than the ones reported in that work. A potential
explanation for that is the difference in time spans for
both works, and thus the size of the data available for
training. Whereas this paper worked with 8 months of
data, Schmidt used three full years. This means that the
model trained by Schmidt had the opportunity to spot
seasonality patterns, and also simply had more data for it
to learn the relationship between the features and target.

Traffic features improved the performance with respect
to the baseline in all cases. The view of traffic holding 12
surrounding hours of data (Experiment 4) outperformed
the one using only 1h (Experiment 3), as well as Schmidt’s
(7) approach (Experiment 2). Using 12 previous hours of
traffic data before the predicted time step (Experiment 5)

instead of surrounding it (Experiment 4) delivered very
close although slightly worse results.

Using random groups of 50 cameras and 12 surround-
ing hours of traffic data (Experiment 6) performed
slightly worse than using all 164 cameras (Experiment 4).
The experiments with 10 cameras (Experiment 7) did
even worse, but were still clearly superior to using all
cameras, but only 1 h of data (Experiment 3).

Using both the features proposed by Schmidt (7) and
12 surrounding hours of traffic data simultaneously
(Experiment 8) resulted in the best performance across
all experiments, clearly outperforming using the different
features in isolation.

The results for Experiment 9 can be found in Figure
3. For each group of cameras, the performance metrics
are grouped by stadsdeel (or districts), an administrative
division of Amsterdam above neighborhoods in the

Table 2. Traffic Count Data Description

Columns Description

Camera ID Unique ID for the mobility camera
Date Corresponding date for the data point
Hour (h) Corresponding hour for the data point
Traffic count 2 ½h� 1, h) Number of cars observed by the camera between the indicated hour and the previous one

Table 3. Summary of Experiments

No. Features used Description Purpose

1 None Baseline model consisting of the mean
occupancy of each neighborhood over all
time periods as the prediction value.

Basic baseline for comparison with most
advanced models.

2 Time and NPR Reproduction of the experiments by Schmidt
(7) with same data, preprocessing, and
model.

Obtain metrics for previously used
features in literature to compare with
traffic data results.

3 Traffic—1 h Models only use 1 h of traffic data as features. Assess whether traffic data are useful
predictors.

4 Traffic—12 surrounding hours Models use 6 h before and after the target
time step as features.

Assess whether patterns over longer
periods of time hold more information.

5 Traffic—12 previous hours Models use 12 h before the target time step
as features.

Assess potential for forecasting.

6 Traffic—50 random cameras groups Models use 6 h before and after the target
time step as features, but only for 50
cameras across the city.

Study the effects of the quantity of
cameras on performance.

7 Traffic—10 random cameras groups Models use 6 h before and after the target
time step as features, but only for 10
cameras across the city.

Study the effects of the quantity of
cameras on performance.

8 Time, NPR and traffic—
12 surrounding hours

Models use both the features proposed by
Schmidt (7) as well as the most complex
view of traffic data.

Determine whether patterns between
features proposed by Schmidt (7) and
traffic hold more predictive power
together than individually.

9 Traffic—random groups in
the north, west, south, and east

Models use 6 h before and after the target
time step as features, but only for
selections of cameras that are close in
space and away from the center.

Study the effects of the spatial dimension
on performance.

Note: NPR = National Parking Database.
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hierarchy. No clear relationship was found between the
location where traffic data were obtained and the error
differences across areas in the city.

Looking closer to the individual results per neighbor-
hood revealed that performance obtained across neigh-
borhoods had significant differences. Figure 4 shows a
map with the mean R2 across folds for every neighbor-
hood as obtained in Experiment 8. This behavior was
also observed by Schmidt (7). Central neighborhoods
seem to perform worse than those further away, but
neighborhoods with high and low R2 scores can be found

Figure 2. Distribution of R2 and root mean squared error (RMSE) per neighborhood for Experiments 1 to 8.

Figure 3. R2 scores for models trained with 10 cameras, either
randomly selected or geographically selected, across different areas.

Figure 4. Mean R2 across folds for every neighborhood as
obtained in Experiment 8.
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in both areas. No clear patterns in data that could poten-
tially explain this behavior were found while exploring
the results of the experiments, and whether this could be
becauase of trips through the center or a special behavior
in space demand remains unclear.

The examination of typical parking occupancy in dif-
ferent neighborhoods also revealed that most neighbor-
hoods are well below the parking pressure recommended
by Shoup (1). Central neighborhoods showed a mean
occupancy of 68% and a standard deviaton of 16%,
whereas other neighborhoods showed a lower mean
occupancy of 53% and a standard deviation of 13%.

Discussion

In this section, a more in-depth analysis of the obtained
results can be found, with special attention to the
research questions presented in the introduction.

Traffic Counts as a Predictive Feature

The first research question posed by this paper was,
Does sensor-gathered data about traffic flows reduce
prediction error on existing imputation and forecasting
models for on-street parking occupancy in the city of
Amsterdam? The results from the executed experiments,
where in all cases the baseline model was outperformed
in both R2 and RMSE, showed that the generated traffic
features were indeed useful in both imputing and fore-
casting parking occupancy in the case of the city of
Amsterdam. Furthermore, the results of Experiment 8
outperforming the results of Experiment 2 specifically
confirmed that using traffic features on top of the fea-
tures already proposed by Schmidt (7) reduced the
obtained error. Results also showed that representations
of the state of traffic that describe longer time spans per-
formed better than simpler ones, as seen in Experiments
3 and 4.

This paper has examined both imputation and fore-
casting for parking occupancy. Experiment 5 proposed
only using traffic data before the time step that was to be
predicted, effectively turning the problem into one of
forecasting, and performance was on a par with the
imputation scenarios. With these results in hand, we can
state that traffic counts could be used in both imputation
and forecasting scenarios with positive outcomes.

Number of Traffic Counting Points and Performance

The next proposed research question was, How does the
number of sensors affect the prediction error?
Experiments 6 and 7 limited the number of mobility
cameras used from the original 164 to 50 and 10, respec-
tively. The decrease in the number of used cameras

gradually decreased predictive performance in relation to
R2 and RMSE, but the results were still clearly superior
to the baseline and also to the features proposed by
Schmidt (7). This indicated that a small number of vehi-
cle counting-points could be enough for the purpose of
predicting parking occupancy, and that increasing the
number of counting points may not linearly improve
performance.

Two hypotheses could explain this behavior. One is
that the high correlation between the traffic counts
obtained by the different cameras translated into very lit-
tle information being lost when cameras were discarded.
Figure 5 shows the distribution of the correlation coeffi-
cients between all cameras, which clearly indicates that
most cameras have a strong positive correlation with the
others. The other hypothesis would be that the autoen-
coding procedure used in the methodology of this paper
might have produced a summarizing effect on the traffic
counts, which would have weakened the signals from the
more complex views of traffic.

Effects of Camera Positioning on Performance

The last proposed research question is, How does the
geographical position of sensors affect the prediction
error? The results from Experiment 9 did not show any
clear relationship between the positioning of cameras
and model performance across the spatial dimension.
The intuitive idea that a camera would help more in pre-
dicting areas close to it and less in predicting areas far
away in the city cannot be validated with the obtained
results.

There are several ideas that could explain this beha-
vior. First of all, Amsterdam is far from being a large
city in relation to area. With optimal traffic conditions, a
vehicle could drive from the west to the east and back in

Figure 5. Distribution of correlation coefficients between traffic
counts of 164 cameras.
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less than an hour. This might translate in the area of
influence of the signal given by the cameras to be large
enough to cover most of the city area, thus effectively
making any camera a useful source of data for predicting
across the entire city. To put this to the test, a similar
methodology could be reproduced in larger cities. The
second possible explanation, as in the previous discus-
sion on the impact of the quantity of sensors, is that the
traffic counts from the cameras across Amsterdam are
highly correlated (see Figure 5). This is not surprising
given that traffic generally exhibits a strongly periodic
temporal pattern with the time of the day.

Although it has not been explored in this work, we
believe that further steps could be taken to enable the
predictive model to learn from geographical features of
the data. A possible way to do this would be to include
data on the position of the counting cameras and the
neighborhoods. We believe that by doing this, there is a
possibility that the model would be able to learn complex
geographical patterns in the parking and traffic spatial-
temporal data that could improve its predictive perfor-
mance. Further work would be required to validate this
hypothesis.

Conclusions

This paper has experimented with traffic flow data in
imputation and forecasting scenarios for on-street park-
ing occupancy prediction, with the intent of assessing
whether such data are useful predictive features. With the
use of several data sources containing real data for the
city of Amsterdam, empirical results indicated that traffic
flow data are valid for imputing and forecasting parking
occupancy. The performance obtained in Amsterdam
through the use of traffic data outperformed both the
proposed baseline and the previously proposed features
found in literature. Furthermore, a combination of traffic
data with such features led to the best results across all
experiments. The quantity and positioning of cameras
were examined and results indicated that a relatively
small number (i.e., 10) of cameras delivered performance
results close to using all 164 available cameras, and that
the geographical placement did not lead to relevant dif-
ferences in performance. This could be good news for cit-
ies where sensor infrastructure is scarce or unbalanced
across space. Similar results should be expected of any
other vehicle-counting sensor, such as induction loops or
radar systems.

Although care should be taken when translating
results to other cities whose spatial characteristics may
differ significantly from each other, the results of this
work do concur with those obtained by Ziat et al. (21)
and Yang et al. (22) in Lyon and Pittsburgh, thereby

contributing more evidence that traffic data could be
used to successfully estimate parking occupancy.
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23. Hössinger, R., K. Heimbuchner, and T. Uhlmann. Devel-
opment of a Real-Time Model of the Utilisation of Short-
Term Parking Zones. Proc., 19th Intelligent Transport Sys-

tems World Congress, Vienna, Austria, 2012.
24. Gemeente Amsterdam. Amsterdam Neighbourhood Map,

2020. https://data.amsterdam.nl/data/?modus=kaart&ach
tergrond=topo_rd_zw&center=52.3704876%2C4.8934422
&lagen=gebind-buurt%3A1&zoom=7.

25. Bellman, R. R. E. Dynamic Programming. Princeton Uni-
versity Press, NJ, 1957.

26. Friedman, J. H. Greedy Function Approximation: A Gra-
dient Boosting Machine. Annals of Statistics, 2001,
pp. 1189–1232. https://doi.org/10.1214/aos/1013203451.

27. Schapire, R. E. A Brief Introduction to Boosting. Proc.,
16th International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 1999.

28. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and É. Duchesnay. Scikit-Learn:
Machine Learning in Python. Journal of Machine Learning

Research, Vol. 12, 2011, pp. 2825–2830.

Martı́n Calvo et al 341

https://scripties.uba.uva.nl/search?id=690472
https://doi.org/10.1016/j.jue.2006.04.004
https://doi.org/10.1016/j.jue.2006.04.004
https://doi.org/10.1016/j.regsciurbeco.2005.04.002
https://doi.org/10.1016/j.jpubeco.2013.06.008
https://doi.org/10.1016/j.jpubeco.2013.06.008
https://doi.org/10.1016/j.tra.2011.09.011
https://doi.org/10.1016/j.trpro.2016.12.081
https://doi.org/10.1016/j.trpro.2016.12.081
https://doi.org/10.1049/iet-its.2013.0184
https://doi.org/10.1049/iet-its.2013.0184
https://doi.org/10.1109/TITS.2015.2428705
https://doi.org/10.1109/ACCESS.2018.2864157
https://doi.org/10.1109/MITS.2020.3014131
https://doi.org/10.1109/MITS.2020.3014131
https://doi.org/10.1016/j.trc.2019.08.010.1901.06758
https://data.amsterdam.nl/data/?modus=kaart&achtergrond=topo_rd_zw&center=52.3704876%2C4.8934422&lagen=gebind-buurt%3A1&zoom=7
https://data.amsterdam.nl/data/?modus=kaart&achtergrond=topo_rd_zw&center=52.3704876%2C4.8934422&lagen=gebind-buurt%3A1&zoom=7
https://data.amsterdam.nl/data/?modus=kaart&achtergrond=topo_rd_zw&center=52.3704876%2C4.8934422&lagen=gebind-buurt%3A1&zoom=7
https://doi.org/10.1214/aos/1013203451

