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Abstract. This paper contributes an analysis of how in mental and social pro-
cesses, humans often apply specific mental models and learn and adapt them in
a controlled manner. It is discussed how controlled adaptation relates to the Plas-
ticity Versus Stability Conundrum in neuroscience. From the analysis an infor-
mal three-level cognitive architecture for controlled adaptation was obtained. It is
discussed here from a self-modeling network viewpoint how this cognitive archi-
tecture can be modeled as a self-modeling network. Making use of the specific
network characteristics offered by the self-modeling network structure format, a
large number of options for different types of adaptation of mental models and
different types of control over adaptation of mental models were obtained. Many
of these options were illustrated by a several realistic examples that were formal-
ized by self-modeling networks. Other options that were distinguished from the
analysis here, are offered as interesting options for future research.

1 Introduction

The area of mental models within psychology, educational science and other related
disciplines addresses how in their mental and social processes, humans often learn,
adapt and apply specific mental models as a kind of blueprints, schemas or maps. Most
of the many publications on mental models in multiple disciplines are informal and not
computational. This may partly be due to the challenging complexity of the different
types of processes involved in handling mental models. The main processes that came
out of a more detailed analysis of this literature are (Van Ments and Treur 2021c):

(1) Applying a mental model
This can be considered a form of internal (mental) simulation. Outcomes of

this, affect a person’s decisions and actions; e.g., (Craik 1943)
(2) Developing and maintaining a mental model

Adaptation of mental models often takes place. This usually involves learning,
extinction or forgetting, and revision; e.g., (Piaget 1936; Hebb 1949; Seel 2006)
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(3) Exerting control over a mental model
In a context-sensitive manner, usually control is exerted over adaptation of a

mental model; e.g., (Du Plooy 2016; Darling-Hammond et al. 2008; Hurley 2008;
Mahdavi 2014; Pintrich 2000).

To obtain a formalized and computational model of mental processes involving a
mentalmodel, these three different types of interacting processes all have to be addressed,
which indeed may be a bit challenging.

Some inspiration can be obtained from the wider neuroscientific context. In that
context, (2) corresponds to what often is called plasticity and (3) relates to the notion of
metaplasticity. In (Sjöström et al. 2008), the latter topic is discussed in relation to what
is called the Plasticity Versus Stability Conundrum. More specifically, concerning (2)
and (3), within neuroscience it has been found more in general that:

• In the brain plasticity can occur in different forms; for example:

– synaptic neural plasticity; e.g., Hebbian learning (Hebb 1949)
– nonsynaptic neural plasticity (sometimes called intrinsic plasticity) such as plas-
ticity of excitability thresholds within neurons; e.g., (Chandra and Barkai 2018;
Debanne et al. 2019; Sjöström et al. 2008)

• Plasticity turns out not to be constant but can be depend on circumstances; various
neural mechanisms have been discovered by which the extent of plasticity varies over
different circumstances by being controlled in a context-sensitive manner. This is
called metaplasticity; e.g., (Abraham and Bear 1996; Magerl et al. 2018; Robinson
et al. 2016; Sjöström et al. 2008)

These concepts and the way in which they have been modeled by formalized and
computational models in (Treur 2020) provided useful inspiration to obtain formalised
computational models for mental processes based on mental models as well.

As a first step, based on the analysis of the different types of interacting processes (1),
(2) and (3) involved in mental model handling, an informal global cognitive architecture
for mental model handling has been developed taking these processes into account in
three different but related levels; see (Van Ments and Treur 2021c). Moreover, using the
viewpoint of self-modeling networks, it has been shown how this (informal) cognitive
architecture can be formalized in a computational manner in a self-modeling network
format. In this self-modeling network, for the abovementioned informal three-level cog-
nitive architecture, by the base level network internal simulation based on a mental
model as subnetwork takes place, by a first-order self-model network at the next level,
adaptation of this subnetwork representing the mental model and by a second-order self-
model network at the second-next level context-sensitive control over this adaptation
takes place. This will be discussed in some more detail in Sect. 3. After that, in Sects. 4,
5 and 6 each of the three levels will be discussed in more detail and illustrated by many
examples of realistic cases of mental processes involving mental models. First, in Sect. 2
the notion of self-modeling network model is briefly introduced.
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2 Self-modeling Network Models

A specific modeling approach addressing dynamics and adaptivity is the network-
oriented modeling approach described in (Treur 2020). The current section briefly
describes this modeling approach.

2.1 Network Models

According to the network-oriented modeling approach described in (Treur 2020) a
network model is characterised by:

• connectivity characteristics
Connections from a node (or state) X to a node Y and their weights ωX,Y

• aggregation characteristics
For any node Y, some combination function cY (..) defines aggregation that is applied
to the single impacts ωX,YX(t) on Y through its incoming connections from states X

• timing characteristics
Each node Y has a speed factor ηY defining how fast it changes for given (aggregated)
impact

The difference (or differential) equations that are useful for simulation purposes and
also for analysis of network dynamics incorporate these network characteristics ωX,Y ,
cY (..), ηY : it holds.

Y (t + �t) = Y (t) + ηY
[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]
�t (1)

for any state Y and where X1, . . . ,Xk are the states from which it gets its incoming
connections. Examples of useful combination functions are:

• the simple logistic sum function slogisticσ,τ(..) defined by:

slogisticσ,τ(V1, . . . ,Vk) = 1

1+ e−σ (V1+...+Vk−τ)
(2)

• the advanced logistic sum function alogisticσ,τ(..) defined by:

alogisticσ,τ(V1, . . . ,Vk) =
[

1

1+ e−σ(V1+...+Vk−τ)
− 1

1+ eστ )

](
1+ e−στ

)
(3)

This function is obtained from the simple logistic sum function by subtracting its
value for sum 0 from it and rescaling the result for the [0, 1] interval.

The above concepts enable to design network models and their dynamics in a
declarative manner, based on mathematically defined functions and relations.
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2.2 Modeling Adaptive Networks as Self-modeling Networks

Realistic network models are usually adaptive: their network characteristics often are
adapted over time. Therefore, their dynamics is usually an interaction (sometimes called
co-evolution) of these two sorts of dynamics: dynamics of the nodes (or states) in the
network (dynamicswithin the network) versus dynamics of the characteristics of the net-
work (dynamics of the network). Dynamics of the network’s nodes are modeled declar-
atively by declarative mathematical functions and relations. In contrast, the dynamics
of the network characteristics traditionally are described in a procedural, algorithmic
nondeclarative manner, which then leads to a hybrid type of model. But by using self-
models within the network, a network-oriented conceptualisation can also be applied
to adaptive networks to obtain a declarative description using mathematically defined
functions and relations; see (Treur 2020). This works through the addition of new nodes
to the network (called self-model states or reification states) which represent (adaptive)
network characteristics. Such nodes are depicted at a next level (self-model level), where
the original network is at a base level. These types of characteristics with their self-model
states and their roles are shown in Table 1.

This provides an extended network, also called self-modeling network. Like for all
network models, a self-modeling network model is specified in a (network-oriented)
declarative mathematical manner based on nodes and connections. These include
interlevel connections relating nodes at one level to nodes on the other.

Table 1. Different network characteristics and self-model states for them

Types of
characteristics

Concepts Notations Self-model states Role played by the
self-model state

Connectivity
characteristics

Connections
weights

ωX,Y WX,Y Connection weight
W

Aggregation
characteristics

Combination
functions
and their
parameters

cY (..)
πi,j,Y

Ci,Y
Pi,j,Y

Combination
function weight C
Combination
function parameter P

Timing
characteristics

Speed factors ηY HY Speed factor H

The outcome is also a network model (Treur 2020, Chap. 10). This whole con-
struction can be applied iteratively to obtain multiple self-model levels that can provide
higher-order adaptive networks, and is quite useful to model, for example, plasticity and
metaplasticity in the form of a second-order adaptive network with three levels, one base
level and a first- and a second-order self-model level; e.g., (Treur 2020, Chap. 4).
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To support the design of network models and simulation of them, for any application
from a library predefined basic combination functions bcfi(..), i = 1, ..., m are selected
by assigning weights γi,Y , where the combination function then becomes the weighted
average.

cY (..) = (γ1,Y bcf1(..) + ... + γm,Y bcfm(..))/(γ1,Y + ... + γm,Y ) (4)

Furthermore, parameters of combination functions are specified, so that bcfi(..) =
bcfi(p,v) where p is a list of parameters and v is a list of values.

3 Modeling the Cognitive Architecture for Mental Models
as a Self-modeling Network

Based on the different processes in which mental models are used as briefly discussed
above, a cognitive architecture for handling mental models has been designed covering
the three types of processes in an integrated manner as depicted in Fig. 1, left hand side.
For more details of this architecture, see (Van Ments and Treur 2021c).

Control of adaptation 
of a mental model 

Adaptation  
of a mental model

Internal simulation  
by a mental model

  Second-order self-model
of a mental model structure 

First-order self-model  
of a mental model structure

Base level with mental model  
structure as subnetwork

Three-level cognitive architecture Self-modeling network 

Fig. 1. Modeling the three-level cognitive architecture for mental model handling by a self-
modeling network

The mapping from the three levels of the cognitive architecture to a self-modeling
network is as follows (see also Fig. 1):

• Lower level: a mental model as a subnetwork
The mental model as a relational structure at the base level within the cognitive
architecture is modeled as a (sub)network structure of states (nodes) and connections
between them at the base level of the self-modeling network; the dynamics of the
states of this subnetwork model internal simulation of the mental model

• Middle level: a first-order self-model of a mental model representing adaptation
of its network structure
The level for adaptation of amentalmodelwithin the cognitive architecture ismodeled
as a first-order self-model of the mental model structure as represented at the base
level; the dynamics of the states of this first-order self-model model adaptation by
making changes in the structure of the mental model
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• Upper level: a second-order self-model of a mental model representing control
of adaptation of its network structure
The level for control of adaptation of a mental model is modeled as a second-order
self-model of thementalmodel, which is a self-model for the self-model for adaptation
of the mental model; the dynamics of the states of this second-order self-model model
control of adaptation by making changes in the structure of the first-order self-model
that describes the adaptation of the mental model

So,mentalmodels and theway they are handled can be considered as being described
through multiple representations: they can be viewed from three levels of representation
according to the three planes depicted in Fig. 1, right hand side. At the lower, base
level depicted by the lower (pink) plane, a mental model, which in general essentially is
considered to be a relational structure, is represented by nodes and connections between
these nodes. For internal simulation, the nodes have activation levels that vary over
time; based on the relations these activation levels affect each other over time. Next,
at the adaptation level depicted in Fig. 1 right-hand side by the middle (blue) plane,
it is represented how the mental model relations change over time by some adaptation
specification. Finally, at the top level depicted by the upper (purple) plane in Fig. 1 it is
indicated how the adaptation at themiddle level is controlled. In thisway, tomodelmental
processes in which mental models play a role, within the self-modeling network these
mental models do not get a single but a three-fold representation by which the different
uses and operations on the mental model are distinguished like they are distinguished
by the levels in the cognitive architecture.

In the next three sections each of the levels is discussed in some more detail and
illustrated by many examples of realistic cases involving mental models in mental
processes.

4 How Mental Models Can Be Used

From the viewpoint of the self-modeling network format, mental models are represented
as subnetworks at the base level, which have their own internal connections (between
their own mental model states), but also connections from and to other mental states
that do not belong to the mental model. It is through the latter types of connections
that a mental model can affect a person’s mental processes in a wider sense and, more
specifically, their decisions and actions. It was pointed out, among others already by
Craik (1943) that having mental models enables organisms to make better decisions on
how to act, as future developments can be predicted by these mental models:

‘If the organism carries a “small-scale model” of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilise the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
which face it.’ (Craik 1943, p. 61)
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From an analysis of many cases, it was found that mental models can affect a wide
variety of types of other mental states and behavioural actions. Mental states relating
to goals and actions, preparation and ownership for actions, and action execution are
among the mental states and behaviour that can be affected by mental models. However,
also other types of mental states can be affected by mental models, such as emotional
responses, awareness states, belief states, and states in other mental models. In Table 1,
an overview can be found of several realistic examples of howmental models affect other
(base level) mental states which are not part of the mental model; this indicates the way
in which the mental models are used in the overall mental processes and behaviour. All
of them have been formalized in computational self-modeling network format based on
the cognitive architecture shown in Fig. 1; see the references in the table to papers where
they are described in much more detail. In particular, the following cases are addressed
in Table 2.

Case 1 Multiple mental models
At the first row a reference is made to a visualization case study where states
of a geometric mental model affect states of an arithmetical mental model to
reveal arithmetical relations.

Case 2 Flashbacks in PTSD
The second row refers to how for PTSD a mental model made of a traumatic
event is sometimes triggered (flashback) and then in turn triggers stressful
emotions and awareness of the traumatic event.

Case 3 Counterfactual thinking
In the third row a counterfactual thinking case is addressed, where based on
mental models of different alternative scenarios, beliefs are revised.

Case 4 Self-interpretation in therapy
The fourth row refers to a realistic therapy case in which self-interpretation
based on a mental model of a person’s own functioning leads to stronger
awareness and revised beliefs.

Case 5 Metaphors for joint decision making
In the fifth row mental models for competitive and cooperative metaphors for
joint decision making are considered that affect action ownership states that
form the basis of a decision.

Case 6 Mental God-model and empathy
The sixth row refers to a case study of mental God-models, where these mental
models affect a number of other mental states concerning the person’s own
actions, goals and also emotions; for example empathic or disempathic actions
are influenced by a mental model of an empathic or disempathic God.
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Case 7 Mental attachment model
The seventh row addresses a case for Attachment Theory, where mental models
of self and other developed based on a primary caregiver during childhood,
affect preparation for actions with respect to significant others later in life.

Case 8 Shared mental model
Finally, in the last row a case study for shared mental models for hospital
teamwork is addressed, where, like in row 5, these mental models affect action
decisions via their ownership states.

All in all, the influences of mental models on a person’s mental processes at the base
level can be diverse.

Table 2. Overview of the example mental models and which other mental states and behaviour
they affect

Action
preparation

Action
ownership

Action
execution

Goal Emotion Awareness Belief Other
mental
model

Multiple mental
models

(Treur 2021a) +

Flashbacks in
PTSD

(Van Ments
and Treur
2021b)

+ +

Counterfactual
thinking

(Bhalwankar
and Treur
2021c)

+ +

Self-interpretation
in therapy

(Treur and
Glas 2021)

+ +

Metaphors for
joint decision
making

(Van Ments
and Treur
2021c)

+

Mental God-model
and empathy

(Van Ments
et al. 2022)

+ + + + +

Mental attachment
model

(Hermans
et al. 2021)

+

Shared mental
model

(Van Ments
et al. 2021)

+

To illustrate this in some more detail, for Case 2 and 3 the conceptual connectivity
view on the network model design is provided in Fig. 2 and 3. Notice the three levels as
introduced in Fig. 1: the base level in pink, the first-order self-model level to allow for
adaptation in blue and the second-order self-model level to control adaptation in purple.
Again, more depth on the models can be found in the references indicated in Table 2.

In Fig. 2 sensing of a traumatic event te consisting of a sequence of phases or steps
is modeled by sensor states sste1, sste2, sste3. For example, te1 or traumatic event step
1, is a potentially dangerous situation for a child you observe, the second step te2 is an
action from your side with the intention to save the child from that situation and te3
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is an unfortunate failure of your action such that the child actually gets hurt. During
this traumatic event sequence, sensory representations srste1, srste2, srste3 are activated,
and by sensory preconditioning (Brogden 1947; Hall 1996) the connections between
these sensory representations are learned through a Hebbian learning mechanism (Hebb
1949). By this learning process, the mental model of the traumatic event sequence is
formed and represented by base states srste1, srste2, srste3 and their connections (see the
small pink parallelogram within the base plane in Fig. 1) with first-order self-model
states Wsrste1,srste2 and Wsrste2,srste3 . What can be seen in Fig. 2 is that the mental model
states have outgoing base level connections to two other mental states that are not part of
the mental model: to the awareness state aste of the trauma and to the emotional response
preparation state psb. This is indeed what is shown in the second row of Table 1.

Fig. 2. Connectivity of the second-order adaptive network model of Case 2 described above

In the example for Case 3 shown in Fig. 3 the mental models are depicted within the
small outlined areas within the (pink) base level plane. In this case, there is no direct
connection within the base plane from mental model states to belief states but a causal
pathway through the first-order self-model level (the middle blue plane); in this case (by
a liberal interpretation) this is also considered as a causal effect on the belief, which at
the same time is part of another mental model. Therefore, in row 3 of Table 1 there are
two + indications.
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Fig. 3. Conceptual model of case 3 described above including the controlled adaptive network
model for counterfactual thinking

5 How Mental Models Can Be Adapted

Different forms of adaptation or learning can be applied to mental models. Examples of
individual types of learning are

• Learning of connections of mental models by observation of a process in the real
world; for example, based on Hebbian learning (Hebb 1949)

• Learning of excitability of mental model nodes; for example, (Chandra and Barkai,
2018; Debanne, Inglebert, Russier, 2019; Sjöström et al. 2008)

• Learning of connections of mental models by instruction or by being told; for example
by instructional learning, e.g., (Hogan and Pressley 1997; Seel 2006)

• Learning of connections of mental models from other, related mental models; for
example, learning arithmetical or algebraic relations based on visualization like in
Case 1 in Sect. 3; e.g., (Du Plooy 2016; Koedinger and Terao 2002)

• Learning of mental models based on counterfactual thinking like in Case 3 in Sect. 3;
e.g., (Van Hoeck et al. 2015)

• Learning of mental models based on Theory of Mind self-interpretation, like in Case
4 in Sect. 3; for example (Treur and Glas 2021)

Also at the non-individual, social level, adaptation of mental models can play an
important role. Three examples are

• Bonding based on homophily (or similarity), where the mental models describing the
internal representations of connections between persons are adapted over time; e.g.,
(McPherson et al. 2001; Treur 2021b)

• Development of attachment relations as described by Attachment Theory, like in Case
7 in Sect. 3; e.g., (Bartholomew and Horowitz 1991; Hermans et al. 2021)
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• Forgetting connections in a shared mental model during teamwork, like in Case 8 in
Sect. 3; e.g., (Burtscher and Manser 2012; Van Ments et al. 2021)

From the viewpoint of the self-modeling network format as formalization, adaptation
is described by (first-order) self-models of parts of the (base) network. This automati-
cally offers a number of specific available network characteristics that are suitable for
adaptation and that can be used in particular for adaptation of mental models represented
as subnetworks. Examples of such networks characteristics that can be made adaptive
are as follows.

Connectivity for mental model relations

• For example, mental model connections and their weights
• These can be modeled by self-model states WX,Y representing the weight ωX,Y of

the connection from mental model state X to mental model state Y

Aggregation for mental model states

• For example, excitability thresholds of mental model states
• These can be modeled by self-model states TY representing the excitability
threshold τY of mental model state Y

Timing for mental model states

• For example, speed factors of mental model states
• These can be modeled by self-model statesHY representing the speed factor ηY of

mental model state Y.

In Table 3, an overview can be found of such examples of adaptation of mental
models that enabled to model a variety of realistic scenarios involving mental models.
The first 8 rows correspond to the eight cases discussed in Sect. 3. In this table four new
cases are shown:

Case 9 Car driving mental model
This case addresses the learning of a mental model of how a car works and
how you can drive it; this takes place through a combination of instructional
(by being told) and observational learning (by Hebbian learning).

Case 10 Self-controlled learning
In this case of a car drivingmentalmodel, the learner first learns by observation
and then takes initiative to ask for (confirmative) instruction.
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Case 11 Analysis and support
This case describes in the context of providing support, an adaptive mental
model for analysis of possible problems and an adaptive mental model of
suitable support actions for such problems.

Case 12 Bonding by homophily
This case addresses how the mental models of the (adaptive) connections
between two persons are affected by how similar the (adaptive) mental models
of characteristics or states of the two persons are.

For Case 2 depicted in Fig. 2 in row 2 of Table 2 it is indicated that the flashback
movie is learned by Hebbian learning; for Case 3 depicted in Fig. 3, it is indicated in
row 3 of Table 3 that it addresses learning by counterfactual thinking.

Table 3. Overview of realistic cases of how mental models can be adapted

Learning by Bonding by

Hebbian
learning

Excitability
learning

Information
source

Counterfactual
thinking

Other
mental
models

Theory
of Mind
analysis

Homophily Attachment

Multiple mental
models

(Treur 2021a) + +

Flashbacks in
PTSD

(Van Ments
and Treur
2021a)

+

Counterfactual
thinking

(Bhalwankar
and Treur
2021c)

+

Self-interpretation
in therapy

(Treur and
Glas 2021)

+ + +

Metaphors for
joint decision
making

(Van Ments
and Treur
2021b)

+

Mental
God-model and
empathy

(Van Ments
et al. 2022)

+

Mental
attachment model

(Hermans
et al. 2021)

+ +

Shared mental
model

(Van Ments
et al. 2021)

+ +

Car driving
mental model

(Bhalwankar
and Treur
2021a)

+ +

Self-controlled
learning

(Bhalwankar
and Treur
2021b)

+ +

Analysis and
support

(Treur 2021c) + +

Bonding by
homophily

(Treur 2021b) +
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6 How Mental Model Adaptation Can Be Controlled

In this section, differentways are discussed inwhich control overmentalmodels and their
adaptation can be exerted. Again this is done from the viewpoint of the network format
provided by self-modeling networks. In (Sjöström et al. 2008), the topic of control
of adaptation is discussed in relation to what is called the Plasticity Versus Stability
Conundrum.Alsowithin anAI-context, inmachine learning examples of this conundrum
and controlled adaptation to address it are known, such as the (decreasing) temperature
parameter in simulated annealing and the sensitive balancing between exploration and
exploitation in reinforcement learning, also called the explore-exploit dilemma (Holland
1975; March 1991; Wilson et al. 2014). This is explained in (Wilson et al. 2014) as
follows:

‘When you go to your favorite restaurant, do you always order the same thing,
or do you try something new? Sticking with an old favorite ensures a good meal,
but if you are willing to explore you might discover something better. This simple
conundrum, deciding between something you know and something you do not, is
commonly referred to as the exploration– exploitation dilemma.’

Applied to mental models in particular, this quote illustrates that on the one hand
decision making based on known mental models can be very efficient (navigating based
on a well-known map), but on the other hand this may prevent someone from learning
even better decisions (exploring still unknown territory).

In a controlled adaptive networkmodel formentalmodels based on the self-modeling
network format, adaptation ismodelledby afirst-order self-model, as discussed inSect. 4.
There are a number of network characteristics involved in the structure of a first-order
self-model used for the adaptation. By systematically going through these possible net-
work characteristics, the following examples of network characteristics for adaptation
to be controlled can be distinguished and are illustrated by various examples. Recall
from Sect. 4 how exactly at the middle level self-model states can be introduced to rep-
resent adaptive network characteristics from the lower level. For example, self-model
state WX,Y represents an adaptive connection weight ωX,Y from the base level, and HY

represents speed factor ηY from the lower level, and so on. This can be iterated for the
middle and upper level to obtain a second-order self-model. For example:

• second-order self-model stateHWX,Y can be used to represent the adaptive adaptation
speed of first-order self-model state WX,Y

• second-order self-model stateMWX,Y can be used to represent the adaptive persistence
parameter μWX,Y of first-order self-model state WX,Y .

• second-order self-model state WZ,WX,Y can be used to represent the adaptive weight
ωZ,WX,Y of the connection from some state Z to state WX,Y .

For shortness, such second-order self-model states are sometimes called HW-
states, MW-states, or WW-states, whereas first-order self-model states can be called,
for example, W-states or T-states. Following the different types of network character-
istics used in the self-modeling network format, the following types of control can be
distinguished.
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• Control by adaptive connectivity characteristics of first-order self-model states

– Adaptive connections of the causal pathways to the self-model states and their
weights ω; for example:

Choosing a mental model to be applied. For example, a decision to use a specific
metaphor-based mental model as in the model in (Van Ments and Treur 2021b) or
a decision to use a geometric mental model to support learning of an arithmetic
mental model, as described in (Treur 2021a)
Opening a communication channel from an information source to enable instruc-
tional learning of a mental model (decision to ask), as in the model in (Bhalwankar
and Treur 2021b) and in the model described in (Treur 2021b)
Opening an observation channel to enable observational learning of a mental model
(decision to observe), as in the model described in (Treur 2021b)

– Adaptive connections of the causal pathways from the self-model states to other
states and their weights ω; for example:

Modelling the effects of a chosenmetaphor as in the model in (VanMents and Treur
2021b)

• Control by adaptive aggregation characteristics of first-order self-model states

– Adaptive choice of combination function; for example:

For Hebbian learning of mental model connections a weighted average of
hebbμ(V1, V2,W ) and sminλ(V1, V2), with adaptive weights γ1 and γ2.

– Adaptive parameters of chosen combination functions; for example:

Adaptive values for the persistence factor μ of hebbμ(..) as in the self-modeling
network model for shared mental models described in (Van Ments et al. 2021) or
for the scaling factor λ of sminλ(V1, V2).

• Control by adaptive timing characteristics of first-order self-model states

– Adaptive adaptation speed (learning rate) η; for example:

Addressing the Plasticity Versus Stability conundrum (Sjöström et al. 2008) based
on some context factors indicating when plasticity is needed fully and when
plasticity should be limited or frozen.
Accelerating adaptation speed upon increased stimulus exposure (Robinson et al.
2016), for example as applied in the examplemodel in (VanMents and Treur 2021b)
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As discussed above, in a self-modeling network format, control of any of such net-
work characteristics (for first-order self-models for adaptation of a mental model) is
modeled by a second-order self-model. To illustrate this, based on the above distinc-
tions, in Table 3 a summarized overview is given of several cases of applications of
second-order self-models to control adaptation of mental models as also collected in
(Treur and Van Ments 2022).

For case 2 depicted in Fig. 2 in row 2 of Table 4 it is indicated that for the learning of
the flashback movie by Hebbian learning the adaptation speed is controlled; for case 3
depicted in Fig. 3, it is indicated in row 3 of Table 4 that for the learning by counterfactual
thinking the exchange between the different mental models is controlled.

Table 4. Overview of example mental models: how they are controlled

Control of
adaptation
speed

Control of
persistence

Control of
communication

Control of
observation

Control of
exchange

Multiple mental
models

(Treur 2021a) +

Flashbacks in PTSD (Van Ments and
Treur 2021a)

+

Counterfactual
thinking

(Bhalwankar and
Treur 2021c)

+

Self-interpretation
in therapy

(Treur and Glas
2021)

+

Metaphors for joint
decision making

(Van Ments and
Treur 2021b)

+

Mental God-model
and empathy

(Van Ments et al.
2022)

+

Mental attachment
model

(Hermans et al.
2021)

+

Shared mental
model

(Van Ments et al.
2021)

+

Self-controlled
learning

(Bhalwankar and
Treur 2021b)

+

Analysis and
support

(Treur 2021c) + +

Bonding by
homophily

(Treur 2021b) + +

Moreover, in Table 5, a more complete overview is obtained of different types of
control against different types of learning. Note that in most cells in Table 5 further
references are included, but for those cells where no references are included, in general
this means that these options are yet to be explored in detail. This contributes to a future
research agenda.
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Table 5. Overview of different types of controlled adaptation for example mental models as
collected in (Treur and Van Ments 2022)

Learning by Control of adaptation
via connectivity

Control of adaptation
via aggregation

Control of adaptation
via timing

Observation and
monitoring

Controlled learning by
observation for a
mental model W-state
for bonding via a
WW-state (Treur and
Van Ments, 2022,
Chap. 13); formation of
a mental model of
another person; see also
(Hermans et al. 2021)

Hebbian mental model
learning W-state
persistence control via
an MW-state (Treur
and Van Ments 2022,
Chap. 14); controlled
forgetting of a mental
model relation; see also
(Van Ments et al. 2021)

Hebbian mental model
learning W-state speed
control via an
HW-state: adaptation
accelerates with
increasing exposure
(Treur and Van Ments
2022, Chap. 5, Chap. 7,
Chap. 10, Chap. 11,
Chap. 12); e.g.,
learning mental models
for flashback
experiences (Van Ments
and Treur 2021b),
analysis and support
tasks (Treur 2021c),
metaphors (Van Ments
and Treur 2021c),
mental God-model
(Van Ments et al. 2022),
self- and other-models
(Hermans et al. 2021)

Excitability
adaptation

Incoming connection
for an adaptive mental
model excitability
T-state control via a
WT-state (Treur and
Van Ments 2022,
Chap. 7); learning
excitability (Debanne
et al. 2019; Chandra
and Barkai 2018) of a
mental model’s states;
see also (Treur 2021c)

Excitability mental
model learning T-state
aggregation control, for
example through
adaptive (steepness σ

and threshold τ)
parameters of a logistic
combination function
used for the T-state
represented by ST - and
TT - states

Excitability mental
model learning T-state
speed control via an
HT-state (Treur and
Van Ments 2022,
Chap. 7); learning
excitability (Debanne
et al. 2019; Chandra
and Barkai 2018) of a
mental model’s states;
see also (Treur 2021c)

(continued)
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Table 5. (continued)

Learning by Control of adaptation
via connectivity

Control of adaptation
via aggregation

Control of adaptation
via timing

Communication Learner-controlled
instructional learning of
a mental model W-state
via a WW-state (Treur
and Van Ments 2022,
Chap. 9); opening a
communication
channel with the
instructor by asking;
see also (Bhalwankar
and Treur 2021b)
Controlled learning by
communication for a
mental model W-state
for bonding via a
WW-state (Treur and
Van Ments 2022,
Chap. 13); opening a
communication
channel with the other
person by asking; see
also (Treur 2021b)

Learner-controlled
instructional learning
of a mental model
W-state via a TW-state
for excitability
(Debanne et al. 2019;
Chandra and Barkai
2018) of the W-state
(opening a
communication
channel with the
instructor by more
sensitive listening)

Learner-controlled
instructional learning of
a mental model W-state
via an HW-state
(controlling the timing
of a communication
channel with the
instructor)

Other mental
models

Controlled connection
W-state for
counterfactual
activation of a mental
model via a WW-state
(Treur and Van Ments,
2022, Chap. 6); see also
(Bhalwankar and Treur
2021c)

Controlled connection
W-state for
counterfactual
activation of a mental
model via a TW-state
addressing excitability
(Debanne et al. 2019;
Chandra and Barkai,
2018) of the W-state

Controlled inter mental
model exchange
connection W-state via
HW-state (Treur and
Van Ments, 2022,
Chap. 4); exchange
from arithmetic mental
model to geometric
mental model; see also
(Treur 2021a)

(continued)
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Table 5. (continued)

Learning by Control of adaptation
via connectivity

Control of adaptation
via aggregation

Control of adaptation
via timing

Contextual
factors

Controlled connection
W-state for activation
of mental model via a
WW-state (Treur and
Van Ments 2022,
Chap. 6); activation of
a mental model for
possible future action;
see also (Bhalwankar
and Treur 2021c)

Controlled connection
W-state for activation
of mental model via a
TW-state addressing
excitability of the
W-state based on
contextual factors

Controlled adaptive
mental model effect
connection W-state via
an HW-state (Treur and
Van Ments 2022,
Chap. 10); adapting the
own choices based on
the context given by the
other person; see also
(Van Ments and Treur
2021c)

7 Discussion

This paper addressed an analysis of how in mental and social processes, humans often
apply specific mental models and learn and adapt them in a controlled manner. Part
of it is based on (Bhalwankar et al. 2021). It was discussed how controlled adaptation
relates to the Plasticity Versus Stability Conundrum in neuroscience (Sjöström et al.
2008). From the analysis, an informal three-level cognitive architecture for controlled
adaptation was obtained. It was discussed from a self-modeling network viewpoint how
this cognitive architecture can be modeled as a self-modeling network (Treur 2020).
Making use of the specific network characteristics offered by the self-modeling network
structure format, a large number of options for different types of adaptation of mental
models and different types of control over adaptation of mental models were obtained
and structured. Many but not all of these options were illustrated by a several realistic
examples that were already formalized by self-modeling networks. The options that were
not illustrated here in a formalized computational sense, provide interesting options for
a future research agenda.
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