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ABSTRACT

The theoretical predictability limit of El Niño–Southern Oscillation has been shown to be on the order of

years, but long-lead predictions of El Niño (EN) and La Niña (LN) are still lacking. State-of-the-art fore-

casting schemes traditionally do not predict beyond the spring barrier. Recent efforts have been dedicated to

the improvement of dynamical models, while statistical schemes still need to take full advantage of the

availability of ocean subsurface variables, provided regularly for the last few decades as a result of the

Tropical Ocean–Global Atmosphere Program (TOGA). Here we use a number of predictor variables, in-

cluding temperature at different depths and regions of the equatorial ocean, in a flexible statistical dynamic

components model to make skillful long-lead retrospective predictions (hindcasts) of the Niño-3.4 index in

the period 1970–2016. The model hindcasts the major EN episodes up to 2.5 years in advance, including the

recent extreme 2015/16 EN. The analysis demonstrates that events are predicted more accurately after the

completion of the observational array in the tropical Pacific in 1994, as a result of the improved data quality

and coverage achieved by TOGA. Therefore, there is potential to issue long-lead predictions of this climatic

phenomenon at a low computational cost.

1. Introduction

Skillful long-range forecasts of El Niño–Southern
Oscillation (ENSO) are still in high demand. After de-

cades of extensive efforts, dynamical models nowadays

represent the best available tools to issue ENSO fore-

casts at lead times of up to two seasons, although they

are still largely constrained by the lack of complete un-

derstanding of the physics of the phenomenon, by

problems arising from the initialization of the compo-

nents of the climate system, or by the need for accurate

parameterization of important physical processes

(Barnston et al. 2012). Statistical models, on the other

hand, largely depend on the availability of ocean and

atmosphere historical data, so that the longer the length

of the data, the more robust is the predictor–predictand

relationship identified by the model (Barnston et al.

2012). In addition to these factors, the low signal-to-

noise ratio in boreal spring (Sarachik and Cane 2010),

the influence of high-frequency atmospheric winds

(Fedorov et al. 2003, 2015), and the natural irregularity

of the climate system (Wittenberg 2009) all limit the

long-term dynamical and statistical forecasting of the

phenomenon. Some of the classical ENSO theories view

the oscillation as self-sustained (Cane et al. 1990; Jin

et al. 1994; Jin 1997) and support the claim that it is

potentially predictable several years in advance (Cane

et al. 1986; Goswami and Shukla 1991; Latif et al. 1998;

Chen and Cane 2008; Wittenberg et al. 2014; Gonzalez
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and Goddard 2016; Luo et al. 2016; DiNezio et al. 2017;

Astudillo et al. 2017), but only a handful of studies

document such long-lead retrospective forecasts of past

events (Latif et al. 1998; Chen et al. 2004; Luo et al. 2008;

Izumo et al. 2010; Ludescher et al. 2013, 2014; Petrova

et al. 2017; Gonzalez and Goddard 2016; Ramesh et al.

2017; Luo et al. 2017) and most of them use dynamical

models. Statistical models are assumed to be less skillful

at long lead times, and comparable in performance to

dynamical schemes at shorter lead times of about half a

year (Barnston 1994; Chen and Cane 2008). To some

extent this is explained by the fact that a new generation

of statistical models has not been added to the ENSO

forecasting plume, and the majority of the old models

have not been substantially revised in the recent years,

and some since they were created in the 1980s and early

1990s (Barnston et al. 2012).

One of the strongest events on record—the 1982/83 El

Niño (EN)—surprised the scientific community (Cane

et al. 1986; McPhaden and Yu 1999) as it was neither

predicted nor identified until very late in its develop-

ment. This triggered a decade-long effort to put in

place a monitoring system in the tropical Pacific with the

aim of studying ENSO better and improving the pre-

dictive capacity of models (McPhaden and Yu 1999),

which led to the inauguration of the TOGA research

program in 1985 (McPhaden andYu 1999). It deployed a

three-dimensional array in the tropical Pacific that since

then regularly samples the subsurface temperature

down to 500-m depth. The number of monthly temper-

ature profiles increased dramatically (see Fig. S1 in the

online supplemental material). The system was com-

pleted in 1994, just in time to track the stronger-than-

normal trade winds in 1995/96, which generated a

buildup of warm waters in the western tropical Pacific

more than one year before the peak of the record-

breaking 1997/98 EN (McPhaden and Yu 1999). This

was the first time when the scientific community and the

public could see the benefits of TOGA. A number of

studies now fully recognize the fundamental role that

the intensification of the trade winds and the subsurface

heat buildup in the western equatorial Pacific play in the

onset of EN events (Wyrtki 1985; Cane et al. 1986; Jin

1997; Clarke and Van Gorder 2003; McPhaden 2003,

2004; McPhaden et al. 2006; Ramesh and Murtugudde

2013; Ballester et al. 2015; Petrova et al. 2017), and

statistical models can benefit from available data to

represent in more detail these processes that occur early

on in the generation of the events.

In the present study we use an improved version of the

flexible statistical dynamic components ENSO model

described in Petrova et al. (2017). At long lead times it

incorporates predictor variables designed to capture the

three-dimensional shape of the warm pool subsurface

heat buildup at different depths, as well as zonal wind

stress anomalies in the central and western equatorial

Pacific (see section 2). The aim is to capture the low-

frequency deterministic and state-dependent portions of

the variability and coupling between the ocean and at-

mosphere (Eisenman et al. 2005; Gebbie and Tziperman

2009; Hu and Fedorov 2016; Levine and Jin 2017), from

which predictability can be derived (Latif et al. 1998;

Chen et al. 2015). The model consists of several sto-

chastic cycle components with frequencies correspond-

ing to the main peaks in the spectrum of the Niño-3.4
index (see Petrova et al. 2017), as well as predictor re-

gression variables such as sea surface and subsurface

temperature and zonal wind stress. These variables en-

ter the model equations in the form of lagged time series

with respect to the monthly value of the Niño-3.4 index,
and are selected to be consistent with the EN dynamical

evolution. In this way, different covariates are used for

predictions at different lead times, depending on the

average temporal progression of EN events. In the

present study we show hindcasts from the model, and as

is normally the case, a somewhat poorer performance is

expected in operational mode. In fact, the model has

been operational since 2015, and while it correctly de-

tected the 2015 EN and themild LaNiña (LN) in 2016, it

failed to foresee the recent LN in 2017 and predicted

neutral conditions instead (not shown). This paper is

organized as follows: in section 2 we describe the data

andmethods used in the analysis; in section 3 we present

the results and then discuss them in section 4, where we

also provide concluding remarks.

2. Data and methods

Themodel used in this study is an advanced version of

the statistical dynamic components model proposed by

Petrova et al. (2017) and developed specifically for

prediction of the average sea surface temperature in the

Niño-3.4 region defined as the box 58N–58S, 1708–
1208W. It is a statistical model that belongs to the class

of dynamic components time series models. The dis-

tinctive feature of this type of models is that they de-

compose the time series of interest into dynamic

components that represent linear stochastic processes

with separate evolutions (Durbin and Koopman 2012).

The addition of predictor variables, in this case derived

from lead–lag climate composites, is done using re-

gression. We refer to the appendix for complete and

mathematically precise details.

Themodel first presented in Petrova et al. (2017) is built

in terms of two main subgroups of elements. The first

subgroup contains the so-called dynamic components,
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which include a trend (level), a seasonal, and three time-

varying cyclical (quasi-periodic) components. The second

subgroup contains a number of individually selected pre-

dictor variables, which enter the model equation in the

form of regressed and lagged time series and will be de-

scribed later. All of these separate components are added

together in a linear fashion to form the final ENSOmodel

given by

y
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where yt represents the average monthly temperature in

the Niño-3.4 region at time t, mt is the trend component,

gt is the seasonal component with 12 seasonal effects

(one fixed value for every month of the year), and c1t,

c2t, and c3t are the stochastic cycle components. Also,

Xtb is a vector that contains the predictor variables,

while «t is the noise term in the model.

Here we improve this first version of the model, by

replacing the previously fixed seasonal component with

two slowly varying annual and semiannual periodic

components, and also by including one additional time-

varying cycle component, so that the new model equa-

tion becomes
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Thorough information about the different components

and how they are modeled and estimated is provided in

the appendix.

The previous model presented in Petrova et al. (2017)

used three quasi-periodic cycle components that gener-

ally correspond to the near-annual (NA), quasi-biannual

(QB), and quasi-quadrennial (QQ) modes of ENSO

variability, while here we added one more stochastic

cycle component associated with ENSO variability on

decadal (D) time scales. In Petrova et al. (2017) we es-

tablished that this low-frequency variability is important

for the simulation of someENevents, and this featurewas

not explicitly resolved in the previous model version. We

have also replaced the fixed seasonal component in the

previous version of the model with two new cyclical

components bound to annual (;12 month) and semi-

annual (;6 month) periodicities. They are allowed to

vary slowly over time in order to address the finding in our

previous study that the annual frequency of the seasonal

component was not sufficiently well simulated, because

the annual periodicity of the Niño-3.4 temperature is not

strictly fixed at 12 months (Chen et al. 2016), and espe-

cially because during EN events the amplitude of the

annual cycle is suppressed (Guilyardi 2006). As a result,

we have a total of six stochastic cycle components in the

new model version.

There are also different regression predictors in-

cluded in the model at different lead times, all selected

based on the general evolution of an average EN event.

LN is assumed to be symmetrical, although we are

aware that important asymmetries exist between the

two and this problem will be addressed in future work.

In the ocean we used both surface and subsurface

temperatures at different depths (between 0 and 500m)

and regions for the extraction of the predictors. Re-

gions are selected in the western and central equatorial

Pacific where the ocean is typically warmed abnormally

prior to EN and a heat buildup occurs during the

growing and recharge phase (Ballester et al. 2016a;

Petrova et al. 2017). Figures S2 and S3, as well as

Table 1, show the selected regions and depths consid-

ered at different lead times. The selection is based on

climate composites of EN events from the period 1978–

2012 (also see Petrova et al. 2017). The sea surface

temperature datasets used for the predictors and for

the Niño-3.4 temperature time series are NOAA

ERSST-V3 (https://www.esrl.noaa.gov/psd/data/gridded/

data.noaa.ersst.html) before 1982 and NOAAOISST V2

thereafter (https://www.esrl.noaa.gov/psd/data/gridded/

data.noaa.oisst.v2.html). The subsurface temperature

dataset used for the subsurface ocean predictors

is the Subsurface Temperature and Salinity Analyses

dataset by Ishii et al. (2005) archived at https://

rda.ucar.edu/datasets/ds285.3/ before 2012 and the

Hadley Centre EN4.0.2 analyses data thereafter (Good

et al. 2013). In the atmosphere three different regions

are used to extract zonal wind stress predictors for the

TABLE 1. Regions over which wind stress and temperature variables are averaged to calculate predictors used in the ENSO model.

Predictor variable Region I Region II Region III

Zonal wind stress 1808–2208E, 48S–48N 1808–2108E, 108S–08 1608–2008E, 08–108N
Sea surface temperature 1408–1608E, 58S–58N 1408–1808E, 108S–58N 1208–1708E, 108S–58N
Subsurface temperature 1208–1408E, 108S–78N 1508–2008E, 108S–78N 1408–2108E, 58–108N
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model. The three regions are again located in the

western and central equatorial Pacific (see Fig. S4 and

Table 1) and the dataset is the NCEP–NCAR reanalysis

(Kalnay et al. 1996).

During forecasting, the dynamic components (espe-

cially the stationary cycles) have larger weights for the

mid- and short-term forecasts, while the impact of the

predictors remains the same for short- and long-term

forecasts. Hence, the predictors become relatively more

important for long-term forecasting (also see the ap-

pendix for more information). Importantly, the pre-

dictor variables also affect the estimation of the cycle

components parameters for each forecast. Parameter

estimation relies on the Kalman filter methods (Kalman

1960; Harvey 1989) and on state space methods (Durbin

and Koopman 2012).

Results for correlations and root-mean-square errors

are obtained as follows: the Niño-3.4 predictions in the

period 1972–93 are based on parameter estimates (cal-

ibration process) from data in the period 1952–70, while

the predictions in the period 1994–2015 are based on

parameter estimates from data in the period 1974–92. In

this way, to avoid the heavy computations, we have

produced the predictions on which correlations and

root-mean-square errors are based using a prefixed

FIG. 1. Retrospective prediction of the Niño-3.4 index.Monthly

observations (black curve) and model prediction at (a) 6-month

lead (red curve) and (b) 24-month lead (blue curve). (c) The

16-yr moving RMSE of the prediction in (b) (blue curve) before

and after (shading) the completion of the observing system in

1994.

FIG. 2. Relationship between observations and model pre-

dictions. Scatterplots of the Niño-3.4 index observations and the

model predictions at (a) 6-month lead and (b) 24-month lead. The

blue dots correspond to the period 1972–93 with a linear regression

line in light blue, and the red dots correspond to the period 1994–

2015 with a linear regression line in beige. The red arrow indicates

the improvement in the slope of the regression line for the period

1994–2015 with respect to the slope of the regression line for the

period 1972–93.

166 JOURNAL OF CL IMATE VOLUME 33

Unauthenticated | Downloaded 07/18/22 09:56 AM UTC



period for calibration purposes. In comparison, all other

predictions (including parameter estimation) are based

on the observations available before each starting pre-

diction point. Still, data for the prediction estimations

were progressively excluded, in order to include only the

more recent samples and discard earlier data of presumed

lesser quality. Thus, predictions up to 1990 were made

using the data from 1952 onward, predictions between

1991 and 1996 were made using the data from 1970 on-

ward, and predictions thereafter were made using the data

from 1982 onward.

A limitation of the study is that the performed

predictions are not operational, as they are based on

retrospective hindcasting experiments. Our system also

strongly relies on the model variability skeleton, con-

tributed by, among others, different cyclical components.

However, all ENSO forecasting systems, including oper-

ational dynamical models, implicitly or explicitly rely on

intrinsic ENSO variability generated at the cyclical low-

frequency modes for prediction (Kirtman and Schopf

1998). As an example, we include the spectrum of Niño-
3.4 from a long (500yr) spinup simulation with theGFDL

CM2.1, which is one of the operational models for ENSO

prediction, in order to compare it with the spectrum of

both the Niño-3.4 observations and their predictions with

the model proposed here (Fig. S5). What can be clearly

noticed is that the power density is distributed similarly in

all cases, with main peaks corresponding to the NA, QB,

QQ, andDmodes of variability, respectively, also used as

cyclical time-varying components in our model.

3. Results

The observed and hindcast monthly Niño-3.4 anoma-

lies at 6 and 24 months lead time are presented in Fig. 1.

The 6-month lead hindcast predicts the timing and mag-

nitude of all EN and LN events, and no false alarms

are generated [root-mean-square error (RMSE)5 0.54;

Fig. 1a]. Since an ENSO event is typically already

underway half a year before its peak in December–

February (DJF), the majority of the operational fore-

casting schemes are able to produce accurate predictions

at this lead time (Barnston et al. 2012). The 24-month lead

hindcast, and in general any lead time hindcast beyond

the spring barrier (i.e., from 8 months onward; not

shown), generally reproduces the crests and troughs in

the time series (RMSE5 0.62; Fig. 1b). However, for the

period before the prominent 1997/98 EN, we find that the

predicted amplitudes of the larger events are notably

smaller than the observed and sometimes an event is

hardly or not detected. We highlight that this cannot be

explained by a change in the interannual ENSOactivity in

the different time periods, as three sizeable EN (1972/73,

1982/83, 1986/87; also 1997/98, 2009/10, 2015/16) and LN

(1973/74, 1975/76, 1987/88; also 1998–2000, 2007/08, 2010/11)

episodes have occurredbefore and after 1994 (CPC 2016).

In addition, it cannot be simply attributed to the design

of the model and the predictor variables used, because

EN events from both periods were considered for the

composites on which the selection of predictor variables

was based [see Petrova et al. (2017) for details].

To characterize better the difference between pe-

riods, Fig. 2 displays the regressions between the ob-

servations and hindcasts for two consecutive 22-yr

subperiods (1972–93 in blue and 1994–2015 in red) at

6- and 24-month leads. No substantial difference is ob-

served between the slopes of the regression lines for

the two periods at the shorter lead time (regr1972–93 5
0.65, t5 23.88, regr1994–2015 5 0.74, t5 27.34, p, 0.001;

Fig. 2a), indicating that the model performance is com-

parable. Conversely, the regression coefficients signifi-

cantly increase for the long-range hindcasts made after

1994 (regr1972–93 5 0.35, t 5 17.12, regr1994–2015 5 0.65,

t 5 30.93, p , 0.001; Fig. 2b), which represents a major

improvement in the capacity of the model. The change

in the overall similarity between the observations and

the hindcasts at 24-month lead time is also assessed by

FIG. 3. General forecast skill of the model. (a) Correlations be-

tween the Niño-3.4 index observations and model predictions and

(b) RMSEs as functions of lead time for two consecutive 22-yr

periods, 1972–93 (blue) and 1994–2015 (red).
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the 16-yr moving RMSE shown in Fig. 1c. The RMSE

decreases monotonically with time until the early 1990s

and then stays relatively constant afterward. At the

same time, data availability was constantly improving

during TOGA, until the tropical Pacific network array of

moorings was fully into place at the end of the program

in 1994 (McPhaden et al. 1998).

To further explore the difference in the model per-

formance over the two periods, Fig. 3 shows correlations

and root-mean-square errors for the whole range of lead

times up to 24 months. For lead times of about two

seasons both the correlations and RMSE are similar

among periods, while for lead times beyond 6 months

they start to diverge. We also observe that correlations

and RMSE stay relatively constant beyond this lead

time. One possible reason for this stable behavior is that

the stochastic quasi-periodic cycles are the main con-

tributors to the skill of the predictions and their un-

known parameters are estimated similarly by the

Kalman filter at different lead times beyond two sea-

sons. Generally, the skill is derived from information

about subsurface heat anomalies of approximately the

same intensity, and the different cycles capture similar

oscillation phases. Previous studies (Chen et al. 1995,

2004; Chen and Cane 2008; Stockdale et al. 2011; Duan

et al. 2016; Lee et al. 2018) have already concluded that

the spring predictability barrier may not be an intrinsic

barrier to the system itself, but it could rather depend on

model skill, observational data availability (especially in

the subsurface western tropical Pacific; Lee et al. 2018),

and the precursors used.Warmwater volume (WWV) in

the tropical Pacific as a predictor (i.e., subsurface in-

formation) is not associated with a spring persistence

barrier, and its correlation with the Niño-3.4 is above 0.7
for the February–April season when SST anomalies

have the lowest correlation (McPhaden 2003). Here we

add evidence to such claims, as we also find that the drop

in forecast skill is slow and gradual for longer-lead

predictions than a couple of seasons (Fig. 3).

The statistical model we use is linear, and while its

stochastic cyclical components are mainly responsible

for capturing the correct phase of the oscillation, the

lagged predictor variables are expected to contribute to

the correct forecasts of the amplitudes of the events,

especially at longer lead times [see section 2 and the

appendix herein, and Petrova et al. (2017) for details].

Below we analyze if the predictor variables add signifi-

cantly to the EN hindcasts of the earlier period, which

also coincides with a time when no regular subsurface

temperature and wind stress data were being provided

yet (McPhaden et al. 1998).

The hindcasts at several lead times of the strongest

EN events in the study period (see CPC 2016) are

displayed in Fig. 4. In all cases the model is capable of

detecting a warming 29 months in advance (magenta

curve), although there are evident errors in the ampli-

tude and timing in some cases. A much better repre-

sentation of the amplitudes in the long-lead hindcasts of

the events in the second period (1997/98, 2009/10, and

2015/16), as compared to those occurring in the first

period (1972/73, 1982/83, and 1986/87), is also clearly

visible in the figure. The estimated coefficients and the

corresponding t and p values for the predictor variables

used in the 24-month lead predictions of all the warm

events in the study period are listed in Table 2. Re-

markably, none of the three predictor variables is found

to be significant at the 90% level for the hindcasts of any

of the events before 1994, while there is at least one

significant variable for each hindcast of the episodes that

occurred afterward. Similar results hold for the other

long-lead predictions shown in Fig. 4 (Tables S1 and S2).

4. Discussion and conclusions

We demonstrated that the Tropical Pacific Observing

System, and especially the provision of subsurface

temperature data on a regular basis, has a vital con-

tributing role (Newman et al. 2011) for the long-lead

predictive capabilities of the model proposed here.With

the end of TOGA in 1994 nearly the whole equatorial

band between 108N and 108S was covered with moorings

(McPhaden et al. 1998), and this is also the start of al-

timetry data (Stockdale et al. 2011). As can be seen from

the Tropical Atmosphere Ocean–Triangle Trans-Ocean

Buoy Network (TAO-TRITON) array development

(NOAA 2018a), some subsurface data from the central

Pacific were already streamed at the end of 1987, and at

the end of 1991 data were also coming in from the

western Pacific, which represents a key region for

the forecast of the phenomenon at lead times beyond the

spring barrier. Thus, almost three decades have passed

since the three-dimensional observations began in the

tropical Pacific, and the limited span of the data is now

less of a problem for the robust definition of statistical

predictive schemes (Barnston et al. 2012).

As seen in the previous section, there is a well-defined

shift between the lack of significance of the predictor

variables for the hindcasts of the warm events before

the end of TOGA and their significance thereafter.

Our results strongly support the view that the improved

hindcasts are due to the availability of regular and

higher-resolution subsurface data ensured by the imple-

mentation of the observational network array (NOAA

2018b). This is also confirmed by Fig. S6, which shows the

same hindcasts as in Fig. 4, butmadewithout the inclusion

of the predictor variables in the model framework. The
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lack of predictors in the model results into a clear de-

terioration of the hindcasts of the EN events from the

period after 1994, but in no substantial difference in the

hindcasts of the events from the earlier period (also see

Table S3).

The correct and relevant subsurface information also

has implications for the forecasting of the magnitudes of

the warm events (Ballester et al. 2016b, 2017). In the

linear framework of the model that we use, at the longer

lead times the predictor variables have more forecast

weight than they do at the shorter lead times (see section 2

and the appendix). The predicted amplitudes of the three

earlier events shown in Figs. 4a–c do not exceed 1.58C
at the long lead times of 21 and 29 months (green and

magenta curves). At the same time, the predicted am-

plitudes of the three events that took place in the later

period, when the predictor variables are shown to have

an impact (Table 2), are consistent with the occurrence

of a strong EN event (green and magenta curves in

Figs. 4d–f). Some of the underestimation of the ampli-

tudes of the events predicted at long lead times is also

due to the stochastic noise component of the zonal wind

(Penland 1996; Hu and Fedorov 2016; Levine and

McPhaden 2016) as more extreme EN events have been

found to result frommore intense and frequent westerly

wind bursts (Chen et al. 2015). Additionally, in the case

of the 1982/83 EN anomalous solar radiation and sup-

pressed convection may have played a more decisive

FIG. 4. Forecasts of themajor El Niño events since 1970: El Niño events in the periods (a)–(c) 1972–93 and (d)–(f)
1994–2015. The thick black curves are the observed Niño-3.4 index anomalies, and the thin magenta, green, beige,

and cyan curves are predictions started 29, 21, 13, and 5 months in advance.
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role, setting this event apart from the others (Kim and

An 2018) and making the predictors used here at long

lead times less relevant (Kirtman and Zebiak 1997).

In essence, the same conclusion as the one reached

here was also made by Stockdale et al. (2011), where a

large reduction of the errors in Niño-3.4 SST forecasts

made after 1994 is detected with the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

Seasonal Forecast System 3. The results are also in

agreement with an earlier study with the same system

(Balmaseda and Anderson 2009), in which the effect of

Argo floats is removed from the observations, and it is

established that improvements in the forecast are clearly

explained by the improved observing system. Further, it

was found that the information from the mooring array

is the main contributor for the increased skill of the

prediction system in the equatorial Pacific region. In

addition, McPhaden et al. (2006) using an empirical

ENSO model with two predictors—WWV in the

equatorial Pacific and an index of the Madden–Julian

oscillation—documents much better estimations of the

Niño-3.4 after 1995, with lower than observed ampli-

tudes before this year, just as in the results presented

here. Similarly, the authors attribute the improvement

to the better observations after the placement of the

TAO array.

Conversely, a more recent study (Kumar et al. 2015)

concluded that the increase of the number of observa-

tions after 1994 did not result in a clear improvement of

the prediction skill of the National Centers for Envi-

ronmental Prediction (NCEP) System 2. We note,

however, that our results are not directly comparable,

because the forecasts discussed therein are performed at

up to 6 months lead time, when essentially an SST

anomaly signature of a developing EN or LN event is

already present in the eastern equatorial Pacific, and

subsurface information is generally not as crucial as it is

at the longer lead times discussed here. The authors

themselves admit that the evolution of the ocean–

atmosphere system at this short lead is affected much

more by the surface wind and ocean circulation feed-

backs. SST is in fact found to be a more useful predictor

for forecasts started 6 months before the event than

WWV (McPhaden 2003).

Some of the existing statistical systems already in-

clude measures of integrated equatorial heat content

(Barnston et al. 2012). However, our model uses tem-

perature data from a selection of dynamically relevant

regions and depths to maximize its predictive power.

These values may not always be well represented by

spatially integrated measures of heat content, and our

analysis suggests that the integration sometimes masks

the intensity of the heat buildup in specific regions in the

subsurface at long lead times, and more importantly,

does not allow the systems to properly track the east-

ward propagation of heat along the equatorial thermo-

cline (Ballester et al. 2015; Petrova et al. 2017). WWV

anomalies along the whole equatorial Pacific present in

late boreal winter and spring (February–May) are per-

sistent until next boreal winter, but those in early boreal

winter are not. Hence, as a predictor it could extend the

lead time to about a year in advance, but not more

(Izumo et al. 2019). Alternatively,WWVcalculated only

in the western equatorial Pacific is significantly corre-

lated with Niño-3 SST anomalies for much longer lead

times of more than 20months (McPhaden 2003), and is a

TABLE 2. Coefficients, t values, and p values for subsurface

temperature predictor regression variables at 24-month lead.

Values significant at the 90% level are bold. RI is region I (see

Table 1).

El Niño event 250-m RI 300-m RI 400-m RI

1972/73

Coefficient 0.12 20.17 20.29

t 0.78 20.82 20.86

p 0.43 0.41 0.39

1982/83

Coefficient 0.09 0.01 0.20

t 0.78 0.03 0.90

p 0.43 0.97 0.36

1986/87

Coefficient 20.03 20.12 20.02

t 20.30 20.88 20.09

p 0.76 0.37 0.92

1991/92

Coefficient 0.07 20.09 0.09

t 0.64 20.56 0.38

p 0.52 0.57 0.70

1997/98

Coefficient 0.24 0.35 0.46

t 1.61 1.52 1.46

p 0.10 0.12 0.14

2002/03

Coefficient 0.21 0.31 0.38

t 1.67 1.57 1.44

p 0.09 0.11 0.15

2006/07

Coefficient 0.23 0.32 0.43

t 2.07 1.80 1.75

p 0.04 0.07 0.08
2009/10

Coefficient 0.17 0.24 0.46

t 1.68 1.46 1.95

p 0.09 0.14 0.05
2014/15

Coefficient 0.15 0.25 0.34

t 1.61 1.63 1.59

p 0.10 0.10 0.11

2015/16

Coefficient 0.14 0.28 0.32

t 1.55 1.85 1.56

p 0.12 0.06 0.12
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significantly better predictor beyond the spring barrier

(Izumo et al. 2019). Sea surface height (SSH), on the

other hand, is also not always representative of the heat

accumulation in the warm pool, because sometimes

positive and negative heat anomalies exist at different

depths of the water column near the thermocline, and

the net result is a lack of a prominent SSH anomaly (see

Figs. S7 and S8). The combination of the memory effect

represented by subsurface information, weakly varying

seasonality and nonlinearity, on the other hand, could be

sufficient for reproducing the overall ENSO variability

(Chen et al. 2016), and our model design attempts to

incorporate these particular effects.

Although there is a marked difference in the pre-

dictive capacity of the model during the earlier and later

subperiods, it still exhibits high skill (i.e., correlations

and RMSE in Fig. 3) in both periods. We conclude that

statistical models should be improved in the direction of

using the available subsurface information that is fun-

damental for ENSO in amore discrete and targetedway,

so that they can provide early and useful information

about EN and LN events to decision-makers around the

world, which could prevent threats to human lives and

reduce economic costs.
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APPENDIX

Model Description

The most basic version of the class of dynamic com-

ponents time series models is the local level model for a

univariate time series yt and is given by yt5mt1 «t, where

mt is a linear stochastic process, dynamically evolving over

time, and «t is a noise term.We can considermt to follow a

random walk process that captures the long-term trend

features in the time series and «t to be an independent and

identically distributed (IID) variable that represents the

short-term deflections from the trend or the noise in the

time series. The trend signal mt is the key feature of in-

terest in the local level model, also for generating long- or

medium-term forecasts of yt. Its random walk process is

given by mt11 5 mt 1 ht where the noise term ht is IID.

Under the assumption that both noise terms «t and ht are

normally distributed withmean zero and variancess2
« and

s2
h, respectively, the celebrated Kalman filter equations

(Kalman 1960) compute the minimummean square error

(MMSE) estimates ofmt given realizations for y1, y2, . . . , yt,

in a recursive real-time fashion, for t 5 1, 2, . . . , T,

where T is the length of the time series under inves-

tigation. The estimate of mt can be expressed as the

weighted average �T

j50wjyt2j where the weights are nor-

malized (they sum up to unity; w0 1 w1 1 w2 1 . . . 5 1),

are exponentially decaying, and are a function of the

signal-to-noise ratio q5s2
h/s

2
«. When q is relatively large

(s2
« is small relative to s2

h, implying that yt behaves close

to a random walk process as yt ’ mt), the weights are

decaying fast to zero and we obtain a ‘‘noisy’’ estimate of

mt. This estimatemay be representative as it is close to the

local level (small estimation bias), but given that only a

fewobservations are used for the estimation, the precision

is typically small (i.e., large estimation variance). When q

is relatively small (s2
h is small relative to s2

«, implying that

mt is evolving slowly over time as mt11 ’ mt), the weights

are decaying slowly to zero and we obtain a smooth es-

timate of mt. In the latter case, the estimation bias may be

larger (less local targeting), but the estimation variance is

smaller since more observations are used for estimation.

The appropriate value for the signal-to-noise ratio q for a

particular time series depends on the dynamic features

of the time series. We estimate q by the method of max-

imum likelihood, which entails the numerical maximiza-

tion of the likelihood function that is computed using the

Kalman filter (for a specific value of q). The h-step ahead

forecasting (that is the estimation of yT1h, given re-

alizations for y1, y2, . . . , yT) is also computed by the

forward-moving Kalman filter (from 1 to T). The esti-

mation methodology provides the MMSE optimal

weights for forecasting: the forecasting weights gradually

decline when observations are increasingly remote from

the forecast point as these become increasingly less rele-

vant. The estimation of allmt values given the realizations

y1, y2, . . . , yT (all data) is referred to as signal extraction

and relies on Kalman smoothing, which is a backward-

moving filter (from T to 1); see Durbin and Koopman

(2012, ch. 2) with all methods for filtering, forecasting,

signal extraction, and parameter estimation, and with

related details for the local level model.

The local level model is a special case of the dynamic

components model adopted in Petrova et al. (2017)

where the observation equation yt 5 mt 1«t is extended

with regression effects (predictors) and more linear
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stochastic processes that represent key dynamic features

of the Niño-3.4 temperature time series including sea-

sonal and cyclical effects. The model then becomes

yt 5mt 1Xtb1�M

i51cit 1 «t, where Xt is the exogenous

1 3 K vector of covariates (or predictor variables)

measured at time t, b is the K 3 1 vector of predictor

coefficients, and cit is the ith dynamic cycle component

which ismodeled as a stationary process for i5 1, . . . ,M,

where M is the number of cycles in the model (in our

case M 5 6). The model specification for the cycle

component is given by ci,t11 5 ri cos(li)cit 1
ri sin(li)cit 1 vit with the auxiliary dynamic process

given by cy
i,t11 5 ri cos(li)c

y
it 2 ri sin(li)c

y
it 1vy

it, where

ri is the autoregressive coefficient (determines the per-

sistence of the cycle process), li is the frequency of the

cycle measured in radians, and vit and vy
it are two IID

noise terms, which are independent of each other, and

all other noise terms, but they have the same (common)

variance s2
v, i, for i 5 1, . . . , M. It can be shown that we

can formulate cit as a stationary autoregressive moving

average (ARMA)process. As long as the coefficient pairs

(ri, li) are sufficiently different for different i5 1, . . . ,M,

the M cycle components c1,t, . . . , cM,t can be uniquely

extracted from the observed time series yt. The parameter

constraints for eachcycleprocess are 0, ri, 1 (stationarity),

0 , li , 2p (circularity), and s2
v,i . 0, for i 5 1, . . . , M.

The signal-to-noise coefficient for the ith cycle process is

given by qc,i 5s2
v,i/s

2
«, for i 5 1, . . . , M. The complete

model for yt (in our case for the Niño-3.4 temperature

time series) can be represented as a linear Gaussian

state space model such that the Kalman filter methods

can be used in a similar way as for the local level model.

The dynamic level and cycle (including the auxiliary

cycle variables) components are placed in the state

vector, denoted by at, which is subject to a multivariate

dynamic stochastic process. The predictor coefficients in

vector b are treated as time-invariant, fixed parameters.

Both at and b are simultaneously estimated as part of

the Kalman filter [see Harvey (1989) and Durbin and

Koopman (2012, Part I therein) for its general treat-

ment]. Also in this more general context of the state

space model, the Kalman filter methods remain to pro-

vide the MMSE optimal weights to the observations for

signal extraction and forecasting.

The statistical dynamic components model can be

viewed as a linear time series model with time-varying

parameters. The introduction of time-varying parame-

ters as done with stochastically evolving level and cycle

components can address and approximate nonlinear

features in the time series via piecewise linearization.

The number of nodes for the linearization (or the

smoothness of the piecewise approximation) is implic-

itly determined via the signal-to-noise parameters of the

time-varying components. We therefore may claim that

the introduction of the dynamic components also makes

the analysis more robust to nonlinear features in the

time series.
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