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Abstract
Taking a portfolio perspective on option pricing and hedging, we

show that within the standard Black-Scholes-Merton framework large
portfolios of options can be hedged without risk in discrete time. The
nature of the hedge portfolio in the limit of large portfolio size is sub-
stantially different from the standard continuous time delta-hedge.
The underlying values of the options in our framework are driven by
systematic and idiosyncratic risk factors. Instead of linearly (delta)
hedging the total risk of each option separately, the correct hedge
portfolio in discrete time eliminates linear (delta) as well as second
(gamma) and higher order exposures to the systematic risk factor
only. The idiosyncratic risk is not hedged, but diversified. Our result
shows that preference free valuation of option portfolios using linear
assets only is applicable in discrete time as well. The price paid for
this result is that the number of securities in the portfolio has to grow
indefinitely. This ties the literature on option pricing and hedging
closer together with the APT literature in its focus on systematic risk
factors. For portfolios of finite size, the optimal hedge strategy makes
a trade-off between hedging linear idiosyncratic and higher order sys-
tematic risk.
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1 Introduction

The portfolio approach to asset pricing and asset management has domi-
nated large parts of the financial economics’ literature. Early work for linear
securities like stocks dates back to Markowitz (1952), Sharpe (1964), Lint-
ner (1965), and Ross (1976). There are two key reasons for the widespread
acceptance of the portfolio approach to asset pricing. First, in practice secu-
rities are hardly ever held in isolation. Any sensible analysis should therefore
incorporate the fact that asset price movements may have a combined effect
on individuals’ wealth levels. Second, financial securities are subject to dif-
ferent sources of risk, such as common, economy-wide or systematic risk and
firm-specific or idiosyncratic risk. By pooling a sufficient number of securities
into a portfolio, the latter type of risk can be eliminated, whereas the former
cannot. Only systematic risk factors are priced in equilibrium, and usually
there is only a small number of them, see for example Chen, Roll, and Ross
(1982), or Fama and French (1992,1993). Despite the early attention for the
portfolio approach to linear assets, its application to non-linear assets is of
much more recent date, see Jarrow, Lando, and Yu (2003) and Björk and
Näslund (1998) for applications to portfolios of credit risk instruments and
options, respectively.

Notwithstanding the important difference between systematic and id-
iosyncratic risk following from a portfolio perspective, the dominant approach
in the options literature has been based on asset pricing for individual in-
struments, or on a portfolio of options with a single underlying security, see
Mello and Neuhaus (1998). For example, the formula of Black and Scholes
(1973) and Merton (1973) for pricing a European call on a stock contains
total volatility of the stock, i.e., both its (priced) systematic risk component
and its (unpriced) idiosyncratic risk component. Also looking at the hedging
portfolio following from the Black-Scholes formula, we see that the total risk
rather than the systematic risk only is hedged.

This apparent incongruence is addressed in the current paper, where we
adopt the portfolio perspective to option pricing in discrete time. We have
two reasons for considering the discrete time framework. First, even though
asset prices may move continuously, trading and re-balancing only takes place
at discrete time intervals due to for example monitoring and transaction
costs, see, e.g., Boyle and Emanuel (1980), Leland (1985), Gilster (1990),
Boyle and Vorst (1992), and Mello and Neuhaus (1998). Second, in the
continuous time framework underlying the Black-Scholes analysis with asset
prices following standard diffusions, no gains are possible by taking a port-
folio perspective. In this setting the options are already replicated without
risk, and any deviation in pricing would lead to arbitrage opportunities, see
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also Björk and Näslund (1998) and Kabanov and Kramkov (1998). This
confirms the widespread approach to option pricing based on individual in-
struments. The portfolio perspective does make a difference if some form of
market incompleteness is introduced. Björk and Näslund (1998) and Jarrow
et al. (2003) do this by having asset prices follow jump-diffusion processes.
In that sense, our approach is related as it introduces market incomplete-
ness through discrete trading moments while asset prices move in continuous
time. This incompleteness results in non-zero hedging errors for option repli-
cation strategies, which may even be correlated with priced risk factors, see
for example Gilster (1990).

In this paper we show that the incompleteness introduced by discrete
trading times can be overcome by adopting a portfolio approach to asset
pricing similar to the APT literature. By exploiting the cross sectional di-
mension of the portfolio of underlying values, a unique, preference-free price
can be established for a portfolio of options using only the underlying stocks
to construct a static hedge portfolio. The price of our hedge portfolio is
equal to the sum of Black-Scholes prices as derived in the continuous time
framework. In particular, the price does not depend on the preferences of the
agent that hedges the options. The corresponding hedge portfolio, however,
is entirely different from its Black-Scholes counterpart. Whereas the typ-
ical delta-hedge in the Black-Scholes framework linearly hedges total risk,
the hedge portfolio in our framework hedges linear (delta), second (gamma),
and higher order systematic risk only. The idiosyncratic risk is diversified
and disappears asymptotically. Therefore it need not be hedged to obtain
the correct portfolio price. This provides a closer tie between the differ-
ent arguments in the standard options pricing and APT literatures as noted
above. Static hedging of complex derivatives has been analyzed elsewhere
in the literature, see for example Carr, Ellis, and Gupta (1998). The focus
there, however, is on statically replicating complex derivatives with simpler
derivatives. Here, we concentrate on hedging the (non-linear) systematic risk
exposure by holding a static portfolio of stocks.

The set-up of our paper is as follows. In Section 2 we introduce the model
and present the main results. Section 3 gives some numerical illustrations
and robustness checks of our findings. Section 4 provides concluding remarks.
Proofs are gathered in the Appendix.
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2 Model and main results

Consider a set of N securities Si, i = 1, ..., N , following the multivariate
continuous time processes

dS = S ¯ (µdt) + S ¯ (Σ1/2dz̃), (1)

with S = (S1, . . . , SN)′, µ = (µ1, . . . , µN)′, Σ = Σ1/2(Σ1/2)′ a positive definite
covariance matrix, z̃ = (z̃1, . . . , z̃N)′ an N -dimensional standard Brownian
motion, and a ¯ b = (a1b1, . . . , aNbN)′ for two N -dimensional vectors a and
b. To study the different effects of systematic and idiosyncratic risk in this
context, we impose a factor structure on the covariance matrix Σ. In par-
ticular, similar to Björk and Näslund (1998) and Jarrow et al. (2003), we
set

Σ = ββ′ + diag(σ2
1, . . . , σ

2
N), (2)

with β = (β1, . . . , βN)′. This imposes a one-factor structure on the movement
of asset prices. Multiple factors can also be accomodated in a straightforward
way, but lead to more cumbersome notation. By focusing on a single sys-
tematic risk factor only, we are able to pinpoint in closed form the trade-off
between hedging systematic versus idiosyncratic option risk at the portfolio
level. Using (2), we rewrite (1) for the ith security as

dSi

Si

= µidt + βidz0 + σidzi, (3)

where z = (z0, z1, . . . , zN) is an (N + 1)-dimensional standard Brownian
motion with z(t) ∼ N(0, tI). For notational convenience we also define σ̃2

i =
σ2

i + β2
i as the ith diagonal element of Σ from (2) corresponding to the total

risk of security Si. In (3), z0 and zi can be interpreted as the systematic and
idiosyncratic risk factor, respectively.

Next, consider a portfolio consisting of N equally weighted short call
options on the N different securities Si. Other weightings for the options
in the portfolio or other types of option contracts can be included through
straightforward generalization.

Björk and Näslund (1998) show that in a perfect markets setting without
jump risk, (3) still allows for perfect delta hedging of a portfolio of contin-
gent claims on the Sis using the standard Black-Scholes-Merton approach
and hedging portfolio. In discrete time however, the standard Black-Scholes
hedge is no longer perfect, in the sense that the expected return of the hedge
portfolio only vanishes in expectation, and no longer almost surely. In this
paper we show that alternative hedge portfolios can be found that provide a
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lower hedge error variance in discrete time. These alternative hedge portfo-
lios focus on the higher order exposure to the systematic risk factor rather
than on the linear exposure to total risk, i.e., systematic plus idiosyncratic
risk.

We proceed in three steps, which are formalised in theorems 1 to 3. First,
we derive an expression for the hedge error variance when a standard delta
hedge is implemented for each individual call position in the portfolio. Next,
we derive a similar expression for the case where an arbitrary portfolio in
the underlying values is held to hedge against fluctuations in the option
portfolio’s values. This allows us to demonstrate how hedge error variances
can be reduced by an appropriate choice of the hedge portfolio. Finally, we
provide our main theoretical result showing that if the portfolio size grows
indefinitely, it becomes possible to construct a perfect static hedge portfolio
in finite time by concentrating on the linear and higher order exposures to
the systematic risk factor only.

Let Ci(Si, t) denote the usual Black-Scholes price equation for the price
of a call on security Si, and let Ci

S(Si, t) denote its derivative with respect
to Si. The standard approach to hedge our option portfolio over a discrete
time interval ∆t is to construct a (hedge) portfolio consisting of a position
Ci

S(Si, t) in each of the underlying securities Si, and a position Q in cash,
with

Q =
1

N

∑

i

(
Ci(Si, t) − Ci

S(Si, t)Si

)
. (4)

We define the hedging error ∆H as

∆H = Ci
S(Si, t) [Si(t + ∆t) − Si(t)] + Q

[
er∆t − 1

]
−

[
Ci(Si(t + ∆t), t + ∆t) − Ci(Si(t), t)

]
. (5)

For notational convenience, we write Ci(Si(t), t) as Ci from now on. A similar
notation is used for its derivatives, e.g., Ci

S for the delta of the option. Using
the above hedging strategy, the hedge portfolio is the sum of hedge portfolios
for the individual positions. We expand the hedge error (5) as a power series
in the length of the hedging period ∆t, see also Leland (1985) and Mello
and Neuhaus (1998). Under the present standard delta hedging strategy, the
expected hedging error and its variance take the following form.

Theorem 1 Using delta hedging of the individual option positions, the hedg-
ing error ∆H in (5) satisfies

E [∆H] = O(∆t2),
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and

E
[
(∆H)2

]
=

1

2

[
1

N

∑

i

Ci
SSS2

i β
2
i

]2

∆t2

+
1

2N2

∑

i

[(
Ci

SSS2
i

)2
(σ̃4

i − β4
i )

]
∆t2 + O(∆t3). (6)

The proof of this theorem can be found from simple generalizations of
results in the literature, and follows directly as a special case of Theorem 2.
Trivially, for N = 1, we recover the well-known expression for the hedge error
variance as the square of the option’s gamma. Clearly, this explicit expression
for the variance implies that the return of the option portfolio is no longer
replicated without risk in discrete time following the Black-Scholes hedging
approach. Consequently, it would seem that there is no unique preference
free price for the option portfolio.

The hedge error variance in (6) consists of two terms. The first term re-
flects the contribution of the systematic risk factor z0. This term is of order
O(∆t2), which indicates that the systematic component cannot be diversi-
fied1 in a large portfolio context, i.e., is of order O(1) in N . The second term,
by contrast, is O(∆t2/N) and results from the idiosyncratic risk component
of the securities. The delta hedging strategy thus clearly benefits from di-
versification. The idiosyncratic component of the variance is effectively of
order O(1/N). In the limit for large portfolio sizes N all idiosyncratic risk
disappears, and only risk attributable to the common market factor remains.
For finite N the variance is reduced as a result of the correlation between
the different underlying securities. The correlation between two individual
standard hedging strategies (the off-diagonal terms in the above expression)
have also been derived in Mello and Neuhaus (1998).

The variance reduction for large N can, however, be taken a step further
by optimizing over the choice of the hedge portfolio. In this way, we are able
to take a more explicit advantage of the correlation structure of the different
underlying values. Consider an alternative hedging strategy, where the hedge
portfolio contains a fraction Di rather than Ci

S of the ith security. Keeping
the price of the option identical to the usual Black-Scholes price, the cash
investment follows directly as

Q =
1

N

∑

i

(
Ci − DiSi

)
. (7)

Using this non-standard hedging strategy, we obtain the following result for
the hedge error variance.

1This appears to be supported by the empirical results in for example Gilster (1990).
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Theorem 2 Using the hedge strategy with DiSi invested in security i, we can
choose the hedge portfolio such that the hedge error ∆HB satisfies E

[
∆HB

]
=

O(∆t2). If only market risk is priced, i.e. µi = r +κ0βi for all i, with κ0 the
price of systematic risk, then the hedge error variance is given by

E
[
(∆HB)2

]
= A1 + A2 + A3, (8)

with

A1 =
1

N2

∑

i

(
X iσi

)2
∆t, (9)

A2 =
1

2

[
1

N

∑

i

(
Ci

SSS2
i − X i

)
β2

i

]2

∆t2, (10)

A3 =
1

N2

∑

i

[
1

2
(σ̃4

i − β4
i )

(
Ci

SSS2
i − X i

)2

+2µiσ
2
i (X

i)2 − 2(µi − r)σ2
i X

iCi
SSS2

i

]
∆t2, (11)

where X i = (Di − Ci
S)Si denotes the deviation from the standard (delta)

hedge portfolio.

All proofs are gathered in the Appendix. We restrict ourselves in Theo-
rem 2 to the case where only market risk is priced. This implies the absence
of asymptotic arbitrage in the limit N → ∞, see Björk and Näslund (1998).
More formally, if µi = r + κ0βi + κiσi, with κi the price of idiosyncratic risk,
the exclusion of asymptotic arbitrage imposes the restriction that the set of
{i |κi 6= 0} has measure zero.

By definition, for the standard hedge portfolio X i = 0 in Theorem 2 and
we recover the expression in (6). Theorem 2 states that the hedge error vari-
ance up to order O(∆t2) consists of three terms. The term A2 reflects the
systematic risk component, while the terms A1 and A3 reflect the idiosyn-
cratic part. It is again easy to see that A2 is O(1) in N , while A1 and A3

are O(1/N). Moreover, the term A1 is linear in ∆t, whereas A2 and A3 are
quadratic in ∆t. For finite portfolio size N , in the limit ∆t → 0 we should
require terms linear in ∆t to vanish in order to minimize the hedging risk.
This results in the usual allocations Di = Ci

S through the expression for A1.
In other words, in the continuous time limit the optimal hedge portfolio is
the sum of the individual Black-Scholes hedge portfolios.

However, this is no longer the case if we consider the hedge performance
for non-infinitesimal values of ∆t. In such settings there is a different way
to decrease the variance of the hedge portfolio. This is most clearly seen
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by focusing on the limiting large portfolio case, N → ∞. We can then
ignore the terms A1 and A3. Requiring E

[
∆HB

]
= O(∆t2) only imposes a

single linear restriction on the set of allocations Di. The remaining flexibility
in the set Di can subsequently be used to reduce the variance at higher
orders in ∆t. In particular, we can select the remaining set of Dis such
that A2 vanishes as well. This choice is possible as long as not all βis are
identical. The intuition for this result is clear. In a large portfolio context, the
idiosyncratic risk can be diversified. As a result, in our one-factor model only
an exposure to the single systematic risk factor remains. The freedom in the
choice of the portfolio composition can then be used to hedge against higher
order exposures to this systematic risk component. For example, setting
A2 to zero annihilates the systematic gamma exposure. By contrast, the
standard hedging approach a priori fixes the hedge portfolio composition such
that the linear delta exposure to the combined systematic and idiosyncratic
risk factors are hedged. Consequently, no freedom remains to hedge the
undiversifiable higher order exposures to the systematic component.

For finite portfolio size N and finite revision time ∆t there is a trade-off
between hedging all idiosyncratic risk (in the limit N∆t → 0, the standard
Black-Scholes approach) and hedging market risk only (in the limit N∆t →
∞). Clearly, deviations from the standard hedge approach, both in hedge
ratios and in reduction of variance, are larger for larger portfolio sizes and
larger revision intervals.

We can now establish the generic result that in large option portfolios
hedging higher order systematic risk is preferable to hedging linear idiosyn-
cratic risk. This is done in the following theorem.

Theorem 3 (the hedge is wrong) Hedging a portfolio of option in the
general setting defined earlier, if only market risk is priced, we can choose
the allocations Di such that

E
[
∆HB

]
= O(∆t

n+1
2 ) + O(1/N), (12)

and

E
[(

∆HB
)2

]
= 0 + O(∆tn+1) + O(1/N), (13)

if N ≥ n and at least n of the parameters βi are different and not equal to
zero.

If idiosyncratic risk is priced, one can proove a similar result. The number
of securities needed to construct the hedge portfolio in that case increases
quadratically with n. Moreover the expected return of this hedging strategy
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need no longer be zero, resulting in arbitrage opportunities. This is to be ex-
pected, as this market structure, already without any options present, allows
for the possibility of arbitrage. The result for the case with idiosyncratic risk
priced is presented in Theorem 4 in the Appendix.

The result in Theorem 3 demonstrates that we can construct a riskless
hedging strategy for finite time ∆t in the limit N → ∞ if the βis are differ-
ent. In other words, the risk that is introduced by going to a discrete time
set-up vanishes completely: the systematic risk component can be eliminated
to any arbitrary order of ∆t by choosing the appropriate non-standard hedg-
ing strategy. At the same time, the idiosyncratic risk component disappears
through diversification. The key to the proof is that the hedge portfolio is
chosen such that up to sufficiently high order in ∆t, its expectation con-
ditional on the systematic risk component coincides with its unconditional
expectation, see (A10). This can be established by matching the higher order
characteristics of the systematic risk exposure. To match the two types of
expectations, a set of constraints has to be imposed on the portfolio loadings
Di. All of these constraints are linear in the Dis. The coefficients of these
constraints involve powers of the systematic volatility βi and higher order
derivatives of the Black-Scholes price (to capture the appropriate curvature),
see the Appendix. For this set of constraints to have a solution, the number
of securities has to be sufficiently large, N ≥ n. Second, the system of con-
straints needs to be nonsingular. The latter is ensured by the requirement
that at least n of the βis are different and not equal to zero.

Given the entirely different behavior of the standard and portfolio hedging
approach, one might wonder whether the Black-Scholes prices are still correct
in the present discrete time framework. The next corollary states they are.

Corollary 1 (the price is right) If only market risk is priced and the num-
ber of securities diverges (N → ∞), and if the βis are different such that we
can set the approximation order n arbitrarily high (n → ∞), then the only
arbitrage-free price of the options is equal to their Black-Scholes price, except
for a set of measure zero.

Arbitrage opportunities in Corollary 1 are defined as the possibility to
gain a return higher than the riskfree rate almost surely. By construction,
the hedge portfolio has the same price as Black-Scholes, see (7). Given the
result from Theorem 3, this implies that the sum of the options prices equals
the sum of Black-Scholes prices. As Theorem 3, however, also holds for
every subseries of call options and corresponding underlying values, the set
of options with prices different from the Black-Scholes price has measure
zero.
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3 Numerical illustrations

To further illustrate our results and provide more intuition, we discuss several
numerical examples. We present results for a finite, but increasing set of N
underlying securities, corresponding to Theorem 2, as well as results for the
limiting case N → ∞, corresponding to Theorem 3. As already noted, in
order for the result in Theorem 3 to hold, we need heterogeneity in the
securities’ exposures βi to systematic risk. At the same time, however, we
want to limit the number of free parameters in our numerical experiments.
We do so in the following way. First, we set the riskless rate r to zero. Second,
we only use a single indicator for idiosyncratic risk, i.e., σ2

i ≡ σ2 = cσ2
m,

where σm is the systematic volatility and c = 0.5, 1.0, 1.5. We normalize all
initial stock prices Si to unity, and we consider three month at-the-money
call option contracts and a hedging frequency of one month, ∆t = 1/12.
This leaves us with N + 2 parameters: the market volatility σ2

m, the price of
systematic risk κ0, and the βis. To retain comparability across portfolio sizes
N of the portfolio characteristics, we model the βis as follows. For a given
cumulative distribution function (cdf) F , we define

βi = F−1
(

2i − 1

2N

)
· σm, (14)

with F−1 the inverse of F , and i = 1, . . . , N . In this way we allow for
heterogeneity across securities without loosing comparability over increasing
portfolio sizes N . We set F to the normal cdf with mean 1 and standard
deviation 0.3. We use a market price of systematic risk κ0 = 20% and a
market volatility of σm = 25%. Simulations for alternative parameter settings
and distributional assumptions revealed similar patterns. Figures 1 through 5
present the key patterns. Figures 1 through 4 highlight Theorem 2 for finite
portfolio size N , while Figure 5 illustrates the asymptotic case N → ∞ of
Theorem 3 and Corollary 1.

Figure 1 presents the hedge error variances for the standard delta hedge
and the new ‘portfolio’ hedge. The new hedge portfolio is optimized by
minimizing the hedging error variance as given in Theorem 2 over the stock
holdings Di. Two effects are clear. First, for the standard hedge, diversifi-
cation leads to a decrease in hedging error variance for increasing portfolio
size N . From about N = 100 onwards, however, most diversification benefits
have materialized and the variance remains stable. This remaining variance
is caused by the second order exposure to the systematic risk factor, i.e., the
systematic gamma risk. This is also clearly seen in Figure 2, which plots the
percentage of the hedge error variance due to the systematic risk component.
From about N = 100 onwards, this percentage lies very close to 100%. In the
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left-hand plot in Figure 1, less idiosyncratic risk gives rise to higher hedge
error variance for large N . This is due to the parameterization, where the to-
tal risk σ2 +β2

i is lower for lower values of σ2/σ2
m. Consequently, the gamma

term CSS in (10) is higher for smaller σ2. As for large N A2 dominates A3,
this explains the ordering of the curves for large N . For small N , A3 is also
important and the order of the curves is reversed.

The left-hand panel in Figure 1 further shows that, by contrast, the hedge
error variance for the optimal hedge portfolio continues to decrease for larger
values of N . As mentioned earlier, this is due to the fact that the optimal
hedge portfolio also protects against higher order exposures to the systematic
risk factor. This is seen in the right-hand panel of Figure 2, where the
percentage of the variance due to systematic risk exposure is plotted. These
percentages decrease rather than increases in N for N sufficiently large. In
the limit for N diverging to infinity, the hedge error variance for the optimal
portfolio even tends to zero. The percentage of systematic variance is smaller
if there is less idiosyncratic risk for given βis. This follows again by looking at
(9) and (10). Smaller σis, by definition, give rise to a smaller value of A1. As
a result, the scope for a reduction in A2 by setting Di 6 Ci

S without increasing
A1 too much is larger for lower idiosyncratic risk (and sufficiently large N).
The right-hand plot in Figure 1 clearly summarizes the results. Hedge error
variances can be decreased significantly by adopting a portfolio perspective
to hedging options. The benefits are larger if the systematic risk component
constitutes the more dominant source of risk, i.e., if σ2/σ2

m is smaller.
Figure 3 plots the stock holdings Di as a function of βi for various portfolio

sizes N . This allows us to see whether the optimal hedge portfolio overweights
small or high β stocks. As the results are very similar for varying ratios
of σ2 to σ2

m, we only present and discuss the case σ2/σ2
m = 1. The first

thing to note is that the loadings of the standard hedge, Di = Ci
S, are

relatively stable. They increase with βi, but their variation is negligible
compared to the variation in holdings for the alternative hedge portfolios.
The allocations Di of the alternative hedge portfolio depend strongly on the
market risk exposure of the corresponding underlying security. Stocks with
zero systematic risk exposure (βi ≈ 0) receive a similar loading as in the
standard hedge. This is intuitively straightforward as changing the holdings
in these securities does not generate a large change in the systematic risk
exposure. The optimal hedge overweights high β stocks and possibly negative
β stocks, and underweights low and medium β stocks. The latter can even
be shorted in substantial amounts for N sufficiently large.

It may be less clear at first sight why the portfolio loadings take the shape
they do in Figure 3. We have argued in Section 2 that the precise shape is
due to the optimal hedge portfolio adapting itself to higher order exposure to
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the systematic risk factor. This effect can easily be visualized. In Figure 4,
we plot the conditional expectation of hedge errors E[∆HB|z0], where the
conditioning set contains the systematic risk factor z0. The result for the
standard delta hedge portfolio shows that hedge errors are most extreme for
extreme realizations of z0. For large realizations of z0, the standard hedge is
unable to accomodate the convexity in the option payoff. By overweighting
high β stocks and underweigthing low β stocks, the optimal hedge becomes
more sensitive to extreme realizations of z0. This is seen by the reduction
in conditionally expected hedging errors over a large range of z0 outcomes.
The increased ability of the optimal hedge to capture the convexity in the
option payoffs becomes more apparent for larger portfolio sizes N . This is
also evident from Figure 4.

The conditional expected hedging error can be reduced further by consid-
ering the true limiting case N → ∞. We do so in the following way, making
explicit use of the expressions used in the proof of Theorem 3. For approx-
imation order n = 1, 2, . . ., we consider a set of n different βis. Each βi can
be considered as representing a homogenous group of underlying values. The
βis are constructed as in (14). Using these βis, we solve for the D1, . . . , Dn

such that the hedge error variance is zero up to terms of order O((∆t)n+1)
and O(1/N). Because we consider the limiting case N → ∞, we discard the
O(1/N) terms. This approach yields a linear system of equations, that can
easily be solved numerically. The conditional expectation of the value of the
option portfolio is given by (see Rubinstein (1984))

E [∆Ci|z0] = S̃iN(d̃1i) − e−r(T−∆t)KiN(d̃2i), (15)

where

S̃i = Sie
(µi− 1

2
β2

i )∆t+βiz0

√
∆t

d̃1i =
ln(S̃i/Ki) + r(T − ∆t) + 1

2
Σ2

i

Σi

d̃2i = d̃1i − Σi

Σ2
i = σ̃2

i (T − ∆t) + σ2
i ∆t

The conditional expectation of the change in the value of the hedge portfolio
is calculated using (A12). The top panels in Figure 5 provide the results
in terms of conditionally expected hedging errors up to approximation order
n = 8.2 Note that n = 1 corresponds to the standard hedge. There is a clear
jump in hedge error size when switching from n = 1 to n = 2. Similar jumps

2This involves the computation of 8th order derivatives of the Black-Scholes price equa-
tion.
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are seen at every point where n increases from an odd to an even integer,
see the lower graph. This is due to the fact that odd moments of the normal
distribution are zero, see also (A13) and below. Also note the change in the
scale of the vertical axis between the top-left and top-right panels. To obtain
an indication of the pattern of decrease for increasing n, we compute the
expectation of the squared curves in the top panel, augmented with curves
for higher values of n. The natural logarithm of this quantity is plotted
in the bottom panel in Figure 5. The decrease of the hedge error size in
pairs of n is again clearly visible. Moreover, the rate of decrease appears
exponential given the roughly linear pattern in the bottom panel. This again
illustrates the hedge portfolio’s ability to match the higher order systematic
exposures of the option portfolio if idiosyncratic risk has been eliminated
through diversification (N → ∞). The argument is very similar to the
approach taken in Arbitrage Pricing Theory: in the limit of a large number
of securities, only the systematic sources of risk in a portfolio of options need
to be hedged in discrete time.

We end this section with a few remarks on the computational aspects
underlying Figure 5. To compute the optimal stock holdings Di for a specific
approximation order n, one needs the n-th order derivative of the Black-
Scholes formula. These derivatives enter the constant term in the linear
equations for the Di. Though these derivatives can easily be determined
recursively, some straightforward manipulation shows that they tend to in-
crease in absolute size with n. In addition, the coefficients of the Dis in the
n-th equation of the linear system are of the order βn

i , and thus decrease with
n. These two properties give rise to large Di values for increasing approxima-
tion order n. Therefore also the contribution to the variance of the position
in each separate security increases. As a result of the correlation between
these different securities, however, the total variance tends to zero. Using
standard double precision, this cancellation is only numerically tractable for
n ≤ 9. The theoretical results remain valid and can clearly be corroborated
numerically for n ≤ 8, see Figure 5. Moreover, the main practical implica-
tion of our results appears that there is already a significant reduction in
error size when switching from the standard delta hedge (n = 1) to a hedge
incorporating the systematic gamma component (n = 2).

4 Conclusions

In this paper we have shown that in discrete time hedging risk can be reduced
considerably compared to the standard Black-Scholes approach when taking
a portfolio perspective. For finite portfolio size one should not focus solely on
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minimizing all idiosyncratic risk exposures, but instead consider the trade-off
between reducing the linear idiosyncratic risk exposures versus higher order
market risk exposures. In the limit of an infinite number of securities, mar-
ket incompleteness due to discrete trading may even be removed completely.
This result is in line with results of Jarrow et al. (2003) who remove jump
risk by taking a large portfolio approach. In particular, we showed that if
the standard Black-Scholes framework is modified to allow only for discrete
trading dates, the Black-Scholes prices for a large portfolio of options still
provide the correct price except for a set of options of measure zero. The
correct hedge strategy in discrete time, however, is entirely different from
the standard Black-Scholes delta hedge: first (delta), second (gamma), and
higher order exposures to the systematic risk factors only are hedged at the
expense of idiosyncratic risk. The latter is left unhedged, because it can be
diversified via the large portfolio context. This ties the literature on option
pricing closer to that on APT. In the limiting context of an infinite num-
ber of securities to diversify idiosyncratic risk components, only systematic
sources of risk in portfolios of options need to be hedged. This contrasts with
the continuous time Black-Scholes-Merton framework, where both systematic
and idiosyncratic sources of risk are hedged.

Our results have several implications. First, our results suggest an alter-
native approach to constructing hedges for portfolios of options. Risk factors
should be identified at the portfolio level and it may be profitable to hedge
higher order exposures to systematic risk factors at the expense of linear
exposures to idiosyncratic risk. Second, our results imply that agents man-
aging portfolios of derivatives are at an advantage if their portfolios comprise
many different underlying values, subject to these underlying values being
influenced by the same systematic risk factors. In such a setting, the maxi-
mum benefit can be obtained from diversification. Third, our results suggest
further advantages of the portfolio perspective if transaction costs are taken
into account. Though a complete analysis of the issue of transaction costs
in a portfolio context is beyond the scope of this paper, some patterns are
clear. For large portfolios of options, it was shown to be better to hedge
higher order terms in the systematic risk components than to hedge the lin-
ear exposure to the total risk of all underlying values. If indices are available
that are highly correlated with the systematic risk factor, our results may
be reinforced by the inclusion of transaction costs. These costs are typically
an order of magnitude smaller for index related contracts like options and
futures, than for individual stocks. This is especially true if the effects of
liquidity and price impact are taken into account. As a result, the costs of
setting up and adjusting the hedge portfolio is likely to be smaller if part
of the portfolio relates to index contracts. This suggests an interesting line
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of future research. If systematic risk is highly correlated with index instru-
ments, systematic gamma risk can be explicitly traded through the use of
index options.

To assess whether or not it makes practical sense to actually implement
option hedging and pricing decisions on a portfolio basis using index in-
struments, more insight is needed into the (numerical) balance between the
different determinants of the hedge error variance: the portfolio size N , the
magnitude of market risk and idiosyncratic risk, the variation in βs, and
transaction costs. Especially the latter may be relevant in a portfolio context,
as index instruments usually entail significantly lower transaction costs. A
carefull analysis of this topic, however, requires a more involved multi-period
dynamic programming approach, and is left for future research.

Appendix

A Proofs

Proof of Theorem 2:
Consider the portfolio consisting of holdings Di in each security Si, a cash holding given
by Q in (4), and a short position in each option Ci. The change in value of this portfolio
between subsequent revision intervals equals the hedging error ∆H and is given by

∆H =
1
N

∑

i

Di∆Si + ∆Q− 1
N

∑

i

∆Ci. (A1)

Expanding this expression, and using the fact that ∆Si is of order O(∆t1/2), we obtain

∆H =
1
N

∑

i

[
Di∆Si + r

(
Ci −DiSi

)
∆t− Ci

S∆Si −
1
2
Ci

SS(∆Si)2 − Ci
t∆t

− 1
6
Ci

SSS(∆Si)3 − Ci
St∆Si∆t

]
+ O(∆t2). (A2)

Since the option prices Ci are still given by the standard Black-Scholes expressions, we
can use the Black-Scholes equation

Ci
t +

1
2
σ̃2

iC
i
SSS

2
i − r

[
Ci − Ci

SSi

]
= 0 (A3)

and its derivative
Ci

St +
1
2
σ̃2

iC
i
SSSS

2
i + (r + σ̃2

i )Ci
SSSi = 0 (A4)

in order to substitute for Ci
t and Ci

St respectively. This leads to

∆H =
1
N

∑

i

[(
Di − Ci

S

)
(∆Si − rSi∆t) −

1
2
Ci

SS

(
(∆Si)2 − σ̃2

i S
2
i ∆t

)

− 1
6
Ci

SSS

(
(∆Si)3 − 3σ̃2

i S
2
i ∆Si∆t

)
+ (r + σ̃2

i )Ci
SSSi∆Si∆t

]
+ O(∆t2).(A5)
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It is now straightforward to compute the expected hedge performance and its variance,
using the formulas in the second appendix. We find

E[∆H] =
1
N

∑

i

(
Di − Ci

S

)
Si(µi − r)∆t+ O(∆t2). (A6)

The variance of the hedge performance with general hedge ratios Di is given by

var[∆H] =
[ 1
N

∑

i

(
Di − Ci

S

)
Siβi

]2

∆t+
1
N2

∑

i

(
Di − Ci

S

)2
S2

i σ
2
i ∆t

+
1
2

[
1
N

∑

i

[(
Di − Ci

S

)
Si − Ci

SSS
2
i

]
β2

i

]2

∆t2

+ 2
[ 1
N

∑

i

(
Di − Ci

S

)
Siβi

][ 1
N

∑

j

(
Dj − Cj

S

)
Sjµjβj

]
∆t2

− 2
[ 1
N

∑

i

(
Di − Ci

S

)
Siβi

][ 1
N

∑

j

Cj
SSS

2
j βj(µj − r)

]
∆t2

+
1
N2

∑

i

[
1
2
(
σ̃4

i − β4
i

)[(
Di − Ci

S

)
Si − Ci

SSS
2
i

]2

+ 2µiσ
2
i

(
Di − Ci

S

)2
S2

i − 2σ2
i (µi − r)

(
Di − Ci

S

)
Ci

SSS
3
i

]
∆t2.(A7)

These expressions can be simplified considerably if we impose the restriction on the
allocations Di that the total linear market exposure of the hedge portfolio should vanish,

1
N

∑

i

(
Di − Ci

S

)
Siβi = 0. (A8)

This restriction can always be imposed, and is identically satisfied for the standard Black-
Scholes hedge. The alternative hedging strategy we propose in this paper also satisfies
this constraint. If only market risk is priced, i.e. µi = r + κ0βi for all i, with κ0 the price
of market risk, this condition ensures that the expected return on the hedge portfolio
(A6) vanishes up to order O(∆t2), or E[∆HB ] = O(∆t2), as stated in the theorem.
Furthermore, the variance of the hedge portfolio now reduces to

var[∆H] =
1
N2

∑

i

(
Di − Ci

S

)2
S2

i σ
2
i ∆t

+
1
2

[
1
N

∑

i

[(
Di − Ci

S

)
Si − Ci

SSS
2
i

]
β2

i

]2

∆t2

+
1
N2

∑

i

[
1
2
(
σ̃4

i − β4
i

)[(
Di − Ci

S

)
Si − Ci

SSS
2
i

]2

+ 2µiσ
2
i

(
Di − Ci

S

)2
S2

i − 2σ2
i (µi − r)

(
Di − Ci

S

)
Ci

SSS
3
i

]
∆t2.(A9)

One might be concerned about the positivity of this expression (and similarly (A7)), since
it does contain terms that are not a priori positive. These terms, however, combine with
the terms linear in ∆t into complete squares, up to terms of order O(∆t3).
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Proof of Theorem 3: First we show that the difference between the expected value of
the hedge error and its expected value conditional on the market process z0 can be made
arbitrary small. For any integer n, we can choose the allocations Di such that

E[∆H] = E[∆H|z0] + O(∆t
n+1

2 ). (A10)

where z0 is N (0, 1)-distributed and now denotes the realization of the market process.
In other words, we can choose the allocations Di such that the exposure to the common
stochastic factor is cancelled to this order. Moreover, it will turn out that both expecta-
tions vanish to this order in ∆t.

We make use of an expansion of the conditional expectation E[∆H|z0] in powers of
z0 and ∆t to derive this preliminary result. Focussing on these parameters z0 and ∆t, we
note that in the expansion of the hedging error each factor of z0 is always accompanied
by a factor ∆t1/2. In addition, higher powers of ∆t arise in the expansions, which means
that we can write

E[∆H|z0] =
∑

m, n ≥ 0
m + n > 0

h̃mn

(
z0 ∆t1/2

)m

∆tn/2

=
∑

`>0

∑̀

k=0

h`
kz

k
0∆t`/2. (A11)

The boundary conditions in the above expressions ensure that no constant (independent of
∆t) term appears. The expression on the second line is more convenient for our purposes,
and will be used in the remainder of this appendix. Using the fact that, for odd powers n
of zi, E[zn

i ] = 0, it follows that h`
k = 0 if `− k is odd.

Since our aim is to obtain allocations Di such that the exposure to the market stochas-
tic factor z0 in E[∆H|z0] cancels, we need the coefficients h`

k to vanish. We therefore focus
explicitly on the terms in h`

k proportional to the allocations Di. These terms are equal to

E
[
∆Si

Si

∣∣∣∣z0
]

= eβiz0∆t1/2+(µi− 1
2 β2

i )∆t − 1. (A12)

Expanding the above expression in terms of z0 and ∆t, and denoting the contribution to
h`

k of the cash and derivative component of the hedge portfolio by c`k, we obtain

h`
k =





1
N

N∑
i=1

1
m! k!D

iSi

(
µi − 1

2β
2
i

)m
βk

i − c`k if `− k is even, with m = `−k
2 ,

0 if `− k is odd,
(A13)

where c`k is of course independent of the allocations Di.
We can now choose the allocations Di such that all h`

k vanish for k > 0 and ` ≤ n,
with n given. If only market risk is priced, this amounts to a set of n linear constraints on
the Di. We show this by defining an operator K that vanishes when acting on E[∆H|z0].
It is given by

K =
∂

∂∆t
− z0 + 2κ0

√
∆t

2∆t
∂

∂z0
+

1
2∆t

∂2

∂z20
− r. (A14)

Note that K does not depend on idiosyncratic parameters (no index i is present). We
shall first establish that K indeed identically vanishes on the conditional expectation of
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the hedging error. From the expression for the conditional expected stock values given in
euquation (A12) we can infer immeditately that

KE[Si(t+ ∆t)|z0] = (µi − r − λβi) E[Si(t+ ∆t)|z0] = 0. (A15)

Similarly, we can show that K also vanishes when acting on the conditional expectation of
the option portfolio. Calculating the conditional expectation and acting with the operator
K commute, which implies that we can write (note that Si, Ci, Ci

S and Ci
SS are all

evaluated at time t+ ∆t)

KE[Ci|z0] = E[KCi|z0]

= E
[
Ci

t +
1
2
β2

i C
i
SSS

2
i + Ci

SSi

(
µi − κ0βi −

1
2
σ2

i +
1
2
σizi√

∆t

)
− rCi

∣∣∣∣ z0
]
.(A16)

Using the explicit form of the conditional expectations in terms of an integral over the
idiosyncratic probability density, we can directly establish that

E[Ci
SSizi|z0] = σi

√
∆tE[Ci

SSi + Ci
SSS

2
i |z0]. (A17)

Plugging this back in into the previous equation, and using the Black-Scholes equation,
yields

KE[Ci|z0] = (µi − r − κ0βi) E
[
Ci

SSi| z0
]
. (A18)

Finally, it follows immediately that K vanishes when operating on the cash component of
the hedge portfolio. As a result, we established that indeed

KE[∆H|z0] = 0 (A19)

if only market risk is priced.
Next we use the representation of E[∆H|z0] in terms of the expansion coefficients h`

k

as given in (A11), in order to derive the corresponding constraints on the coefficients h`
k.

Those h`
k that vanish identically as a result of (A19) do not impose any restrictions on the

allocations Di. We therefore rewrite (A19) as

∑

`>0

∑̀

k=0

[
1
2
(`− k)h`

k − rh`−2
k − κ0(k + 1)h`−1

k+1 +
1
2
(k + 1)(k + 2)h`

k+2

]
zk
0∆t`/2−1 = 0,

(A20)
where we defined h0

k, h−1
k , and h`

k with k > ` to vanish. As a consequence, each coefficient
as denoted by the square brackets has to vanish separately. Using these relations, if
follows that at each subsequent order in ∆t1/2, there is only one additional constraint,
corresponding to h`

`. This coefficient is clearly not constrained by the above formula.
Setting it to zero, in combination with setting all hk

k to zero for k < `, ensures that hm
k

vanishes for all m ≤ `.
These remaining constraints, corresponding to h`

` with ` ≤ n, can be satisfied by
choosing the allocations Di if the system of constraints is non singular, in other words, if
the matrix B with entries bi` = (βi)` (i = 1, . . . , N , ` = 1, . . . , n) has rank(B) ≥ n. This
is equivalent to the statement that out of the N securities we need at least n securities
with different βi, and βi 6= 0. This establishes the preliminary result in (A10).

Moreover, setting h`
` to zero for all l ≤ n implies that E[∆H|z0] is zero to order

O(∆t)n+1. In particular also the coefficients h2`
0 need to vanish as a result of (A20). The
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explicit form of the first few constraints that are not automatically satisfied is given by

h1
1 =

1
N

N∑

i=1

(Di − Ci
S)Siβi

h2
2 =

1
2N

N∑

i=1

[
(Di − Ci

S)Si − Ci
SSS

2
i

]
β2

i . (A21)

Clearly, these constraints correspond to the terms in (A7) that dominate in the large N
limit, at linear and quadratic order in ∆t respectively. In general, these constraints are

h`
` =

1
`!N

∑

i

[
DiSi −

∑̀

m=1

am
`

∂m Ci

∂Sm
i

Sm
i

]
β`

i , (A22)

where the coefficients am
` are recursively given by

a1` = 1,
am

` = mam
`−1 + am−1

`−1 for m = 2 . . . `− 1,
a`

` = 1,
(A23)

which will be useful for the numerical results in Section 3.
We next show that the variance of the conditional expectation vanishes up to higher

order terms in O(1/N), or

E[(∆H)2|z0] = E[∆H|z0]2 + O(1/N). (A24)

This can easily be established by writing

(∆H)2 =
1
N2

∑

ij

∆Hi∆Hj (A25)

and noticing the ∆Hi only depends on the stochastic realizations z0 and zi. Taking
expectations of all idiosyncratic processes zi, we obtain

E[∆Hi∆Hj |z0] = E[∆Hi|z0]E[∆Hj |z0] + δijf i(z0), (A26)

where f i(z0) is a (smooth) function of z0. Inserting this in (A25) proves (A24).
Finally we can combine the two results above to show that the variance of the uncon-

ditional expectation of the hedging error vanishes up to sufficiently high order in ∆t and
1/N . We find

E[(∆H)2] = E[E[(∆H)2|z0]]
= E[E[∆H|z0]2] + O(1/N)

= E[(E[∆H] + E[∆H|z0] − E[∆H])2] + O(1/N)
= E[∆H]2 + O(1/N) + O(∆tn+1), (A27)

where we substituted (A24) in the second equality, and used (A10) in the last equality.

We next state an analogous theorem for the case when also idiosyncratic risk is priced,
i.e. µi = r+κ0βi +κiσi. For large enough portfolio size (N), and sufficient heterogeneity,
now also in the expected returns (µi) as well as in exposures to the common market process
(βi), it is again possible to construct a riskless hedge portfolio. This portfolio gives rise to
(additional) arbitrage opportunities.
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Theorem 4 If both market and idiosyncratic risk are priced, we can choose the allocations
Di such that for any integer n the hedge error variance vanishes up to terms of order
O(∆tn+1) and terms of order O(1/N) if

N ≥ Nmin =

{
1
4n(n+ 2) if n is even,
1
4 (n+ 1)2 if n is odd,

(A28)

and rank(B) ≥ Nmin, where B is an Nmin ×N -matrix with elements bij,

bij =
(
µj −

1
2
β2

j

)m

βk
j , (A29)

with j = 1, . . . , N , i = 1, . . . , Nmin, ` = b
√
i− 3c, k = b2i− 1

2`
2c, and m = `−k

2 .

Proof of Theorem 4: This proof is mostly analogous to that of Theorem 3. The
difference is that, if idiosyncratic risk is also priced, it is no longer possible to construct
an operator similar to K that annihilates the conditional expectation of the hedging error.
As a result, we need a larger number (increasing quadratically with n) of securities Si in
order to satisfy equation (A10). More specifically, whereas in the previous theorem we
only had to cancel the nontrivial constraints corresponding to h`

` with ` ≤ n, we now need
to choose the allocations Di in order to cancel all h`

k with ` ≤ n and k > 0. Note that we
do not need h`

0 to vanish in order for (A10) to be valid.
The number of constraints can be found by straightforwardly counting the number

of nontrivial h`
k in (A13), leading to the minimal required number of securities to satisfy

these constraints being equal to

Nmin =

{
1
4n(n+ 2) if n is even,
1
4 (n+ 1)2 if n is odd.

(A30)

In order for this set of constraints to be non singular, we need in addition that the matrix
B with elements bij = (µi − 1

2β
2
i )mβk

i , with i = 1, . . . , N , j = 1, . . . , Nmin, ` = b
√
j − 3c,

k = b2j− 1
2`

2c, and m = `−k
2 , has rank(B) ≥ Nmin. This can be straightforwardly deduced

from (A13).
The remainder of the proof is identical to that of the previous theorem. Note that in

this case there is no constraint on the coefficients h2`
0 . Therefore the expected value of the

hedge return no longer needs to vanish, giving rise to arbitrage opportunities.

B Useful identities

The following expressions are used throughout the computations. They are given without
proof, but they can straightforwardly be derived from equation (1). The discrete time
analogue of this expression is

∆Si

Si
= e(βiz0+σizi)∆t1/2+(µi− 1

2 σ̃2
i )∆t − 1 (B31)

where the stochastic realizations z0, zi are independently N (0, 1) distributed. Taking
expectations of the product of powers of (B31) gives rise to

E

[(
∆Si

Si

)k (
∆Sj

Sj

)l
]

=
k∑

m=0

l∑

n=0

(−1)k+l+m+n

(
k

m

)(
l

n

)
exp

[(
m(µi −

1
2
σ̃2

i ) + n(µj −
1
2
σ̃2

j )
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+
1
2
(mβi + nβj)2 +

1
2
m2σ2

i +
1
2
n2σ2

j +mnσ2
i δij

)
∆t

]
. (B32)

Expanding the above expressions in powers of ∆t up to the relevant order for the
calculations in the proof of Theorem 2, gives rise to

E
[
∆Si

Si

]
= µi ∆t

E
[
∆Si

Si

∆Sj

Sj

]
=

[
βiβj + σ2

i δij
]
∆t

+
[
µiµj +

1
2
β2

i β
2
j + βiβj(µi + µj)

+
(1

2
(σ̃4

i − β4
i ) + 2µiσ

2
i

)
δij

]
∆t2

E

[
∆Si

Si

(
∆Sj

Sj

)2
]

=
[
µiσ̃

2
j + β2

i β
2
j + 2βiβj

(
µj + σ̃2

j

)

+
(
σ̃4

i − β4
i + 2σ2

i

(
µi + σ̃2

i

))
δij

]
∆t2
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for the expectation of products of powers of these processes.
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Figure 1: Variances
For a portfolio of N at-the-money calls, the left panel depicts the hedge error variances of
the standard delta hedge portfolio as well as the variances of the optimal hedge portfolio.
The right panel shows the ratio of these variance. In both panels these results are shown
as a function of the portfolio size N . The systematic risk exposures of the underlying
securities are given by βi/σm ∼ 1+0.3Φ−1((2i−1)/(2N)), Φ−1 the inverse standard normal
c.d.f., and i = 1, . . . , N . The idiosyncratic variance is set to σ2 = cσ2

m for c = 0.5, 1, 2, the
market variance to σm = 25%, the riskfree rate to r = 0, and the market risk premium
to κ0 = 20%. The options have a maturity of 3 months (T − t = 0.25) and the holding
period is one month (∆t = 1/12).
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Figure 2: Variances decomposition
For a portfolio of N at-the-money calls on different underlying values, this figure contains
the percentage of the hedge error variances due to systematic risk. It is defined via the
hedge error variance formula in Theorem 2 as A2/(A1 + A2 + A3). The percentage is
plotted as a function of the portfolio size N . Parameters are chosen as in Figure 1.
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Figure 3: Hedge portfolio stock holdings
This figure contains the optimal portfolio holdings Di as a function of the systematic risk
exposures βi for various portfolio sizes N . Parameters are chosen as in Figure 1. The
Dis are obtained by optimizing the expression for hedge error variance in Theorem 2,
which correct to order O(∆t2). For comparison, we also plot the standard hedge portfolio
holdings Di = Ci

S (standard).
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Figure 4: Conditional expected hedging error
The horizontal axis gives the realization of the systematic risk component z0. The vertical
axis gives the conditional (on z0) expectation of the hedge error ∆HB . The stock holdings
in the hedge portfolio are the ones presented in Figure 3 and are obtained by minimizing
the expression for the hedge error variance in Theorem 2.
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Figure 5: Hedge errors for asymptotic portfolios (N → ∞)
The horizontal axis gives the realization of the systematic risk component z0. The vertical
axis in the top panels gives the conditional (on z0) expectation of the hedge error ∆HB .
The stock holdings in the hedge portfolio are obtained by setting the hedge error variance
equal to zero up to the n-th order ∆t using the formulas in the proof of Theorem 3. Note
the different vertical scale between the top-left and top-right panel. The bottom panel
holds the log of the expectation of the squared conditionally expected hedge errors as
presented in the top panels.

27


	TI 2003-090/2
	
	Bas Peeters1,2

	Cees L. Dert1,3
	André Lucas1,4




