
VU Research Portal

Complex economic activities concentrate in large cities

Balland, Pierre Alexandre; Jara-Figueroa, Cristian; Petralia, Sergio G.; Steijn, Mathieu
P.A.; Rigby, David L.; Hidalgo, César A.

published in
Nature Human Behaviour
2020

DOI (link to publisher)
10.1038/s41562-019-0803-3

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Balland, P. A., Jara-Figueroa, C., Petralia, S. G., Steijn, M. P. A., Rigby, D. L., & Hidalgo, C. A. (2020). Complex
economic activities concentrate in large cities. Nature Human Behaviour, 4(3), 248-254.
https://doi.org/10.1038/s41562-019-0803-3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 20. Mar. 2024

https://doi.org/10.1038/s41562-019-0803-3
https://research.vu.nl/en/publications/70008d77-8078-4301-b808-a5dc35528f60
https://doi.org/10.1038/s41562-019-0803-3


Articles
https://doi.org/10.1038/s41562-019-0803-3

1Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, the Netherlands. 2Collective Learning Group, The MIT Media Lab, 
Massachusetts Institute of Technology, Cambridge, MA, USA. 3Department of Economic Geography, London School of Economics, London, UK. 4Vrije 
Universiteit Amsterdam, Amsterdam, the Netherlands. 5Department of Geography, University of California, Los Angeles, CA, USA. 6ANITI Chair, University 
of Toulouse, Toulouse, France. 7Manchester Institute of Innovation Research, Alliance Manchester Business School, Manchester, UK. 8Datawheel, 
Cambridge, MA, USA. *e-mail: balland@mit.edu

With a gross domestic product (GDP) of US$1.4 trillion, 
the New York metro area generates more wealth than 
Australia, Spain or Mexico. With 1.39 patents per 1,000 

people, the San Francisco Bay Area produced, in 2000, more than 
12% of all of the patenting activity of the United States. Economic 
activities are known to concentrate in space, and that concentration 
appears to be increasing. In 15 years, the Bay Area more than doubled 
its rate of invention, growing to nearly 20% of all patents produced 
in the United States in 2015. But what factors explain this unprec-
edented concentration of knowledge and wealth in large cities? And 
why has the spatial concentration of activities increased in a world 
dominated by digital communications and international travel?

One factor may be the growth of complex economic activities: 
activities requiring a deep division of knowledge and labour. As an 
example, consider the division of labour involved in producing a 
single research paper in immunology. Immunology contributions 
usually require collaborations among people with narrow and com-
plementary expertise. You may need experts in specific pathways 
and proteins, such as NF-κβ or Toll-like receptors, people experi-
enced in in vivo murine biology and people with experience in a 
variety of laboratory techniques, such as flow cytometry. Depending 
on the nature of the contribution, you may also need to include peo-
ple with clinical experience, which—once again—can be specific for 
each autoimmune disorder. This deep division of knowledge and 
labour is required in fields such as immunology or microbiology 
because it is not possible to accumulate all of that expertise in one 
or two people. In simple words, we can say that the complexity of 
this activity is large, not because each of the individuals involved is 
more skilled than people working in other activities, but because 
the activity requires a large network of people with deep expertise 
in complementary knowledge domains.

Our hypothesis is that complex industries, such as biotechnology 
and semiconductors, exhibit a much greater degree of spatial con-
centration than less complex industries, such as apparel and furni-
ture manufacturing. This could help explain the rise in importance 
of superstar cities1, and also contribute to our understanding of 
growing spatial inequality. In fact, as we show in this paper, the com-
plexity of activities can account for approximately 40% to 80% of the 
variance in urban concentration across occupations, industries, sci-
entific fields and technologies. This differs from literature in urban 
economics focused on the urban sorting of college graduates2,3, 
instead of the complexity of innovative and productive activities.

We can draw a link between urban concentration and the com-
plexity of economic activities by combining recent advances from 
development economics4–7 and urban scaling8–10. On the one hand, 
scholars working on economic development have created methods 
to measure the complexity of economies (for example, countries 
and cities) and that of the activities present in them (for example, 
products and patents)4,5. On the other hand, scholars working in 
urban concentration have shown that output scales superlinearly 
with a city’s population, which means that output per capita is larger 
in bigger cities8–10. This superlinear scaling is known to vary across 
activities11, although it is unclear why. Here, we bring these two bod-
ies of literature together by revealing that the urban concentration 
of activities increases with their complexity.

Why should we expect a link between complexity and spatial 
concentration? More complex activities require a deeper division of 
knowledge12, compelling individuals to narrow down their expertise 
and specialize13. This division of knowledge creates high coordina-
tion costs, since specialized knowledge needs to be reconstituted 
to be put to work. Cities help solve the coordination problems cre-
ated by the division of knowledge by creating multiple mixing and 
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matching opportunities10,14,15. In fact, economists have found that 
during the last decades college graduates have increasingly sorted 
themselves into high-wage, high-rent cities2,3. Cities are also home 
to a variety of knowledge spillover mechanisms16–20, such as labour 
flows21–23, spin-offs24 and dense social networks25. Moreover, cit-
ies are also the preferred location of multiple private and public 
institutions focused on accumulating complex knowledge, such as 
research universities and private laboratories26. Together, these mul-
tiple reinforcing channels provide the increasing returns expressed 
in the superlinear scaling of output across cities. We expect this 
superlinear scaling to be more pronounced for complex activities, 
since increasing returns are stronger in sectors that are more intense 
in knowledge than in labour or capital27.

In the following pages, we explore the link between complexity 
and spatial concentration by first measuring the urban scaling8,9 of 
papers, patents, scientific papers, occupation and industries, and 
then exploring whether differences in the observed scaling expo-
nents are explained by an activity’s level of complexity4,5. Our find-
ings show that complex activities concentrate more in large cities 
than less complex activities, and that the spatial concentration of 
complex activities has increased over time, contributing to our 
understanding of spatial inequality28 and of the spatial organization 
of the economy.

Results
Figure 1 shows the urban concentration of research papers (Fig. 1a),  
patents (Fig. 1b), occupations (Fig. 1c) and industries (Fig. 1d) in 
the United States. Peaks are respectively proportional to the num-
ber of patents, the number of research papers, GDP and the total 
employment of each metro area. In all four examples, we find activi-
ties to be highly concentrated, especially in large cities. Figure 1e–h  
characterizes this urban concentration by showing the scaling 
laws followed by patents, research papers, industries and occupa-
tions. Scaling laws in cities follow power-law relationships of the 
form y ≈ xβ, where x is the population of a city, y is a measure of 
output (patents, papers, GDP or jobs),and β is the scaling exponent. 
In the case of research papers (Fig. 1e), the number of papers pub-
lished by authors in a metro area grows as the β = 1.54 power of the 
population. For patents, the patents granted to a city scale super-
linearly with population with an exponent of β = 1.26. Similarly, 
total employment grows as the β = 1.04 power of the population in 
a metropolitan statistical area (MSA) and GDP scales as the β = 1.11 
power of population.

We repeat this exercise by studying the scaling laws followed by 
specific research areas, technologies, occupations and industries. 
Figure 1j compares the scaling laws followed by patents in ‘computer 
hardware and software’ and ‘pipes and joints’. Patents in ‘computer 
hardware and software’ concentrate more in large cities (β = 1.57) 
than patents in ‘pipes and joints’, which exhibit only a modest super-
linear scaling (β = 1.1). Similarly, we observe large variations in the 
scaling coefficients of intuitively more and less knowledge intense 
research areas (Fig. 1i), occupations (Fig. 1l) and industries (Fig. 1k).  
Figures including each category of patents, papers, industries and 
occupations are available in Supplementary Section 2.

In Fig. 2, we explore the relationship between the urban concen-
tration and the complexity of activities. For technologies, we proxy 
knowledge complexity using the age of the knowledge combined 
in patents, measured as the average year of appearance of the sub-
classes in which a patent makes a knowledge claim. Alternatively, 
we use the average number of inventors in a patent and the NK 
complexity measure of Fleming and Sorensen29 (see Supplementary 
Information). The year of appearance of a subclass assumes that 
patents recombining more recent knowledge are, on average, more 
complex30. For scientific fields, we proxy knowledge complexity as 
the average size of the team involved in a scientific publication31,32. 
For occupations and industries, knowledge complexity is proxied 

by the average years of education of the employees working in an 
occupation or industry. As we compare the spatial concentration 
of activities with their knowledge complexity, we avoid using mea-
sures of complexity that are derived from spatial information4. For 
more information about these definitions and robustness analyses, 
see Supplementary Section 3.

Figure 2a–d compares the urban concentration of activities with 
their respective scaling exponents. In all cases, we observe that the 
spatial concentration of activities increases with their complex-
ity. For scientific fields, it increases with the average number of 
authors in a paper (Pearson’s r = 0.72, P < 1 × 10−3), for technologies, 
it increases with the recency of the combined subclasses (Pearson’s 
r = 0.82, P < 1 × 10−3) and with the average number of inventors in 
a patent (r = 0.48, P < 1 × 10−2), for occupations, it increases with 
the average years of education of the workers within that occupa-
tional category (Pearson’s r = 0.62, P < 1 × 10−3), and for industries, 
it increases with the years of education of the workers employed in 
that industry (Pearson’s r = 0.70, P < 1 × 10−3). In all four cases, the 
more complex the activity, the more superlinearly it scales with pop-
ulation, meaning that more complex activities concentrate more in 
large cities. We confirm the statistical significance of this relation-
ship using regression analysis and a variety of alternative measures 
of spatial concentration and complexity (see Supplementary Section 
3). For instance, we find that more complex patents of the same age 
still concentrate more in cities. In the Supplementary Information, 
we set up a model predicting the number of patents produced in 
a city in a technology as a function of a city’s population, the NK 
complexity and recency of a technology, and an interaction term 
between a city’s population and each measure of complexity (see 
Supplementary Information), finding that both measures of com-
plexity are mutually significant.

Next, we examine historical patent data, spanning 150 years, 
to investigate whether the spatial concentration of activities has 
increased over time.

Figure 3a shows the scaling exponent observed for the top 25% 
most complex patents—those that recombine newer knowledge—
granted each decade between 1850 and 2010 (red line). The figure 
reveals that the urban concentration of the most complex technolo-
gies has increased continuously for the past 150 years, accelerating 
with each industrial revolution. Starting with the second indus-
trial revolution (1870), the urban scaling of complex technologies 
becomes increasingly superlinear, growing from a scaling exponent 
of β ≈ 1.15 in 1870 to β ≈ 1.55 by the 1930s. The urban concentra-
tion of the most complex patents then plateaus, increasing again 
after the third industrial revolution (1970s) and reaching a scaling 
exponent of almost 1.8 in 2010. The least complex patents (blue 
line) have always been less geographically concentrated than the 
most complex patents. After the 1970s, their urban concentration 
started to decrease, with the scaling exponent falling to less than 1.2. 
The information technology revolution has therefore been followed 
by an increasing concentration of the most complex technologies 
in cities, and a decreasing urban concentration of the least complex 
ones. Robustness analyses can be found in Supplementary Section 4.

We note that these results cannot be due to cities growing faster 
than rural areas, since cities becoming more populated relatively to 
rural areas would reduce the spatial concentration of the activities 
present in them (the β exponent). For the growth of urban areas 
to drive up the concentration of an activity, urban areas would  
need to generate employment in those activities faster than popula-
tion growth.

We further our exploration of the evolution of the spatial con-
centration of patents by separating patents into the six main tech-
nological categories defined by the National Bureau of Economic 
Research: ‘mechanical’, ‘chemical’, ‘electrical and electronic’, ‘comput-
ers and communication’, ‘drugs and medical’ and ‘others’. Figure 3b  
shows the scaling exponent observed for each of these technological 
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categories by decade between 1850 and 2010. ‘Mechanical’ and ‘oth-
ers’ are the technologies that exhibit the highest scaling in the mid-
nineteenth century, meaning that they were the most concentrated 

in large cities, with ‘others’ mostly composed of patents related to 
textiles during this period. However, the scaling exponent of these 
categories does not grow substantially during the following decades, 
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meaning that most of the rise in scaling observed after 1870 for all 
patents (Fig. 3a) can be attributed to an increase in the urban con-
centration of ‘electrical and electronic’ patents. Starting in 1950, 
‘computers and communications’ and ‘drugs and medical’ become 
increasingly more concentrated, reaching the highest scaling expo-
nents observed for all categories. Together, these results show that 
the urban concentration of patenting activity exhibits a long-term 
cycle, rising during the heyday of the technologies developed, and 
then declining as technologies mature.

Discussion
The core idea of this paper is that differences in the complexity of 
activities explain variations in the degree to which they agglomerate. 
We show this correlation to be true for the production of scientific 
papers and patents, for employment in multiple occupations, and 
for the output of industries. We argue that complex activities tend 
to be more concentrated in large urban areas because they require 
a deep division of knowledge that is distributed across many actors. 
This also suggests that much of the knowledge needed to perform 
complex activities—which may be tacit33,34—is subject to spillover 
mechanisms that are local, by virtue of being embodied in social 
networks6, or because they flow together with labour21,22, come from 
spin-offs24 or require supporting local institutions, such as universi-
ties and private research centres26. Complex knowledge, therefore, 
does not travel well through digital communication channels and 
requires the richness of cities to be properly accumulated.

However, the dynamics of urban agglomeration are not static. 
When we look at the history of patenting activity in the US, we 
find that the concentration of patenting activity in urban areas has 
increased during most of the last century and a half, especially for 
more complex activities. During the third industrial revolution the 
concentration of the most complex and the least complex activities 
diverged. This could explain why the world has become flatter for 
some activities35 and more spiky for others36, and could be a reflec-
tion of an increase in the relative employment of more complex eco-
nomic activities.

The idea that complex economic activities concentrate more in 
a few large cities poses a range of questions for planners and poli-
cymakers. It tells us that countries need to rethink their urbaniza-
tion and transportation strategies. The economy of the future may 
well be dominated by those countries that succeed at developing 
the industrial policies20,37–41 and megacities required to accumulate 
and process vast amounts of knowledge. Some countries in the East, 
especially China, have been successful at developing large mega-
lopolises, such as the Yangtze River Delta Megalopolis (150 million 
people, including cities such as Shanghai, Nanjing and Hangzhou) 
or the Pearl River Delta Megalopolis (70 million people, including 
Hong Kong, Shenzhen and Guangdong). These megalopolises have 
been made possible by investments in transportation and housing 
that dwarf the efforts of the West. Of course, this does not mean 
that the West should copy the modernist efforts of China verbatim. 
However, it does suggest the need to think about the transportation,  
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housing and densification strategies that the West will need to 
develop to remain competitive in the high complexity activities of 
the future.

Of course, our study has limitations that need to be taken into 
consideration. The descriptive nature of our analysis does not pro-
vide a clear indication of the mechanisms connecting complex-
ity and spatial concentration, or the causes leading to increases in 
both. For instance, a city’s location within the global network of 
knowledge flows may provide an advantage to its ability of gener-
ate employment in complex activities. Furthermore, because we 
mostly use cross-sectional data, we cannot look at the dynamics of 
these relationships beyond the case of patenting activity. Moreover, 
United States Patent and Trademark Office (USPTO) classifica-
tion recency is not a perfect measure of technological complexity, 
although it is correlated with other measures of technological com-
plexity, such as NK and the average number of inventors in a patent.

If knowledge complexity and agglomeration cannot be divorced, 
the spatial inequality observed among large and small cities is likely 
to increase. Policymakers must recognize that the mechanisms gen-
erating growth and innovation may be the same as those that are 
contributing to the growth of inequality, both within and between 
cities. We face critical questions regarding the future of economic 
growth and the distribution of the returns and costs of economic 
activity within a world of growing unevenness28 across multiple spa-
tial scales.

Methods
We analyse the urban concentration of economic activities in the United States. We 
interchangeably refer to cities, metropolitan areas and urban areas. For the analysis, 
the spatial delimitation of these urban areas corresponds to the core-based  

statistical areas (CBSAs) defined by the United States Office of Management 
and Budget. CBSAs are statistical units, not administrative units. They are 
county aggregates, and refer to an urban area that includes a central city and the 
surrounding communities that are economically linked to this city (commuting 
patterns and shared labour market). Figures 1 and 2 report findings based on 
cities for which we have data on all four economic activities (patents, scientific 
publications, industries and occupations); that is, 353 MSAs. For Fig. 3, we analyse 
only historical patent data and are able to analyse patenting activity in all CBSAs 
(metropolitan and micropolitan statistical areas; that is, 923 observations). In the 
Supplementary Information, we present these three figures using alternative sets 
of cities. We use population data from the US Census (population in year 2000 for 
scientific publications and patents, estimated population in year 2015 for industries 
and occupations; for historical patents we use US Census population for each 
corresponding decade from 1850 to 2010). In the Supplementary Information, we 
also check the robustness of our results for occupations and industries using data 
for Brazilian cities (mesoregions).

We use patent data sourced from the USPTO, which provides inventor 
addresses for patents granted from 1975 onwards. For historical patents (1850–1974),  
we use HistPat. HistPat was built using optically recognized and publicly available 
documents from the USPTO, combining text-mining algorithms with statistical 
models to provide geographical information for older patents42. We disaggregate 
patents into 30 technologies as defined by the National Bureau of Economic 
Research (two-digit subcategories)43. For the 1975–2010 period, we use the Patent 
Network Dataverse. In total, we analyse 8,731,024 patents from 1850 to 2010. In 
the main text, we consider only technologies for which there are more than 200 
cities with any recorded activity and we remove categories that are based on natural 
advantages: ‘agriculture, husbandry, food’, ‘agriculture, food, textiles’ and ‘earth 
working and wells’. In the Supplementary Information, we also present results 
including these additional categories.

For scientific papers, we use publication data from Elsevier’s Scopus database 
covering the time period 1996–200844,45. Publications are disaggregated into 23 
scientific disciplines as defined by the Scopus classification (two-digit major 
thematic categories). These data have kindly been provided by Ö. Nomaler, K. 
Frenken and G. Heimeriks. We analyse a total of 4,4000,000 scientific publications. 
The data include documents that have at least one author who has (at least) one 
affiliation to a US scientific organization. In the main text, we consider only 
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scientific fields for which there are more than 200 cities with any recorded activity 
and we remove categories that are based on natural advantages: ‘agricultural and 
biological sciences’, ‘environmental science’, ‘Earth and planetary sciences’ and 
‘veterinary’. In the Supplementary Information, we also present results including 
these categories.

For industries, we use 2015 GDP data from the Bureau of Economic Analysis 
to quantify the economic output of MSAs in 18 industries as defined by the North 
American Industry Classification System (two-digit NAICS). In the main text, 
we consider only industries for which there are more than 200 cities with any 
recorded activity and we remove categories that are based on natural advantages: 
‘agriculture, forestry, fishing, and hunting’ and ‘utilities’. In the Supplementary 
Information, we also present results including these categories.

For occupations, we use 2015 employment statistics from the Bureau of 
Labor Statistics disaggregated into 22 occupations according to the Standard 
Occupational Classification system (two-digit SOC). For occupations, we use 
2015 employment statistics from the Bureau of Labor Statistics. In the main text, 
we consider only occupations for which there are more than 200 cities with any 
recorded activity and we remove categories that are based on natural advantages: 
‘farming, fishing, and forestry’. In the Supplementary Information, we also present 
results including this category. See Supplementary Section 1 for descriptive 
statistics on these data (Supplementary Figs. 1–4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.

Code availability
The code that supports the findings of this study is available from the 
corresponding author upon request.
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