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A B S T R A C T

The evidential value of a unique DNA database match has been extensively discussed. In principle the matter has
been mathematically resolved, since the posterior odds on the match being with the trace donor are un-
ambiguously defined. There are multiple ways to express these odds as a product of likelihood ratio and prior
odds, and so the mathematics do not immediately tell us what to do in concrete cases, in particular which
likelihood ratio to choose for reporting. With p the random match probability for the matching person, if in-
nocent, and n the database size, both 1/p, originating from a suspect-centered framework, and 1/(np), origi-
nating from a database-centered framework, arise as likelihood ratio. Both have been defended and both have
been criticized in the literature.

We will clarify the situation by not introducing models and choices of prior probabilities until they are
needed. This allows to derive the posterior odds in their most general form, which applies whenever we know
that a single person among a list is not excluded as potential trace donor. We show that we need only three
probabilities, that pertain to the observed match, to the database, and to the matching person respectively.

How these required probabilities behave in a given context, then, differs from one situation to another. This is
understandable since database searches may be done under various circumstances. They may be carried out with
or without a suspect already in mind and, depending on the operational procedures, one may or may not be
informed about the personal details of the person who gives the match. We show how to evaluate the required
probabilities in all such cases.

We will motivate why we believe that for some database searches, the 1/p likelihood ratio is more natural,
whereas for others, 1/(np) seems the more sensible choice. This is not motivated by the mathematics: mathe-
matically, the approaches are equivalent. It is motivated by considering which model best reflects the actual
situation, taking into account what question was asked to begin with, and by the practical consideration of
judging which likelihood ratio comes closer to the posterior odds based on the information available in the case.

This article is intended to be both a research and a review article, and we end with an in-depth discussion of
various arguments that have been brought forward in favor or against either 1/p or 1/(np).

1. Introduction, history, and context

The evidential value of a unique match in a database search has
been a source of considerable debate that reached its peak around 15
years ago [1–8]. The controversy circled around the question whether
or not a unique match of a trace profile constitutes weaker or stronger
evidence compared to the so called probable cause scenario in which
only one suspect is typed and found to match. When we compare a
database search to a probable cause scenario, there are two opposite
effects: on the one hand the database search could give rise to coin-
cidental matches, but on the other hand the search result excludes a
number of potential candidates as donor of the crime trace. So on the

one hand, it could be felt that some correction ought to be put in place
to account for the fact that many comparisons are done, but on the
other hand, it can also be argued that the database result gives more
evidence against the matching individual than if he had been the only
person that was compared. The fact that other persons can no longer be
the source of the trace is also to some extent evidence against the
matching suspect.

Initially, a report of the National Research Council [1] advised to
circumvent this (perceived) problem by simply not taking the match
into account as evidence in court, but to only use it to be able to define
the matching individual to be a suspect, thereby getting back into the
probable cause case. Additional DNA testing would then supply

https://doi.org/10.1016/j.fsigen.2019.102229
Received 2 September 2019; Received in revised form 18 December 2019; Accepted 18 December 2019

⁎ Corresponding author at: Netherlands Forensic Institute, The Netherlands
E-mail address: k.slooten@nfi.minvenj.nl (K. Slooten).

Forensic Science International: Genetics 46 (2020) 102229

Available online 31 December 2019
1872-4973/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18724973
https://www.elsevier.com/locate/fsigen
https://doi.org/10.1016/j.fsigen.2019.102229
https://doi.org/10.1016/j.fsigen.2019.102229
mailto:k.slooten@nfi.minvenj.nl
https://doi.org/10.1016/j.fsigen.2019.102229
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2019.102229&domain=pdf


evidence that can be subjected to a probabilistic assessment yielding a
statistic (random match probability or likelihood ratio) to be used in
court.

Clearly, this is not an optimal solution. For one thing, it could very
well be the case that the same single match would also have been ob-
tained if fewer loci had been used in the search. Therefore, exactly
which loci can be used as evidence depends on the database search
settings, even if all data are precisely the same. From a practical point
of view, in some cases it means that no DNA evidence can be used, for
example if there is no trace material left to analyze for further DNA
typing.

Several publications subsequently appeared concerning the issue of
database matches. In [9] the use of likelihood ratios was advocated
because of their optimality in (frequentist) decision making, but a
Bonferroni correction was proposed for the match probability. This
correction, proposed to be 1 − (1 − p)n, gives the probability of having
at least one match by chance in the database, and is equal to about np
for np≪ 1.

Other authors, using likelihood ratios as well but subsequently ap-
plying Bayes rule to obtain probabilistic assessments on hypotheses
concerned with the guilt or innocence of the suspect, claimed that a
database search strengthens the DNA evidence against the suspect. For
example, [10] argues against the hypothesis testing framework for the
evaluation of DNA evidence in general, and for database searches note
that “In a wide range of settings, the DNA evidence is slightly stronger
when it is obtained after a search”, noting that the intuition behind that
result is the fact that the search, contrary to a probable cause case,
excludes other individuals as trace donors. In [6] this point of view is
further elaborated.

In 1996, a second report of the National Research Council in the
United States [2] appeared, which aligned with the frequentist intui-
tion. The report stated that “If the only reason that the person becomes
a suspect is that his DNA profile turned up in a database, the calcula-
tions must be modified”, where the calculation that was referred to is
the calculation of the random match probability, or of the likelihood
ratio equal to its inverse. It was recommended (Recommendation 5.1)
to multiply the random match probability with the number n of persons
in the database “to describe the impact of the DNA evidence under the
hypothesis that the source of the evidence sample is someone in the
database”. Even though the hypothesis that someone in the database
left the trace is explicitly mentioned, it is not immediately clear to us
from the phrasing of the report whether the number 1/(np) was in-
tended to play a role in a Bayesian analysis, or rather was intended as a
frequentist instrument to correct for the number of hypotheses tested,
such as the Bonferroni correction. The report also mentioned that this
correction was proposed as suitable for databases that contain only a
small fraction of the whole population and that, if this were not the
case, a more complicated analysis would be required without going into
the details of what such an analysis should then be like.

This recommendation was criticized by many, because it goes
against the Bayesian analysis that had previously been provided. To
strengthen those arguments, absurd conclusions were derived assuming
the evidence weakens in larger databases. One of the arguments put
forward indeed was that if the database grows to the full population,
clearly a unique match must identify the trace donor with certainty,
whilst the evidential value as per NRC-II (ignoring that the report had
stated the correction to be applicable only for relatively small data-
bases) has the opposite effect because of the division by n.

In 1999, the NRC-II recommendation gained some statistical sup-
port when Stockmarr [4] provided a rationale for the evidential value of
1/(np). He showed that this number can be obtained as the likelihood
ratio of a unique match when considering the hypotheses that the donor
of the trace profile is in the database versus its negation.

Now that both 1/p and 1/(np) both can appear as likelihood ratio, a
controversy was born: which one is considered to be applicable? It was
rapidly argued by various authors [3,7] that the choice of the

hypotheses, and hence of the ensuing likelihood ratio was mathemati-
cally unimportant in the sense that they lead to the same posterior odds.
This last fact is understandable, since after finding a unique match, the
hypothesis that the matching person is the trace donor is equivalent
with the hypothesis that the donor is in the database. However, even if
the choice of hypotheses is mathematically unimportant, it is another
issue which likelihood ratio a forensic laboratory should report. Various
authors have argued that only the hypotheses against the identified
suspect are admissible. For example, in [3] it is argued that “Stockmarr
makes a fundamental logical error when he suggests that the court can
replace these hypotheses by Hp and Hd [hypotheses on the database
containing the trace donor] and still use the resulting likelihood ratio as
if it were directly relevant to the case against Smith [the identified
suspect].” Similar arguments were used in [11,12] and more recently in
[13].

In many jurisdictions a forensic laboratory has the task to assess the
strength of evidence, and to communicate this to the investigating au-
thorities or to fact finders such as judges or juries. It is our impression
that a likelihood ratio of 1/p is usually chosen. However, the German
Stain Commission issued a recommendation in favor or reporting a
likelihood ratio of 1/(np) in [14].

Meanwhile, the forensic databases have grown considerably, and
millions of comparisons are routinely made with crime stain profiles.
The difference between 1/p and 1/(np) can therefore be, depending on
p, of significant importance for the subsequent process or trial. It is well
known that likelihood ratios are often erroneously interpreted as odds
on the hypotheses, a mistake known as the prosecutor's fallacy, and the
implications of such a fallacy also depend on whether 1/p or 1/(np) is
presented as likelihood ratio. It is therefore perhaps not a surprise that
the debate is still ongoing. In fact not only the debate is still ongoing,
but also more generally there is discussion as to which are the relevant
probabilities that influence the evidential value or the prior/posterior
odds on the hypotheses.

Recently there has been renewed attention to the evidential value of
unique database matches. In [13] the authors claim to derive “the”
likelihood ratio for unique database matches in a new way, and in [15]
it is argued that the size of the offender population can be estimated
and should play a role in computing posterior odds for a unique data-
base match. Both the implied unambiguity of the likelihood ratio in
[13] and the claimed direct relevance of the size of the offender po-
pulation in [15] are, we believe, incorrect.

These misunderstandings persist for several reasons. One reason is
that, depending on the specifics of the search, one's intuition leans more
toward 1/p as most natural value for the evidential value or more to-
wards 1/(np). Both values can be perceived as being natural. Second, in
the literature most (if not all) explicit calculations have been made
assuming some ad hoc model for the population and typically uniform
prior distributions for the trace donor in the population and for the
database as a subset from the population. Moreover, the match prob-
ability p is usually taken to be the same for all persons in the database,
whereas in reality this does not have to be the case since there is often
more genetic information for some database members than for others.
The uniform prior has some appeal in the sense that it facilitates
computations, but it often is not realistic and care must be taken not to
take conclusions for the uniform prior case as conclusions for the
general case.

We will show that in this particular situation the general case is
actually the simplest one, and treating it in full generality makes it clear
where the aforementioned problems appear and also how they can be
approached. In the current paper, therefore, we first present a sur-
prisingly simple formula for the posterior odds upon a unique match
which is valid in all circumstances, irrespective of the question whether
or not the suspect became suspect as a result of the match, or whether
there was already interest in him or her. Although in most papers on
this subject uniform prior odds are assumed, we deviate from this habit
for the reasons given above. With our general formula, it becomes clear
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exactly which quantities are important for the calculation of posterior
odds and likelihood ratios, and which are not.

The title of this article refers to the controversy around using either
likelihood ratio 1/p or 1/(np) in database unique hits (and of course
also to a much harder problem, suitably with capital letters1). We will
show that sometimes, but not always, either number can be used, if
properly understood, but that what we believe is the most natural
choice may depend on the circumstances and on the question that was
originally asked to the forensic laboratory.

We have set up the paper as a hybrid between an overview paper
and a research paper. We aim both to give a full account of the main
arguments brought forward in the database discussion, as well as to
move the debate forward by presenting a treatment that is as general as
possible, and apply that general framework to resolve all controversies.

In the next section we derive and discuss the basic formula. After
that, we apply it to various special cases in Section 3, namely to the so
called cold case situation, the targeted search situation, and the prob-
able cause case. In Section 4 we discuss the various likelihood ratios
that may be most appropriate to report. Which likelihood ratio is to be
reported depends on the precise circumstances, and we will give a
number of examples. In Section 5 we investigate the situation in which
we receive less information than the full identity of the unique match.
In Section 6 we treat a number of arguments that have been put forward
in the course of the controversy, especially those where people claim
that the 1/p or 1/(np) likelihood ratio would be wrong. We will see that
the claims that have been made do not always hold up, and point out
where they go wrong. We end with some conclusions in Section 7.

2. The likelihood ratio for a single non-exclusion

We start by considering the most general situation, because this will
allow us to derive all further results as special cases, and because we
believe it already sheds a lot of light on the problem. Consider a po-
pulation of individuals, and a DNA database = …d d{ , , }n1 of n DNA
profiles of members of . The database is typically not homogeneous,
in the sense that different loci may be typed for the different di: the
amount of genetic information in di varies. The reason for this is that
historically the DNA typing technology has advanced to give genetic
information on more and more loci. Therefore, older profiles typed with
previous technology may have data on fewer loci. Moreover, when DNA
profiling is done sometimes not all loci are successfully typed, so that
for some profiles data on a few loci are missing.

Now suppose we have a DNA profile gC of an unknown person
C . The C stands for Criminal, and we can, if we want, think of gC as
a profile found at the scene of a crime. We are going to consider the case
where some specific di is the only profile in that is not proven to be
different from (and in that sense, matches with) gC. In particular we are
interested in the evidential value of such a unique match. The profiles
gC and di are said to match if they are the same on all common loci that
are typed for both profiles. In order to evaluate this evidential value, we
need the probability of such a match to happen by chance. For person i
this is the probability that a randomly chosen person matches with gC
on all common loci of di and gC. This probability is called the random
match probability (RMP) of person i. The fact that is not homogeneous
implies that the match probabilities of the persons in are not all the
same. Indeed, the RMP for person i depends on the trace profile gC and
on the set of loci typed for di.

We denote by pi the RMP of person i, noting that pi depends on both
di (since this tells us the loci for person i) and gC (since this tells us the
loci of C's profile, as well as the profile we need to have a match with).
The administrator of the database may have full knowledge about the
profiles and, therefore, also about all random match probabilities. We
put ourselves in the position of the investigating authorities, who do not

have that knowledge.
The investigating authorities ask the database administrator whe-

ther or not the profile gC has a match in . We (the investigating au-
thorities) are interested in the situation in which it is reported to us that
there is a unique match with an identified person i0 in the database, an
event denoted by Ei0. How does the occurrence of Ei0 affect the prob-
ability that C= i0?

One might perhaps think that in order to answer this question, we
need a lot of additional modeling. After all, we are not aware of the
nature of the comparisons with dj for j≠ i0, i.e., we have no knowledge
about the random match probabilities of the members of i{ }0 .
However, it suffices to have a prior probability P(C= i0), to know the
random match probability pi0 of individual i0, and to have assessed the
probability P C( ) that the database contains C, since the posterior
odds of C= i0 versus C≠ i0 are given by

=
= =P C i E

P C i E p
P C i
P C

( )
( )

1 ( )
( )

.i

i i

0

0

00

0 0 (2.1)

We will prove this formula in Appendix A, where we also further detail
the mathematical model.

It is customary to denote the matching individual by S, standing for
Suspect, since providing a match with gC of course usually leads to
suspicion of being C. Once the unique match is there and the index i0 of
the matching person is revealed, S is defined, and we can speak about
the (prior) probability P(S= C) that the uniquely matching person is C.
We denote by ES the event that there is a unique match with the so
found S. Hence we can rewrite (2.1) as

= = =P C S E
P C S E p

P C S
P C

( )
( )

1 ( )
( )

,S

S S (2.2)

and it is this form which we typically use. Note that a version of this
formula already appeared in [3], in a more specialized situation.

Upon a unique match with an identified person S, the quantities P
(C= S), P C( ) and pS can be defined, and the right hand side of
(2.2) can be computed. The first two probabilities are prior prob-
abilities of C being either S or not belonging to , and with the prior of
C in hand these can be computed. The quantity pS is just the random
match probability of the found S, as explained above.

Before we continue, we take a moment to reflect on the three
probabilities that determine the posterior odds on C= S. First of all, we
need the random match probability pS of S. This makes perfect sense: if
the probability that S would be indistinguishable from C if S and C were
different persons becomes smaller, the probability that C= S becomes
larger, all other circumstances being equal. We also observe that the
only random match probability of relevance is the one with S. How
likely it was beforehand that other members of would be excluded is
not important anymore, once S is the only non-excluded individual. We
only need to know that all others are excluded, nothing else. Our no-
tation, allowing for varying random match probabilities, makes this
explicit, and the fact is easy to miss if we would assume that all random
match probabilities would be the same.

Second, we need the prior probability that C , and this also
makes sense. Indeed, the better the database is suited for our purpose,
the larger the probability that if we find a single match, it is with the
right person, all other circumstances being equal. Finally, we need the
prior probability that C= S, and this is understandable as well: the
stronger the case against S without the database result, the stronger the
case will be with the database result, again of course assuming all other
circumstance being equal.

We next draw attention to the fact that (2.2) is a completely general
expression, applying whenever there is just a single person in the da-
tabase who cannot be excluded as trace donor. In particular it is valid
for database searches without having a prior specific suspicion against
any database member, or for a search where there is already interest in
the matching individual beforehand, or for a probable cause case where1 https://en.wikipedia.org/wiki/P_versus_NP_problem.
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there is no one tested except S, which simply means that = S{ }. The
estimation or assignment of the relevant three probabilities on the right
hand side in (2.2) depends on the further context and will be different
for each of the three scenarios that we just mentioned.

We stress the fact that some quantities that could perhaps be
thought to be relevant for the posterior odds on C= S do not explicitly
enter into (2.2), such as the size of the (general or offender population)
or the size of the database. These quantities will therefore only be in-
teresting for us if we employ a model in which they are needed to es-
timate any of the probabilities in the right hand side of (2.2), and in any
case they are only of indirect relevance. Once the probabilities in (2.2)
are known, the posterior odds are known as well, so in a different
(offender) population with the same pS, P(C= S) and P C( ), they
would be the same even if itself were different.

The posterior odds in (2.2) are not in the form of a likelihood ratio
times prior odds for a hypothesis versus its negation, but in several
ways we can rewrite it as such a product. First of all we may write

= = = = =P C S E
P C S E p

P C S
P C

P C S
P C S p P C C S

P C S
P C S

( )
( )

1 ( )
( )

( )
( )

1 1
( )

( )
( )

.S

S S S

(2.3)

Hence the likelihood ratio corresponding to C= S versus C≠ S is given
by

p P C C S
1 1

( )
,

S (2.4)

which is at least equal to 1/pS.
On the other hand, when we condition on ES, the hypotheses C

and S= C are equivalent. Hence = =P C E P C S E( ) ( )S S and we
therefore also have

= = = =P C E
P C E p

P C S
P C

P C
P C p

P C S C P C
P C

( )
( )

1 ( )
( )

( )
( )

1 ( ) ( )
( )

.S

S S S

(2.5)

Hence the likelihood ratio of C versus C is equal to

=
p

P C S C1 ( ),
S (2.6)

and this quantity is at most 1/pS.
In both formulations, we see that the likelihood ratio reduces to just

1/pS in case = S{ }, which corresponds to the classical ‘probable
cause’ situation in which only the profile of a suspect S is compared
with that of C. The hypotheses C= S and C are then equivalent. In
case of a uniform prior of C on , (2.6) reduces to 1/(npS), that is, we
retrieve Stockmarr's (cf. [4]) expression.

3. Evaluation of the probabilities in particular cases

From now on we assume that the identity of S is known, so that (2.2)
is our basic expression, valid in all circumstances where only a single
individual S in a set turns out not to be excluded as candidate for
being C. For the formal derivation of this result, it was irrelevant how
large the database is, whether or not there was a suspicion against S,
why the search was conducted, or in which order evidence has been
gathered.

None of these additional aspects are needed to derive (2.2) and
therefore they will not change (2.2) algebraically. But in order to assess
the required probabilities, of course different situations can lead to
different numerical evaluations of these relevant probabilities, and
therefore also to different posterior odds.

To illustrate this, we next treat some special cases in more detail.
For database searches, we distinguish between various different sce-
narios. In the first one we assume the search is carried out without any
other relevant information about C other than the obtained profile, that
is, there is no additional evidence against any database member. We
call this a cold case search. After the search we are informed that there is

a match with a profile in the database, with or without knowing the
identity (i.e., the index i0) of the donor of the matching profile.

A second type of search, which we call a targeted search, arises if a
suspect S has been identified and that suspect happens to already be in
the database, say S= i. We then carry out the search to confirm this
suspicion. In that case, a single match with another person would have
surprised us much more than if we indeed obtain Ei, a single match with
the already identified suspect.

The classical probable cause situation is the one where the identified
suspect S is the only person whose profile is compared to that of C.
Mathematically, this corresponds to a targeted database search in a
database consisting only of S.

3.1. Cold case search

First, we assume that we have carried out a cold case search,
meaning that we have done the database search because the identity of
C is unknown and we believe that C might be one of the members of .
In this case, defining a prior P(C= S) from scratch seems hard and
therefore (2.3) is hard to evaluate directly. However, if we take the
route (2.5) then within things are easier: without any further in-
formation about the individuals in the database, the only option is to
choose = =P C S C n( ) 1/ . Therefore (2.5) becomes

= = =P C S E
P C S E

P C E
P C E np

P C
P C

( )
( )

( )
( )

1 ( )
( )

.S

S

S

S S

It remains to provide a numerical assessment of P C( ). One way
to do so is to let P C( ) be equal to the proportion of traces that have
been previously searched with and have given rise to a match in the
database. In doing so, one implicitly assumes that all previous matches
were with the true donor of the trace, and that the traces that were
searched with in the past form a sufficiently representative sample to be
useful for an estimate of P C( ). This assumption is not entirely
unproblematic. If we take the type of crime into account, the estimate
for P C( ) may change depending on whether the case is, for ex-
ample, a burglary case, a homicide or a sexual assault case.
Furthermore, one may argue that the trace donor C need not be the
actual offender. This, however, is also be possible for previous searches;
the probability P C( ) therefore applies to C as trace donor and not
to C as offender. For an in-depth discussion on these issues we refer to
[16].

Bearing these cautions in mind, it is not uncommon for databases to
be sufficiently large as to have odds P C P C( )/ ( ) that are
within one order of magnitude of being even. If that is the case, the
posterior odds are of the same order of magnitude as the likelihood
ratio, and we can then say that the odds on the match being with the
trace donor are within one order of magnitude of 1/(npS). If, for ex-
ample, = =P C P C( ) ( ) 0.5, n= 106 and pS = 10−9, the odds
are 1000:1 that the match is with the actual trace donor. Of course,
when the specifics of the crime and of the uncovered suspect are
brought into consideration, these odds will need to be further updated.
If, for example, it turns out the match is with a person yet to be born
when the crime was committed, they will be reduced to zero. But this
cannot happen very often, since there will be a thousand true matches
for every coincidental one for these n and pS.

In case the match is indeed with the trace donor, and the trace
donor is the actual offender, further evidence can potentially be un-
covered which will raise the odds from 1000:1 to a larger number.
When further non-genetic evidence I is found and taken into account,
the result (2.2) still applies, but all probabilities need to be conditioned
on I. This has no effect on the match probability pS but now P
(C= S ∣ I) > P(C= S). For , since additional evidence against one of
its members S has been found, the probability that contains C cannot
decrease and hence we have P C I P C( ) ( ). Putting this to-
gether we see that the posterior odds on C= S increase, reflecting the

R.W.J. Meester and K. Slooten Forensic Science International: Genetics 46 (2020) 102229

4



strengthening of the case against S due to the new evidence I.

3.2. Targeted search

The preceding discussion brings us naturally to the targeted search
case. In this case, evidence against S is found before the database search
is done. Since there is no temporal order for probabilities, we must
arrive at the same posterior odds regardless of whether S is identified
via the database cold case search and further evidence is subsequently
found, or when this happens in the reverse order. If we take into ac-
count the additional evidence before we process the evidence ES, we
will no longer have = =P C S C n( ) 1/ , but a much larger value,
approaching =P C S C( ) 1 as more and more evidence against S
is uncovered. In that case, S was – before the database search – pretty
much the only plausible candidate for C, which in turn means that

=P C S P C( ) ( ), making the hypotheses C= S and C much
closer to being equivalent then in the cold case.

In terms of (2.3) and (2.5), both terms =P C S C( ) and
P C C S( ) are close to 1, so that the likelihood ratio is close to 1/
pS, regardless of whether we start out with hypotheses about S (in
which case the likelihood ratio is larger than 1/pS) or about (in
which case it is smaller). The exclusions that the database search has
provided are, in other words, essentially irrelevant since we already
believed that S was by far the most plausible candidate for being C
before carrying out the search. Learning that the other database
members, who we already believed not to be C, are indeed not C, then
has only very little impact.

3.3. Probable cause

Now we arrive naturally at the probable cause case, which we can
think of in various ways. We can set = S{ } so that no other com-
parisons have been done other than between S and C, who turned out to
have matching profiles. Alternatively, we can think of a database in
which all individuals apart from S were already excluded prior to the
search, that is, = = =P C S C P C C S( ) ( ) 1. The latter for-
mulation is nothing but an extreme case of the targeted search case
which we discussed above. Regardless of how we think about it, the
hypotheses C= S and C are then equivalent prior to learning ES, so
that (2.3) and (2.5) coincide. The likelihood ratio in favor of C= S (or
in favor of C , which is now the same hypothesis) is then exactly
equal to 1/pS.

3.4. Casework

Of course, a case is not going to be confined to one of these three
categories once and for all, but at any given point in time we will have
information that makes us regard the case as most similar to one of the
three types above. For example, a cold case search may be initially
carried out, after which evidence against S is found. When that evi-
dence is taken into account, we are in the same situation as for a tar-
geted search. Conversely, a suspect may be identified via other means
than the database, and be the only one that is compared to the trace
profile. If, subsequently, a database search is carried out and no further
matches are found, this is also equivalent to a targeted search. If, on the
other hand, the evidence leading to the identification of S as suspect
turns out to be erroneous and is dismissed, we could also come close to
a situation best described as a cold case search, because there is no
evidence any more distinguishing S from the other database members
other than the matching profile.

4. Which likelihood ratio?

So far, we have seen that the evaluation of the posterior odds on
C= S is, at least mathematically, straightforward via (2.2). As the ex-
pression (2.2) also makes clear, the relevant hypotheses following the

search result are that C= S or that C . Writing these posterior odds
as a likelihood ratio times prior odds on a hypothesis versus its negation
is possible in two ways, but both are a little artificial. Either, we obtain
the likelihood ratio for the hypotheses C∈D versus C , which re-
flect the initial questions (at least, in a cold case search) but not the
question that has come up following the search, namely whether C= S
or C≠ S. Or, we work with C= S versus C≠ S throughout, which does
not reflect that prior to the search we were not especially interested in S
and which gives by construction strong evidence in the form of a large
likelihood ratio. Mathematically, there is no harm in either approach
but we do not think they express the situation better than (2.2) does.

One way out is to abandon the likelihood ratio approach and to di-
rectly focus on the matter of interest via (2.2). However, forensic la-
boratories are often asked (e.g., cf. [17]) to provide an assessment of the
evidence in terms of a likelihood ratio which makes it inevitable to
choose one. As is clear from (2.4) and (2.6), two candidates emerge here:
the suspect centered likelihood ratio p P C S C p1/( ( )) 1/S S, or
the database centered likelihood ratio =P S C C p p( )/ 1/S S. How
large the difference between these are depends on the situation, hence
we will discuss the cold case search and targeted search once more. (The
latter includes the probable cause case as a special case, as remarked
above.)

4.1. Cold case search

In this case, suppose that we do not know anything about C and
assume uniform prior odds for C within . Then the discrepancy be-
tween the likelihood ratios is large: it is either at least 1/pS, or equal to
1/(npS). Which one should we prefer? Obviously, from a mathematical
point of view there is no problem: both lead to the same posterior odds,
each within their own context. So, another question emerges: what is
the most natural context here?

Initially, the question addressed was whether C . A forensic
laboratory may receive a generic question to produce a DNA profile
from a crime stain sample and compare the resulting profile with the
database . Up to that point, no one in the database stands out. But
when the match result ES is obtained, attention shifts to S and the ul-
timate issue for a court is whether C= S or not. Hence the context
changes along the way. There is, therefore, no obvious choice from the
contextual point of view either. Either 1/(npS) is reported reflecting the
original question that has been asked, or 1/pS is reported reflecting the
fact that the case now revolves about S.

Is there then, perhaps, a practical reason to choose for either like-
lihood ratio? We believe that this may indeed be the case, and that 1/
(npS) then has a practical advantage. We next explain why. First of all,
we remark that probabilistic assessments are difficult to convey to
judges and juries and that intuition may lead to wrong conclusions. A
common pitfall is to understand likelihood ratios as posterior odds, a
mistake commonly referred to as the prosecutor's fallacy (or base rate
neglect). Those who do not make such mistakes will be able to both
interpret the likelihood ratio 1/pS (for initial hypotheses whether S= C
or not) or 1/(npS) (for initial hypotheses whether C or not) and
make the correct inference on the posterior odds. However, since the
posterior odds in the cold case search case based on the information
known at the time of issuing the report are much closer to 1/(npS) than
to 1/pS, the harm done by a prosecutor's fallacy is much less if 1/(npS) is
reported in such a case than if 1/pS is reported. Such a report could for
example be as follows.

A request has been received to generate a DNA profile from item X,
and use that profile to search for its trace donor in the database .
From item X a DNA profile has been generated and compared with
the DNA profiles of the database . The findings are that a single
match with database member S has been found and that the prob-
ability for S to produce a match, if not the trace donor, is pS (e.g.,
pS = 10−9). At the time of the search the database contained n
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profiles (e.g., n= 1,000,000). Furthermore the laboratory is not
aware of any non-DNA information pertaining to specific database
members as to the possibility that they are more plausible candi-
dates for being the trace donor than others. From this it is concluded
that the obtained database search result is 1/(npS) (1000) times
more likely if the database contains the trace donor than if the da-
tabase does not contain the trace donor. Furthermore S is now the
only person in who can be the trace donor. Averaged over all
cases, the database contains about a proportion α (e.g., 40%) of the
trace donors that are searched in it. This figure would lead to odds of
(1/(npS) × (α/(1 − α)) to one (667:1) in favor of S being the trace
donor. Further information pertaining to the case and to S can be
used to revise the odds on S being the trace donor to a larger or
smaller number.

The advantage of this approach is that it describes an evaluation of
all involved probabilities, and that a prosecutor's fallacy is less likely to
occur. A practical disadvantage is that if the number n changes rapidly
over time. Another concern is in order to know whether 1/(npS) as a
likelihood ratio applies one has to know whether a uniform prior is
applicable to the database or not. It seems to us that in most cases, using
a uniform prior where there is more information available, will be in
the interest of the matching individual, since for the n and pS used in
practice, most of the matches are with the true trace donors.

Another concern is that laboratories may not be expected or per-
mitted to give more than only likelihood ratios. In that case, one could
adapt the above report so as to leave out the estimate of the odds on
C .

4.2. Targeted search

In this case a search has been done where S was already, prior to the
search, a plausible candidate for being the trace donor C. We assume
that the forensic laboratory has been requested to generate a DNA
profile from item X and compare it with the DNA profiles in database

, and in particular to the DNA profile of S. In that case
=P C S C n( ) 1/ , and 1/(npS) is not the likelihood ratio for

C . In this case, both the purpose of the search and of the ensuing
further investigation are to investigate whether C= S and then it is
natural to report also the corresponding likelihood ratio for these hy-
potheses, which is ×p P C S C p1/ 1/ ( ) 1/S S. Thus, a report
could be phrased along the following lines:

A request has been received to generate a DNA profile from item X,
and use that profile to search for its trace donor in the database
with particular attention to individual S. From item X a DNA profile
has been generated and compared with the DNA profiles of the
persons in . The findings are that a single match with database
member S has been found and that the probability for S to produce a
match, if not the trace donor, is pS. This provides evidence that S is
indeed the trace donor. Based on the information described up to
now, the match with S increases the odds on S being the trace donor
by at least a factor 1/pS, compared to what they were prior to the
search result. Further information pertaining to the case and S will
allow to revise these odds to a larger or smaller number.

Of course it is also possible that a request is done to carry out a
targeted search, leading to a match with a different individual S′ than
the expected one S. In that case, we are back into a cold case search case
since we must then use that the database members other than S cannot
be distinguished from each other than by their DNA profiles based on
the available information.

5. No personal information on the person yielding the unique
match

So far, we have assumed that we get to know who the match is with,

in the sense that the index i0 is revealed so that it is known which
individual in the population S is. In this section we discuss two situa-
tions in which we have less information because we are not told who
the match is with. First, we discuss the case in which we only get to
know the matching profile, without knowing whose profile it is, but
with possible extra information about S being in a certain subset of .
After that we investigate what happens when we only know that there
is a unique match, and not the random match probability of that profile,
or anything else.

5.1. Partial information about S

There are situations in which we do not obtain full information
about the unique match S, but instead only (apart from the RMP of the
matching profile) that S is contained in a certain given subset of .
As an example where this may happen, in searches between different
jurisdictions, the database that has been searched sometimes only re-
turns the matching profile but no further personal details about the
person whose profile that is. So, the queried database only confirms that
it holds a unique non-excluded individual and gives the databased
profile of that person. In that case we do not know the identity of S, but
only that S belongs to the collection of individuals who have the re-
ported RMP. What can we say in this situation about the probability
that the uniquely matching individual is C?

In this example is defined in terms of the RMP itself, but it helps
to consider the more general situation in which the RMP of the match is
known, together with the fact that S is contained in some given subset

of .
Let us still denote the matching person by S, but note that S is un-

known, so we cannot use the unconditional probability P(C= S). We
can, however, speak about the probability that C= S given that there is
a unique match. The random match probability pS is still available.

We write E for the event that there is a unique match in with a
person S only to be known in . We claim that

= =P C S E
P C S E n p

P C
P C

( )
( )

1 ( )
( )

.
S (5.1)

This expression generalizes (2.2), which is obtained by taking = S{ }.
In the general formulation, P(C= S) is replaced by P C n( )/ , which
is rather intuitive. Indeed, knowing has allowed us to narrow down
the matching individual from someone in to someone in , but we
have no information as to who the matching person is in , hence the
division by n′. Also note that we only use prior information that is
available to us. We prove this formula in Appendix A.

Taking = in (5.1) yields

= =P C S E
P C S E np

P C
P C

( )
( )

1 ( )
( )

.
S (5.2)

Since on the left hand side we can replace C= S by C and C≠ S by
C , this is a natural situation in which the likelihood ratio is equal
to 1/(npS).

More generally, in case =P C P C( ) ( )n
n , (5.1) reduces to

= =P C S E
P C S E np

P C
P C

( )
( )

1 ( )
( )

,
S (5.3)

and hence is then irrelevant. In particular we do not need to know
the size n′ of . For example, when the prior for C on is uniform,
this will be the case.

5.2. Only existence of unique match is known

Suppose that we only get to know that there is a unique match with
some person S, without any further information such as pS or the
identity of the matching person. Can we still say anything meaningful
about the posterior probability that the matching person is C?
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A little reflection shows that in order to say anything meaningful
about this probability, we need more information. It is intuitively clear
that in the absence of any individual information, we will need the
random match probabilities pi of all database profiles. Assuming that we
know these, we again write P(C= S ∣ E) for the probability that the
unique match is with the actual donor.

We claim that in odds form, we get

= = =
=

=

=

P C S E
P C S E

P C E
P C E P C

P C
P C

( )
( )

( )
( ) ( )

( )
( )

.
i
n P C i

p

j
n p

p

1
( )
1

1 1

i
j

j (5.4)

We prove this formula in the Appendix. Note the difference between
(5.1) and (5.4). In the former, we know (and use) the random match
probability pS of the unique match. All other random match prob-
abilities are irrelevant. In (5.4) we know nothing about the matching
persons, and all random match probabilities of the whole database are
relevant. Also note that this time, we have no other option but using
prior information about the full database, and this is precisely what
happens in (5.4).

In the case where all the pi's are the same and equal to p, then we do
actually know the random match probability so we are back to the si-
tuation in Section 5.1. Indeed, in that case the likelihood ratio in (5.4)
reduces to

= =
=

=

=

=
=

= np
1 ,

i
n P C i C

p

j
n p

p

i
n P C i C

p

j
n p

p

1
( )

1

1 1

1
( )

1

1 1

i
j

j (5.5)

so this is another situation in which 1/(np) is the correct likelihood
ratio.

6. An analysis of some controversies in the literature

The interpretation of database searches yielding a single match has
seen fierce debates [4,6–8,15,18], where especially the likelihood ratio
1/(np) has often been ridiculed. In this section we take a closer look at
the various arguments that in this debate have been proposed in favor
or against the use of one of the likelihood ratios, or in favor or against
the use of the various hypotheses of interest. Authors sometimes pro-
vide direct arguments why a specific choice should be used, but more
often it is the case that arguments are provided against other choices.
We will consider the arguments one by one. In every instance that a
general rejection of one type of likelihood ratio or hypothesis is sug-
gested, we will argue that this is unjustified.

We distinguish between a strong case and strong evidence. A case
always refers to posterior odds or probabilities, while evidence always
refers to a likelihood ratio. We should keep in mind though that typi-
cally various different likelihood ratios are possible, so that we should
be careful whenever we speak about evidence. In this section we as-
sume that all members of the database have RMP equal to p. This is
mainly for simplicity, since it will make it easier to explain why the
various arguments against either likelihood ratio are incorrect. Also, we
will see that the discussion of the controversies leads to certain facts
about unique database matches that we find interesting enough to
discuss, and which have not appeared in print before, as far as we are
aware.

6.1. Against 1/(np): a large database should give strong evidence

One of the first arguments against the use of the likelihood ratio 1/
(np) was that it would imply that the larger the database is, the weaker
the evidence against the suspect, and that this must be absurd. In the
extreme case where the whole population would be in , the evidence
would be the weakest possible (still according to adversaries of the 1/
(np) likelihood ratio) while it clearly provides the strongest evidence
possible.

How should we evaluate this argument? First of all, this argument
can only be put forward when the 1/(np) likelihood ratio applies. As we
have seen, this is so in a cold case search case when the prior for C on
is uniform (see the discussion after (2.6)), and in the case where we do
not know the identity of S. Here we consider the latter case, and we use
the prior and posterior odds as expressed in (5.1) and (5.2). Below, in
the discussion of the so called cunning defense lawyer argument, we
will also discuss what happens when S is identified and C is uniform on

.
Suppose now that the whole population is in the database. In that

case =P C( ) 1 and =P C( ) 0 which means that the prior odds
for these hypotheses are infinite. It then follows that the posterior odds
are infinite as well. Rather than giving rise to absurdities, this leads to a
posterior probability on C= S equal to 1, as it should. Indeed, if S is the
only match and the full population is in , then the posterior prob-
ability that C= S must be 1.

How can we reconcile this with the fact that the likelihood ratio is
very small in this case, namely equal to 1/(np)? We can better see what
happens when we assume that nearly everyone is in so that P C( )
is small but not zero. In that case, the prior odds on C are very
large, but the likelihood ratio 1/(np) may even be smaller than one.
Note that np is the expected number of matches in the database, as-
suming that C and that this match probability applies to all da-
tabase members. If the number of matches found (being one) is smaller
than the expected number np of such matches, then indeed this result
provides evidence against C ; this is only reasonable. Hence the
posterior probability on C decreases, but since it is now totally
concentrated on the uniquely matching individual S, the posterior odds
on the match being with the trace donor are very high. Of course, np
could in principle also be very large but in a situation with a unique
match this will not happen often, since it would correspond to a trace
occurring much less frequently in than predicted by p.

We conclude that there is no contradiction in the proper use of the
likelihood ratio 1/(np), even when the database is very large.

6.2. Against 1/(np): growing database

A second argument put forward against the 1/(np) likelihood ratio,
or the use of hypotheses C , used hypothetically growing databases.
It is clear that if a match with S is found in the database, and there are
no further matches found at a later point in time when the database has
grown, the additional exclusion of new individuals can only increase
the posterior odds that S is the trace donor. It may seem that this
provides an argument against using 1/(np).

In order to purely assess the effect of the growth of the database, we
disregard the identity of S. Consider a subset . For example
may be the database at some point in time, and the database at a
later moment when new persons have been added. Suppose we first find
a unique match in and after that, we find no further matches in .
Alternatively, we first find the match with S in , and then find out that
S . At the end of this procedure, we have a unique match in , but
now we also know that this unique match is in fact in . This
knowledge changes the situation compared to the earlier analysis with

and , as we can verify using (5.1), which is the expression for the
posterior odds in precisely this situation. Indeed, we learn from (5.1)
that

= =P C S E
P C S E n p

P C
P C

n p
P C
P C

( )
( )

1 ( )
( )

1 ( )
( )

,

since P C P C( ) ( ). Thus, in complete generality, the addi-
tional exclusions in provide further evidence for C= S, as is to be
expected.

So far, we have considered that we first learn that S provides a
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single match in , and then the database grows into and no addi-
tional matches are found. Next, we consider a different situation: we
assume that we know that S provides a unique match in the larger
database , and then we learn that S for some subset .
How does that change the odds on C= S?

Learning that S changes the posterior odds on C= S from
(5.2) into (5.1). The ratio between the new odds, when we have learned
that S , and the odds when we only knew that S , is, by using
(5.1) and (5.2),

P C D n
P C n

( )/
( )/

.
(6.1)

If is a subset of such that the average prior P C n( )/ is
larger than the corresponding average prior for , then the knowledge
that S increases the probability that C= S, and the opposite is of
course also possible.

In case the prior for C is uniform on the population, we have that P
(C∈D) is equal to the proportion of the population that is in the da-
tabase, in which case we get unity in (6.1), expressing that it neither
strengthens nor weakens the case against S if we learn that S ,
whatever is.

6.3. Matches in a larger database are not necessarily more likely to be with
the trace donor

It might be perceived that a larger database is better in the sense
that a higher proportion of the unique matches is with the actual trace
donors. This, however, is not true in general. We can already see this
from (5.2). Indeed, consider two databases and of sizes n′ < n
respectively. Let us write f for P C P C( )/ ( ) and define f
similarly. Then the ratio between the posterior odds for a unique match
in to be with the actual trace donor, and those for a unique match in

to be with the actual trace donors, is

f n
f n

/
/

.
(6.2)

The above expression holds for any two databases, it is not neces-
sary to assume that one is a subset of the other. Let us now assume that

to see how the odds on the match being with the trace donor
may change from matches in to matches in .

We see that in that case, if the odds on C compared to those on
C grow more than the sizes of the databases, then in a larger
proportion of the matches is with the actual trace donors. If the prior for
C on is uniform, this is the case since then =f n N n/( ) and

=f n N n/( ) so (6.2) evaluates to (N− n)/(N− n′), which is smaller
than one if n′ < n.

Thus, if we assume uniform prior probabilities for C then a unique
match in a larger database is always more likely to be with C than a
unique match in a smaller database.

In general, it is possible that (6.2) is larger than one, which means
that the posterior odds on a unique match to be with the trace donor are
smaller in the larger database than those for matches in a subset of it.

As an example, let us now assume that =P C n N( ) / , where N
is the size of the population and n the size of . Then a small fraction of
the population in the database corresponds to a relatively large
P C( ). For instance, if n/N= 0.01 we have =P C( ) 0.1. This is
not an unnatural property at all, since the proportion of traces that yield
a match may be much larger than the fraction of the population in the
database.

We write x= n/N, so that =P C x( ) 1/2. From (5.2) we have
that the posterior odds on a match in , for size x= n/N, being with
the trace donor are given by

Np
x

x
1

1
.

1/2

1/2 (6.3)

It is easy to see now that these posterior odds are minimal for x= 1/
4: they decrease between x= 0 and x= 1/4, and then increase towards
infinity as x→ 1. As n increases, so does P C( ), as well as the
possibility for adventitious matches. Both of these effects influence the
posterior odds in case of a single match. For a uniformly sampled da-
tabase, the increase of P C( ) always outweighs the increased op-
portunity for adventitious matches, but we now see that this need not
be so in general.

Thus, it is not generally true that a larger database is better in the
sense that in a larger database, there may be a smaller proportion of the
unique matches with the trace donor than in a smaller database.
Formula (6.2) tells us that it may be the case that the posterior odds on
the match being with the trace donor are smaller or larger or the same in
an expanded database than in a smaller . If we learn that we have
a match in , the odds on it being with the trace donor can be smaller,
larger or identical to those that we get if we learn that we have a match
in without knowing about .

6.4. Against 1/(np): Cunning defense lawyer

A further argument that has been put forward against the 1/(np)
rule is at first sight quite convincing [6]. Imagine that a match with a
suspect has been obtained, outside the database. Then the suspect
would be well advised by a cunning defense lawyer to insist a database
search be carried out. Indeed, if no additional matches are found, the
failure to find additional matches will substantially weaken the evi-
dence against his client, since the likelihood ratio is now 1/(np) instead
of 1/p. On the other hand, if additional matches are found, then this is
even better news for the suspect.

Convincing as this may sound, this argument against the 1/(np) rule
is not correct. Clearly it is impossible that the case against the suspect
weakens irrespective of the outcome of a database search, and indeed
this is not what follows from our analysis, be it based on the suspect
driven hypothesis S= C or on C . We next explain this in detail.

First of all, we note that the 1/(np) rule is only valid under specific
circumstances. With an identified S, we can only apply it when the prior
of C is uniform on , see the discussion following (2.5) and (2.6). But in
the situation described above, with a suspect already identified before
carrying out a database search, uniform priors are not realistic. Every
further tested person would have to have the same prior probability to
be C as the suspect S, something which is clearly impossible to realize
given the fact that S had been suspect before the search has been carried
out. In other words, this argument against the use of the 1/(np) rule is
flawed from the very start, since the assumptions are not fulfilled.

It is interesting and illuminating, though, to see what our analysis
has to say about the cunning defense lawyer argument if we make the
(unrealistic) assumption that the 1/(np) likelihood ratio applies. We
already mentioned above that further exclusions cannot make the case
against an already identified suspect weaker. This can indeed also be
shown in the current situation, this time using either (2.3) or (2.5). In
(2.3), we do not use the 1/(np) rule, but it is illuminating to see what is
going on there. The likelihood ratio in (2.3) is ×p P C S C1/ 1/ ( ).
If first S alone is compared with the trace we have, at that point, that

= S{ } so that the likelihood ratio is 1/p. If we then compare the
profile of C with a database and let = S{ }, the odds are
further updated with a factor P C S C1/ ( ), which is always in
favor of S= C (possibly neutral in case =P C( ) 0, a situation
unlikely to be encountered but not outside the scope of (2.3)). Thus, it is
certainly not true that the case against S becomes weaker as a result of
not finding any further matches.

We can also argue this from (2.5), where the likelihood ratio is 1/
(np), assuming (as we have to in order to apply the 1/(np) rule) a
uniform prior for C on . This runs as follows. Again we first have the
situation that S is the only investigated person, so that = S{ } in (2.5).
The posterior odds are then equal to
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p
1

1
,

(6.4)

where α≔ P(C= S) is the prior for S.
Next we investigate n− 1 further individuals, none of which mat-

ches. Note that in order to comply to the requirement that all in-
vestigated persons have the same prior α as S, we must have that
nα≤ 1. Now we can apply (2.5) again, this time with defined as the
full set of n tested persons. The posterior odds in (2.5) are now equal to

=
np

n
n p n

1
1

1
1

.
(6.5)

Since clearly (6.5) is at least as large as (6.4), we again conclude that
the case against S cannot have weakened upon finding a number of
further exclusions. Note that when nα= 1, the posterior odds are in-
finite, hence the posterior probability that S= C is 1. This is perfectly
reasonable since in that case the database contains all persons with
positive prior, and they are all excluded, except S. Hence S must be C.

We conclude that there is no way in which the cunning defense
lawyer argument can be made correct. Either the argument does not
apply because the assumptions are not fulfilled, or, when they are, the
conclusion of the argument is incorrect. The cunning defense lawyer is,
after all, not as cunning as it seemed.

6.5. Against 1/p: data driven hypotheses

Not only the likelihood ratio of 1/(np) has been challenged, also the
1/p likelihood ratio has received serious criticism. Probably the main
argument against using (2.3) and the corresponding likelihood ratio of
(at least) 1/p is that the hypothesis S= C is data driven in the sense that
it is only formulated after observing the match with S [4]. Without this
match, there would perhaps be no reason whatsoever to consider this
hypothesis and this seems unfair towards the suspect S. From this point
of view the division by n in the 1/(np) rule is supposed to compensate
for the data drive nature of the hypothesis. Is this criticism justified?

Although there is some truth in the idea that a data driven hy-
pothesis must be compensated for, it is not the division by n that takes
care of this, but instead the prior odds of S= C versus S≠ C. When we
compare (2.3) to (2.5), the prior in the former is smaller than in the
latter, and this, simply, compensates for the fact that S= C is a data
driven hypothesis. When using a data driven hypothesis, the likelihood
ratio tends to be large, but this is compensated by small prior odds. We
conclude that there is no principle problem in using such data driven
hypotheses, as long as the interplay between likelihood ratio and priors
is understood; see also [8] for more details on this phenomenon. Hence
this argument against the 1/p rule is unsound.

6.6. Relevance of (offender) population size

In [15] it is argued that the size of the offender population plays a
role in the computation of posterior odds. In their setup they set

= =P S C C n( ) 1/ , so that the posterior odds in (2.5) reduce to

np
P C
P C

1 ( )
( )

.
(6.6)

These posterior odds involve only one more ingredient apart from n and
p, namely the prior probability P C( ) for the database to contain
the offender. The paper [15] attaches importance to the size of the
active criminal population, but that is a quantity absent from (6.6).
Hence, we would be interested in the size of the criminal population
(whatever this may be) only if this size would be essential for the es-
timation of P C( ).

But it is not. In fact, the authors in [15] estimate the size N of this
criminal population by assuming that is a random sample from the
active criminal population, and then estimate the size of that popula-
tion from the estimate P C( ). They use a mark-and-recapture

framework to estimate the size of the active criminal population N as
=N n P C/ ( ), and then plug this in in the formula for the posterior

odds.
However, this analysis is redundant because all that is needed to

arrive at the posterior odds is an estimate of P C( ) which is the very
starting point of their procedure to estimate the size of the offender
population. In terms of a criminal population, P C( ) may be
thought of as the coverage of the population by the database. How the
coverage relates to the size of that population is another issue, im-
material for the present problem.

6.7. Inadmissibility of hypotheses about C

Several authors (e.g., [13], [6]) have claimed that, even though the
posterior odds (2.3) and (2.5) both provide the same answer, the only
relevant hypothesis is whether S= C or not, since the trial is concerned
with S and not with as a whole. We fail to see however, how pro-
viding the likelihood ratio for C versus C , which allows
equally well to arrive at a correct evaluation of the posterior prob-
abilities the court is interested in, should be banned from being re-
ported. A court is indeed not concerned with the collective guilt or
innocence of all database members, but in case of a single match, this
collective guilt reduces only to S, so these viewpoints coincide. More-
over, in case the identity of S is not (yet) known, the most natural way
to proceed is by using these hypotheses. The prior probability P(C= S)
is not available in case S is not known, and the analogue of (5.1) or
variants thereof should be used. This formula is in terms of the hy-
potheses C versus C . In case of a targeted search where there
is already an existing suspicion, the 1/(np) likelihood ratio does not
apply anymore to the hypotheses C versus C . In that case,
both frameworks can still be used, and the difference between them is
then far less pronounced, both leading to a likelihood ratio not differing
much from 1/pS.

Even if dismissed by some statisticians, in the legal community, the
relevance of the hypothesis C and the matter of how to assign a
probability to it, has not gone unnoticed. We agree with [16] when they
write (p. 1451) that “[…] to apply Bayes’ rule, the probability that the
database contains the source of the forensic DNA, assessed prior to any
consideration of whether an individual in the database actually mat-
ches, becomes a crucial input in determining the (posterior) likelihood
that a particular matching defendant is the source of the forensic DNA.”

We conclude that there is no reason to deem the hypotheses C
versus C inadmissible.

6.8. A frequentist interpretation

The original motivation to believe that the value of the evidence
decreases when n comparisons are done came from a frequentist fra-
mework, making a correction for multiple testing. The original 1/(np)-
rule was motivated from this point of view. However, we have seen in
our expression for the posterior odds (2.2) that it is only pS that we
need, which is the probability for the matching individual to match by
chance if innocent. Hence there is no need to think of p as being re-
levant for all database comparisons. Even if sometimes it would be
appropriate to think of p as constant for some applications in real da-
tabases, we believe it could be detrimental for understanding the pro-
blem to act as if p is always constant. If that assumption is needed to
reach a conclusion, it cannot be a conclusion pertaining to the general
case. The same is of course true for conclusions only valid assuming a
specific prior probability for C or .

With this in mind we mention the paper [19] that aims to reconcile
the frequentist and Bayesian points of view. Using uniform priors for C
and for on a population of size N, and assuming p to be constant on
the database, the authors derive expressions for two different “p-va-
lues”. The first one is obtained by deriving the probability to find a
single but coincidental match in the database. The second one is
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obtained by conditioning on there being a single match, computing the
conditional probability that this match is not with the trace donor. The
authors observe that the latter p-value is actually nothing but the pos-
terior probability on C≠ S, and they conclude that with the conditional
frequentist approach the Bayesian and frequentist answers coincide.
They write that “quantification of the evidence based on frequentist (P-
values) and Bayesian (posterior probabilities) points of view coincide”
in that case. They go on to remark that “Simultaneously we show that
the unconditional case corresponds (approximately) to the np rule and
we argue that this lack of conditioning is an argument against using the
np rule”.

We disagree with all of these comments. We first remark that the
agreement they reach between frequentist and Bayesian quantities is by
construction, since they simply define the p-value as the Bayesian pos-
terior probability. Secondly, p-values do not represent a quantification
of evidence against a hypothesis, and the strength of the evidence in the
Bayesian framework is not represented by the posterior probabilities on
the hypotheses but by the likelihood ratio.

The first p-value they derive is P E C( , )S , the probability that
the trace donor is not in and that nonetheless there is a single match.
This can be written as P E C P C( ) ( )S . To take account of the
fact that a match has been observed, the second p-value they propose is
P C E( )S . None of these have much to do with likelihood ratios.
When the authors remark that the unconditional approach gives a result
approximately equal to np, they refer to P E C P C( ) ( )S . If p is
constant on the population then the first term of this expression can be
reasonably approximated by np if np < < 1. But np < < 1 does not in
any way imply that P C( ) 1 which would be needed to arrive at
the conclusion that the unconditional p-value is approximately np. It is
the case in their framework where they assume n < < N and that

=P C n N( ) / but this is not an assumption one needs to make. The
authors seem to conclude that, because a Bayesian quantity (the 1/(np)
likelihood ratio) is, under special circumstances, somewhat similar to a
result obtained with a suboptimal frequentist approach, that gives an
argument against that likelihood ratio. But our comments above in-
dicate that this argument is not convincing.

7. Discussion and conclusions

We have first derived a general expression for the posterior odds for
the situation of a unique match in a database search in (2.2). This ex-
pression is valid for database searches without having a prior specific
suspicion against any database member, or for a search where there is
already interest in S beforehand, or for a probable cause case where
there is no one tested except S, which simply means that = S{ }. We
do not make a uniform prior assumption, since this assumption (1) is
often not realistic, and (2) obscures the picture of which quantities play
a role and which do not.

By making the expression for the posterior odds as general as pos-
sible, we see that only three ingredients affect the posterior directly,
namely

(i) The random match probability pS of the suspect S. This random
match probability need not be the same for all people, hence the
subscript S. The random match probabilities of other individuals

are unimportant. For the persons who are excluded, it does not
matter how they were excluded or by which probability this hap-
pens. Of course it is necessary that the fact that they are excluded is
not disputed.

(ii) The prior probability P(S= C) that the suspects is the criminal (or
the donor of the trace) C. In case the identity of S is known, then
this identity may carry information and we need not necessarily
have a uniform prior. If the identity is not known, then we obtain
the same results as for a uniform prior.

(iii) The probability P C( ) that the database does not contain the
criminal C. This reflects that a database which is more suited for
the purpose (having a larger P C( )) yields a higher probability
that the matches it produces are with the correct persons.

All other quantities, such as the database size, database coverage,
population size, offender population size and what not, only affect the
poster odds indirectly when they come into a model that gives us the
three required probabilities.

The estimation or assignment of these depends on the further con-
text, and will be different for the three scenarios that we just men-
tioned. They may be numerically different in different situations, but it
is important to conclude that there is no principle difference between a
cold case database search, a targeted search, or a probable cause case.
They are all covered by our analysis.

As far as the choice of the set of hypotheses is concerned (and along
with that choice, the choice of the relevant likelihood ratio), we have
argued that a universal best choice does not exist, and that the actual
choice one makes should depend on the original question asked and
further context. In [13] it is claimed that only S= C versus S≠ C is
relevant, but we disagree. In fact, the 1/(np) likelihood ratio (if we
assume uniform priors) following from the pair of hypotheses C
versus C is far less dangerous than using 1/p, in the sense that a
possible wrong interpretation as posterior odds will be not so harmful
since the prior odds are typically of order 1.

We have also shown that arguments against the 1/(np) rule are
unsound, since these arguments assume that one should always use this
rule, even when the uniform prior assumption that underlies it is not
applicable. For instance, when there is already suspicion against a
suspect S and after this a database search is carried out, the uniform
prior assumption is not valid, and hence the 1/(np) likelihood ratio is
simply not applicable. We have furthermore shown that it may very
well be the case that single matches from an enlarged database have a
smaller probability to be matches with the actual trace donor, falsifying
the idea that matches in a larger databases always lead to stronger cases
against the identified suspect than smaller databases.

Our conclusions show that it is best to express the odds and like-
lihood ratios in their most general form, and by doing so, all fallacies
and controversies disappear. The evaluation of the required prob-
abilities depends on the model that is thought to best reflect the cir-
cumstances of the case, and depending on those, the most natural way
to express the likelihood ratio may lean towards 1/p or towards 1/(np).
The latter however arises only in specific circumstances. Although we
realize that previous authors have had similar expectations, we hope
that with the results of the current paper, the database controversy can
now be considered to be resolved.

Appendix A

In this appendix we detail the mathematics involved, and provide the proofs of (2.1), (5.1), and (5.4). In the text of this article, we considered gC
as non-random, but in the formal setup it is the realization of a random variable on which we condition. So, we let GC be a random profile,
representing the profile found at the crime scene, assuming it is donated by the criminal C. For each of the persons i= 1, …, n, we let Di be the
random profiles in the database. The loci which are typed for person i are non-random.

For each i we can write

=G F H( , ),C i i

where Fi denotes the profile of GC restricted to the loci that are typed both for GC and for Di, and where Hi denotes the profile on the remaining loci.

R.W.J. Meester and K. Slooten Forensic Science International: Genetics 46 (2020) 102229

10



Similarly we can write

=D K L( , ),i i i

where Ki is the profile of Di restricted to the loci that are shared with GC, and Li the profile on the remaining loci.
We can write the event Ei as

= = =E K F K F j i G g{ and forall , }.i i i j j C C

A.1 Proof of (2.1)

The left hand side of (2.1) is equal to

=P C i E
P C E

( )
( )

,i

i (A.1)

since conditioned on Ei, the events C≠ i and C are equivalent. It is, therefore, enough to show that the likelihood ratio of the evidence Ei for the
hypotheses C= i versus C ) is equal to 1/pi. Thus we compute

= =
= = =
= =

=
= =
=

×

×
= = =

= =

=
= =

P E C i
P E C

P K F K F j i G g C i
P K F K F j i G g C
P K F j i G g C i

P K F j i G g C
P K F K F j i G g C i

P K F K F j i G g C

P K F K F j i G g C

( )
( )

( and for all , )
( and for all , )
( for all , )

( for all , )
( for all , , )

( for all , , )
1

( for all , , )
.

i

i

i i j j C C

i i j j C C

j j C C

j j C C

i i j j C C

i i j j C C

i i j j C C

So far, we have not made any assumption about independence. If we assume (as we did in the text of this article) that all profiles are independent
of each other, then the last expression reduces to 1/P(Ki = fi), that is, the probability that the profiles Di and GC agree on the overlapping loci,
conditioned on GC = gc = (fi, hi). This proves (2.1).

However, we note that formally, pi must be calculated conditional on the event that the profile GC = gC has been observed already, and on the
information about the Kj for j≠ i. It would be rather tedious to incorporate the latter information, and in any case the effect would be essentially
vanishing. Conditioning on GC = gC is usually incorporated with the standard θ-correction. This means that RMP corresponding to person i is equal to

= =P K f G f h C i( ( , ), ),i i C i i

and this expression then replaces pi in (2.1). Similar remarks apply to the remaining proofs as well.

A.2 Proof of (5.4)

Recall that Ei is the event that we have a single match with individual i . From the odds in (A.1) we conclude that

= = =
= +

P C i E P C i
P C i p P C

( ) ( )
( ) ( )

.i
i (A.2)

This probability depends on pi. This is only natural, since if we learn that a match has occurred with a smaller pi we will be more confident in C= i
than if pi were larger.

Next we write

= = =
=

P C S E P C i E P E E( ) ( ) ( ).
i

n

i i
1

Writing

p(1 )i
j i

j

we have

= = +P E P C i P C p( ) ( ) ( ) .i i i i

Hence

= =

=
= +

= +

=
+

+

=

=
=

=
=

P E E P E
P E

P E
P E

P C i P C p
P C j P C p

P C

P C

( ) ( )
( )

( )
( )

( ) ( )
( ( ) ( ) )

( )

( )
,

i
i i

j
n

j

i i i

j
n

j j j

P C i
p

p
p

j
n P C j

p
p

p

1

1
( )
1 1

1
( )
1 1

i
i

i

j

j

j
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assuming that the pi < 1 for all i. Therefore, using (A.2) we find

= = =
= +

×
+

+

=
+

=

=

=
=

=
=

=
=

=

P C S E P C i
P C i p P C

P C

P C

P C

( ) ( )
( ) ( )

( )

( )

( )
,

i

n

i

P C i
p

p
p

j
n P C j

p
p

p

i
n P C i

p

j
n P C j

p j
n p

p

1

( )
1 1

1
( )
1 1

1
( )
1

1
( )
1 1 1

i
i

i

j

j

j

i

j

j

j

from which (5.4) follows.

A.3 Proof of (5.1)

The event E can be decomposed as follows: (1) the event, denoted E , that in there is a unique match, and (2) the event, denoted by M, that
there are no matches outside .

As for the first component, it follows from (5.5), applied to and pS, that

= = =P C S E
P C S E

P C E
P C E n p

P C
P C

( )
( )

( )
( )

1 ( )
( )

.
S (A.3)

Hence the likelihood ratio of the evidence E for C versus C is 1/(n′pS).
We now have

= = =

= × ×

P C S E
P C S E

P C E
P C E

P C E M
P C E M

P E C
P E C

P M C E
P M C E

P C
P C

( )
( )

( )
( )

( )
( )

( )
( )

( , )
( , )

( )
( )

.

The first fraction is the likelihood ratio from (A.3) and is equal to 1/(n′pS). As for the second term, we first note that the conditioning on E can
be deleted. If C , then M occurs with some probability π, depending on the composition of . If C , this event has probability

P C C( ): the only way to have no further matches is if C at all, and in that case we have probability π again.
Hence we conclude that

= =

=

P C S E
P C S E P C C n p

P C
P C

n p
P C
P C

( )
( )

1
( )

1 ( )
( )

1 ( )
( )

.

S

S

Note. The opinions expressed in this article, e.g., on reports for matches in databases, are those of the authors and do not necessarily reflect
practices or opinions of institutes the authors have affiliations with.
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