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a b s t r a c t

In this paper, we deal with the solenoidal conservative Lie algebra associated to the classical normal form
of Hopf-zero singular system. We concentrate on the study of some representations and Z2-equivariant
normal form for such singular differential equations. First, we list some of the representations that this Lie
algebra admits. The vector fields from this Lie algebra could be expressed by the set of ordinary differential
equations where the first two of them are in the canonical form of a one-degree of freedom Hamiltonian
system and the third one depends upon the first two variables. This representation is governed by the
associated Poisson algebra to one sub-family of this Lie algebra. Euler’s form, vector potential, and Clebsch
representation are other representations of this Lie algebra that we list here. We also study the non-
potential property of vector fields with Hopf-zero singularity from this Lie algebra. Finally, we examine
the unique normal form with non-zero cubic terms of this family in the presence of the symmetry group
Z2. The theoretical results of normal form theory are illustrated with the modified Chua’s oscillator.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This investigation is a continuation of [1] in which the maximal
solenoidal conservative Lie algebra of classical normal form of
Hopf-zero singularities (in the sense of [2]) was introduced. This
Lie algebra was denoted by L . The simplest normal form, simplest
parametric normal form, and radius of convergence corresponding
to the second level normal form of this type of singularities were
explored there. This present paper has two purposes: first, we
intend to list some of the representations that the vector fields
from L admit. Solenoidal property of vector fields from L allows
us to express these vector fields by local Euler’s potentials, vec-
tor potential, and local Clebsch potentials, see [3,4]. The second

E-mail address: fahimeh.mokhtari.fm@gmail.com.

purpose is to explore the Z2-equivariant unique normal form of
the solenoidal conservative family associated to Hopf-pitchfork
singularities. We denote the Lie algebra of such a family by L Z2 .

Now, we elaborate in general terms our results in the following.
In the framework of classical mechanics, the Poisson structure

has a key role in the description ofHamiltonian dynamics (see pref-
ace of [5]). In the literature of normal form theory, this structure is
employed to facilitate the normal form study of singularities, an
exhaustive treatment of this subject can be found in [6,7]. The first
issue we address here involves constructing the Poisson algebra
P for a Lie subalgebra of L , in order to give a representation for
L . Having established the Poisson structure we will be able to
present the vector fields from this Lie algebra by a set of ordinary
differential equations, the two first of them are in the canonical

https://doi.org/10.1016/j.physd.2018.08.003
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form of a one-degree of freedom Hamiltonian system and the
third one depends upon the two first variables. Noting that, for a
given three-dimensional solenoidal vector field which possesses
one-parameter symmetry group with solenoidal and infinitesimal
generators, one would be able to present the system in the normal
form as given in [3]. Hence, besides the Poisson structure follow-
ing [1, Remark 2.4] and [3] that form could be derived.

Solenoidal dynamical systems are important in a huge variety
of applications. These vector fields, also known as incompress-
ible vector fields, occur in many settings: velocity field of an
incompressible fluid, magnetic field, etc., see for instance [8,9].
Exploiting tools from geometric dynamics, solenoidal vector fields
may be represented in some interesting and physically significant
representations such as Euler’s form and vector potential (see [4]
and references therein). In the following, we briefly review these
representations. If v be a solenoidal vector field then there exists a
vector potential A such that v = ∇ × A. From the point of view
of electromagnetism, A is called magnetic vector potential [10].
Euler’s form is another representation that solenoidal vector fields
admit (see [11, page 22] and [12, page 48]). Based on this form, one
can find two independent invariant functions α and β from which
the vector field v is derivable via v = ∇α × ∇β. Applications of
these representations can be found in various books and papers,
for instance, see [13,4,14,10]. In [4] the application of Euler’s form
in the partial differential equation has been discussed. For the
significance of vector potential in quantum theory, we refer the
reader to [13].

In [15] the authors express a Lie algebra of completely in-
tegrable solenoidal triple-zero singularities via Euler’s form and
vector potential. As in their studies, due to the solenoidal property
of L , here we shall present any vector field in this Lie algebra
using vector potentials and Euler’s form. Further, the non-potential
property of this family with Hopf-zero singularity is examined.
Thus, these vector fields cannot be derived by the gradient of a
scalar valued function, instead, these vector fields are expressible
in terms of the lamellar and complex lamellar vector fields. More
precisely, any vector field v ∈ L could be expressed by v = f1∇f2+
∇f3 where f1, f2, and f3 are scalar valued functions. This represen-
tation is named Monge representation or Clebsch representation
(see [11, page 27] and [12, Section 2.4]). For the application of
this representation in thermodynamics, we refer to [12, Subsection
9.11].

Progress towards deriving these representations has signifi-
cant practical implications for magnetic fields since these vector
fields are solenoidal. For instance, in [8,9] these representations
have been employed for studying magnetic reconnection at three-
dimensional null points. In [16] the authors used the magnetic
fields to interpret the solar flares. Hence, the results of the present
paper should provide the researchers in this area with sufficiently
powerful tools to analyze themotion ofmagnetic fields. As amatter
of fact, each of these representation gives an interpretation about
the structure of magnetic fields. Thereby, from these researches,
we believe that these studies would be remarkably useful in appli-
cation. In the remainder of introduction, we focus on the second
aim of the paper.

In order to apply the general methods of bifurcation theory to
singularities, it is necessary to apply normal form theory. Roughly
speaking, normal form theory is to simplify the nonlinear part
of vector fields with permissible transformations, see [17,18] and
[19, chapters 9–13]. In this paper, we are also interested in treating
the simples normal form classification of solenoidal family associ-
ated to the classical normal form of Hopf-pitchfork singularities.
The problem of the normal form of singular dynamical systems
has been studied by many authors. Before explaining our results
in detail, we explain some of this previous work in the following.

Baider and Sanders [6,7] studied the unique normal form of
Bogdanov–Takens and Hamiltonian Bogdanov–Takens singulari-
ties. The paper [20] studied the infinite level normal form of
the Lie algebra of quasi-Eulerian Hopf-zero vector fields. For the
conservative–nonconservative decomposition of the classical nor-
mal form of Hopf-zero dynamical systems and complete classifica-
tions of the simplest normal form of this singularity, the reader is
referred to [21]. In [22] the Z2-equivariant normal form for Hopf-
zero vector fields is computed under the assumption that the cubic
terms be non-zero, for results on the bifurcation of Hopf-pitchfork
singularities, see [23–25]. More studies regarding the normal form
of dynamical system could be found in [26,27,15,28].

In the studies mentioned above and in the literature, the re-
searchers did not investigate the problem of classifying the unique
normal form for Z2-equivariant solenoidal conservative Hopf-zero
vector fields. As announced at the beginning of this section, our aim
is to treat the unique normal form of the following system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

= 2a01xρ
2
+

∑
alk(k − 2l + 1)x2l+1ρ2(k−2l),

dρ
dt

= −
a01ρ

3

2
−

∑
alk

(2l + 1)
2

x2lρ2(k−2l)+1,

dθ
dt

= 1 +

∑
blkx

2lρ2(k−2l),

(1.1)

where constants alk, b
l
k are real numbers, 0 ⩽ 2l ⩽ k, 0 ⩽ k

b00 = a00 = 0, and a01 ̸= 0. The associated first integral of this
system is

s(x, ρ) := a01xρ
4
+

∑
alkx

2l+1ρ2(k−2l+1),

with 0 ⩽ 2l ⩽ k. In this work, the unique normal form study
of the above system proceeds in a manner parallel to the study
of the solenoidal Hopf-zero vector fields without symmetry [1].
We use naturally their algebraic structures to construct the Lie
algebra L Z2 . We wish to stress that, despite the fact that L Z2 is
the Lie subalgebra of L , the unique normal form of (1.1) cannot
be obtained from the unique normal form of volume preserving
Hopf-zero vector fields given there. The leading term that plays a
dominant role in our normal form study is cubic, whereas there
the quadratic termwas the leading term. Hence, the normalization
problem that is performed here differs from thatwas studied in [1].
Finally, we shall present the unique normal form of (1.1) in four
different representations, see Theorem 4.4.

1.1. Outline of the paper

This paper has the following organization. In Section 2, first, we
recall some notations and definitions that are needed throughout
the paper. Then, we provide the associated Poisson algebra P for
one Lie subalgebra of L . Following the Poisson algebra, a form
for solenoidal Hopf-zero vector fields using Hamilton’s equations
as introduced in [3] is presented. It is also in this section that the
representations such as Euler’s form, vector potential, and Clebsch
representation for Lie algebra L are given.

In Section 3, we introduce and formulate the Lie algebra L Z2 .
We also recall the general framework for computing the normal
form for Γ -equivariant singularities required to study the unique
normal form of the class of singularities under consideration.

In Section 4, we study the unique normal form of (1.1). One
symmetry of unique normal form is detected. We also present the
four alternative representations of the unique normal form rely on
the results on Section 2.

The final section is dedicated to make symbolic computations
of our normal form study. Some sufficient conditions on the coeffi-
cients of any Hopf-pitchfork system, under which the lower order
truncation of the classical normal form of the original system takes
the form (1.1) are given. Moreover, the modified Chua’s oscillator
serves to demonstrate our main results in the normal form. All of
the computations are performed using Maple [29].
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2. Representations of Lie algebra L

2.1. Preliminaries

In this section, we present the main results regarding the ways
that the vector fields from L would be expressible. The Poisson
algebra associated to the sub-family ofL and tools from geometric
dynamics are adapted to obtain these forms. Before going to the
main results, we give a review of some definitions and facts from
the Lie algebra L which are fundamental to what follows. Further-
more, after we establish some notation, we recall some general
information required to study the representations of vector fields
in L .

The classical normal form of solenoidal conservative Hopf-zero
vector field in cylindrical coordinates is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

=

∑
(k − l + 1)alkx

l+1ρ2(k−l)
,

dρ
dt

= −

∑ (l + 1)
2

alkx
lρ2(k−l)+1,

dθ
dt

=

∑
bmn x

mρ2(n−m),

(2.1)

where −1 ⩽ l ⩽ k, 0 ⩽ k, 0 ⩽ m ⩽ n, b−1
0 = a00 = 0,

and alk, b
m
n ∈ R, see [1, Equation 1.1]. This class of vector fields

was derived by sl2-decomposition of the classical normal form of
Hopf-zero bifurcation [21]. And indeed, the above system could be
formulated using the Lie algebraic structure as follows.

We recall [1,21] that the maximal Lie algebra of solenoidal
Hopf-zero classical normal form is given by L = F ⊕ T , where

F = span
{∑

alkF
l
k | 0 ⩽ k, −1 ⩽ l ⩽ k, alk ∈ R

}
,

T = span
{∑

blkΘ
l
k | 0 ⩽ l ⩽ k, blk ∈ R

}
,

and

F l
k = xl(y2 + z2)k−l

(
(k − l + 1)x

∂

∂x
−

(l + 1)
2

y
∂

∂y

−
(l + 1)

2
z

∂

∂z

)
, −1 ⩽ l ⩽ k, (2.2)

Θ l
k = xl(y2 + z2)k−l

(
z

∂

∂y
− y

∂

∂z

)
, 0 ⩽ l ⩽ k. (2.3)

Furthermore, the algebra of the first integral for F is as⟨
xl+1(y2 + z2)k−l+1

⟩1⩽l+k
−1⩽l⩽k and forT is as

⟨
x, (y2 + z2)

⟩
. Expressed in

terms of the cylindrical polar coordinates (x, ρ, θ ), the preceding
vector fields will be given by the expressions

F l
k = xlρ2(k−l)

(
(k − l + 1)x

∂

∂x
−

(l + 1)
2

ρ
∂

∂ρ

)
, (2.4)

Θ l
k = xlρ2(k−l) ∂

∂θ
. (2.5)

Using the structures given above, system (2.1) can be recast to

v =

∞∑
k=0

k∑
l=−1

alkF
l
k +

∞∑
n=0

n∑
m=0

bmn Θm
n .

As mentioned before, the simplest normal form and simplest
parametric normal form of foregoing system with the assumption
a−1
0 ̸= 0 were explored using sl2-style in [1]. Now, we fix some

notation.

Notation 2.1. The following notation is used throughout the paper.

• Define v = (v1, v2, v3) ∈ R3 by v = v1 · ex + v2 · ey + v3 · ez.
We denote F l

k = dx(F l
k)

∂
∂x + dy(F l

k)
∂
∂y + dz(F l

k)
∂
∂z .

• The symbol ∇ indicates the gradient operator of the vector
field.

• The Pochhammer k-symbol notation for any a, b ∈ R and
k ∈ N, is given by

(a)kb :=

k−1∏
j=0

(a + jb).

Definition 2.2. Consider the dynamical system ẋ = v,with x ∈ R3.

• The vector field v is said to be potential, or locally potential if
∇ ×v = 0 for all x ∈ R3. The system is named non-potential,
otherwise, see [30, page 1].

• A vector field v which derives from the gradient of a func-
tion is called lamellar (also known as gradient, or globally
potential) vector field. The function is called the potential
function. It follows that a vector field is lamellar if and only
if the system is potential, see [11, page 23] and [30, page 1].

• The three-dimensional vector field v which has the represen-
tation of the form v = f∇g, in which f and g are functions,
is named complex lamellar. The vector field v is complex
lamellar if and only if v · (∇ × v) = 0, that is, this type of
vector field is orthogonal to its curl, see [11, page 23].

2.2. Poisson structure

As mentioned, the algebra of the first integral for F is spanned
by
⟨
xl+1(y2 + z2)k−l+1

⟩1⩽l+k
−1⩽l⩽k. In what follows, we extend this al-

gebra to the Poisson structure for F by equipping it with an ap-
propriate Poisson bracket. In accordance with this Poisson algebra,
one representation of any vector fields in F by the Hamiltonian
equation is given.

Performing the change of variable r = ρ2 into the vector field
given by (2.4) we obtain

F l
k = xlrk−l

(
(k − l + 1)x

∂

∂x
− (l + 1)r

∂

∂r

)
. (2.6)

Now, define

P :=

{∑
c lkf

l
k | −1 ⩽ l ⩽ k

}
, (2.7)

where f lk := xl+1rk−l+1 is the first integral of F l
k. Now, we have the

following result.

Theorem 2.3. Consider the vector field F l
k given by (2.6) and the

algebra P given by (2.7). The following statements hold.

1. (P, {·, ·}) is Poisson algebra where the Poisson bracket is given
by

{f , g} :=
∂

∂r
f

∂

∂x
g −

∂

∂r
g

∂

∂x
f , for all f , g ∈ P. (2.8)

2. Hamilton’s equations of F l
k are

F l
k = {f lk, x}

∂

∂x
+ {f lk, r}

∂

∂r
. (2.9)

3. (P, {·, ·}) and (F , [·, ·]) are isomorphic Lie algebras where Lie
isomorphism is defined by ϕ : (P, {·, ·}) → (F , [·, ·]), with
ϕ(f lk) = F l

k.

Proof. One can readily check that (P, {·, ·}) is a Poisson algebra
(see [31, Section 5] and [5, Chapter one ]). A direct calculation
using the Hamiltonian function given by the first item and Poisson
bracket given by (2.8) establish (2.9) (see also preface of [5]). The
last claim follows from the straightforward calculation of structure
constants given by (2.8) and [1, Lemma 2.5]. □
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Corollary 2.4. The class of Hopf-zero singular system given by (2.1)
may be represented through appropriate coordinates transformations
to the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

=
∂H(x, r)

∂r
= {H(x, r), x},

dr
dt

= −
∂H(x, r)

∂x
= {H(x, r), r},

dθ
dt

= G(x, r),

(2.10)

where H(x, r) :=
∑

alkx
l+1rk−l+1 is a constant of the motion and

G(x, r) := 1 +
∑

bmn x
mrn−m.

Proof. The corollary can be verified in two ways: (1) recast the
dynamical system (1.1) by employing the coordinate change r =

ρ2. Then, taking Hamilton’s equations corresponding to F l
k given

by Eq. (2.9) into account, immediately verify the statement of the
corollary. Then (2) follows from [1, Remark 2.4] and the procedure
given in the proof of [3, Theorem 2.2] with the slight modification.
In fact, replace J by 2J, into that proof. First by employing the
change of variables y = ρ cos(θ ), z = ρ sin(θ ), and x = x, the
differential equation (2.1) goes over into the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx
dt

=
∂K (x, ρ)
2J∂ρ

,

dρ
dt

= −
∂K (x, ρ)
2J∂x

,

dθ
dt

= G(x, ρ),

where J = ρ is the Jacobian of the cylindrical transformation,
K (x, ρ) :=

∑
alkx

l+1ρ2(k−l+1), and G(x, ρ) := 1 +
∑

bmn x
mρ2(n−m).

To proceed further, carrying out the transformation r =
∫
2J = ρ2

into the former system. This turns the above system into the form
given by (2.10), see also [3, Example 3]. The corollary follows. □

2.3. Euler’s form for L

Any solenoidal vector field may be represented by Euler’s form
as

v = h(g1, g2)∇g1 × ∇g2, (2.11)

where h, g1, and g2 are scalar valued functions. We remark that g1
and g2 may not be defined everywhere on the domain of v. The
functions g1 and g2 are first integrals or vector sheets of vector
field v and named Euler’s potentials. The geometrical meaning of
Euler’s form is that the vector lines of solenoidal vector fields are
the intersection of level surfaces of Euler’s potentials, see [11, page
22], Euler’s Theorem [12, page 48], and [16].

In the following result, we express the vector fields inL by local
Euler’s potentials.

Theorem 2.5. The Euler’s forms of F l
k and Θ l

k are given as follows

F l
k = ∇

(
1
2
arctan(

z
y
)
)

× ∇
(
xl+1(y2 + z2)k−l+1) ,

for y ̸= 0, (2.12)

Θ l
k = ∇

(
xl+1)

× ∇

(
−
(
y2 + z2

)k−l+1

2 (l + 1) (k − l + 1)

)
. (2.13)

Proof. We prove this theorem only for F l
k. The proof for Θ l

k can be
done analogously. Due to the solenoidal property of vector fields in
L and Euler’s Theorem [12, page 48], F l

k may be written as (2.11).

Setting the first integrals of F l
k as local Euler’s potentials, in fact,

g1 := xl+1(y2 + z2)k−l+1 and g2 :=
1
2 arctan( zy ). Now, we show that

h(f1, f2) given by (2.11) equals one. By straightforward calculation,
one has

∇

(
1
2
arctan(

z
y
)
)

=
−z

2(y2 + z2)
· ey +

y
2(y2 + z2)

· ez,

∇
(
xl+1(y2 + z2)k−l+1)

= xl(y2 + z2)k−l+1
(
(l + 1)(y2 + z2)

· ex + 2(k − l + 1)xy · ey

+2(k − l + 1)xz · ez
)
.

By taking the cross product of the above vector fields and consid-
ering (2.2) one finds

∇

(
1
2
arctan(

z
y
)
)

× ∇
(
xl+1(y2 + z2)k−l+1)

= F l
k.

This implies that h(f1, f2) = 1 and concludes our assertion. □

2.4. Vector potential for L

Anotherway that solenoidal vector field could be constructed, is
bymeans of the vector potential. These vector fields are expressible
from another vector field by taking its curl. To find more informa-
tion about the physical significant of vector potential, see [32–34].

Theorem 2.6. The vector fields F l
k and Θ l

k could be expressed in the
following form.

F l
k = ∇ ×

(
1
2
xl+1(y2 + z2)k−l(−z · ey + y · ez)

)
,

Θ l
k = ∇ ×

(
−xl

(
y2 + z2

)k−l+1

2(k − l + 1)
· ex

)
.

Proof. The proof follows from [16, Equation 5] and Euler’s form
given by Theorem 2.5. □

The vector potential is not unique since the curl of a gradient
is zero. In the following theorem we use an alternative approach
to construct a vector potential associated to the solenoidal vector
fields F l

k and Θ l
k.

Theorem 2.7. The vector fields F l
k and Θ l

k can be produced in the
following form as

F l
k = ∇ × Al

k, (2.14)

Θ l
k = ∇ × Bl

k, (2.15)

where the vector potentials Al
k and Bl

k are defined as follows

Al
k :=

k−l∑
j=0

y2jz2(k−l−j)+1xl
(

k−l
j

)
2(k − l − j) + 1

×

(
l + 1
2

y · ex + (k − l + 1) x · ey
)

,

Bl
k :=

xl

2(k − l + 1)

(
(y2 + z2)k−l+1

− y2(k−l+1))
· ex −

xl+1y2k−2l+1

l + 1
· ey.

Proof. To prove the theorem, we follow the approach given in
[35]. By solving the equality F l

k = ∇ × Al
k, we obtain the following
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equalities
∂

∂z
Al
k · ex = dy(F l

k), −
∂

∂z
Al
k · ey = dx(F l

k),

∂

∂x
Al
k · ey −

∂

∂y
Al
k · ex = dz(F l

k).
(2.16)

The first identity of (2.16) implies that

Al
k · ex = −

l + 1
2

xl
k−l∑
j=0

(
k−l
j

)
y2j+1z2(k−l−j)+1

2(k − l − j) + 1
+ p1(x, y), (2.17)

analogously the second identity of (2.16) implies that

Al
k · ey = −(k − l + 1)xl+1

k−l∑
j=0

(
k−l
j

)
y2jz2(k−l−j)+1

2(k − l − j) + 1

+ p2(x, y), (2.18)

where p1(x, y) and p2(x, y) are functions. Now by substituting
(2.17) and (2.18) into the last identity of (2.16) one can find,
∂
∂z p1(x, y) −

∂
∂xp2(x, y) = 0. Thus, without loss of generality we

may assume that p1(x, y) = p2(x, y) = 0, the equality (2.14) con-
cludes. By repeating this procedure for Θ l

k we can verify equality
(2.15). □

2.5. Clebsch representation for L

In this part, we shall study the following problems: namely, we
shall study the non-potential property of Hopf-zero singularities
from L , and we shall present an alternative representation that is
the Clebsch representation of any vector fields from L . Based on
this representation for a given vector field v ∈ R3, for any point
x ∈ R3 in which ∇ × v ̸= 0, one can find three scalar valued
functions f1, f2, and f3 such that

v = f1∇f2 + ∇f3. (2.19)

These scalar valued functions are called Clebsch potentials of v.
Noting that f1, f2 and f2 may not be defined everywhere on the
domain of v. Moreover, this representation shows that any vector
fields may be presented by summation of the lamellar field and
complex lamellar field, see Definition 2.2. For those interested in
knowing that how this representation is constructed, we include
the following discussion from the proof of Clebsch’s Theorem
of [12, Section 2.4].

Since ∇ × v is a solenoidal vector field then, there exist local
Euler’s potentials f1 and f2 such that∇×v = ∇f1×∇f2.Making use
of the vector calculus identity we have∇ × (v− f1∇f2) = 0.Hence,
v − f1∇f2 is irrotational vector field, then there exists potential
function f3 such that v − f1∇f2 = ∇f3, see Definition 2.2. Then,
the relation (2.19) follows.

For the Euler’s form (and consequently the representation given
by vector potential) to be possible, the vector field v has to be
solenoidal.We remark that deriving the vector field v fromClebsch
potentials f1, f2, and f3 through the relation (2.19), is not related to
the solenoidal property of vector field v. In fact, any vector field
may be represented in the Clebsch representation, see [12, Section
2.4].

Theorem 2.8. Any v ∈ L with Hopf-zero singularity is the non-
potential vector field.

Proof. Recall from [1], the grading function for generators of L

given by δ(Flk) = δ(Θ l
k) = k. Suppose that the non-zero Hopf-zero

vector field v =
∑

∞

j=0vj ∈ L where δ(vj) = j is given. Assume
that the claim of the theorem does not hold. Similar to argument

given in [15], since the vector fields with different grades do not
have any monomial in common, it implies that ∇ × v = 0 if and
only if ∇ × vj = 0, for all j ∈ N0. Thus without loss of generality, it
suffices to show that ∇ × vj = 0. Taking into account the defined
grading function, the vector field vj may be represented by

vj :=

⌊
j
2 ⌋∑

i=−1

aiF i
j +

⌊
j
2 ⌋∑

i=0

biΘ i
j ,

where ai and bi are real constants for all i. Applying the curl
operator to vj yields

∇ × vj =

⌊
j
2 ⌋∑

i=−1

(0, 0, ai
i(i + 1)

2
xi−1ρ2(j−i)+1

+ 2ai(j − i)(j − i + 1)xi+1ρ2(j−i)−1)

−

⌊
j
2 ⌋∑

i=0

(
ibixi−1ρ2(j−i), 0, 2(j − i + 1)bixiρ2(j−i)−1) .

Hence, the only way that the foregoing relation vanishes is either
vj = 0 or v0 = x ∂

∂x −
1
2ρ

∂
∂ρ

. This implies that either v = 0 or the
vector field is not Hopf-zero singularity, which is in contradiction
to our assumption. Hence, the claim is proved. □

In the terminology of Definition 2.2, this result shows that the
solenoidal family of Hopf-zero singularities are not lamellar vector
fields. In this sense, these vector fields cannot be expressed by the
gradient of the scalar valued function. In what follows, the Clebsch
representation of L is given.

Theorem 2.9. The following hold.

• For given F l
k ∈ F there exist Clebsch potentials f1, f2, and f3 such

that

F l
k = f1∇f2 + ∇f3, (2.20)

where for l ̸= 0,

f1 := xl,

f2 := −
(l + 1)

4(k − l + 1)

(
y2 + z2

)k−l+1

−
(k − l + 1)

l
x2
(
y2 + z2

)k−l
, (2.21)

f3 :=
1
l

(
y2 + z2

)k−l
(k − l + 1) xl+2.

Otherwise

f1 := −x, f2 := (k + 1)x(y2 + z2)k,

f3 := −(k + 1)x2(y2 + z2)k +
1

4(k + 1)
(y2 + z2)k+1.

• For each vector field Θ l
k ∈ T there exist local Clebsch potential

g1 and global Clebsch potentials g2, g3 as follows

g1 :=
z
y
, g2 := y2xl

(
y2 + z2

)k−l
,

g3 := −yzxl
(
y2 + z2

)k−l
, for y ̸= 0,

such that

Θ l
k = g1∇g2 + ∇g3.

Proof. Following the discussions at the beginning of this part, first
we need to find the Euler’s form for ∇ × F l

k. Writing ∇ × Flk, given
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by the preceding theorem using Cartesian coordinates gives

∇ × F l
k =

(
y2 + z2

)k−l−1
xl−1

(
l(l + 1)

2

(
y2 + z2

)
+ 2 (k − l) (k − l + 1) x2

)
(z · ey − y · ez).

Suppose that l ̸= 0, then by straightforward calculation one can
verify that∇ × F l

k = ∇f1 ×∇f2, where f1, f2 are given by Eq. (2.21).
In order that (2.20) to be true the following equalities must hold

dx(F l
k) − f1∇f2 · ex = ∇f3 · ex, (2.22)

dy(F l
k) − f1∇f2 · ey = ∇f3 · ey. (2.23)

Eq. (2.22) follows after some computations that

f3 = xl
(
y2 + z2

)k−l
(

(k − l + 1) x2

l + 1
−

y2 + z2

4(k − l + 1)

)
+ h(y, z).

Substituting f3 in (2.23) results inh(y, z) = 0. In thisway,weobtain
the expression (2.20). If l = 0 one can check that

F 0
k = (y2 + z2)k

(
(k + 1)x · ex −

1
2
y · ey −

1
2
z · ez

)
= −x∇

(
(k + 1)x(y2 + z2)k

)
+ ∇

(
−(k + 1)x2(y2 + z2)k +

1
4(k + 1)

(y2 + z2)k+1
)

.

The proof for Θ l
k is analogous to the proof of F l

k. □

3. Solenoidal conservative Z2-equivariant Lie algebra

In this section, we shall introduce the solenoidal conserva-
tive Lie algebra associated to the classical normal form of Hopf-
pitchfork singularities (1.1). We also recall the theory of unique
normal form at the end of this part.

To start, we recall the following definition from [36, Chapter
XII].

Definition 3.1. Let ẋ = v with x ∈ Rn, be an autonomous
dynamical system where v, is smooth. Let Γ , be a compact Lie
group in Gl(n). This system is called Γ -equivariant if v(γ x) = γ v

for all γ ∈ Γ and x ∈ Rn.

Define

Hl
k := (k − 2l + 1)x2l+1ρ2(k−2l) ∂

∂x

−
(2l + 1)

2
x2lρ2(k−2l)+1 ∂

∂ρ
, (3.1)

Θ l
k := x2lρ2(k−2l) ∂

∂θ
, (3.2)

where 0 ⩽ 2l ⩽ k. These vector fields are invariant under the linear
map

R3
→ R3

: (x, y, z) ↦→ (−x, −y, −z). (3.3)

However, the foregoing vector fields are Z2-equivariant version of
those that are given by Eqs. (2.4) and (2.5), in order to avoid any
confusion, wewould like to change the notations. Thereby, instead
of F-terms and Θ-terms we shall write H-terms and Θ-terms.

Denote

FZ2 :=

⟨∑
alkH

l
k | alk ∈ R, 0 ⩽ 2l ⩽ k, 1 ⩽ k

⟩
(3.4)

and

T Z2 :=

⟨∑
blkΘ

l
k | blk ∈ R, 0 ⩽ 2l ⩽ k, 0 ⩽ k

⟩
. (3.5)

Then we define the maximal Lie algebra of solenoidal conservative
Z2-equivariant classical normal form of Hopf-zero vector fields
by L Z2 := FZ2 ⊕ T Z2 . Since L Z2 is a Lie subalgebra of L ,

thenL Z2 inherits the geometrical properties such as conservation,
incompressibility, and rotationality, from L . See also [1, Theorem
2.4].

Our next task is to present the structure constants for L Z2 .

Lemma 3.2. The following relations always hold.

[Hl
k,H

m
n ] = ((2m + 1)(k + 2) − (2l + 1)(n + 2))Hl+m

k+n,

[Hl
k, Θm

n ] = (2m(k + 2) − n(2l + 1)) Θ l+m
k+n ,

[Θ l
k, Θm

n ] = 0.

Proof. The proof follows from [1, Lemma 2.5]. □

The following specific cases of preceding result will be useful in
the rest of the paper.

[H0
1,H

m
n ] = (6m − n + 1)Hm

n+1, (3.6)

[H0
1, Θm

n ] = (6m − n) Θm
n+1. (3.7)

The remainder of this section is devoted to revisiting a concise
but detailed outline of the theory and method concerning finding
the unique normal form for Γ -equivariant singularities.

• Denote ad(u)v for ad(u)v = uv − vu, where u and v are two
arbitrary vector fields.

• Denote L Γ for the space of all Γ -equivariant vector fields.
• Denote Lk

Γ for the space of Γ -equivariant graded Lie alge-
bra with grade k. Γ -equivariant graded Lie algebra means
that ad(vi)vj ∈ Li+j

Γ , for arbitrary vi ∈ Li
Γ and vj ∈ Lj

Γ .

Consider the differential equation vs =
∑

∞

i=0vi, where vs ∈

L Γ . First, we define a linearmap to find the first level normal form
as follows

dk,1s : Lk
Γ

→ Lk
Γ ,

dk,1s (Yk) := ad(Yn)v0.

The first level normal form is given by v(1)
=
∑

∞

i=0v
(1)
i , where

v
(1)
i ∈ Ck,1 for all i and Ck,1 is the complement space to Im (dk,1s ).

Note that in order to preserve the symmetric structure of vs, the
transformations should be taken from Lk

Γ . Proceeding induc-
tively, we define

dk,ns : Lk
Γ

× ker dk,n−1
s → Lk

Γ ,

dk,ns (Y k
s , Y k−1

s , . . . , Y k−n+1
s ) :=

n−1∑
i=0

ad(Y k−i
s )vi, for any n ⩽ k.

Then, there exists the complement subspace Ck,n such that Im (dk,ns )
⊕ Ck,n

= Lk
Γ , where Ck,n follows the normal form style. Then the

n-level normal formof vs is givenbyws =
∑

∞

i=0wi,wherewi ∈ Ck,n

for all i. For the more detailed treatment of this theory, we refer to
[37,18,17] and [19, sections 9-13].

4. Normal form

In this section, we examine the unique normal form of dynam-
ical system (1.1). We closely follow the approach in [21,6,1]. In
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terms of H-terms andΘ-terms as introduced in (3.1) and (3.2), this
system leads to the following expression

w(1)
:= Θ0

0 + b01Θ
0
1 + a01H

0
1 +

∑
alkH

l
k +

∑
blkΘ

l
k,

for 0 ⩽ 2l ⩽ k, 1 ⩽ k, (4.1)

where a01 ̸= 0, alk, and blk are real constants which could be
computed explicitly in terms of the coefficients of the original sys-
tem using our Maple program. We shall depart from the foregoing
system.

Lemma4.1. Given the dynamical system defined by (4.1), there exists
a sequence of Z2-equivariant transformations that send the system to
the following second level normal form

w(2)
:= Θ0

0 + b(2)0 Θ0
1 + a(2)1 H0

1 +

∞∑
i=1

a(2)i Hi
2i +

∞∑
i=1

b(2)i Θ i
2i, (4.2)

in which all of the coefficients are real constants.

Proof. Let δ be grading function defined by δ(Hm
n ) := n, δ(Θm

n ) :=

n + 1. Using the structure constants given by (3.6) and (3.7) one
can deduce that Ck,2

= span{Θ0
1 ,H

m
2m, Θm

2m | m ⩾ 1} for any k ⩾ 1
and the lemma follows. □

Similar to [1], one can remove Θ0
0 using the linear change of

variables, for further details, see [17, Lemma 5.3.6] and [21]. In
what follows, we intend to simplify the second level normal form;
w(2). First, nonetheless, we need some notational conventions.

Suppose that there exists a non-zero Hl
2l in w(2) for some l and

there exists a non-zero Θk
2k in w(2) for some k. Then, define

r := min{l | a(2)l ̸= 0, l ⩾ 1}, s := min{k | b(2)k ̸= 0, k ⩾ 1}.

Define the following grading function

δ(Hm
n ) := r(n − 2m) + m, δ(Θm

n ) := r(n − 2m) + r + m + 1.

Let us denote the leading order term of (4.2) by Hr. According to
the above grading function, we have that

Hr := H0
1 + a(2)r Hr

2r. (4.3)

This vector field plays a prominent role in the sequel. By perform-
ing re-scaling x in (4.2) as

x →

⏐⏐⏐⏐ ara(2)r

⏐⏐⏐⏐ 1
2r

x,

then Hr could be replaced by

Hr := H0
1 + arHr

2r, (4.4)

which implies that ar could be taken as an arbitrary real constant.
Henceforth, for simplicity, we set ar = 1.

For further reduction of (4.2), the following lemma is quite
useful.

Lemma 4.2. For each Hm
n ∈ FZ2 and Θm

n ∈ T Z2 there exist
transformations Hm

n andRm
n , such that the following hold.

[Hm
n ,Hr] + Hm

n =
(−1)n(4mr − 2nr + 4m − n + 1)n−2m

4r+1

(6m − n + 2)n−2m
4r+1

×Hnr+m−2mr
2(nr+m−2mr), (4.5)

[Rm
n ,Hr] + Θm

n =
(−1)n(4mr − 2nr + 4m − n + 2r + 1)n−2m−1

4r+1

2(6m − n + 1)n−2m−1
4r+1

× Θnr+m−2mr
2(nr+m−2mr). (4.6)

Proof. Define

Hm
n :=

n−2m−1∑
j=0

(−1)j+1(4mr − 2nr + 4m − n + 1)j4r+1

(6m − n + 2)j+1
4r+1

Hjr+m
2jr−j+n−1,

Rm
n :=

n−2m−1∑
j=0

(−1)j+1(4mr − 2nr + 4m − n + 2r + 1)j4r+1

2(6m − n + 1)j+1
4r+1

× Θ
jr+m
2jr−j+n−1.

Then, substitute the previous transformations into the left hand
side of (4.5) and (4.6), respectively. The right hand side could be
obtained readily. □

The following theorem is the main result of this section.

Theorem4.3. The unique normal form of system (1.1) under assump-
tion a01 ̸= 0 is given by

w(∞)
:= Θ0

0 + H0
1 + Hr

2r + b0Θ0
1 +

∞∑
i=r+1

aiHi
2i +

∞∑
i=s

biΘ i
2i, (4.7)

or equivalently in the cylinder coordinates w(∞) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= 2xρ2
+ x2r+1

+

∞∑
i=r+1

aix2i+1,

dρ
dt

= −
1
2
ρ3

−
(2r + 1)

2
x2rρ −

∞∑
i=r+1

(2i + 1)
2

aix2iρ,

dθ
dt

= 1 + b0ρ2
+ bsx2s +

∞∑
i=s+1

bix2i,

where bi = 0 for all i≡4r+1(s+r) and s ̸≡4r+1 0. The corresponding
first integral of the unique normal form is given by

s(∞)(x, ρ) := xρ4
+ ρ2x2r+1

+

∞∑
i=r+1

aiρ2x2i+1. (4.8)

Proof. Due to special structure constants given by Eqs. (3.6) and
(3.7) we conclude that the generators of ker(adH0

1
) are {Hk

6k+1, Θk
6k}

for all k ∈ N. Applying the method given at the end of Section 3
and using Lemma 4.2, we have that

[Hk
6k+1,H

r
2r] + [Hr+k

2r+6k+1,Hr ] =
(4r + 1)(−2k)4k+2

1

(4k + 1)!
×H4rk+k+2r

8rk+2k+4r = 0,

[Hk
6k+1, Θs

2s] + [Rs+k
6k+2s+1,Hr ] =

−2s (2k + 1) (2s − 2k − 8rk)4k4r+1

(4s)4k4r+1

× Θ4rk+k+s+r
8rk+2k+2s+2r.

Thus, the above relations imply that Hk
6k+1 cannot eliminate any

H-terms and Θm
2m ∈ Im (dm,s+1

s ) for any m ≡4r+1(r + s), where
s ̸≡4r+1 0. Furthermore, one has

[Θk
6k,H

r
2r] + [Rk+s

6k+2s,Hr ]

=
−k (4r + 1) (1 − 2k)4k−1

1

(4k − 1)!
Θ4rk+k+2r

8rk+2k+4r = 0,

which turns out that Θk
6k generates a symmetry for the unique

normal form of (1.1). This completes the proof. □

We close this section by giving four representations of (4.7)
based on the given discussions in Section 2.

Theorem 4.4. The unique normal form of (1.1) can be expressed in
the following representations.
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1. The unique normal form can be presented in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

=
∂H(x, r)

∂r
,

dr
dt

= −
∂H(x, r)

∂x
,

dθ
dt

= 1 + b0ρ2
+ bsx2s +

∞∑
i=s+1

bix2i,

in which H(x, r) := xr2 + arrx2r+1
+
∑

∞

i=r+1aix
2i+1r and

r = ρ2.
2. Euler’s form for y ̸= 0

w(∞)
=

1
2
∇
(
x(y2 + z2)2

)
× ∇

(
arctan(

z
y
)
)

−
1
2
∇
(
y2 + z2

)
× ∇x +

b0
4

∇
(
(y2 + z2)2

)
× ∇x

+

∞∑
i=r

ai
2

∇
(
(y2 + z2)x2i+1)

× ∇

(
arctan(

z
y
)
)

−

∞∑
i=s

bi
2(2i + 1)

∇
(
(y2 + z2)

)
× ∇

(
x2i+1) .

3. Vector potential

w(∞)
= ∇ × A,

where

A = −
1
2
x(y2 + z2)(z · ey − y · ez) −

1
2
(y2 + z2)

· ex −
b0(y2 + z2)2

4
· ex

−

∞∑
i=r

ai
2
zx2i+1 (ey + y · ez

)
−

∞∑
i=s

bi
2
(y2 + z2)x2i · ex.

4. Monge representation or Clebsch representation for y ̸= 0

w(∞)
= −

(
∇

(
x2 −

1
4
(y2 + z2)

)
+ x∇x

)
−

(
∇
(
zy(y2 + z2)

)
−

z
y
∇
(
y2
(
y2 + z2

)))
−

(
∇ (zy) −

z
y
∇
(
y2
))

+

∞∑
i=r

ai

(
1
2i

∇
(
x2i+2)

− x2i∇
(
1
4

(2 i + 1)
(
y2 + z2

)
+

1
2i

x2
))

−

∞∑
i=s

bi

(
∇
(
zyx2i

)
−

z
y
∇
(
y2x2i

))
.

For all representations given above the constants bi for all i ∈ N0,
satisfy the conditions that are given in Theorem 4.3.

Proof. FollowCorollary 2.4, Theorems2.5, 2.6 and2.9, respectively.
See [15] for the relevant result. □

5. Practical formulas

In this section, we would like to give some fruitful formu-
las which are fundamentally significant for applications. First,
some necessary relations between the coefficients of given Hopf-
pitchfork differential system are provided. These relations guaran-
tee that the classical normal form of the given system up to third
order belongs toL Z2 . Then, several formulas for the unique normal
form’s coefficients of the system w ∈ L Z2 are given. Note that all

of the results in this part are valid up to third order truncation. It
is quite possible to derive these computations for any finite order
using ourMaple program. Finally, we illustrate our results with the
modified Chua’s circuit.

Consider the Hopf-pitchfork differential system governed by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

=

∑
ai,j,kxiyjzk,

dy
dt

= z +

∑
bi,j,kxiyjzk,

dz
dt

= −y +

∑
ci,j,kxiyjzk,

(5.1)

where i + j + k = 3 and the monomials xiyjzk are assumed to be
odd functions. If the following relations between the coefficients
of cubic terms of system (5.1) hold, then the classical normal form
of this system up to third order belongs to L Z2 .

a1,0,2 = −2c0,2,1 − 6c0,0,3 − 6b0,3,0 − 2b0,1,2 − 2a1,2,0, (5.2)

c2,0,1 = −b2,1,0 − 3a3,0,0. (5.3)

Following Theorem 4.3, the unique normal form of (5.1) under the
above conditions is as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

= a02xρ2
+ a1x3,

dρ
dt

= −
a0
2

ρ3
− a1

3
2
x2ρ,

dθ
dt

= 1 + b0ρ2
+ b1x4,

where the coefficients of previous system are given explicitly by

a0 :=
−1
4

(c0,2,1 + 3c0,0,3 + 3b0,3,0 + b0,1,2),

b0 :=
1
8
(−3c0,3,0 − c0,1,2 + b0,2,1 + 3b0,0,3),

a1 := a3,0,0, b1 := −
1
2
(c2,1,0 + b2,0,1).

The above relations, Eqs. (5.2), and (5.3) are obtained using our
Maple program and employing beneficial formulas regarding the
coefficients of the classical normal form of Hopf-zero singularities
derived in [22].

We finish with an example.

Example 5.1. Consider modified Chua’s oscillator defined by the
set of ordinary differential equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dt

= −γ x − βy,

dy
dt

= z − y + x + µ1z2y,

dz
dt

= α
(
−cz + y − az3

)
+ µ2z2y.

(5.4)

This system possesses the Z2-symmetry given in (3.3). If one puts
(µ1, µ2) = (0, 0) in (5.4), then one gets the Chua’s oscillator.
The linearization of this system at origin has eigenvalues 0, ±iω0
when

(c, β) =

(
−

γ + 1
α

, −
γ (α + γ + 1)

γ + 1

)
,

(γ + 1)3 + α (2γ + 1)
γ + 1

> 0,

(5.5)

where ω2
0 := −

(γ+1)3+α(2γ+1)
γ+1 , a ̸= 0, α ̸= 0, and γ ≈ 0,

see [38,22]. The following linear transformations and rescaling the
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time

x →
(γ + 1)

(α + γ + 1) γ

(
ω0 (γ + 1) x +

(
α + (γ + 1)2

)
y

−
γα

γ + 1
z
)
,

y →
(γ + 1)

(α + γ + 1)

(
ω0

γ
x + y + z

)
,

z → y + z,
t → ω0t,

bring the linear part of (5.4) to the Jordan canonical form. If in
addition to the conditions already cited (5.5), we require

µ1 :=
3ω0α

2a
(
2α + (γ + 1)2

)(
2α − (γ + 1)2

) (
α − 2(γ + 1)2

) ,
µ2 :=

3ω0α
2a (γ + 1)

(
3α − (γ + 1)2

)(
2α − (γ + 1)2

) (
α − 2(γ + 1)2

) ,
where α ̸= 2(γ + 1)2, then the classical normal form of modified
Chua’s oscillator up to third order belongs to L Z2 . The previous
relations are derived with the aid of Eqs. (5.2) and (5.3). Following
Theorem 4.3, the unique normal form of (5.4) is given by

C (∞)
:=

α3a(α + (γ + 1)2)
ω0(α + γ + 1)

(
2α − (γ + 1)2

)
×

(3(γ + 1)
2γ

H0
1 +

2αγ

(γ + 1)(α + γ + 1)
H1

2

)
+

3α3a
(
(4γ + 5)(γ + 1)2 + α(3γ + 5)

)
2(α + γ + 1)

(
2α − (γ + 1)2

) (
α − 2(γ + 1)2

)
×

( (γ + 1)2

4γ
Θ0

1 +
α

(α + γ + 1)
Θ1

2

)
.

We refer the reader to [1] for relevant results.
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