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Abstract. We introduce refutationally complete superposition calculi
for intentional and extensional λ-free higher-order logic, two formalisms
that allow partial application and applied variables. The calculi are
parameterized by a term order that need not be fully monotonic, mak-
ing it possible to employ the λ-free higher-order lexicographic path and
Knuth–Bendix orders. We implemented the calculi in the Zipperposition
prover and evaluated them on TPTP benchmarks. They appear promis-
ing as a stepping stone towards complete, efficient automatic theorem
provers for full higher-order logic.

1 Introduction

Superposition is a highly successful calculus for reasoning about first-order logic
with equality. We are interested in graceful generalizations to higher-order logic:
calculi that, as much as possible, coincide with standard superposition on first-
order problems and that scale up to arbitrary higher-order problems.

As a stepping stone towards full higher-order logic, in this paper we restrict
our attention to a λ-free fragment of higher-order logic that supports partial
application and application of variables (Sect. 2). This formalism is expressive
enough to permit the axiomatization of higher-order combinators such as powτ :
nat → (τ→ τ) → τ→ τ:

pow 0 h ≈ id pow (S n) h x ≈ h (pow n h x)

Conventionally, functions are applied without parentheses and commas, and vari-
ables are italicized. Notice the variable number of arguments to pow and the
application of h. The expressiveness of full higher-order logic can be recovered
by introducing SK-style combinators to represent λ-abstractions and proxies for
the logical symbols [24,32].

A widespread technique to support partial application and application of
variables in first-order logic is to make all symbols nullary and to represent
c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 28–46, 2018.
https://doi.org/10.1007/978-3-319-94205-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_3&domain=pdf


Superposition for Lambda-Free Higher-Order Logic 29

application of functions of type τ→ υ by a family of binary symbols appτ,υ. Fol-
lowing this scheme, the higher-order term f (h f) is translated to app(f, app(h, f)),
which can be processed by first-order methods. We call this the applicative encod-
ing. The existence of such a reduction explains why λ-free higher-order terms
are also called “applicative first-order terms.” Unlike for full higher-order logic,
most general unifiers are unique for our λ-free fragment, just as they are for
applicatively encoded first-order terms.

Although the applicative encoding is complete [24] and is employed fruitfully
in tools such as Sledgehammer [9,27], it suffers from a number of weaknesses, all
related to its gracelessness. Transforming all the function symbols into constants
considerably restricts what can be achieved with term orders; for example, argu-
ment tuples cannot be compared using different methods for different symbols.
In a prover, the encoding also clutters the data structures, slows down the algo-
rithms, and neutralizes the heuristics that look at the terms’ root symbols. But
our chief objection is the sheer clumsiness of encodings and their poor integration
with interpreted symbols. And they quickly accumulate; for example, using the
traditional encoding of polymorphism relying on a distinguished binary function
symbol t [8, Sect. 3.3] in conjunction with the applicative encoding, the term S x
becomes t(nat, app(t(fun(nat, nat),S), t(nat, x))).

Hybrid schemes have been proposed to strengthen the applicative encoding:
If a given symbol always occurs with at least k arguments, these can be passed
directly [27]. However, this relies on a closed-world assumption: that all terms
that will ever be compared arise in the input problem. This noncompositionality
conflicts with the need for complete higher-order calculi to synthesize arbitrary
terms during proof search [6]. As a result, hybrid encodings are not an ideal
basis for higher-order automated reasoning. Instead, we propose to generalize the
superposition calculus to intensional and extensional λ-free higher-order logic.
In the extensional version of the logic, the property (∀x. h x ≈ k x) −�→ h ≈ k
holds for all functions h,k of the same type. For each logic, we present two calculi
(Sect. 3). The intentional calculi perfectly coincide with standard superposition
on first-order clauses; the extensional calculi depend on an extra axiom.

Superposition is parameterized by a term order, which prunes the search
space. If we assume that the term order is a simplification order enjoying totality
on ground terms, the standard calculus rules and completeness proof can be lifted
verbatim. The only necessary changes concern the basic definitions of terms
and substitutions. However, there is one monotonicity property that is hard to
obtain unconditionally: compatibility with arguments. It states that s′ � s implies
s′ t � s t for all terms s, s′, t such that s t and s′ t are well typed. We recently
introduced graceful generalizations of the lexicographic path order (LPO) [11]
and the Knuth–Bendix order (KBO) [3] with argument coefficients, but they
both lack this property. For example, given a KBO with g � f, it may well be
that g a ≺ f a if f has a large enough multiplier on its argument.

Our calculi are designed to be refutationally complete for such nonmonotonic
orders (Sect. 4). To achieve this, they include an inference rule for argument con-
gruence, which derives C ∨ s x ≈ t x from C ∨ s ≈ t. The redundancy criterion



30 A. Bentkamp et al.

is defined in such a way that the larger, derived clause is not subsumed by the
premise. In the completeness proof, the most difficult case is the one that nor-
mally excludes superposition at or below variables using the induction hypothe-
sis. With nonmonotonicity, this approach no longer works, and we propose two
alternatives: Perform some superposition inferences onto higher-order variables,
or “purify” the clauses to circumvent the issue. We refer to the corresponding
calculi as nonpurifying and purifying. Detailed proofs are included in a technical
report [5], together with more explanations and examples.

The calculi are implemented in the Zipperposition prover [17] (Sect. 5).
We evaluate them on TPTP benchmarks [39,40] and compare them with the
applicative encoding (Sect. 6). We find that there is a substantial cost associated
with the applicative encoding and that the nonmonotonicity is not particularly
expensive.

2 Logic

Refutational completeness of calculi for higher-order logic (also called simple
type theory) is usually stated with respect to Henkin semantics [6,22], in which
the universes used to interpret functions need only contain the functions that
can be expressed as terms. Since the terms of λ-free higher-order logic exclude
λ-abstractions, in “λ-free Henkin semantics” the universes interpreting functions
can be even smaller. Unlike other higher-order logics, there are no comprehen-
sion principles, and we disallow nesting of Boolean formulas inside terms, as a
convenient intermediate step on our way towards full higher-order logic.

Problematically, in a logic with applied variables but without Hilbert choice,
skolemization is unsound, unless we make sure that Skolem symbols are suitably
applied [28]. We achieve this using a hybrid logic that supports both manda-
tory (uncurried) and optional (curried) arguments. Thus, if symbol sk takes two
mandatory and one optional arguments, sk(x, y) and sk(x, y) z are valid terms.
Nevertheless, as in our earlier work [3,11], we use the adjective “graceful” in the
strong sense that we can exploit optional arguments, identifying the first-order
term f(x, y) with the curried higher-order term f x y.

A type τ, υ of λ-free higher-order logic is either an element ι of a fixed set of
atomic types or a function type τ→ υ of functions from type τ to type υ. In our
hybrid logic, a type declaration for a symbol is an expression of the form τ̄n ⇒ τ
(or simply τ if n = 0). We write ān or ā to abbreviate the tuple (a1, . . . , an) or
product a1 × · · · × an, for n ≥ 0.

We fix a set V of typed variables, denoted by x : τ or x. A signature consists
of a nonempty set Σ of symbols with type declarations, written as f : τ̄⇒ τ or f.
We reserve the letters s, t, u, v for terms and x, y, z for variables and write : τ to
indicate their type. The set of λ-free higher-order terms T X

Σ over X is defined
inductively. Every variable in X ⊆ V is a term. If f : τ̄n ⇒ τ and ui : τi for all
i ∈ {1, . . . , n}, then f(ūn) : τ is a term. If t : τ → υ and u : τ, then t u : υ is a
term, called an application. Non-application terms ζ are called heads. Terms can
be decomposed in a unique way as a head ζ applied to zero or more arguments:
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ζ s1 . . . sn or ζ s̄n (abusing notation). Substitution and unification are generalized
in the obvious way, without the complexities associated with λ-abstractions; for
example, the most general unifier of x b z and f a y c is {x �→ f a, y �→ b, z �→ c},
and that of h (f a) and f (h a) is {h �→ f}.

Formulas ϕ, ψ are of the form ⊥, �, ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ −�→ ψ, t ≈τ s, ∀x. ϕ, or
∃x. ϕ, where t, s are terms and x is a variable. We let s �≈ t abbreviate ¬ s ≈ t.
We normally view equations s ≈ t as unordered pairs and clauses as multisets of
such (dis)equations.

Loosely following Fitting [20], an interpretation J = (U,E , J ) consists of a
type-indexed family of nonempty sets Uτ, called universes; a family of functions
Eτ,υ : Uτ→υ → (Uτ → Uυ), one for each pair of types τ, υ; and a function J that
maps each symbol with type declaration τ̄n ⇒ τ to an element of Uτn → Uτ. An
interpretation is extensional if Eτ,υ is injective for all τ, υ. Both intensional and
extensional logics are widely used. The semantics is standard if Eτ,υ is bijective.
A valuation ξ is a function that maps variables x : τ to elements of Uτ.

For an interpretation (U,E , J ) and a valuation ξ, the denotation of a term
is defined as follows: �x�ξJ = ξ(x); �f(t̄)�ξJ = J (f)(�t̄�ξJ ); �s t�ξJ = E(�s�ξJ )(�t�

ξ
J ). The

truth value �ϕ�ξJ ∈ {0, 1} of a formula ϕ is defined as in first-order logic. The
interpretation J is a model of ϕ, written J |= ϕ, if �ϕ�ξJ = 1 for all valuations ξ.

3 The Inference Systems

We introduce four versions of the superposition calculus, varying along two axes:
intentional versus extensional, and nonpurifying versus purifying. To avoid rep-
etitions, our presentation unifies them into a single framework.

3.1 The Inference Rules

The calculi are parameterized by a partial order � on terms that is well founded,
total on ground terms, and stable under substitutions and that has the subterm
property. It must also be compatible with function contexts, meaning that t′ � t
implies both f(s̄, t′, ū) v̄ � f(s̄, t, ū) v̄ and s t′ ū � s t ū. On the other hand, it
need not be compatible with optional arguments: s′ � s need not imply s′ t � s t.
Function contexts are built around argument subterms, defined as the reflexive
transitive closure of the relation inductively specified by f(s̄) t̄ � si and ζ t̄ � ti for
all i. We write s〈u〉 to indicate that the subterm u of s[u] is an argument subterm.
For example, f and f a are subterms of f a b, but not argument subterms. The
literal and clause orders are defined as multiset extensions in the usual way.

Literal selection is supported. The selection function maps each clause C to
a subclause of C consisting of negative literals. A literal L is (strictly) eligible in
C if it is selected in C or there are no selected literals in C and L is (strictly)
maximal in C.
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We start with the extensional nonpurifying calculus, which consists of
five rules:

D
︷ ︸︸ ︷

D′ ∨ t ≈ t′
C

︷ ︸︸ ︷

C′ ∨ [¬] s〈u 〉 ≈ s′
Sup

(D′ ∨C′ ∨ [¬] s〈t′〉 ≈ s′)σ

C′ ∨ s′ ≈ t′ ∨ s ≈ t
EqFact

(C′ ∨ t �≈ t′ ∨ s ≈ t′)σ

C′ ∨ s �≈ s′
EqRes

C′σ

C′ ∨ s ≈ s′
ArgCong

C′ ∨ s x̄ ≈ s′ x̄

C′ ∨ s x̄ ≈ s′ x̄
PosExt

C′ ∨ s ≈ s′

In the first three rules, σ denotes the most general unifier of the two grayed
terms. For Sup, we assume that D’s and C’s variables have been standardized
apart. For Sup, EqFact, and EqRes, the following standard order conditions
apply on the premises after the application of σ: The last literal in each premise
is eligible and even strictly eligible for positive literals of Sup. For the last literal
of each premise of Sup and the last two literals of the premise of EqFact, the
left-hand sides are not smaller than or equal to (��) the respective right-hand
sides. For Sup, Cσ �� Dσ.

Definition 1. A term of the form x s̄n, for n ≥ 0, jells with a literal t ≈ t′ ∈ D
if t = t̃ ȳn and t′ = t̃ ′ ȳn for some t̃, t̃ ′ and distinct variables ȳn that do not occur
elsewhere in D.

We add the following variable condition as a side condition to Sup, to further
prune the search space, using the naming convention from Definition 1 for t̃ ′:

If u has a variable head x and jells with the literal t ≈ t′ ∈ D, there must
exist a ground substitution θ with tσθ � t′σθ and Cσθ ≺ C′′σθ, where
C′′ = C[x �→ t̃ ′].

This condition generalizes the standard condition that u /∈ V. The two coincide if
C is first-order. In some cases involving nonmonotonicity, the variable condition
effectively mandates Sup inferences at variable positions, but never below.

The last two rules are nonstandard. For ArgCong, s ≈ s′ must be strictly
eligible in the premise, and x̄ is a tuple of fresh variables. For PosExt, s x̄ ≈ s′ x̄
must be strictly eligible in the premise, and x̄ is a tuple of distinct variables
that occur nowhere else in the premise. Furthermore, for every function type
τ → υ occurring in the input problem, we introduce a Skolem symbol diffτ,υ :
(τ→ υ)2 ⇒ τ characterized by the following extensionality axiom: h (diff(h, k)) �≈
k (diff(h, k)) ∨ h ≈ k.

The second calculus is the intensional nonpurifying variant. We obtain
it by removing the PosExt rule and the extensionality axiom and by replacing
the variable condition with “if u ∈ V, there exists a ground substitution θ with
tσθ � t′σθ and Cσθ ≺ C[u �→ t′]σθ.” For monotone term orders, this condition
amounts to u /∈ V.

By contrast, the purifying calculi never perform superposition at variables.
Instead, they rely on purification [14,35] (also called abstraction) to circumvent
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nonmonotonicity. The idea is to rename apart problematic occurrences of a vari-
able x in a clause to x1, . . . , xn and to add purification literals x1 �≈ x, . . . , xn �≈ x
to connect the new variables. We must then purify the initial clauses and all
derived clauses.

In the extensional purifying calculus, the purification pure(C) of clause C
is defined as the result of the following iterative procedure. Consider the literals
of C excluding those of the form y �≈ z. If these literals contain both x ū and x v̄ as
distinct argument subterms, replace all argument subterms x v̄ with xi v̄, where
xi is fresh, and add the purification literal xi �≈ x. This calculus variant contains
the PosExt rule and the extensionality axiom. The conclusion E of each rule is
changed to pure(E), except for PosExt, which preserves purity. Moreover, the
variable condition is replaced by “either u has a non-variable head or u does not
jell with the literal t ≈ t′ ∈ D.”

In the intensional purifying calculus, we define pure(C) iteratively as fol-
lows. Consider the literals of C excluding those of the form y �≈ z. If these literals
contain a variable x both applied and unapplied, replace all unapplied occur-
rences of x in C by a fresh variable xi and add the purification literal xi �≈ x. We
remove the PosExt rule and the extensionality axiom. The variable condition
is replaced by “u /∈ V.” The conclusion C of ArgCong is changed to pure(C);
the other rules preserve purity.

Finally, we impose some additional restrictions on literal selection. In the
nonpurifying variants, a literal may not be selected if x ū is a maximal term
of the clause and the literal contains an argument subterm x v̄ with v̄ �= ū. In
the extensional purifying calculus, a literal may not be selected if it contains a
variable that is applied to different arguments in the clause. In the intensional
purifying calculus, a literal may not be selected if the literal contains an unap-
plied variable that also appears applied in the clause.

3.2 Rationale for the Inference Rules

A key restriction of all four calculi is that they superpose only onto argument
subterms, mirroring the requirement that the term order enjoy compatibility
with function contexts. The ArgCong rule then makes it possible to simulate
superposition onto non-argument subterms. However, in conjunction with the
Sup rule, ArgCong can exhibit an unpleasant behavior, which we call argument
congruence explosion:

g ≈ f
ArgCong

g x ≈ f x h a �≈ b
Sup

f a �≈ b

g ≈ f
ArgCong

g x y z ≈ f x y z h a �≈ b
Sup

f x y a �≈ b

In both cases, the higher-order variable h is effectively the target of a Sup infer-
ence. Such derivations essentially amount to superposition at variable positions
(as shown on the left) or even superposition below variable positions (as shown
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on the right), both of which can be extremely prolific. In standard superposi-
tion, the explosion is averted by the condition on the Sup rule that u /∈ V . In
the extensional purifying calculus, the variable condition tests that either u has
a non-variable head or u does not jell with the literal t ≈ t′ ∈ D, which pre-
vents derivations such as the above. In the corresponding nonpurifying variant,
some such derivations may need to be performed when the term order exhibits
nonmonotonicity for the terms of interest.

In the intensional calculi, the explosion can arise even for monotonic orders,
and it must be tamed by heuristics. The reason is connected to the absence
of the PosExt rule (which would be unsound). The variable condition in the
extensional calculi is designed to prevent derivations such as those shown above,
but since it only considers the shape of the clauses, it might also block Sup
inferences whose side premises do not originate from ArgCong. Consider a
left-to-right LPO [11] instance with precedence h � g � f � b � a, and consider
the following unsatisfiable clause set:

g (x b) x ≈ a g (f b) h �≈ a h x ≈ f x

The only possible inference from these clauses is PosExt, showing its necessity.
It is unclear whether PosExt is necessary for the extensional purifying variant as
well, but our completeness proof suggests that it is. Our proof also suggests that
to achieve refutational completeness, due to nonmonotonicity, we need either
to purify the clauses or to allow some superposition at variable positions, as
mandated by the respective variable conditions. However, we have yet to find an
example that demonstrates the necessity of these measures.

A significant advantage of our calculi over the use of standard superposition
on applicatively encoded problems is the flexibility they offer in orienting equa-
tions. The following example gives two definitions of addition on Peano numbers:

addL 0 y ≈ y addR x 0 ≈ x
addL (S x) y ≈ addL x (S y) addR x (S y) ≈ addR (S x) y

Let addL (S100 0) n �≈ addR n (S100 0) be the negated conjecture. With LPO,
we can use a left-to-right comparison for addL’s arguments and a right-to-left
comparison for addR’s arguments to orient all four equations from left to right.
Then the negated conjecture can be simplified to S100 n �≈ S100 n by rewriting
(demodulation), and ⊥ can be derived with a single inference. If we use the
applicative encoding instead, there is no instance of LPO or KBO that can
orient both recursive equations from left to right. For at least one of the two
sides of the negated conjecture, the rewriting is replaced by 100 Sup inferences,
which is much less efficient, especially in the presence of additional axioms.

3.3 Redundancy Criterion

For our calculi, a redundant (or composite) clause cannot simply be defined as
a clause whose ground instances are entailed by smaller (≺) ground instances of
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existing clauses, because this would make all ArgCong inferences redundant.
Our solution is to base the redundancy criterion on a weaker ground logic in
which argument congruence does not hold. This logic also plays a central role
in our completeness proof, to reason about the nonmonotonicity emerging from
the lack of compatibility with optional arguments.

The weaker logic is defined via an encoding � � of ground hybrid λ-free higher-
order terms into uncurried terms, with � � as its inverse. Accordingly, we refer
to clausal λ-free higher-order logic as the ceiling logic and to its weaker relative
as the floor logic. Essentially, the encoding indexes each symbol occurrence with
its argument count. Thus, �f� = f0 and �f a� = f1(a0). This is enough to disable
argument congruence; for example, {f ≈ g, f a �≈ g a} is unsatisfiable, whereas
its encoding {f0 ≈ g0, f1(a0) �≈ g1(a0)} is satisfiable. For clauses built from fully
applied ground terms, the two logics are isomorphic, as we would expect from a
graceful generalization.

Given a signature Σ in the ceiling logic, we define a signature Σ↓ in the floor
logic as follows. For each higher-order type τ, we introduce an atomic type �τ�
in the floor logic. For each symbol f : τ̄k ⇒ τk+1 → · · · → τn → υ in Σ, where
υ is atomic, we introduce symbols fm : �τ̄m� ⇒ �τm+1 → · · · → τn → υ� for
m ∈ {k, . . . , n}. The translation of ground terms is given by �f(ūk) uk+1 . . . um� =
fm(�ūm�). We extend this mapping to literals and clauses by applying it to each
side of a literal and to each literal of a clause. Using � �, the clause order � can
be transferred to the floor logic by defining t � s as equivalent to �t� � �s�. The
property that � on clauses is the multiset extension of � on literals, which in
turn is the multiset extension of � on terms, is maintained because � � maps the
multiset representations elementwise.

Crucially, argument subterms in the ceiling logic correspond to argument
subterms in the floor logic, whereas non-argument subterms in the ceiling logic
are not subterms at all in the floor logic. Well-foundedness, totality on ground
terms, compatibility with all contexts, and the subterm property hold for � in
the floor logic.

In standard superposition, redundancy relies on the entailment relation |=
on ground clauses. We define redundancy of ceiling clauses in the same way, but
using the floor logic’s entailment relation: A ground ceiling clause C is redundant
with respect to a set of ceiling ground clauses N if �C� is entailed by clauses from
�N� that are smaller than �C�. This notion of redundancy gracefully generalizes
the first-order notion without making all ArgCong inferences redundant.

For Sup, EqFact, and EqRes, we can use the more precise notion of redun-
dancy of inferences instead of redundancy of clauses, a ground inference being
redundant if the conclusion follows from existing clauses that are smaller than
the largest premise. For ArgCong and PosExt, we must use redundancy of
clauses.

3.4 Skolemization

A problem expressed in λ-free higher-order logic must be transformed into clausal
normal form before the calculi can be applied. This process works as in the
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first-order case, except for skolemization. The issue is that skolemization, when
performed naively, is unsound for λ-free higher-order logic with a Henkin seman-
tics. For example, given f : τ→ υ, the formula (∀y. ∃x. f x ≈ y) ∧ (∀z. f (z a) �≈ a)
has a model with Uτ = Uυ that interprets f as the identity function and ensures
that none of the functions in the image of Eυ,τ map J (a) to J (a). Yet, naive
skolemization would yield the clause set {f (sk y) ≈ y, f (z a) �≈ a}, whose unsat-
isfiability can be shown by taking y := a and z := sk. The crux of the issue is
that sk denotes a new function that can be used to instantiate z.

Inspired by Miller [28, Sect. 6], we adapt skolemization as follows. An existen-
tially quantified variable x : τ in a context with universally quantified variables
x̄n of types τ̄n is replaced by a fresh symbol sk : τ̄n ⇒ τ applied to the tuple x̄n.
For the example above, we obtain {f (sk(y)) ≈ y, f (z a) �≈ a}. Syntactically, z
cannot be instantiated by sk, which is not even a term. Semantically, the clause
set is satisfiable because we can have J (sk)(J (a)) = J (a) even if the image of Eτ,τ
contains no such function.

4 Refutational Completeness

The proof of refutational completeness of the four calculi introduced in Sect. 3.1
follows the same general idea as for standard superposition [2,42]. Given a clause
set N �� ⊥ saturated up to redundancy, we construct a term rewriting system R
based on the set of ground instances GΣ(N). From R, we define an interpretation.
We show, by induction on the clause order, that this interpretation is a model
of GΣ(N) and hence of N.

To circumvent the term order’s potential nonmonotonicity, our Sup inference
rule only considers the argument subterms u of a maximal term s〈u〉. This is
reflected in our proof by the reliance of the floor logic from Sect. 3.3. In that logic,
the equation g0 ≈ f0 cannot be used directly to rewrite the clause g1(a0) �≈ f1(a0);
instead, we first need to apply ArgCong to derive g1(x) ≈ f1(x) and then use
that equation. The floor logic is a device that enables us to reuse the traditional
model construction almost verbatim, including its reliance on a first-order term
rewriting system.

Following the traditional proof, we obtain a model of �GΣ(N)�. Since N is
saturated up to redundancy with respect to ArgCong, the model �GΣ(N)� can
easily be turned into a model of GΣ(N) by conflating the interpretations of the
members fk, . . . , fn of a same symbol family. For this section, we fix a set N �� ⊥ of
λ-free higher-order clauses that is saturated up to redundancy. For the purifying
calculi, we additionally require that all clauses in N are purified. To avoid empty
Herbrand universes, we assume that the signature Σ contains, for each type τ,
a symbol of type τ.

4.1 Candidate Interpretation

The construction of the candidate interpretation is as in the first-order proof,
except that it is based on �GΣ(N)�. We first define sets of rewrite rules EC and
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RC for all C ∈ �GΣ(N)� by induction. Assume that ED has already been defined
for all D ∈ �GΣ(N)� with D ≺ C. Then RC =

⋃

D≺C ED. Let EC = {s → t} if the
following conditions are met: (a) C = C′ ∨ s ≈ t; (b) s ≈ t is strictly maximal
in C; (c) s � t; (d) C is false in RC; (e) C′ is false in RC ∪ {s → t}; and (f)
s is irreducible with respect to RC . Otherwise, EC = ∅. Finally, R∞ =

⋃

D ED.
A rewrite system R defines an interpretation T ∅

Σ /R such that for every ground
equation s ≈ t, we have T ∅

Σ /R |= s ≈ t if and only if s ↔∗
R t. Moreover, T ∅

Σ /R is
term-generated. To lighten notation, we will write R to refer to both the term
rewriting system R and the interpretation T ∅

Σ /R.

4.2 Lifting Lemmas

Following Waldmann’s version of the first-order proof [42], we proceed by lift-
ing inferences from the ground to the nonground level. We also need to lift
ArgCong. A complication that arises when lifting purifying inferences is that
the nonground conclusions may contain purification literals (corresponding to
applied variables) not present in the ground conclusions. Given an inference I
of the form C̄ � pure(E), we refer to the ground instances of C̄ � E as ground
instances of I up to purification.

Lemma 2 (Lifting of non-Sup inferences). Let Cθ ∈ GΣ(N), where θ is a
substitution and the selected literals in C ∈ N correspond to those in Cθ. Then
every EqRes or EqFact inference from Cθ and every ground instance of an
ArgCong inference from Cθ is a ground instance of an inference from C up to
purification.

The conditions of the lifting lemma for Sup differ slightly from the first-order
version. For standard superposition, the lemma applies if the superposed term is
not at or under a variable. This condition is replaced by the following criterion.

Definition 3. We call a ground Sup inference from Dθ and Cθ liftable if the
superposed subterm in Cθ is not under a variable in C and the corresponding
variable condition holds for D and C.

Lemma 4 (Lifting of Sup inferences). Let Dθ,Cθ ∈ GΣ(N) where the
selected literals in D ∈ N and C ∈ N correspond to those in Dθ and Cθ, respec-
tively. Then every liftable Sup inference between Dθ and Cθ is a ground instance
of a Sup inference from D and C up to purification.

4.3 Main Result

The candidate interpretation R∞ is a model of �GΣ(N)�. Like in the first-order
proof, this is shown by induction on the clause order. For the induction step,
we fix some clause �Cθ� ∈ �GΣ(N)� and assume that all smaller clauses are true
in RCθ. We distinguish several cases, most of which amount to showing that Cθ
can be used in a certain inference. Then we deduce that �Cθ� is true in RCθ to
complete the induction step.
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The next two lemmas are slightly adapted from the first-order proof. The jus-
tification for Lemma 5, about liftable inferences, is essentially as in the first-order
case. The proof of Lemma 6, about nonliftable inferences, is more problematic.
The standard argument involves defining a substitution θ′ such that Cθ′ and
Cθ are equivalent and Cθ′ ≺ Cθ. But due to nonmonotonicity, we might have
Cθ′ � Cθ, blocking the application of the induction hypothesis. This is where
the variable conditions, purification, and the PosExt rule come into play.

Lemma 5. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a liftable
Sup inference from Dθ and Cθ or an EqRes or EqFact inference from Cθ.
Let E be the conclusion. Assume that Cθ and Dθ are nonredundant with respect
to GΣ(N). Then �E� is entailed by clauses from �GΣ(N)� that are smaller than
�Cθ�.
Lemma 6. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a nonliftable
Sup inference from Dθ and Cθ. Assume that Cθ and Dθ are nonredundant with
respect to GΣ(N). Let D′θ be the clause Dθ without the literal involved in the
inference. Then �Cθ� is entailed by ¬�D′θ� and the clauses in �GΣ(N)� that are
smaller than �Cθ�.

Using these two lemmas, the induction argument works as in the first-order
case.

Lemma 7 (Model construction). Let �Cθ� ∈ �GΣ(N)�. We have

(i) E
Cθ� = ∅ if and only if R
Cθ� |= �Cθ�;
(ii) if Cθ is redundant with respect to GΣ(N), then R
Cθ� |= �Cθ�;
(iii) �Cθ� is true in R∞ and in RD for every D ∈ �GΣ(N)� with D � �Cθ�; and
(iv) if Cθ has selected literals, then R
Cθ� |= �Cθ�.

Given a model R∞ of �GΣ(N)�, we construct a model R↑
∞ of GΣ(N). The key

properties are that R∞ is term-generated and that the interpretations of the
members fk, . . . , fn of a same symbol family behave in the same way.

Lemma 8 (Argument congruence). For all ground terms fm(s̄) and gn(t̄), if
�fm(s̄)�ξR∞ = �gn(t̄)�

ξ
R∞ , then �fm+1(s̄, u)�

ξ
R∞ = �gn+1(t̄, u)�

ξ
R∞ for all u.

The proof relies on the saturation of N up to redundancy with respect to
ArgCong.

Definition 9. Define an interpretation R↑
∞ = (U↑,E↑, J ↑) in the ceiling logic

as follows. Let (U,E , J ) = R∞. Let U↑
τ = U
τ� and J ↑(f) = J (fk), where k is

the number of mandatory arguments of f. Since R∞ is term-generated, for every
a ∈ U
τ→υ�, there exists a ground term s : τ→ υ such that ��s��ξR∞ = a. Without
loss of generality, we write s = f(s̄k) sk+1 . . . sm. Then we have a = �fm(�s̄m�)�ξR∞
and define E↑ by

E↑
τ,υ(a)(b) = J (fm+1)(��s̄m��ξR∞ , b) for all b ∈ Uτ
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It follows that E↑
τ,υ(a)

(

�u�ξR∞

)

= �fm+1(�s̄m�, u)�ξR∞ for any term u. This inter-
pretation is well defined if the definition of E↑ does not depend on the choice of
the ground term s. To show this, we assume that there exists another ground
term t = g(t̄l) tl+1 . . . tn such that ��t��ξR∞ = a. By Lemma 8, it follows from
��s��ξR∞ = ��t��ξR∞ that

�fm+1(�s̄m�, u)�ξR∞ = �gn+1(�t̄n�, u)�ξR∞

indicating that the definition of E↑ is independent of the choice of s.
Since R∞ is a term-generated model of �GΣ(N)�, we can show that R↑

∞ is also
term-generated. And using the same argument as in the first-order proof, we can
lift this result to nonground clauses. For the extensional variants, we also need
to show that R↑

∞ is an extensional interpretation.

Lemma 10 (Model transfer to ceiling logic). R↑
∞ is a term-generated model

of GΣ(N).

Lemma 11 (Model transfer to nonground clauses). R↑
∞ is a model of N.

Lemma 12 (Completeness of the extensionality axioms). If N contains
the extensionality axioms, R↑

∞ is extensional.

We summarize the results of this section in the following theorem.

Theorem 13 (Refutational completeness). Let N be a clause set that is
saturated by any of the four calculi, up to redundancy. For the purifying calculi,
we additionally assume that all clauses in N are purified. Then N has a model if
and only if ⊥ /∈ N. Such a model is extensional if N contains the extensionality
axioms.

5 Implementation

Zipperposition [16,17] is an open source superposition-based theorem prover
written in OCaml.1 It was initially designed for polymorphic first-order logic with
equality, as embodied by TPTP TFF [10]. We will refer to this implementation
as Zipperposition’s first-order mode. Recently, we extended the prover with a
pragmatic higher-order mode with support for λ-abstractions and extensionality,
without any completeness guarantees. Using this mode, Zipperposition entered
the 2017 edition of the CADE ATP System Competition [38]. We have now
also implemented a complete λ-free higher-order mode based on the four calculi
described in this paper, extended with polymorphism.

The pragmatic higher-order mode provided a convenient basis to implement
our calculi. It includes higher-order term and type representations and orders.
Its ad hoc calculus extensions are similar to our calculi. Notably, they include
an ArgCong rule and a PosExt-like rule, and Sup inferences are performed

1 https://github.com/c-cube/zipperposition

https://github.com/c-cube/zipperposition
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only at argument subterms. In the term indexes, which are imperfect (overap-
proximating), terms whose heads are applied variables and λ-abstractions are
treated as fresh variables. This could be further optimized to reduce the number
of unification candidates.

To implement the λ-free mode, we restricted the unification algorithm to
non-λ-terms, and we added support for mandatory arguments to make skolem-
ization sound, by associating the number of mandatory arguments to each sym-
bol and incorporating this number in the unification algorithm. To satisfy the
requirements on selection, we avoid selecting literals that contain higher-order
variables. Finally, we disabled rewriting of non-argument subterms to comply
with our redundancy notion.

For the purifying calculi, we implemented purification as a simplification rule.
This ensures that it is applied aggressively on all clauses, whether initial clauses
from the problem or clauses produced during saturation, before any inferences
are performed.

For the nonpurifying calculi, we added the possibility to perform Sup infer-
ences at variable positions. This means that variables must be indexed as well.
In addition, we modified the variable condition. However, it is in general impos-
sible to decide whether there exists a ground substitution θ with tσθ � t′σθ and
Cσθ ≺ C′′σθ. We overapproximate the condition as follows: (1) check whether
x appears with different arguments in the clause C; (2) use an order-specific
algorithm (for LPO and KBO) to determine whether there might exist a ground
substitution θ and terms ū such that tσθ � t′σθ and tσθ ū ≺ t′σθ ū; and (3) check
whether Cσ �� C′′σ. If these three conditions apply, we conclude that there might
exist a ground substitution θ witnessing nonmonotonicity.

For the extensional calculi, we added a single extensionality axiom based on a
polymorphic symbol diff : ∀α β. (α→ β)2 ⇒ α. To curb the explosion associated
with extensionality, this axiom and all clauses derived from it are penalized by
the clause selection heuristic. We also added a negative extensionality rule that
resembles Vampire’s [21].

Using Zipperposition, we can quantify the disadvantage of the applicative
encoding on the problem given at the end of Sect. 3.2. Well-chosen LPO and
KBO instances allow Zipperposition to derive ⊥ in 4 iterations of the prover’s
main loop and 0.04 s. KBO or LPO with default settings needs 203 iterations
and 0.5 s, whereas KBO or LPO on the applicatively encoded problem needs
203 iterations and almost 2 s.

6 Evaluation

We evaluated Zipperposition’s implementation of our four calculi on TPTP
benchmarks. We compare them with Zipperposition’s first-order mode on the
applicative encoding with and without the extensionality axiom. Our experi-
mental data is available online.2 Since the present work is only a stepping stone

2 http://matryoshka.gforge.inria.fr/pubs/lfhosup data/

http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
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towards a prover for full higher-order logic, it is too early to compare this pro-
totype to state-of-the-art higher-order provers that support a stronger logic.

We instantiated all variants with LPO [11] (which is nonmonotonic) and KBO
[3] without argument coefficients (which is monotonic). This gives us a rough
indication of the cost of nonmonotonicity. However, when using a monotonic
order, it may be more efficient (and also refutationally complete) to superpose
at non-argument subterms directly instead of relying on the ArgCong rule.

We collected 671 first-order problems in TFF format and 1114 higher-order
problems in THF, both groups containing monomorphic and polymorphic prob-
lems. We excluded all problems containing λ-expressions, the quantifier constants
!! (∀) and ?? (∃), arithmetic types, or the $distinct predicate, as well as problems
that mix Booleans and terms. Figures 1 and 2 summarize, for various configura-
tions, the number of solved satisfiable and unsatisfiable problems within 300 s.
The average time and number of main loop iterations are computed over the
problems that all configurations for the respective logic and term order found to
be unsatisfiable within the timeout. The evaluation was carried out on StarExec
[37] using Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz.

Our approach targets large, mildly higher-order problems—a practically rele-
vant class of problems that is underrepresented in the TPTP library. The exper-
imental results confirm that our calculi handle first-order problems gracefully.
Even the extensional calculi, which include (graceless) extensionality axioms,
are almost as effective as the first-order mode. This indicates that our calculi
will perform well on mildly higher-order problems, too, where the proving effort
is dominated by first-order reasoning. In contrast, the applicative encoding is
comparatively inefficient on problems that are already first-order. For LPO, the
success rate drops by 16%–18%; for both orders, the average time to show unsat-
isfiability roughly quadruples.

Many of the higher-order problems in the TPTP library are satisfiable for
our λ-free logic, even though they may be unsatisfiable for full higher-order
logic and labeled as such in the TPTP. This is a reason why we postpone a
comparison with state-of-the-art higher-order provers until we have developed
a prover for full higher-order logic. On higher-order problems, the nonpurifying
calculi outperform their purifying relatives. The comparison of the applicative
encoding and the nonpurifying calculi, however, is not entirely conclusive. In the
light of the results of this evaluation, in future work, we would like to collect
benchmarks for large, mildly higher-order problems and to investigate whether
we can weaken the selection restrictions of our calculi.

The nonpurifying calculi perform slightly better with KBO than with LPO.
This confirms our expectations, given that KBO is generally considered the
more robust default option for superposition and that the nonmonotonic LPO
triggers Sup inferences at variable positions—which is the price to pay for
nonmonotonicity.
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Fig. 1. Evaluation of the intensional calculi

Fig. 2. Evaluation of the extensional calculi

7 Discussion and Related Work

Our calculi join a long list of extensions and refinements of superposition. Among
the most closely related is Peltier’s [30] Isabelle formalization of the refutational
completeness of a superposition calculus that operates on λ-free higher-order
terms and that is parameterized by a monotonic term order. Extensions with
polymorphism and induction, developed by Cruanes [16,17] and Wand [43], con-
tribute to increasing the power of automatic provers. Detection of inconsistencies
in axioms, as suggested by Schulz et al. [34], is important for large axiomatiza-
tions. Also of interest is Bofill and Rubio’s [13] integration of nonmonotonic
orders in ordered paramodulation, a precursor of superposition. Their work is a
veritable tour de force, but it is also highly complicated and restricted to ordered
paramodulation. Lack of compatibility with arguments being a mild form of non-
monotonicity, it seemed preferable to start with superposition, enrich it with an
ArgCong rule, and tune the side conditions until we obtained a complete cal-
culus.

Most complications can be avoided by using a monotonic order such as KBO
without argument coefficients, but we suspect that the coefficients will play an
important role to support λ-abstractions. For example, the term λx. x+ x could
be treated as a constant with a coefficient of 2 on its argument and a heavy
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weight to ensure (λx. x + x) y � y + y. LPO can also be used to good effect.
This technique could allow provers to perform aggressive β-reduction in the vast
majority of cases, without compromising completeness.

Many researchers have proposed or used encodings of higher-order logic con-
structs into first-order logic, including Robinson [32], Kerber [24], Dowek et al.
[19], Meng and Paulson [27], and Czajka [18]. Encodings of types, such as those
by Bobot and Paskevich [12] and Blanchette et al. [8], are also crucial to obtain
a sound encoding of higher-order logic. These ideas are implemented in proof
assistant tools such as HOLyHammer and Sledgehammer [9].

Another line of research has focused on the development of automated proof
procedures for higher-order logic. Robinson’s [31] and Huet’s [23] pioneering
work stands out. Andrews [1] and Benzmüller and Miller [6] provide excellent
surveys. The competitive higher-order automatic theorem provers include LEO-
II [7] (based on unordered paramodulation), Satallax [15] (based on a tableau
calculus and a SAT solver), AgsyHOL [26] (based on a focused sequent calcu-
lus and a generic narrowing engine), and Leo-III [36] (based on a pragmatic
extension of superposition with no completeness guarantees). The Isabelle proof
assistant [29] and its Sledgehammer subsystem also participate in the higher-
order division of the CADE ATP System Competition [38].

Zipperposition is a convenient vehicle for experimenting and prototyping
because it is easier to understand and modify than highly-optimized C or C++
provers. Our middle-term goal is to design higher-order superposition calculi,
implement them in state-of-the-art provers such as E [33], SPASS [44], and
Vampire [25], and integrate these in proof assistants to provide a high level
of automation. With its stratified architecture, Otter-λ [4] is perhaps the clos-
est to what we are aiming at, but it is limited to second-order logic and offers
no completeness guarantees. In preliminary work supervised by Blanchette and
Schulz, Vukmirović [41] has generalized E’s data structures and algorithms to
λ-free higher-order logic, assuming a monotonic KBO [3].

8 Conclusion

We presented four superposition calculi for intensional and extensional λ-free
higher-order logic and proved them refutationally complete. The calculi nicely
generalize standard superposition and are compatible with our λ-free higher-
order LPO and KBO. Our experiments partly confirm what one would naturally
expect: that native support for partial application and applied variables outper-
forms the applicative encoding.

The new calculi reduce the gap between proof assistants based on higher-
order logic and superposition provers. We can use them to reason about arbitrary
higher-order problems by axiomatizing suitable combinators. But perhaps more
importantly, they appear promising as a stepping stone towards complete, highly
efficient automatic theorem provers for full higher-order logic.
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