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A B S T R A C T

Several methods exist for weight of evidence calculations on DNA mixtures. Especially if dropout is a

possibility, it may be difficult to estimate mixture specific parameters needed for the evaluation. For

semi-continuous models, the LR for a person to have contributed to a mixture depends on the specified

number of contributors and the probability of dropout for each. We show here that, for the semi-

continuous model that we consider, the weight of evidence can be accurately obtained by applying the

standard statistical technique of integrating the likelihood ratio against the parameter likelihoods

obtained from the mixture data. This method takes into account all likelihood ratios belonging to every

choice of parameters, but LR’s belonging to parameters that provide a better explanation to the mixture

data put in more weight into the final result. We therefore avoid having to estimate the number of

contributors or their probabilities of dropout, and let the whole evaluation depend on the mixture data

and the allele frequencies, which is a practical advantage as well as a gain in objectivity. Using simulated

mixtures, we compare the LR obtained in this way with the best informed LR, i.e., the LR using the

parameters that were used to generate the data, and show that results obtained by integration of the LR

approximate closely these ideal values. We investigate both contributors and non-contributors for

mixtures with various numbers of contributors. For contributors we always obtain a result close to the

best informed LR whereas non-contributors are excluded more strongly if a smaller dropout probability

is imposed for them. The results therefore naturally lead us to reconsider what we mean by a contributor,

or by the number of contributors.

� 2016 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Several methods exist for weight of evidence calculations on
DNA mixtures where dropout is a possibility. Broadly speaking,
there are two types of such methods: the semi-continuous models
that take into account the set of recorded alleles of the mixture and
calculate a mixture likelihood using as parameters the number of
contributors to the mixtures and parameters that describe dropout
and possibly also drop-in probabilities; and continuous models
that take also the peak heights into account and need a more
refined probabilistic model that allow to compute a likelihood for
the observed peak heights, also needing as input parameter the
number of contributors. In this article we will focus on the semi-
continuous models. Several of these exist, e.g. LRmixStudio (www.
lrmixstudio.org, see also [1]), LabRetriever (cf. [2]), LikeLTD
* Correspondence to: Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The

Hague, The Netherlands.
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1872-4973/� 2016 Elsevier Ireland Ltd. All rights reserved.
(cf. [3]), and our own implementation MixKin (cf. [4]). In practice
it may be difficult to assess the number of contributors and the
probabilities of dropout. The latter are sometimes (e.g., for
LRmixStudio) chosen by the user and can then be varied to carry
out a sensitivity analysis, or they can be estimated by the software
(as is the case for LikeLTD). It is therefore logical that estimating
and modelling the probability of dropout has received considerable
attention in the literature, cf. [5–7], and so has the question how
well the number of contributors to a mixture can be estimated (cf.
[8–11]).

On the other hand, the notion of number of contributors is
perhaps less useful in case the contributors do not have all their
alleles recorded in the mixture. It should intuitively not make
much difference whether or not an extra person with a high degree
of dropout is present or not, as long as this is not our contributor of
interest targeted by LR calculations. In this article, we will
therefore take a different approach: we obtain the weight of
evidence by integrating away the dropout probabilities. This
means that no attempt is made to estimate them and compute a LR

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2016.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2016.11.001&domain=pdf
http://www.lrmixstudio.org
http://www.lrmixstudio.org
http://dx.doi.org/10.1016/j.fsigen.2016.11.001
http://www.sciencedirect.com/science/journal/18724973
www.elsevier.com/locate/fsig
http://dx.doi.org/10.1016/j.fsigen.2016.11.001
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based on these estimates. At the same time, we also refrain from
having to specify the exact number of contributors: instead we
take the maximal number of contributors and let the probabilities
of dropout for all of them vary between zero and one. If we want we
can also restrict them to a range within which they should
reasonably lie in view of the mixture data. Integration over
nuisance parameters is a standard statistical technique also
employed by other mixture software (e.g., STRmix, [12]), an
alternative being maximum likelihood estimation (e.g., [13,14]).

To understand intuitively why this can be a viable approach, let
us first go back to a more simple situation, that of a single source
trace which is not affected by dropout or dropin. A human
interpreter, when seeing such a profile, will typically conclude that
this is indeed a single source profile. The interpreter will do so,
because it is extremely unlikely for a mixture of two or more
persons to give rise to a mixture profile that could have been a
single source profile, i.e., with one or two alleles observed on each
locus. In case replicate analyses are performed which give rise to
the exact same profile, this strengthens the conclusion further. The
reason why an interpreter makes this decision essentially is based
on likelihoods: it is so extremely unlikely for a mixture to
consistently produce a profile that could have also been produced
by one and the same single contributor, that these possibilities are
discarded by the interpreter and single source is concluded.

The structure of this paper is as follows. In Section 2 we will
begin by giving some more details on the semi-continuous model
and our implementation of it in the symbolic programming
language Mathematica, before explaining the method of integrat-
ing over the set of possible dropout probabilities.

Before we carry out systematic calculations, in Section 3 we give
an example of a two-person mixture, to further illustrate the ideas
behind integration rather than estimation of the needed parameters.

After that, in Section 4 we return to the single source profile
situation sketched above, to see that indeed the weight of evidence
is hardly affected by assuming the possibility that there might be
more than one contributor.

Then we study some types of mixtures systematically. In all
cases, we consider mixtures where none of the donors are
supposed to be known, and we evaluate the LR for a person of
interest to be a donor, where this person is in reality either a true
donor or a non-donor. We do so for concision and because we
believe that mixtures without known donors are harder to evaluate
than those where some donors are known. In Section 5 we
investigate various types of two-person mixtures: mixtures with a
clear major/minor donor, and mixtures where both donors have
contributed equally. We compare also the results obtained if we
treat these mixtures as two-person mixtures or three-person
mixtures. In Section 6 we look at three-person mixtures and carry
out similar calculations.

Until this point, the purpose of the paper can be summarized as
showing that, if the semi-continuous model is applicable to mixture
data, then the method of integrating away the dropout parameters
is an accurate way of retrieving the weight of evidence that we
would have obtained with the correct dropout probabilities. In
order to show this, it is inevitable to use simulated rather than lab-
generated mixtures, since only for simulated data can we know the
actual probabilities of dropout. So this shows that, if the model is
applicable, then it is reliable. For the model to be applicable, it is
essential that the modelling assumptions are met. In particular,
dropout probabilities should not vary (substantially) across
replicates and therefore these replicates should have been obtained
under identical conditions. For instance, the model reported upon
here[1_TD$DIFF] supposes that the probabilities of dropout are constant over
the loci, for each contributor. It is however easy to incorporate
degradation (increasing dropout probabilities with increasing
fragment size) and in Section 7 we briefly look into the effect of
ignoring degradation, by comparing the obtained results on
mixtures affected by degradation when we do, or do not, take it
into account. We also look into another issue, the dropout
probability for homozygotes as compared to that for heterozygotes.

Finally we summarize our findings and conclusion in the
discussion.

2. Methods

2.1. Semi-continuous model

We start by recalling the characteristics of the semi-continuous
model that we use in this article. This description is a summary of
the one given in [15] and we refer the reader to that paper for
further details. Suppose that a mixture has n contributors. Let their
dropout probabilities be d1, . . ., dn with 0 � di � 1, and let c � 0 be
the parameter describing the expected number of alleles dropping
in per locus. We define the probability that allele a is detected in
mixture M as

P~d;cða2Mj~gÞ ¼ 1�e�cpa

Yn

i¼1

d
ni;a

i ; (2.1)

where ni,a 2 {0, 1, 2} is the number of alleles a present in gi, the
genotype of contributor i (by definition, 00

[2_TD$DIFF] = 1) and pa is the allele
frequency of allele a. Note that, when c = 0, we see from this
formula that an allele is recorded unless it drops out for all the
contributors that have that allele. In [4,15] we have used the
approximation e�cpa � 1 � cpa for c� 1. To compute the probabili-
ty that the observed mixtureM is equal to the set of alleles M, one
simply uses (2.1) to obtain

P~d;cðM ¼ Mj~gÞ ¼
Y

x2M

P~d;cðx2Mj~gÞ
Y
x =2M

P~d;cðx =2Mj~gÞ: (2.2)

We also note that contaminant alleles may coincide with alleles of
donors, and thus do not necessarily lead to an allele in the mixture
that is not present in any of the contributor’s genotypes. In particular
they may undo the effect of allelic dropout. For the interpretation of
this model, notice that 1 � di is the fraction of alleles of contributor i

that we would expect to observe if the other contributors would not
have been there and in the absence of drop-in. The probability of
dropout di is therefore a prospective probability, allowing to attach
likelihoods to mixture data, rather than a retrospective probability
making statements about the probability that alleles have been
unrecorded in the mixture data. We refer to [16] for further
discussion of the connection between these.

The parameter c is equal to the expected number of alleles
dropping in per locus, assuming that the number of alleles
dropping in is Poisson distributed with parameter c and that the
alleles that drop in are sampled at random according to the allele
frequencies.

The probability to observe M¼ M when some of the donors
have unknown genotypes is obtained by summing (2.2) over the
set of possible genotypes for these donors, weighted by their prior
probability to be the donor’s genotypes. Suppose that the expected
population frequency of genotype g is denoted fg, by which we
mean the probability that a person chosen at random from the
population has genotype g. In standard mixture calculations,
without relatedness in the hypotheses, and without applying the u-
correction (cf. [17]), one sets

P~d;cðDi ¼ gÞ ¼ f g (2.3)

as the a priori distribution of the genotype of Di of donor i. Note that
this is of course independent of ~d and c: regardless of the mixture
or of how we evaluate it, we assume prior to having any mixture
data that each donor is a random person from the population.
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If there are several replicate profiles available from the same
trace, then we will assume that the replicate profiles are
conditionally independent of each other given the probabilities
of dropout ~d and the drop-in parameter c. Thus, the probability to
see all replicates is simply the product of the probabilities to see
each of the replicates separately. We note however that the
assumption that the parameters ~d and c are the same over all
replicates, and the conditional independence, can only be
justifiable if all replicates are the results of independent PCR’s
using the same technology (PCR cycle number, CE settings).

For a hypothesis H describing the contributors of the mixture,
we let

P~d;cðMjHÞ

be the mixture likelihood. Now suppose that we have two
hypotheses H1 and H2, and that the difference between them is
that H1 postulates a person of interest (PoI) with genotype g to be a
mixture contributor, whereas H2 has replaced that contributor by
an unknown individual. There may be uncontested contributors,
postulated both by H1 and H2. The likelihood ratio for the semi-
continuous model with parameters ~d and c is then

LR~d;c
ðM; gÞ ¼

P~d;cðMjH1Þ
P~d;cðMjH2Þ

: (2.4)

2.2. Implementation

We have implemented the model just described in our script
MixKin written in the programming language Mathematica (cf.
[4]). It is possible to do numerical computations with this script,
but also, since Mathematica is a symbolic programming language,
to compute the mixture likelihood algebraically as a function of the
variables ~d and c. The resulting value for a specific choice of
parameters can be rapidly obtained from this expression which
facilitates sensitivity analyses. Also, as we have used in this paper,
the algebraic expression for the LR can be (numerically) integrated.
For this we have used the built-in command NIntegrate with
default settings.

The results in this paper have been obtained from simulations
on the 15 autosomal NGM loci, using allele frequencies taken from
[18].

2.3. Weight of evidence

Given mixture data, a LR calculation LR~d;c
ðM; gÞ needs a

specification of the number of contributors and their probabilities
of dropout ~d, and of the drop-in parameter c. One approach to
arrive at such an estimate is to consider the number of recorded
alleles as an indication for the number of contributors, to estimate
dropout probabilities from peak heights of recorded alleles, etc.
One can use such approaches to arrive at plausible ranges for the
dropout parameters. For example, for a certain mixture profile one
may be sure that it has at least two contributors, a major one and a
minor one, and possibly a third one that must have a high degree of
dropout. One may for example estimate that the probability of
dropout for the major donor, d1, lies between 0 and 0.2 and that for
the second donor we have d2 between 0.4 and 0.6. Finally the third
contributor, if present, has d3 satisfying 0.8 � d3 � 1, where
d3 = 1 corresponds to the situation where there are only two
contributors.

It is then a natural step to define the mixture likelihood as

PðMjHÞ ¼
Z 0:2

x1¼0

Z 0:6

x2¼0:4

Z 1

x3¼0:8
Pðx1 ;x2 ;x3Þ;cðMjHÞdx1dx2dx3:
Notice that this amounts to treating the dropout probabilities as
nuisance variables with uniform distribution over their domain. In
this formula, we have kept c fixed, so we have not integrated over
some distribution for this parameter. In principle it would be
possible to do so, but it is computationally cumbersome to perform
another integration. Also, unless drop-in is needed to make the
specified number of contributors possible, the LR often does not
strongly depend on it for small (realistic) values of c. Finally one
may argue that whereas the probabilities of dropout are trace
dependent, the probability of alleles dropping in is less so and can
be estimated by using negative controls.

If we want to calculate the LR for a person being a contributor to
the mixture, we need to specify which contributor it is: the one
with dropout between 0 and 0.2, between 0.4 and 0.6 or between
0.8 and 1.

Now, we may even argue that we may as well extend the
integration for all three dropout variables di to [0, 1], since (if our
estimates are accurate) the mixture likelihood is going to be small
over the part of [0, 1] � [0, 1] � [0, 1] that is outside the region
[0, 0.2] � [0.4, 0.6] � [0.8, 1] and its permutations. Therefore, we
will in this article start with a uniform prior over all dropout
probabilities (d1, d2, . . ., dn) 2 [0, 1]n, and we define the LR as

LRðM; gÞ ¼
R

RP~x;cðMjH1Þd~xR
RP~x;cðMjH2Þd~x

; (2.5)

where R = [0, 1]n and~x ¼ ðx1; . . .; xnÞ. We do not integrate over c for
the abovementioned reasons. Note that we may also write

LRðM; gÞ ¼
R

RLR~x;cðM; gÞP~x;cðMjH2Þd~xR
RP~x;cðMjH2Þd~x

: (2.6)

This provides the likelihood ratio for the hypotheses Hp: the
mixture has at most n donors and, in addition to the uncontested
contributors, the person of interest with genotype g is a
contributor, versus Hd: the mixture has at most n donors and all
donors apart from the uncontested contributors are unknown.

Contrary to the first example where we specified ranges of the
dropout probabilities for each contributor, we now no longer can
distinguish between the contributors. This approach should
nonetheless give good results if the mixture likelihoods
P~d;cðMjHpÞ are concentrated mainly around the actual dropout
probabilities.

2.4. Interpretation

Notice that we can rewrite (2.6) as

LRðM; gÞ ¼
Z

R
LR~x;cðM; gÞpM;H2

ð~x; cÞd~x; (2.7)

where

pM;H2
ð~d; cÞ ¼

P~d;cðMjH2ÞR
RP~x;cðMjH2Þd~x

; (2.8)

which corresponds to the probability density function of the
dropout probabilities, taking into account the mixture data and (if
any) the uncontested contributors postulated by H2. Thus, LR(M, g)
is a weighted average of the LR~d;c

ðM; gÞ for all parameters ~d,
weighted by the probability that these are the correct probabilities
of dropout given the mixture data. Therefore, LR(M, g) will be
largely determined by the values of LR~d;c

ðM; gÞ for plausible values
of the parameters. This also means that, if we restrict the
integration domain R = [0, 1]n to a region R0 � R that is deemed
to contain all plausible values, this may have some computational
advantage (since we carry out numerical rather than algebraic
integration), but is not going to alter the obtained LR(M, g)
significantly if the domain R0 is well chosen and does not miss
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plausible values of the dropout probabilities for which LR~d;c
ðM; gÞ

differs substantially from the values it takes inside R0.
Notice also that, whereas LR~d;c

ðM; gÞ factorizes over loci if these
loci are independent, this is no longer the case for the integrated
LR(M, g).

2.5. Best informed LR

In the sequel of this paper, we will compare the LR obtained
with the generating parameters ~d and c, with LR(M, g) obtained by
integration. We will call the LR obtained with the true probabilities
of dropout (i.e., the values that generated the mixtures) the best

informed LR. Indeed this is the LR that we would calculate if our
knowledge about the mixture generation parameters had been
complete. Less knowledge about these parameters should intui-
tively correspond to a worse resolution between donors and non-
donors, meaning – on average – a lower weight of evidence for
actual donors and a softer exclusion of non-donors. However, this
of course does not mean that for a particular comparison of a
mixture and a donor, the largest LR is obtained with the most
accurate probabilities of dropout. The best informed LR is the value
that we would ideally report, since it reflects the evaluation of the
data according to the model that actually generated the data. In
actual casework, it is of course difficult to estimate these
parameters, and therefore we investigate in this paper how close
the LR obtained by integration is to the best informed LR. We now
need some statistic to measure the distance between the best
informed LR and a differently obtained one. In order to do so, we
consider the weight of evidence (WoE), defined as Log10(LR) as the
main quantity of interest. Indeed, contrary to the LR, the weight of
evidence may be interpreted as an amount of information,
measured in bans, the base-10 equivalent of the (binary) bit (cf.
[19]). Comparing the best informed weight of evidence with a
differently obtained one, allows to measure how much information
has been lost, or perhaps to which extent we overestimate the
information contained in the mixture about its contributors.

Note that, if the dropout probabilities are d1, . . ., dn, then there
are in principle n best informed LR’s for a person of interest, since
we may compute a LR trying to identify the person of interest with
the donor with probability of dropout equal to di for 1 � i � n. For
an actual donor, we will only consider the best informed LR to be
the one corresponding to the probability of dropout of that true
donor.

As relevant statistic we will compare the weight of evidence
Log10(LR(M, g)) with the best informed weight of evidence, the
base-10 logarithm of the best informed LR. We will mostly
consider the ratio Log10ðLRðM; gÞÞ=Log10ðLR~d;c

ðM; gÞÞ, which we can
interpret as corresponding to the amount of information obtained
by integration, relative to the amount of information that is really
present.

We have used here a uniform prior probability density function
over all the probabilities of dropout. It is of course necessary to
specify a prior if we wish to obtain a posterior probability density
function pM;H2

ð~dÞ for these parameters, which is based on the
mixture data. Whether or not the resulting method is able to
generate likelihood ratios that come close to the best informed LR,
will be determined by a combination of the choice of the prior, and
its relevance: it is of course preferable to be in a situation with
sufficient data so that the results will be about the same for all
reasonable choices of priors. Whether or not it is desirable to carry
out such an integration is a source of debate (cf. [20,21]). In the
research described here, we will show that with this particular
choice of prior we calculate a LR that is very close to the best
informed LR, and that therefore the situation here lends itself very
well to the approach of integrating out the nuisance parameters of
dropout. However, we also note that the quality of LR(M, g) will
obviously depend on the number of loci and replicates. In this
article, we have worked with the NGM loci and considered three
replicates per mixture.

2.6. Deconvolution

As we have shown in [16], for fixed parameters ~d; c, LR
calculations are equivalent to mixture deconvolution. Indeed,
suppose that we have a suspect with genotype g, and Hp identifies
this person with donor D1, whereas Hd has an unrelated unknown
individual as donor instead of the suspect. Then, recalling that fg

denotes the population frequency of profile g,

f gLR~d;c
ðM; gÞ ¼ P~d;cðD1 ¼ gjM;H1Þ: (2.9)

When we plug this into (2.6) we get its analogue:

f gLRðM; gÞ ¼
R

RP~x;cðD1 ¼ gjM;H1ÞP~x;cðMjH2Þd~xR
RP~x;cðMjH2Þd~x

¼
Z

R
P~x;cðD1

¼ gjM;H1ÞpM;H2
ð~x; cÞd~x ¼ PðD1 ¼ gjM;H1Þ:

Thus, we see that also for the LR obtained by integration, we still
have the equivalence between likelihood ratio calculation and
deconvolution that holds for specific choices ~d; c. Similar to LR(M,
g), the probability P(D1 = g j M, H1) is now obtained as a weighted
average of this probability for all parameter values, where the
weights are given by the probability density function for the
parameters given the mixture data.

3. Example

We start with an example that illustrates and motivates the
research presented in this paper. We consider a randomly
generated mixture with two contributors S1 and S2, the first with
probability of dropout d1 = 0.1, and the other with d2 = 0.5, and we
generate three replicates using these parameters (we set the drop-
in parameter at 0). If we calculate the LR using the parameters that
have been used to generate the mixture, we get as best informed
LR’s the values LR(0.1,0.5),0(M, g) = 1014.70 for the major donor and
LR(0.1,0.5),0(M, g) = 109.033 for the minor donor. In reality of course,
we do not know the parameters of the semi-continuous model that
correspond to casework mixture data, and we therefore first
investigate whether the mixture likelihoods can still to some
extent reveal them if we integrate the mixture likelihoods over the
parameter space.

We have compared the best informed LR for the major and
minor contributor, with the LR’s obtained by integration where we
treat the mixture either as a trace with at most 2, or at most three,
contributors. For each number of contributors, we have carried out
two integrations: the integration where all dropout variables di

range between 0 and 1; and integration of the likelihood function
where the dropout parameters are taken to be equal. Thus, for the
three-person case this is the integral

R 1
0Pðx;x;xÞ;0ðMjHÞdx. The

resulting weights of evidence are presented in Table 1.
We see from this table that, when we make no attempt to

estimate the probabilities of dropout, we do not lose a lot of
information. Even when we treat this two-person mixture simply
as a trace with at most three contributors and without any attempt
to estimate or restrict dropout probabilities, we still lose only one
ban of weight of evidence. For the major donor, this corresponds to
a WoE that is 13.70/14.70 = 93% of what we would have had in the
best informed position, and for the minor donor it corresponds to
88%. Notice also that in this case where the probabilities of dropout
are in reality quite different from each other, we lose a lot of weight
of evidence by integrating if we assume the probabilities of



Table 1
Weight of evidence obtained with various approaches.

Donor Obtained Log10 (LR)

Best informed Integration (max 2 persons) Integration (max 3 persons)

Unequal dropout Equal dropout Unequal dropout Equal dropout

Major 14.70 13.99 11.62 13.70 11.04

Minor 9.033 8.275 4.230 7.969 5.185
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dropout of all donors to be the same. For the major donor, we
preserve about 75% of the weight of evidence, but for the minor
donor only about half.

In order to illustrate how one arrives at these values for LR(M, g)
we plot in Fig. 1 the terms of (2.7): in Fig. 1a we plot the probability
density function pM;H2

ð~d;0Þ (on log-scale), and in Fig. 1b and c we
plot LR~d;0

ðM; gÞ for the major and minor donor as a function of d1

and d2. We see that indeed the integrated LR(M, g) is determined
mainly by the parameters (d1, d2) for which the likelihood
pM;H2

ððd1; d2Þ;0Þ and the likelihood ratios LRðd1 ;d2Þ;0ðM; gÞ for these
parameters are maximal, i.e., when we have evidence both in favor
of the dropout parameters being the ones that describe the mixture
data and in favor of the person of interest having contributed.

4. Single source traces

To further illustrate the principle, we now turn to single source
traces unaffected by dropout or drop-in where we again compare
the best informed LR with the LR obtained by integration assuming
a maximal number of one, two or three contributors. In case we
test the actual donor of the trace, the best informed LR is the
inverse of the expected population frequency fg of the profile g at

[(Fig._1)TD$FIG]

Fig. 1. Parameter likelihoods and LR’s for both donors (all on Log-scale), as a funct

[(Fig._2)TD$FIG]

Fig. 2. Preserved weight of evidence if LR is obtained by integrat
hand. Indeed, the best informed LR is obtained when we know that
this is a single source profile, so the LR obtained for a person of
interest is either zero (for a PoI with a different genotype) or 1/fg, if
the PoI has genotype g. For these single source traces, we have
assumed c = 0 both for the generation of the trace profiles and for
the LR calculations.

4.1. Actual donor

For an actual donor we will obtain a full match between the
trace profile and the genotype of the PoI. We will compare the best
informed LR by the LR that we obtain by integration when we
suppose the trace is a mixture of at most n persons where n 2 {1, 2,
3}. We then take as statistic the amount of preserved weight of
evidence, i.e., Log10(integratedLR)/Log10(bestinformedLR). We pro-
vide summaries of this statistic in Fig. 2, based on 100 analyses. In
this figure, as well as in the figures that follow, we have presented
the results in the form of box-plots. The boxes ranges from the 25%
quartile (Q1) to the 75% quartile (Q3) with a bar indicating the
median. The whiskers extend to the last point that is within
1.5 times the inter-quartile range (Q3–Q1) from the box, and
remaining points are plotted separately as outliers.
ion of the probabilities of dropout, for the mixture discussed in the Example.

ion of likelihoods, for single source traces without dropout.



K. Slooten / Forensic Science International: Genetics 27 (2017) 1–166
From this figure we see that hardly any information is lost if we,
rather than treating the trace with the correct parameters, treat it
as a trace that may have come from at most three contributors,
where all dropout probabilities are a priori equally likely.
Considering it as a trace of at most three persons leads to a
preservation of weight of evidence of on average about 95% for
these profiles if we have one replicate. If we suppose that the trace
has been analysed three times, each time with the same result,
then the amount of preservation is even higher as we can see in
Fig. 2b. If we treat it as a one person trace but integrate over the
dropout probability for its donor, we do not lose any information
any more, but even when we admit up to three contributors we still
preserve more than 97,5% of the weight of evidence, on average.
This result is understandable using the logic that was described in
the introduction of this paper: the probability density pM;H2

ð~dÞ is so
small outside the regions corresponding to a single contributor
without dropout, that LR(M, g) is almost completely determined by
its values at these parameters: even if we assume a priori (where a
priori here means prior to having any data from the trace) that we
are going to analyze a trace left by possibly three individuals, the
trace data indicate a single contributor so strongly that our prior
assumptions on the number of contributors or their dropout
probabilities have become almost completely irrelevant.

5. Two-person mixtures

We now turn to mixtures and start to consider two-person
mixtures. We look at mixtures with a major/minor donor (for
which we take d1 = 0.1, d2 = 0.5) and mixtures where both donors
have contributed equally (where we let d1 = d2 = 0.3). For both
types of mixtures we have, as for the single source traces,
generated 100 mixtures with these parameters, supposing that we
have three replicates for each mixture. Then, for each such
simulated mixture, we have compared the best informed LR
(calculated with the parameters that generated the data) with
several methods to obtain the weight of evidence: the LR obtained
by integration, either unrestricted of restricted, assuming two or
three possible donors, and the point estimates LR~d

ðM; gÞ corre-
sponding to various choices. Both for the generation of the
mixtures as well as for the LR calculations we have used c = 0.05.

[(Fig._3)TD$FIG]

Fig. 3. Preserved fraction of weight of evidence for major donors in two-person mixtu

methods (detailed in text).
5.1. Mixtures with a major and a minor donor

We first consider mixtures with a major donor (d1 = 0.1), a
minor donor (d2 = 0.5), of which we have three replicates on the
NGM loci.

5.1.1. Major donors

We first consider the actual major donors. To evaluate whether
obtaining a LR by integration is advantageous over estimating the
probabilities of dropout, we compare the best informed LR to the
LR obtained with various techniques: unrestricted integration
assuming at most two contributors, restricted integration assum-
ing two contributors with 0 � d1 � 0.2, 0.4 � d2 � 0.6, unrestricted
integration assuming at most three contributors, restricted
integration assuming three contributors with 0 � d1 � 0.2,
0.4 � d2 � 0.6, 0.8 � d3 � 1, and the point estimates LR~d;c

ðM; gÞ
for d1 = d2 2 {0.1, 0.3, 0.5}. For all these methods, we have
compared Log10(calculated LR)/Log10(bestinformed LR). The
results are presented in Fig. 3.

We conclude from Fig. 3 that the LR obtained by integration,
even if three persons are assumed, performs much better than
evaluating the LR assuming specific probabilities of dropout that are
equal for both contributors. In other words, we obtain a weight of
evidence that is closer to the best informed weight of evidence if we
make no assumptions at all other than that the trace has at most
three contributors, than if we evaluate the trace with the correct
number of contributors, but using the same probability of dropout
for both. We notice also that restricted integration performs slightly
better than unrestricted integration but not to a great extent: as we
already mentioned in Section 2.4, this is because the values that are
discarded in the restricted integration, are among the least plausible
given the mixture data and therefore their contribution to the LR
obtained by unrestricted integration is small.

5.1.2. Minor donors

We now consider the actual minor donors. Again we compare
the best informed LR to the LR obtained with various techniques:
unrestricted integration assuming at most two contributors,
restricted integration assuming two contributors with
0 � d1 � 0.2, 0.4 � d2 � 0.6, unrestricted integration assuming at
res with probabilities of dropout (0.1, 0.5), when LR’s are calculated using various
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Fig. 4. Preserved fraction of weight of evidence for minor donors in two-person mixtures with probabilities of dropout (0.1, 0.5), when LR’s are calculated using various

methods.
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most three contributors, restricted integration assuming three
contributors with 0 � d1 � 0.2, 0.4 � d2 � 0.6, 0.8 � d3 � 1, and the
point estimates LR~d;c

ðM; gÞ for d1 = d2 2 {0.3, 0.5, 0.7}. For all these
methods, we have compared Log10(calculated LR)/Log10(bestinfor-
med LR). The results are presented in Fig. 4.

As we did for the major donors, we again conclude from Fig. 4
that the LR obtained by integration, even if three persons are
assumed, performs much better than evaluating the LR assuming
specific probabilities of dropout that are equal for both con-
tributors. In fact, if we compare the results to those of the major
donor, we see that especially the weight of evidence obtained with
point values for the probabilities of dropout, is much more spread
out compared to the best informed LR, whereas the weight of
evidence obtained by integration, either restricted or unrestricted
and regardless of assuming at most two or at most three
contributors, is still close to the best informed values.
[(Fig._5)TD$FIG]

Fig. 5. Obtained weight of evidence by various methods, for non-contributors tested as
5.1.3. Non-contributors

For non-contributors, we need first to define what we now
mean by the best informed LR. Indeed, the non-contributor in
reality corresponds to none of the n donors, and therefore any LR
obtained with the actual probabilities of dropout, identifying the
non-contributor with donor i where 1 � i � n can be considered to
be a best informed LR. Unless the probabilities of dropout are the
same for all contributors, there is thus no single best informed LR to
be used for comparison.

We therefore calculate the weight of evidence Log10(LR(M, g))
for non-contributors in various ways: we compute the two best
informed LR’s, testing whether the PoI can be each of the
contributors with d1 = 0.1 or d2 = 0.5, the LR calculated with
d1 = d2 = 0.3, unrestricted integration assuming either two or three
contributors, and restricted integration assuming three contribu-
tors with 0 � d1 � 0.2, 0.3 � d2 � 0.7, 0.7 � d3 � 1 where the LR
possible contributors to two-person mixtures generated with (d1, d2) = (0.1, 0.5).



[(Fig._6)TD$FIG]

Fig. 6. Log10 (LR) for the hypotheses of the mixture having two versus three

contributors.
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tests if the PoI can be the first contributor. The results of these
calculations can be found in Fig. 5.

We now see a marked difference: the LR’s obtained for three
possible contributors (the column ‘‘3p unrestricted’’ in Fig. 5 are
hardly informative, whereas when assuming two possible con-
tributors (the column ‘‘2p unrestricted’’) we obtain LR(M,
g)� 1. We can understand this if we reason heuristically with
likelihoods. If we assume that the mixture has only two
contributors, then both contributors have a significant presence
since their probabilities of dropout are such that many of their
alleles are recorded, and the mixture likelihood will be maximal for
two contributors which both do not have a very high probability of
dropout (an example of this was given in Fig. 1a). None of these
donors look like our random non-contributing PoI so LR(M, g) will
be very small. That is, assuming two contributors, we cannot
completely deconvolve the mixture, but we clearly have a strong
counter-indication for the presence of our non-contributing person
of interest. However, if we assume that there could be three
contributors, then we can again reason with likelihoods: a two-
person mixture, if treated as a trace coming from three persons,
will have highest likelihoods for three persons in the situation
where not all three contributors have a small probability of
dropout. Therefore, for LR(M, g) the situation with a third donor
with small contribution and correspondingly a high probability of
dropout will dominate the result. Our person of interest does not
look like a contributor with low dropout probability, so for LR(M, g)
the comparison with the third contributor with high dropout will
dominate. Such a comparison cannot result in a very decisive LR.
What we arrive at is therefore very logical: it is hard to exclude that
the person of interest has had a contribution to the mixture, but we
can say that if he had then it must be a very small one, close to
undetectable; which corresponds to a very high degree of dropout.
In terms of a verbal description of the weight of evidence, this
corresponds to a statement along the lines of not being able to
exclude the person of interest as a donor, but no support in favour
of this possibility has been found either: it can only be said that a
contribution, if present, has to be minimal.

A way to specifically target a person with a non-negligible
contribution to the mixture is to restrict the integration domain of
the dropout probability for the targeted contributor. For example,
we may integrate d1, the probability of dropout for the person of
interest, only between 0 and 0.5. For the other donors, we can let
the di for vary between zero and one as before or also choose
bounds for them. In that case, we specifically investigate whether
there is support for the person of interest being a mixture donor
with probability of dropout between 0 and 0.5. We call this
restricted integration. To exemplify this, we have used restricted
integration supposing that the first (major) donor has 0 � d1 � 0.2,
the second (minor) donor has 0.3 � d2 � 0.7 and the third donor
has 0.7 � d3 � 1. The results are given in the column ‘‘3p restricted’’
of Fig. 5. If we then calculate LR(M, g) for non-contributors testing
whether they can be the first donor, we obtain much stronger
evidence that the non-contributor indeed did not contribute.

5.1.4. Determining the number of donors

Finally we use this method to determine whether we can
estimate the number of contributors to the above mixtures. In
reality there are two: one with probability of dropout d1 = 0.1 and
the other with d2 = 0.5. First, we need to realize what it means to be
a contributor if we allow for dropout. Indeed, if we do not make any
restrictions on the probability of dropout then a contributor need
not have been seen in the replicates that we have obtained. In other
words, if we conclude that there are two contributors then we
exclude the possibility that alleles of another person will show up
in future replicates, no matter how many of them we obtain. It will
be much harder to conclude that this must be the case, than to
conclude for example that there are only two contributors with a
reasonable representation in the mixture. A second property of the
integration method presented in this paper is that it uses a prior
distribution over the probabilities of dropout. In this case, we have
used a uniform prior, making all values a priori equally likely. In
expectation, prior to having data, the probability of dropout for
each donor is therefore 0.5 and these probabilities are subse-
quently updated using the mixture data to arrive at a posterior
probability density function pM;H2

ð~d; cÞ (cf. (2.8)). In view of these
considerations, we have calculated for each mixture the weight of
evidence in favour of the hypothesis that the mixture has two
donors, versus having three donors, in two ways: first by
unrestricted integration letting the probability of dropout range
between 0 and 1 for all donors, and second by restricted integration
letting these probabilities range between 0 and 0.7 for all donors.
The last choice corresponds to donors with a sufficient contribu-
tion (here, arbitrarily set at a maximum probability of dropout of
0.7), whereas in the first choice we also consider donors with a
smaller contribution. The results are presented in Fig. 6.

From these results we see that, when we make no restrictions
on the probabilities of dropout, there is only very weak evidence in
favour of having two contributors. Form the reasoning above this is
understandable: we have obtained three replicates and these are
generally different, from which we conclude that it is certainly not
impossible that future replicates will show alleles that have not
been seen in the ones that we have. Even though the currently
obtained replicates are compatible with the mixture having two
donors, it is therefore hard to say that we will never observe an
allele that must come from a third person. However, if we restrict
the probability of dropout to at most 0.7 for all donors, then we
only consider possible contributors from which on average a
fraction 0.3 or more of their alleles are detected per replicate. With
this restriction on what it means to be a contributor, the evidence
in favour of there being two rather than three contributors is much
stronger.

5.2. Mixtures with two equally present contributors

For mixtures with two equally present contributors, there is no
separation between major and minor donors any more. To see the
extent to which this changes the results of our analyses, we have
considered 100 two-person mixtures where both donors had the
same probability of dropout d1 = d2 = 0.3. Again, we suppose that
we have three replicates of each mixture and we have considered
the NGM loci. We plot in Fig. 7 the preserved weight of evidence
obtained by similar methods that we have used above: unrestrict-
ed integration assuming at most two contributors, restricted
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Fig. 7. Preserved fraction of weight of evidence for donors in two-person mixtures with probabilities of dropout (0.3, 0.3), when LR’s are calculated using various methods.
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integration assuming two contributors with 0 � d1 � 0.5,
0 � d2 � 0.5, unrestricted integration assuming at most three
contributors, restricted integration assuming three contributors
with 0 � d1 � 0.5, 0 � d2 � 0.5, 0.8 � d3 � 1, and the point
estimates LRx,x(M, g) for x 2 {0.2, 0.4}. For all these methods, we
have compared Log10(calculated LR)/Log10(bestinformed LR). The
results are presented in Fig. 7.

The results are now much closer to each other than in Figs. 3 and
4: all methods exhibit good performance. This is mainly due to the
fact that the LR’s obtained at the choices d1 = d2 = 0.2 and
d1 = d2 = 0.4 are much closer to the best informed LR, than we
saw for the case above where the contributors have different
probabilities of dropout.

For non-contributors, we obtain essentially the same results
(data not shown) as for the previously considered mixtures: if we
calculate the integrated LR with at most three contributors,
then we typically get a modest weight of evidence against
contribution. If we either restrict the integration for the contribu-
tor of interest, or assume there are at most two contributors, then
we get LR(M, g)� 1.

6. Three-person mixtures

Finally we consider three-person mixtures, where we have
chosen (d1, d2, d3) = (0.1, 0.4, 0.7) and c = 0 for the data generation,
and for the calculation of LR’s for actual contributors.

6.1. Major donors

We first consider the actual major donors with d1 = 0.1. We
compare the best informed LR to the LR obtained with various
techniques: unrestricted integration assuming at most three
contributors, restricted integration assuming three contributors
with 0 � d1 � 0.2, 0.3 � d2 � 0.5, 0.6 � d3 � 1, unrestricted inte-
gration assuming at most four contributors, restricted integration
assuming four contributors with 0 � d1 � 0.2, 0.4 � d2 � 0.6,
0.6 � d3 � 1, 0.8 � d4 � 1, and the point estimates LRd1 ;d2 ;d3

ðM; gÞ
for (d1, d2, d3) 2 {(0.1, 0.1, 0.1), (0.2, 0.2, 0.2), (0.3, 0.3, 0.3), (0.05,
0.5, 0.8), (0.2, 0.3, 0.8)} where the last two choices represent
reasonably close estimates of the dropout probabilities. For all
these methods, we have compared Log10(calculated LR)/Log10(bes-
tinformed LR). The results are presented in Fig. 8.

We conclude from Fig. 8, analogous to for the major donors in
two-person mixtures (cf. Fig. 3) that the LR obtained by
integration performs much better than evaluating the LR
assuming specific probabilities of dropout that are equal for both
contributors. We again obtain a weight of evidence that is closer to
the best informed weight of evidence if we make no assumptions
at all other than that the trace has at most four contributors, than if
we evaluate the trace with the correct number of contributors,
even if we use quite accurate estimates for the probability of
dropout for all donors. We notice also that restricted integration
performs slightly better than unrestricted integration but not to a
great extent: as we already mentioned in Section 2.4, this is
because the values that are discarded in the restricted integration,
are among the least plausible given the mixture data and therefore
their contribution to the LR obtained by unrestricted integration is
relatively small.

6.2. Middle donors

We next consider the actual middle donors with d2 = 0.4. We
compare the best informed LR to the LR obtained with the same
techniques as for the major donor except that we consider as point
estimates the values (d1, d2, d3) 2 {(0.3, 0.3, 0.3), (0.4, 0.4, 0.4), (0.5,
0.5, 0.5), (0.05, 0.5, 0.8), (0.2, 0.3, 0.8)}, i.e., for the equal dropout
choices we take a value around the actual value for this
contributor. The results are presented in Fig. 9.

Similar to the situation for the two-person mixtures with
d1 = d2 = 0.3, we see again that the method by which we assess the
weight of evidence makes less difference than for the major
donors. Integration, especially restricted three-person integration
still has the best results in the sense that almost all weight of
evidence is consistently conserved with the smallest variability
across the simulated mixtures. We note that the probability of
dropout of the contributor we look for now, is the average of that of
all donors, and this may explain why we get relatively good results
with LR’s obtained from point estimates assuming equal dropout
probabilities for all donors: the mixture likelihood will be optimal
around the average probability of dropout, if all di must be equal. So
this corresponds more or less to a maximum likelihood estimate
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Fig. 9. Preserved fraction of weight of evidence for the middle donors in three-person mixtures with probabilities of dropout (0.1, 0.4, 0.7), when LR’s are calculated using

various methods.

[(Fig._8)TD$FIG]

Fig. 8. Preserved fraction of weight of evidence for major donors in three-person mixtures with probabilities of dropout (0.1, 0.4, 0.7), when LR’s are calculated using various

methods.
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among the equal dropout choices, and the maximum is achieved
for the actual probability of dropout of the targeted donor.

6.3. Minor donors

We next consider the actual minor donors with d3 = 0.7. We
compare the best informed LR to the LR obtained with the same
techniques as for the major donor, but again we use different point
estimates for the LR’s calculated with equal dropout probabilities
for the three donors. The results are presented in Fig. 10.

We now see qualitatively the same behavior as for the minor
donors in the two-person mixtures that we considered, cf. Fig. 4,
but note the vertical scale: the results are now much more
pronounced. All the equal dropout methods perform very poorly,
and in many cases a weight of evidence indicating the opposite
hypothesis as for the best informed weight of evidence is obtained
(the results corresponding to negative scores). On the other hand,
we also see that a good estimate of the probabilities of dropout
leads to an accurate estimate of the weight of evidence. The
integration methods perform more or less similarly to each other,
although there are some differences. The restricted integration
assuming three contributors preserves on average 98% of the
weight of evidence. We provide some statistics in Tables 2 and 3.

Since it is generally a hard problem to assess the weight of
evidence of a minor donor in a mixture and the weight of evidence
for minor donors can be quite small, we also further compare these
results by inspecting individual outcomes. In Fig. 11 we plot a bar
chart, where for each of the 100 evaluated mixtures we plot a bar
corresponding to the best informed weight of evidence (gray) and
to the obtained estimate (black) using two of the methods just
described: unrestricted integration with 3 contributors and the
point estimate assuming dropout probabilities (0.7, 0.7, 0.7). We
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Fig. 10. Preserved fraction of weight of evidence for the minor donors in three-person mixtures with probabilities of dropout (0.1, 0.4, 0.7), when LR’s are calculated using

various methods.

Table 2
Statistics for preserved weight of evidence of minor donor with d3 = 0.7 (based on 100 simulations) using integration method.

3p restricted 4p restricted 3p unrestricted 4p unrestricted

Median 0.977 0.913 0.854 0.784

Mean 0.989 0.938 0.797 0.793

Standard deviation 0.1634 0.185 0.243 0.138

Proportion �150% 2/100 2/100 0 1/100

Proportion >50% 100/100 100/100 95/100 99/100

Proportion <0 0/100 0/100 2/100 0/100

Table 3
Statistics for preserved weight of evidence of minor donor with d3 = 0.7 (based on 100 simulations) using point estimates.

(0.05, 0.5, 0.8) (0.2, 0.3, 0.8) (0.6, 0.6, 0.6) (0.7, 0.7, 0.7) (0.8, 0.8, 0.8)

Median 0.958883 0.921783 0.422818 0.498781 0.534658

Mean 0.996103 0.944982 0.146827 0.274067 0.362815

Standard deviation 0.181105 0.245756 1.15468 0.966074 0.831308

Proportion �150% 3/100 2/100 0/100 0/100 1/100

Proportion >50% 100/100 98/100 43/100 50/100 54/100

Proportion <0 0/100 0/100 21/100 14/100 10/100
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clearly see that the LR obtained by integration gives for almost all
cases a slightly conservative estimate, whereas the weight of
evidence is generally more strongly reduced, or even lost by the
point estimate.

[(Fig._11)TD$FIG]

Fig. 11. Obtained WoE by integra
To conclude, as we have seen in this example, a good estimate of
the probabilities of dropout allows for a good approximation of the
best informed weight of evidence, but such an estimate will be
hard to obtain from the mixture data since it involves a correct
tion resp. by point estimate.
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Fig. 12. Weight of evidence for non-contributors in three-person mixtures with probabilities of dropout (0.1, 0.4, 0.7), when LR’s are calculated using various methods.

[(Fig._13)TD$FIG]

Fig. 13. Log10 (LR) for the hypotheses of the mixture having three versus four

contributors.
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assignment of the number of contributors as well as a good
estimate of the probability of dropout for each. If we, instead,
estimate a range for each of the contributors and integrate the LR,
we have an equally good and more feasible method. But even
assuming the mixture to contain at most four contributors and not
making any assumptions about their dropout probabilities still
allows an accurate assessment of the weight of evidence.

6.4. Non-contributors

Finally we evaluate non-contributors. As was previously
discussed, there is now no single best informed LR and we
compare the obtained weights of evidence obtained with various
methods: the three LR’s obtained with probabilities of dropout
equal to (0.1, 0.4, 0.7) for being the first, second or third donor;
unrestricted integration with either three or four supposed
contributors and restricted integration with three or four
contributors where the dropout of the first donor, that we test
for, is between 0 and 0.3 and the probabilities of dropout for the
other donors are not restricted. Since, assuming three possible
contributors, it is often impossible that a randomly drawn non-
contributor can be a possible contributor with c = 0 since more
than four alleles have been observed that the tested non-
contributor does not have, we have taken c = 1 for the three-
person evaluations. The resulting distributions of weight of
evidence are displayed in Fig. 12.

If we first consider the best informed LR’s we see that, as is
logical, the exclusions are stronger if we test the non-contributor to
be a more strongly present contributor.

When we consider the LR’s obtained by integration, we see that
if we do not restrict the probabilities of dropout, then we get LR’s
that are not very informative, also when considering three
contributors. Contrary to the case where we considered non-
contributors to two-person mixtures with (d1, d2) = (0.1, 0.5) the
least present donor here (with d3 = 0.7) is less represented in the
mixture, has two other donors to share alleles with, and we have
used c = 1 which is relatively high. In that case, we again arrive at
the statement that we cannot exclude that our non-contributor has
contributed, but that it can only have been a very small amount. If
we restrict the probability of dropout for the donor that we test for
to be between 0 and 0.3 (and do not restrict the other contributors),
then we get much stronger exclusions again, as can be seen from
the boxplots corresponding to the restricted integration.

6.5. Determining the number of donors

To end the analyses of these mixtures, we again investigate as
we did for the two-person mixtures (cf. Section 5.1.4), what LR’s we
obtain if we formulate hypotheses that investigate the number of
contributors. Similarly to the analysis in Section 5.1.4, we compare
the hypotheses of the mixture having three or four contributors
both using unrestricted integration where no bounds on the
dropout probabilities are imposed, and with an analysis where all
contributors have at most 0.7 as probability of dropout. The
resulting weights of evidence are presented in Fig. 13.

We see that, without restrictions on the probabilities of
dropout, it is now even harder than for the two-person mixtures
(cf. Fig. 6) to distinguish between the possibilities of three or four
contributors: there is hardly any support either way. It is only
when we define a contributor as someone who is represented to a
minimum degree (here, a probability of dropout of at most 0.7),
that we get support in favour of the mixture having three, rather
than four, such contributors.
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7. Modeling issues

Throughout this article we have generated and processed all
mixtures using (2.1). A possible point of criticism for this model is
that it has as consequence that the probability Di for a homozygous
allele of contributor i to drop out is modeled to be equal to d2

i , i.e.,
equal to the probability of two heterozygous alleles to drop out. In
reality one would expect that Di is strictly smaller than d2

i since (cf.
[22]) conceivably each of the alleles on their own could yield a
signal below the detection threshold whereas the cumulative
signal exceeds it. Similarly it does not take into account the same
phenomenon when alleles are shared between contributors. The
main focus of this paper has been to show that integrating the LR
recovers accurately the best informed LR, which we have
demonstrated for the model with (2.1). Our results do not imply
that (2.1) is an acceptable modeling assumption, but they do mean
that if this model applies to the mixture data then we can
accurately recover the best informed weight of evidence by
integration.

Whether or not the model applies and to which extent is a
separate problem which in full generality is beyond the scope and
purpose of the paper, but in this subsection we nonetheless briefly
digress in order to test the influence of modeling error. We will
compare the LR obtained with (2.1) with the best informed LR
when two modifications are made. First we consider an alternative
for Di ¼ d2

i and as a second modification we consider degradation.
Indeed, another consequence of (2.1) is that the probability of
dropout di of contributor i is the same for all loci. In reality this
probability could increase with increasing fragment length.

7.1. Homozygous dropout probability

First we look at an alternative for (2.1), defining

P~d;cða2Mj~gÞ ¼ 1�e�cpa

Y
i:ni;a¼1

di

Y
i:ni;a¼2

Di: (7.1)

Our definition (2.1) is obtained for the case Di ¼ d2
i . For comparison

we have taken

Di ¼
2bdi

ð1þ ð2b�1ÞdiÞ
(7.2)

from [5] (see [13] for this presentation of the relation between Di

and di). Note that with this modification we have Di! 0 as
di! 0 and Di! 1 as di! 1, which seems a basic requirement. For
large probabilities of dropout, we have Di� d2

i . Thus, we expect
that this model will have most impact compared to (2.1) for rather
elevated dropout probabilities. To test this we have taken b =�4.35
as in [5] and sampled various mixture profiles according to (7.2)

[(Fig._14)TD$FIG]

Fig. 14. Obtained LR’s for donors of mixtures that are generated with (7.2) with b =�4.35

to the donor with d1 = 0.1, gray circles to the donor with d2 = 0.4 and filled black squa
and then calculated the integrated LR both using Di as in (7.2) and
Di ¼ d2

i as in (2.1). We have done so for the donors of two-person
mixtures with (d1, d2) = (0.1, 0.5) and three-person mixtures with
probabilities of dropout (d1, d2, d3) = (0.1, 0.4, 0.7).

We evaluate the obtained results in two ways: by comparing
the integrated LR using (2.1) with the integrated LR using (7.2) and
with the best informed LR (which is now also computed with (7.2)
since the mixtures were generated using this formula). We plot the
results in Fig. 14 which contains the results for the donors of the
considered three-person mixtures. The results for the two-person
mixtures are similar to those for the two most prominent donors of
the three-person mixtures and are omitted.

We conclude that (2.1), while certainly not exactly correct, does
not appear to be a harmful modeling assumption when major
donors are evaluated, and that modeling care is needed when
evaluating minor donors. We also see that, as was the case with
(2.1), the integration method gives an accurate estimate of the best
informed weight of evidence when (7.2) is used for the LR
calculation. We also note however, that our choice to take b =�4.35
comes from [5]. This relation between Di and di is based on logistic
regression and not on a model, other data from other DNA
multiplexes, PCR cycle numbers and machine settings may lead to
other estimates (cf. [23]). We also note that the model of [13] for
peak heights using gamma distributions, yields a smaller differ-
ence between Di and d2

i than given by (7.2) if the mean of the
observed peak heights is taken a proxy for the total amount of DNA
(cf. [13]). If the model of [13] is accurate then this would mean that
the simulation results in this subsection are obtained with an
exaggeration of the difference between Di and d2

i .

7.2. Degradation

When dropout is a possibility, larger fragments may be more
prone to dropout than shorter fragments. This leads to an
increasing probability of dropout on each row of the obtained
electropherogram. To model this, we have divided the NGM loci in
four categories corresponding to their position on the dye lane
where they are located. If a contributor has dropout probability di,
we set a probability of dropout for a locus in position p 2 {1, 2, 3, 4}

equal to dðr
p�1Þ

i where 0 < r � 1 is a parameter describing the

degree of degradation. If r = 1 then we retrieve (2.1). For our
simulations we have used r = 0.8. This means, for example, that if
di = 0.1 then on the dropout probabilities on a dye lane increase
from 0.1 for the locus in the first position to about 0.31 for the locus
on the fourth position. A reason to choose this model is that if our
degradation model is such that the heterozygous dropout

probability on locus L can be written as gðdi; LÞ ¼ df ðLÞ
i for some

function f of the loci, then this is compatible with (2.1) in the sense
and heterozygous probabilities of dropout (0.1, 0.4, 0.7). Empty squares correspond

res to the donors with d3 = 0.7.
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Fig. 15. Obtained LR’s for donors of mixtures that are generated with degradation and heterozygous probabilities of dropout (0.1, 0.4, 0.7). Empty squares correspond to the

donor with d1 = 0.1, gray circles to the donor with d2 = 0.2 and filled black squares to the donors with d3 = 0.7.
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that gðdi; LÞ2 ¼ ðdf ðLÞ
i Þ

2
¼ ðd2

i Þ
f ðLÞ ¼ gðd2

i ; LÞ. Again we have generat-

ed mixtures according to this model, computed the best informed
LR according to the generating model, and computed the
integrated LR with this model as well as with (2.1). The results
are shown in Fig. 15.

Again, the results for the two-person mixtures are similar and
we omit them. We see from Fig. 15 that the integrated LR is
virtually the same whether or not degradation is taken into
account in the evaluation or not, for these mixtures. Of course in
reality it would be hard to estimate the degradation parameter,
and one could argue how to model this phenomenon better, but for
these cases this would not have been necessary as the LR obtained
by integration is unaffected by it. If it can be satisfactorily modeled
as a refinement of the semi-continuous model described here, it
would be preferable to implement this, but from these results it
seems that the lack of degradation modeling does not appear to
seriously affect the capacity to accurately recover the best
informed weight of evidence.

8. Discussion

For weight of evidence calculations on DNA mixtures involving
a probabilistic model, it may be hard to estimate the parameters
that are mixture-specific, such as the number of contributors, their
relative contribution, etc. For the semi-continuous model dis-
cussed here, the calculated likelihood ratio will depend on the
chosen probabilities of dropout for each donor and these are hard
to estimate precisely. However, the estimation of these parameters
is much aided by a likelihood-driven approach taking the allele
frequencies of the observed alleles into account, as well as the
reproducibility of the alleles across several independent replicates.
Especially taking the allele frequencies into account is hard for a
human interpreter, but straightforward for a computer. In this
paper, we have investigated how well we can recover the LR that
would have been obtained if all relevant mixture parameters
would be known, if we instead start with a uniform prior on the
dropout probabilities and determine, based on the mixture data,
the (posterior to the mixture data) probability density function for
these parameters. We then integrate the LR with respect to this
probability density function. This way, a LR that belongs to more
plausible parameters puts in more weight into the final result than
a LR obtained for unrealistic values. It is possible, but not necessary,
for a human interpreter to assess the number of contributors and
restrict their probabilities of dropout to some set of values that are
deemed the most likely. If these restrictions are accurate, then they
will not influence the resulting LR to a large extent, since only
implausible values are discarded that do not contribute much.
We compare this method with the calculation of point
estimates LR~d;c

ðM; gÞ where the LR is calculated within the
probabilistic model with parameters ~d; c. This is probably the
most common application of the semi-continuous model in
casework among forensic laboratories, and then especially the
models where all unknown donors must have the same probability
of dropout, since some semi-continuous model implementations
do not support other choices.

We have seen that the integration method, although it involves
little or no human interpretation, gives an accurate estimate of the
weight of evidence for true donors of the mixture. Regardless of
whether the tested person is an actual major or minor donor, the
obtained LR by integration is very close to the best informed LR
even if the allowed number of contributors exceeds the actual
number. Whether or not the point estimates perform better or not,
depends of course very much on the quality of these estimates. In
our examples, even point estimates that are close do not
outperform the integrated LR.

Calculations assuming equal dropout probabilities for all
unknown donors can be a cause of a large loss of information,
without getting rid of the risk of occasional overestimation of the
weight of evidence. In these examples the equal dropout approach
only gives accurate results when the actual dropout probabilities
are such that their average is equal to the actual probability of
dropout for the donor that we consider, and not when the donor
that we consider has a higher or lower than average dropout
probability. Integration over the probability of dropout, assuming
that all contributors have the same, does not solve this problem as
was already made clear in the example in Section 3.

For non-contributors, the results of the integration are also
perfectly reasonable. If the allowed number of contributors is equal
to the actual number, then – depending on the dropout
probabilities of the real donors – it may be clear that there is a
counter-indication for the PoI to be any of the contributors and we
will obtain a LR corresponding mostly to the exclusion of the donor
that is hardest to exclude (the one with the highest probability of
dropout). It may be the case that the donor with the highest
dropout probability is hard to recognize, and then the LR’s for non-
contributors become less informative, as we saw for the three
person mixtures. If we allow more contributors than there actually
are, then the LR is typically almost uninformative and only slightly
smaller than one. This corresponds to the conclusion that, although
there is no indication that the PoI has contributed, it still cannot be
ruled out that he has contributed such a tiny amount of DNA to the
trace that it cannot be found back in the trace. Such a statement
only says that no indication has been found that the PoI has
contributed to the trace profile, even if only minute contributions
are considered, but that of course such a contribution cannot be
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ruled out either. This is a very reasonable conclusion, if indeed we
are making a statement about a possible non-zero contribution.
We can make a stronger statement by restricting the domain of
dropout variables to only contain values that are not too high, such
as the interval [0, 0.5]. Then the LR for a non-contributor strongly
points towards non-contribution. This then means that for this PoI,
we have strong evidence against a significant contribution. This
way, the method presented here naturally leads us to consider
when we actually consider someone to be a contributor.

The method thus has several desirable properties. It is a method
that resembles human interpretation in the sense that it holds
everything to be possible a priori, but the end result is most
influenced by what appears to be the best explanation for the
mixture data (where the quality of the explanation, i.e., the mixture
likelihood, is obtained without comparing it to the PoI). Second, it is
more effective than human interpretation since allele frequencies
are taken into account and the integration ranges over all possible
parameter values. It is also an objective method in the sense that no
estimate needs necessarily to be made regarding the number of
contributors (other than a maximum) nor about their respective
contributions. Of course, it is possible to use estimates for the
dropout probabilities, but ranges rather than point estimates suffice.

We can also view these results as belonging to a validation of
the semi-continuous method, since it shows that it is possible to
accurately retrieve the weight of evidence that it is carried by the
mixture: we have shown that we can closely recover the best
informed LR by integration, where we only make use of the
mixture data. Moreover we have shown that, at least for major
donors, the LR obtained by integration using (2.1) still performs
well as an estimator of the best informed weight of evidence, even
if the mixture data have not been obtained in agreement with the
model, as was described in Section 7. Of course, it would be
preferable to make the model as realistic as possible provided we
know how to do so. On the other hand, such improvements can
bring the additional complication of being specific to the DNA
typing technology (multiplex, cycle number, CE settings, etc.) and
trace type (degradation, inhibition, template amount, etc.). This
brings us to the question of how the results in this paper relate to
those obtained with a continuous model. Without being an expert
on these systems, we believe that it must be hard in general to
build a model predicting peak height distributions applicable to all
profiles in view of the variation that we just mentioned. The semi-
continuous model used in this paper discards the peak height
information and will be less powerful than a continuous model if
the peak height model it uses is accurate. On the other hand, the
information that the semi-continuous model with integration does
process, is processed quite correctly as long as it can be assumed
that there exists a probability of dropout that is contributor-
specific and does not vary among replicates. The relation between
semi-continuous models and continuous models is analogous to
the relation between inclusion probabilities and likelihood ratios
for mixtures without artefacts obtained by a binary model (i.e., the
semi-continuous model without dropout or drop-in). The inclusion
probability uses less information (being calculated from the
mixture and not using the profile of the person of interest), but
(their inverse) can be regarded as the weight of evidence when the
evidence is considered to be only the fact that there is a matching
person of interest without disclosing that person’s genotype (cf.
[16]). A LR calculation with the binary model uses more
information and therefore provides a better informed weight of
evidence which is, for true donors, in expectation more than
obtained from exclusion probabilities. Similarly, the ideal contin-
uous model will outperform the semi-continuous model, but the
advantage of the semi-continuous model is its simplicity which
makes it widely applicable across trace types and typing
technologies, as a reliable and unbiased estimator of the weight
of evidence that is obtained from peak presence or absence.
Therefore the results obtained with method of this paper could
potentially serve in a comparison of results with continuous
models to validate the latter (similar to approaches in [24,14]).

As we have seen, restricting the integration domain to a subset
of most plausible values is, for actual donors, of some use, but
mostly in the sense of providing some computational advantage
when numerical integration is carried out as we have done here.
The difference in obtained LR is small since discarding the least
plausible values corresponds to little change in obtained informa-
tion. However, it can be useful to not only obtain evidence in favor
of contribution, but to also obtain evidence in favour of
contribution within certain ranges of the probability of dropout.
That way a statement can be made both on the weight of evidence
and on the amount of representation of the person of interest’s
profile in the mixture.

We have also investigated whether we can use this approach to
estimate the number of contributors to a mixture. However, when
we ask this question, we again come across the need to first decide
when we actually consider a person to be a contributor. In DNA
mixture profiles exhibiting dropout, the whole concept of number
of contributors becomes less meaningful than it is for mixture
without dropout. We have indeed seen that, if we do not make any
restrictions on the probabilities of dropout, then the assessment of
the number of contributors becomes much harder than if we set a
maximum value on the probability of dropout for each.

Finally, let us comment on some aspects that we have not
considered here. A first omission is that we have not treated
possible kinship between the person of interest and the actual
donor that we are targeting in the LR calculation. However, of
course also likelihood ratios taking such a possibility into account
can in principle be subjected to the same method.

In this manuscript we have not used a u-correction. The reason
that we have not applied it is that we have not sampled the profiles
of the contributors with a u-correction, and so the best informed LR
is the one with u = 0. The purpose of this manuscript is to show that
by integrating the LR, we obtain a weight of evidence that is very
close to the weight of evidence that we would obtained had
we known all relevant parameters. Of course, it is possible to apply
a u-correction, obtain the LR algebraically again, and integrate;
we have in fact implemented this in the Mathematica script. A
u-correction has a conservative effect on the likelihood ratio, but in
many cases this is also true for taking estimates of the LR compared
to the best informed LR. We did not want to confound these two
effects in this research. Depending on the chosen value for u the
result will be conservative within the subpopulations of the
population from which the allele frequency database is taken or
even in other populations (cf. [25,26]).
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