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Abstract—In this paper we derive a MLE for waiting times in
an G/G/1 queue. Numerical examples illustrate the application
of our estimator to fitting a M/G/1 model to observed waiting
times.
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I. INTRODUCTION

Maximum likelihood estimation (MLE) is a well known
technique for fitting probabilistic models to data, see for
more details [4]. The basic philosophy of MLE is that one
considers a parametric family of densities, denoted by fθ(x),
where θ denotes a design parameter. Given observation X
of a random phenomenon one finds the value for θ that
maximizes fθ(X), i.e., that maximizes the rate at which the
actual observation X actually occurs. For MLE one requires
an analytically tractable density. This limits the applicability
of the MLE technique to service systems, such as, waiting
models from queueing theory, as these models typically have
no closed-form solution for the underlying density. In [5], [6],
Peng at al. derived a simulation-based estimator for estimating
densities and their θ-derivatives from observed data given that
the density of modeled phenomenon X is continuous and
the input random variabels have support on the whole space.
Waiting times in service systems have a point mass in zero and
the input random variables including interarrival and service
times have distributions supported on [0,∞). In this paper we
provide an MLE that addresses the particular needs of service
centers. While we state the results for the general setting,
application of the MLE focuses on the case where interarrival
times are exponentially distributed and services have support
[0,∞). Moreover, we are only interested in the waiting times
themselves rather than some waiting time-related cost.

With the approach put forward in this paper, an MLE-based
output fitting of a waiting time model is made available. By
“output fitting” we mean that a postulated model is directly
fitted to output data, i.e., observed waiting times, opposed to
“input fitting,” where statistics like MLE are used to fit the
postulated models for the input data such as interarrival times
and service times. A classical ressult on input fitting is [2],
where an MLE for the arrival and service rate of an M/M/1
queue provided based on the number of arrivals and service

completions, together with the time spent in the empty state
during a fixed time interval along with initial queue length.
An MLE for the M/M/1 queue fitted to queue length data is
given in [8].

The output fitting of a postulated model is motivated by
the desire to have a realistic but still easy to handle model
at hand for analysis and design studies. Indeed, with such an
idealized and well-calibrated model at hand, questions can be
answered, such as, what the effect of a faster server is on the
waiting time. More importantly, comparing output fitting to
input fitting gives the opportunity to analyze model mismatch.
To see this, suppose that we have reason to believe that a single
server can be described by an M/M/1 queue. The M/M/1 queue
is only an idealized version of the real system. Comparing the
estimated arrival rate and service rate obtained on a statistical
analysis of the interarrival times and service times alone, to
the rates obtained via output fitting, leads to understanding the
model mismatch. Indeed, if the arrival rate measured via the
interarrival times is λin, and the arrival rate estimated by our
MLE via the actually observed waiting times λout, then λin−
λout indicates the model mismatch in modeling waiting times
for this particular system by an M/M/1 queue. The rational lies
in that if the postulated M/M/1 model were appropriate, then
for a sufficiently large observation period of waiting times, λin

and λout should be asymptotically equal.
The paper is organized as follows. In Section II the basic

waiting time Markov chain model is introduced. The overall
MLE formula for an observed sequence of waiting times in
presented in Section III and numerical results are provided
in Section IV. We conclude with pointing out directions of
further research.

II. THE MARKOV CHAIN MODEL

Customers arrive at a service station according to a renewal
point process. The inter-arrival times {In : n ∈ N} are
independent and identically distributed (iid), with density
fI(x) and 0 < E[In] < ∞ and P(In = 0) = 0. Customers
are served in order of arrival, and consecutive service times
are iid random variables {Sn(θ) : n ∈ N} with density
fS(x; θ), for θ ∈ Θ ⊂ R, and 0 < E[Sn(θ)] < ∞ and
P(Sn(θ) = 0) = 0. Interarrival times and service times are



assumed to be mutually independent. Consider the process
of consecutive waiting times {Xn}, denoting the time that
the corresponding customer has spent in at the service station
from arrival to the beginning of service. The service system
starts initially empty. Consecutive waiting times Zn follow the
recursive equation [1]:

Zn = max{0, Zn−1 + Sn−1(θ)− In}, n ≥ 2, (1)

and Z1 = 0, see [1].
Denote the transition kernel of the waiting time chain by

Pθ, i.e.,

Pθ(B, z) = P(Zn+1(θ) ∈ B|Zn(θ) = z)

for x ≥ 0 and B ⊂ (0,∞) a (Borel) measurable set, or, more
formally

Pθ(B, z) =

∫ ∞
0

(∫ s+z

0

1{x+z−a∈B}fI(a)da

)
fS(s)ds,

and otherwise, for B ∈ [0,∞) with 0 ∈ B,

Pθ(B, z) =

∫ ∞
0

(∫ s+z

0

1{z+s−a∈B}fI(a)da

)
fS(s)ds

+

∫ ∞
0

(∫ ∞
s+z

fI(s)ds

)
fS(a)da.

Inserting B = (0, y] and differentiating with respect to y, we
obtain as density of the continuous part of the transitin kernel
on (0,∞)

fθ(y; z)

= 1{y > z}
∫ ∞
0

1{s ≥ y − z}fI(s− (y − z))fS(s)ds

+1{y ≤ z}
∫ ∞
0

fI(s− (y − z))fS(s)ds

= E[fI(z + S − y)1{y − z ≤ S}], (2)

y > 0, (in words, an increase of wating time from z to y is
only possible by a service time of at least y−z), and the point
mass in 0 is given by

pθ(0, x) =

∫ ∞
0

(∫ ∞
s+x

fI(s)ds

)
fS(a)da

= E[1{x+ S − I ≤ 0}]. (3)

III. DERIVING AN MLE FOR THE ARRIVAL RATE

Taking derivatives with respect to θ = λ, the arrival rate,
gives,
∂

∂θ
fθ(y; z) =

∫ ∞
max(y−z,0)

∂

∂θ
fI(z + s− y, 0)fS(s)ds

= E
[
∂

∂θ
fI(z + S − y)1{y − z ≤ S}

]
, (4)

for y > 0. Introducing the score function of the interarrival
times

SFθ(x) =
∂

∂θ
log(fI(x)),

we have for the derivative of the point mass in 0

∂

∂θ
pθ(0, z) =

∫ ∞
0

(∫ ∞
s+z

∂

∂θ
fI(s)ds

)
fS(a)da

=

∫ ∞
0

(∫ ∞
s+z

∂
∂θfI(s)

fI(s)
fI(s)ds

)
fS(a)da

= E [SFθ(I)1{I ≥ S + z}] . (5)

The straightforward log-likelihood for θ given observation
{Z0, Z1, . . . , ZT } is

LT (θ) =

T∑
t=1

((
log(pθ(0, Zt−1

)
1Zt=0

+
(

log(fθ(Zt;Zt−1)
)

1Zt>0

)
.

For the optimization part, we use the estimator

LT (θ) =

T∑
t=1

(
∂
∂θpθ(0, Zt−1)

pθ(0, Zt−1)
1Zt=0 +

∂
∂θfθ(Zt;Zt−1)

fθ(Zt;Zt−1)
1Zt>0

)
.

(6)
Inserting (2), (4), (3) and (5) into (6) yields

LT (θ) = (7)
T∑
t=1

(∑M
m=1 SFθ(I

m
t )1{Zt−1 + Smt ≤ Imt }∑M

m=1 1{Zt−1 + Smt ≤ Imt }
1Zt=0

+

∑M
m=1

∂
∂θfI(Zt−1 + Smt − Zt)1{Zt − Zt−1 ≤ Smt }∑M

m=1 fI(Zt−1 + Smt − Zt)1{Zt − Zt−1 ≤ Smt }
1Zt>0

)
,

where {Imt , Smt } is a collection of iid interarrival and service
times. Note that in case of high utilization, so that the
probability of Zt = 0 is small, the above MLE reduces
to the standard MLE for fitting the density to the observed
interarrival times. For finding the value for θ that maximizes
LT (θ) we apply standard stochastic approximation, see [3].

For the M/G/1 queue with arrival rate θ, we obtain

∂

∂θ
fI(x) = (1− θx)e−θx and SFθ(It) =

1

θ
− It.

The MLE estimator with respect to the arrival rate is displayed
in the boxed equation (8).

LT (θ) =

T∑
t=1

(∑M
m=1

(
1
θ − I

m
t

)
1{Zt−1 + Stm ≤ Itm}∑M

m=1 1{Zt−1 + Stm ≤ Itm}
1Zt=0

+

∑M
m=1(1− θ(Zt−1 + Stm − Zt))e−θ(Zt−1+S

t
m−Zt)1{Zt − Zt−1 ≤ Stm}∑M

m=1 θe
−θ(Zt−1+St

m−Zt)1{Zt − Zt−1 ≤ Stm}
1Zt>0

)
. (8)



Fig. 1. Histogram of the 1000 estimated theta values for a dataset of 100
customers.

For finding the value for θ that maximizes LT (θ) we apply
standard stochastic approximation [3].

IV. NUMERICAL RESULTS

For illustration purposes, we consider a single server queue
with Poisson arrival process with rate θ and lognormal service
times, and provide MLE’s for fitting θ to observed waiting
times. In particular, we choose the postulated model the true
model (i.e., the model we actually sample the waiting times
from) but we start the postulated model with a wrong θ. So,
MLE is carried out to trace the correct arrival rate for this
model. Numerical examples will illustrate the performance of
our estimators.

For the second set of numerical examples, we consider the
following variation of the above model. The number of servers
now varies between 1 and 2. We apply our MLE to fit a
postulated single server model, where the MLE compensates
for the intentional model mismatch. Numerical examples will
illustrate the performance of our estimators.

A. MLE for true Model

We consider a single server queue with Poisson arrival
process with rate θ0 and lognormal service times. We simulate
a sequence (Imt , S

m
t , Z

m
t ) of interarrival, service and waiting

times satisfying the relation Zmt = max(Zmt−1+Smt−1−Imt , 0).
For the numerical experiments, we set θ to θ1 = 1.0 6= θ0 =
0.4 and apply MLE to trace the true value θ0.

We apply SA with a fixed epsilon of 5e-05. We start by
considering T small (T = 100), which is a realistic number
of customers if the estimator is applied in practice. The service
time is chosen in such a way that the load is roughly equal to
0.65. We perform 1000 independent runs for the SA and plot
in Figure 1 the corresponding histogram for the found optimal
values for θ. Table I presents the mean and standard deviation
of the estimations. Assuming normality, the corresponding
95% confidence interval is presented in Table I. The true value
of θ does not lie in this confidence interval. The reason for
this is that T is rather small, and the MLE depends still too
much on the observed waiting times.

Measure Value 100 customers Value 1000 customers
Mean 0.505 0.393

Standard deviation 0.00248 0.00194
Lower bound CI 0.500 0.389
Upper bound CI 0.510 0.396

TABLE I
MEAN, STANDARD DEVIATION AND THE CONFIDENCE INTERVAL FOR THE

DATASET WITH 100 AND 1000 CUSTOMERS.

Fig. 2. Histogram of 1000 estimated θ values for a dataset of 1000 customers.

Therefore, we also consider the case for larger T (T =
1000). Figure 2 presents the corresponding histogram. Table I
reports the values for this case.

Table II presents the expected waiting time for the trueθ and
the two mean values of the estimated θ-values. The expected
waiting time of the case with T = 1000 lies close to the
true expected waiting time, which is a consequence of the
ergodicity of the system and the strong consistency of the
MLE.

B. MLE with Model Mismatch

We consider a single server queue with Poisson arrival
process with rate θ0 and lognormal service times. However,
for this system, we vary the number of servers between 1
and 2. More specifically, we run a discrete-eevent (DES)
simulation with two servers. Server 1 is always active. For
server 2 the dynamic is a follows: whenever a customer
leaves server 1 and there are at least two customers waiting
in queue, server 2 becomes active with probability p > 0
and servers one customer. Once this service is finished, the
server becomes inactive until started again via a customer
leaving server 1. We simulate a sequence (Imt , S

m
t , Z

m
t ) of

interarrival, service and waiting times but due to the model
mismatch, the recursion Zmt = max(Zmt−1 + Smt−1 − Imt , 0) is
not satisfied. The postulated waiting time is g(Xm

t , Zt−1) =
max(Zmt−1 + Smt−1 − Imt , 0), where Xm

t = (Smt−1, I
m
t ). Note

Expected waiting time
θ0 4.579

θ̂T=100 11.884
θ̂T=1000 4.337

TABLE II
THE EXPECTED WAITING TIME FOR THE TRUE θ AND THE TWO ESTIMATED

θ-VALUES.



Fig. 3. Histogram of the 500 estimated θ values for a model mismatch dataset
of 100 customers.

Fig. 4. Histogram of the 500 estimated θ values for a model mismatch dataset
of 1000 customers.

that p allows us to control the amount of model miss-match
present in the model We now apply (8) to sensitivity of the
arrival rate.

We take the true θ to be equal to 0.5 and define the service
parameters such that the load is roughly equal to0.8. A dataset
is generated and the estimator is run for different values of
the probability p. First of all, 500 independent SA runs are
performed for the case that p = 0.5 and T = 100 as well as
T = 1000. Figure 3 and 4 are the corresponding histograms.
TableIII presents the absolute difference between the mean

estimate and the true value of θ in the two cases.
Table IV presents the expected waiting time for the true θ

and the mean of the two estimated θ-values. As with the true

T-value |θ̂ − θ0|
T = 100 0.0591

T = 1000 0.0511
TABLE III

ABSOLUTE VALUE FOR THE DIFFERENCE BETWEEN THE MEAN ESTIMATE
AND THE TRUE VALUE OF θ.

Expected waiting time
θ0 3.883

θ̂T=100 2.931
θ̂T=1000 3.135

TABLE IV
THE EXPECTED WAITING TIME FOR THE TRUE OF θ AND THE TWO

ESTIMATED VALUES.

Fig. 5. The absolute difference between the true value of θ and the
mean estimate for increasing values of p together with a fitted third-degree
polynomial.

model, the estimation of the larger dataset is closer to the true
value.

Figure 5 shows the absolute difference between the true
value of θ and the mean estimate for increasing values of p.
When p increases, server 2 is opened more often. This means
that the model mismatch enlarges if p increases. As expected,
the absolute difference increases if the mismatch enlarges; see
Figure 5. For example, if a deviation of at most 10 % of θ is
deemed acceptable, than the M/G/1 model is only acceptable
up to values of p no larger than 0.38.

CONCLUSION

We established a MLE for fitting a M/G/1 model to waiting
times. The estimator requires off-line simulation and the over-
all solution approach solves the maximum likelihood problem
by applying stochastic approximation. Numerical examples
illustrated the effect the size of the data set made available to
the MLE has on the output fit. We discussed the application
of our MLE approach to identifying model mismatch. Further
research will be on improving the numerical performance
of the estimator and on extending our results to Markovian
queueing networks.

REFERENCES

[1] S. Asmussen: Applied Probability and Queues, Springer, 2003.
[2] A. Clarke: Maximum likelihood estimates in a simple queue, The Annals

of Mathematical Statistics, 28(4), p. 1036-1040, 1957.
[3] H. Kushner, G. Yin: Stochastic Approximation and Recursive Algorithms

and Applications, Springer, 2003.
[4] R. Millar: Maximum Likelihood Estimation and Inference, Wiley, 2011.
[5] Y. Peng, M. Fu, B. Heidergott, H. Lam: Maximum Likelihood Esti-

mation By Monte Carlo Simulation: Towards Data-Driven Stochastic
Modeling, Operations Research, submitted in revision, 2019.



[6] Y. Peng, M. Fu, J. Q. Hu, B. Heidergott: A New Unbiased Stochas-
tic Derivative Estimator for Discontinuous Sample Performances with
Structural Parameters, Operations Research, 66, p. 487–499 2018.
A new unbiased stochastic derivative estimator for discontinuous sample
performances with structural parameters, Y. Peng, M. Fu, J. Hu, and
B. Heidergott, Operations Research,

[7] R. Rubinstein, A. Shapiro: Discrete Event Systems: Sensitivity Analysis
and Stochastic Optimization by the Score Function Method, Wiley, New
York, 1993.

[8] W. Wang, G. Casale, A. Kattepur, M. Nambiar: Maximum likelihood
estimation of closed queueing network demands from queue length data,
In Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering, p. 3-14, 2016.


