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Abstract Current behaviour-based interference models

assume that the predator population is infinitely large and

that interference is weak. While the realism of the first

assumption is questionable, the second assumption conflicts

with the purpose of interference models. Here, we tested a

recently developed stochastic version of the Beddington–

DeAngelis functional response—which applies to a finite

predator population without assuming weak interference—

against experimental data of shore crabs (Carcinus maenas)

foraging on mussels (Mytilus edulis). We present an

approximate maximum likelihood procedure for parameter

estimation when only one focal individual is observed, and

introduce ‘correction factors’ that capture the average

behaviour of the competing but unobserved individuals. We

used the method to estimate shore crab handling time,

interaction time, and searching rates for prey and compet-

itor. Especially the searching rates were sensitive to varia-

tion in prey and competitor density. Incorporating constant

parameter values in the model and comparing observed and

predicted feeding rates revealed that the predictive power of

the model is high. Our stochastic version of the Bedding-

ton–DeAngelis model better reflects reality than current

interference models and is also amenable for modelling

effects of interference on predator distributions.

Introduction

Interference competition is defined as a (reversible) decline

in the feeding rate of an animal, caused by agonistic inter-

actions with its competitors (Goss-Custard 1980; Begon

et al. 1990, p. 198). Interference between motile animals

arises when predators lose prey items to kleptoparasitic

competitors (Brockmann and Barnard 1979), or lose valu-

able foraging time and energy associated in aggressive

interactions. Interference can have a significant impact on

the distribution of animals across habitats that differ in food

quality (Fretwell and Lucas 1970; Parker and Sutherland

1986; Sutherland and Parker 1985). Animals favour habitats

of high resource quality, but as more animals aggregate in

preferred habitats, the strength of interference increases. At

some point, interference may become so intense that ani-

mals do better by foraging in habitats of poorer quality, as

this is where they experience less interference (Donazar

et al. 1999; Sih 1980). If displaced to habitats of insufficient

quality, interference competition might even jeopardize

survival (Goss-Custard and Sutherland 1997; Sutherland

and Dolman 1994). Since interference affects the distribu-

tion of animals in a decisive way, there have been many

empirical studies to measure the strength of interference

(Dolman 1995; Smallegange et al. 2006; Vahl et al. 2005).

Interference models describing how the presence of

competitors affects the feeding rate of animals have been

used to examine the effects of interference on the patch and

habitat choices and on population dynamics of animals
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(Holmgren 1995; Norris and Johnstone 1998; Ruxton et al.

1992; Stillman et al. 1997, 2002). Two approaches, one

phenomenological and the other mechanistic, have been

taken to model interference (Van der Meer and Ens 1997).

The phenomenological approach describes how intake rate

changes as competitor density increases by means of an

empirical relationship. Alternatively, the mechanistic

approach extends the basic idea underlying Holling’s disc

equation [which is that predators are either in a searching

state or in a handling state (Holling 1959)] by including a

third behavioural state, namely interfering. The transition

rates between the behavioural states searching, handling, and

interfering comprise the behavioural rules and mechanisms

of the foraging process. For example, a transition from han-

dling back to searching implies that a prey item is consumed,

and a transition from interfering back to searching implies the

end of a fight between two individuals. Since, in contrast to

phenomenological models, the behavioural rules of predators

are clearly defined in mechanistic models, they provide an

excellent way to explore the behavioural basis of interfer-

ence. For example, a model of interference parameterized for

oystercatchers (Haematopus ostralegus) and black-tailed

godwits (Limosa limosa) showed that strength of interference

was most sensitive to attack distance, followed by the

searching speed of predators (Stillman et al. 1997, 2002).

The basis of current mechanistic models of interference

is formed by the Beddington–DeAngelis functional

response model. This model was constructed independently

by DeAngelis et al. (1975) and Beddington (1975) who

respectively used a phenomenological and mechanistic

approach to arrive at the same function. Ruxton et al. (1992)

built upon Beddington’s mechanistic approach to show how

specific behavioural rules of the predators reveal the tran-

sition rates between different behavioural states. These

transition rates between behavioural states are captured in

ordinary differential equations (ODEs). From the steady-

state solution of the ODEs, Ruxton et al. (1992) arrived at

the so-called generalized functional response (Van der

Meer and Ens 1997), which gives the intake rate as a

function of both prey density and predator density. How-

ever, because the steady-state solution they obtained was

‘‘messy and uninstructive’’, a weak interference assumption

was made to arrive at a more transparent steady-state

solution, which was of greater mathematical convenience to

study effects of interference on population dynamics

(Ruxton et al. 1992). However, this implies that, despite the

fact that these mechanistic models were designed to study

interference, they assume that interference—i.e. time spent

in aggressive interactions—is sufficiently small (Moody

and Houston 1995; Ruxton et al. 1992; Ruxton and Moody

1997). Hence, an inconsistency has been created where

workers study interference using a model that assumes

weak interference. A second drawback of current

mechanistic models of the generalized functional response

is that they are deterministic (Holmgren 1995; Moody and

Houston 1995; Ruxton et al. 1992; Ruxton and Moody

1997; Smallegange and Van der Meer 2009; but see Yates

and Broom 2007 for a stochastic, mechanistic model of

kleptoparasitism), implying that the number of competitors

is large enough to be treated as a continuous variable (Érdi

and Tóth 1988). However, in behavioural studies, the

number of competing predators tends to be small. Thus, if

results of such studies are used to link mechanistic models

of interference to reality, this creates the problem that the

theory is based on infinitely large populations, yet the

behavioural data encompass that of only a few individuals,

observed in a limited number of replicate trials.

Recently, a stochastic version of the Beddington–

DeAngelis functional response model has been presented

that is valid for a finite number of interfering predators

(Van der Meer and Smallegange 2009). This model is

based on the theory of stochastic processes and captures the

foraging process within a small predator population by

means of continuous time Markov chains. This is the

simplest way to describe behaviour that is stochastic with

respect to duration as well as alternation, and is thus in

principle more suited to describe the behaviour of a small

number of competitors. It also avoids the inconsistency

mentioned previously. If such a model gives an adequate

description, it is possible to specify the contributions of

different individuals to their agonistic behaviour (interfer-

ence), and foraging behaviour can be represented by a

relatively small set of parameters. In this paper, we present

the first application of the stochastic version of the

Beddington–DeAngelis model and test its predictions

against experimental data to assess its adequacy in

describing foraging behaviour and interference. In the first

step, we parameterize the model and use behavioural

observations on shore crabs (Carcinus maenas [L.]) that

forage on mussels (Mytilus edulis [L.]) to estimate the

model’s parameters: the time an individual requires to

handle a prey item, the duration of an agonistic encounter

between two predators, a predator’s searching efficiency

for prey, and the rate with which a predator encounters

conspecifics and engages in agonistic interactions, i.e. its

rate of predator discovery. The estimation procedure

assumes that the behaviour of all predators in the experi-

ment is observed (Van der Meer and Smallegange 2009).

Here, however, we firstly adjust the estimation procedure

to the situation where only behavioural data on one focal

predator are available and not on its competitors. In the

new estimation procedure, which builds upon the one we

used in the original model (Van der Meer and Smallegange

2009), we introduce so-called correction factors that cap-

ture the average behaviour of the competing individuals.

This new procedure should prove useful to a wide range of
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biologists, especially field biologists, who generally only

have observational data on single individuals. In the second

step, we use a model selection procedure to assess if (focal)

crabs vary each of these four parameters with changes in

the density of conspecifics and availability of prey. In the

third step, we assess how well the model describes foraging

behaviour by incorporating all parameter estimates in the

model to compare the predicted strength of interference

with that observed in shore crabs.

Confronting the model to data: methods of parameter

estimation

Behavioural observations

The behavioural observations are from two experiments on

the foraging behaviour of shore crabs (Smallegange et al.

2006). The experiments were set-up to assess the strength

of interference competition in adult male shore crabs that

foraged on mussels. The competitive ability of shore crabs

is strongly correlated with crab size (Sneddon et al. 1997),

and in the experiments, crabs were matched for size as well

as other morphological characters (handedness, gender,

colour). Prey items were also standardized: mussels were

of similar size and fouling organisms attached to the

mussels were removed. During the experiments, any

consumed mussels were quickly replenished so that prey

densities were kept at an almost constant level (Smallegange

et al. 2006). Experiments were carried out during daylight

hours and under constant laboratory conditions.

The behavioural observations obtained during the

experiments encompass the behaviour of a focal crab in

terms of (1) the total searching time y1 (i.e. the total time

that a focal crab searches), (2) the total handling time y2

(i.e. the total time needed to open and consume mussels),

and (3) the interference time, for reasons that will become

clear below, indicated as y3 ? y4 (the total time that the

focal crab spends interfering while searching for and han-

dling mussels). In each trial of the first experiment, the time

budget was scored from the moment a focal crab had fin-

ished consuming a mussel until it had finished consuming a

second mussel. In the second experiment, this period was

extended until the focal crab had finished consuming a

third mussel. This implies that the number of transitions

from searching to handling, n12, equalled 1 in the first

experiment and 2 in the second experiment. Likewise, the

number of transitions from handling to searching, n21,

equalled 1 in the first and 2 in the second experiment.

Furthermore, the total number of transitions from either

handling or searching to interference, n13 and n24, was

scored, as was the total number of transitions from inter-

ference back to handling or searching, n31 and n42.

In the experiments, focal crabs foraged either alone, with

one or with three competitors in a tank (foraging

area = � m2). Regretfully, we did not observe two crabs

foraging simultaneously and hence we cannot assess the

‘zigzag’ functional response pattern, which occurs when

interference is strong (Van der Meer and Smallegange

2009). In the first experiment 4, 8, 16, and 32 mussels were

offered. In the second experiment, the range of mussel

densities was increased and 8, 32, and 128 mussels were

offered. Crab and mussel densities are expressed as number

per � m2. To estimate the strength of interference compe-

tition, we used results obtained at all prey densities, but only

for predator densities 2 and 4. We excluded experimental

trials with one predator from the estimation procedure

because in that case the rate of predator discovery and time

spent interfering cannot be estimated. Treatment combina-

tions in the first experiment were replicated five times and

eight times in the second experiment. In both experiments,

prey density was kept at an almost constant level because

the (generalized) functional response describes predation

occurring at a constant prey density. Furthermore, because

Holling’s disc equation and derivatives thereof assume that

foraging predators are time-limited rather than digestion-

limited, the experiments lasted sufficiently short so that

crabs could not reach a digestive limit.

Parameter estimation when only the focal predator

is observed

In order to estimate parameters when only the focal predator

is observed, focal-predator Markov chains were developed

that describe the foraging behaviour of a focal predator in the

presence of null, one, two or three predators of equal com-

petitive ability. As in the stochastic version of the

Beddington–DeAngelis model (Van der Meer and Smal-

legange 2009), the foraging process is modelled by means of

continuous-time Markov chains. The interference rules are:

searching individuals interact with other searchers and with

handling individuals, but handling individuals do not interact

with other handling individuals. A predator can thus be in

one of four behavioural states: searching, S, handling, H,

fighting after searching, F, and fighting after handling, G.

The states of the Markov chains of the stochastic version

of the Beddington–DeAngelis model form the basis for the

focal-predator Markov chains. The Markov chains (of the

Beddington–DeAngelis model) give all possible combina-

tions of behaviours that the different predators may display

at one time. Here, however, we rearrange these chains to

form focal-predator Markov chains that only encompass the

transitions between those states where the focal crab

changes its behaviour. These states are grouped by the four

behaviours (S, H, F, G) that the focal predator may display

(‘‘Appendix: point 1’’). A transition between states entails
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that the focal individual changes its behaviour from

searching to handling or vice versa, or that the focal and

another individual start or stop fighting. The transition rate

from, for example, the state S (the focal predator is

searching) to H (the focal predator is handling) is the prey

capture rate and equals mD, where D is the prey density and

m the rate of searching for prey. Similarly, the transition rate

from SS (the focal and the other predator are searching) to

HS (the focal is handling, the other is still searching) equals

mD (Fig. 1). From SSS to HSS, the transition also equals mD,

and so on. The transition rate from H to S is the handling

rate and equals k, and the expected handling time of a prey

item is thus 1/k. The transition rate from HS to SS, from HH

to SH, and from SSS to HSS also equal k. The transition rate

from a state with the focal predator searching and one or

more other searchers to a state where the focal and another

searcher have started a fight is proportional to the number of

ways a pair of individuals, of which one is the focal, can be

chosen from the population of searchers. Hence in case of

the focal searcher and one other searcher, the transition rate

equals l, where l is the searching rate for predators (Fig. 1).

For the focal searcher and two other searching predators, it

is 2l, and for three other searching predators it is 3l, etc.

The transition rate of going from, for example, state FF

back to SS is u (Fig. 1), which is the transition rate at which

fights come to an end. The expected duration of a fight is

therefore 1/u. The transition rates for fights between a

searching and a handling predator can be derived in the

same way (see further the ‘‘Appendix: points 1 and 2’’).

In order to estimate the parameters of a Markov chain that

describes behaviour of a focal predator that is dependent on

the behaviour of others, the foraging process observed in an

empirical study should encompass the behaviour of all pre-

dators in the experimental arena. Maximum likelihood

estimates of the transition rates can then be obtained from the

number of transitions between the states of the Markov chain

and the duration that the foraging process is in each state

from which the foraging parameters can be calculated

(Billingsley 1961; Metz et al. 1983; Haccou et al. 1983; Van

der Meer and Smallegange 2009). However, as outlined

before, in this study the behavioural observations only

encompass the foraging behaviour of one focal individual,

and exclude that of the competitors in the arena. This ham-

pers obtaining maximum likelihood estimates of the transi-

tions from S to F and from H to G (which depend upon the

states of the others), and implies that we cannot resort to the

method of maximum likelihood estimation. Nonetheless,

estimation of the parameters m, l, k, and u is possible. We

have used the assumption that the states of the other predators

are at equilibrium. This assumption is asymptotically true as

the numbers of predators goes to infinity, once the Markov

chain has run for long enough. Whether it also provides a

good enough approximation when the actual number of

predators is small will be tested by a simulation study (see

‘‘Testing the equilibrium assumption’’).

Generally, the likelihood of the transitions rates qij in a

continuous time Markov chain can be written as
Q

i

Q

j6¼i

q
nij

ij exp �yiqij

� �
, where the product is over all possible

transitions, nij is the number of transitions from i to j and yi

is the total time spent in state i (Norris 1997, pp. 87–97).

The maximum likelihood estimates of qij can be obtained

by setting the partial derivatives of the log-likelihood
P

i

P

j 6¼i

nij log qij � yiqij with respect to the q’s equal to zero,

which gives q̂ij ¼ nij

�
yi. An approximate standard error of

this estimate is given by the square root of the inverse

negative second derivative of the log-likelihood, which

equals q̂ij

� ffiffiffiffiffi
nij
p

. This estimation procedure can be

approximated for focal-predator Markov chains with states

1–4: S, H, F, and G. by using the function

n12 log mDð Þ � y1mDþ n21 log kð Þ � y2k

þ n31 þ n42ð Þ log u� y3 þ y4ð Þu
þ n13 log plð Þ � y1plþ n24 log qlð Þ � y2ql; ð1Þ

where p and q are correction factors needed in order to arrive at

transition rates under the assumption of average behaviour of

the other predators in the system (‘‘Appendix: point 3’’). The

maximum likelihood estimators (and standard errors) are now

Fig. 1 The 2-predator Markov chain as an example to show the

behaviour of the focal predator (in bold) and that of the non-focal

predator (non-bold letters). The states denote searching (S), handling

(H), fighting after searching (F), and fighting after handling (G), m is

the searching efficiency, D the density of prey, l the rate of predator

discovery, k the handling time and u the duration of an interaction.

Transitions where the state of the focal predator changes are denoted

in bold
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m̂ ¼ n12

y1D
� m̂

ffiffiffiffiffiffi
n12
p ; ð2Þ

(i.e. the reciprocal of the average searching time times prey

density per captured prey),

k̂ ¼ n21

y2

� k̂
ffiffiffiffiffiffi
n21
p ; ð3Þ

(i.e. the reciprocal of the average handling time per

captured prey),

û ¼ n31 þ n42

y3 þ y4

� û
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n31 þ n42

p ; ð4Þ

(i.e. the reciprocal of the average fighting time), and

(approximately)

l̂ ¼ n13 þ n24

py1 þ qy2

� l̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n13 þ n24

p : ð5Þ

All four parameters m, l, k, and u, were first estimated

for each trial separately.

Assessing changes in m, l, k, and u with changes

in prey and competitor density

We subsequently distinguished five alternative models to

estimate the parameters m, l, k, and u. In the models,

the parameters are estimated (1) using all data; this

model is referred to as the constant-parameters model,

(2) separately for each competitor density, (3) separately

for each prey density, (4) separately for each combina-

tion of prey and competitor density, and (5) separately

for each trial. We estimated m, l, k, and u for each

model using the procedure described previously and

calculated the negative log-likelihood of that model

using Eq. 1. Then we compared models using the like-

lihood ratio test to assess how parameter values varied

with prey density, competitor density, and trial of each

experiment.

Illustrating the strength of interference

Using the parameter estimates from the simplest model, the

constant-parameters-model, we calculated the per capita

feeding rate, W, of a predator using the stochastic version

of the Beddington–DeAngelis model (Van der Meer and

Smallegange 2009):

W kð Þ ¼ mD

Q kð Þ=Q k � 1ð Þ ; ð6Þ

where k is the number of predators in the system and the

function Q(k) is the sum of the relative limiting

probabilities (limiting probabilities relative to the all-

predators-are-searching state), and equals for k = 1–4:

Q kð Þ ¼ 1þ að Þk

þ k� 2ð Þ
k

2

 !

b 1þ 2að Þ 1þ að Þk�2

þ k� 4ð Þ

k

2

� �
k � 2

2

 !

2
b2 1þ 2að Þ2 1þ að Þk�4;

ð7Þ

where a : mD/k and b : l/u. This equation can be

expanded for a higher number of predators (Van der Meer

and Smallegange 2009). We compared the predicted

feeding rates with those observed for shore crabs. The

strength of interference is then the reduction in per capita

feeding rate when a predator forages with three rather than

with one competitor.

Testing the equilibrium assumption

The use of limiting probabilities to derive the correction

factors p and q in the log-likelihood function (‘‘Appendix:

point 3’’) assumes an equilibrium situation. In the experi-

mental trials, after crabs were introduced in the experimental

tank, all crabs started searching. As the start-up period (an

arbitrarily chosen period prior to the experimental observa-

tions) progressed, encounters with prey and other crabs

reduced the proportion of searching crabs and increased the

proportion of crabs engaged in other behaviours. The ques-

tion is, however, if the start-up period of the experimental

trials was long enough for the predation process to reach or at

least approach equilibrium. To test this, we simulated the

time-series of the Markov chains for two and four predators

and mimicked the experimental procedures to obtain

‘observations’ of y1, y2 and y3 ? y4 expressed per prey

capture (‘‘Appendix: point 4’’). We obtained these ‘obser-

vations’ for each predator–prey combination from

2,000 stochastic runs and used estimates of m, l, k, and u
from the constant-parameters-model. This model is the most

conservative one as it assumes that m, l, k, and u. are inde-

pendent of prey and predator density. From Eqs. 2 and 3, it

follows that the expected y1 equals n12/(mD) and the expected

y2 equals n21/k. Expressed per prey capture n12 = n21 = 1

for the first experiment, and for the second experiment

n12 = n21 = 2. The expected time that an individual spends

fighting, i.e. interfering, while capturing one prey item

(y3 ? y4) follows a more complicated procedure. From the

relative limiting probabilities, we first express the proportion

of time an individual interferes per unit handling time.

Multiplying this with the (constant) estimated handling time

(1/k) results in the expected absolute time that a predator

interferes while capturing one prey item (‘‘Appendix: point

5’’). For a predator foraging with one competitor this equals:

Mar Biol (2010) 157:1027–1040 1031
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E y3 þ y4½ � ¼ 1

k
bð1þ 2aÞ
ð1þ aÞa ;

with a and b as before: a = mD/k and b = l/u. For a

predator foraging with three competitors, this equals:

E y3 þ y4½ � ¼ 1

k
3ð1þ 2aÞbð1þ bþ að2þ aþ 2bÞÞ
að1þ aÞð1þ 3bþ að2þ aþ 6bÞÞ :

The three expected times, y1, y2, y3 ? y4 (as a function

of m, l, k, and u estimated from the constant-parameters-

model) can be compared to the simulated times. Both the

simulated and the expected times are random (and

exponentially distributed) variables and we compared the

simulated times to the 95% confidence intervals of the

expected times to assess if the start-up period was long

enough for the predation process to reach equilibrium.

Results

The first step in assessing whether the stochastic version of

the Beddington–DeAngelis model adequately describes

foraging behaviour was to estimate the four parameters k
(1/handling time), u (1/duration of an agonistic interaction),

m (searching efficiency), and l (rate of predator discovery)

for each trial of each experiment. However, inspecting the

resulting log-likelihoods showed that they were larger than

expected in the first experiment (Table 1) and such results

either suggest that the data from the first experiment were

not exponentially distributed but were overdispersed, or

that the data harbour outliers. Probability plots for the

observed search, handling and interference times did not

disprove the assumption on exponential distributions,

underlying Markov models (Fig. 2). Yet, plotting the

deviance residuals squared for each trial (where the devi-

ance of model i is 2[log-likelihood full model—log-like-

lihood model i] divided by the difference in the number of

parameters that are estimated in the full model and model

i) revealed five outliers in the first experiment (Fig. 3).

One outlier was due to kleptoparasitism as a result of

which the search time of that focal crab was very long.

The other four outliers were focal crabs that—for unknown

reasons—needed much more search time than other focals

(4 and 5 times more) or hardly any time (a tenth of the

time the other focals needed) to find a prey item at low

prey densities. After removal of these outliers, the appar-

ent overdispersion vanished (Table 1). Estimates of the

four parameters are shown for each experiment in Table 2.

Table 1 Results of the estimation procedures

Model df Original data Outliers removed Model versus D df v2 LL ratio

LL / LL /

First experiment

1. 2 -2,226.3 2.2 -1,664.1 1.4 – – – –

2. 4 -2,216.0 2.0 -1,660.7 1.4 2 vs. 1 2 5.99 6.8

3. 8 -2,215.1 2.1 -1,657.3 1.3 3 vs. 1 6 12.59 13.6

4. 16 -2,203.6 2.0 -1,653.3 1.4 4 vs. 1 14 23.69 21.6

4 vs. 2 12 21.03 14.8

4 vs. 3 8 15.51 8.0

5. 80 -2,139.1 – -1,609.1 – 5 vs. 2 76 97.35 103.2

5 vs. 3 72 92.81 96.4

5 vs. 4 64 83.68 88.4

Second experiment

1. 2 -2,582.6 1.4 – – – –

2. 4 -2,577.8 1.3 2 vs. 1 2 5.99 9.6

3. 6 -2,572.7 1.2 3 vs. 1 4 9.49 19.8

4. 12 -2,567.5 1.2 4 vs. 1 10 18.31 30.2

4 vs. 2 8 15.51 20.6

4 vs. 3 6 12.59 10.4

5. 96 -2,517.7 – 5 vs. 2 92 115.39 120.2

5 vs. 3 90 113.15 110.0

5 vs. 4 84 106.40 99.6

Dispersion parameters (/) showed that, after removal of the five outliers (Fig. 3), the models of the first experiment were no longer overdi-

spersed. The models of the second experiment were not overdispersed. For the model selection, we compared the log likelihood (LL) of nested

models using the likelihood ratio test (LL ratio). In bold are models that provided a better fit against the simpler model at a = 0.05

1032 Mar Biol (2010) 157:1027–1040

123



The second step involved the model selection procedure

to assess if the parameter values changed with changes in

crab and prey density. For the first experiment, models 2

and 3 provided a better fit than model 1, and model 5

provided a better fit than models 2 and 3, suggesting that

parameter values varied greatly between individual trials

(Table 1). For the second experiment, model 4 gave a

better fit than models 1 and 2 (Table 1). Model 5 did not

provide a better fit than model 4 (Table 1), from which we

infer that model 4 best described the data. This implies that

parameter values varied with changes in crab and prey

density in an interactive way. Plotting for experiment 1 the

parameter estimates for models 2 and 3 (plotting the results

according to model 5 would create a non-insightful cloud

of observations), and for experiment 2 the parameter esti-

mates for model 4 showed that the reciprocal of the han-

dling time, k, was constant over all prey densities and crab

densities, except for a relatively high value at the highest

prey density in the first experiment (Fig. 4). The reciprocal

of the duration of an agonistic interaction was in the first

experiment constant except for a high value at prey density

8 (Fig. 4). In the second experiment, this parameter was

constant over all prey densities but tended to be higher at

the higher crab density (Fig. 4). The searching rates for

prey and predator showed more variation with changes in

crab and prey density than k and u. Searching efficiency

decreased with increasing crab density in the first experi-

ment (Fig. 4). With increasing prey density, the lowest

Fig. 2 Probability plots of the observed search times (circles),

handling times (triangles) and interference times (squares) for the

first experiment (open symbols) and the second experiment (solid
symbols). The duration of these times is given in seconds. The plots

should resemble a straight line if their distribution follows the

exponential distribution

Fig. 3 Histograms of the deviance residuals squared of model 1

versus the full model 5. The top panel refers to the first experiment

and shows the five outliers (denoted by arrows) (a) and the bottom
panel refers to the second experiment (b)

Table 2 Estimates of k (1/handling time), u (1/duration of an ago-

nistic interaction), m (searching efficiency), and l (rate of predator

discovery) for shore crabs foraging on mussels

P D k u m l

Mean SE Mean SE Mean SE Mean SE

First experiment

2 4 0.0099 0.0049 0.0890 0.0223 6.56 3.30 74.34 18.59

2 8 0.0087 0.0050 0.1160 0.0474 3.10 1.79 33.96 13.87

2 16 0.0112 0.0050 0.0930 0.0351 3.22 1.44 46.49 17.57

2 32 0.0176 0.0079 0.0948 0.0547 4.73 2.12 56.02 32.34

4 4 0.0086 0.0043 0.0794 0.0136 4.16 2.08 47.60 8.16

4 8 0.0101 0.0045 0.1246 0.0171 1.38 0.62 38.71 5.32

4 16 0.0065 0.0033 0.0643 0.0117 1.53 0.77 49.89 9.11

4 32 0.0119 0.0053 0.0911 0.0275 2.61 1.17 42.64 12.86

Overall 0.0101 0.0017 0.0899 0.0005 2.63 0.45 42.47 0.26

Second experiment

2 8 0.0072 0.0025 0.1164 0.0198 2.15 0.76 52.28 8.90

2 32 0.0073 0.0026 0.0872 0.0203 1.20 0.42 58.45 13.59

2 128 0.0087 0.0031 0.0918 0.0325 1.40 0.50 97.36 34.42

4 8 0.0055 0.0019 0.1322 0.0129 1.72 0.61 51.35 5.00

4 32 0.0058 0.0021 0.1246 0.0154 0.95 0.34 59.62 7.37

4 128 0.0068 0.0024 0.1220 0.0219 0.51 0.18 53.91 9.68

Overall 0.0067 0.0001 0.1210 0.0005 1.07 0.16 51.43 0.20

Parameters were estimated separately for each trial and are summa-

rized by predator density (P) and prey density (D). Estimates for the

first experiment were obtained after removal of five outliers (Fig. 3).

k and u are in 1/s, and the rates in cm2 per s
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value was at intermediate prey densities, whereas in the

second experiment, searching efficiency was lowest at the

highest prey and crab density (Fig. 4). Rate of predator

discovery was constant for both crab densities in the first

experiment. With increasing prey density, in the second

experiment, rate of predator discovery tended to increase

with increasing prey density at the lowest crab density

(Fig. 4). At the highest crab density, rate of predator dis-

covery was constant over all prey densities (Fig. 4).

The third step involved implementation of the parameter

values estimated from the constant-parameters-model in

the stochastic version of the Beddington–DeAngelis model

to calculate per capita feeding rates as a function of prey

and predator density. These expected feeding rates

appeared to match those observed in the experiments,

except for two predator–prey combinations of the first

experiment, ‘2–32’ and ‘4–16’, where the 95% confidence

intervals of the observed feeding rates did not overlap with

the expected feeding rates (Fig. 5).

The parameter estimation procedure for the behaviour of

a focal predator is based on the assumption that the

states of its competitors are in equilibrium. To test this

Fig. 4 The four parameters 1/handling time (k), 1/duration of an

agonistic interaction (u), searching efficiency (m) and rate of predator

discovery (l) (±SE) for experiment 1 (circles) and experiment 2

(grey triangles: two crabs; black triangles: four crabs). Both rates are

in cm2 per s and k and u are in 1/s

Fig. 5 Illustrating the strength of interference using the data of the

first (a) and second (b) experiment. The lines are the predicted

feeding rates (Eq. 6) (no. per min) of a crab foraging with one

competitor (solid lines) and with three competitors (dashed lines).

The following parameter values were used (estimated using the

simplest model): handling time (1/k) was 99.0 s (experiment 1) and

149.3 s (experiment 2); the average duration of an agonistic encounter

(1/u) was 11.1 s (experiment 1) and 8.3 s (experiment 2); searching

efficiency (m) was 2.6 cm2 per s (experiment 1) and 1.1 cm2 per s

(experiment 2); rate of predator discovery (l) was 42.5 cm2 per s

(experiment 1) and 51.4 cm2 per s (experiment 2). The symbols show

the observed feeding rates (no. per min ±95% CI) of shore crabs

foraging with one competitor (circles) and with three competitors

(squares). Prey densities are in no. per � m2
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assumption, we simulated each experiment (again using the

parameter estimates of the constant-parameters-model) and

compared the simulated and expected y1, y2 and y3 ? y4

expressed per mussel capture. Simulated times did not

deviate from the expected times, from which we infer that

the start-up period was long enough for the predation

process to approach an equilibrium (Table 3).

Discussion

We assessed how adequate the stochastic version of the

Beddington–DeAngelis functional response model is in

describing foraging behaviour and interference in a small

predator population. Probability plots for the observed

search, handling and interference times revealed that the

assumption on exponential distributions, which underlie

Markov chains, was justified. In many behavioural exper-

iments, the foraging behaviour of only a few predators is

investigated, which contrasts with deterministic interfer-

ence models that assume that the predator population is

large enough to be treated as a continuous variable. The

stochastic version of the Beddington–DeAngelis functional

response model overcomes this problem and is also not

constrained by the assumption of weak interference, as

were previous deterministic models of the generalized

functional response (Moody and Houston 1995; Ruxton

et al. 1992; Ruxton and Moody 1997).

We estimated the four parameters of the model from

behavioural data on shore crabs foraging on mussels and

assessed if their values changed with changes in prey or

predator density. The reciprocal of the handling time of a

prey item (k) and the reciprocal of the duration of an

agonistic interaction (u) both showed little variation with

changes in prey or predator density. The searching rates for

prey and competitors showed pronounced changes with

prey or predator density. In the first experiment, the

searching efficiency of crabs decreased with increasing

predator density. Perhaps crabs were more vigilant towards

each other at the highest crab density. Vigilance in crabs is

difficult to separate from their actual searching behaviour

in behavioural observations (Smallegange and Van der

Meer 2007), in which case an increase in vigilance would

lead to an increase in search time per prey capture and

hence to an apparent decrease in searching efficiency.

Similarly, in the second experiment, this might have been

the reason why searching efficiency was lowest at the

highest crab density when prey was most abundant. The

rate of predator discovery varied little with changes in prey

and predator density although in the second experiment it

tended to increase with increasing prey density.

Estimates of the parameters of a functional response

model are usually obtained by fitting observed feeding

rates against those predicted by the model (Abrams 1990).

Even when the fit between observed and predicted feeding

rates is adequate, the actual values of the functional

response parameters seldom match those determined from

direct behavioural observations (Abrams 1990, Taylor and

Collie 2003). The maximum likelihood estimators of k and

u are, however, equivalent to how one would determine

parameter values from behavioural observations. The

searching rates for prey and competitor, m and l, are more

difficult to determine from behavioural observations, yet

maximum likelihood estimators, and the new estimation

procedure presented here using correction factors, are an

obvious starting point. Unfortunately, we cannot assess the

accuracy of our estimates of m and l because, to our best

knowledge, actual measurements of searching efficiency

and rate of predator discovery of shore crabs have not been

published before. We expect, however, that the searching

efficiency of crabs that forage for buried bivalve prey is

low. Crabs search for buried prey by probing the sand with

their walking legs (Crothers 1968), which causes them to

cover only a small area searched per unit of time. Because

searching efficiency is related to the walking or searching

speed of crabs, a numerical exercise can be performed to

assess the accuracy of the parameter estimates. For

example, in the presence of cracked bivalve prey, the

walking speed of blue crabs (Callinectes sapidus) was

10 cm per s, and in the absence of prey 8 cm per s (Finelli

et al. 2000). Shore crabs are smaller than blue crabs and

their walking speed is most likely lower than 10 cm per s.

Suppose crabs walk 5 cm per s in one direction. From the-

constant-parameter-model, the searching efficiency of

shore crabs was estimated between 1.1 and 2.6 cm2 per s;

the width of the (rectangular) search area covered per

second is then between 0.2 and 0.5 cm. A similar exercise

can be done for the rate of predator discovery. Because

crabs have good vision (Warner 1977), we expect that the

rate with which they encounter competitors is much higher

than the rate with which they find prey. From the constant-

parameters-model, the rate of predator discovery was

estimated between 43 and 51 cm2 per s. If, again, crabs

would walk 5 cm per s, then the width of the (rectangular)

area within which they ‘attack’ conspecifics is between 8.6

and 10.2 cm. Because neither searching efficiency, nor rate

of predator discovery and attack distance has been mea-

sured before, the above indirect estimates cannot be tested

against direct observations.

Although the values of some foraging parameters

changed with changes in prey and predator density,

incorporating constant parameter values in the stochastic

Beddington–DeAngelis model showed a good fit between

observed and expected feeding rates, and hence a good

prediction of the strength of interference in shore crabs. For

two predator–prey combinations, the prediction deviated
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from the observation. In the first case, the observed feeding

rate was higher than predicted (Fig. 5). In the second case,

it was lower than predicted (Fig. 5), most likely because,

unlike in other predator–prey combinations prey were

stolen from the focal crabs on a number of occasions. This

increased the search time required to find a prey item,

which lowered the feeding rate (Smallegange et al. 2006).

Kleptoparasitism is a phenomenon that was not incorpo-

rated in the Markov chains of our model. Based on earlier

work (Ruxton and Moody 1997; Broom and Ruxton 1998),

Yates and Broom (2007) developed a stochastic interfer-

ence model that includes kleptoparasitism and found that

the original deterministic models approximated the sto-

chastic model well in most situations. This matches our

recent finding that, in the absence of kleptoparasitism, the

stochastic version of the Beddington–DeAngelis model

matches the deterministic version for a larger number of

predators (more than five or six) (Van der Meer and

Smallegange 2009). Future studies should reveal if this

conclusion holds if kleptoparasitism is introduced into the

stochastic version of the Beddington–DeAngelis model.

Assuming constant parameter values, interference in our

model occurs through time lost in agonistic interactions: as

the number of competitors increases, the chance of

Table 3 Can we assume that each experiment was in equilibrium?

Prey Expected times based on ML estimators and relative limiting probabilities Average of the simulated times

y1 y2 y3 ? y4 y1 y2 y3 ? y4

Two crabs

4

(E1)

237.6

(6.0–876.6)

99.2

(2.5–365.9)

57.1

(1.5–214.0)

236.6 99.3 57.1

8

(E1)

118.8

(3.0–438.3)

99.2

(2.5–365.9)

32.7

(0.8–120.3)

122.8 95.0 32.7

8

(E2)

292.1

(7.4–1,077.4)

148.6

(3.8–548.2)

49.2

(1.2–181.4)

295.8 148.4 47.6

16

(E1)

59.4

(1.5–219.2)

99.2

(2.5–365.9)

18.2

(0.5–67.2)

60.8 99.4 18.0

32

(E1)

29.7

(0.8–109.6)

99.2

(2.5–365.9)

9.9

(0.3–36.6)

29.5 99.8 10.3

32

(E2)

73.0

(1.8–269.3)

148.6

(3.8–548.2)

15.4

(0.4–56.6)

72.4 149.7 19.6

128

(E2)

18.3

(0.5–67.3)

148.6

(3.8–548.2)

4.3

(0.1–16.0)

18.8 148.4 5.6

Four crabs

4

(E1)

237.6

(6.0–876.6)

99.2

(2.5–365.9)

134.5

(3.4–496.2)

232.6 96.2 132.4

8

(E1)

118.8

(3.0–438.3)

99.2

(2.5–365.9)

77.6

(3.4–286.3)

122.5 97.3 77.1

8

(E2)

292.1

(7.4–1,077.4)

148.6

(3.8–548.2)

158.4

(4.0–584.4)

295.3 149.9 150.5

16

(E1)

59.4

(1.5–219.2)

99.2

(2.5–365.9)

45.3

(1.1–167.1)

60.6 100.7 45.2

32

(E1)

29.7

(0.8–109.6)

99.2

(2.5–365.9)

26.0

(0.7–96.0)

29.7 99.5 26.1

32

(E2)

73.0

(1.8–269.3)

148.6

(3.8–548.2)

53.3

(1.3–196.7)

71.6 149.4 50.5

128

(E2)

18.3

(0.5–67.3)

148.6

(3.8–548.2)

16.5

(0.4–61.0)

18.7 147.4 15.6

Shown are the expected y1, y2 and y3 ? y4 expressed per prey capture calculated from the maximum likelihood (ML) estimators and relative

limiting probabilities. We ran 2,000 stochastic runs to simulate each experiment (denoted as E1 and E2) using the values of m, l, k, and u
estimated according to the simplest model. We compared the average of the simulated times with the 95% confidence intervals of the expected

times to assess if the acclimation period of the experiments was long enough to reach equilibrium. Confidence intervals are given in brackets.

None of the simulated times differed from the expected times. Prey and predator densities are in no. per � m2. Times are in seconds
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encountering a competitor increases and more time is spent

in aggressive interactions. This mechanism of interference

is observed in several predator–prey systems (Cresswell

1998; Smallegange et al. 2006; Smallegange and Van der

Meer 2007; Vahl et al. 2005) and is central to theoretical

studies that model interference from basic foraging

behaviour using ordinary differential equations (Holmgren

1995; Moody and Houston 1995; Ruxton et al. 1992) or

Markov chains (Van der Meer and Smallegange 2009).

Although the strong match between observed feeding rates

of shore crabs and those predicted using the constant-

parameters-model is gratifying, our model is still a sim-

plification of reality. The next step is to incorporate the

digestion of prey (Jeschke et al. 2002) and to assess

how adequate the stochastic version of the Beddington–

DeAngelis functional response model is in predicting the

distribution of predators (Holmgren 1995; Moody and

Houston 1995).
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Appendix: Markov chains of the foraging process

1. States and transition rates

The transition matrix of the focal-predator Markov chain of

one predator consists of the behavioural states S and H with

associated transition rates mD and k (Table 4). The states

and transition rates in the transition matrix of the two and

three predator Markov chain are shown in such a way that

the behaviour of the focal predator and that of the other

predators is easily interpreted (Tables 4, 5): the four states

are lumped according to the state of the focal predator: (S)

focal predator is searching, (H) focal predator is handling,

(F) focal predator is fighting after searching, and (G) focal

predator is fighting after handling.

2. Limiting probabilities

The probability that a continuous-time Markov chain

will be in state j at time t converges under certain con-

ditions to a limiting value, or limiting probability, inde-

pendent of the initial state (Ross 1989, pp. 268–275).

These conditions hold for models of the kind considered

here. The limiting probability of each state is then the

time that the Markov chain, or the foraging process of the

predators, is in that state. For each Markov chain, the

limiting probabilities were derived relative to the limiting

probability for the ‘all searching’ state. They are referred

to as relative limiting probabilities and are given in

Tables 4 and 5.

3. Rationale behind maximum likelihood estimators

when only the focal predator is observed

From the Markov chains for two and three predators, it

appears that the transitions from S to H (rate mD), from H to

S (rate k), from F to S (rate u) and from G to S (rate u)

have a constant transition rate, independent of the behav-

iour of the other predators. The only problem concerns the

transitions from S to F and from H to G, which do depend

upon the states of the other(s). To cope with this problem,

we have assumed that the states of the others are in equi-

librium and are thus proportional to the limiting probabil-

ities. Using this approximation (where necessary), the

maximum likelihood approach, as described by Van der

Meer and Smallegange (2009) can be used to estimate the

parameters m, l, k, and u, and their maximum likelihood

estimators are given in the main text. In the log-likelihood

function, the correction factors p and q were introduced,

because, if only the behaviour of a focal predator is

observed, they are needed in order to arrive at transition

rates under the assumption of average behaviour of the

other predators in the system. Table 6 can be used to derive

the correction factors p and q. For two predators, the state

of the non-focal predator does not matter for the transition

from the focal predator state S to the focal-predator state F.

Table 4 Transition matrix of the 1-predator and 2-predator Markov

chain

 One predator  Two predators 

S S H H F F G 

S H rlp S H S H F G F rlp

S ννD S S νD νD 0 µ 0 0 1

H λ α S H λ 0 νD 0 µ 0 α

H S λ 0 νD 0 0 µ α

H H 0 λ λ 0 0 0 α 2

F F ϕ 0 0 0 0 0 β

F G 0 ϕ 0 0 0 0 αβ

G F 0 0 ϕ 0 0 0 αβ

The 2-predator Markov chain shows the behaviour of the focal

predator in bold, and that of the other predator in non-bold letters. The

states denote searching (S), handling (H), fighting after searching (F),

and fighting after handling (G), m is the searching efficiency, D the

density of prey, l the rate of predator discovery, k the handling time

and u the duration of an interaction. For an explanation of a and b,

see main text. ‘rlp’ is the relative limiting probability of each state,

i.e. its limiting probability relative to the limiting probability for the

‘all searching’ state (S, respectively SS). Light grey areas denote

transitions from searching to handling and visa versa. Intermediate

grey areas denote transitions into a fighting state, and the dark grey

areas denote transitions from fighting back to searching or handling.

White areas denote no transitions between states. Transitions where

the state of the focal predator changes are given in bold; transitions

where the state of the focal predator does not change are given in non-

bold letters
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Whatever the other is doing (searching or handling), the

two predators will start a fight when they encounter each

other (which happens with a rate equal to l). The factor p

therefore equals 1 (Table 6). When the focal predator is

handling the ratio of the time that the other predator is

searching equals 1/(1 ? a), where a is mD/k. Only in that

case, will the two predators start a fight. Hence, q equals

1/(1 ? a). Similarly, it can be derived from Table 6

(summing the products of the number of possible fights

times the relative limiting probability and dividing that sum

by the sum of the relative limiting probabilities) that for

three predators

p ¼ 2 1þ að Þ2

1þ að Þ2þbð1þ 2aÞ
and q ¼ 2 1þ að Þ

1þ að Þ2þbð1þ 2aÞ
;

and for four predators

p ¼ 3 1þ að Þ3þ3bð1þ 5aÞ
1þ að Þ3þ3bð1þ 5aÞ

and

q ¼ 3 1þ að Þ2þ3bð1þ 2aÞ
1þ að Þ3þ3bð1þ 5aÞ

:

These correction factors require knowledge of a and of

b = l/u, and thus of l itself. Henceforth, an iterative

procedure has to be used to estimate l. Starting with a

guestimate of l, and thus of p and q, an estimate of the

parameter l is obtained by using Eq. 5. This estimate is

then used to obtain new values for p and q, which in turn

are used for a new estimate of l. This procedure is repeated

until convergence is obtained. Data from separate trials can

be lumped in the parameter estimation procedure.

4. Simulating the foraging behaviour

For the focal-predator Markov chain of two predators

six stochastic reactions—the transitions between states (cf.

Table 4)—can be specified. For the focal-predator Markov

chain of four predators, we specified the stochastic reac-

tions of one individual of the predator population and

lumped the stochastic reactions of the remainder of the

predator population. The order and timing of the stochastic

reactions proceeds as follows (Ross 1989). Each reaction

has an associated rate, or hazard, and at a given point in

time all hazards are calculated and summed to give the

total event hazard R. The time to the next event is drawn

from an exponential distribution with mean 1/R. One out of

all possible reactions is then selected to occur at the next

time-point, and each reaction has a probability of being

selected equal to its associated hazard divided by the total

event hazard R. The simulation then proceeds to the next

time-point. This procedure is repeated until a pre-defined

final time or event is reached.

We simulated each experiment by mimicking the

‘experimental procedure’, of the two experiments in

Smallegange et al. (2006). In the experiments, prior to each

trial, crabs were allowed to acclimatize to the tank for an

arbitrarily chosen time period of 10 min. In each trial, the

foraging behaviour of one focal crab was scored. The first

experiment was concerned with the time period in which

Table 5 Transition matrix of

the foraging process of three

predators, showing the

behaviour of the focal predator

(in bold) and the other predators

(non-bold letters)

See for explanation of symbols

and colouration Table 4.

Transitions where the state of

the focal predator changes are

given in bold; transitions where

the state of the focal predator

does not change are given in

non-bold letters

S S S S S H H H H H F F F F G G 

 SS HS HH FF FG SS HS HH FF FG FS FH GS GH FS FH rlp

S SS − 2νD 0 µ 0 ννD 0 0 0 0 2µ 0 0 0 0 0 1

S HS λ − νD 0 µ 0 νD 0 0 0 0 µ µ 0 0 0 2α

S HH 0 2λ − 0 0 0 0 νD 0 0 0 0 0 2µ 0 0 α ²

S FF ϕ 0 0 − 0 0 0 0 νD 0 0 0 0 0 0 0 β

S FG 0 ϕ 0 0 − 0 0 0 0 νD 0 0 0 0 0 0 2αβ

H SS λ 0 0 0 0 − 2νD 0 µ 0 0 0 0 0 2µ 0 α

H HS 0 λ 0 0 0 λ − νD 0 µ 0 0 0 0 0 µ 2α ²

H HH 0 0 λ 0 0 0 2λ − 0 0 0 0 0 0 0 0 α ³

H FF 0 0 0 λ 0 ϕ 0 0 − 0 0 0 0 0 0 0 αβ

H FG 0 0 0 0 λ 0 ϕ 0 0 − 0 0 0 0 0 0 2αβ ²

F FS ϕ 0 0 0 0 0 0 0 0 0 − νD 0 0 0 0 2β

F FH 0 ϕ 0 0 0 0 0 0 0 0 λ − 0 0 0 0 2αβ

F GS 0 ϕ 0 0 0 0 0 0 0 0 0 0 − νD 0 0 2αβ

F GH 0 0 ϕ 0 0 0 0 0 0 0 0 0 λ − 0 0 2α²β

G FS 0 0 0 0 0 ϕ 0 0 0 0 0 0 0 0 − νD 2αβ

G FH 0 0 0 0 0 0 ϕ 0 0 0 0 0 0 0 λ − 2α ²β
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the focal crab searched for and ate a single mussel. The

second experiment was concerned with two consecutive

time periods in which the focal crab searched for and ate a

mussel. In the simulations, all individuals started in the

searching state. After a ‘start-up period’ of 10 min, the

‘observation’ started after the focal individual had con-

sumed the first prey item. For comparison with the first

experiment, the ‘observation period’ ended when the focal

individual had consumed the second prey item, and for

comparison with the second experiment, the ‘observation

period’ ended when the focal individual had consumed the

third prey item.

5. Calculating y3 ? y4 from the relative limiting

probabilities

The expected time that an individual spends fighting, i.e.

interfering, while capturing one prey item (y3 ? y4), is

calculated using the relative limiting probabilities of the

Markov chains. That is, from the relative limiting proba-

bilities we first express the proportion of time an individual

interferes per unit handling time by summing the relative

limiting probabilities of the states in which the focal crab is

in the behavioural state F or G, I�, and dividing this over

the sum of all relative limiting probabilities, P�.
The proportion of time that a predator handles a prey

item, H�=P�, is likewise derived, and dividing I�=P�over

H�=P�gives the proportion of time an individual interferes

per unit handling time. For a predator foraging with one

competitor this equals:

bþ 2ab
aþ a2

;

and for a predator foraging with three competitors this

equals:

3b2 þ 3bþ 12ab2 þ 12abþ 12a2b2 þ 15a2bþ 6a3b
bþ 3abþ 3a2 þ 9a2bþ 3a3 þ 6a3bþ a4

;

(relative limiting probabilities for the Markov chain of four

predators can be found in Van der Meer and Smallegange

2009). Multiplying each equation with the (constant) esti-

mated handling time for one prey item (1/k) results in the

expected absolute time that a predator interferes while

capturing one prey item (E½y3 þ y4�).
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