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In this paper, we study cost functions over a finite collection of random variables. For these types of models, a calculus of
differentiation is developed that allows us to obtain a closed-form expression for derivatives where “differentiation” has to
be understood in the weak sense. The technique for proving the results is new and establishes an interesting link between
functional analysis and gradient estimation. The key contribution of this paper is a product rule of weak differentiation.
In addition, a product rule of weak analyticity is presented that allows for Taylor series approximations of finite products
measures. In particular, from characteristics of the individual probability measures, a lower bound (i.e., domain of convergence)
can be established for the set of parameter values for which the Taylor series converges to the true value. Applications of
our theory to the ruin problem from insurance mathematics and to stochastic activity networks arising in project evaluation
review techniques are provided.
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1. Introduction. A wide range of probabilistic models in the area of manufacturing, transportation, finance,
and communication can be modeled by studying cost functions over a finite collection of random variables.
More specifically, letting �i�� be a probability measure on some state space �i (for 1 ≤ i ≤ n) depending on
some parameter � (with � ∈�= �a� b
⊂� for a< b), one is concerned with the following type of models:

Jg��

def= Ɛ��g�Xn� � � � �X1
�=

∫
S1

· · ·
∫
Sn

g�sn� � � � � s1
�n�� �dsn
 · · ·�1� � �ds1
 (1)

for g a cost function defined on the product space �1 × · · · × �n, where Xi is distributed according to �i��.
This class of models contains, for example, insurance models over a finite number of claims or transient waiting
times in queueing networks.
In performance analysis, one is not only interested in evaluating Jg��
 but also in sensitivity analysis and

optimization, which requires evaluating dJg��
/d�. In general, Jg��
 cannot be obtained in a closed form and
dJg��
/d� can only be evaluated with the help of advanced mathematical techniques.
In this paper, we will provide a calculus of differentiation for finite products of measures that allows us to

obtain a closed-form expression for dJg��
/d�. Here, “differentiation” has to be understood in the weak sense
(see §5 for a formal definition). The concept of weak differentiation of measures was introduced in Pflug [28]
(see also the monograph (Pflug [27])) and has been extended to the more general concept of �-differentiation
in Heidergott and Vázquez-Abad [13].
Weak differentiation has been successfully applied to deriving unbiased gradient estimators for cost func-

tions over Markov chains (see Heidergott and Hordijk [11], Heidergott and Vázquez-Abad [12, 13], Heidergott
et al. [17], Pflug [28]). Applications to gradient estimation for finite models can be found in Heidergott et al.
[15, 18, 19]. For results on bounds on perturbations, we refer to Heidergott et al. [16]. However, some important
fundamental issues that are of importance in applications of weak derivatives have not been addressed in the
literature so far. This paper will close that gap as it provides the theory of weak differentiability of finite products
of probability measures in a clean mathematical setting. In particular, the following issues will be addressed:

• The relation between the cost functions g for which the derivative in (1) exists and the distributions used
in the model.

• The relation between strong (i.e., norm) differentiability and weak differentiability
• Preserving weak differentiability under finite products of measures for the types of cost functions (such as

continuous or measurable) that are of importance in applications.
• Writing weak derivatives as the difference between appropriate measures. This is not only of importance

for gradient estimation but can also be used in other ways. For example, we show how bounds for higher-order
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derivatives can be obtained by a simple stochastic order argument, which in turn yield bounds for the remainder
term of a Taylor expansion.

• Establishing Taylor series approximations of finite products by deriving a product rule of weak analyticity.
In particular, from characteristics of the individual probability measures, a lower bound can be established for
the set of parameter values for which the Taylor series converges to the true value.
Taylor series expansions of finite models as in (1) have been studied in the literature on �max�+
-linear

systems (see Baccelli et al. [1], Hasenfuß [8]), where continuity of the cost function is assumed. See also
Heidergott [9]. The theory developed in this paper extends these results as (i) the continuity assumption on the
cost function can be dropped, and (ii) Taylor approximations can be obtained when only finitely many derivatives
exist (i.e., analyticity fails).
The main technical difficulty in establishing a calculus of weak differentiation is the following. Consider two

probability measures, say, �� and ��, living on measurable spaces ���� 
 and �� �� 
, respectively. To come
up with a product rule of differentiation for the product measure �� × ��, one has to be able to conclude from
properties of �� on � and �� on � differentiability properties of the product measure living on the product space
� × � . Hence, it is clear that to establish a product rule, one has to study the relations between the function
spaces on �, � and � × � . As we will show in this paper, techniques from functional analysis can be made
fruitful for this. More precisely, if functional spaces are equipped with the v-norm and product spaces with the
product v-norm, then Banach space theory can be used to bound the effect of perturbing � in �� × ��.
As in conventional analysis, the main work in establishing a product rule for weak differentiability lies in

establishing the fact that the product of weakly continuous probability measures is again weakly continuous.
Such results are built on limit theory for sequences of signed measures. To this end, we will develop in this
paper a limit theory for signed measures, which to the best of our knowledge has not been established in the
literature so far. In particular, we will show that weak convergence of a sequence of signed measures does not
imply weak convergence of the negative and positive parts, respectively.
The paper is organized as follows. For ease of reference, we introduce in §2 the basic notation that will

be used throughout the paper. Section 3 is devoted to signed measures and their limits. In particular, in §3.3,
the important concept of a �v-space is introduced. Functional analysis on �v-spaces will be addressed in §4.
Weak differentiability of probability measures is discussed in §5 and that of products of probability measures
in §6. Section 7 is devoted to weak analyticity. Applications of our theory to the ruin problem from insurance
mathematics and to stochastic activity networks arising in project evaluation review techniques (PERT) will be
provided in §8. Some technical material is provided in Appendices A and B.

2. General notation. Throughout the paper, we consider a separable metric space ��� �
 and we denote
by �= ��� 
 the linear space of all finite signed, regular measures on the measurable space ���� 
, where �
denotes the Borel field on �. We also introduce the following notation:

• 	��
 denotes the space of real-valued continuous mappings on �.
• 	B��
⊂ 	��
 denotes the subspace of continuous and bounded mappings.
• 	+��
⊂	��
 denotes the subset of positive mappings, i.e.,

	+��

def= �g ∈	��
� g�s
≥ 0� ∀ s ∈���

• 
 ��
 denotes the space of real-valued measurable mappings on �.
• 
B��
⊂ 
 ��
 denotes the subspace of bounded mappings.
• �+�� 
⊂��� 
 denotes the cone of positive measures, i.e.,

�+�� 

def= �� ∈ ��� 
� ��E
≥ 0� ∀E ∈� ��

• �1�� 
⊂ ��� 
 denotes the set of probability measures, i.e.,

�1�� 

def= �� ∈ �+�� 
� ���
= 1��

• �1����
 is the set of all integrable functions w.r.t. � ∈ ��� 
 (note that g ∈ �1����
 if �g� ∈ �1����
).
For � ⊂ ��� 
, we denote by �1����
 the set of all integrable functions w.r.t. each � in �; in formula:

�1����

def= ⋂

�∈�
�1����
�

For p≥ 1, we denote by �p����
 the set of all real-valued functions g on S that are p-integrable; in symbols,
∀p≥ 1� g ∈�p����
⇔ �g�p ∈�1����
.
We shall omit specifying the underlying set �, or Borel field � , when no confusion occurs.
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3. Weak convergence of measures. Weak convergence of probability measures was originally introduced
in Billingsley [2]. In this section, we extend the concept and give a topology on � by means of a convergence
of sequences of arbitrary measures. We start by a brief overview on signed measures in §3.1. In §3.2, we define
the concept of weak convergence on �.

3.1. Signed measures. In the following, we state some standard facts about signed measures. Any signed
measure � ∈ � can be written as the difference between two positive measures. More precisely, there exist
�+��− ∈�+ such that

∀E ∈� � ��E
=�+�E
−�−�E
� (2)

Note that the presentation in (2) is not unique.
Two positive measures are called orthogonal if they have disjoint support. More formally, �1��2 ∈ �+ are

orthogonal if there exists a set A ∈ � such that �1�� \A
= �2�A
= 0. Uniqueness of the presentation in (2)
can be achieved if �+ and �− are orthogonal. In this case, (2) is called Hahn-Jordan decomposition.
For any � ∈�, one can define the variation measure ��� ∈ �+ and the total variation ���T V of � as follows:

∀E ∈ � � ����E
= sup
A∈� �A⊂E

���A
��

and
���T V = �����
= sup

A∈�
���A
�� (3)

It is worth noting that the Hahn-Jordan decomposition “minimizes” the sum �+ + �−, meaning that the
variation measure as defined in (3) satisfies ��� = �+ + �− for �+ and �− orthogonal. For further details on
measure theory, we refer to Cohn [3].

3.2. Weak convergence on �. The following definition introduces the concept of weak convergence on �.
Definition 3.1. A sequence ��n�n ⊂ � is said to be weakly �-convergent for some �⊂ �1���n� n ∈ �
,

or weakly convergent for short, if there exists � ∈ � such that

∀g ∈�� lim
n→�

∫
g�s
�n �ds
=

∫
g�s
��ds
� (4)

We write �n
�=⇒� (or �n ⇒� when no confusion occurs) and we call � a weak limit1 of the sequence ��n�n.

Note that classical weak convergence of measures is recovered through � = 	B (see Billingsley [2]). The
following example illustrates the dependence of �-convergence of a sequence of measures ��n�n on the choice
of �.
Example 3.1. On �= �0��
, let us consider the family of probability measures

∀x≥ 0� ���dx
=C�
x�

�1+ x
3
dx

for � ∈ �0�2
� where

C� =



2� �= 1

2 sin�%�


%��1− �

� otherwise.

Provided that �= 	B, one can easily show that ��
�=⇒�1 for � ↑ 1. However, for g being the identity mapping,

the limit
lim
�↑1

∫
x �� �dx


fails to be finite. Hence, for �=	, �� is not �-convergent.

A natural question that rises in the study of limits of signed measures is whether �n
�=⇒ � implies that

�+
n

�=⇒�+ and �−
n

�=⇒�−. The following example shows that this is generally not the case.

1 In general, the weak limit � is not unique.
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Example 3.2. Let us consider the sequence

�n =
{
& 1
n

+ &�n+1/n
 − &1� for n even,

& 1
n
� for n odd,

where &x denotes the Dirac distribution that assigns mass to x. Then, �n
	B=⇒ &0 as n tends to �, but �+

2k+1
	B=⇒ &0

and �+
2k

	B=⇒ &0 + &1 as k tends to �.
3.3. �v-spaces. Let ���
 be a linear space such that 	B��
⊂ ���
⊂ 
 ��
. For v ∈ 	+��
, denote the

set of mappings in ���
 that are bounded by a multiple of v by �v��
:

�v��

def= �g ∈���
 � ∃c > 0� �g�s
� ≤ c · v�s
� ∀ s ∈��� (5)

The minimal c for which inequality (5) holds true is the so-called v-norm (to be formally introduced in the next
section). Note that �v��
 is a linear subspace of ���
. Moreover, 	B��
⊂�v��
 provided that

2

inf�v�s
� s ∈�� > 0�

A typical choice for �v��
 is provided in the following example.
Example 3.3. Let v�x
 = ex for x ∈ � = �0��
. Because for every polynomial P it holds that

limx→� e−xP�x
= 0, it turns out that the space �v��0��

 contains all (finite) polynomials. However, the poly-
nomials are not the only elements of �v because, for instance, the mapping x �→ ln�1+ x
 also belongs to �v.

Remark 3.1. If the sequence ��n�n ⊂�1 converges weakly to � in the classical sense, i.e., �n
	B=⇒�, then

lim
n→�

∫
v�s
�n �ds
=

∫
v�s
��ds


is equivalent to the uniform integrability of v w.r.t. the sequence ��n�n, i.e.,

lim
,→�supn

∫
�v�s
� · ��s� �v�s
�≥,��s
�n �ds
= 0�

See, e.g., Billingsley [2]. One can easily show that uniform integrability of v implies uniform integrability of

all continuous g ∈ �v. Hence, we conclude that if �n
	B=⇒ � and v is uniformly integrable w.r.t. ��n�n, then

�n
�v=⇒� provided that ���
⊂ 	��
.

4. Normed spaces. This section relates the theory put forward so far to classical functional analysis. Sec-
tion 4.1 deals with functional normed spaces and §4.2 addresses spaces of measures. Eventually, §4.3 extends
the results from the previous sections to product spaces.

4.1. Functional spaces. For v ∈	+��
, one introduces the so-called v-norm on 
 ��
 as follows:

�g�v def= sup
s∈�

�g�s
�
v�s


= inf�c > 0� �g�s
� ≤ c · v�s
� ∀ s ∈���

In particular, for each g ∈
 , it holds that3

∀ s ∈�� �g�s
� ≤ �g�v · v�s
� (6)

Example 4.1. Let �v be defined as in Example 3.3. For P�x
= 1+ x, for x≥ 0 we have P�x
≤ ex for all
x≥ 0 and

sup
x≥0

P�x
e−x = lim
x↓0
�1+ x
e−x = 1�

Hence, �P�v = 1. On the other hand, if Q�x
= x, then �Q�v = e−1 because

sup
x≥0

xe−x = e−1�

2 This condition is typically assumed in the literature to ensure the embedding 	b ⊂ �v and, consequently, the uniqueness of the �v-limit.
However, as detailed in Appendix A, the assumption is not crucial because we can still speak about “uniqueness of limit” in a sensible way.
This is precisely formulated in Lemma A.1 (Appendix A).
3 Note that the inequality in (6) still holds true if �g�v = �.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Heidergott and Leahu: Weak Differentiability of Product Measures
Mathematics of Operations Research 35(1), pp. 27–51, © 2010 INFORMS 31

Remark 4.1. The v-norm is also known as weighted supremum norm in the literature. An early reference
is Lipman [25]. The v-norm is frequently used in Markov decision analysis. First traces date back to the early
1980s (see Dekker and Hordijk [4] and the revised version that was published as Dekker and Hordijk [5]). The
v-norm was originally used in analysis of Blackwell optimality; see Dekker and Hordijk [5]. Also see Hordijk
and Yushkevich [20] for a recent publication on this topic. Since then, it has been used in various forms under
different names in many subsequent papers. See, for example, Meyn and Tweedie [26] and Kartashov [21]. For
the use of v-norm in the theory of measure-valued differentiation of Markov chains, see Heidergott and Hordijk
[10].
Let ���
⊂ 
 ��
. We now introduce the set of elements of ���
 with finite v-norm, denoted by ����
�v,

as follows:
����
�v

def= �g ∈���
� �g�v <��� (7)

The set ���
 in the definition of ����
�v is called the base set of ����
�v. Note that the set �v��
 defined in
(5) can be written as ����
�v and �	�v = 	B, for v ∈ 	B. Moreover, if v ≡ 1, then the v-norm coincides with
the supremum norm � · �� on 	B.
As it will turn out, powerful results on convergence, continuity, and differentiability of product measures

can be established if the base set in (7) is such that ���v becomes a Banach space when endowed with the
appropriate v-norm. This gives rise to the following definition.
Definition 4.1. Let ���
⊂
 ��
 and let v ∈	+��
. The pair ����
� v
 is called a Banach base on � if:
(i) ���
 is a linear space such that 	B��
⊂���
.
(ii) The set ����
�v endowed with the v-norm is a Banach space.
In the following, we present Banach bases that are of importance in applications. In particular, it is shown

that for v ∈	+��
, the functional spaces �	��
�v, �
 ��
�v, and ��p��� ���� � ∈��
�v are Banach bases.
Example 4.2. The continuity paradigm: �= 	. Taking v ∈	+, we obtain �	�v as the set of all continuous

mappings bounded by v. It can be shown that �	� v
 is a Banach base on �. Indeed, note that the mapping4

. � �	��
�v → 	B��v
 defined as

∀ s ∈ �v� �.g
�s
= g�s


v�s

� (8)

where �v denotes the support
5 of v, establishes a linear bijection between two normed spaces, and the inverse

.−1� 	B��v
→ �	��
�v is given by

∀ s ∈�� �.−1f 
�s
=
{
f �s
 · v�s
� s ∈�v,

0� s ��v.

Furthermore, . is an isometry as it satisfies

∀g ∈ �	��
�v� �.g�� = �g�v�
Because 	B��v
 is a Banach space when equipped with the supremum-norm, �	��
�v inherits the same property
(see Semadeni [31]).
The measurability paradigm: � = 
 . Taking v ∈ 	+, we obtain �
 �v as the set of all measurable mappings

bounded by v. Again, the mapping .� �
 ��
�v → 
B��v
 defined by (8) is an isometry and, using the same
argument as in the continuity paradigm, we conclude that �
 � v
 is a Banach base on �.
The �p-integrability paradigm: Let ���� � ∈ �� ⊂ �1 and v ∈ 	+ ∩ �p����� � ∈ ��
 for some p ≥ 1,

s.t. ���� \�v
= 0, for all � ∈�. By considering the isometry .� ��p��� ���� � ∈��
�v → ����v� ���� � ∈
��
,6 we conclude that ��p����� � ∈��
� v
 is a Banach base on �.

4.2. Spaces of measures. In functional analysis, signed measures often appear as continuous linear func-
tionals on functional spaces. More precisely, by Riesz’s representation theorem, a space of measures can be seen
as the topological dual of a certain Banach space of functions. Throughout this section, we aim to exploit this
fact to derive new results, using specific tools from Banach space theory.

4 The assumption v ∈	 guarantees that .g is a continuous mapping, provided that g is continuous.
5 That is the set where v does not vanish. In formula: �v = �s ∈�� v�s
 �= 0�.
6 By writing ����v� ���� � ∈ ��
� we commit a slight abuse of notation as the measure �� is defined on � and not on �v . However,
because for all � ∈� the measure �� does not assign any mass outside �v, the notation is justified.
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For v ∈	+��
, let us consider the following space of measures:

�v

def= {� ∈�� v ∈�1��

}
�

and note that �
 �v ⊂ �1����� � ∈��
 is equivalent to ���� � ∈��⊂ �v. For � ∈�v, consider its Hahn-Jordan
decomposition �= �+ −�− and define the weighted total variation norm of � w.r.t. v (for short, v-norm) as
follows:

���v =
∫
v�s
��� �ds
=

∫
v�s
�+ �ds
+

∫
v�s
�− �ds
� (9)

Note that by using the v-norm, the space �v can be alternatively described as

�v = �� ∈�� ���v <���
For � ∈ �v, T�� ���v → � defined as T��g
 = ∫ g�s
��ds
 is a linear mapping of the Banach space ���v

onto � whose operator norm is given by

�T��v def= sup��T��g
�� �g�v ≤ 1�= sup
{∣∣∣∫ g�s
��ds
∣∣∣ � �g�v ≤ 1

}
�

It is easy to check that the operator norm of T� coincides with the v-norm of � and if v≡ 1 one recovers the
total variation norm as introduced in (3). In particular, the Cauchy-Schwartz inequality holds for v-norms. In
formula

∀g ∈ ���v� ∀� ∈�v�
∣∣∣∫ g�s
��ds
∣∣∣≤ �g�v · ���v� (10)

The v-norm induces strong convergence on �v in the obvious way: We say that the sequence ��n�n converges
in v-norm (strongly) to some � ∈�v if

lim
n→���n −��v = lim

n→� sup
�g�v≤1

∣∣∣∫ g�s
�n�ds
−
∫
g�s
��ds


∣∣∣= 0�

Note that v-norm convergence implies ���v-weak convergence. For example, it is known that convergence of �n
toward � in total variation norm implies that (4) holds for the set �=	B. For general v, this is a consequence
of the Cauchy-Schwartz inequality. Indeed, if �n converges in v-norm to �, letting � =�n−� in (10), it follows
that (4) holds true for all g ∈ ���v. In words, “strong convergence implies weak convergence,” which justifies
the terms “weak” and “strong.” The converse, however, is not true, as detailed in Example 4.3.
Example 4.3. Consider the convergent sequence �xn�n ⊂ � having limit x ∈ �. Then, the sequence of

corresponding Dirac distributions �&xn�n ⊂ � is weakly 	B-convergent to &x. However, strong convergence does
not hold because

�&xn − &x�T V = sup
g∈	� �g�≤1

�g�xn
− g�x
� = 2 �= 0� ∀n ∈�

Provided that ��� v
 is a Banach base, the Banach-Steinhaus theorem (see, for example, Dunford [7]) can
be applied to a sequence ��n�n of measures, which allows us to deduce v-norm boundedness of ��n�n on ���v
from ���v-convergence of �n. The precise statement is provided in Lemma 4.1.

Lemma 4.1. Let ��� v
 be a Banach base and ��n�n ⊂ �v be a ���v-convergent sequence with finite limit
�, i.e., ���v <�. Then, it holds that

sup
n∈

��n�v <��
Proof. Under the assumption of Lemma 4.1, the set ��n � n ∈ � is bounded in the weak sense, i.e., for

each g ∈ ���v, the set �
∫
g d�n � n ∈ � is bounded in �. The claim then follows from the Banach-Steinhaus

theorem (see, for example, Dunford [7]). �

4.3. Product spaces. Recall that � denotes a separable complete metric space endowed with its Borel field
� . Let � be another separable complete metric space endowed with its Borel field � . We denote by 0�� ×� 

the 0-field generated by the product � × � on � × � . Let ����
� v
 and ���� 
� u
 be Banach bases on �
and � , respectively. The product of ����
� v
 and ���� 
� u
, denoted by ����
⊗��� 
� v⊗ u
, is defined as
follows:

���
⊗��� 
= �g� �×� → �� g�s� ·
 ∈ ��� 
� g�·� t
 ∈���
� ∀ s ∈ �� t ∈ ��� (11)

and
v⊗ u� �×� → �� �v⊗ u
�s� t
= v�s
 · u�t
� ∀ s ∈�� t ∈ � � (12)

Condition (11) imposes no restriction in applications, which is illustrated in Example 4.4.
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Example 4.4. We revisit the Banach bases introduced in Example 4.2.
• Let g ∈ 	��× � 
, then g�s� ·
 ∈ 	�� 
 for all s ∈ � and g�·� t
 ∈ 	��
 for all t ∈ � . In addition, it holds

that
	��×� 
⊂ 	��
⊗	�� 
� (13)

• Let g ∈ 
 �� × � 
, then g�s� ·
 ∈ 
 �� 
 for all s ∈ � and g�·� t
 ∈ 
 ��
 for all t ∈ � . Moreover, it holds
that


 ��×� 
⊂ 
 ��
⊗
 �� 
� (14)

• Let g ∈ �p��× � � ��� × ��� � ∈��
 for some p ≥ 1, then g�s� ·
 ∈ �p�� � ���� � ∈��
 for all s ∈ � and
g�·� t
 ∈ �p��� ���� � ∈��
 for all t ∈ � (for a proof, use Fubini’s theorem). Moreover, it holds that

�p��×� � ��� × ��� � ∈��
⊂ �p��� ���� � ∈��
⊗�p�� � ���� � ∈��
� (15)

The next result shows that products of Banach bases are again Banach bases, where the above definitions are
extended to the general case in the obvious way.

Theorem 4.1. Let ����i
� vi� 
 be Banach bases for 1≤ i≤ k. Then, ����1
⊗ · · · ⊗���k
� v1 ⊗ · · · ⊗ vk

is a Banach base on �1 × · · · ×�k. Moreover, if g ∈ ����1
⊗ · · · ⊗���k
�v1⊗···⊗vk , then

∀1≤ i≤ k� g�s1� � � � � si−1� ·� si+1� � � � � sk
 ∈ ����i
�vi

for all sj ∈ �j , 1≤ j ≤ k, and j �= i.

Proof. The proof follows by finite induction with respect to k and we only provide a proof for the case k= 2.
More precisely, we prove the following: Let ����
� v
 and ���� 
� u
 be Banach bases on � and � , respectively.
Then, ����
⊗��� 
� v⊗u
 is a Banach base on the product space �×� . Moreover, if g ∈ ����
⊗��� 
�v⊗u,
then g�s� ·
 ∈��� 
 for all s ∈ � and g�·� t
 ∈���
 for all t ∈ � .
We verify the conditions in Definition 4.1. It is immediate that ���
⊗��� 
 is a linear space, satisfying

	B��×� 
⊂���
⊗��� 
⊂ 
 ��×� 
�

For the second part, one proceeds as follows. First, let g ∈ ����
⊗��� 
�v⊗u. It holds that

sup
t∈�

�g�·� t
�v
u�t


= sup
t∈�
sup
s∈�

�g�s� t
�
v�s
 · u�t
 ≤ sup

�s� t


�g�s� t
�
v�s
 · u�t
 = �g�v⊗u <�� (16)

Thus, for all t ∈ � , we have �g�·� t
�v ≤ �g�v⊗u · u�t
 <�, which means that g�·� t
 ∈ ����
�v. By symmetry,
we obtain g�s� ·
 ∈ ���� 
�u for all s ∈�.
Next, we show that ����
⊗��� 
�v⊗u is a Banach space w.r.t. v⊗u-norm. To this end, let �gn�n be a Cauchy

sequence in ����
⊗��� 
�v⊗u. That is, for each 4 > 0, there exists a rank n4 ≥ 1 such that for all j� k≥ n4, it
holds that �gj − gk�v⊗u ≤ 4. Inserting now g = gj − gk in (16), one obtains

∀ t ∈ � � j� k≥ n4� �gj�·� t
− gk�·� t
�v ≤ �gj − gk�v⊗u · u�t
≤ 4 · u�t
�
Hence, for all t ∈ � , �gn�·� t
�n is a Cauchy sequence in the Banach space ����
�v and thus is convergent to
some limit ḡt ∈ ����
�v. Using again a symmetry argument, we deduce that for all s ∈�, the sequence �gn�s� ·
�n
converges to some s ḡ ∈ ���� 
�u. Hence, for fixed �s� t
 ∈�×� , we have s ḡ�t
= limn→� gn�s� t
= ḡt�s
 and
we define ḡ ∈ ���
⊗��� 
 as follows:

ḡ�s� t
= s ḡ�t
= ḡt�s
� (17)

Finally, we prove that ḡ is the v⊗ u-norm limit of the sequence �gn�n, which, in particular, will show that
ḡ ∈ ����
 ⊗ ��� 
�v⊗u. Choosing 4 > 0 and n4 ≥ 1 s.t. for all j� k ≥ n4, we have �gj − gk�v⊗u < 4. More
explicitly,

∀ j� k≥ n4� s ∈�� t ∈ � � �gj�s� t
− gk�s� t
�< 4 · v�s
u�t
�
Because ḡ is the pointwise limit of the sequence �gn�n, letting k→ � yields

∀ j ≥ n4� s ∈�� t ∈ � � �gj�s� t
− ḡ�s� t
� ≤ 4 · v�s
u�t
�
i.e., �gj − ḡ�v⊗u ≤ 4 for j ≥ n4. Because 4 was arbitrarily chosen, it follows that limn→� �gn − ḡ�v⊗u = 0. In
addition, for j = n4, we have

�ḡ�v⊗u ≤ �ḡ− gn4�v⊗u + �gn4�v⊗u ≤ 4+ �gn4�v⊗u <��
i.e., ḡ ∈ ����
⊗��� 
�v⊗u, which completes the proof. �

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Heidergott and Leahu: Weak Differentiability of Product Measures
34 Mathematics of Operations Research 35(1), pp. 27–51, © 2010 INFORMS

For � ∈ ��� 
, � ∈ ��� 
, we denote their product by �× � ∈��0�� ×� 

. We conclude this section with
a technical result (to be used later on) that shows that the product measure is (strongly) continuous with respect
to its components.

Lemma 4.2. For � ∈ ��� 
 and � ∈��� 
, it holds that

��× ��v⊗u ≤ ���v ���u� (18)

In particular, if � ∈�v�� 
 and � ∈�u�� 
, then �× � ∈ �v⊗u�0�� ×� 

.

Proof. Let � = �+ − �− and � = �+ − �− be the Hahn-Jordan decompositions of � and �, respectively.
Then,

�× � = ��+ × �+ +�− × �−
− ��+ × �− +�− × �+


is a decomposition of �× � and the minimality property7 of Hahn-Jordan decomposition ensures that

��× �
+ ≤�+ × �+ +�− × �−5 ��× �
− ≤�+ × �− +�− × �+�

Thus, according to (9), it holds that (use Fubini for the equality below)

��× ��v⊗u ≤
∫
�v⊗ u
�s� z


[
��+ +�−
× ��+ + �−


]
�ds�dz
= ���v ���u�

which establishes (18). �

5. Differentiability. In this section, we discuss two concepts of differentiability of probability measures
based on the types of convergence on � presented in §§3 and 4 (weak and strong). Particular attention will be
paid to weak differentiation because it is a less restrictive condition, though still nice results can be obtained. We
conclude the section with a brief note on the class of truncated distributions that arise frequently in applications.

5.1. The concept of measure-valued differentiation.
Definition 5.1. Let ��� v
 be a Banach base on �. We say that the mapping �∗� � → �v is weakly

���v-differentiable at � (or �� is weakly differentiable, for short) if there exists �
′
� ∈�v such that

g ∈ ���v� lim
7→0

1
7

(∫
g�s
��+7�ds
−

∫
g�s
���ds


)
=
∫
g�s
�′

��ds
� (19)

If the left-hand side of the above equation equals zero for all g ∈ ���v, then we say that the weak ���v-derivative
of �� is not significant. Moreover, if �� is ���v-differentiable, then any triplet

(
c���

+
� ��

−
�

)
with c� ∈ � and

�±
� ∈�1 satisfying

∀g ∈ ���v�
∫
g�s
�′

��ds
= c�

(∫
g�s
�+

� �ds
−
∫
g�s
�−

� �ds

)

is called a weak ���v-derivative of ��, and we write in slight abuse of notation �
′
� = (c���+

� ��
−
�

)
. If �′

� is not
significant, we set �′

� = �1������
.
Higher-order derivatives can be introduced in the same way. More precisely, we say that �� is n-times weakly

���v-differentiable at � (or �� is n-times weakly ���v-differentiable, for short) if there exist �
�n

� ∈�v such that

∀g ∈ ���v�
dn

d�n

∫
g�s
���ds
=

∫
g�s
�

�n

� �ds
�

Consequently, we denote a nth order ���v-derivative by �c
�n

� ��

�n�+

� ��

�n�−

� 
 with c�n
� ∈� and ��n�±
� ∈�1.

Remark 5.1. Differentiability of probability measures in the weak sense as defined in Definition 5.1 was
introduced by Pflug for � = 	B; see Pflug [28] for an early reference and the monograph (Pflug [27]) for a
thorough treatment of 	B-derivatives. Other early traces are Kushner and Vázquez-Abad [22, 23]. Heidergott
and Vàzquez-Abad [13] extended this concept to general �-differentiability and showed that �-derivatives yield
efficient unbiased gradient estimators. A recent result in this line of research shows that �-derivative gradi-
ent estimators can outperform single-run estimators such as infinitesimal perturbation analysis (see Heidergott
et al. [18]).

7 If �=�+ −�− is the Hahn-Jordan decomposition of �, and �= 8+ −8− is another decomposition of � such that 8+� 8− ∈ �+, then we
have 8+ −�+� 8− −�− ∈�+.
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Remark 5.2. For any ���v-differentiable probability measure ��, an instance of the nth order ���v-derivative
can be obtained via the Hahn-Jordan decomposition of ��n
� (see §3). It is worth noting that weak derivatives
can be computed in a straightforward way if it holds that ���dx
= f �x� �
 ·��dx
� ∀� ∈ �, i.e., if �� has a
density f �·� �
 with respect to �. Then, for each n≥ 1 we have

∀g ∈ ���v�
dn

d�n

∫
g�x
f �x� �
��dx
=

∫
g�x


dn

d�n
f �x� �
��dx
� (20)

provided that f �x� ·
 is n-times differentiable at � for all x ∈ S and interchanging differentiation and integral is
justified. Thus,

�
�n

� �dx
= dnf �x� �


d�n
·��dx
�

and a weak derivative can be easily computed by considering the positive and the negative parts of dnf �·� �
/d�n.
We illustrate the concept of weak differentiability with three basic families of distributions. More examples

can be found in Pflug [27].
Example 5.1. Let � = �0��
 with the usual topology and � = �a� b� ⊂ �0��
. Choose ���dx
 = �

exp�−�x
 ·9�dx
, where 9 denotes the Lebesgue measure on �. Moreover, let vp�s
= 1+ sp for some p ∈.
Then, for all n�p≥ 1, �� is n-times �vp

-differentiable. Higher-order derivatives can be computed by differen-
tiating the density f �x� �
= � exp�−�x
 in the classical sense (see Remark 5.2). More specifically, one obtains,
for n≥ 1,

�
�n

� �dx
= �−1
nxn−1 exp�−�x
��x− n
9�dx
�

Furthermore, if we denote by :�n��
 the gamma-�n� �
-distribution, i.e., the convolution of n exponential
distributions with rate �, then we have

�
�n

� =




(
n!
�n
�:�n� �
�:�n+ 1� �


)
� for n odd,

(
n!
�n
�:�n+ 1� �
�:�n� �


)
� for n even.

� n≥ 1�

Example 5.2. Let � = �0��
. Denote by ;� the uniform distribution on the interval �0� �
 for � ∈ �0� b�,
b > 0 and denote by &� the Dirac distribution with point mass �. Take as � the set 	��
. Because the density
�−1��0� �
�x
 is not differentiable w.r.t. �, we calculate the weak derivative directly. Thus, by definition, for each
g continuous at � we have

∫
g�s
;′

��ds
= lim
7→0

1
7

(
1

�+ 7

∫ �+7

0
g�s
ds− 1

�

∫ �

0
g�s
ds

)
�

which yields

∀g ∈	��
�
∫
g�s
;′

��ds
= 1
�
g��
− 1

�2

∫ �

0
g�s
ds�

Thus, ;′
� = �1/�
&� − �1/�
;� or, in triplet representation, ;′

� = ��−1� &��;�
� Higher-order derivatives of ;� do
not exist. This stems from the fact that &� fails to be weakly �-differentiable for any sensible set �.
Example 5.3. Let �= �x1� x2� with the discrete topology �= �0�1
 and set

∀� ∈�� �� = �1− �
 · &x1 + � · &x2�

where &x denotes the Dirac distribution with total mass at point x. To avoid trivialities, we assume x1 �= x2.
Then, it holds for each g ��→ � that

d

d�

∫
g�x
���dx
= d

d�
��1− �
g�x1
+ �g�x2

= g�x2
− g�x1
 �

Obviously, this means that �′
� = &x2 − &x1 so that c� = 1, �+

� = &x2 and �
−
� = &x1 . Moreover, higher-order

derivatives exist but are not significant in this situation and we set ��n
� = �1������
 for n≥ 2.
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Strong differentiability is introduced in an obvious way by replacing in (19) weak convergence with the strong
one. More precisely, �� is called strongly differentiable, with derivative �

′
�, if

lim
7→0

∥∥∥∥��+7 −��

7
−�′

�

∥∥∥∥
v

= 0�

Note that the “strong” derivative �′
� is also called Fréchet derivative on the space �v in the literature.

Strong v-norm differentiability of �� implies weak ���v-differentiability. The converse is, however, not true,
which stems from the fact that

lim
7→0

1
7

∣∣∣(∫ g�s
��+7�ds
−
∫
g�s
���ds


)
−
∫
g�s
�′

��ds

∣∣∣= 0� ∀g ∈ ���v (21)

does not, in general, imply that

lim
7→0

sup
�g�v≤1

∣∣∣∣17
(∫

g�s
��+7�ds
−
∫
g�s
���ds


)
−
∫
g�s
�′

��ds


∣∣∣∣= 0� (22)

Example 5.4 illustrates this fact.
Example 5.4. Consider the uniform distribution ;� on �0� �
. In Example 5.2, we have shown that ;� is

weakly �-differentiable for �= 	, and that its weak derivative satisfies

;′
� = 1

�
&� − 1

�
;��

Hence, (21) holds true for ;� =�� for 7 �= 0. Let v�s
= sp. Then, it holds that

sup
�g�v≤1

∣∣∣∣17
(∫

g�s
;�+7�ds
−
∫
g�s
;��ds


)
−
∫
g�s
;′

��ds


∣∣∣∣≥ �p−1�

which violates (22). The uniform distribution on �0� �
 is weakly but not strongly differentiable.
Weak and strong properties of measure-valued mappings are related as follows.

Theorem 5.1. Let �∗� � → �v be a ���v-continuous measure-valued mapping such that �� is ���v-
differentiable. Then, for each closed neighborhood V of 0 such that �+7 ∈� for each 7 ∈ V , there exists some
M > 0 such that

∀7 ∈ V � ���+7 −���v ≤M �7��
In words, �� is v-norm locally Lipschitz continuous.

A sufficient condition for strong differentiability is provided in Theorem 5.2.

Theorem 5.2. If �∗� � → � is weakly ���v-differentiable on � such that �′
∗ is v-norm continuous, then

�∗ is strongly v-norm differentiable on �.

For a proof of the above two results, we refer to Heidergott et al. [16].
Note that Theorem 5.2 implies that the exponential distribution in Example 5.1 is strongly differentiable. There

is a trade-off between � (resp. ���v) and the class of probability measures that are � (resp. ���v) differentiable.
To see this, consider the Banach bases introduced in Example 4.2. Roughly speaking, �
 �v-differentiability is
the most restrictive condition because it requires that ���A
 is differentiable for all A ∈ � ; this is the definition
used by Kushner and Vázquez-Abad in Kushner and Vázquez-Abad [22]. For instance, the uniform distribution
fails to be �
 �v-differentiable (recall that continuity of the test function at � is required) whereas the exponential
and the Bernoulli distribution are. Indeed, if ;� denotes the uniform distribution on the interval �0� �
 defined
in Example 5.2 and we let A= �0� x� for some x > 0, then we have

;��A
= 1
�
min�x� ���

which is not differentiable at � = x. On the other hand, for v ≡ 1, �	�v-differentiability is the least restrictive
condition because it only requires weak convergence; this is the derivative introduced by Pflug in Pflug [28]. The
uniform, the exponential, and the Bernoulli distribution are �	�v≡1-differentiable. Only the Dirac distribution in
� fails to be �	�v≡1-differentiable.
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5.2. A note on truncated distributions. The class of truncated distributions is a more general example of
weakly but not strongly differentiable distributions, and it is interesting especially because of the form of their
weak derivative. In particular, it will turn out that the uniform distribution presented in Example 5.2 belongs to
this class.
Let X be a real-valued random variable (r.v.) and let −� ≤ a< b ≤ � be such that ���a <X < b�
 > 0. By

a truncation � of the distribution of X, we mean the conditional distribution of X on the event �a <X < b�; in
formula:

∀A� ��A
 def= ��A∩ �a <X < b�

���a <X < b�


�

If X has a probability density �, then the mapping

∀x ∈�� f �x

def= ��x
∫ b

a
��s
ds

· ��a� b
�x
 (23)

is the probability density of a truncated distribution.
Remark 5.3. Note that f as defined by (23) is still a probability density if we only require that � is a

nonnegative integrable function on �a� b
 and not necessarily a density on �.
Example 5.5. In the following, we provide several examples.
(i) Letting ��x
 = x, a = 0, and b < � in (23), one recovers the uniform distribution on �0� b
,

cf. Example 5.2.
(ii) Letting ��x
= x−@ for some @ > 1, a > 0, and b = � in (23), one obtains the Pareto distribution with

density
f �x
= @a@x−�@+1
��a��
�x
�

(iii) For ��x
= e−9x for some 9> 0 and b= �, one obtains the shifted exponential distribution8 with density
f �x
= e−9�x−a
��a��
�x
�

Truncated distributions arise naturally in applications. Indeed, consider a constant A modeling a planned
traveling time in a transportation network. Then, it is quite common to add a normally distributed noise, say
Z, to A to model some intrinsic randomness (see Heidergott and Vázquez-Abad [14]). However, traveling times
are bounded from below by the minimal traveling that is physical possible. Denote this lower bound by �. Note
that � is a design parameter as it depends on safety regulations, the type of rolling stock, and the conditions of
the track. It is important to ensure that ��A +Z < �
= 0 (so that the perturbed traveling times are still feasible)
and that one considers a truncated version of Z. In other words, the distribution of A +Z is conditioned on the
event A +Z ∈ ����
 for A > � > 0. In the setting of this section, the truncated density (23) is considered with
a= � and b= �; more formally, a parametric family of left-sided truncated distributions �� is introduced with
density given

f��x
= ��x
∫ �
�
��x
dx

�����
�x
� (24)

The remainder of this section is devoted to computation of the weak derivative of ���dx
= f��x
dx in accor-
dance with Definition 5.1. To this end, let v ∈	+��
 be such that∫

v�x
��x
dx <��
For g ∈ �	�v, proceed as follows:

d

d�

∫ �
�
g�x
��x
dx∫ �
�
��x
dx

= ���

∫ �
�
g�x
��x
dx(∫ �

�
��x
dx

)2 − g��
���
∫ �
�
��x
dx

= ���
∫ �
�
��x
dx

(∫
g�x
���dx
−

∫
g�x
&��dx


)
�

Consequently, we can write the derivative as �′
� = c���� − &�
, where

c�
def= ���
∫ �

�
��x
dx

�

Hence, the derivative of a left-sided truncated distribution can be represented as the rescaled difference between
the original truncated distribution and the Dirac distribution; higher-order derivatives do not exist because the
Dirac distribution is not differentiable (see Example 5.2).

8 The fact can be also derived from the memoryless property of the exponential distribution.
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6. Differentiability of product measures. In this section, we will establish sufficient conditions for (higher-
order) weak differentiability of product measures. For the ease of reading, we will first provide an analysis of
the product of two probability measures (see §6.1). The results for general products of probability measures are
presented in §6.2.

6.1. Products of two probability measures. In this section, we will establish sufficient conditions for
weak differentiability of the product of two probability measures. As it will turn out, the product of weakly
differentiable probability measures is again weakly differentiable, provided that the functional spaces are Banach
bases. The precise statement is given in Theorem 6.1. Recall that 0�� ×� 
 denotes the 0-field generated by
the product � ×� on �×� .

Theorem 6.1. Let ����
� v
 and ���� 
� u
 be Banach bases on � and � , respectively. Assume further
that �� ∈ �1��
 is ����
�v-differentiable and �� ∈ �1�� 
 is ���� 
�u-differentiable and denote their weak
derivatives by �′

� and �
′
�, respectively. Then, the product measure ��×�� ∈�1�0�� ×� 

 is ����
⊗��� 
�v⊗u-

differentiable and it holds that (compare with classical analysis)

��� × ��

′ = ��′

� × ��
+ ��� × �′
�
�

Proof. For 7 such that �+ 7 ∈�, set

"�7 = ��+7 −��

7
−�′

�� "�7 = ��+7 − ��

7
− �′

��

By hypothesis, we have "�7
���v=⇒ 0 and "�7

���u=⇒ 0, where 0 denotes the null measure. In this notation, the conclusion
is equivalent to

7 · � "�7 +�′
�
× �"�7 + �′

�
+�� × "�7 + "�7 × ��
���v⊗u=⇒ 0 as 7 → 0� (25)

Hence, we show that each term on the left side of (25) converges weakly to 0. For the first term, applying the
Cauchy-Schwartz inequality (10) together with Lemma 4.2 yields∣∣∣7 ∫ g�s� t
(� "�7 +�′

�
× �"�7 + �′
�

)
�ds�dt


∣∣∣≤ �7� · �g�v⊗u · � "�7 +�′
��v · �"�7 + �′

��u� (26)

Because "�7 +�′
�

���v=⇒�′
� and "�7 + �′

�

���u=⇒ �′
�, applying Lemma 4.1 yields

sup
7∈V

�"�7 +�′
��v <� and sup

7∈V
�"�7 + �′

��u <�

for a neighborhood V of 0. Letting now 7 → 0 in (26), the conclusion follows. For the second term in (25),
note that ∫

g�s� t
��� × "�7
�ds�dt
=
∫ ∫

g�s� t
���ds
 "�7�dt
=
∫
H��g� t
"�7�dt
�

where H��g� t
= ∫ g�s� t
���ds
 for all t and for all g. Theorem 4.1 implies that ����
⊗��� 
� v⊗ u
 is a
Banach base. Hence, applying the Chauchy-Schwartz inequality yields

�H��g� t
�
u�t


≤ �g�·� t
�v
u�t


����v ≤ �g�v⊗u ����v� ∀ t ∈ � �

where the second inequality follows from the second part of Theorem 4.1. Consequently, H��g� ·
 ∈ ���� 
�u for
g ∈ ����
⊗��� 
�v⊗u. We have assumed �� is ���� 
�u-differentiable, which yields that "�7

���u=⇒ 0. Hence,

lim
7→0

∫
H��g� t
"�7�dt
= 0�

which shows that the second term in (25) converges weakly to 0. The third term can be treated in a similar way,
which concludes the proof. �

Remark 6.1. It is worth noting that the conditions on the functional spaces in Theorem 6.1 are typically
satisfied in applications (see Example 4.2).
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Remark 6.2. Choosing ���
 = 	��
, ��� 
 = 	�� 
, v ≡ 1, and u ≡ 1 in Theorem 6.1, we conclude
from (13) that “weak 	B-differentiability is preserved by the product measure.” This is asserted in Pflug [27]
though no proof is given. In the same vein, taking (13) and (14) into account, we conclude that weak differentia-
bility is preserved by the product measure in both the continuity and measurability paradigm see (Example 4.2).
Inspired by the resemblance of Theorem 6.1 with classical analysis, we proceed to establish the “Leibnitz-

Newton” product rule, which extends Theorem 6.1 to higher-order derivatives. The precise statement is as
follows:

Theorem 6.2. Let ����
� v
 and ���� 
� u
 be Banach bases on � and � , respectively. If ��
is n-times ����
�v-differentiable and if �� is n-times ���� 
�u-differentiable, then the product measure
�� × �� ∈ ��0�� ×� 

 is n-times ����
⊗��� 
�v⊗u-differentiable and it holds that

��� × ��

�n
 =

n∑
j=0

(
n

j

)(
�
�j

� × �

�n−j

�

)
�

Proof. We proceed by induction over n≥ 1. For n= 1, the assertion reduces to Theorem 6.1. Assume now
that the conclusion holds true for n≥ 1. Then,

��� × ��

�n+1
 =

(
n∑
j=0

(
n

j

)(
�
�j

� × �

�n−j

�

))′
=

n∑
j=0

(
n

j

)(
�
�j

� × �

�n−j

�

)′
�

Applying Theorem 6.1 to evaluate the derivatives on the right-hand side, the proof follows as in conventional
analysis from basic algebraic calculations. �

6.2. General products. In this section, we address differentiability of n-fold products of probability mea-
sures. Theorem 6.3 presents the general formula of the weak differential calculus.

Theorem 6.3. For 1 ≤ i ≤ k, let ����i
� vi
 be Banach bases on �i such that �i�� is n-times ����i
�vi -

differentiable. Then, D�

def= �1� � × · · · × �k�� is n-times ����1
 ⊗ · · · ⊗ ���k
�v1⊗···⊗vk -differentiable on
�1 × · · · ×�k and it holds that

D
�n

� = ∑

j̃∈��k�n


(
n

j1� � � � � jk

)
· ��1� �
�j1
 × · · · × ��k��


�jk
� (27)

where
��k�n


def= �j̃ = �j1� � � � � jk
� 0≤ ji ≤ n� j1 + · · · + jk = n�

for k�n≥ 1�
Proof. The proof follows from Theorem 4.1 and Theorem 6.2 via finite induction. �

An instance of a derivative of the product measure D�n

� in Theorem 6.3 can be obtained by inserting the

appropriate �vi
derivatives for the measures ��ji
i� � and rearranging terms in (27). To present the result, we

introduce the following notations. For j̃ = �j1� � � � � jk
 ∈ ��k�n
, we denote by 7�j̃
 the number of nonzero
elements of the vector j̃ , and by ��j̃
 the set of vectors E ∈ �−1�0�+1�k such that Ei �= 0 if and only if ji �= 0
and such that the product of all nonzero elements of E equals one, i.e., there is an even number of “−1.” For
E ∈ ��j̃
, we denote by "E the vector obtained from E by changing the sign of the nonzero element at the highest
position. The precise statement is as follows.

Corollary 6.1. Under the conditions put forward in Theorem 6.3, let �i� have mth order �vi
-derivative

�
�m

� =

(
c
�m

i� � ��

�m�+

i� � ��

�m�−

i� �

)
for m≥ 0 with c�0
i� � = 1 and ��0�0
i� � =�i��. For n≥ 1, an instance

(
G
�n

� �D

�n�+

� �D

�n�−

�

)
of D�n


� is given by

G
�n

� = ∑

j̃∈��k�n

27�j̃
−1

(
n

j1� � � � � jk

) k∏
i=1
c
�ji

i� � �

D
�n�+

� = ∑

j̃∈��k�n


(
n

j1� � � � � jk

)∏k
i=1 c

�ji

i� �

G
�n

�

∑
E∈��j̃


�
�j1�E1

1� � ×�

�j2�E2

2� � × · · · ×�

�jk�Ek

k� � �

D
�n�−

� = ∑

j̃∈��k�n


(
n

j1� � � � � jk

)∏k
i=1 c

�ji

i� �

G
�n

�

∑
E∈��j̃


�
�j1� "E1

1� � ×�

�j2� "E2

2� � × · · · ×�

�jk� "Ek

k� � �
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where, for convenience, we identify

�
�jk�+1

i� � =�

�jk�+

i� � � �

�jk�−1

i� � =�

�jk�−

i� � � �

�0�0

i� � =�i���

Example 6.1. Consider the Banach base 	B��
 = ��	��
� v
 for v ≡ 1. Denote the k-fold product of
�� by D��k
. Suppose that �� has 	B��
-derivative �c���

+
� ��

−
� 
. Then, by Theorem 6.3, D��n
 is 	B��

n
-
differentiable and an instance of a 	B��

n
-derivative can be obtained from Corollary 6.1. This yields, for any
g ∈ 	B��

n
,

d

d�

∫
g�s
D��n�ds
= c�

n∑
j=1

(∫
g�s� t� u
D��n− j�ds
×�+

� �dt
×D��j − 1�du


−
∫
g�s� t� u
D��n− j�ds
×�−

� �dt
×D��j − 1�du

)
�

Consider the performance function Jg��
 defined in (1) with �i�� =��. Let X
+
� have distribution �

+
� and let X

−
�

have distribution �−
� . Then, the above derivative representation reads in terms of random variables

d

d�
Jg��
= c�

n∑
j=1

Ɛ��g�Xn� � � � �Xj+1�X
+
� �Xj−1� � � � �X1
− g�Xn� � � � �Xj+1�X

−
� �Xj−1� � � � �X1
� (28)

for any g ∈ 	B��
n
. For example, the expression

c�

n∑
j=1

(
g�Xn� � � � �Xj+1�X

+
� �Xj−1� � � � �X1
− g�Xn� � � � �Xj+1�X

−
� �Xj−1� � � � �X1


)

provides an unbiased estimator for the stochastic gradient �d/�d�
Jg��

.

7. Weak analyticity. In this section, we introduce the concept of weak ���v-analyticity for probability
measures and we provide results for the radius of convergence of the corresponding Taylor series and weak
analyticity of product measures.
Definition 7.1. Let ��� v
 be a Banach base on �. We call the measure-valued mapping �∗� � → �v

weakly ���v-analytic at � or we say that �� is weakly ���v-analytic if
• all higher-order ���v-derivatives of �� exist,
• there exists a neighborhood V of � such that, for all 7 satisfying �+ 7 ∈ V , it holds that

∀g ∈ ���v�
∫
g�s
��+7�ds
=

�∑
n=0

7n

n! ·
∫
g�s
�

�n

� �ds
� (29)

If �� is n times weakly differentiable for n≥ 0, the expression Tn����� ·
 defined as

∀7 ∈�� Tn����� 7
 �=
n∑
k=0

7k

k! ·��k
� (30)

will be called the nth order Taylor polynomial of �∗ in �. The nth order Taylor polynomial Tn����� 7
 defined
by (30) is, in fact, an element in �v and defines a linear functional on ���v. Therefore, (29) is equivalent to

∀75 �+ 7 ∈ V � Tn����� 7

���v=⇒��+7� (31)

Moreover, because all higher-order derivatives of �� exist, it follows by Theorem 5.1 that, for each n≥ 1, ��n
�
is strongly continuous and, by Theorem 5.2, we conclude that ��n−1


� is strongly differentiable. In particular, it
follows that if �� is weakly analytic, then it is strongly differentiable of any order n≥ 1.
For fixed g ∈ ���v, the maximal set D��g��
 for which the equality in (29) holds is called the domain of

convergence of the Taylor series. Note that the domain of convergence D��g��
 of the series in (29) depends
on g. Our next result provides a set Dv

���
⊂�, where the Taylor series in (29) converges for all g ∈ ���v. The
precise statement is as follows.
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Theorem 7.1. Let ��� v
 be a Banach base on � such that �� is ���v-analytic. Then, for each g ∈ ���v,
the Taylor series in (29) converges for all 7 such that �7�<Rv���
, where Rv���
 is given by

1
Rv���


= lim sup
n∈

(
���n
� �v
n!

)1/n
� (32)

In particular, the set Dv
���
 �=�∩ ��−Rv���
� �+Rv���

 satisfies

∀g ∈ ���v� Dv
���
⊂D��g��
�

Proof. We apply the Cauchy-Hadamard theorem. It follows that the radius of convergence R��g��
 of the
Taylor series in (29) is given by

1
R��g��


= lim sup
n∈



∣∣∣∫ g�s
��n
� �ds
∣∣∣

n!



1/n

�

i.e., the series converges for �7�<R��g��
 and it suffices to show that
∀g ∈ ���v� Rv���
≤R��g��
� (33)

This follows from the Cauchy-Schwartz inequality. To see this, note that

∣∣∣∫ g�s
��n
� �ds
∣∣∣
1
n ≤
(
�g�v · ���n
� �v

)1/n
�

which together with the fact that limn→�
n
√�g�v = 1 for g ∈ ���v concludes the proof. �

The nonnegative number Rv���
 is called the ���v-radius of convergence of �� and the set D
v
���
 is called

the ���v-domain of convergence of ��. Note that, in general, this is not the maximal set for which the series
converges for all g ∈ ���v because the inequality in (33) may be strict.
The ���v-domain of convergence D

v
���
 plays an important role in applications. Though Theorem 7.1 shows

that, for �7�<Rv���
, the sequence of Taylor polynomials Tn����� 7
 converges weakly as n→ �, Theorem 7.2
will show that this convergence is, in fact strong.

Theorem 7.2. Let ��� v
 be a Banach base on � such that �� is ���v-analytic with ���v-radius of conver-
gence Rv���
. Then, ∀75 �7�<Rv���
� lim

n→��Tn����� 7
−��+7�v = 0�

Proof. By hypothesis, we have

�Tn����� 7
−��+7�v =
∥∥∥∥∥

�∑
k=n+1

7k

k! ·��k
�
∥∥∥∥∥
v

≤
�∑

k=n+1

�7�k
k!
∥∥∥��k
� ∥∥∥

v
� (34)

Let 7 be such that �7�<Rv���
 and choose 4 > 0 such that �7� + 4 <Rv���
. Because

1
Rv���
− 4

>
1

Rv���

= lim sup

n∈

(
���n
� �v
n!

)1/n
�

it follows that there exists some n4 ≥ 1 such that

∀k≥ n4�

(
���k
� �v
k!

)1/k
<

1
Rv���
− 4

�

Consequently, we conclude from (34) that, for each n≥ n4, it holds that

�Tn����� 7
−��+7�v ≤
�∑

k=n+1

( �7�
Rv���
− 4

)k
Rv���
− 4

Rv���
− 4− �7�
( �7�
Rv���
− 4

)n+1
(35)

because, by assumption, �7�<Rv���
− 4. Therefore, the conclusion follows by letting n→ � in (35). �
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Example 7.1. Let us revisit Example 5.1 and consider the exponential distribution with rate � denoted
by ��. We aim to determine the ���v-radius of convergence of �� for v�x
 = 1+ x, ∀x ≥ 0. Recall that an
instance of the nth order derivative ��n
� is given by

�
�n

� =




(
n!
�n
�:�n� �
�:�n+ 1� �


)
� for n odd,

(
n!
�n
�:�n+ 1� �
�:�n� �


)
� for n even,

where

:�n��
 ·dx= �n · xn−1

�n− 1
! e
−�x ·dx�

Consequently, the v-norm ���n
� �v satisfies∣∣∣∫ v�x
��n
� �dx
∣∣∣≤ ���n
� �v ≤ n!
�n

∫
v�x
:�n+ 1� �
�dx
+ n!

�n

∫
v�x
:�n� �
�dx
�

Elementary computation shows that, for p≥ 1, we have∫
xp :�n� �
�dx
= �n

�n− 1
!
∫
xn+p−1e−�xdx= 1

�p
· �n+p− 1
!

�n− 1
! �

Hence, for v�x
= 1+ x, we obtain the following bounds:

1

�n+1 ≤ ���n
� �v
n! ≤ 2n+ 2�+ 1

�n+1 �

Finally, we obtain

1
Rv���


= lim sup
n∈

(
���n
� �v
n!

)1/n
= 1
�
�

To show analyticity, we have to show that (29) holds true for �J�< �. First, we note that the density f �x� �
 of
�� is analytical (in the classical sense) in �, i.e.,

∀x > 0� ∀J ∈�� f �x� �+J
=
�∑
k=0

Jk

k!
dk

d�k
f �x� �
�

Hence, (29) is equivalent to

∀g ∈ �
 �v�
�∑
k=0

Jk

k!
∫
g�x


dk

d�k
f �x� �
dx=

∫
g�x


�∑
k=0

Jk

k!
dk

d�k
f �x� �
dx�

Fix g ∈ �
 �v. To apply the dominated convergence theorem, it suffices to show that the function

F��x

def=

�∑
k=0

∣∣∣∣g�x
Jkk!
dk

d�k
f �x� �


∣∣∣∣
is integrable. Computing the derivatives of f �x� �
 (see Example 5.1) yields

F��x
≤ �g�x
�
�∑
k=0

�J�k
k! ��x

k + kxk−1
e−�x ≤ �g�v��+J
v�x
e−��−�J�
x�

Because the right-hand side above is obviously integrable for �J�< �, we conclude that, for v�x
= 1+ x, the
exponential distribution �� is weakly �
 �v-analytical for � > 0 and its radius of convergence is R

v
���
 = �.

Moreover, this is still true if we replace v by any finite polynomial.
In the following, we will investigate the error of the nth Taylor polynomial Tn����� 7
, i.e., we will establish

a bound for
�Tn����� 7
−��+7�v� (36)

Theorem 7.2 shows that the expression in (36) converges pointwise to zero w.r.t. 7 ∈ �−Rv���
�Rv���

 as n→ �,
provided that �� is ���v-analytical with ���v-radius R

v
���
. Unfortunately, the result is of rather theoretical

value because it can hardly be used to derive a bound on the error term in (36). Theorem 7.3, based on Taylor’s
theorem, provides more practical bounds under some additional assumptions.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Heidergott and Leahu: Weak Differentiability of Product Measures
Mathematics of Operations Research 35(1), pp. 27–51, © 2010 INFORMS 43

Theorem 7.3. Let ��� v
 be a Banach base on �. If �∗� � → �v is �n+ 1
-times ���v-differentiable on
��− b��+ b�⊂� for some b > 0 such that ��n+1


∗ is weakly ���v-continuous on ��− b��+ b
, then

∀7 ∈ ��− b��+ b
� Mn�7

def= sup

A∈��−7� �+7


∥∥∥��n+1

A

∥∥∥
v
<�� (37)

In addition, the following error estimate holds true:

∀g ∈ ���v�
∣∣∣∣
∫
g�s
��+7�ds
−

n∑
k=0

7k

k!
∫
g�s
�

�k

� �ds


∣∣∣∣≤ �7�n+1

�n+ 1
! �g�v Mn�7
� (38)

In particular, the expression in (36) can be bounded as follows:

�Tn����� 7
−��+7�v ≤ �7�n+1

�n+ 1
!Mn�7
� (39)

Proof. First, we show that (37) holds true. Weak continuity of ��n+1

∗ on �� − b�� + b
 implies that, for

each g ∈ ���v, the mapping A �→ ∫
g�s
�

�n+1

A �ds
 is continuous on the compact interval ��− 7� �+ 7� (hence,

bounded) and by Banach-Steinhaus theorem (see, for example, Dunford [7]), one concludes (37).
Applying now Taylor’s theorem to the real-valued mapping A �→ ∫

g�s
�A�ds
, we conclude that, for each
7 ∈ ��− b��+ b
 and g ∈ ���v, there exists some Ag ∈ ��− 7� �+ 7
 such that

∫
g�s
��+7�ds
−

n∑
k=0

7k

k!
∫
g�s
�

�k

� �ds
= 7n+1

�n+ 1
!
∫
g�s
�

�n+1

Ag

�ds
�

By applying the Cauchy-Schwarz inequality in the right-hand side above, one concludes (38).
Finally, letting �g�v ≤ 1 in (38) yields

∣∣∣∣
∫
g�s
��+7�ds
−

n∑
k=0

7k

k!
∫
g�s
�

�k

� �ds


∣∣∣∣≤ �7�n+1

�n+ 1
! Mn�7
�

By taking the supremmum w.r.t. g ∈ ���v in the left-hand side above, one concludes (39), which completes the
proof. �

Remark 7.1. Note that if the conditions of Theorem 7.3 are fulfilled for each n ≥ 1 and if the constants
Mn�7
 can be chosen such that

lim
n→�

�7�n+1

�n+ 1
! Mn�7
= 0�

then �� is weakly ���v-analytical.
Theorem 7.3 applies to probability measures that fail to be weakly analytical. We conclude this section with

a probability measure that is only twice-continuous weakly differentiable. This measure serves as an example
of a distribution that satisfies the conditions put forward in Theorem 7.3 but fails to satisfy the conditions put
forward in Theorem 7.2.
Example 7.2. Let T > 0 be fixed. Consider the following family of probability distributions:

∀� ∈ �0� T 
� ���dx
 �=
2max�x� ��
T 2 + �2

��0� T 
�x
dx�

Denoting by ;� the uniform distribution on �0� �
 introduced in Example 5.2, we have

�′
� = 2�

T 2 + �2
�;� −��
� �′′

� = 2
T 2 + �2

�&� −��
− 8�2

�T 2 + �2
2
�;� −��
�

Furthermore, higher-order derivatives do not exist because the Dirac distribution &� is not weakly differentiable.
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7.1. Weak analyticity of the product measure. We conclude this section with a result for weak analyticity
of product measures. More specifically, in classical analysis, it is well-known that the product of two analytical
functions is again analytical. Theorem 7.4 establishes the counterpart of this fact for measure-valued mappings.

Theorem 7.4. Let ����
� v
 and ���� 
� u
 be Banach bases on � and � , respectively. Let �� be ����
�v-
analytic with domain of convergence Dv

���
 and let �� be ���� 
�u-analytic with domain of convergence Du
���
.

Then, �� × �� is ����
 ⊗ ��� 
�v⊗u-analytic and for each g ∈ ����
 ⊗ ��� 
� the domain of convergence
D��g��× �
 satisfies:

Dv
���
∩Du

���
⊂D��g��× �
�

Proof. For � ∈ �, let us denote by �� × �
� the product measure �� × ��. Recall that D
v
���
 = � ∩

�� − Rv���
� � + Rv���

 with R
v
���
 as defined in (32). Similarly, D

u
���
 = � ∩ �� − Ru���
� � + Ru���

. Let

�=min�Rv���
�R
u
���
� and choose g ∈ ����
⊗��� 
�v⊗u arbitrarily. We show that, for �J�<�, it holds that
∫
g�s� t
��× �
�+J�ds�dt
= lim

n→�

n∑
k=0

Jk

k!
∫
g�s� t
��× �


�k

� �ds�dt
� (40)

Let us consider now the linear mappings Tn� ����
�v → �, defined as

∀n≥ 1� Tn�f 
 def=
n∑
j=0

Jj

j!
∫
f �s
�

�j

� �ds


and, for t ∈ � and n≥ 1, let

Hn�t
= Tn�g�·� t

5 H�t
=
∫
g�s� t
��+J�ds
�

By hypothesis, H�t
= limn→�Hn�t
. In the following, we show that the dominated convergence theorem applies
to the sequence �Hn� when integrated w.r.t. �.
First, note that, according to (16), it holds that �g�·� t
�v ≤ �g�v⊗uu�t
. Hence, an application of the Cauchy-

Schwartz inequality yields

�Hn�t
� = �Tn�g�·� t

� ≤ �Tn�v�g�·� t
�v ≤
(
sup
n

�Tn�v
)
�g�v⊗uu�t
� (41)

To show that supn �Tn�v <�, we note that weak analyticity of �� implies that �Tn�f 
� n ∈� is bounded for
each f ∈ ����
�v, and we apply the Banach-Steinhaus theorem (see Remark 4.1).
Thus, Hn ∈ ���� 
�u and because u ∈ �1����� � ∈ ��
, the dominated convergence theorem applies to the

sequence �Hn�n. Hence, interchanging limit with integration on the right-hand side of (40) is justified and yields∫
H�t
��+J�dt
=

∫
lim
n→�Hn�t
 ��+J�dt
= lim

n→�

∫
Hn�t
��+J�dt
� (42)

Moreover, due to ���� 
�u-analyticity of ��, the right-hand side in (42) equals to

lim
n→� limm→�

m∑
l=0

Jl

l!
∫
Hn�t
�

�l

� �dt
�

Finally, inserting the expression of Hn�t
 in to the above expression, we conclude that the left-hand side of (40)
equals to

lim
n→� limm→�

m∑
l=0

n∑
j=0

Jj+l

j!l!
∫ ∫

g�s� t
�
�j

� �ds
�

�l

� �dt
� (43)

According to Theorem 6.2, the right-hand side of (40) can be rewritten as

lim
k→�

∑
0≤j+l≤k

Jj+l

j!l!
∫ ∫

g�s� t
�
�j

� �ds
�

�l

� �dt
� (44)

The power series in (43) is convergent for �J�<�. Hence, it is absolutely convergent so its limit is not affected
by reshuffling terms (see Rudin [30]). It follows that the limits in (43) and (44) coincide and (40) holds true for
�J�<�. The fact that Dv

���
∩Du
���
=�∩ ��−���+�
 concludes the proof. �
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8. Applications. In what follows, we present two applications—a first one where we provide a method to
estimate the derivative of the probability of ruin in some simple insurance model using weak differentiation, and
a second one where the expected completion time of a stochastic activity network is approximated analytically
using weak analyticity.

8.1. A ruin problem. Let us consider the following example. An insurance company receives premiums
from clients at some constant rate r > 0 while claims �Yi� i≥ 1� arrive according to a Poisson process with rate
9> 0. Let �Xi� i≥ 1� denote the interarrival times of the Poisson process and let NN denote the number of claims
recorded up to some fixed time horizon N > 0. Assume further that the values of claims are i.i.d. r.v. following
a Pareto distribution %�, i.e.,

%��dx
= @�@

x@+1 �����
�x
dx

(see Example 5.5 (ii)) and that the values of the claims are independent of the Poisson process.
Let V �0
≥ 0 denote the initial credit of the insurance company. The credit (resp. debt) of the company right

after the nth claim, denoted by V �n
, follows the recurrence relation:

∀n≥ 0� V �n+ 1
= V �n
+ rXn+1 − Yn+1�

Ruin occurs before time N if at least one n≤NN exists such that V �n
 < 0 (see Figure 1).
We are interested in estimating the derivative w.r.t. � of the probability of ruin up to time N . To this end, we

denote by �N the event that ruin occurs up to time N . Given the event �NN = n�, �N can be written as follows:

�N ∩ �NN = n�= �

(
n⋂
k=1
�V �k
 > 0�

)
= �

{
r ·

j∑
i=1
Xi >

j∑
i=1
Yi� ∀1≤ j ≤ n

}
�

where �A denotes the complement of A. Therefore, considering the sequence �gn� n ≥ 1� with gn ∈ 
 ��2n

given by

gn�x1� � � � � xn� y1� � � � � yn
= 1−
n∏
j=1

��r ·∑j
i=1 xi>

∑j
i=1 yi�

�x1� � � � � xn� y1� � � � � yn
� (45)

we can write
∀n≥ 1� ����N ∩ �NN = n�
= Ɛ�

[
��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yn


]
� (46)

where Ɛ� denotes the expectation operator when the claims Yi follow distribution %� and Xi is exponentially
distributed with rate 9. Let � denote the exponential distribution. As explained in §5.2, the truncated distribution
%� is weakly 	B-differentiable, satisfying

% ′
� = @

�
�%� − &�
�

Figure 1. An occurrence of the event �N \�3
N and NN = 4.

Note. The dashed line represents a version of the process where the value of the third claim is reduced.
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Applying Theorem 6.3 with v = 1 yields that the product measure � × %� is weakly 	B��
2
-differentiable

with ��× %�

′ = �× % ′

� (for a proof, use the fact that � is independent of �). Applying Theorem 6.3 with
v = 1 again to the n-fold product of �× %� yields that ��× %�


n is weakly 	B��
2n
-differentiable. Hence,

for any g ∈ 	B��
2n
, the derivative of the

∫
gd��× %�


n can be obtained in closed form (see Example 6.1
for the derivative expression). Note, however, that the sample performance gn introduced for modeling the ruin
probability is not an element of 	B��

2n
. Fortunately, because the discontinuities of gn have measure zero, our
derivative formulas apply to gn as well. More formally, ��×%�


n is weakly 	B��
n
∪ �gn�-differentiable (see

Appendix B for details). Hence, we arrive at

d

d�
�� ��N ∩ �NN = n�
 = d

d�
Ɛ�
[
��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yn


]
= @

�

n∑
i=1

Ɛ�
[
��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yn


− ��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yj−1� �� Yj+1� � � � � Yn

]

= @

�

n∑
i=1

(
�� ��N ∩ �NN = n�
−��

(
�i
N ∩ �NN = n�

))
�

where �i
N denotes the event that there is ruin up to time N , when the value of the ith claim is replaced by the

constant �, i.e.,

�i
N ∩ �NN = n�=

n⋃
k=1
�V i�k
 < 0��

Provided that interchanging limit with differentiation is allowed, we obtain

d

d�
�� ��N 
 = d

d�

�∑
n=1

�� ��N ∩ �NN = n�
 (47)

=
�∑
n=1

d

d�
�� ��N ∩ �NN = n�


=
�∑
n=1

@

�

n∑
i=1

(
�� ��N ∩ �NN = n�
−��

(
�i
N ∩ �NN = n�

))

= @

�
��� ��N ∩ �NN ≥ n�
−�� ��

n
N ∩ �NN ≥ n�

 � (48)

Note that the nth remainder term of the series in (48) is bounded by

�∑
k=n+1

����NN ≥ n�
≤
�∑

k=n+1

�9N
k

k! �

Because the bound is independent of � and converges to 0 as n→ �, it means that we deal with a uniformly
convergent series of functions of �. Interchanging limit with differentiation in (47) is thus justified.
Taking into account that Yn > � almost surely, a sample path analysis together with a monotonicity argument

yields �n
N ⊂�N . Moreover, the difference �N \�n

N represents the event that ruin occurs up to time N but it does
not occur anymore if one reduces the value of the nth claim by Yn − �; a graphical representation of these facts
can be found in Figure 1. Note that this event is incompatible with �NN < n�, i.e., if the “reduced claim” comes
after time N . Hence, it holds that �� ���N \�n

N
∩ �NN < n�
= 0 so that (48) becomes

d

d�
�� ��N 
= @

�

�∑
n=1

�� ��N \�n
N
 � (49)

Remark 8.1. Following the line of argument that leads from (47) to (48), we obtain

d

d�
����N 
 =

�∑
n=1

@

�

n∑
i=1

Ɛ�
[
��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yn


− ��NN=n�gn�X1� � � � �Xn� Y1� � � � � Yj−1� �� Yj+1� � � � � Yn

]
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= @

�
Ɛ�

[
NNgNN �X1� � � � �XNN � Y1� � � � � YNN 


−
NN∑
j=1
gNN �X1� � � � �XNN � Y1� � � � � Yj−1� �� Yj+1� � � � � YNN 


]

(c.f. Example 6.1). The expression on the right-hand side provides an unbiased estimator for the derivative of
the ruin probability. For details on the relationship between weak derivatives and unbiased estimators, we refer
to Heidergott and Vázquez-Abad [13].

8.2. Stochastic activity networks. Stochastic activity networks (SAN) such as those arising in the PERT
form an important class of models for systems and control engineering. Roughly, a SAN is a collection of
activities, each with some (deterministic or random) duration, along with a set of precedence constraints that
specify that activities begin only when certain others have finished. Such a network can be modeled as a directed
acyclic weighted graph with one source, one sink node, and additive weight-function N . A simple example is
provided in Figure 2. The network has five nodes, labeled from one (source) to five (sink) and the edges denote
the activities under consideration. The weights Xi, 1≤ i≤ 7, denote the durations of the corresponding activities.
For instance, activity six can only begin when both activities two and three have finished.
Let � denote the set of all paths from the source to the sink node. Should (some) durations be random

variables, we assume them mutually independent. However, note that, in general, the path weights are not
independent. The completion time, denoted by T , is defined as the weight of the “maximal” path:

T =max�N�%
� % ∈ ���

For more details on SAN, we refer to Pich et al. [29]. For instance, in the above example, the set of paths
from source node one to sink node five is

� = ��1�2�5
5 �1�2�4�5
5 �1�2�3�4�5
5 �1�3�4�5
��

Thus, the completion time in this case can be expressed as

T =max�X1 +X55 X1 +X4 +X75 X1 +X3 +X6 +X75 X2 +X6 +X7��

One of the most challenging problems in this area is to compute the expected completion time, i.e., Ɛ�T �.
Distribution free bounds for Ɛ�T � are provided in Devroye [6]. In the following paragraphs, we aim to establish
a functional dependence between a particular parameter, e.g., the expected duration of some particular tasks,
and the expected completion time of the system. Here, we propose a Taylor series approximation for a SAN
with exponentially distributed service times, where the computation of higher-order derivatives relies on weak
differentiation theory as presented in this paper.

Figure 2. A stochastic activity network with source node 1 and sink node 5.
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We start by considering � = �0��
 with the usual metric. v� � → � is defined as v�x
 = 1+ x. Next, we
define gT � �7 → � as

gT �x1� � � � � x7

def= max�x1 + x55 x1 + x4 + x75 x1 + x3 + x6 + x75 x2 + x6 + x7��

i.e., T = gT �X1� � � � �X7
 and

Ɛ�T �=
∫

· · ·
∫
gT �x1� � � � � x7
�1�dx1
 · · ·�7�dx7
�

where we denote by �i the distribution of Xi for 1 ≤ i ≤ 7. In accordance with Theorem 6.3, it holds that if
�i is weakly differentiable with respect to some parameter � for all 1 ≤ i ≤ 7, then the distribution of T is
weakly differentiable w.r.t. � as well. Roughly speaking, this means that “the distribution of T is differentiable
w.r.t. each �i.”
Assume, for instance, that r.v. Xi, 1≤ i ≤ 7, are independent and exponentially distributed with rates 9i. We

let 91 = 93 = � vary and fix the other rates, i.e., 9i is independent of � for i ∈ �2�4�5�6�7�. By Example 7.1,
the exponential distribution is weakly �
 �v-analytical for v�x
= 1+ x and the domain of convergence is given
by �J�< �. Because the distributions that are independent of � are trivially weakly analytical, from Theorem 7.4
we conclude that the joint distribution of the vector �X1� � � � �X7
 is weakly �
 �S

7
�v⊗···⊗v-analytical. Moreover,
the radius of convergence of the Taylor series is equal to �. Finally, we note that

�gT �x1� � � � � x7
� ≤
7∏
i=1
�1+ xi
= �v⊗ · · · ⊗ v
�x1� � � � � x7
�

i.e., gT belongs to �
 �S7
�v⊗···⊗v, the sevenfold product of the Banach base �
 � v
.
Next, we evoke Corollary 6.1 for computing the derivatives. Because only the derivatives of �1� � and �3� �

are significant (inspired by Example 5.1 for j� k≥ 0), we consider a “modified” network where X1 is replaced
by the sum of j independent samples from an exponentially distributed r.v. with rate �, and X3 is replaced by
the sum of k independent samples from the same distribution. All other durations remain unchanged, i.e., we
replace the exponential distribution of X1 and X3 by the :�j� �
 and :�k� �
 distribution, respectively. Let Tj�k
denote the completion time of the modified SAN, i.e., T1�1 = T and we agree that Tj�k = 0 if j = 0 or k = 0.
With this notation, Theorem 6.3 yields

∀n≥ 0� d
n

d�n
Ɛ��T �= �−1
n n!

�n

∑
i+j=n

Ɛ��Ti+1� j+1 − Ti+1� j − Ti� j+1 + Ti� j �� (50)

and for each n≥ 1, we call

Tn���J

def=

n∑
k=0
�−1
k

(
J

�

)k ∑
i+j=k

Ɛ��Ti+1� j+1 − Ti+1� j − Ti� j+1 + Ti� j � (51)

the nth order Taylor polynomial for Ɛ�+J�T � at �, where Ɛ� denotes the expectation operator w.r.t. the product
measure �1� � × �2 × �3� � × �4 × �5 × �6 × �7. Bounds on the error term can be obtained by Theorem 7.3.
However, as we will explain, in the case of the SAN model, bounds can be obtained in a more direct way. To
see this, note that, by using a monotonicity argument, one can easily check that

∀ i� j ≥ 0� ∣∣Ɛ��Ti+1� j+1 − Ti+1� j − Ti� j+1 + Ti� j �
∣∣≤ Ɛ��X1�+ Ɛ��X3�= 2

�
� (52)

Hence, a bound for the error of the nth order Taylor polynomial is given by

∀ �J�< �� �Ɛ�+J�T �−Tk���J
� ≤ 2
�

�∑
k=n+1

�k+ 1

( �J�
�

)k

= 2
�

�n+ 2
− �n+ 1
��J�/�

�1− �J�/�
2

( �J�
�

)n+1

≤ 2�n+ 1

��− �J�


( �J�
�

)n+1
� (53)
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Example 8.1. To perform a numerical experiment, we considered the following rates:

91 = 93 = �� 96 = 1� 92 = 94 = 1
2
� 95 = 1

5
� 97 = 1

3
�

Computation of the coefficients of the Taylor polynomial appears to be quite demanding and it is worth noting
that the coefficients can, alternatively, be evaluated by simulation. Our calculations show that the Taylor polyno-
mial T3�1�J
 of order three approximates the true function Ɛ�T1+J� for �J� ≤ 0�4 with a relative error, estimated
according to (53), of less than 3�4%.

Appendix A. Uniqueness of the weak �v-limit. The �v-limit, as defined in (4), is, in general, not unique.
Indeed, let us consider � = �0��
 endowed with the usual metric and v�s
= s for all s ∈ �. Denote by &0 the
Dirac measure, i.e., &0 assigns mass one to point zero. Assume that � is a �v-limit of the sequence ��n�n ⊂�.
Because we have g�0
= 0 for g ∈�v, it follows that �+, ·&0 ∈� is also a �v-limit of the sequence ��n�n for
each , ∈ � and the �v-limit fails to be unique. In words, (4) still holds true if one assigns a different mass to
the “zero set” of v. Our next result will elucidate this issue. In particular, it shows that the set �v, likewise 	B,
is appropriate for introducing weak convergence.

Lemma A.1. Let v ∈ 	+��
 and let �v = �s ∈ �� v�s
 > 0�. If ��� ∈ ���
 be such that v ∈ �1������

and

∀g ∈�v�
∫
g�s
��ds
=

∫
g�s
��ds
� (A1)

then the traces of � and � coincide on �v. That is,

∀A ∈� � ��A∩�v
= ��A∩�v
� (A2)

Proof. Because � is the Borel field of �, we may assume, without loss of generality, that A ∈ � is an
arbitrary nonempty open set. For 4 > 0, consider the set:

A4
def= �s ∈A� ��s��A
≥ 4−1�⊂A�

where, for E ⊂ �, we denote �E = �\E and ��s�E
= inf���s� t
� t ∈E�. Note that, for sufficiently large 4 > 0,
A4 is a nonempty closed set satisfying A4 ∩ �A= %. Because A is an open set, �A is closed and, according to
Urysohn’s lemma, there exists a continuous function f4� �→ �0�1� such that f4�x
= 1 for x ∈A4 and f4�x
= 0
for x ∈ �A. On the other hand, the family �A4�4>0 ⊂ 
 is ascendent and ∪4>0A4 = A. Hence, f4 converges
pointwise to �A as 4→ �.
Consider now, for each 4 > 0, the mapping h4 ∈ 	+��
 defined as

h4�s
=min�f4�s
� 4 · v�s
��

Obviously, h4 ∈�v, and h4�s
= 0 for s ��v and all 4 > 0, and it holds that

∀ s ∈�� lim
4↑�

h4�s
= �A∩�v �s
�

Applying now the dominated convergence theorem yields:

∀A ∈� � ��A∩�v
= lim
4↑�

∫
h4�s
��ds
= lim

4↑�

∫
h4�s
��ds
= ��A∩�v
�

which concludes the proof of (A2). �

Remark A.1. If we denote by ∼ the equivalence relation on � given by � ∼ � if (A2) holds true, then
Lemma A.1 shows that (A1) implies � ∼ �. Going back to (4), we conclude that the �v-limit is uniquely
determined up to this equivalence relation and the precise definition of the �v-limit would be in terms of the
equivalence class of � denoted by ���. Note that because g ∈�v implies g�s
= 0 for s ��v, the behavior of �
outside �v is not relevant for our analysis and we may, with slight abuse of notation, identify � and ���.
In fact, the algebraic dual space �∗

v of �v, i.e., the set of all linear functionals on �v, is �/ ∼, i.e., the
quotient space of � w.r.t. equivalence relation ∼.
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Appendix B. Regular convergence and setwise differentiation. According to Definition 5.1, weak 	B-
convergence can only handle continuous performance measures. In fact, the class of mappings g that satisfy
Equation (19) is much larger and includes, for instance, indicator functions of so-called continuity sets. This
fact is well-known for classical weak convergence of probability measures (see, e.g., the Portmanteau theorem
in Billingsley [2]). We now show that a similar result holds true for weak differentiation of measures. To use
the results known from classical weak convergence theory, we appeal to the concept of regular convergence of
measures, which was introduced and studied in Leahu [24].
Definition B.1. We say that the sequence ��n� n ∈ � converges regularly in �v if both sequences ��n�

±

are weakly �	�v-convergent, where, for each n ∈, we assume that

�n = ��n�
+ − ��n�

−

is the Hahn-Jordan decomposition of �n. In addition, if �∗� �→ �v, we say that �� is regularly �	�v-continuous
if ��+7 converges regularly to �� for 7 → 0, and we say that �� is regularly �	�v-differentiable if ���+7 −��
/7
converges regularly for 7 → 0.
Note that, if �� is regularly �	�v-differentiable, then it is weakly �	�v-differentiable cf. Definition 5.1 and its

weak derivative coincides with its “regular” derivative.
Example B.1. The Pareto distribution

%��dx
= @�@

x@+1 �����
�x
dx� � > 0

is regularly �	�B-differentiable. To see this, one can use Theorem 2.2 in Leahu [24], which asserts that weak
differentiability of �� together with regular continuity of �

′
� implies regular differentiability of ��. In our case,

the weak derivative of %� satisfies

% ′
� = @

�
�%� − &�
�

Note that the Hahn-Jordan decomposition of % ′
� is given by �%

′
��

+ = @%�/� and �%
′
��

− = @&�/�. Hence, %
′
� is

regularly �	�B-continuous and it follows that %� is regularly �	�B-differentiable.
Theorem B.1, which was also proved in Leahu [24] (see Theorem 2.6), provides sufficient conditions for

“setwise” differentiation. In other words, the result can be formulated as “regular differentiability implies setwise
differentiability with respect to the class of continuity sets9 of the weak derivative.” The precise statement is as
follows:

Theorem B.1. If �i�∗� � → �1
v are such that �i�� is regularly �	�vi -differentiable with �	�vi -derivative

�ci� ���
+
i� ���

−
i� �
, for 1≤ i≤ n. Let D� denote the product measure �1� � × · · · ×�n��, and let 'v denote the tensor

product v1 ⊗ · · · ⊗ vn (see (12) for a definition). For g ∈ �
 �'v, denote by Dg the set of discontinuities of g. If

∀1≤ i≤ n� ��1� � × · · · ×�±
i� � × · · · ×�n��
�Dg
= 0� (B1)

then it holds that
d

d�

∫
g�x
D��dx
=

∫
g�x
D′

��dx
� (B2)

Example B.2. Recall the situation in §8.1. Let � denote the exponential distribution, let X be distributed
according to �, and let Yi be distributed according to %i�� for 1≤ i≤ j . Let Y +

i = Yi and Y
−
i = �, and take g as

defined in (45). Then, condition (B1) in Theorem B.1 is equivalent to

��

({
r ·

j∑
i=1
Xi =

j∑
i=1
Y ±
i

})
= 0�

Because � is a continuous distribution, the above equation holds. Therefore, �N is a continuity set and, by
Theorem B.1, differentiability of ����N 
 in §8.1 follows.
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9 A set A is said to be a continuity set for the measure � if ����P�A

= 0, where PA denotes the boundary of A.
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