
VU Research Portal

PROV
2
R: Practical provenance analysis of unstructured processes

Stamatogiannakis, Manolis; Athanasopoulos, Elias; Bos, Herbert; Groth, Paul

published in
ACM Transactions on Internet Technology
2017

DOI (link to publisher)
10.1145/3062176

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Stamatogiannakis, M., Athanasopoulos, E., Bos, H., & Groth, P. (2017). PROV

2
R: Practical provenance analysis

of unstructured processes. ACM Transactions on Internet Technology, 17(4), 1-24. Article 37.
https://doi.org/10.1145/3062176

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 20. Mar. 2024

https://doi.org/10.1145/3062176
https://research.vu.nl/en/publications/0043fc6e-2c85-46e7-b0c9-4b2a8d37dcf1
https://doi.org/10.1145/3062176

37

PROV2R: Practical Provenance Analysis of Unstructured

Processes

MANOLIS STAMATOGIANNAKIS, Vrije Universiteit Amsterdam

ELIAS ATHANASOPOULOS, University of Cyprus

HERBERT BOS, Vrije Universiteit Amsterdam

PAUL GROTH, Elsevier Labs

Information produced by Internet applications is inherently a result of processes that are executed locally.

Think of a web server that makes use of a CGI script, or a content management system where a post was

first edited using a word processor. Given the impact of these processes to the content published online, a

consumer of that information may want to understand what those impacts were. For example, understanding

from where text was copied and pasted to make a post, or if the CGI script was updated with the latest

security patches, may all influence the confidence on the published content. Capturing and exposing this

information provenance is thus important to ascertaining trust to online content. Furthermore, providers

of internet applications may wish to have access to the same information for debugging or audit purposes.

For processes following a rigid structure (such as databases or workflows), disclosed provenance systems

have been developed that efficiently and accurately capture the provenance of the produced data. However,

accurately capturing provenance from unstructured processes, for example, user-interactive computing used

to produce web content, remains a problem to be tackled.

In this article, we address the problem of capturing and exposing provenance from unstructured processes.

Our approach, called PROV2R (PROVenance Record and Replay) is composed of two parts: (a) the decoupling

of provenance analysis from its capture; and (b) the capture of high-fidelity provenance from unmodified pro-

grams. We use techniques originating in the security and reverse engineering communities, namely, record

and replay and taint tracking. Taint tracking fundamentally addresses the data provenance problem but is

impractical to apply at runtime due to extremely high overhead. With a number of case studies, we demon-

strate that PROV2R enables the use of taint analysis for high-fidelity provenance capture, while keeping the

runtime overhead at manageable levels. In addition, we show how captured information can be represented

using the W3C PROV provenance model for exposure on the Web.

CCS Concepts: • Information systems → Data management systems; Web applications;

Additional Key Words and Phrases: Data provenance, introspection, taint analysis, PANDA, W3C PROV

ACM Reference format:
Manolis Stamatogiannakis, Elias Athanasopoulos, Herbert Bos, and Paul Groth. 2017. PROV2R: Practical

Provenance Analysis of Unstructured Processes. ACM Trans. Internet Technol. 17, 4, Article 37 (August 2017),

24 pages.

https://doi.org/10.1145/3062176

Authors’ addresses: M. Stamatogiannakis and H. Bos, Department of Computer Science, Vrije Universiteit Amster-

dam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands; emails: {manolis.stamatogiannakis, h.j.bos}@vu.nl; E.

Athanasopoulos, Department of Computer Science, University of Cyprus, 1 University Avenue, 1678 Nicosia, Cyprus;

email: eliasathan@cs.ucy.ac.cy; P. Groth, Elsevier Labs, Radarweg 29, 1043NX, Amsterdam, The Netherlands; email:

p.groth@elsevier.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the

first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.

Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax + 1 (212) 869-0481, or permissions@acm.org.

© 2017 ACM 1533-5399/2017/08-ART37 $15.00

https://doi.org/10.1145/3062176

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

https://doi.org/10.1145/3062176
https://doi.org/10.1145/3062176
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3062176&domain=pdf&date_stamp=2017-08-18

37:2 M. Stamatogiannakis et al.

1 INTRODUCTION

Provenance is a “record that describes the people, institutions, entities, and activities involved in
producing, influencing, or delivering a piece of data or a thing” (Moreau and Missier 2013). One can
analyze this record to understand if a web page uses correctly licensed content, to understand the
decision-making procedure behind a figure or to help debug complex programs (Moreau and Groth
2013). As Groth et al. (2009) argued, understanding the provenance of data created by internet
applications is an important factor in establishing trust.

1.1 Unstructured Processing

While provenance can provide an important signal for trust, modifying applications to disclose
provenance is a major undertaking. For applications (e.g., workflow systems (Oinn et al. 2006))
that interact with the world and behave in a well-structured way or for use cases that require it
(e.g., climate change modeling (Ma et al. 2014)), this is often a worthy investment.

However, information is predominantly processed by off-the-shelf applications. The developers/
vendors of such applications have very little incentive to make them provenance-enabled. More-
over, applications may be extended or modified by third parties, making matters worse. For ex-
ample, a web server may support extensions that allow using different programming languages
to dynamically produce content. More importantly, when the processing of information includes
user interaction, an additional factor of unpredictability is introduced: For the same given task,
different users may use different information sources, a different set of tools (often not known a
priori), or even similar tools but in a different combination. We call this type of computing where
(a) arbitrary off-the-shelf applications are used and (b) applications may be freely combined to
perform a specific task, unstructured processing.

When it comes to internet content, unstructured processes play an important role both in the
production as well as the delivery of that content. For example, a document may be created using
MS-Word using local and online sources, perhaps processed by other programs beforehand. Or
content may be served and updated by nginx server running PHP scripts through CGI.

1.2 Capturing Provenance from Unstructured Processes

System-Events–Based Provenance Analysis. While provenance of online content can provide an im-
portant signal for trust, the nature of unstructured processing makes it difficult to capture it. An
idea that has been extensively explored in to address this problem is deriving provenance by ana-
lyzing events collected by existing mechanisms of the operating system (Frew et al. 2008; Holland
et al. 2008; Gehani and Tariq 2012; Gessiou et al. 2012; Pohly et al. 2012; Bates et al. 2015; Chirigati
et al. 2016). The main benefits of this approach are that (a) these mechanisms are transparent to
the tracked programs, so there is no need to spend effort to make programs provenance-aware,
and (b) the mechanisms tend to be lightweight, so they incur only a moderate execution overhead.
While some of these systems include support to redo a given process (e.g., ReproZip (Chirigati
et al. 2016)), they are lacking information to perform detailed provenance analytics for the entire
system execution.

This is the primary downside of system-events–based approaches: only limited fidelity prove-
nance is gathered. For the case of provenance, high fidelity means (a) low false-positives ratio, and
(b) accurate representation of provenance relations.

The low fidelity of the captured provenance can be attributed to the fact that system-events–
based methods treat traced applications as black boxes—they trace their interaction with the oper-
ating system but not how data are actually processed.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:3

Fig. 1. The n-by-m problem for n = 3,m = 3. Each output file is produced using one input source. However,

n ·m derivation edges are produced. The red edges are false-positives.

A particular manifestation of this is what Carata et al. termed as the n-by-m problem (Carata
et al. 2014): When a process reads n input files, outputs m files, without knowledge of what is
going on inside of the process, every output file will be attributed to all input files, thus produc-
ing n ·m derivation edges in the provenance graph. Figure 1 illustrates this problem. There are
two broad solutions to this problem (Carata et al. 2014): one is specifically instrumenting the pro-
gram to output semantically correct relationships; and the second is to employ binary instrument
techniques such as taint tracking.

Taint analysis for Provenance. Pioneered by Peter and Dorothy Denning in the 1970s (Denning
and Denning 1977), tracking the flow of data though a program is an old but recurring technique.
The technique is also commonly referred to as Taint Tracking or Taint Analysis because of its pop-
ularity in security applications, where the tracked data are considered tainted. Taint analysis boils
down to tracking how data propagate and affect the operation of a system during a program’s exe-
cution. Hence, it can fundamentally address the problem of capturing provenance from unstructured
processes. If we track the flow of data through the execution of a program, then we can tell the
origin of each piece of data produced by it.

The idea of using taint analysis to capture provenance was first explored with DataTracker

(Stamatogiannakis et al. 2014). It was demonstrated that dynamic taint analysis can effectively ad-
dress the n-by-m problem, producing high-fidelity provenance with no developer instrumentation
overhead. Even so, the runtime overhead of DataTracker is very steep for the tool to be considered
for practical use (Stamatogiannakis et al. 2016). Moreover, optimizations that have been previously
explored for security applications of taint analysis (Bosman et al. 2011; Kemerlis et al. 2012) are not
apropos to provenance applications. This is because while security applications can deliver results
by tracking only a few bits of metadata (Clause et al. 2007), provenance requires more detailed
tracking.

Execution Record and Replay. Deterministic execution record and replay is a much more recent
concept compared to taint analysis (Dunlap et al. 2002). The technique captures a trace of the
entire execution of a program or system, and allows replaying it elsewhere for analysis. Deferring
analysis to the replay allows heavyweight techniques such as taint analysis to be applied without
obstructing the original execution much. Moreover, it allows deciding the type of the analysis a
posteriori. These properties make deterministic record and replay an excellent match for analyzing

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:4 M. Stamatogiannakis et al.

provenance of unstructured processes. For example, one can use system-events–based provenance
analysis, or taint analysis, or both, depending on the case.

Decoupling of provenance analysis from execution was (to our best knowledge) first explored
in Stamatogiannakis et al. (2015) and later in Ji et al. (2016). The difference between these two
approaches is that the first uses full-system record and replay, while the latter uses process-based
execution record and replay. While applying taint analysis was possible for both systems, both
narrowed their scope to system-events analysis only. In this work, we aim to fill this gap and
complete the picture of decoupled provenance analysis.

1.3 Contribution of This Work

Overall, we summarize the key issues for capturing provenance from unstructured processes as
follows:

(1) There is a tradeoff between the fidelity of the captured provenance (i.e., how accurate
the provenance is) and the effort on the part of application developers to make a system
provenance-aware.

(2) Provenance is secondary to the function of the application. Performance of the primary
function of the application has to be maintained at adequate levels.

(3) It is difficult to decide a priori what provenance to capture. Developers need to ensure that
enough information is captured to allow for all relevant future analysis. If a developer
fails to foresee the need for a particular kind of provenance data (say, the loading of an
application’s libraries) and does not capture it, then subsequent analysis that requires it
may be difficult or impossible. On the other hand, opting for a more detailed analysis, “just
to be on the safe side,” may impose an overhead that is not acceptable to the user.

In this work, we begin to tackle these difficulties by applying, in combination, two techniques
from the security and systems communities: taint-tracking and record and replay. We build upon
our prior work on using taint analysis for provenance (Stamatogiannakis et al. 2014) and record and
replay for provenance (Stamatogiannakis et al. 2015) by tying them together into the PROVenance
Record and Replay (PROV2R) system. This combination is an important addition as it addresses
deficits in both prior approaches.

Overall, we aim to use taint-tracking to attack the n-by-m problem and low-fidelity provenance,
while employing record and replay to ensure high-performance capture. Record and replay has, as
we will show, the additional benefit that it enables provenance capture to be performed after the
fact when analysis needs are better known. Our system is based on the Platform for Architecture-
Neutral Dynamic Analysis (PANDA) framework (see Section 3.2) and uses components developed
by us as well as the wider community.

Concretely, the contributions of this article are as follows:

—PROV2R—a system that combines taint-tracking and record and replay for provenance cap-
ture;

—evidence of the effectiveness of record and replay as a substrate for provenance capture
from unstructured processes;

—an evaluation of our approach for two internet application scenarios;
—an evaluation of the performance and space requirements of record and replay in the context

of provenance using the UnixBench benchmark.

The rest of the article is organized as follows. We begin by providing some background on taint
analysis and execution record and replay in Section 2. This is followed by a system description

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:5

in Section 3. We then present two case studies in Section 4, where we evaluate the functional-
ity of PROV2R . Finally, we provide a benchmark-based performance evaluation in Section 5 and
conclude.

2 BACKGROUND

PROV2R builds on two fundamental technologies for providing system-level provenance, namely
taint analysis and record and replay. Taint analysis is a core methodology for tracking how infor-
mation disseminates in a system, while record and replay allows for an on-demand execution of
the analysis. This significantly drops the cost of using taint analysis in comparison to systems that
apply it “inline,” as the system executes. In this section, we provide a short background of how
these two technologies work. We stress here that PROV2R is the first system to build on taint anal-
ysis and record and replay for provenance. Therefore, we do not attempt any direct comparison
of our system with related systems that rely on taint analysis or record and replay for delivering
other applications. Our aim is primarily at introducing readers coming from different backgrounds
to these two technologies, highlighting their challenges and practical benefits, and emphasizing
on the key characteristics that make PROV2R a practical solution for collecting provenance from
unstructured processes.

For a comprehensive overview of data provenance research, we refer the reader to Moreau
(2010), as well as Cheney et al. (2009) for databases, and Simmhan et al. (2005) for provenance
in e-science.

2.1 Taint Analysis

A short and concise definition of taint analysis has been given in Kemerlis et al. (2012) as: “the
process of accurately tracking the flow of selected data throughout the execution of a program
or system.” The four elements that define a taint analysis implementation are: (a) the taint type,
which encapsulates the semantics tracked for each piece of data; (b) the taint sources, that is, loca-
tions where new taint marks are applied; (c) the taint sinks, that is, locations where the propagated
taint marks are checked or logged; and (d) a set of propagation policies that define how that taint
marks are handled during program execution. In addition to its applications in security and intru-
sion detection (Portokalidis et al. 2006; Costa et al. 2008; Bosman et al. 2011), the technique has
also been used for information-leak detection (Masri et al. 2004), and more recently, for capturing
provenance (Stamatogiannakis et al. 2014).

The main limitation of taint analysis is that it imposes extremely high execution overheads.
As a result, a recurring topic of the research around taint analysis is how to optimize it.
Minemu (Bosman et al. 2011) and libdft (Kemerlis et al. 2012) take a systems-based approach,
investing in taking maximum advantage of the underlying hardware registers and caching mech-
anisms. Other approaches include static analysis of programs to extract information that would
help accelerating taint analysis (Saxena et al. 2008) or using spare cores to parallelize program
execution with taint analysis (Jee et al. 2013). An alternative path in making taint analysis af-
fordable is to only enable it on demand (Fetzer and Süßkraut 2008; Cavallaro and Sekar 2011; Ma
et al. 2016). This, however, unavoidably leads to unexpected performance degradation when taint
analysis is turned on. Moreover, the effectiveness of such systems is limited by the detectors they
use to turn taint analysis on. An important part of the overhead depends on the type of taint being
tracked. It has been argued that for many security applications, byte-sized taint marks are large
enough (Clause et al. 2007). This observation leaves room for optimizations like those in Bosman
et al. (2011) and Kemerlis et al. (2012), while sacrificing the flexibility to use the system for other
applications.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:6 M. Stamatogiannakis et al.

Through the years, taint analysis has been implemented on different abstraction levels, ranging
from source code (McCamant and Ernst 2006), to interpreters,1 to libraries (Clause et al. 2007; Kang
et al. 2011; Kemerlis et al. 2012), to process emulators (Bosman et al. 2011), and even full system
emulators (Crandall and Chong 2004; Portokalidis et al. 2006). One take-away from this trend is
that, depending on the platform you are using, re-implementing taint analysis is often preferred
over trying to reuse existing implementations.

2.2 Record and Replay

Recording and replaying of full system executions became popular in the early 2000s with ap-
plications almost exclusively related to debugging and security/intrusion analysis (Dunlap et al.
2002; Xu et al. 2003). After all, the ability to replay an execution with limited overhead is ideally
suited to finding rare and non-deterministic error conditions and for deep analysis of attacks. The
functionality was popularized when VMware started shipping it in some of its products (Xu et al.
2007). This led to further research and improvements (Chow et al. 2008, 2010). Aftersight (Chow
et al. 2008) was the first framework to demonstrate the benefits of decoupled analysis using the
new feature. Unfortunately, VMware discontinued the feature a few years later due to lack of re-
sources for further development.2

Taint analysis has always been a popular target for the decoupling capabilities offered by record
and replay. Paranoid Android (Portokalidis et al. 2010) used record and replay to use taint analysis
for intrusion detection on mobile phones. DiskDuster (Bacs et al. 2012) explored record and replay–
based intrusion recovery. Both systems used custom QEMU-based (Bellard 2005) record and replay
implementations. PANDA (Dolan-Gavitt et al. 2015) streamlined record and replay for QEMU,
adding a rich application program interface (API) and providing a stable research platform to the
community. This led to a string of publications that use PANDA for diverse purposes (Dolan-Gavitt
et al. 2013; Whelan et al. 2013; Dolan-Gavitt et al. 2016; Stamatogiannakis et al. 2015). To our best
knowledge (Stamatogiannakis et al. 2015) and PROV2R (its follow-up) are the first provenance
systems utilizing full system execution record and replay.

A different approach to record and replay is applying the technique to specific processes, rather
than the whole system. Platforms that implement this include PinPlay (Patil et al. 2010), Mozilla-
rr3, and Arnold (Devecsery et al. 2014). We believe that process-level record and replay is not as
good a match for capturing provenance from unstructured processes as its full-system counter-
part. The reason is that one needs to know upfront which processes need to be recorded, which
precludes finding unknown connections between processes. However, systems based on process-
level record and replay, such as RecProv (Ji et al. 2016), may be easier to employ for occasional
provenance analysis.

Finally, another line of research on record and replay is the application of the technique on
multiprocessors. This has been explored by systems such as ReEmu (Chen and Chen 2013), Re-
Seer (Wang et al. 2016), and Samsara (Ren et al. 2016). However, the focus of these works is ad-
dressing the intricacies of multiprocessor record and replay rather than providing a platform for
further use.

3 SYSTEM DESCRIPTION

We implement a provenance capture and analysis system based on record and replay where prove-
nance capture is decoupled from application runtime. Instead, provenance capture is performed

1For example, Perl taint mode: http://perldoc.perl.org/perlsec.html#Taint-mode.
2See: http://www.replaydebugging.com/2011/09/goodbye-replay-debugging.html.
3See: http://rr-project.org/.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://perldoc.perl.org/perlsec.html#Taint-mode
http://www.replaydebugging.com/2011/09/goodbye-replay-debugging.html
http://rr-project.org/

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:7

Fig. 2. Workflow overview of PROV2R : (1) an execution trace is recorded, (2) an analysis plugin is run over

the trace—generating provenance, (3) an analyst queries the provenance for interesting information, (4) the

analyst starts another round of analysis using a different plugin.

post hoc on an execution trace based on the needs of the analysis user. We now describe our
analysis methodology and its realization.

3.1 Analysis Methodology

PROV2R is based upon the four-stage methodology developed in Stamatogiannakis et al. (2015):

(1) Execution Capture: At runtime, we capture a self-contained, replayable execution trace.
(2) Application of instrumentation: In this stage, depending on goal of the analysis, we

select an instrumentation plugin to process the execution trace and generate a provenance
graph.

(3) Provenance analysis: In this stage, the user interrogates the provenance graph using a
query language to focus on, and/or select portions of, the graph.

(4) Selection and iteration: Based on the provenance analysis, the user can select a portion
of the execution trace on which to apply additional, more intensive, instrumentation. To
do this, the user starts again from stage 2.

We implement the methodology as a set of loosely coupled analysis modules built on top of the
PANDA framework, which we describe in more detail below. This approach matches the itera-
tive nature of the methodology better than implementing it as a monolithic provenance analysis
framework. The combination of these modules, PANDA, and output to standards formats makes
up PROV2R . In Figure 2, we show how our methodology is implemented in PROV2R .

We should stress that at the time of writing, PANDA was the only full-system record and
replay platform we knew that offered (a) a maintained codebase; (b) an API to work with for the
analysis part; (c) an active community around it. Other systems we took into consideration were
Aftersight (Chow et al. 2008) and Samsara (Ren et al. 2016). However, the first is based on the dis-
continued VMware record and replay implementation, while the latter had just been released and
doesn’t offer a documented API to work with. We now describe our implementation in more detail.

3.2 The PANDA Analysis Framework

PANDA (Dolan-Gavitt et al. 2014, 2015) is an open source framework for full-system analysis
based on execution record and replay. It is based on the QEMU emulator (Bellard 2005). PANDA

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:8 M. Stamatogiannakis et al.

recording works by taking a snapshot of the guest memory and subsequently recording all the
non-deterministic inputs to the guest CPU. This non-determinism trace contains: (i) data entering
through the virtual CPU port inputs, (ii) data written to memory through DMA, (iii) hardware
interrupt data.

The recorded information enables the deterministic replay of all the execution at any later time.
We refer the reader to Section 2.1 in Dolan-Gavitt et al. (2015) for further details on the internals
of PANDA. There are two important implications stemming from this design:

(1) PANDA execution traces are self-contained. This means that unlike other record and re-
play systems (e.g., Ren et al. (2016)), PANDA traces can be replayed and analyzed without
requiring access to the VM image used to record them. This greatly simplifies the man-
agement and storage of the traces, as each trace is essentially a stand-alone execution
artifact.

(2) PANDA cannot “go live” during the replay phase. That is, it is not possible to alter the
state of the VM during replay and then resume the VM to explore a different execution
path. The reason behind this is that in addition to the emulated CPU, QEMU (on which
PANDA is based) also provides emulated hardware devices such as disk controllers or
network interfaces. PANDA does not record the state of the emulated devices, as this was
not deemed a priority for a system designed as a replay-based analysis framework.

One key feature of PANDA is its plugin architecture, which allows writing analysis modules
in C and C++. The core of PANDA only deals with the implementation of the record and replay
features and the plugin hooking mechanism. Analysis functionality is always encapsulated within
plugins. PANDA allows plugins to insert instrumentation at different granularities: per instruction,
per memory access, per context switch, and so on. More importantly, PANDA offers a framework
for the plugins to interact with each other. This allows implementing complex analysis function-
ality by composing it from several smaller plugins. This approach follows the Unix philosophy
of relying on combining a plethora of small tools, rather than building monolithic be-all, end-all
tools. PANDA allows plugins to either invoke functionality of other plugins through API calls or
register plugin-specific callbacks. The specifics of the PANDA plugin mechanism are detailed in
Section 2.2 of Dolan-Gavitt et al. (2015).

3.3 The PROV2R Plugins

As we mentioned earlier in Section 3.1, PROV2R is a collection of loosely coupled analysis modules
that can be used for provenance analysis. The modules have been implemented as PANDA plugins
and take advantage of the facilities provided by the PANDA core for plugin-plugin interaction.
From the plugins detailed in the following sections, taint2 and file_taint have been developed
by the PANDA community, while the rest have been developed by us. Source code for all plugins
we used is available online.4

3.3.1 The Linux OSI Plugin. A key step in capturing provenance from a VM is the extraction
of OS-level semantics like processes, files, libraries, and so on, from it. PANDA only offers a low-
level Virtual Machine Introspection (VMI) interface, allowing us to peek into the registers and the
memory of the VM. This leaves a semantic gap that we need to fill to achieve full Operating System
Introspection (OSI). A simple approach to this problem would be to use a guest-OS driver to export
the desired information to the hypervisor. This approach is common in commercial hypervisors
(e.g., VMware) and for closed-source operating systems (e.g., TEMU Windows OSI (Yin and Song

4https://github.com/m000/panda/tree/prov2r/.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

https://github.com/m000/panda/tree/prov2r/

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:9

2010)). However, since PANDA can’t “go live” during replay (see Section 3.2), the technique is not
applicable for PROV2R .

For this, we implemented the Linux OSI module for PROV2R by reconstructing the guest-OS
semantics purely from the VM hardware state, using the PANDA VMI. This approach has been
employed by several systems in the past, like TEMU (Yin and Song 2010), DroidScope (Yan and Yin
2012), VMWatcher (Jiang et al. 2007), and so on. Because the exact layout of the Linux kernel data
structures is determined at compile time, we had to implement a kernelinfo module to extract
the kernel offsets we need from the guest-OS. This step only needs to be run once whenever a new
kernel is installed. Knowing these offsets, one can subsequently traverse the Linux kernel data
structures and extract the desired runtime information from the guest OS.

Additionally, our plugin implements two new PANDA callbacks that aim to simplify further
analysis. The callbacks allow other plugins to register analysis functions that will be called when
a new process is created or when a process is terminated. To achieve this, Linux OSI plugin registers
a context switch callback with PANDA.5 Then, the new and terminated processes can be calculated
respectively as Pnew = Pcur \ Ppr ev and Pterm = Ppr ev \ Pcur , where Pcur is the current process set
and Ppr ev the process set at the previous context switch.

3.3.2 The PROV-Tracer Plugin. PROV-Tracer essentially implements system events based
provenance analysis for PANDA. The analysis is similar to other state-of-the-art systems (e.g.,
Holland et al. (2008), Gessiou et al. (2012), and Pohly et al. (2012)), with the difference that it is
implemented at the hypervisor level. Despite its limitations system events based analysis is an
important first step when applying our methodology (see Section 3.1), as it provides quick results
that help us to guide further analysis. PROV-Tracer taps on the Linux OSI plugin we described
above, using both its introspection functionality and callbacks. Its operation can be summarized
as:

(1) Upon starting, registers to the Linux OSI plugin for receiving notifications on the creation/
destruction of processes. It also registers to PANDA for notifications about context
switches as well as notifications for the execution of SYSENTER and SYSEXIT instructions.

(2) Keeps track of the active process on each context switch. This allows associating system
calls with processes.

(3) When a system call occurs, it associates it with the current process and decodes its argu-
ments. Arguments such as system call flags are decoded by the plugin itself. On the other
hand, file descriptors need to be translated to file-names by the Linux OSI plugin.

(4) Does book-keeping of the file usage (creation, reads, writes, etc.) and emits provenance
information when needed. False positives are avoided as much as possible. For example,
if a file is opened but never read, it will not be mentioned as used by the process in the
emitted provenance.

The system calls decoding is implemented by extracting from the Linux source code the name,
number of arguments, and type of arguments for each system call. These are translated into a
dynamic library and loaded when the plugin is bootstrapped. Using this information, PROV-Tracer

can use the PANDA VMI interface to provide the proper semantics for each SYSENTER and SYSEXIT
instruction that is executed.

PROV-Tracer emits provenance in a compact intermediate format. This choice was made to
reduce the complexity of the required book-keeping. For example, duplicates may arise because

5Process creation and termination always coincides with a context switch. For IA32/IA32E architectures, the context switch

concludes with a write to the page directory base register (CR3). PANDA context switch callbacks run whenever CR3 is

written to.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:10 M. Stamatogiannakis et al.

Table 1. Notation Used for taint2, file_taint, and file_taint_sink Plugins

Symbol Meaning

M / T / F Memory / Shadow Memory / File
M[n] / T [n] / F [n] The nth value held in Memory / Shadow Memory / File.
{a,b, . . . ,n} Set of values.

⊕ Arithmetic operator.
α ← β Assignment of value from β to α .
A⇒ B Implication of B, given A.
α →

der
β Provenance derivation: α derives from β .

a process opens and reads from a file multiple times. It is easier to eliminate these duplicates
after PROV-Tracer completes its analysis, rather than doing on-line deduplication of the output. A
python script (raw2ttl.py) is used to convert the provenance to W3C PROV (Groth and Moreau
(eds.) 2013).

W3C PROV is a standard for provenance interchange published the World Wide Web Con-
sortium. Production of W3C PROV compatible provenance is useful as it allows one to take ad-
vantage of existing tooling for manipulating provenance ranging from provenance specific vi-
sualizations (Kohwalter et al. 2016) to generation of natural language explanations (Richardson
and Moreau 2016). At the time of standardization, there were over 60 implementations that sup-
ported PROV (Huynh et al. 2013). Moreover, this enables the provenance generated by PROV2R

to interoperable with provenance generated by other more domain specific tooling (e.g., neuro-
science (Keator et al. 2013)). W3C PROV specifies a number of serialization formats including
XML and RDF. We chose RDF and its Turtle syntax as an output format as it is easily usable with
command line tools. We refer the reader to W3C PROV-O specification for more details (Lebo et al.
2013).

3.3.3 The taint2 Plugin. The taint2 plugin (Whelan et al. 2013) serves as the core for taint
analysis in the PANDA framework. From the four components of a taint analysis system (see Sec-
tion 2.1), taint2 plugin defines and implements the taint type and the taint propagation policies.
Additionally, it provides an API for other plugins to implement the remaining two components—
taint sources and sinks. The API is used to apply taint on memory locations and registers, as well
as to query for it. Taint is applied on byte-level granularity and is stored in a shadow memory map,
similar with other taint analysis implementations (Kemerlis et al. 2012). To illustrate how taint2
and its supporting plugins work, we will use the notation in Table 1.

The taint type used by taint2 is a set of integers. As taint2 is meant to be a reusable taint anal-
ysis framework, no particular meaning is ascribed to the taint marks. This is left for the plugins
that use taint2 through its API. This contrasts with other taint analysis implementations, where
the taint type is often chosen to reflect the semantics of a specific application. For example, Argos
(Portokalidis et al. 2006) associates a single bit with each byte in memory, which is adequate to
indicate whether the byte originated from the network. For provenance analysis, DataTracker

(Stamatogiannakis et al. 2014) uses a set of 〈src:offset〉 tuples, to attribute provenance to mul-
tiple locations and sources. The integer sets used by taint2 allow for powerful analyses to be
performed, without making taint operations unnecessarily complicated. For cases where a more
powerful abstraction is required, it is straightforward to map the integer sets handled by taint2
to a richer data type. This mapping should happen at the the plugins that implement the taint
sources and sinks, which are the ones that need to interpret the taint marks.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:11

With regard to the taint propagation policy, taint2 always propagates taint on direct assign-
ments and arithmetic operations. This is the standard baseline for taint propagation across all taint
analysis systems. In addition to the above, taint2 can also be configured to propagate taint on
pointer dereferencing. Whether it should be enabled is an open discussion (Slowinska and Bos
2009; Dalton et al. 2010) and largely depends on the goals of the analysis being performed. Using
the notation in Table 1, we could summarize taint propagation in taint2 as

M[x]← M[y]⇒ T [x]← T [y]

M[x]← M[y1] ⊕ M[y2]⇒ T [x]← T [y1] ∪T [y2]

M[x]← M[M[y]]⇒ T [x]← T [y] ∪T [T [y]] (optional).

The plugin is implemented by translating the low-level TCG code (Bellard 2005) executed by
QEMU to LLVM IR code (Lattner and Adve 2004) and inserting the taint propagation operations
there. The resulting IR code is finally executed by the LLVM JIT compiler. This implementation
decision makes the taint2 plugin target-agnostic, as instrumentation is applied in higher-level
LLVM instructions rather than the instructions of the ISA emulated by QEMU. For more imple-
mentation details of the taint2 plugin, we refer the reader to Section 4 in Whelan et al. (2013).

3.3.4 Taint Source Plugin. As we mentioned previously, the PANDA taint2 plugin is only re-
sponsible for maintaining and propagating the taint metadata during execution. Injection and
inspection of taint is left to be implemented by other plugins that use the taint2 API. The
file_taint plugin is used in PROV2R as the taint source for the taint analysis. The plugin in-
jects taint to data read from the VM disk. Currently, for each run the plugin applies taint to bytes
coming from one file, configurable at runtime. Because data from a single file are tracked, there
is no need to map the integers contained in each taint mark to a more complex data type. The
integers correspond directly to offsets within the file. Using the notation in Table 1, when reading
from input file F , file_taint applies taint as follows:

M[x]← F [y]⇒ T [x]← {y}.

The current capabilities of the file_taint plugin have proved adequate for our case studies (see
Section 4). In our second case study (see Section 4.2), where we need to track taint from multiple
sources, we repeat the analysis once per source. In more complex scenarios where multiple sources
need to be processed concurrently, a layer mapping the integers tracked by taint2 to a more
complex data type can be added.
file_taint depends on the Linux OSI plugin to reverse-map file descriptors to file paths and

determine whether taint has to be applied on the data read. As we have mentioned in Section 3.3.1,
the reverse mapping is achieved by traversing the kernel data structures in memory. This way, both
regular files and pseudo-files (e.g., /dev/ttyX) are supported6. Additionally, the syscalls2 plugin
is used to hook on specific file-related system calls (open, read, etc.). The decoding of system calls
by syscalls2 works similar with PROV-Tracer. The reason of this duplication of functionality is
that syscalls2 and PROV-Tracer were developed simultaneously but completely independently.

3.3.5 Taint Sink Plugin. As a taint sink for PROV2R , we implemented and used the file_
taint_sink plugin. Until now taint analysis in PANDA had only been used by plugins that were
analyzing the influence of tainted data to program control flow, so there was no plugin for inspect-
ing the taint of bytes written to a file. Similar with file_taint, it uses the APIs provided by the

6Reverse mapping of file descriptors corresponding to network connections is not currently supported. In future, it can be

implemented by extending the Linux OSI plugin.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:12 M. Stamatogiannakis et al.

taint2, Linux OSI, and syscalls2 plugins. However, file_taint can log taint for multiple files,
specified at runtime.

If F is the tracked input file and F ′ is an output file, then the following derivations can be made
using the logged taint:

F ′[x]← M[y]⇒
⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

F ′ →
der

F

F ′[x] →
der

F [z]
∀z ∈ T [y],T [y] � ∅.

In addition to logging, the plugin keeps track of the taint count number, which tells us how many
tainted bytes were written to the file. This is a simple metric that can be used to tell us how much
the output file was affected by the input, without looking on the written actual data. As such, it
can help filter-out false-positives in a provenance graph created because of the n-by-m problem.

3.4 User-Driven Provenance Analysis

As discussed previously, provenance produced by the system is represented using the W3C PROV
recommendations (Groth and Moreau (eds.) 2013) and serialized using Turtle RDF. This enables
us to leverage existing Semantic Web infrastructure for provenance analysis. The integration with
this generic infrastructure is done by specifying query result formats for obtaining parameter
values that can then be fed back into the replay and instrumentation system (i.e., PANDA). The
use of SPARQL in combination with W3C PROV provides a full featured language for users to
interrogate and analyze the provenance produced by PROV-Tracer.

In the case study that follows, we employed a combination of the Redland RDFLib Rasqal com-
mand line tool7 for performing SPARQL queries in conjunction with other Unix command line
tools.

4 FUNCTIONAL EVALUATION

In this section, we demonstrate how offline taint analysis can be used to provide high-fidelity
provenance.

Broadly, the scenarios described below use the following pattern. Alice and Bob are responsible
for updating the website of example.org. The typical web update workflow is used: (a) the document
and its associated resources are downloaded locally (HTTP GET), (b) the document is altered using
various editing tools, (c) the updated document and resources are re-uploaded (HTTP POST). We
should note that this workflow is still at the core of web publishing, although it usually remains
hidden under several abstraction layers. For example, when a page is updated using a web-based
editor there is the illusion that the document is edited “online.” But under the hood, it is still a
series of GET and POST requests that are responsible for the update. Only the editing tools are
different.

Because we are focused on the use of PROV2R for provenance analysis, we assume for simplic-
ity that both Alice and Bob are working on a shared machine.8 We discuss the applicability to a
distributed setting below in Section 4.3.

To implement the scenarios, we used a single core PANDA virtual machine running Debian 7.
The machine was allocated 512MB of memory and was up to date with the latest versions of the
packages of the specific release. The version of the Linux kernel is 3.2. Moreover, the nginx 1.2.1
was installed for serving web pages. PHP was enabled through the php5-fpm backend.

7See: http://librdf.org/rasqal/.
8For example, both users are logged into the same account.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://librdf.org/rasqal/

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:13

4.1 Web Document Update

In our first case study, we consider the following scenario:

(1) Alice downloads the front page of example.org.
(2) Alice edits the document and fixes a link that points to the wrong page.
(3) Alice re-uploads the HTML document and the image.
(4) Bob downloads the front page of example.org.
(5) Bob removes a paragraph of text.
(6) Bob re-uploads the the HTML document.

Chief editor Ed reviews the page at the end of the day. He wants to know what changes have
been made and who made them. For this, he requests an analysis of the recorded execution trace
of the past day.

4.1.1 Initial Analysis. To answer this query, one first runs a system-events–based provenance
analysis on the execution trace (scenario1.et) using the PROV-Tracer plugin (see Section 3.3.2).
Thus, a raw provenance trace is obtained that is then converted to W3C PROV.

The produced W3C PROV trace in this case contains 2047 triples. One can then query that
trace for information about the file of interest www/index.html. A small snippet of this trace is as
follows:

In this case, the query would look for which tools generated the last versions of the file found and
which inputs were used in the process. Because of the n-by-m problem, the query will return many
superfluous prov:wasDerivedFrom triples, as even the simplest programs need to open and read
several files (configuration files, dynamic libraries, etc.). Some ways of filtering the superfluous
triples are:

—by heuristics, for example, excluding files not in user’s home directory,
—by introspection, for example, extracting the command line used to invoke each tool.

4.1.2 Taint Analysis. For this scenario, let’s only consider only the files in user’s directories as
sources of the output file. One can then apply taint analysis to determine how these files affected
the produced output.

Before starting with taint analysis, one queries for the start/stop time of the processes and then
trims down the trace to reduce processing time. Even if taint processing is not performed online,
it remains a heavyweight job. Note that the trimmed-down trace will still contain full-system

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:14 M. Stamatogiannakis et al.

information, but only for the lifetime of the specific process. The following query selects all the
activities, ?act, their associated start and end times that generated index.html files:

In this case, two activities will be returned, along with their trim points: a vim editor used by
Alice and a nano editor used by Bob. One can now use the scissors PANDA plugin to trim the
trace:

Now taint analysis can be run on each sub-trace, using index.html as both the taint-source
used by the file_taint plugin and the taint-sink used by the file_taint_sink plugin.

This will result in the file_taint_sink plugin to generate two taint logs that can be used
to answer’s Ed’s original query. The format of the taint log is similar to this (shown for Alice’s
execution trace):

For each byte of the output its offset and value are printed, followed by a taint flag and the offset
of the bytes that affected it in the original file. This simple format allows for quick processing of
the log with external tools. For example, using the following command, one can quickly filter the
untainted output bytes:

For Alice, this shows the text introduced, which starts on offset 036684. The newly inserted
text reads: data_lineage.html. Also, an interesting quirk of vim is exposed: new line characters
(0x0a) like the one on offset 000015 are always re-inserted by the editor each time you write a file,
rather than copied from the input file.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:15

Similarly, for Bob, one has to search for discontinuities in the output taint to identify the location
where text was removed. It is also possibly to retrieve the original text that was removed from the
execution trace. It is important to note that the whole of the analysis we describe can be performed
using solely the captured execution traces, without relying on any other sources of information
(such as versioning filesystems or log files). This shows that execution traces can be used as self-
contained provenance artifacts.

4.2 License Tracking

(1) Alice downloads several images from a website.
(2) Alice creates a new HTML document using some of the images.
(3) The HTML document is converted to PDF format and uploaded to example.org.

Chief editor Ed wants to know if Alice used any images that need to be licensed before using
them in a public document.

4.2.1 Initial Analysis. As previously, to answer Ed’s question one replays the execution and
captures provenance with the PROV-Tracer plugin. It’s important to note that this analysis can be
applied to any execution trace.

One can run query to see which images the pdf file was derived from.

The query determines images by their extension. The query returns:

To determine the license, we find the activity that retrieved the files from the web. In this case,
it is a recursive wget. We look at the others file that were retrieved by the same wget and see if
any are license files. Using the following query:

The query results in:

While this answers Ed’s query, one may want to confirm that the images were indeed included
in the PDF. This is where taint analysis comes in.

4.2.2 Taint Analysis. To do this, again, we run a query to find the time period when the activity
that generated the PDF was run to trim down the trace.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:16 M. Stamatogiannakis et al.

Executing the query results in the following:

The trace is then trimmed down and taint analysis is run on it to calculate the taint count number
(see Section 3.3.5) for trip.pdf for all the three images. This will allow us to deduce whether the
images were used in the creation of the pdf file, or, for example, read but discarded internally. The
computed taint numbers are: tree.jpg: 285551, trip.gif: 149307, and pentadog.gif: 285551.
All three numbers for trip.pdf exceed by two orders of magnitude the taint numbers of other
files written to by the converter. Which makes us conclude that the main use of these inputs was
to generate the pdf file.

One interesting observation is that tree.jpg and pentadog.gif have the same taint count
number. This can be explained by the fact that taint2, in contrast to libdft (Kemerlis et al. 2012)
and DataTracker (Stamatogiannakis et al. 2014), also propagates taint on pointer dereference op-
erations by default. This results in spreading of taint to more locations and oftentimes the whole of
the output. This phenomenon is termed over-tainting and has been studied in detail in Slowinska
and Bos (2009). In our case, overtainting doesn’t seem to affect our analysis. For example,
trip.html also had a taint count of 285551. However, configuration files used by the converter had
a taint count of 0. In cases where overtainting turns out to be a problem, there has been research
on how to intelligently identify when pointer dereference shouldn’t propagate taint (Kang et al.
2011).

4.3 Discussion of Case Studies

4.3.1 Extension to a Distributed Setting. In the scenarios above, all execution was done on a
single machine. We briefly describe here one possible way to apply our approach to the distributed
setting.

In a distributed setting, each machine would capture its execution trace, which would be pe-
riodically sent to a central server or location that would maintain the necessary information to
replay the execution traces. The notion of a central location that collects, aggregates, and man-
ages provenance is known as a provenance store in the literature (Simmhan et al. 2008; Groth and
Moreau 2009).

Execution traces of interest can be replayed at the provenance store and provenance generated
for each of the machines. The provenance generated by distributed machines can be connected
through a number of possible mechanisms. For example, a heuristic can be used that narrows
down the window of time a file was received by a machine in its provenance trace and looking
in the corresponding time frame within the sender’s provenance, one can use port numbers to
establish a connection between the sender and receiver file representation. Another mechanism is
to add specific provenance metadata in the HTTP headers as advocated by the W3C’s Provenance
Access and Query Note (Klyne et al. 2013).

4.3.2 Trace Indexing. In our case studies, we started with the knowledge that the trace contains
the processes we are interested in analyzing. However, this may not always be the case, especially
in the case of a distributed setup like the one we described above. This problem can easily be

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:17

Table 2. Mapping Scenarios to Provenance Analysis Types at Fine

and Coarse Grained Levels

Data Transformation Agents

Web document update Fine Coarse -
License Tracking Coarse Fine Coarse

addressed with the general approach of our methodology. Before traces are archived, a lightweight
indexing analysis may run. The analysis will annotate the traces with information that could help
the user to quickly narrow down the analysis to a small portion of the collected traces. The anno-
tations can be stored in the same RDF store with the W3C PROV information produced by PROV2R

and queried through the same interface. For example, if we are interested in a specific directory
rather than a file, the indexing pass may just process the open and close system calls. Then, with
the use of regular expressions in our SPARQL query, we can quickly isolate the parts of the trace
that are of interest.

4.3.3 Supported Provenance Analyses. Glavic (2014) categorizes three common types of prove-
nance used for analysis, paraphrasing, given a data item d , these are:

—Data: Which data was used in the production of d ,
—Transformation: Which transformations or processes were involved in deriving d ,
—Agents, Auxiliary, and Environment: What users or other factors were involved in de-

riving d .

Broadly, most provenance analyses are concerned with retrieving information about the above
categories. In the scenarios above, we cover all three types of provenance used for analysis but at
different levels of granularity. In Table 2, we map each scenario to Glavic’s categorization.

Generally, PROV2R supports fine grained analysis of Data and Transformation provenance as
demonstrated in our scenarios. For Agents, Auxiliary, and Environment, taint-tracking is less ap-
plicable and instead we rely on content analysis or heuristics to determine these impacts (e.g., the
user involved). However, additional plugins that focus on understanding auxiliary factors could
be built.

An important point is that each of these analysis is progressive. Where we needed fine grained
or more detailed information, we processed the execution trace again. In particular, we applied
taint analysis. This is the fundamental affordance of using execution traces as the substrate for
provenance analysis, we can obtain new information by replaying the execution trace with new
instrumentation (e.g., if we were interested in identifying all the influences of a data item, we could
run a plugin that implements dynamic slicing).

Thus, a key constraint is how to effectively apply the sort of iterative analysis described in our
methodology. Note, in both scenarios, we cut down the trace to focus on a temporal region of the
trace, we believe that with better tooling other views could be possible (e.g., see Section 4.3.2). One
can imagine a more full featured provenance analytics environment based on these notions. We
leave this for future work.

4.3.4 Provenance-Based Forensics. Provenance-based forensics have been an active research
topic in the past years (Lu et al. 2010; Pohly et al. 2012; Bates et al. 2015, 2016). A prerequisite
for provenance-based forensics is ascertaining that provenance is collected securely. Toward this
end, it has been proposed to push provenance collection to the kernel (Pohly et al. 2012) and use
existing kernel mechanisms to establish a chain-of-trust for the collected provenance (Bates et al.
2015). Although these systems address the problem of secure provenance collection, they do not

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:18 M. Stamatogiannakis et al.

offer any flexibility in terms of the performed analysis. Since initiating a forensics analysis is usu-
ally a response to an unexpected situation (akin to an unstructured process), relying on a fixed
type of provenance analysis may be problematic.

We believe that PROV2R , and future systems based on the same principles, may provide an
alternative to these approaches, that combines security with flexibility. The security in this case
is a result that hypervisors operate on an even lower semantic level than the kernel, thus they
are much harder to subvert. Hypervisor vulnerabilities do exist, but are a rarity: Wikipedia (2016)
lists only a handful of such attacks in the period 2007–2016, many of which are viable only in
the presence of some misconfiguration. For example, Cloudburst (Kortchinsky 2009) exploited the
unneeded 3D graphics acceleration, which was enabled by default in VMware’s server-oriented
ESX solution. At the same period, 29 known exploits for the Linux kernel have been reported (CVE
Details 2016). Therefore, we could argue that collecting provenance at the hypervisor level using
record and replay offers, at least, comparable security with kernel-based solutions.

5 RECORDING PERFORMANCE EVALUATION

Given the flexibility of record and replay in combination with taint analysis for provenance cap-
ture, we now investigate whether such an approach is viable in practice by exploring the costs
associated with using record and replay for provenance analysis. Our goals with this performance
evaluation are to: a) provide evidence on the feasibility of our approach; b) establish a baseline for
the performance one can expect.

Toward this end, we first focus on the cost of recording an execution trace, as this is the primary
limiting factor in whether the technique is applicable. Previous work (Dolan-Gavitt et al. 2014,
2013) already provides some ad hoc figures on the expected recording performance of PANDA.
However, these figures are not easy to reuse, because they are not associated with a specific work-
load. Second, we focus on the size of the execution trace generated by PANDA. The central chal-
lenge of our research is to be able to generate provenance for any part of a computing session
that would be of interest. In this scenario, recording may be an always-on feature. Therefore, it is
important to explore its storage requirements in more depth.

We ran our experiments on a computer with an Intel i7-6700K CPU (four cores, 4.00GHz), 16GB
DDR4 RAM, and a 250GB SATA SSD disk. The VM machine configuration is the same we described
in Section 4.

5.1 Recording Execution Overhead

In Stamatogiannakis et al. (2016), we used UnixBench for measuring the cost of online taint analysis
to generate provenance with DataTracker. The results were very discouraging with regards to
potential online use of the tool. The index score achieved was 0.6% of the base index score, a more
than 1000× slowdown.

To see if PANDA and record and replay can improve on this situation, we ran the same bench-
mark on our PANDA VM image. We used four different hypervisors to get a complete picture:

—PANDA: PANDA based on QEMU 1.0.1 with recording turned on.
—qemu-tcg: PANDA with recording turned off.
—qemu-kvm: PANDA with recording turned off and the KVM acceleration enabled.
—VMware: Results of UnixBench running in VMware Player 12 on the host machine.

The results of the benchmark can be seen in Table 3. Next to the index score, we also show
the speedup achieved with each configuration, compared to PANDA with recording enabled. The
difference in performance between PANDA and qemu-tcg corresponds to the recording perfor-
mance overhead. We can see that for the UnixBench workload, PANDA recording results in a 20%

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:19

Table 3. Index Scores and Speedup for UnixBench Tests

PANDA qemu-tcg qemu-kvm VMware

Test index index speedup index speedup index speedup
dhry 111.0 175.2 1.58 2079.5 18.73 3366.3 30.33
whet 87.8 89.5 1.02 784.9 8.94 828.2 9.43
execl-xput 27.6 32.1 1.16 2115.4 76.64 2228.0 80.72
fcopy-256 82.1 112.1 1.37 2894.8 35.26 4806.2 58.54
fcopy-1024 127.0 167.6 1.32 4558.2 35.89 3011.8 23.71
bfcopy-4096 265.8 335.0 1.26 8195.7 30.83 7685.1 28.91
pipe-cs 88.7 120.4 1.36 2463.7 27.78 2592.4 29.23
pipe-xput 39.5 49.9 1.26 621.3 15.73 1925.4 48.74
spawn-xput 106.1 132.4 1.25 1958.2 18.46 2363.7 22.28
shell-1 55.8 72.4 1.30 3627.0 65.00 3386.0 60.68
shell-8 62.2 72.0 1.16 3363.3 54.07 3115.0 50.08
syscall 252.2 302.9 1.20 3282.0 13.01 3430.9 13.6
Index Score 88.9 112.2 1.26 2441.3 27.46 2856.4 32.13

slowdown9 compared to qemu-tcg. This figure is consistent with what has been reported in pre-
vious work (Dolan-Gavitt et al. 2013).

However, it is evident that compared to hardware-assisted virtualization (qemu-kvm, VMWare),
the performance of qemu-tcg and PANDA recording is lagging. This level of performance may
be acceptable for debugging/reverse engineering purposes—the primary application of PANDA—
however, it makes the platform unsuitable for capturing provenance on production systems. On
the upside, record and replay systems that support hardware acceleration have already been pre-
sented and scheduled for release (Ren et al. 2016). In summary, while the slowdown of PANDA
recording compared to qemu-kvm (27×) or VMWare (32×) may not be adequate for deploying
production systems on the platform, PANDA does bring taint-tracking based provenance analysis
within reach.

5.2 Space Requirements

Stamatogiannakis (et al. 2015) highlighted the importance of managing the disk space require-
ments for execution trace recording and highlighted strategies to tackle the problem. The most
straightforward of these strategies was to simply use compression to reduce the size of the execu-
tion traces. An important aspect of the compression for our use case is that it should be possible
to perform it online.

Toward this end, we studied the execution trace generated by UnixBench with regards to its
compressibility. Initially, we captured individual execution traces for each of the benchmarks in the
suite. The time, size, and rate of recording are presented in Table 4 and Figure 3. We can generally
observe that the rate at which PANDA generates execution traces is fairly modest. Moreover, it
appears that the benchmarks that involve inter-process communication seem to generate traces at
a faster rate.

Next, we tested how the trace generated by UnixBench compresses with three different com-
pressor families and different compression levels (default levels underlined): (i) gzip (DEFLATE)—
levels 3, 6, 9; (ii) bzip2 (Burrows-Wheeler)—level 9; (iii) xz (LZMA)—levels 3, 6, 9. The times
and compression ratios achieved are presented in Figure 4. We can see that the gzip and bzip2

9Or inversely a speedup of 1.26× when recording is turned off.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

37:20 M. Stamatogiannakis et al.

Table 4. Generated Trace Size for UnixBench Tests

Time Trace Size Rate

Test (sec) (MiB) (MiB/sec)
dhry 135 268.46 1.99
whet 158 327.32 2.07
execl-xput 102 246.83 2.42
fcopy-256 148 275.01 1.86
fcopy-1024 150 276.17 1.84
fcopy-4096 149 276.29 1.85
pipe-xput 135 271.81 2.01
pipe-cs 136 496.32 3.65
spawn-xput 106 285.45 2.69
shell-1 136 494.12 3.63
shell-8 196 503.51 2.57
syscall 195 272.03 1.40
Cumulative 1746 3993.33 2.29

Fig. 3. Trace generation rate for UnixBench tests.

Fig. 4. UnixBench trace compression time/ratio

plot for different compressors.

Fig. 5. UnixBench trace compression ratio/rate

plot for different compressors. The horizontal

lines show the mean and max trace generation

rates.

compressors achieve only modest compression for PANDA traces. On the other hand, xz achieves
excellent compression rates—over 14×. More interestingly, these rates are achieved even when the
compressor runs with a fairly low compression level (xz -3). Furthermore, in Figure 5, we can see
where each compressor falls with regards to the trace generation rate of UnixBench. Given that
PANDA VMs run on a single CPU core, it seems that it’s feasible to, for example, run three VMs on
a quad-core machine and dedicate the fourth core to online compression of the generated traces.

This is a very positive result; however, there are still aspects that should be investigated: How
will be affected the margin between the compression and trace generation rates in Figure 5 with
the advent of faster record and replay systems (Ren et al. 2016) that are capable of using KVM
acceleration? If encrypted data (high entropy) are present in the execution trace, how much will

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:21

the compression rate fall? Or, if we restrict the memory usage of xz, what will be the effect on the
achieved compression ratio? Such questions are left open for future research.

6 CONCLUSION

The information consumed on the Internet is largely produced by a variety of locally executed
processes. What we term unstructured processes. In many cases, these processes impact the trust-
worthiness and interpretability of that information. Thus, capturing the information’s provenance
is vital. This is a daunting task, as one has to carefully balance the overhead imposed to capturing
provenance with the accuracy of the captured information. In this article, we present how we can
work around choosing one over the other.

Using full execution deterministic record and replay offered by the PANDA platform, we decou-
ple the analysis of provenance from the execution of programs. This offers unparalleled flexibility
in the types of provenance analyses we can use. Importantly, this means that we can capture highly
accurate provenance when necessary using a technique called taint-tracking. This is a powerful
technique that has been very popular for security applications, but until now was impractical to
use for provenance analysis on live systems because of its overhead. Moreover, we explore the
execution and storage overheads associated with record and replay. We conclude that record and
replay is coming into maturity and is a becoming a viable alternative to current provenance anal-
ysis solutions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and suggestions. We also thank the
PANDA community and especially Brendan Dolan-Gavitt, Patrick Hulin, Tim Leek, and Ryan
Whelan for providing the base platform for this research.

REFERENCES

Andrei Bacs, Remco Vermeulen, Asia Slowinska, and Herbert Bos. 2012. System-level support for intrusion recovery. In

Proceedings of DIMVA’12. DOI:http://dx.doi.org/10.1007/978-3-642-37300-8_9

Adam Bates, Devin J. Pohly, and Kevin R. B. Butler. 2016. Secure and Trustworthy Provenance Collection for Digital Forensics.

Springer, New York, NY, 141–176. DOI:http://dx.doi.org/10.1007/978-1-4939-6601-1_8

Adam Bates, Dave Tian, Kevin R. B. Butler, and Thomas Moyer. 2015. Trustworthy whole-system provenance for the linux

kernel. In Proceedings of USENIX SEC’15.

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of USENIX ATC’05.

Erik Bosman, Asia Slowinska, and Herbert Bos. 2011. Minemu: The world’s fastest taint tracker. In Proceedings of RAID’11.

DOI:http://dx.doi.org/10.1007/978-3-642-23644-0_1

Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, Margo Selter, and Andy

Hopper. 2014. A primer on provenance. Commun. ACM 57, 5 (2014), 52–60. DOI:http://dx.doi.org/10.1145/2596628

Lorenzo Cavallaro and R. Sekar. 2011. Taint-enhanced anomaly detection. In Proceedings of ICISS’11. DOI:http://dx.doi.org/

10.1007/978-3-642-25560-1_11

Yufei Chen and Haibo Chen. 2013. Scalable deterministic replay in a parallel full-system emulator. In Proceedings of ACM

SIGPLAN PPoPP’13. DOI:http://dx.doi.org/10.1145/2442516.2442537

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in databases: Why, how, and where. Found. Trends

Data. 1, 4 (April 2009). DOI:http://dx.doi.org/10.1561/1900000006

Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. ReproZip: Computational reproducibility with

ease. In Proceedings of SIGMOD’16. DOI:http://dx.doi.org/10.1145/2882903.2899401

Jim Chow, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling dynamic program analysis from execution in virtual envi-

ronments. In Proceedings of USENIX ATC’08.

Jim Chow, Dominic Lucchetti, Tal Garfinkel, Geoffrey Lefebvre, Ryan Gardner, Joshua Mason, Sam Small, and Peter M.

Chen. 2010. Multi-stage replay with crosscut. In ACM SIGPLAN Notices, Vol. 45. ACM, 13–24.

James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A generic dynamic taint analysis framework. In Proceedings

of ISSTA’07. DOI:http://dx.doi.org/10.1145/1273463.1273490

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://dx.doi.org/10.1007/978-3-642-37300-8_9
http://dx.doi.org/10.1007/978-1-4939-6601-1_8
http://dx.doi.org/10.1007/978-3-642-23644-0_1
http://dx.doi.org/10.1145/2596628
http://dx.doi.org/10.1007/978-3-642-25560-1_11
http://dx.doi.org/10.1145/2442516.2442537
http://dx.doi.org/10.1561/1900000006
http://dx.doi.org/10.1145/2882903.2899401
http://dx.doi.org/10.1145/1273463.1273490

37:22 M. Stamatogiannakis et al.

Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao Zhang, and Paul Barham. 2008.

Vigilante: End-to-end containment of internet worm epidemics. ACM TOCS 26, 4 (December 2008). DOI:http://dx.doi.

org/10.1145/1455258.1455259

Jedidiah R. Crandall and Frederic T. Chong. 2004. Minos: Control data attack prevention orthogonal to memory model. In

Proceedings of MICRO-37’04. DOI:http://dx.doi.org/10.1109/MICRO.2004.26

CVE Details. 2016. Linux Kernel Vulnerability Statistics. (November 2016). Retrieved November 17, 2016 from http://www.

cvedetails.com/product/47/Linux-Linux-Kernel.html.

Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2010. Tainting is not pointless. SIGOPS Oper. Syst. Rev. 44, 2 (April

2010), 88–92. DOI:http://dx.doi.org/10.1145/1773912.1773933

Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs for secure information flow. Commun. ACM 20,

7 (July 1977). DOI:http://dx.doi.org/10.1145/359636.359712

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen. 2014. Eidetic systems. In Proceedings of

USENIX OSDI’14.

Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan. 2014. Repeatable Reverse Engineering

for the Greater Good with PANDA. Technical Report CUCS-023-14. Columbia University. DOI:http://dx.doi.org/10.7916/

D8WM1C1P

Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan. 2015. Repeatable reverse engineering

with PANDA. In Proceedings of PPREW’15. DOI:http://dx.doi.org/10.1145/2843859.2843867

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson, Frederick Ulrich, and

Ryan Whelan. 2016. LAVA: Large-scale automated vulnerability addition (May 2016). DOI:http://dx.doi.org/10.1109/SP.

2016.15

Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. 2013. Tappan zee (north) bridge: Mining Memory Accesses

for Introspection. In Proceedings of ACM SIGSAC CCS’13. DOI:http://dx.doi.org/10.1145/2508859.2516697

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. 2002. ReVirt: Enabling intrusion

analysis through virtual-machine logging and replay. In Proceedings of USENIX OSDI’02. DOI:http://dx.doi.org/10.1145/

1060289.1060309

Christof Fetzer and Martin Süßkraut. 2008. Switchblade: Enforcing dynamic personalized system call models. In Proceedings

of ACM SIGOPS EuroSys’08. DOI:http://dx.doi.org/10.1145/1357010.1352621

James Frew, Dominic Metzger, and Peter Slaughter. 2008. Automatic capture and reconstruction of computational prove-

nance. Concurr. Comput.: Pract. & Exper. 20, 5 (April 2008), 485–596. DOI:http://dx.doi.org/10.1002/cpe.1247

Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for provenance auditing in distributed environments. In Proceed-

ings of Middleware’12. DOI:http://dx.doi.org/10.1007/978-3-642-35170-9_6

Eleni Gessiou, Vasilis Pappas, Elias Athanasopoulos, Angelos D. Keromytis, and Sotiris Ioannidis. 2012. Towards a uni-

versal data provenance framework using dynamic instrumentation. IFIP Advances in Information and Communication

Technology, Vol. 376. 103–114. DOI:http://dx.doi.org/10.1007/978-3-642-30436-1_9

Boris Glavic. 2014. A Primer on Database Provenance. Technical Report RIIT/CS-DB-2014-01. Illinois Institute of Technology.

Paul Groth, Simon Miles, and Luc Moreau. 2009. A model of process documentation to determine provenance in mash-ups.

ACM Trans. Internet Technol. 9, 1 (February 2009), 3:1–3:31. DOI:http://dx.doi.org/10.1145/1462159.1462162

Paul Groth and Luc Moreau. 2009. Recording process documentation for provenance. IEEE Transactions on Parallel and

Distributed Systems (September 2009). DOI:http://dx.doi.org/10.1109/TPDS.2008.215

Paul Groth and Luc Moreau (eds.). 2013. PROV-Overview: An Overview of the PROV Family of Documents. W3C

Working Group Note NOTE-prov-overview-20130430. World Wide Web Consortium. Retrieved from http://www.w3.

org/TR/2013/NOTE-prov-overview-20130430/

David A. Holland, Margo I. Seltzer, Uri Braun, and Kiran-Kumar Muniswamy-Reddy. 2008. PASSing the provenance chal-

lenge. Concurr. Comput.: Pract. & Exper. 20, 5 (April 2008), 531–540. DOI:http://dx.doi.org/10.1002/cpe.1227

Trung Dong Huynh, Paul Groth, and Stephan Zednik (eds.). 2013. PROV Implementation Report. W3C Working Group Note

NOTE-prov-implementations-20130430. World Wide Web Consortium.

Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portokalidis. 2013. ShadowReplica: Efficient

parallelization of dynamic data flow tracking. In Proceedings of ACM SIGSAC CCS’13. DOI:http://dx.doi.org/10.1145/

2508859.2516704

Yang Ji, Sangho Lee, and Wenke Lee. 2016. RecProv: Towards provenance-aware user space record and replay. In Proceedings

of IPAW’16, Marta Mattosoand Boris Glavic (Eds.). DOI:http://dx.doi.org/10.1007/978-3-319-40593-3_1

Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy malware detection through VMM-based out-of-the-box

semantic view reconstruction. In Proceedings of ACM SIGSAC CCS’07. DOI:http://dx.doi.org/10.1145/1315245.1315262

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. 2011. DTA++: Dynamic taint analysis with

targeted control-flow propagation. In Proceedings of NDSS’11.

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://dx.doi.org/10.1145/1455258.1455259
http://dx.doi.org/10.1109/MICRO.2004.26
http://dx.doi.org/10.1145/1773912.1773933
http://dx.doi.org/10.1145/359636.359712
http://dx.doi.org/10.7916/D8WM1C1P
http://dx.doi.org/10.1145/2843859.2843867
http://dx.doi.org/10.1109/SP.2016.15
http://dx.doi.org/10.1145/2508859.2516697
http://dx.doi.org/10.1145/1060289.1060309
http://dx.doi.org/10.1145/1357010.1352621
http://dx.doi.org/10.1002/cpe.1247
http://dx.doi.org/10.1007/978-3-642-35170-9_6
http://dx.doi.org/10.1007/978-3-642-30436-1_9
http://dx.doi.org/10.1145/1462159.1462162
http://dx.doi.org/10.1109/TPDS.2008.215
http://dx.doi.org/10.1002/cpe.1227
http://dx.doi.org/10.1145/2508859.2516704
http://dx.doi.org/10.1007/978-3-319-40593-3_1
http://dx.doi.org/10.1145/1315245.1315262

PROV2R : Practical Provenance Analysis of Unstructured Processes 37:23

D. B. Keator, K. Helmer, J. Steffener, J. A. Turner, T. G. M. Van Erp, S. Gadde, N. Ashish, G. A. Burns, and B. N. Nichols.

2013. Towards structured sharing of raw and derived neuroimaging data across existing resources. NeuroImage 82 (2013),

647–661. DOI:http://dx.doi.org/10.1016/j.neuroimage.2013.05.094

Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis. 2012. libdft: Practical dynamic data

flow tracking for commodity systems. In Proceedings of VEE’12. DOI:http://dx.doi.org/10.1145/2151024.2151042

Graham Klyne, Paul Groth (eds.), Luc Moreau, Olaf Hartig, Yogesh Simmhan, James Myers, Timothy Lebo, Khalid

Belhajjame, and Simon Miles. 2013. PROV-AQ: Provenance Access and Query. W3C Working Group Note NOTE-prov-

aq-20130430. World Wide Web Consortium. Retrieved from http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/.

Troy Kohwalter, Thiago Oliveira, Juliana Freire, Esteban Clua, and Leonardo Murta. 2016. Prov viewer: A graph-based

visualization tool for interactive exploration of provenance data. In Proceedings of IPAW’16. DOI:http://dx.doi.org/10.

1007/978-3-319-40593-3_6

Kostya Kortchinsky. 2009. Cloudburst: A vmware guest to host escape. In Black Hat Conference.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.

In Proceedings of CGO’04. DOI:http://dx.doi.org/10.1109/CGO.2004.1281665

Timothy Lebo, Satya Sahoo, Deborah McGuinness (eds.), Khalid Behajjame, James Cheney, David Corsar, Daniel Garijo,

Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao. 2013. PROV-O: The PROV Ontology. W3C Recommendation REC-

prov-o-20130430. World Wide Web Consortium. Retrieved from http://www.w3.org/TR/2013/REC-prov-o-20130430

Rongxing Lu, Xiaodong Lin, Xiaohui Liang, and Xuemin (Sherman) Shen. 2010. Secure provenance: The essential of bread

and butter of data forensics in cloud computing. In Proceedings of ACM SIGSAC ASIACCS’10. DOI:http://dx.doi.org/10.

1145/1755688.1755723

Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards practical provenance tracing by alternating be-

tween logging and tainting. In Proceedings of NDSS’16.

Xiaogang Ma, Peter Fox, Curt Tilmes, Katharine Jacobs, and Anne Waple. 2014. Capturing provenance of global change

information. Nature Clim. Change 4, 6 (06 2014), 409–413. DOI:http://dx.doi.org/10.1038/nclimate2141

Wes Masri, Andy Podgurski, and David Leon. 2004. Detecting and debugging insecure information flows. In Proceedings of

ISSRE’04. DOI:http://dx.doi.org/10.1109/ISSRE.2004.17

Stephen McCamant and Michael D. Ernst. 2006. Quantitative Information-Flow Tracking for C and Related Languages. Tech-

nical Report MIT-CSAIL-TR-2006-076. MIT, Cambridge, MA. DOI:http://dx.doi.org/1721.1/34892

Luc Moreau. 2010. The foundations for provenance on the Web. Foundations and Trends in Web Science 2, 2–3 (November

2010). DOI:http://dx.doi.org/10.1561/1800000010

Luc Moreau and Paul Groth. 2013. Provenance: An introduction to PROV. Synthesis Lectures on the Semantic Web: Theory

and Technology 3, 4 (2013). DOI:http://dx.doi.org/10.2200/S00528ED1V01Y201308WBE007

Luc Moreau and Paolo Missier. 2013. PROV-DM: The PROV Data Model. Recommendation REC-prov-dm-20130430. W3C.

Retrieved from http://www.w3.org/TR/2013/REC-prov-dm-20130430/

Tom Oinn, Mark Greenwood, and et al. 2006. Taverna: Lessons in creating a workflow environment for the life sciences.

Concurr. Comput.: Pract. & Exper. 18, 10 (2006). DOI:http://dx.doi.org/10.1002/cpe.993

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie. 2010. PinPlay: A framework for deter-

ministic replay and reproducible analysis of parallel programs. In Proceedings of CGO’10. DOI:http://dx.doi.org/10.1145/

1772954.1772958

Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012. Hi-Fi: Collecting high-fidelity whole-system

provenance. In Proceedings of ACSAC’12. DOI:http://dx.doi.org/10.1145/2420950.2420989

Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. 2010. Paranoid android: Versatile protection

for smartphones. In Proceedings of ACSAC’10. DOI:http://dx.doi.org/10.1145/1920261.1920313

Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos: An emulator for fingerprinting zero-day attacks for

advertised honeypots with automatic signature generation. In Proceedings of EuroSys’06. DOI:http://dx.doi.org/10.1145/

1217935.1217938

Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia Song. 2016. Samsara: Efficient deterministic replay in multiprocessor

environments with hardware virtualization extensions. In Proceedings of USENIX ATC’16.

Darren P. Richardson and Luc Moreau. 2016. Towards the domain agnostic generation of natural language explanations

from provenance graphs for casual users. In Proceedings of IPAW’16. DOI:http://dx.doi.org/10.1007/978-3-319-40593-3_8

Prateek Saxena, R. Sekar, and Varun Puranik. 2008. Efficient fine-grained binary instrumentation with applications to

taint-tracking. In Proceedings of CGO’08. DOI:http://dx.doi.org/10.1145/1356058.1356069

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2005. A survey of data provenance in e-science. SIGMOD Rec. 34, 3

(2005). DOI:http://dx.doi.org/10.1145/1084805.1084812

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2008. Karma2: Provenance management for data driven workflows.

Int. J. Web Serv. Res. 5, 2 (2008). DOI:http://dx.doi.org/10.4018/jwsr.2008040101

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://dx.doi.org/10.1016/j.neuroimage.2013.05.094
http://dx.doi.org/10.1145/2151024.2151042
http://dx.doi.org/10.1007/978-3-319-40593-3_6
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1145/1755688.1755723
http://dx.doi.org/10.1038/nclimate2141
http://dx.doi.org/10.1109/ISSRE.2004.17
http://dx.doi.org/1721.1/34892
http://dx.doi.org/10.1561/1800000010
http://dx.doi.org/10.2200/S00528ED1V01Y201308WBE007
http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1145/1772954.1772958
http://dx.doi.org/10.1145/2420950.2420989
http://dx.doi.org/10.1145/1920261.1920313
http://dx.doi.org/10.1145/1217935.1217938
http://dx.doi.org/10.1007/978-3-319-40593-3_8
http://dx.doi.org/10.1145/1356058.1356069
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.4018/jwsr.2008040101

37:24 M. Stamatogiannakis et al.

Asia Slowinska and Herbert Bos. 2009. Pointless tainting?: Evaluating the practicality of pointer tainting. In Proceedings of

EuroSys’09. DOI:http://dx.doi.org/10.1145/1519065.1519073

Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2014. Looking inside the black-box: Capturing data provenance

using dynamic instrumentation. In Proceedings of IPAW’14. DOI:http://dx.doi.org/10.1007/978-3-319-16462-5_12

Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2015. Decoupling provenance capture and analysis from execution.

In Proceedings of USENIX TaPP’15. http://dare.ubvu.vu.nl/handle/1871/53077

Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Vermeulen, Ashish Gehani, Herbert Bos, and Paul

Groth. 2016. Trade-offs in automatic provenance capture. In Proceedings of IPAW’16. DOI:http://dx.doi.org/10.1007/

978-3-319-40593-3_3

Tao Wang, Jiwei Xu, Wenbo Zhang, Jianhua Zhang, Jun Wei, and Hua Zhong. 2016. ReSeer: Efficient search-based replay

for multiprocessor virtual machines. J. Syst. Software (2016). DOI:http://dx.doi.org/10.1016/j.jss.2016.07.032

Ryan Whelan, Tim Leek, and David Kaeli. 2013. Architecture-independent dynamic information flow tracking. In Proceed-

ings of CC’13. DOI:http://dx.doi.org/10.1007/978-3-642-37051-9_8

Wikipedia. 2016. Virtual machine escape. (November 2016). Retrieved November 17, 2016 from https://en.wikipedia.

org/wiki/Virtual_machine_escape

Min Xu, Rastislav Bodik, and Mark D. Hill. 2003. A “flight data recorder” for enabling full-system multiprocessor determin-

istic replay. In Proceedings of ACM ISCA’03. DOI:http://dx.doi.org/10.1145/859618.859633

Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam, and Boris Weissman. 2007. ReTrace: Collecting

execution trace with virtual machine deterministic replay. In Proceedings of MoBS’07.

Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic

android malware analysis. In Proceedings USENIX SEC’12.

Heng Yin and Dawn Song. 2010. TEMU: Binary Code Analysis via Whole-System Layered Annotative Execution. Techni-

cal Report UCB/EECS-2010-3. EECS Department, University of California, Berkeley. Retrieved November 17, 2016 from

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html.

Received August 2016; revised February 2017; accepted March 2017

ACM Transactions on Internet Technology, Vol. 17, No. 4, Article 37. Publication date: August 2017.

http://dx.doi.org/10.1145/1519065.1519073
http://dx.doi.org/10.1007/978-3-319-16462-5_12
http://dx.doi.org/10.1007/978-3-319-40593-3_3
http://dx.doi.org/10.1016/j.jss.2016.07.032
http://dx.doi.org/10.1007/978-3-642-37051-9_8
http://dx.doi.org/10.1145/859618.859633

