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MODELING FINANCIAL SECTOR JOINT TAIL RISK IN THE
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We develop a novel high-dimensional non-Gaussian modeling framework to infer measures of conditional and
joint default risk for numerous financial sector firms. The model is based on a dynamic generalized hyperbolic
skewed-t block equicorrelation copula with time-varying volatility and dependence parameters that naturally
accommodates asymmetries and heavy tails, as well as nonlinear and time-varying default dependence. We apply
a conditional law of large numbers in this setting to define joint and conditional risk measures that can be evaluated
quickly and reliably. We apply the modeling framework to assess the joint risk from multiple defaults in the euro
area during the 2008–2012 financial and sovereign debt crisis. We document unprecedented tail risks between
2011 and 2012, as well as their steep decline following subsequent policy actions. Copyright © 2016 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper we develop a novel high-dimensional non-Gaussian modeling framework to infer con-
ditional and joint risk measures for many financial sector firms. The model is based on a dynamic
generalized hyperbolic skewed-t copula with time-varying volatility and dependence parameters.
Such a framework naturally accommodates asymmetries and heavy tails, as well as nonlinear and
time-varying default dependence. To balance the need for parsimony as well as flexibility in a
high-dimensional cross-section, we endow the dynamic model with a score-driven block equicorre-
lation structure. Furthermore, we demonstrate that a conditional law of large numbers applies in our
setting, which allows us to define risk measures that can be evaluated semi-analytically and within sec-
onds. The modeling framework allows us to assess the joint risk from multiple financial firm defaults
in the euro area during the financial and sovereign debt crisis. We document unprecedented tail risks
between 2011 and 2012, as well as a sharp decline in joint (but not conditional) tail risk probabili-
ties following a sequence of announcements by the European Central Bank (ECB) that introduced its
Outright Monetary Transactions (OMT) program.1

Since the onset of the financial crisis in 2007, financial stability monitoring has become a key
priority for many central banks, which added to their respective monetary policy mandates; see, for
example, Acharya et al. (2012) and Adrian et al. (2013). The new prudential responsibilities involve
monitoring financial risks to and from a large system of interconnected financial intermediaries. The
cross-sectional dimensions of these systems are typically high, even if attention is restricted to only

* Correspondence to: Bernd Schwaab, European Central Bank, Kaiserstrasse 29, 60311 Frankfurt, Germany. E-mail:
bernd.schwaab@ecb.int
1 See ECB (2012) and Coeuré (2013). The OMT is a non-standard monetary policy measure within which the ECB could,
under certain conditions, make purchases in secondary markets of bonds issued by euro area member states.

Copyright © 2016 John Wiley & Sons, Ltd.



172 A. LUCAS, B. SCHWAAB AND X. ZHANG

large and systemically important institutions. Our modeling framework is directly relevant for such
monitoring tasks. In addition, our framework is interesting for financial institutions and clearing houses
that are required to actively set risk limits (often in real time) and maintain economic capital buffers to
withstand bad risk outcomes due to exposures to a large number of credit-risky counterparties. Finally,
with the benefit of hindsight, evaluating the time variation in conditional and joint risks allows us to
assess the impact of non-standard policy measures that central banks (or other actors) take on the risk
of a simultaneous and widespread failure of financial intermediaries.

Our starting point for modeling time-varying joint and conditional risks is a dynamic copula frame-
work, also considered by Segoviano and Goodhart (2009), Christoffersen et al. (2012), Oh and Patton
(2014) and Lucas et al. (2014). In each case, a collection of firms is seen as a portfolio of firms whose
multivariate dependence structure is inferred from equity returns or CDS data. Our current framework
extends the Lucas et al. (2014) approach in two ways. First, by considering grouped equicorrelation
structures, our current framework allows us to fit a cross-sectional dimension much larger than, say,
15 firms, while retaining the ability to capture the salient data features such as skewness, fat tails
and time-varying correlations. We thus fix the drawback that parameter estimation breaks down when
considering many firms in this class of models due to a well-known curse of dimensionality; see
Engle and Kelly (2012) for a discussion. Second, we show how to evaluate joint and conditional risk
measures within seconds in the current framework. Estimating time-varying parameters and portfo-
lio risk measures is computationally relatively inexpensive because explicit expressions are available
for the likelihood and the joint and conditional portfolio credit risk measures. Simulation-based meth-
ods are not required, but are used in our empirical study to provide points of comparison from a
robustness perspective.

We apply our general framework by studying joint and conditional default probabilities for finan-
cial sector firms in the euro area, based on weekly data from January 1999 to September 2013. We
consider two applications. First, using a limited sample of N D 10 firms, we verify that our dynamic
correlations based on the block equicorrelation assumption closely track the average correlations from
a full-correlation-matrix model analysis. We demonstrate that the loss of cross-sectional dispersion
in correlations hardly matters when evaluating joint credit risk measures, at least for our sample of
firms. Finally, we verify that our semi-analytical approximations to compute joint and conditional risk
measures already work well even if the cross-sectional dimension is as low as 10 firms.

We then turn to our final high-dimensional study of N D 73 firms. We document unprecedented
joint tail risks for a set of large euro area financial sector firms during the financial and sovereign
debt crises, and also establish a clear peak of financial sector joint default risk in the summer of 2012.
Based on time variation in our joint risk measures we argue that three events collectively ended the
most acute phase of extreme financial sector tail risks in the euro area. These events are a speech by the
ECB President in London to do ‘whatever it takes’ to save the euro on 26 July 2012, the announcement
of the ECB’s OMT program on 2 August 2012 and the disclosure of the OMT details on 6 September
2012. This is a startling finding, as the ECB’s OMT program provides conditional and partial insurance
to governments and not to financial sector firms. Conditional tail probabilities did not decline as much,
indicating that risk spillovers might have remained a concern. Based on the OMT’s strong impact
on financial sector joint risks, we conclude that the design and implementation of unconventional
monetary policies and financial stability (tail) outcomes are strongly related. This finding suggests
substantial scope for the coordination of monetary, macro-prudential and bank supervision policies.
This is relevant as both monetary policy as well as banking supervision has been carried out jointly by
the ECB since November 2014.

Our study relates to several directions of current research. First, we draw from the growing litera-
ture on non-Gaussian dependence modeling as well as the literature on credit risk measurement and
portfolio loss asymptotics. Time-varying parameter models for volatility and dependence were con-
sidered, among others, by Engle (2002), Creal et al. (2011), Christoffersen et al. (2012), Engle and

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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Kelly (2012) and Creal and Tsay (2015). Similarly, credit risk models and portfolio tail risk measures
were studied, for example, by Vasicek (1987), Lucas et al. (2001, 2003), Gordy (2000, 2003), Koop-
man et al. (2011, 2012) and Giesecke et al. (2015). Combining results from both strands of literature
allows us to obtain joint credit risk measures at a relatively high frequency, such as daily or weekly.
Second, to balance the need for parsimony and flexibility, we consider a variant of the block equicor-
relation structure for the covariance matrix in Engle and Kelly (2012); see also Christoffersen et al.
(2014a) and Creal and Tsay (2015) for applications with DECO and grouped dependence structures,
respectively. The version of the block equicorrelation model developed in this paper still allows us to
draw on the machinery developed in the credit portfolio tail risk literature mentioned earlier. Third,
an additional strand of literature investigates joint and conditional default dependence from a finan-
cial stability perspective; see, for example, Hartmann et al. (2007), Acharya et al. (2012) and Suh
(2012). Finally, to introduce time variation into our econometric model specification, we endow our
model with observation-driven dynamics based on the score of the conditional predictive log-density.
Score-driven time-varying parameter models are actively researched; see for example, Creal et al.
(2011, 2013, 2014), Harvey (2013) and Oh and Patton (2014).2

The two papers that are most closely related to ours are Oh and Patton (2014) and Christoffersen
et al. (2014b). Oh and Patton (2014) propose a class of dynamic copula factor models for high
dimensions, which facilitates the estimation of a wide variety of systemic risk measures. Firms in
their framework load on a common factor that has the skewed Student’s t density of Hansen (1994).
Additional idiosyncratic shocks are modeled by a symmetric-t distribution. They use their model for
studying the risk from a large number of US corporates. Time-varying dependence is modeled in a
score-driven way, as in this paper. Our study differs in that we use the generalized hyperbolic skewed-t
(GHST) distribution for both the marginal and the copula modeling; this means that our factor copula
has a nonlinear two-factor rather than a linear one-factor structure. Moreover, our application focuses
on the euro area financial sector during the financial and sovereign debt crisis, and on the impact evalu-
ation of central bank unconventional monetary policy measures during that time. Finally, we introduce
and discuss the efficient evaluation of semi-analytic risk measures. Christoffersen et al. (2014b) study
diversification benefits among US corporates, and use Hansen’s (1994) t-distribution for the innova-
tions in univariate generalized autoregressive conditional heteroskedasticity (GARCH) models. Their
GHST copula is the same as used in our paper. Our paper differs in that we provide a score-driven
approach to the modeling of dynamic dependence, which is particularly attractive in a non-Gaussian
context when data are fat-tailed and skewed; see Zhang et al. (2011) and Blasques et al. (2015). We
do not rely exclusively on composite likelihood methods, but employ them only to provide alternative
points of comparison from a robustness perspective. Composite likelihood techniques are feasible in
high dimensions, but also statistically inefficient. Instead, we proceed by proposing block equicorre-
lation models, at least for settings where prior information is available on which subsets of firms are
likely to move together as a group, and risks need to be evaluated in a computationally efficient way.
We explicitly highlight what information is lost when moving from a full to an equicorrelation copula
structure. Finally, we introduce semi-analytic risk measures and focus our application on the euro area
sovereign debt crisis and non-standard monetary policy measures.

Section 2 introduces our statistical framework, the dynamic GHST block equicorrelation model, and
discusses parameter estimation. Section 3 demonstrates how a conditional law of large numbers can
be applied to reliably and quickly compute portfolio risk measures in a GHST factor copula setting.
Section 4 applies the modeling framework to the euro area financial sector during the financial and
sovereign debt crisis. Section 5 concludes. A supplementary web Appendix is provided as supporting
information, which presents proofs and additional results.

2 We refer to http://www.gasmodel.com for an extensive enumeration of recent work in this area. Computer code for this paper
is available from this source.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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174 A. LUCAS, B. SCHWAAB AND X. ZHANG

2. STATISTICAL MODEL

2.1. The Dynamic Generalized Hyperbolic Skewed-t Copula Model

Following Lucas et al. (2014), we consider a copula model based on the GHST distribution. Let

yit D .&t � �& /�i C
p
&t Q†

1=2
it �t ; i D 1; : : : ; N (1)

where yt D .y1t ; : : : ; yNt /0 is a vector of firm-specific log asset values, &t 2 RC is an inverse-Gamma
distributed common risk factor that affects all firms simultaneously, &t � IG

�
�
2
; �
2

�
, � 2 RN is a

vector controlling the skewness of the copula, Q†it is the i th row of the GHST copula scale matrix
Q†t 2 RN�N , and �t 2 RN is a vector of standard normally distributed risk factors. We assume that
the two random variables &t and �t are independent and set �& D EŒ&t � D �=.��2/, such that yit has
zero mean if � > 2. Matrix Q†1=2t is the Choleski matrix square root of the scale matrix Q†t .

In our copula framework, a firm defaults if its log asset value yit falls below its default threshold
y�it . Below, we approximate the copula of the (unobserved) log asset values with the copula estimated
from equity returns. Implicitly, this assumes that default is sensitive to changes in the market value of
equity, while the market value of debt remains approximately constant over a relevant horizon. The
cross-sectional dependence in defaults captured by equation (1) thus stems from two sources: common
exposures to the normally distributed risk factors �t as captured by the time-varying matrix Q†t ; and an
additional common exposure to the scalar risk factor &t . The former captures connectedness through
correlations, while the latter captures such effects through the tail dependence of the copula. To see
this, note that if &t is non-random the first term in equation (1) drops out of the equation and there is
zero tail dependence. Conversely, if &t is large, all asset values are affected at the same time, making
joint defaults of two or more firms more likely.

Earlier applications of the GHST distribution to financial and economic data include Mencía and
Sentana (2005), and Aas and Haff (2006). Alternative skewed t-distributions have been proposed as
well, such as Branco and Dey (2001), Gupta (2003), Azzalini and Capitanio (2003) and Bauwens and
Laurent (2005); see also the overview of Aas and Haff (2006). The GHST distribution closely connects
to a continuous-time finance literature utilizing Lévy processes for stock price processes and firm asset
values; see Bibby and Sørensen (2003) for a survey.

We denote the 1-year-ahead default probability for firm i at time t as pit , such that

pit D Pr
�
yit < y

�
it

�
D Fit .y

�
it /, y�it D F

�1
it .pit / (2)

where Fit is the univariate GHST cumulative distribution function (cdf) of yit . In our application, we
assume that we observe pit as the expected default frequency of firm i reported at time t by Moody’s
Analytics (formerly Moody’s KMV). Instead of focusing on the individual default probabilities pit ,
our focus is on the time-varying joint probabilities, such as Pr

h
yit < y

�
it ; yjt < y

�
jt

i
, and on con-

ditional probabilities such as Pr
h
yit < y

�
it jyjt < y

�
jt

i
, for firms i ¤ j . Below, we first develop a

dynamic version of the GHST copula model. Then we consider a dynamic (block) equicorrelation ver-
sion of the model in the spirit of Engle and Kelly (2012), which turns out to be particularly useful to
study joint and conditional default probabilities in a parsimonious way for large-dimensional systems.

2.2. The Dynamic GHST Model

To describe the dynamics of the scale parameter Q†t in the GHST model (1), we use the generalized
autoregressive score (GAS) dynamics as proposed in Creal et al. (2011, 2013); see also Harvey (2013).
These dynamics easily adapt to the skewed and fat-tailed nature of the GHST density and improve the

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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stability of dynamic volatility and correlation estimates; see Blasques et al. (2015). Our version of the
model is different from that of Lucas et al. (2014) owing to a different parametrization. We consider
the scale matrix (rather than the covariance matrix) in order to fully employ the block equicorrelation
structure later on for our conditional law of large numbers result.

To derive the score dynamics for the GHST model, we need the conditional density of yt , which we
parametrize as

p.yt I Q†t ; �; �/ D
2 .�=2/�=2

� .�=2/ j2� Q†t j1=2
�
K.�CN/=2

�p
d.yt / � d.�/

�
e�
0 Q†�1t .yt� Q�/

.d.yt /=d.�//
.�CN/=4

(3)

d.yt / D � C .yt � Q�/
0 Q†�1t .yt � Q�/ (4)

d.�/ D � 0 Q†�1t �; Q� D �
�

� � 2
� (5)

where Ka.b/ is the modified Bessel function of the second kind; see Bibby and Sørensen (2003).
The parameters � D .�1; : : : ; �N /

0 2 RN and � 2 RC are the skewness and degrees of freedom
(or kurtosis) parameter, respectively, while Q� and Q†t denote the location vector and scale matrix,
respectively. Note that if yt has a multivariate GHST distribution with parameters Q�, Q†, � and � as
given in equation (3), then Ayt C b for some matrix A and vector b also has a GHST distribution,
with parameters A Q� C b, A Q†A0, A� and �. In particular, the marginal distributions of yit also have
a GHST distribution. The GHST density (3) nests the symmetric-t (� D 0) and multivariate normal
(� D 0 and � !1) distributions as special cases.

We parametrize the time-varying matrix Q†t as in Engle (2002), i.e.

Q†t D D.ft / QR.ft /D.ft / (6)

where ft is a vector of time-varying parameters, D.ft / is a diagonal matrix holding the scale param-
eters of yit and QR.ft / captures the dependence parameters. In our current copula setup, we use
univariate models for D.ft /, and the multivariate model for QR.ft /. The web Appendix provides fur-
ther details on our univariate volatility modeling approach for D.ft /. In the remainder of this section,
we concentrate on the matrix QR.ft /.

Following Creal et al. (2011, 2013), we endow ft with score-driven dynamics using the derivative
of the log conditional observation density (3). The transition dynamics for ft are given by

ftC1 D Q! C

p�1X
iD0

Aist�i C

q�1X
jD0

Bjft�j (7)

st D Strt ; rt D @ lnp.yt jFt�1Ift ; 	/=@ft (8)

where Q! D Q!.	/ is a vector of fixed intercepts, Ai D Ai .	/ and Bj D Bi .	/ are fixed parameter
matrices that depend on the vector 	 containing all time-invariant parameters in the model, and St a
scaling function.

The key element in equation (7) is the scaled score st . If yt has a zero mean GHST distribution
p.yt I Q†t ; �; �/ and the time-varying scale matrix is driven by equations (7)–(8), then the score is given
by

rt D ‰
0
tH
0
tvec

�
wt � .yt � Q�/.yt � Q�/

0 � 0:5 Q†t � �.yt � Q�/
0 � Lwt � ��

0
�

(9)

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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where

wt D
� CN

4d.yt /
�
k0
0:5.�CN/

�p
d.yt /d.�/

�
2
p
d.yt /=d.�/

;

Lwt D
� CN

4d.�/
C
k0
0:5.�CN/

�p
d.yt /d.�/

�
2
p
d.�/=d.yt /

;

Ht D Q†
�1
t ˝

Q†�1t ; ‰t D
@vec. Q†t /0

@ft

and where k�.�/ D lnK�.�/ with first derivative k0�.�/. The matrices ‰t and Ht are time-varying and
parametrization-specific; both matrices depend on ft but not on the data yt . We refer to the web
Appendix for a derivation of equation (9).

Equation (8) reveals the key feature of the score-driven specification. In essence, the score-driven
mechanism takes a Gauss–Newton improvement step for the scale matrix to better fit the most recent
observation. Equation (8) shows that ft reacts to deviations between Q†t and the observed .yt� Q�/.yt�
Q�/0. The reaction is asymmetric if � 6D 0, in which case there is also a reaction to the level .yt � Q�/
itself. The reaction to .yt � Q�/.yt � Q�/0 is modified by the weightwt . If � <1, the GHST distribution
is fat-tailed and the weight decreases in the Mahalanobis distance d.yt /; compare the discussion for
the symmetric Student’s t case in Creal et al. (2011). This feature gives the model a robustness flavor
in that incidental large values of yt have a limited impact on future volatilities and correlations. The
remaining expressions for Ht and ‰t only serve to transform the dynamics of the covariance matrix
in equation (6) into the dynamics of the unobserved factor ft .

To scale the score in equation (8) we set the scaling matrix St equal to the inverse conditional Fisher
information matrix of the symmetric Student’s t-distribution; see the web Appendix for details. Zhang
et al. (2011) demonstrate that this choice of scaling matrix results in a stable model that outperforms
alternative models if the data are fat-tailed and skewed. We do not use the inverse conditional Fisher
information matrix of the multivariate GHST distribution because it is not available in closed form.

2.3. Dynamic Block Equicorrelation Structure

As we want to use our model in the context of a large cross-sectional dimension to describe the
joint (tail) risk dynamics in a large system of financial institutions, we refrain from modeling all
dependence parameters in QR.ft / individually. Instead, we adopt the approach of Engle and Kelly
(2012) and impose a block equicorrelation structure on the matrix QR.ft /. By limiting the number of
free parameters, we facilitate the estimation process to a large extent while retaining the ability to
capture dynamic patterns in the dependence structure among financial firms, particularly in times of
stress.

For the single block equicorrelation model, we assume that Q†t takes the form

Q†t D .1 � 

2
t /IN C 


2
t `N `

0
N (10)

where 
t D .1C exp.�ft //�1 2 .0; 1/, and `N is a N � 1 vector of ones. In this case, the expressions
for ‰t and Ht simplify. In particular,

‰t D
@vec. Q†t /0

@ft
D .`N 2 � vec.IN //

2 exp.�ft /

.1C exp.�ft //3
(11)

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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which implies that the scorert reduces to a scalar process over time. We refer to the web Appendix for
a derivation. We can easily generate the equicorrelation structure (10) from model (1) by specifying

yit D
�
&t � �&

�
�i C

p
&t

�

t �t C

q
1 � 
2t uit

	
(12)

where �t and uit are two independent standard normal random variables. Note that equation (12) is a
special case of equation (1). The logistic parametrization 
t D .1C exp.ft //�1 forces the correlation
parameter to be in the unit interval, irrespective of the value of ft 2 R. While the original equicorrela-
tion specification of Engle and Kelly (2012) also allows for (slightly) negative equicorrelations, such
values are typically unrealistic in the type of applications we consider later on. The parametrization
with equicorrelation parameter 
2t > 0 therefore suffices for our current purposes.

A two-block equicorrelation model may be considered in settings for which the restriction of a
single correlation parameter characterizing the entire scaling matrix Q†t might be too restrictive empir-
ically. For example, we might want to allow for different dependence between financial firms in
stressed and non-stressed countries in the context of the euro area sovereign debt crisis. For two blocks
containing N1 and N2 firms, respectively, the two-block equicorrelation specification is given by

Q†t D


 �
1 � 
21;t

�
IN1 0

0
�
1 � 
22;t

�
IN2

�
C

�

1;t`N1

2;t`N2

	
�
�

1;t`

0
N1


2;t`
0
N2

�
(13)

The two-block equicorrelation structure (13) differs from the setup in Engle and Kelly (2012) in
that there is a direct relation between the equicorrelation in the off-diagonal blocks and the diagonal
blocks. The main advantage of this specification is that, conditional on &t , equation (13) preserves the
Vasicek (1987) single-factor credit risk structure of yt . In particular, specification (12) depends on two
common factors only, namely �t and &t , and conditionally on &t the model is linear. We use this feature
extensively to compute joint and conditional risk measures fast and reliably in Section 3 in settings
where standard simulation methods quickly become inefficient.3 If Q†t is given by equation (13) with

j;t D .1 C exp.�fj;t //�1 for j D 1; 2, then the time-varying factor ft D .f1;t ; f2;t /

0 2 R2�1

follows equation (9), with

‰t D
@vec. Q†t /0

@ft
D
@vec. Q†t /0

@
t

d
0t
dft

;

d
0t
dft
D

 
exp.�f1;t /

.1Cexp.�f1;t //2
0

0
exp.�f2;t /

.1Cexp.�f2;t //2

!
;

@vec. Q†t /0

@
t
D

�
vec

�
IN1 0
0 0

	
; vec

�
0 0

0 IN2

		
�

�
�2
1;t 0

0 �2
2;t

	

C

��

1;t`N1

2;t`N2

	
˝ IN C IN ˝

�

1;t`N1

2;t`N2

		
�

��
`N1
0

	
;

�
0

`N2

		
(14)

where 
t D .
1;t ; 
2;t /0 and N D N1 CN2.4

Them-block equicorrelation structure is a straightforward generalization of the two-block case (14).
Rather than providing the (lengthy) expressions in the main text, we refer to our web Appendix for

3 We demonstrate in Section 4 that the tail risk measurements obtained from applying equation (10) or (13) are close to those
based on a full correlation matrix analysis.
4 We can introduce further flexibility to the model by extending the support of �1;t and �2;t from .0; 1/ to .�1; 1/ by defining
�j;t D .exp.fj;t /� 1/=.exp.fj;t /C 1/ for j D 1; 2. The advantage of this extension is that the correlations between blocks
can now become negative, whereas the within-block correlation remains positive. This extension is not needed for our empirical
application in Section 4, however.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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178 A. LUCAS, B. SCHWAAB AND X. ZHANG

the precise formulations. These formulations are used in our empirical analysis in Section 4, where we
also consider a three-block equicorrelation specification.

2.4. Parameter Estimation

We can estimate the static parameters 	 of the dynamic GHST model through standard maximum
likelihood procedures. Parameter estimation is straightforward as the likelihood function is known in
closed form using a standard prediction error decomposition. Deriving the asymptotic behavior for
time-varying parameter models with GAS dynamics is non-trivial. We refer to Blasques et al. (2012,
2014) for details.

We split the estimation problem into two parts by adopting a copula perspective. As a result, the
number of parameters that need to be estimated in each step is reduced substantially. In addition, the
copula perspective has the advantage that we can add more flexibility to modeling the marginal distri-
butions. For example, when working with a multivariate GHST density, all marginal distributions must
have the same kurtosis parameter �. By adopting a copula perspective, we can relax this restriction
considerably.

The two stages of the estimation process can be summarized as follows. In a first step, we estimate
univariate dynamic GHST models using the equity returns for each firm i ; see the web Appendix for
details. Based on the estimated univariate models with parameters Q�it , Q�it , �i , and �i , we transform
the observations into their probability integral transforms uit 2 Œ0; 1�. In the second step, we estimate
the matrix Q†t D QRt as parametrized in Section 2.3, using the probability integral transforms uit
constructed in the first step. For the single-block equicorrelation model, the GHST copula parameters
are 0, QRt , � �.1; : : : ; 1/0 for � 2 R and �, respectively. The respective static parameter vector 	 includes
� , � and Q!, Aj and Bj of the dynamic equation (7). For equicorrelation models with multiple blocks,
we consider block-specific skewness parameters �j .

3. JOINT AND CONDITIONAL RISK MEASURES

This section defines joint and conditional risk measures and demonstrates how to compute these effi-
ciently and reliably based on the application of a conditional law of large numbers (cLLN). Using a
cLLN in the credit risk context was popularized by Vasicek (1987) and studied further, for example,
in Gordy (2000, 2003) and Lucas et al. (2001, 2003).

Conceptually, the simplest way to compute joint and conditional default probabilities is based on
Monte Carlo simulations of firms’ asset values. For example, one can generate many paths for the
joint evolution of .y1t ; : : : ; yNt / and check how many simulations lie in a joint distress region of the
type ¹yt jyjt < y�jt 8j 2 J º for some set of firms J � ¹1; 2; : : : ; N º, where y�jt denotes the default
threshold for firm j at time t . Such a simulation-based approach quickly becomes inefficient if the
cross-sectional dimension of the data and the number of firms considered in the set J become large:
because marginal default probabilities are typically small, we need a large number of simulations to
obtain a sufficient number of realizations of joint defaults, particularly if three, four or even more joint
defaults are considered. A partial remedy could be to use simulations based on importance sampling
methods as in Glassermann and Li (2005), but the computational burden would remain high compared
to the simple semi-analytic approach proposed in this section.

The semi-analytic cLLN approximation we propose is based on the observation that equation (12)
is a nonlinear two-factor model. More specifically, conditional on the common factor &t model (12)
simplifies to a (heterogeneous) Gaussian one-factor model as in Vasicek (1987). This holds even if we
replace 
t in equation (12) by 
it using the block equicorrelation structure from Section 2. We exploit
this feature to obtain reliable alternative risk measures that can be evaluated semi-analytically.

We define our joint tail risk measure (JRM) as the time-varying probability that a certain fraction of
firms defaults over a pre-specified period. Let DN;t denote the fraction of firms defaulting over period
t , e.g. DN;t D 5%, with

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae

 10991255, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2518 by V

rije U
niversiteit A

m
sterdam

 L
ibrary, W

iley O
nline L

ibrary on [12/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 179

DN;t D
1

N

NX
iD1

1 ¹yit < y
�
itº (15)

Since the indicators 1¹yit < y�itº are conditionally independent given �t and &t , we can apply a
conditional law of large numbers to obtain

DN;t �
1

N

NX
iD1

EŒ1 ¹yit < y
�
itº j�t ; &t � D

1

N

NX
iD1

P
�
yit < y

�
it j�t ; &t

�
� CN;t (16)

for largeN , as under standard regularity conditions jDN;t�CN;t j
a:s:
! 0 forN !1; see, for example,

Vasicek (1987), Gordy (2000, 2003) and Lucas et al. (2001). Note that

PŒyit < y
�
it j�t ; &t � D ˆ

 
y�it � .&t � �& / �i �

p
&t 
t�tp

&t .1 � 

2
t /

!
(17)

where ˆ.�/ denotes the cumulative standard normal distribution. Also note that CN;t is a function of
the random variables �t and &t only, and not of uit in (12). We now define the joint tail risk measure as

P.DN;t > Nc/ � P.CN;t > Nc/ D P.CN;t .�t ; &t / > Nc/ � pt (18)

i.e. we approximate the probability that the fraction of credit portfolio defaults DN;t exceeds the
threshold Nc 2 Œ0; 1� by the quantity pt . Following Vasicek (1987) and using the one-factor structure
of equation (12) for given &t , we note that CN;t is monotonically decreasing in �t for 
t > 0. This
is intuitive: an increase in �t (for instance, due to improved business cycle conditions) implies fewer
defaults in the portfolio and vice versa. We exploit this to efficiently compute unique threshold levels
��N;t . Nc; &

.g// for a number of grid points & .g/, g D 1; : : : ; G. This can be done by solving the equations
CN;t .�

�
N;t . Nc; &

.g//; & .g// D Nc numerically for the threshold values ��N;t . Nc; &
.g// for each grid point

& .g/ and time t . Given a grid of threshold values, we can then use standard numerical integration
techniques to efficiently compute the joint default probability

pt D P.CN;t > Nc/ D
Z

P.�t < �
�
t;N . Nc; &t //p.&t /d&t (19)

Our second measure is a conditional tail risk measure (CRM). Let

D
.�i/
N�1;t D

1

N � 1

X
j 6Di

1
�
yjt < y

�
jt j�t ; &t

�
�

1

N � 1

X
j 6Di

PŒyjt < y
�
jt j�t ; &t � � C

.�i/
N�1;t

where D.�i/
N�1;t is the fraction of defaulted companies excluding firm i , which we approximate using

the cLLN by C .�i/N�1;t . We define the CRM as the probability of C .�i/N�1;t exceeding Nc.�i/ conditional on
the default of firm i , i.e.

P
�
C
.�i/
N�1;t > Nc

.�i/jyit < y
�
it

�
D p�1it � P

�
C
.�i/
N�1;t > Nc

.�i/ ; yit < y
�
it

�
D p�1it �

Z
P
�
�t < �

�
N�1;t

�
Nc.�i/; &t

�
; yit < y

�
it

ˇ̌̌
&t

�
p.&t /d&t

D p�1it �

Z
ˆ2

�
��N�1;t

�
Nc.�i/; &t

�
; y��it .&t /I 
t

�
p.&t /d&t

(20)
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180 A. LUCAS, B. SCHWAAB AND X. ZHANG

where y��it .&t / D .y
�
it�.&t��& /�i /=

p
&t , andˆ2.�; �I 
t / denotes the cumulative distribution function

of the bivariate normal with standard normal marginals and correlation parameter 
t . To obtain the last
equality in equation (20), note that the GHST distribution becomes Gaussian conditional on &t . The
conditional probability (20) is a time-varying higher-frequency extension of the multivariate extreme
spillovers measure of Hartmann et al. (2004, 2007).

Both the joint probability (19) and the conditional probability (20) can be computed quickly, using
simple one-dimensional numerical integration techniques.5 In addition, the model is easily extended
to fit the m-block equicorrelation structure explained in Section 2.3. The fact that the 
i;t parame-
ters are different between blocks does not distort the one-factor structure à la Vasicek (1987). The
above derivations remain valid if 
t is replaced by 
i;t , particularly in equations (17) and (20), and all
computations remain of similar structure and speed.

4. EURO AREA FINANCIAL SECTOR JOINT TAIL RISK

We apply our model to a high-dimensional dataset ofN D 73 euro area financial firms. We first present
a preliminary analysis for a subsample of N D 10 large firms headquartered in different euro area
countries. We then present the results for the entire dataset. This allows us to benchmark the results for
the dynamic GHST block equicorrelation model against a model with a fully specified time-varying
correlation matrix and to investigate the sensitivity of joint and conditional tail risk measures to the
(block) equicorrelation assumption.

4.1. Equity and EDF Data

Our equity data come from Bloomberg. We use 73 listed financial firms that are located in 11 euro area
countries: Austria (AT), Belgium (BE), Germany (DE), Spain (ES), Finland (FI), France (FR), Greece
(GR), Ireland (IE), Italy (IT), the Netherlands (NL) and Portugal (PT). Firms were selected if (i) they
were financial firms headquartered in the euro area, and (ii) were listed as of 2011:Q1 as a component
of the STOXX Europe 600 index. For each firm, we construct recursively demeaned weekly equity
returns. The sample comprises large commercial banks as well as large financial non-banks such as
insurers and investment companies. The total panel covers 762 weeks from January 1999 to August
2013. The panel is unbalanced in that some data are missing in the first part of the sample. We assume
that this is not related to the volatility dynamics or the credit risk mechanism in the data. The scores
in equation (9) automatically correct for the unbalancedness of the data.

For the marginal default probabilities pit , we use 1-year-ahead expected default frequencies (EDF)
obtained from Moody’s Analytics. EDFs are widely used measures of time-varying 1-year-ahead
marginal default probabilities (see Duffie et al., 2007). We do not use the EDFs to estimate the depen-
dence structure. Rather, we only use the EDFs to calibrate the model at any time to current market
perceptions of 1-year-ahead marginal default risk conditions for each firm in the sample. The copula as
estimated from the equity data subsequently takes care of the dependence structure when computing
the joint and conditional tail risk measures.

4.2. Small-Sample Study of 10 Banking Groups

Before presenting the results for the full sample ofN D 73 institutions, we first study a geographically
diversified subsample of 10 large financial firms from 10 euro area countries. We do this to study

5 It is straightforward to add exposure weights ei to the definition of DN;t in equation (15). The computations in that
case remain equally efficient. If the exposures are very unevenly distributed, however, the approximation error of the cLLN
in equation (16) might increase. To mitigate such an effect, one could try to implement a second-order expansion using a
conditional central limit theorem rather than a cLLN only.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 181

how the equicorrelation assumption may affect our joint and conditional risk measures compared to a
model with an unrestricted correlation structure. The subsample contains no missing observations and
consists of Erste Bank Group (AT), Dexia (BE), Deutsche Bank (DE), Santander (ES), BNP Paribas
(FR), National Bank of Greece (GR), Bank of Ireland (IE), UniCredito (IT), ING (NL) and Banco
Comercial Portugues (PT). We distinguish firms across different countries given the interdependence
of bank risk and sovereign risk as an important feature of the euro area sovereign debt crisis; see, for
example, ECB (2012, 2014).

4.2.1. Dependence Modeling
This section compares correlation estimates across four different dependence models. Since we use
a copula approach, the models share the same structure for the univariate volatilities. The descrip-
tive statistics in the web Appendix reveal that the return data are significantly negatively skewed and
fat-tailed. We therefore use the dynamic GHST model for the marginals.

We consider three score-driven equicorrelation specifications with one, two and three blocks,
respectively. The two-block model distinguishes firms in countries that experienced pronounced stress
during the sovereign debt crisis (Greece, Ireland, Italy, Portugal, Spain) and firms headquartered
in non-stressed countries; see Eser and Schwaab (2015) for a similar grouping of countries. The
three-block model further distinguishes firms in smaller stressed countries that entered the sovereign
debt crisis earlier (Greece, Portugal, Ireland), and larger stressed countries that entered the sovereign
debt crisis at a relatively later stage (Spain and Italy); see ECB (2014). As a benchmark, we consider
a model with a full correlation matrix with DCC dynamics as in Christoffersen et al. (2014b), which
we estimate through composite likelihood methods. As in the block equicorrelation specifications, the
DCC full correlation matrix model uses a common scalar skewness parameter � in the GHST copula.
For N D 10 firms the model with full correlation matrix contains 45 pairwise correlation coefficients,
and thus 45 dynamic factors. Correlation targeting is used to estimate the intercepts in the transition
equation for the correlations.

The first columns in Table I report parameter estimates and model selection criteria for the one-, two-
and three-block equicorrelation models for N D 10. The correlation dynamics are highly persistent
in all specifications given the high values of B , or of A C B in the case of the DCC specification.
The unconditional correlation levels are monotonically increasing in the factor intercept parameters
Q!j (see equation (7)), and are thus highest for firms in non-stressed countries (block 1). For N D 10,
both the degrees of freedom parameter and the common skewness parameter of the GHST copula have
the same sign and similar magnitudes for the block equicorrelation models (BEq[m]) and the DCC
specification.

Figure 1 plots the estimated dynamic correlations. The top left panel plots the single block equicor-
relation along with the average pairwise correlations of each firm with the other (nine) firms. The latter
correlation estimates are based on the full correlation model with 45 time-varying parameters. The
correlation estimates reveal a pronounced commonality in the correlation dynamics. This is intuitive,
as we model firms from the same industry which operate in a single-currency area and are subject
to similar regulatory requirements.6 All correlations tend to increase over the sample period, possi-
bly reflecting gradual financial integration and economic convergence in the euro area following the
inception of the euro in 1999. All correlations remain elevated during the global financial crisis from
2008 to 2010, and peak at a time when Greece, Ireland and Portugal needed the assistance of third
parties, such as the EU and the IMF in mid 2010 (see ECB, 2014). Such shared correlation dynamics
can be captured simply and conveniently by block equicorrelation structures.

We can capture a larger share of the cross-sectional dispersion in correlations when we allow for
multiple blocks. The top right panel of Figure 1 plots the dynamic correlation estimates for two groups.

6 A principal components analysis of the 45 correlation pairs from the full correlation model suggests that the first three com-
ponents explain 55.6%, 16% and 8.5% of the total variation, respectively. The first two factors therefore explain approximately
72% of the total variation in correlations.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
DOI: 10.1002/jae
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182 A. LUCAS, B. SCHWAAB AND X. ZHANG

Table I. Parameter estimates for the copula models

10 firms 73 firms

GAS-BEq [1] GAS-BEq [2] GAS-BEq [3] DCC-CL GAS-BEq [1] GAS-BEq [1]-t GAS-BEq [3]

A 0.207 0.109 0.093 0.023 0.502 0.252 0.152
(0.059) (0.022) (0.015) (0.002) (0.054) (0.039) (0.018)

B 0.983 0.992 0.993 0.963 0.990 0.986 0.996
(0.014) (0.007) (0.005) (0.003) (0.009) (0.013) (0.004)

!1 0.581 0.778 0.745 0.089 0.276 0.006
(0.214) (0.272) (0.273) (0.336) (0.288) (0.311)

!2 0.231 0.977 0.339
(0.305) (0.415) (0.302)

!3 �0.301 �0.542
(0.422) (0.448)

� 15.497 16.022 16.540 13.176 28.838 30.135 27.755
(1.156) (2.074) (1.566) (1.212) (2.579) (1.959) (1.538)

�1 �0.156 �0.118 �0.100 �0.221 �0.452 �0.475
(0.073) (0.095) (0.084) (0.034) (0.070) (0.062)

�2 �0.219 �0.126 �0.318
(0.092) (0.108) (0.069)

�3 -0.261 �0.451
(0.097) (0.078)

Log-lik. 1509.2 1549.2 1644.9 1736.3 10945.4 10911.0 11047.6
AIC �3008.4 �3084.5 �3271.7 �3464.7 �21880.7 �21812.0 �22077.2
BIC �2976.1 �3039.1 �3213.4 �3438.8 �21848.4 �21779.6 �22019.0

Note: Parameter estimates for multivariate GAS-GHST models for financial firms’ equity returns. The left-hand and right-hand
blocks refer to the copula models for N D 10 and N D 73 firms, respectively. Univariate GAS-GHST models are used
to model the marginal volatilities. The two-block model distinguishes between firms from non-stressed countries in the euro
area, i.e. Austria, Belgium, France, Germany and the Netherlands (block 1), and firms from the remaining stressed coun-
tries, i.e. Greece, Portugal, Spain, Italy, Ireland (block 2). The three-block model further distinguishes between financial firms
from non-stressed countries (block 1), larger stressed countries (Spain, Italy; block 2), and smaller stressed countries (Greece,
Portugal, Ireland; block 3). Standard errors are in parentheses. Column DCC-CL reports parameter estimates obtained by max-
imizing a composite likelihood. The reported DCC log-likelihood is the full (non-composite) log-likelihood evaluated at the
estimates obtained from maximizing the composite likelihood. We report the unconditional factor mean !j D Q!j =.1 � B/;
see equation (7). Standard errors for the time-invariant parameters are constructed from the numerical second derivatives of the
log-likelihood function.

The first group contains the Bank of Ireland, Banco Comercial Portugues, Santander, National Bank
of Greece and UniCredito. The second group includes BNP Paribas, Deutsche Bank, Dexia, Erste
Bank Group and ING. The overall dependence dynamics are similar.7 The bottom left panel plots the
correlation estimates for the three-block model, which allows for further cross-sectional dispersion in
correlation estimates. Finally, the bottom right panel compares the average correlations across models.
In addition, we provide average correlations estimated from a 52-week rolling window. The average
correlations are similar across all models. Only relatively minor deviations are observed. We conclude
that, despite its restrictive nature, the equicorrelation model reliably estimates the salient trends in
average correlation dynamics.

Although the block equicorrelation models work well in capturing the average correlations, a
substantial share of the cross-sectional dispersion in correlations may be lost when using block
equicorrelation structures; see the top left panel of Figure 1. This may or may not matter when eval-
uating joint and conditional credit risk measures. To investigate how much cross-sectional dispersion
in correlations is lost, the upper panel of Figure 2 plots R2 statistics that correspond to repeated
cross-sectional regressions of 45 correlation pairs from the GHST full-correlation-matrix model on a
constant and the corresponding correlation estimates from a two-block and three-block equicorrelation
model, respectively. By construction, the one-block equicorrelation model is unable to account for any

7 Perhaps surprisingly, the correlation between firms from non-stressed countries lies above that of firms in stressed countries,
also before the financial and sovereign debt crisis starting 2008. It is therefore probably related to different degrees of financial
integration, rather than to shared exposure to heightened market turmoil in a crisis.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 183

Figure 1. Filtered correlation estimates forN D 10 firms. The top left panel plots the correlation estimates based
on the BEq[1] model, along with the average pairwise correlation of each firm with the other nine firms. The latter
are based on the specification with full correlation matrix with 45 time-varying parameters and DCC dynamics.
The top right and bottom left panels plot the block equicorrelation estimates based on the two-block (BEq[2]) and
three-block (BEq[3]) model specification, respectively. The bottom right panel compares the average correlation
estimates from the one-block, two-block and three-block models to the average (over 45 pairs) correlation esti-
mates from a GHST full correlation DCC model, as well as the average correlation based on a 52-week rolling
window. This figure is available in color online at wileyonlinelibrary.com/journal/jae

cross-sectional variation in correlations, as it collapses the latter to a single number (i.e. a regression
on a constant). For the current sample, the two-block and three-block equicorrelation models are able
to account for approximately 20% and 50% of the cross-sectional dispersion in correlations.

The lower panel of Figure 2 plots kernel density estimates and a histogram of time series R2

statistics. These correspond to a histogram of 45 time series regressions, with T D 762 weekly obser-
vations each, of GHST full-correlation-matrix model correlations on the corresponding estimates from
a one-block, two-block and three-block equicorrelation specification, respectively. The one-block,
two-block and three-block equicorrelation models are able to account for approximately 30–50%,
40–60% and 50–70% of the time series variation in the full correlation estimates, respectively. Both
findings confirm that the simplified equicorrelation assumption can capture a large part of the varia-
tion in correlations. In the next section we highlight that the percentage of variation captured by the
BEq[m] models appears adequate for reliable estimates of our systemic risk measures.

4.2.2. Joint and Conditional Probabilities
This section compares joint and conditional default probabilities as defined in Section 3 and as implied
by different copula model specifications. We argue that the cLLN works well even when the data
dimension is very small. This is because it eliminates a source of risk (idiosyncratic risk) that does
not matter in the tail of the credit loss distribution. Only �t and &t are common to all firms and
drive extreme default clustering. In addition, block equicorrelation and full correlation models lead to
approximately similar patterns for joint and (to a lesser degree) also for conditional tail probability
estimates.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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184 A. LUCAS, B. SCHWAAB AND X. ZHANG

Figure 2. R2 statistics. The upper panel plots R2 statistics corresponding to repeated (over time) cross-sectional
regressions of 45 correlation pairs from the N D 10 GHST full-correlation-matrix model on a constant and the
corresponding correlation estimates from a two-block and three-block equicorrelation model. The lower panel
plots kernel density estimates and a histogram of 45 R2 statistics corresponding to time series regressions with
T D 762 observations each of correlations from a GHST full-correlation-matrix model on the corresponding
correlation estimates from a one-block, two-block and three-block equicorrelation model, respectively. The his-
togram refers to R2’s from the three-block equicorrelation model. This figure is available in color online at
wileyonlinelibrary.com/journal/jae

We compare the full correlation specification with a one-block and three-block copula model. In
addition, we assess the adequacy of the cLLN approximation by comparing it to a simulation-based
approach to compute joint and conditional default probabilities. The default thresholds are obtained
by inverting the GHST distribution function at the observed EDF levels. For the simulation-based
computations, we use 500,000 simulations, each at time t , where we save the number and identities of
the defaulted firms in each simulation.

The top left and right panels in Figure 3 refer to the probability of observing three or more defaults
(out of 10 firms) over a 1-year-ahead horizon. The left-hand panel compares the one-block specifica-
tion with the full-correlation-matrix outcome; the right-hand panel considers the three-block specifi-
cation. Risk measures are either simulated or computed semi-analytically based on equation (19). As
an important finding, the joint default probabilities are similar in each of the six cases. The losses from
moving from a full correlation matrix to a much simpler equicorrelation structure are generally small.
Also the losses from applying the cLLN approximation vis-á-vis the simulation approach are small in
these cases, even though N D 10 is far from infinity.

The bottom panels in Figure 3 plot the conditional probability of three or more (out of nine possible)
credit events given a credit event for a specific financial firm, averaged over all 10 firms. Again, the left-
and right-hand panels refer to the one-block and three-block model, respectively. In the one-block case,
the loss in fit from moving from a full-correlation-matrix model to the equicorrelation model is more
pronounced. This is in line with the R2 results shown in Figure 2. The cLLN approximation, however,
works relatively well. In the three-block case, the respective loss in fit is less pronounced. Here, how-
ever, the cLLN approximation appears not to work as well. This reveals an interesting trade-off when

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 185

Figure 3. Joint and conditional probabilities. The two top panels plot the joint default probability (19) of three
or more financial firm defaults out of 10. The two bottom panels plot the (average) conditional probability (20),
which is the probability of three or more (out of nine possible) defaults given a default of a specific financial
firm, averaged over all 10 firms. The probabilities are either computed using 500,000 simulations at each point in
time t , or alternatively using the cLLN approximation as discussed in Section 3 for block equicorrelation models.
The left-hand (top and bottom) panels are based on the estimated one-block equicorrelation model, while the
right-hand (top and bottom) panels are based on the estimated three-block equicorrelation model. This figure is
available in color online at wileyonlinelibrary.com/journal/jae

choosing the number of blocks. On the one hand, increasing the number of blocks can help in captur-
ing more of the cross-sectional dispersion in correlations and increases the fit in the time dimension
(see Figure 2). On the other hand, increasing the number of blocks also means fewer firms in each
block, which in turn implies that the cLLN approximation does not work as well within each block.8

Finally, the simulation-based approach can suffer from sizable simulation noise in non-crisis periods
(when marginal default probabilities are low, see bottom panels before 2007). No such problems are
encountered for the cLLN based approximation.

4.3. All 73 Euro Area Financial Firms

Given the encouraging preliminary results for the subsample of N D 10 institutions, we now turn to
the joint and conditional tail risk measures based on the full panel of 73 large financial-sector firms.
The sample contains commercial banks as well as financial non-banks such as insurers and investment
companies. All are listed at a stock exchange.9 Based on descriptive statistics as presented in the web
Appendix, univariate GHST models seem appropriate given the skewness and kurtosis features of the
equity return data.

8 Recall that the three-block model contains five, three and two firms in each block. The cLLN hardly applies in the latter two
cases, particularly given the low loading to the common �t for the stressed small countries shown in Figure 1.
9 Freezing the set of firms as the constituents of a broad-based equity index in 2011:Q1 means that we may underestimate total
euro area financial sector risk prior to this date (due to sample selection; weaker firms may have dropped out of the index by
then). While this concern should be kept in mind, it is unlikely to be large, as most financial institutions under stress during
the financial crisis continued to operate, also due to substantial government aid and the extension of public sector guarantees.
Sample selection is no issue after 2011:Q1.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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186 A. LUCAS, B. SCHWAAB AND X. ZHANG

4.3.1. Dependence Modeling
Figure 4 plots the correlation estimates. For parameter estimates, we refer to Table I. We use the same
model specifications as described in Section 4.2, but now estimated on the full sample of N D 73

firms. The equicorrelation estimates (top left) range from low values of approximately 0.1 in 2000
to values as high as 0.6 towards the start of the sovereign debt crisis in 2010. Using the two block
structure (top right), there appear to be only small differences between financial firms from stressed
versus non-stressed countries, except during the peak of the sovereign debt crisis between 2011 and
2012. The bottom left panel of Figure 4 introduces further heterogeneity by modeling the dynamic
correlation for firms from Greece, Ireland and Portugal on the one hand, and Italy and Spain on the
other. Again, the rationale for this grouping is that Ireland, Greece and Portugal entered the euro area
sovereign debt crisis earlier, and were relatively more stressed, compared with Spain and Italy. This
distinction may matter for our inference on financial-sector tail risks around 2012. We obtain a lower
correlation level among financial institutions from the first group of smaller stressed countries. The
correlation rises after the financial crisis up to the start of 2010, and then decreases to pre-crisis levels
around 2012. By contrast, the correlation for financial firms from Italy and Spain starts to rise earlier,
peaks higher and remains high until the end of the sample. If we consider the average correlations
across all 73.73 � 1/=2 D 2628 pairs in the bottom right panel, the picture emerging from all three
model specifications is similar.

Our equity panel dataset is characterized by a substantial amount of common variation across corre-
lations. A principal components analysis (PCA) of 52-week rolling window correlations suggests that
the first three components explain approximately 43%, 22% and 12% of the total variation in pair-wise
correlations, respectively. This suggests that a three-block model specification—which allows for
six different correlations at each point in time—should capture a substantial share (approximately
60–75%) of the common time series variation of all 2628 full correlations. This is the case. Figure 5

Figure 4. Filtered correlation estimates for all N D 73 financial firms. The panels plot GHST block equicor-
relation estimates from different block equicorrelation models: one-block (top left), two-block (top right) and
three-block (bottom left). The fourth panel benchmarks the block equicorrelation estimates to the average corre-
lation taken across 73.73 � 1/=2 D 2628 pairwise estimates based on a 52-week rolling window. This figure is
available in color online at wileyonlinelibrary.com/journal/jae

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 187

Figure 5. R2 statistics. The upper left panel plots R2 statistics corresponding to repeated (over time)
cross-sectional regressions of 2628 correlation pairs from the N D 73 rolling window correlation (window
size 52) model on a constant and the corresponding correlation estimates from a two-block and three-block
equicorrelation model. The upper right panel plots kernel density estimates and a histogram of 2628 R2 statistics
corresponding to time series regressions with T D 762 observations each of rolling window correlation (window
size 52) on the corresponding correlation estimates from a one-block, two-block and three-block equicorre-
lation model, respectively. The histogram pertains to R2’s from the three-block equicorrelation model. The
bottom two panels are equivalent to the respective above panels, but use the 2628 correlation pairs from the
N D 73 DCC-CL-GHST model instead of rolling window correlations as the left-hand-side variable. This figure
is available in color online at wileyonlinelibrary.com/journal/jae

reports cross-sectional (left) and time series R2 statistics (right) for our large-dimensional N D 73
case. Full correlation estimates are obtained from either rolling window correlations, or are based on
the maximization of a composite likelihood as in Christoffersen et al. (2012).10

4.3.2. Joint and Conditional Tail Risk
This section presents our joint and conditional tail risk estimates for financial sector firms in the euro
area. For the joint default probability, we consider the probability that more than Nc D 7=73 � 10% of
currently active financial institutions experience a credit event over the next 12 months. The probability
of such widespread and massive failure should typically be very small during non-crisis times. We plot
the result in the upper panel of Figure 6.

Different copula specifications yield strikingly similar results. As the joint probability moves rel-
atively little before 2008, we only plot it over the period 2006–2013. For a comparison of joint and
conditional risk outcomes for a variety of GHST and symmetric-t copula specifications we refer to the
web Appendix.11 The joint probability moves sharply upwards after the bankruptcy of Lehman Broth-
ers in September 2008, and reaches a first peak during the Irish sovereign debt crisis in the Spring of

10 Alternatively, we could get full correlation estimates by running bivariate DCC models per pair rather than going though the
composite likelihood approach. We expect differences to be minor.
11 The likelihood of the single block equicorrelation model drops by approximately 34.4 points if the restriction of symmetry
is imposed; see Table I. This pronounced difference in log-likelihood, in line with Akaike information criterion (AIC) and
Bayesian information criterion (BIC), strongly suggests a better fit of the asymmetric model.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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188 A. LUCAS, B. SCHWAAB AND X. ZHANG

Figure 6. Joint and average conditional tail probabilities. The top panel plots the joint tail probability that more
than seven financial firms ( Nc D 7=73 � 10%) experience a credit event over a 12-month-ahead horizon, at any
time t . The bottom panel plots the average conditional risk measure, the average (over all 73 financial firms)
conditional probability that more than Nc.�i/ D 7=72 � 10% financial firms default given a default for a given
firm i . In each case, computations are based on a GAS-BEq[1], GAS-BEq[3] and DCC-CL full correlation model,
respectively. Computations rely on the conditional law of large numbers approximation for the GHST BEq[m]
models, and on simulation for the DCC composite likelihood model. The vertical lines in the top panel indicate the
following events: (a) the allotments of two 3-year long-term refinancing operations by the ECB on 21 December
2011 and 29 February 2012; (b) a speech by the ECB President (‘whatever it takes’) on 26 July 2012; (c) the
OMT announcement on 2 August 2012; and (d) the announcement of the OMT technical details on 6 September
2012. This figure is available in color online at wileyonlinelibrary.com/journal/jae

2009. It remains approximately constant thereafter until the onset of the sovereign debt crisis in early
2010. It reaches a first peak in late 2011, followed by a second and final peak mid 2012.

The vertical lines in the top panel of Figure 6 indicate a number of relevant policy announcements.
In late 2011, the announcement and implementation of two 3-year long-term refinancing operations
(3y-LTROs, allotted in December 2011 and February 2012) had a visible but temporary impact on
financial sector tail risk.12 In particular, the announcement and allotment of two 3y-LTROs in Decem-
ber 2011 and February 2012 appear to have lowered financial-sector joint tail risk, temporarily, for a
few months. In the first half of 2012, financial-sector joint tail risk picked up again and rose to unprece-
dented levels until July 2012. The three vertical lines from July to September 2012, together with the
time variation in the joint default probability, strongly suggest that three events collectively ended the

12 See ECB (2011) for the official press release and monetary policy objectives.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. 32: 171–191 (2017)
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EURO AREA FINANCIAL SECTOR JOINT TAIL RISK 189

most acute phase of extreme financial-sector joint tail risks. These are a speech by the ECB President
in London to do ‘whatever it takes’ to save the euro on 26 July 2012, the announcement of the ECB’s
Outright Monetary Transactions program on 2 August 2012, and especially the disclosure of the OMT
details on 6 September 2012. The joint default probability decreases sharply, all the way until the end
of the sample. The OMT is a program within which the ECB can purchase (‘outright transactions’)
bonds issued by euro area member states in secondary sovereign bond markets, under certain condi-
tions. We refer to ECB (2012) and Coeuré (2013) for details. No purchases have yet been undertaken
by the ECB within the OMT. Instead, the mere announcement of the program was sufficient to trigger
the substantial decline in financial sector joint tail risk.

The bottom panel of Figure 6 presents the average (across institutions) conditional tail probabil-
ity for the 73 firms in our sample. Again, different copula model specifications yield similar results,
although there are some discrepancies in the first third of the sample leading up to the financial crisis.
Conditional probability estimates are also more sensitive to the choice of skewed or non-skewed cop-
ula; see the web Appendix for details. Also, the DCC-based conditional measures appear to be much
less responsive to the different historical events. This is in line with the well-known phenomenon that
the dynamics of DCC models become relatively flat in high dimensions. The equicorrelation model
is much less susceptible to this bias. Though the composite likelihood approach for estimation partly
corrects the potential bias in the DCC estimates, Figure 6 illustrates that the equicorrelation model
picks up more of the dynamics in the series.

At the start of the sample, there is little evidence of systemic clustering on average with low levels
of the CRM between 10% and 40%. The conditional probability rises following the Lehman Brothers
bankruptcy to levels of approximately 60%, and then to approximately 80% around the peak of the
sovereign debt crisis. Such high levels of conditional tail probabilities signal strong interconnectedness
among euro area financial institutions. Interestingly, the conditional tail probability is still quite high
towards the end of the sample, despite the collapse in joint risk as shown in the top panel. The OMT
announcements apparently did not lower market perceptions of conditional (or contagion) risks in the
euro area financial system as a whole to a comparable extent.

As a final result, unconventional monetary policy measures, such as the 3y-LTROs and the OMT
announcements, and financial stability tail risk outcomes appear strongly related. This suggests sub-
stantial scope for the coordination of monetary, macro-prudential and bank supervision policies. This
is relevant as both monetary policy and banking supervision have been carried out jointly by the ECB
since November 2014.

5. CONCLUSION

We developed a novel modeling framework for estimating joint and conditional tail risk probabilities
over time in a financial system that consists of numerous financial sector firms. For this purpose, we
used a copula approach based on the generalized hyperbolic skewed Student’s t (GHST) distribution,
endowed with score-driven dynamics. Parsimony and flexibility were traded off by using a dynamic
block equicorrelation structure. Using this structure, we were able to implement efficient approxima-
tions based on a conditional law of large numbers to compute joint and conditional tail probabilities of
multiple defaults for a large set of firms. An application to euro area financial firms from 1999 to 2013
revealed unprecedented joint default risks between 2011 and 2012. We also document the collapse of
these joint default risks (but not conditional risks) after a sequence of announcements pertaining to the
ECB’s Outright Monetary Transactions program in August and September 2012.
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