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This paper analyzes a wide range of flexible drift and diffusion specifications of stochastic-volatility 

jump–diffusion models for daily S&P 500 index returns. We find that model performance is driven al- 

most exclusively by the specification of the diffusion component whereas the drift specifications is of 

second-order importance. Further, the variance dynamics of non-affine models resemble popular non- 

parametric high-frequency estimates of variance, and their outperformance is mainly accumulated during 

turbulent market regimes. Finally, we show that jump diffusion models yield more reliable estimates for 

the expected return of variance swap contracts. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

This paper analyzes the performance of a wide range of

tochastic variance model specifications. Our goal is twofold. First,

e aim to study in a very flexible framework the role of vari-

us alternative model choices: linear vs non-linear variance drift,

inear vs non-linear variance diffusion, Box–Cox transformed vari-

nce, and various alternative jump specifications. A large number

f models of varying degrees of complexity have been proposed

n the literature rather independently of each other. 1 We aim to

ring together recent model developments in this strand of litera-

ure by analyzing the impact of various extensions on model per-
∗ Corresponding author 

E-mail addresses: a.kaeck@sussex.ac.uk (A. Kaeck), 

.rodrigues@maastrichtuniversity.nl (P. Rodrigues), n.j.seeger@vu.nl (N.J. Seeger). 
1 A non-exhaustive list of papers in this strand of the literature includes Bakshi 

t al. (1997) , Andersen et al. (2002) , Chernov et al. (2003) , Eraker et al. (2003) , Jones 

20 03a) , Jones (20 03b) , Christoffersen et al. (20 09) , Christoffersen et al. (2010) , 

gloff et al. (2010) , Bandi and Reno (2016) , Bates (2012) , Ornthanalai (2014) , Yu 

t al. (2006) , and Zhang and King (2008) . 
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378-4266/© 2017 Elsevier B.V. All rights reserved. 
ormance. Our second goal is to provide new out-of-sample evi-

ence. We do this by comparing variance predictions of models es-

imated on daily return data with non-parametric estimates based

n high frequency returns. Recently, new parametric models have

een proposed and estimated to high-frequency returns, see Stroud

nd Johannes (2014) or Bates (2016) . To capture stylized facts, such

odels require several latent state variables and need to account

or market microstructure effects such as intradaily seasonality in

olatility. Rather than estimating models on high-frequency data,

e ask whether models estimated on lower frequency returns are

ble to generate features calculated from intra-daily returns and

hich model features are important to do so (see Hansen and

unde, 2006 ). Finally, we study the impact of model specification

n expected returns of variance swap contracts. 

Overall, the literature has reached an understanding that stan-

ard affine stochastic volatility models (as, for instance, in Heston,

993 ) struggle to explain a range of stylized facts in equity re-

urn data, such as sudden sharp price movements or fast-moving

ariance processes. In order to address some of the shortcom-

ngs of standard affine asset price processes, non-affine drift and

http://dx.doi.org/10.1016/j.jbankfin.2017.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2017.06.010&domain=pdf
mailto:a.kaeck@sussex.ac.uk
mailto:p.rodrigues@maastrichtuniversity.nl
mailto:n.j.seeger@vu.nl
http://dx.doi.org/10.1016/j.jbankfin.2017.06.010
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diffusion functions of various complexity have been proposed in

the literature. Chan et al. (1992) , Ait-Sahalia (1996) and Jones

(2003a) provide evidence of non-linearities in interest rate dy-

namics, and Bakshi et al. (2006) , Christoffersen et al. (2010) and

Mijatovic and Schneider (2014) among others document support

for non-linear model specifications for equity dynamics. Yu et al.

(2006) and Zhang and King (2008) follow a different methodology

and model Box–Cox transformations of affine variance processes

which introduces non-linearities into the return specification via

the inverse Box–Cox transformation. One widely used example is

the log-variance model, which is a special case of the Box–Cox

transformation (see Yu, 2005 ). 

Although the literature has advanced to an understanding that

non-affine models may alleviate some of the shortcomings, non-

affine models have attracted far less attention in the literature to

date and the affine model class of Duffie et al. (20 0 0) remains

very widely used in practice as well as in the academic literature.

This is due to the fact that affine models allow for quasi closed-

form solutions for European option prices, dynamic asset allocation

rules, and transition densities used in econometric estimation. The

lack of mathematical tractability has hindered further research on

non-affine model dynamics. 2 However, since non-affine models can

overcome some of the detriments of affine models it is important

to understand the differences between different model classes and

how non-affine models improve beyond affine models. 

This paper provides several novel contributions. First, we pro-

vide a highly flexible modeling approach that encompasses a wide

range of specifications previously introduced to the literature and

hence we are able to compare the performance of alternative mod-

els along various dimensions. Using this general modeling frame-

work we then analyze the extent to which extensions in the drift,

diffusion or jump component of the variance process improve

model performance. We also estimate and compare Box–Cox trans-

formations of the variance process. Secondly, following Hansen and

Lunde (2006) , we use non-parametric realized variance (RV) esti-

mated from high-frequency return data as a benchmark for model

comparison. This allows us to perform an out-of-sample study of

estimated variance paths to test the ability of alternative models to

explain the variation in realized variance. 3 RV estimators have also

been used as a benchmark in Christoffersen et al. (2010) , who use

quantile-to-quantile plots to learn about non-affine structures of

variance dynamics, and Mijatovic and Schneider (2014) who use RV

estimators as a benchmark for variance forecasting performance.

However, the focus in our paper is on the comparison of the two

variance measures over time. This approach allows us to assess

model performance for different market environments (high vs.

low volatility) and to visualize the ability of alternative models to

cope with extreme market regimes. We provide regression results

to study to what extent model-based variances explain the varia-

tion in realized variance. Thirdly, we provide a range of new ro-

bustness checks. Continuous-time models require computationally

time-consuming estimation procedures, which in turn often rule

out the possibility of comprehensive robustness checks or rolling

window estimations. We provide estimation results for more than

30 models and various subsamples to study model performance

over time and to ensure our results are not specific to a particular

sample period. We also test the stability of structural model pa-

rameters over time to provide evidence of parameter and estima-

tion stability. Fourthly, we investigate the impact of model choice

on the estimation of expected returns of popular variance swap
2 Note that Aït-Sahalia and Kimmel (2007) , Jones (2003b) , Benzoni (2002) , 

Christoffersen et al. (2010) and Kaeck and Alexander (2012) analyze option pricing 

for non-affine stochastic volatility models. 
3 This allows us to gage the ability of alternative model specifications to recover 

model-free variance estimates. 

f

a

ontracts. Finally, we investigate how the inclusion of a realized

ariance measure in the estimation process changes our model

anking results. 

Estimation is carried out within a Bayesian statistical frame-

ork. We use a Markov Chain Monte Carlo (MCMC) sampling algo-

ithm and apply the Adaptive Rejection Metropolis Sampling step

ARMS) proposed by Gilks et al. (1995) whenever complete condi-

ional distributions are of unknown form. We use the deviance in-

ormation criterion (DIC) proposed by Spiegelhalter et al. (2002) to

easure model fit based on return data. This measure allows a

onsistent comparison across different models while taking into

ccount the complexity of the model specification and estima-

ion risk. Our comparison of model-based and realized variances

s based on two different variance estimators. As a by-product of

odel estimation, we first obtain smoothed estimators of all latent

tate variables (in particular stochastic variance and jump times).

owever, smoothed variance is estimated by conditioning on the

ntire return data set and hence is not directly comparable to

V, which is calculated from intra-daily returns only. We therefore

lso use filtered variance estimators that are consistent with RV in

erms of the information set, since they only require index return

ata up to the time of the estimate. 4 

For the case in which non linearities are captured in the vari-

nce process, our most general model specification is closely re-

ated to a range of papers on non-affine model dynamics. Our

ariance models are build on diffusion processes proposed in Ait-

ahalia (1996) who allows for non-linearities in both the drift

nd diffusion specification to model interest rate dynamics. Bakshi

t al. (2006) also build on the framework in Ait-Sahalia (1996) and

se variance specifications similar to the ones employed in our

ork. The empirical analysis in Bakshi et al. (2006) , however, dif-

ers substantially from ours as their estimation is performed on

he VIX index, whereas we estimate all model dynamics from re-

urn data. This allows us to obtain consistent model predictions

hich are unaffected by structural assumptions about the risk pre-

ium that is incorporated into VIX dynamics. Following Eraker

t al. (2003) , our models also allow for jumps in both returns and

ariance. Our work is also related to a range of papers that ex-

end the dynamics in Heston (1993) to a CEV-type process and use

IX data for model estimation. Jones (2003b) and Aït-Sahalia and

immel (2007) analyze a pure stochastic volatility diffusions, Duan

nd Yeh (2010) also allow for jumps in returns and Kaeck and

lexander (2012) provide further extensions to multi-factor volatil-

ty and variance jumps. This literature agrees on the non-linearities

n the variance diffusion function, but maintains the assumption of

 linear variance drift to retain tractability. Chourdakis and Dotsis

2011) and Mijatovic and Schneider (2014) find evidence for non-

inearities in the drift. Similarly, Christoffersen et al. (2010) and

gnatieva et al. (2015) propose a set of non-affine stochastic volatil-

ty specifications and highlight the importance of non-linearity. 5 

ur model includes various specifications mentioned above as a

pecial case, by either allowing for more general dynamics of vari-

nce or extending the models by the possibility of jumps. In con-

rast to this literature, Box–Cox transformations for financial time

eries have been used in Yu et al. (2006) or Zhang and King (2008) .

o the best of our knowledge our paper is the first that compares

oth model frameworks. 6 
4 We employ an extension of the particle filter proposed in Johannes et al. (2009) . 
5 Bandi and Reno (2016) propose a non-parametric model framework that allows 

or capturing non-affine structures in stochastic volatility. They use daily returns 

and intraday measures of threshold bipower variation that are based on one-minute 

price observations to estimate the variance. 
6 We thank an anonymous referee for the suggestion to add this model class as 

n alternative way to model non-linearities in stochastic processes for stock returns. 



A. Kaeck et al. / Journal of Banking and Finance 83 (2017) 85–103 87 

 

s  

s  

B  

p  

s  

a  

d  

t  

m  

w  

i  

f  

o  

m  

t  

b  

t  

t  

fi  

o  

i  

t  

m

2

 

t  

f

d

d

w  

n  

s  

p  

a  

t  

i  

i  

t  

n  

ξ  

s  

t

α

β

T  

i  

a  

I  

fi  

(  

n

C  

s  

a  

t  

i  

i  

s  

d  

i  

r  

i  

w  

‘

 

l  

l  

f

d

d

w

H

a

g

N  

o  

t  

t  

i  

v  

h  

p  

r

 

t  

t  

s  

a  

r  

v  

e  

E  

f  

a  

P  

o  

a  

t  

P  

o  

i  

i  

s  
Our results can be summarized as follows. First, non-affine

pecifications clearly outperform affine counterparts. Second, we

how that non-affine modeling of the variance process outperforms

ox–Cox transformed specifications. Third, we show that model

erformance is almost exclusively driven by the choice of the diffu-

ion specification. The best performing models are equipped with

 non-affine diffusion specification and are therefore able to pro-

uce large sudden movements in variance, an empirical feature

hat is also evident in RV paths. This implies that the drift can be

odeled with a simple affine function, leading to a model frame-

ork with a lower number of parameters. Overall, this also results

n a faster and more stable estimation procedure compared to a

ull general non-affine drift and diffusion model. Furthermore, we

bserve almost identical model performance during low volatility

arket regimes, whereas performance differs substantially during

imes of high market volatility. That is, model complexity is most

eneficial during periods of market turmoil. Moreover, we show

hat incorporating jumps into the models improves the estima-

ion of expected variance swap returns. Consistent with our earlier

ndings, the diffusion part of the specification is the main driver

f these results. Finally, we show that our conclusion remain valid

f we extend the information set in the estimation and estimate

he models using both daily returns as well as a realized variance

easure. 

. Model description 

For our benchmark models, we assume that the logarithm of

he index value Y t = ln (S t ) and its diffusive variance V t solve the

ollowing system of stochastic differential equations: 

Y t = μ dt + 

√ 

V t dW 

y 
t + d 

( 

N t ∑ 

j=1 

ξ y 
j 

) 

(1) 

V t = α(V t ) dt + β(V t ) d W 

v 
t + d 

( 

N t ∑ 

j=1 

ξ v 
j 

) 

(2) 

here dW 

y 
t and dW 

v 
t denote Brownian motion increments with

on-zero correlation, i.e. E(d W 

y 
t d W 

v 
t ) = ρ dt . 7 We assume a con-

tant drift term μ in the log process, and N t denotes a Poisson

rocess with constant jump intensity λ. Jumps in the state vari-

bles are contemporaneous, as we assume that N t enters both

he return and variance equation (hence we follow the literature

n assuming simultaneous jumps, see Eraker, 2004 ). Jump sizes

n variance ξ v follow an exponential distribution with expecta-

ion μV , i.e. ξ v 
t ∼ E (μV ) , and jumps in returns are conditionally

ormally distributed with mean μY + ρJ ξ
v 
t and variance σ 2 

Y 
, i.e.

y 
t | ξ v 

t ∼ N 

(
μY + ρJ ξ

v 
t , σ

2 
Y 

)
. Finally, the functions α( V t ) and β( V t )

pecify, respectively, the drift and the diffusion of the variance. In

he most general form, these functions are given by 

(V t ) = α0 + α1 
1 

V t 
+ α2 V t + α3 V 

2 
t , (3) 

(V t ) = β0 + β1 V t + β2 V 

β3 

t . (4) 

his general specification nests many continuous-time models used

n the literature. Restricting the jump intensity to zero results in

 stochastic volatility (SV) model with continuous sample paths.

n this model class, the unrestricted drift and diffusion speci-

cation for the variance (called PolyPoly ) is used in Ait-Sahalia

1996) to analyze short rate models. 8 Conley et al. (1997) and
7 We use the standard notation E ( ·) for the expectation. 
8 In their most general form the functions α and β are not polynomial, but we 

evertheless follow Ignatieva et al. (2015) in using this name convention. 

c  

w

hourdakis and Dotsis (2011) use a specification where the diffu-

ion parameters β0 and β1 are set to zero (labeled PolyCev ) when

nalyzing short rate models and equity returns. Further restricting

he drift parameters α1 and α3 to zero (called AffineCev ) results

n the SV model used in Jones (2003b) for the analysis of equity

ndex dynamics. Fixing the parameter β3 to either 1 
2 , 1 or 3 

2 re-

ults in the models analyzed in Christoffersen et al. (2010) . These

iffusion assumptions are labeled Sqr, One and 3/2 . Finally, restrict-

ng the parameters α1 , α3 , β0 and β1 to zero, and fixing the pa-

ameter β3 at 1 
2 , results in the stochastic volatility model analyzed

n Heston (1993) . This specification is the only fully affine model,

hich we label AffineSqr . We refer to these model specifications as

variance models’. 

Alternatively, we use a Box–Cox transformation to model non-

inearities and assume that the logarithm of the index value Y t =
n (S t ) and the Box–Cox transformation of the process H t solve the

ollowing system of stochastic differential equations 

Y t = μ dt + 

√ 

g(H t ) dW 

y 
t + d 

( 

N t ∑ 

j=1 

ξ y 
j 

) 

(5) 

H t = (α0 + α2 H t ) d t + β0 d W 

h 
t + d 

( 

N t ∑ 

j=1 

ξ v 
j 

) 

(6) 

here 

 t = 

{(
V 

δ
t − 1 

)
/δ if δ � = 0 

ln (V t ) if δ = 0 

nd the inverse transformation being given by 

(H t ) = 

{
( 1 + δH t ) 

1 /δ
if δ � = 0 

exp (H t ) if δ = 0 . 

ote that the variable H t is modeled as an affine process but the

verall specification is non-affine due to the non-linear transforma-

ion g ( H t ) in the return process. The additional parameter δ con-

rols the degree of non-linearity in the return process. As shown

n Yu et al. (2006) the model reduces to several known stochastic

ariance specifications for different parameter combinations. We

ave also experimented with further non-affine extensions of the

rocess H t , but find that such models are over-parametrized. 9 We

efer to these model specifications as ‘Box–Cox variance models’. 

Including a jump component in the return process allows us

o model large return outliers, and the model class with stochas-

ic volatility and jumps in prices (labeled SVJ) has attracted con-

iderable interest in the literature. Bates (1996) for instance uses

n affine version of this model to analyze the pricing of exchange

ate options. Including a jump component in the return and the

ariance process leads to the SVCJ model introduced in Duffie

t al. (20 0 0) , a specification further studied in Eraker et al. (2003) ,

raker (2004) and others. We employ a constant jump intensity

ramework in our analysis, a set-up frequently used in the liter-

ture (see Eraker et al., 2003; Broadie et al., 2007; Ferriani and

astorello, 2012 and Durham, 2013 ). We note that the assumption

f a constant jump intensity λ can be relaxed, as it has been in

 number of studies, allowing for more flexibility but at the same

ime introducing more complexity. For example, Bates (20 0 0) and

an (2002) assume that the jump intensity is an affine function

f return variance, Santa-Clara and Yan (2010) estimate a model

n which the jump intensity follows a stochastic process that is

ndependent of the variance, and Durham and Park (2013) as-

ume a Markov switching model for the intensity. Since the fo-

al point of this paper is to study the importance of the drift vs
9 One special case of the Box–Cox transformation is the log variance processes, 

hich is given by restricting the Box–Cox parameter to δ = 0 . 
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Table 1 

Overview of Models. 

This table shows the different specifications of the drift and diffusion terms for the dynamics of the 

stochastic variance. For each model class SV, SVJ, and SVCJ, we estimate all specifications provided in 

this table. 

Drift Diffusion Features 

Affine Sqr Variance drift is affine in variance, square root diffusion ( β3 = 0 . 5 ) 

Affine One Variance drift is affine in variance, linear diffusion ( β3 = 1 ) 

Affine 3/2 Variance drift is affine in variance, 3/2 diffusion ( β3 = 1 . 5 ) 

Affine Cev Variance drift is affine in variance, free diffusion ( β3 ∈ [0.5; 1.5]) 

Affine Sqr Variance drift is affine in variance, diffusion is polynomial 

Poly Sqr Variance drift is polynomial in variance, square root diffusion ( β3 = 0 . 5 ) 

Poly One Variance drift is polynomial in variance, linear diffusion ( β3 = 1 ) 

Poly 3/2 Variance drift is polynomial in variance, 3/2 diffusion ( β3 = 1 . 5 ) 

Poly Cev Variance drift is polynomial in variance, free diffusion ( β3 ∈ [0.5; 1.5]) 

Poly Poly Variance drift is polynomial in variance, diffusion is polynomial 

BoxCox Box–Cox transformed process is affine, transformation into return is non-linear 
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the diffusion function of the variance process, we avoid additional

complexity by assuming constant jump intensities. Equipped with

three model classes (SV, SVJ, SVCJ), two variance drift specifica-

tions ( Poly, Affine ), five variance diffusion specifications ( Cev, Sqr,

One, 3/2, Poly ), and the Box–Cox transformation we analyze a to-

tal of thirty-three models which are listed in Table 1 . For ease of

exposition, we only present results for a subset of models and re-

move detailed results whenever the model performance is indistin-

guishable from related specifications. The complete set of results is

available from the authors on request. 

3. Estimation methodology 

3.1. Discretization 

For model estimation, we follow Eraker et al. (2003) and use

a standard Euler scheme with discretization interval 	 set to one

trading day, i.e. 	 = 1 . Denoting R t = 100 × (Y t − Y t−1 ) as the daily

percentage log return of the S&P 500 index, the discretized version

of the system of Eqs. (1) and (2) can be expressed as 

R t = μ + 

√ 

V t−1 ε 
y 
t + ξ y 

t J t (7)

 t = V t−1 + α0 + α1 
1 

V t−1 

+ α2 V t−1 + α3 V 

2 
t−1 

+ 

(
β0 + β1 V t−1 + β2 V 

β3 

t−1 

)
ε v t + ξ v 

t J t , (8)

where shocks to the return and variance equation are given by

ε y t = W 

y 
t − W 

y 
t−1 

and ε v t = W 

v 
t − W 

v 
t−1 

, and follow a bivariate normal

distribution with zero expectation, unit variance and correlation ρ .

In the Euler discretization scheme, we limit the number of jumps

per day to a maximum of one, hence we set the indicator J t to

one in the event of a jump (which occurs with probability λ) and

equal to zero in the case of no jump. Note that the jump indicator

J t in the return equation is identical to the indicator in the vari-

ance equation, since jumps occur simultaneously. The jump sizes

retain the distributional assumptions described in Section 2 . 10 For

technical details regarding the discretization schemes and the ex-

istence of stationary distributions of the models, as well as simu-

lation results, the reader is referred to Ait-Sahalia (1996) , Conley

et al. (1997) , Eraker et al. (20 03) , Jones (20 03a) and Jones (20 03b) .
10 The assumption of at most one jump per day could lead to some discretization 

bias when estimating jump parameters. However, the following example demon- 

strates that since jumps are rare events, discretization bias is typically very small. 

Using P(N t − N t−1 = j) = 

exp {−λ} λ j 

j! 
and assuming the jump intensity to be λ = 0 . 1 , 

the probability of observing more than one jump per day is 0.0047. Note that our 

estimation results indicate estimates for λ much smaller than 0.1. 

r  

t  

G  

s

 

p  

t  
he discretized version of the system of Eqs. (5) and (6) can be

xpressed as 

 t = μ + 

√ 

g(H t−1 ) ε 
y 
t + ξ y 

t J t (9)

 t = H t−1 + α0 + α2 H t−1 + β0 ε 
h 
t + ξ v 

t J t , (10)

here shocks to the Box–Cox transformed variance equation are

iven by ε h t = W 

h 
t − W 

h 
t−1 

. 

The simple Euler scheme may result in a discretization bias in

ur estimation. We know from prior literature, i.e., Eraker et al.

20 03) , Li et al. (20 08) , and Yu et al. (2006) that this bias is

egligible for affine model specifications and the Box–Cox trans-

ormed variance models. It is therefore unlikely that the Euler

cheme produces a substantial bias when estimating non-affine

ump–diffusion models. In order to rule out this possibility we ex-

end the simulation results in the literature. To this end, we choose

true’ model parameters similar to estimates reported in the re-

ated literature. Using an Euler discretization with 100 time steps

er day, we first simulate 100 artificial sample paths which are

sed to calculate 40 0 0 daily return observations. Our results in

able 15 in the Appendix show that for all three tested models ( SV

olyPoly, SVJ PolyPoly and SVCJ PolyPoly ) the estimation methodol-

gy is very accurate and the time-discretization does not introduce

ny notable bias in the estimation results. All root mean squared

rrors (RMSE) are very low and even the estimation of jump pa-

ameters that are notoriously difficult to estimate due to their rare-

vent character provide satisfactory results. 

.2. Estimation 

Because of their advantages for estimating models with latent

tate variables, we employ Bayesian estimation and model testing

ethods based on Markov Chain Monte Carlo (MCMC) sampling al-

orithms. In the context of estimating equity return models, MCMC

ethods were pioneered by Jacquier et al. (1994) and Jacquier

t al. (2004) and have subsequently been successfully applied to

 plethora of models as well as to different financial and economic

ime-series data. Below, we provide a brief overview of the sam-

ling algorithm for the PolyPoly model in the SVCJ class, since this

pecification is the most complex in our analysis. Estimation algo-

ithms of the nested models follow accordingly. For a general in-

roduction to MCMC methods, the reader is referred to Casella and

eorge (1992) , Chib and Greenberg (1995) , and Johannes and Pol-

on (2009) . 

Bayes’ theorem implies that the posterior distribution of the

arameters and the latent states is proportional to the likelihood

imes the prior distribution. Using the Euler discretization, it fol-
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12 For details of computation we refer to Spiegelhalter et al. (2002) and Berg et al. 

(2004) 
13 For full details on the algorithm we refer to Johannes et al. (2009) 
ows that the posterior distribution is proportional to 

T ∏ 

t=1 

p(R t , V t | V t−1 , ξ
y 
t , ξ

v 
t , J t , �) × p(ξ y 

t | ξ v 
t , μY , ρJ , σY ) 

×p(ξ v 
t | μV ) × p(J t | λ) × p( �) (11) 

here the vector � = 

{
μ, ρ, α0 , α1 , α2 , α3 , β0 , β1 , β2 , β3 , λ, μJ , σJ , 

ρJ , μV 

}
collects all model parameters. We assume independent pa-

ameter priors so that the prior for the full parameter vector p ( �)

an be decomposed into the product of univariate parameter pri-

rs. We follow Eraker et al. (2003) and use priors with very large

ariances such that our results are solely driven by the information

n the data and not by assumptions about the prior distribution.

e refer the reader to Eraker et al. (2003) regarding details on the

ssumed prior distributions. 

We decompose the high-dimensional posterior into one-

imensional complete conditional distributions and draw every pa-

ameter and latent variable individually. We use conjugate prior

istributions whenever possible; in particular, we draw the pa-

ameter μ, all α parameters, and latent states and parameters of

he jump processes from known distributions. For the derivation

f the complete conditionals in these cases, the reader is referred

o Ignatieva et al. (2015) . To draw parameters with unknown com-

lete conditional distribution ( β ’s, ρ , and the variances) we use

he Adaptive Rejection Metropolis Sampling (ARMS) algorithm de-

eloped in Gilks et al. (1995) . This algorithm is computationally

ntensive but provides very advantageous estimation results, as re-

orted in Li et al. (2008) , as rejection rates in the MCMC algorithm

re typically extremely low and the mixing of the chain is compa-

able to the case when parameters can be directly drawn from a

omplete conditional distribution. 11 

For the Box–Cox transformed model specifications we employ

he same Bayesian estimation methodology. The structure of the

odel, however, leads to further complexity in the estimation al-

orithm to ensure that the daily variance implied by the draw of

he Box–Cox transformation exists. Note that 

(H t ) = 

{
( 1 + δH t ) 

1 /δ
if δ � = 0 

exp (H t ) if δ = 0 . 

n order to ensure positivity of the variance process when draw-

ng the Box–Cox transformed variables H t , interrelations between δ
nd H t have to be taken into account. In particular, since δ is neg-

tive in our estimation we have to make sure that (1 + δH t ) > 0

or V t to be real-valued. Furthermore, the draw of δ given the

ime series of H t also needs to ensure the existence of V t , i.e.,

(1 + δH t ) > 0 . We account for this by truncating the proposal for

 t in our draws to be of the set H t > −1 /δ and restrict proposals

or δ to neighborhood of previous draws. 

.3. Model comparison 

We compare the models under consideration along two dimen-

ions, namely model fit and estimated variance paths. As a mea-

ure of model fit, we use the deviance information criterion (DIC)

erived in Spiegelhalter et al. (2002) . DIC is employed to compare

tochastic variance models for equity index returns by Berg et al.

2004) who show in a simulation study that DIC is capable of ad-

quately ranking competing stochastic volatility models for equity

eturns. Similar to other non-Bayesian fit statistics, DIC penalizes

odel complexity and rewards model fit. DIC is defined as 

IC = D̄ + p D 

= 2 E �| R [ −2 ln (p(R | �))] + 2 ln (p(R | �̄)) . (12) 
11 Rejection rates are indeed equal to zero for log-concave densities. 

(

s

ith the components D̄ and p D defined as 

D̄ = E �| R [ −2 ln (p(R | �))] 

p D = E �| R [ −2 ln (p(R | �))] + 2 ln (p(R | �̄)) , 

here ln (p(R | ̄�)) denotes the log-likelihood function evaluated

t the posterior mean and E �| R (ln ( p ( R | �))) denotes the poste-

ior mean of the log-likelihood function. 12 The computation of the

tatistic is readily obtained via the MCMC estimation output. The

odel with the lowest DIC can be interpreted as the model with

he best return prediction. 

Additionally, we analyze the variance dynamics for each model,

nd compare estimated variance paths to a high-frequency real-

zed variance (RV) estimator of daily quadratic variation as pro-

osed in Shephard and Sheppard (2010) , Andersen et al. (2001a) ,

nd Andersen et al. (2001b) . We download the estimator from

he Oxford Man institute and use the series “5 min returns with

 min subsampling” to account for microstructure noise. As in

ndersen et al. (2015) and Hansen and Lunde (2006) we add the

uadratic overnight return to arrive at an estimator for the close to

lose quadratic variation. This estimator provides a non-parametric

enchmark to which we compare our daily variance paths from

arametric models. A potential inconsistency arises from the fact

hat high-frequency estimators only use information up to time

 whereas posterior means from the MCMC algorithm are based

n information up to time T ≥ t . A filtering method is therefore

mployed to extract a non-forward-looking estimator of model-

mplied variance based on return data up to time t only. We use

he filtering algorithm proposed by Johannes et al. (2009) which

dapts the auxiliary particle filter to continuous-time models, and

e adjust it to our non-affine model framework. In general, the al-

orithm consists of three steps. 13 First, particles generated in t − 1

re resampled. Secondly, the latent variables are propagated for-

ard using the resampled latent states. 14 And thirdly, the resulting

articles are re-weighted using an importance-sampling scheme.

his step is needed due to the use of approximated distributions

n the first two steps. 

.4. Model implementation 

The MCMC algorithm is implemented in C++ using random

umber generators of the GNU Scientific Library. The Markovian

ependence structure of the variances can be used to draw vari-

nces in blocks of two (as described in Jones, 2003b ), and this

ffers the possibility of some performance gain by parallelization.

he mixing of the chain depends heavily on the model specifica-

ion. For the SV-AffineSqr model, convergence is obtained relatively

uickly after 30,0 0 0 draws following a burn-in period of 20,0 0 0

raws, whereas more complex models, such as SVCJ-PolyCev, re-

uire more simulation runs. After extensive testing of parame-

er convergence we base our estimation results for all models on

50,0 0 0 draws following a burn-in period of 50,0 0 0 draws. Is it

articularly interesting to note that calculating DIC statistics, and

herefore a stable model ranking, is much more sensitive to the

umber of MCMC draws than parameter estimation. To receive a

table DIC ranking we run our algorithm with 9,0 0 0,0 0 0 draws

ollowing a burn-in period of 90 0,0 0 0 draws. Hence, all reported

odel ranking results are based on DIC statistics that are based on

,0 0 0,0 0 0 draws whereas model parameters utilize 150,0 0 0 draws.
14 To propagate the variances forward we use the Euler discretization given in Eq. 

8) and use the results in Johannes et al. (2009) to draw the jump times and jump 

izes. 
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Table 2 

Parameter Estimators for the SV Model Class. 

This table shows posterior means and standard deviations (in brackets) of model parameters for all drift and diffusion specifications of the SV class. 

Parameter estimation is based on daily S&P 500 percentage returns from January 1983 until December 2013. 

Par AffineSqr PolySqr AffineOne PolyOne Affine3/2 Poly3/2 AffineCev PolyCev AffinePoly PolyPoly BoxCox 

μ 0.0307 0.0315 0.0371 0.0371 0.0506 0.0515 0.0382 0.0384 0.0363 0.0382 0.0392 

(0.0089) (0.0088) (0.0089) (0.0088) (0.0086) (0.0087) (0.0089) (0.0089) (0.0089) (0.0089) (0.0089) 

α0 0.0246 0.0020 0.0165 0.0122 0.0034 0.0031 0.0128 0.0109 0.0148 0.0088 −0.0081 

(0.0028) (0.0019) (0.0023) (0.0032) (0.0 0 06) (0.0 0 07) (0.0032) (0.0029) (0.0031) (0.0033) (0.0022) 

α1 – 0.0059 – 0.0 0 07 – 0.0 0 01 – 0.0 0 05 – 0.0013 –

– (0.0 0 08) – (0.0 0 06) – (0.0 0 01) – (0.0 0 05) – (0.0 0 08) –

α2 −0.0212 −0.0110 −0.0117 −0.0060 −0.0 0 06 −0.0 0 06 −0.0067 −0.0042 −0.0097 −0.0038 −0.0203 

(0.0027) (0.0024) (0.0035) (0.0037) (0.0 0 06) (0.0 0 05) (0.0045) (0.0034) (0.0045) (0.0032) (0.0030) 

α3 – −0.0 0 03 – −0.0014 – −0.0 0 04 – −0.0014 – −0.0013 –

– (0.0 0 02) – (0.0 0 08) – (0.0 0 03) – (0.0 0 08) – (0.0 0 08) –

β0 – – – – – – – – 0.0180 0.0015 0.1759 

– – – – – – – – (0.0065) (0.0014) (0.0119) 

β1 – – – – – – – – 0.0154 0.1455 –

– – – – – – – – (0.0094) (0.0425) –

β2 0.1685 0.1892 0.1933 0.1942 0.1236 0.1237 0.1846 0.1883 0.1438 0.0415 –

(0.0085) (0.0089) (0.0115) (0.0115) (0.0069) (0.0069) (0.0127) (0.0125) (0.0167) (0.0422) –

β3 – – – – – – 1.0905 1.0642 1.2126 1.3772 –

– – – – – – (0.0668) (0.0597) (0.0756) (0.3846) –

ρ −0.5997 −0.6153 −0.6143 −0.6150 −0.5909 −0.5870 −0.6145 −0.6141 −0.6177 −0.6147 −0.5868 

(0.0334) (0.0329) (0.0334) (0.0333) (0.0392) (0.0391) (0.0343) (0.0339) (0.0338) (0.0337) (0.0364) 

δ – – – – – – – – – – −0.2435 

– – – – – – – – – – (0.0528) 

Table 3 

Parameter Estimators for the SVJ Model Class. 

This table shows posterior means and standard deviations (in brackets) of model parameters for all drift and diffusion specifications of the SVJ class. 

Parameter estimation is based on daily S&P 500 percentage returns from January 1983 until December 2013. 

Par AffineSqr PolySqr AffineOne PolyOne Affine3/2 Poly3/2 AffineCev PolyCev AffinePoly PolyPoly BoxCox 

μ 0.0325 0.0324 0.0426 0.0430 0.0625 0.0633 0.0470 0.0466 0.0436 0.0457 0.0473 

(0.0089) (0.0087) (0.0090) (0.0090) (0.0090) (0.0090) (0.0093) (0.0092) (0.0092) (0.0091) (0.0093) 

α0 0.0198 0.0017 0.0131 0.0095 0.0024 0.0022 0.0084 0.0079 0.0101 0.0065 −0.0071 

(0.0025) (0.0016) (0.0020) (0.0027) (0.0 0 05) (0.0 0 06) (0.0022) (0.0022) (0.0024) (0.0025) (0.0020) 

α1 – 0.0051 – 0.0 0 07 – 0.0 0 01 – 0.0 0 04 – 0.0010 –

– (0.0 0 07) – (0.0 0 05) – (0.0 0 01) – (0.0 0 04) – (0.0 0 06) –

α2 −0.0171 −0.0089 −0.0087 −0.0042 −0.0 0 05 −0.0 0 05 −0.0031 −0.0024 −0.0051 −0.0024 −0.0152 

(0.0024) (0.0022) (0.0031) (0.0029) (0.0 0 05) (0.0 0 05) (0.0027) (0.0022) (0.0034) (0.0021) (0.0024) 

α3 – −0.0 0 03 – −0.0012 – −0.0 0 03 – −0.0011 – −0.0010 –

– (0.0 0 02) – (0.0 0 07) – (0.0 0 03) – (0.0 0 07) – (0.0 0 07) –

β0 – – – – – – – – 0.0149 0.0011 0.1592 

– – – – – – – – (0.0060) (0.0011) (0.0107) 

β1 – – – – – – – – 0.0104 0.1317 –

– – – – – – – – (0.0065) (0.0372) –

β2 0.1505 0.1742 0.1778 0.1794 0.1148 0.1148 0.1653 0.1707 0.1338 0.0379 –

(0.0085) (0.0091) (0.0112) (0.0113) (0.0065) (0.0066) (0.0120) (0.0120) (0.0146) (0.0363) –

β3 – – – – – – 1.1467 1.1007 1.2556 1.4963 –

– – – – – – (0.0615) (0.0606) (0.0708) (0.3400) –

ρ −0.6590 −0.6751 −0.6754 −0.6758 −0.6527 −0.6485 −0.6768 −0.6742 −0.6788 −0.6744 −0.6743 

(0.0310) (0.0302) (0.0310) (0.0310) (0.0371) (0.0372) (0.0322) (0.0316) (0.0316) (0.0316) (0.0339) 

λ 0.0044 0.0046 0.0110 0.0113 0.0181 0.0175 0.0135 0.0126 0.0123 0.0123 0.0172 

(0.0016) (0.0018) (0.0052) (0.0055) (0.0076) (0.0074) (0.0064) (0.0059) (0.0057) (0.0057) (0.0077) 

μY −2.8786 −2.7379 −1.3741 −1.3259 −0.9077 −0.9347 −1.1794 −1.2168 −1.2385 −1.2190 −1.0212 

(0.8602) (0.8679) (0.5432) (0.5261) (0.3780) (0.3931) (0.4861) (0.4891) (0.4872) (0.4842) (0.4062) 

σ Y 2.9857 2.8204 1.7436 1.7290 1.6208 1.6326 1.6556 1.6754 1.6760 1.6912 1.5841 

(0.5929) (0.5572) (0.2824) (0.2700) (0.2064) (0.2098) (0.2335) (0.2385) (0.2363) (0.2421) (0.2084) 

δ – – – – – – – – – – −0.2991 

– – – – – – – – – – (0.0611) 
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The run time for a full model estimation is strongly dependent on

the model specification. All calculations are performed on a large

computer cluster equipped with Intel Xeon L5520 2.26 GHz pro-

cessors. 

4. Empirical results 

4.1. Model estimation 

We first estimate all model parameters and use daily percent-

age returns of the S&P 500 index obtained from CRSP from January
983 until December 2013. Tables 2 , 3 and 4 summarize the esti-

ation results for SV, SVJ and SVCJ models over the whole sample

eriod. For affine and simple non-affine extensions, these parame-

ers have been discussed extensively in the literature and our pa-

ameter estimates for these models confirm previous findings. We

herefore confine our discussion to a few noteworthy results. 

First, the Cev-diffusion parameter β3 in SV models is esti-

ated to be slightly higher than one. This confirms results in

hristoffersen et al. (2010) , Kaeck and Alexander (2013) and oth-

rs who argue in favor of non-affine diffusion dynamics. Secondly,

n linear drift specifications the speed of mean reversion α dif-
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Table 4 

Parameter Estimators for the SVCJ Model Class. 

This table shows posterior means and standard deviations (in brackets) of model parameters for all drift and diffusion specifications of the SVCJ 

class. Parameter estimation is based on daily S&P 500 percentage returns from January 1983 to December 2013. 

Par AffineSqr PolySqr AffineOne PolyOne Affine1.5 Poly1.5 AffineCev PolyCev AffinePoly PolyPoly BoxCox 

μ 0.0387 0.0364 0.0421 0.0421 0.0533 0.0527 0.0466 0.0452 0.0432 0.0427 0.0467 

(0.0089) (0.0087) (0.0089) (0.0088) (0.0088) (0.0089) (0.0092) (0.0092) (0.0092) (0.0090) (0.0091) 

α0 0.0183 0.0021 0.0109 0.0060 0.0015 0.0 0 07 0.0051 0.0034 0.0090 0.0035 −0.0110 

(0.0025) (0.0019) (0.0019) (0.0031) (0.0 0 08) (0.0 0 06) (0.0028) (0.0028) (0.0034) (0.0026) (0.0024) 

α1 – 0.0043 – 0.0 0 09 – 0.0 0 02 – 0.0 0 07 – 0.0014 –

– (0.0 0 08) – (0.0 0 06) – (0.0 0 01) – (0.0 0 05) – (0.0 0 07) –

α2 −0.0241 −0.0133 −0.0124 −0.0070 −0.0033 −0.0041 −0.0078 −0.0057 −0.0108 −0.0059 −0.0153 

(0.0031) (0.0026) (0.0031) (0.0037) (0.0024) (0.0023) (0.0038) (0.0035) (0.0042) (0.0036) (0.0025) 

α3 – −0.0 0 03 – −0.0010 – −0.0 0 04 – −0.0 0 08 – −0.0 0 09 –

– (0.0 0 03) – (0.0 0 07) – (0.0 0 04) – (0.0 0 06) – (0.0 0 06) –

β0 – – – – – – – – 0.0096 0.0015 0.1410 

– – – – – – – – (0.0062) (0.0013) (0.0114) 

β1 – – – – – – – – 0.0092 0.0995 –

– – – – – – – – (0.0066) (0.0442) –

β2 0.1275 0.1559 0.1584 0.1600 0.1203 0.1091 0.1415 0.1483 0.1290 0.0560 –

(0.0090) (0.0104) (0.0114) (0.0114) (0.0123) (0.0079) (0.0135) (0.0141) (0.0147) (0.0423) –

β3 – – – – – – 1.2333 1.1567 1.1998 1.1792 –

– – – – – – (0.1091) (0.1254) (0.1183) (0.3515) –

ρ −0.6743 −0.6921 −0.7169 −0.7200 −0.7806 −0.8416 −0.7982 −0.7771 −0.7391 −0.7373 −0.7028 

(0.0347) (0.0330) (0.0376) (0.0389) (0.0711) (0.0422) (0.0597) (0.0625) (0.0530) (0.0491) (0.0384) 

λ 0.0056 0.0064 0.0087 0.0091 0.0161 0.0165 0.0157 0.0144 0.0106 0.0109 0.0099 

(0.0018) (0.0021) (0.0034) (0.0037) (0.0036) (0.0036) (0.0054) (0.0059) (0.0048) (0.0049) (0.0039) 

μY −2.2454 −0.8565 −0.2950 −0.2678 −1.1056 −1.1416 −0.7375 −0.5470 −0.7184 −0.3839 −1.3081 

(1.2624) (0.7052) (0.5911) (0.5820) (0.5399) (0.4557) (0.6223) (0.6589) (0.7225) (0.6482) (0.7112) 

σ Y 2.0853 1.9256 1.7151 1.7082 1.6005 1.5947 1.6166 1.6394 1.6958 1.6951 1.6871 

(0.4007) (0.3319) (0.2539) (0.2541) (0.1853) (0.1746) (0.1965) (0.2167) (0.2432) (0.2440) (0.2280) 

ρ J −0.7342 −2.2089 −2.8920 −2.8966 −0.2434 −0.1429 −1.0584 −1.5945 −1.7742 −2.3316 −1.0089 

(0.7870) (0.7114) (0.8380) (0.7983) (0.9804) (0.7495) (1.4293) (1.5380) (1.4725) (1.2764) (0.9187) 

μV 1.7509 1.0941 0.7296 0.7129 0.5586 0.5682 0.5745 0.6102 0.6851 0.6798 0.6085 

(0.5201) (0.2842) (0.1705) (0.1672) (0.1031) (0.1020) (0.1320) (0.1522) (0.1764) (0.1723) (0.1203) 

δ – – – – – – – – – – −0.1710 

– – – – – – – – – – (0.0667) 
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ers substantially depending on whether the diffusion is affine or

ot. We obtain the highest value for the Sqr diffusion model with

n estimate of −0.021, whereas the value in the 3/2 specifica-

ion drops to −0.0 0 06. And thirdly, we find a strong leverage ef-

ect, with posterior means for ρ close to −0.60 in all models.

hese results deviate slightly from the estimates in Eraker et al.

2003) , who report correlation coefficients between −0.40 and

0.48. Our results in jump-augmented stochastic volatility models

n Table 3 confirm that jumps in AffineSqr are exclusively capturing

he most extreme events, with a low jump probability λ = 0 . 0044

nd an average jump size of μY = −2 . 8786 . Jumps in non-affine

pecifications occur more frequently, for instance the highest jump

requency is obtained for the Poly3/2 model with a daily jump

robability of 0.0175. The impact of jumps in the non-affine mod-

ls is however often less severe, with average jump sizes of ap-

roximately −1% as can be seen in Tables 3 and 4 . 

To show the difference between the estimated specifications,

n Fig. 1 we plot the functions α and β evaluated at the pos-

erior means for different models in the SV class. 15 The top two

raphs highlight the different drift and diffusion behavior for mod-

ls with an affine drift. It is apparent that the Sqr model estimates

 significantly lower diffusion level during high volatility regimes.

odels with more flexibility in the diffusion term, such as Poly

nd Cev, produce functions that remain relatively close to the One

pecification. Interestingly, the choice of the diffusive term also

as a marked effect on the drift function. The square-root diffu-

ion models in particular require a substantially stronger pull to-

ards their long-term variance level, whereas the mean reversion

n more flexible specifications is less pronounced. This can be seen
15 The functions for SVJ and SVCJ follows similar patterns and are not reported for 

revity. Details are available on request. 

4

 

t  
y noting that the drift function of the square root diffusion mod-

ls exhibits a steeper slope compared to the other model specifica-

ions. A possible explanation for this finding is that with a stronger

ean reversion, the affine model can generate large negative vari-

nce increments during periods of high volatility. The remaining

wo graphs in Fig. 1 show drift and diffusion functions for models

ith non-affine drift specifications. There are two noteworthy find-

ngs. First, the diffusion function remains almost unaltered when

xtending the affine to a more flexible drift specification. And sec-

ndly, the Sqr specification again provides the most extreme be-

avior, especially around the zero boundary. Finally, the Sqr model

rovides the lowest estimate for the average variance level that is

iven by the root of the drift function. 

Turning to the Box–Cox models we note that the parameters α0 ,

2 , and β0 are not directly comparable to the remaining variance

pecifications since they relate to the Box–Cox transformed pro-

ess H t . Concerning the jump parameters, we find similar results to

hose discussed earlier. Jumps are rare at about 2.5 jumps per year

nd on average negative. Also, the leverage effect is pronounced

ith estimates for ρ between −0.59 and −0.70. Most importantly,

he parameter δ is estimated at around −0.2 for all model classes.

s shown in Yu et al. (2006) the Box–Cox transformed model spec-

fication reduces to well-known stochastic volatility models for cer-

ain parameter combinations. In particular, for δ = 0 the model re-

uces to the log volatility model analyzed in Yu (2005) . Our esti-

ation results clearly reject this special case which confirms the

esults in Zhang and King (2008) . 

.2. Return fit 

To compare models based on their ability to fit return observa-

ions over the whole sample, we report the DIC statistic in Table 5 ,
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Fig. 1. Drift and Diffusion Functions for Various Pure SV Model Specifications. 

The graphs show the variance drift functions and variance diffusion functions of the AffineSqr, AffineOne, AffineCev and AffinePoly models and the PolySqr, PolyOne, PolyCev 

and PolyPoly. The variance drift and diffusion functions are nested in the general specifications given by α0 + α1 
1 
V t 

+ α2 V t + α3 V 
2 

t and β0 + β1 V t + β2 V 
β3 

t , respectively. For 

more details on the general stochastic variance specification see Section 2 . The plots are constructed as follows: In each step of the MCMC algorithm, we use the structural 

parameters to calculate the drift and diffusion function for variance levels between 0.1 and 6 (in increments of 0.25). The plots depict the average values for the drift and 

diffusion function over all iterations. The data set used for estimating the posterior means consists of log returns of the S&P index from January 1983 to December 2013. The 

returns are measured as daily percentage log returns, so that a daily variance of 1 yields a yearly standard deviation of 
√ 

252 = 15 . 87% . 
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as well as the model complexity penalty term p D and the model

fit term D̄ for all competing specifications. Overall we find that p D 
and D̄ exhibit expected patterns. For the model complexity p D , we

report high statistics for the most complex SVCJ models and values

decline for SVJ and SV specifications. The model fit component D̄

is lowest, indicating best model fit, for the most complex models.

Table 5 provides several interesting results. 

First, we confirm findings in Ignatieva et al. (2015) that jumps

improve the in-sample performance, as models in the SV class con-

sistently exhibit the highest DIC values, 16 whereas SVCJ specifi-

cations, except for AffineSqr, outperform SVJ. Secondly, non-affine

diffusion models in general perform considerably better than affine

models. For all model classes, the AffineSqr specification is out-

performed by several non-affine specifications. Thirdly, no clear

preferred drift and diffusion specification arises across the three

model classes. Within the SVCJ class the Affine3/2 specification

ranks top, whereas in the SVJ and the SV classes, respectively,

PolyOne and PolySqr perform best. We also observe an interesting

structural relationship between the jump model complexity and

the impact of flexible drift and diffusion specifications. Within the

SVCJ class, the model ranking is driven exclusively by the diffu-

sion component. This can be seen from the fact that combinations
16 The lower the DIC statistic the better is the performance of the model. 
f a particular diffusion component with the two drift specifica-

ions, Affine or Poly, show little difference in their fit statistics. We

nd that the ranking is stable with respect to the diffusion models

airs, Affine3/2 and Poly3/2 for instance outperform both AffineCev

nd PolyCev. This structure can still be observed to some extent for

VJ models, but disappears for the SV model class. Therefore, for

he most complex SVCJ model class the diffusion component seems

o be able clearly identify model performance. We return to these

esults when discussing out-of-sample model performance below.

inally, we find that the Box–Cox variance models rank last in the

VCJ and SV model class and third to last in the SVJ model class.

his shows that modeling non-linearities directly in the variance

rocess results in a superior model performance compared to the

on-linear Box–Cox transformation. 

To focus on our main findings, we confine the discussion in

he following to the three best performing models as well as the

ffine benchmark model in SV, SVJ and SVCJ. 17 First, to test the

tability of the model ranking over time, we re-estimate the mod-

ls during sub-samples and apply two distinct setups. First, we

tart with a sample from 1983 to 1999 and then subsequently

dd one more year to update parameter estimations and model

ankings. In the second setup we divide the whole sample pe-
17 Result for the full set of models are available from the author upon request. 
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Table 5 

Rankings of Models by DIC. 

The table shows the Deviance Information Criterion (DIC) rank- 

ings for all models based on S&P 500 data for the time period 

January 1983 until December 2013. The DIC column gives the 

overall DIC value where lower values indicate a better model 

performance. The Deviance Information Criterion consists of two 

parts p D the penalty term measuring model complexity and D̄ 

measuring model fit (see Spiegelhalter et al., 2002 ). 

Model DIC p D D̄ 

SVCJ Affine3/2 15133.5 4 4 48.8 10684.8 

SVCJ Poly3/2 15244.2 4626.8 10617.4 

SVCJ AffineCev 15835.8 4415.8 11420.0 

SVCJ PolyCev 16230.9 4255.1 11975.8 

SVCJ AffinePoly 16914.2 4160.8 12753.4 

SVCJ PolyPoly 17368.5 3960.6 13407.9 

SVCJ PolyOne 17649.5 3827.3 13822.2 

SVCJ AffineOne 17711.3 3794.9 13916.4 

SVCJ PolySqr 18034.0 3561.2 14472.8 

SVCJ BoxCox 18222.9 3958.9 14264.0 

SVJ PolyOne 18240.1 3454.2 14786.0 

SVJ AffineOne 18246.7 3446.3 14800.4 

SVJ PolySqr 18254.5 3379.6 14874.9 

SVJ AffinePoly 18278.0 3631.4 14646.6 

SVCJ AffineSqr 18285.4 3436.3 14 84 9.1 

SVJ AffineCev 18285.6 3534.1 14751.5 

SVJ PolyCev 18302.2 3488.1 14814.1 

SVJ PolyPoly 18321.5 3507.0 14814.4 

SVJ AffineSqr 18485.2 3245.4 15239.8 

SVJ BoxCox 18577.3 3773.9 14803.4 

SVJ Affine3/2 18691.6 3437.3 15254.3 

SVJ Poly3/2 18735.2 3390.1 15345.1 

SV PolySqr 18956.3 2771.9 16184.5 

SV PolyOne 18980.4 2802.8 16177.6 

SV AffineOne 18987.3 2790.4 16196.9 

SV AffinePoly 18990.3 2833.7 16156.6 

SV PolyCev 19024.8 2813.8 16211.0 

SV AffineCev 19038.8 2819.6 16219.2 

SV PolyPoly 19064.2 2873.7 16190.6 

SV AffineSqr 19119.0 2656.5 16462.6 

SV Affine3/2 19432.8 2691.1 16741.7 

SV Poly3/2 19455.7 2660.3 16795.4 

SV BoxCox 19521.4 2834.6 16686.8 
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18 In an earlier version of this paper we used a smoothed variance estimator. Re- 

sults are structurally very similar. 
19 Realized variance estimators are downloaded from the homepage of Oxford 

Man Institute: http://realized.oxford-man.ox.ac.uk/ . 
20 For details on the computation of the realized variance see http://realized. 

oxford-man.ox.ac.uk/documentation/econometric-methods/ . 
iod into three subsets, 1983 to 1993, 1994 to 2003 and 2004 to

013, and study parameter estimates and model rankings for these

on-overlapping subsets. The two exercises provide distinct robust-

ess checks. The first setup addresses the question of how the

odel ranking changes if the information set increases over time,

hereas the second setup looks at three distinct non-overlapping

ime periods and compares the model ranking between those mu-

ual exclusive subsets. While computationally intensive, this proce-

ure provides further insights as far as the robustness of the find-

ngs in Section 4.2 are concerned. 

In Table 6 , we present model rankings for the fifteen increas-

ng sub-samples. Overall, these results confirm our previous find-

ngs. In particular, jump specifications outperform pure stochastic

ariance models (as indicated by the Min column in Table 6 ); the

est minimum rank of a SV model is 9, implying that all 8 other

ump–diffusion models rank higher in all sub-periods. In addition,

on-affine diffusion models outperform their affine counterpart in

ll sub-samples. Comparing the ranking of the AffineSqr specifica-

ion with the ranking of the non-affine specifications within each

odel class, we find that the AffineSqr specification is dominated

y the non-affine specification in each sub-sample. In the SVCJ

lass, the Affine3/2 specification has the best average ranking (1.80,

ee the Mean column in Table 6 ) and for the SVJ and the SV class,

he AffineOne (4.33) and PolyOne (9.4) show the best average per-

ormance, respectively. This provides further evidence that no sin-

le combination of drift and diffusion function results in superior

erformance across SV, SVJ and SVCJ. 
Fig. 2 shows the evolution of posterior means for all struc-

ural parameters of the SVCJ PolyCev model over the different sub-

amples. Overall, we find that parameters remain relatively stable

ver time and posterior means for the full sample are often within

he 90% confidence sets estimated from the shortest sample. The

ariation of parameter estimates is slightly larger for the drift pa-

ameters α0 to α3 , whereas jump parameters remain stable over

ime. These results also highlight a downward trend for the cor-

elation between returns and the variance process as ρ-estimates

ecrease around the beginning of the century (dot-com bubble and

ts subsequent burst), results that explain the slightly more nega-

ive estimate in Tables 2 –4 compared to empirical results in Eraker

t al. (2003) . 

In Table 7 we report fit results for mutually exclusive datasets

s well as summary statistics for the different data periods. The

hree periods show slightly different volatility estimates, the most

oticeable difference, however, is the very large kurtosis for the

eriod from 1983 to 1993. This large kurtosis is fully driven by

ne extreme return of −23% on Oct 19, 1987. Without this out-

ier, the different data periods show overall similar return charac-

eristics. With respect to the fit statistics, we find similar patterns

o those discussed above. First, during all three samples the pure

V models are outperformed by SVJ and SVCJ models. For the first

wo samples, the SV models are strictly outperformed, whereas in

he final sample two non-affine SV models perform better than the

ffine SVJ specification. Second, we find that in each jump class,

he AffineSqr specification is inferior to non-affine specifications.

ithin the SVCJ class the best performing model over all three pe-

iods is the SVCJ Affine3/2 model as indicated by the lowest mean

alue of 1.33. This is similar to the results for the previous sub-set

nalysis where SVCJ Affine3/2 was also performing best. Overall,

his indicates that model choice is affected by the complexity of

he jump distribution. 

.3. Variance paths 

Visual inspection of estimated variance paths provides valuable

nformation on whether alternative models portray realistic dy-

amics for the latent state processes. Model comparison could rely

n either smoothed variance estimates which are a by-product of

he MCMC algorithm but use the entire return data set for variance

stimation, or on filtered variance which ensures that variances are

stimated using past returns only and by that use the same infor-

ation set as model free realized variance estimators. We there-

ore rely on the filtered variance estimator for our analysis. 18 In a

rst step we focus on how filtered variance estimates differ from

opular measures of realized variance calculated from intra-daily

eturns. We are particularly interested in whether different com-

inations of drift and diffusion specifications produce distinct pat-

erns in variance time series. Driven by the availability of realized

ariance estimates, provided by the Oxford Man Institute, we re-

trict the sample to 20 0 0–2013 for this exercise. 19 In particular,

e select the realized variance estimator (5-min using 1-min sub-

amples) from the Oxford Man institute. 20 In addition, we obtain

he price series for the SPY exchange traded fund from the Cen-

er of Research in Security Prices (CRSP) to calculate overnight re-

urns. We then follow the approach proposed in Andersen et al.

2015) and add the squared overnight returns to the realized intra-

aily variance to approximate close-to-close integrated variance. 

http://realized.oxford-man.ox.ac.uk/
http://realized.oxford-man.ox.ac.uk/documentation/econometric-methods/
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Table 6 

Rankings of Models by DIC (Sub-samples). 

The table shows the Deviance Information Criterion (DIC) rankings for all models based on S&P 500 data for different time periods. Each column ranks all models for 

a data set starting in January 1983 and ending in December of the year indicated in the column header. The best DIC ranking is indicated by a (1) and the worst is 

indicated by (12). The last two columns give the minimum ranking and average ranking of a model over all data periods. 

Model 1999 20 0 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Min Mean 

SV AffineSqr 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12.00 

SV PolySqr 9 11 11 11 11 9 11 11 10 10 10 9 9 9 9 9 10.00 

SV AffineOne 11 10 10 10 10 11 10 10 11 11 11 11 11 11 11 10 10.60 

SV PolyOne 10 9 9 9 9 10 9 9 9 9 9 10 10 10 10 9 9.40 

SVJ AffineSqr 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7.93 

SVJ PolySqr 6 6 6 7 7 7 6 7 6 7 7 6 6 5 6 5 6.33 

SVJ AffineOne 5 4 4 4 5 4 4 4 4 5 4 4 4 6 4 4 4.33 

SVJ PolyOne 4 5 5 5 4 5 5 5 5 4 5 5 5 4 5 4 4.73 

SVCJ AffineSqr 8 7 7 6 6 6 7 6 7 6 6 7 7 7 7 6 6.67 

SVCJ Affine3/2 2 1 1 3 1 2 3 3 2 3 1 1 1 2 1 1 1.80 

SVCJ Poly3/2 1 2 2 1 3 3 2 1 3 1 2 3 3 3 3 1 2.20 

SVCJ AffineCev 3 3 3 2 2 1 1 2 1 2 3 2 2 1 2 1 2.00 

Fig. 2. SVCJ PolyCev Model Robustness of Parameter Estimates over Time. 

The graph shows posterior means for all structural parameters for increasing datasets (solid lines). The first parameter estimates are based on S&P 500 index returns from 

1983 to 1999 and we subsequently add one year of data such that the last set of parameters is based on data from 1983 to 2013. The dashed lines depict 90% confidence 

sets. 
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Table 7 

Rankings of Models by DIC (Sub-samples). 

The table shows the Deviance Information Criterion (DIC) rankings for all models 

based on S&P 500 data for different time periods. Column two to four rank all 

models for data sets based on time periods 1983–1993, 1994–20 03, and 20 04–

2013, respectively, as indicated in the column headers. The best DIC ranking is 

indicated by a (1) and the worst is indicated by (12). The last two columns give 

the minimum ranking and average ranking of a model over all data periods. 

Model 1983–1993 1994–2003 2004–2013 Min Mean 

SV AffineSqr 12 12 12 12 12.00 

SV PolySqr 9 11 8 8 9.33 

SV AffineOne 11 9 9 9 9.67 

SV PolyOne 10 10 11 10 10.33 

SVJ AffineSqr 8 8 10 8 8.67 

SVJ PolySqr 6 6 5 5 5.67 

SVJ AffineOne 7 4 6 4 5.67 

SVJ PolyOne 5 5 7 5 5.67 

SVCJ AffineSqr 4 7 4 4 5.00 

SVCJ Affine3/2 1 1 2 1 1.33 

SVCJ Poly3/2 2 2 3 2 2.33 

SVCJ PolyCev 3 3 1 1 2.33 

No. Obs 2782 2519 2517 – –

Annual volatility 0.16 0.18 0.21 – –

Min −0.23 −0.07 −0.09 – –

Max 0.09 0.06 0.10 – –

1% percentile −0.02 −0.03 −0.04 – –

99% percentile 0.02 0.03 0.04 – –

Skewness −4.34 −0.11 −0.33 – –

Kurtosis 100.4 6.19 14.03 – –
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21 We also ran the analysis in levels of RV t and ˆ V F,m 
t which yields structurally 

the same results. The log-specifications is the preferred one in Hansen and Lunde 

(2006) , though, and is consistent with our analysis in Section 5 . 
22 As RV includes jumps, the empirical estimates of a m and b m may deviate from 

zero and one, even in a correctly specified model. 
To generate filtered variance paths, we use model parameters

stimated on daily S&P 500 returns from 1983 to 1999 and then

lter latent state variables during an out-of-sample period from

0 0 0 to 2013. This procedure guarantees that variances are not

stimated using future return data. We apply an extension of the

ontinuous-time particle filter described in Johannes et al. (2009) .

ue to space restrictions, we limit our discussion in this section

o the SVCJ model class, since results for other model classes are

tructurally similar. Furthermore, we do not detail the Cev speci-

cation, as this model does not provide notable differences to the

/2 models. 

Figs. 3 and 4 provide filtered variance paths and realized vari-

nces during the high-volatility period of the Lehman default in

008 and during a low-volatility regime at the end of 2005 (la-

eled calm period ). To gage the effect of the drift specification,

e compare affine and polynomial drift specifications in each row,

hereas columns are used for the comparison of alternative dif-

usion specifications. Fig. 3 shows that the drift specification has

 very limited effect on estimated variance paths. For example,

he first row compares AffineSqr with PolySqr, and differences in

he estimated paths are only very minor. This finding is very ro-

ust and holds for all Affine and Poly drift specification. Further-

ore, this graph confirms the superiority of non-affine variance

pecifications in generating rapid movements during high volatil-

ty regimes. This is particularly evident in a row-wise comparison

f different diffusion specifications. For higher values of the pa-

ameter β3 , estimated variance paths provide a much better fit to

he realized path. This holds particularly true for models with a

3 that is greater than one. On the other hand, Fig. 4 shows that

he variance paths during the low volatility regime appear indis-

inguishable for different models and can therefore be captured by

ll specifications. This shows that the differences in model specifi-

ations only become visible during times of market stress. In other

ords, it is modeling stressed market scenarios in particular that

alls for more sophisticated diffusion specifications. 
.4. Realized variance regressions 

For a more rigorous comparison of realized and model-based

ariances, we follow Hansen and Lunde (2006) and study the fol-

owing regression equation for all competing models m ∈ M : 

og (RV t ) = a m 

+ b m 

log ( ̂  V 

F,m 

t ) + ε t,m 

(13) 

here RV t and 

ˆ V F,m 

t respectively denote the realized and filtered

ariance on day t . 21 We include the return between t − 1 and t

n the filtering of the variance path and compare the day- t esti-

ate to the realized variance for day t . Our realized variance mea-

ure (constructed as described in the last section) includes squared

vernight returns to capture the close-to-close integrated variance.

ote, that our realized variance estimator is driven by a continu-

us variation component and a jump component. Alternatively, we

ould have used the bipower variation estimator (see Barndorff-

ielsen and Shephard, 2004 ) which only captures the diffusive

omponent of the log-price variation. As jumps are rare and since

ur filtered variance is based on close-to-close returns, we usere-

lized variance but have confirmed that our conclusions are un-

hanged if we use bipower variation (untabulated). Note that our

odel-based results are purely out-of-sample, as our filtering al-

orithm is based on parameter estimates from the 1983–1999 re-

urn data set. We estimate regression Eq. (13) by Bayesian statisti-

al methods with diffuse priors and provide results in Tables 8 and

 . 

A well-specified variance model should generate estimates of

 m 

close to zero, b m 

close to one, and a relatively high R 2 . 22 

able 8 shows the results for a sub-sample from September 1 to

ecember 30, 2005. This time period is characterized by low mar-

et volatility. We observe that all models generate estimated values

or a m 

that are close to zero. As expected, estimated values for b m 

re slightly higher than one and show some variation across the

ifferent models. The SVCJ PolySqr model is closest to one with an

stimated parameter value of 1.0543 (which is not significantly dif-

erent from one), whereas the SVJ Poly3/2 model differs the most

rom one with b m 

= 1 . 3810 (which is significantly different from

ne). In terms of the R 2 -values we find variation across models

ith values between 0.48 and 0.57. That is, based on regression

esults for the low-volatility period we can confirm the result in

ection 4.3 and conclude that models show minor differences for

he calm period although the non-affine jumps models are slightly

ore successful in capturing realized variance dynamics. It is inter-

sting to note that the AffineSqr specifications perform very well in

erms of R 2 for periods characterized by low market volatility. 

Table 9 shows estimation results for the high volatility period

round the Lehman crisis. In contrast to earlier results, we observe

arge differences between affine and non-affine model specifica-

ions for both b m 

and R 2 . All models with a Sqr diffusion exhibit

arge b m 

values (between 1.3 and 1.7). In addition, these models

lso exhibit the lowest R 2 values (between 0.82 and 0.84). These

tatistics are significantly improved by models with a diffusion pa-

ameter β3 greater than 1. We find that, across all model classes,

he R 2 increases to over 0.9 for specifications with β3 greater than

. Further, we observe that the coefficient b m 

is much closer to

ne, reaching values of 1.07. Finally, altering the drift specifications

or identical diffusion models leads to minor improvements com-

ared to changes to the diffusion setup. For example, for the SVJ

odel class moving from the AffineSqr to the PolySqr specifica-

ion changes the R 2 from 0.8272 to 0.8278, and b m 

from 1.4889



96 A. Kaeck et al. / Journal of Banking and Finance 83 (2017) 85–103 

Fig. 3. RV vs. Filtered Variances - Lehman Crisis. 

This figure shows filtered variances (solid lines) for the AffineSqr, AffineOne, Affine3/2, AffinePoly, and PolySqr, PolyOne, Poly3/2 and PolyPoly SVCJ models generated by 

a particle filter algorithm (see Johannes et al., 2009 ) against realized variances (dashed lines). Data period is the high volatility regime around the Lehman crisis period 

from September 2, to December 31, 2009. Realized variance estimator (5-min using 1-min subsamples) are downloaded from the website of the Oxford Man Institute 

( http://realized.oxford-man.ox.ac.uk/ ). 
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to 1.3629. If we fix the drift to the Affine specification and alter

the diffusion to the 3/2 model setup we observe an increase of the

R 2 to 0.9162 and the slope parameter b m 

decreases to 1.0913. This

suggests that model improvements are mainly driven by the diffu-

sion specification. 23 
23 Hansen and Lunde (2006) propose to either use a log-on-log or a level-on-level 

model for regression Eq. (13) . The log-on-log specification is less sensitive to out- 

liers than a level-on-level setup. In unreported results we estimate the same rela- 

tion using levels. The conclusions are qualitatively equal to our presentation here. 

p  

H

b

In summary, realized variance regressions confirm our earlier

ndings in Section 4.3 . First, non-affine specifications are able to

imic realized variances more closely than their affine counter-

arts. Secondly, the differences stem mainly from the diffusion

etup. And thirdly, the differences are most extreme during crisis

eriods and vanish almost completely during calm market regimes.
owever, quantitatively the differences across models in terms of R 2 and values for 

 m for the crisis period are much larger. This is to be expected, since the financial 

crisis generated large variance spikes that can be characterized as outliers. 

http://realized.oxford-man.ox.ac.uk/
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Fig. 4. RV vs. Filtered Variances - Calm Period. 

This figure shows filtered variances (solid lines) for the AffineSqr, AffineOne, Affine3/2, AffinePoly, and PolySqr, PolyOne, Poly3/2 and PolyPoly SVCJ models generated by 

a particle filter algorithm (see Johannes et al., 2009 ) against realized variances (dashed lines). Data period is a calm market period September 1, to December 30, 2005. 

Realized variance estimator (5-min using 1-min subsamples) are downloaded from the website of the Oxford Man Institute ( http://realized.oxford-man.ox.ac.uk/ ). 
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.5. Implications for variance swaps 

In this section, we address implications of our results for as-

essing variance risk premia. Variance contracts have gained con-

iderable attention in the finance industry and academia over the

ast decades. Active areas of research include: developing replica-

ion strategies, e.g., Britten-jones and Neuberger (20 0 0) , the pric-

ng of variance risk, e.g., Coval and Shumway (2001) , or specifying

eneral equilibrium models that are able to explain the variance

isk premium, e.g., Drechsler and Yaron (2011) . 

In our analysis, we have an investor in mind who wants to use

 variance model to determine the expected return of an invest-

ent into variance swaps. Variance swaps allow investors to hedge
he variance risk of some underlying asset such as interest rates or

tock indices. By entering the swap contract the investor pays a

xed amount and receives a floating value based on the realized

ariance of the underlying, or vice versa. The payoff of a variance

wap is the net difference between the two payments. This dif-

erence is also called the variance risk premium and has attracted

onsiderable attention in the literature (see Carr and Wu, 2009 ).

ur model classification allows us to assess the ability of models

o generate realistic expectations of variance risk premia and to

age the model risk related to using alternative specifications. 

The literature has proposed various alternative definitions of re-

lized variance in the context of variance risk premium calcula-

ions. It is common, for instance, to use the sum of squared returns

http://realized.oxford-man.ox.ac.uk/
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Table 8 

Regression of RV on Filtered Variances - Calm Period. 

This tables provides estimation results for the regression model RV t = a m + b m ̂  V F,m 
t + 

ε t,m , where RV t denotes the daily realized variances and ˆ V F,m 
t denotes the filtered vari- 

ances of model m on day t . The regression is based on realized and filtered variances 

for a calm market time period September 1 to December 30, 2005. Realized variance 

estimator (5-min using 1-min subsamples) are downloaded from Oxford Man Institute 

( http://realized.oxford-man.ox.ac.uk/ ). 

Models a m b m R 2 

Mean S. E. Mean S. E. Mean S. E. 

SV model class 

Affine SQR −0.0044 0.0122 1.1747 0.0386 0.5627 0.0018 

Poly SQR −0.0020 0.0127 1.1525 0.0380 0.5562 0.0011 

Affine One −0.0020 0.0126 1.1445 0.0373 0.5521 0.0013 

Poly One −0.0017 0.0127 1.1192 0.0374 0.5494 0.0013 

Affine 3/2 −0.0046 0.0132 1.2898 0.0455 0.5012 0.0018 

Poly 3/2 −0.0049 0.0134 1.3174 0.0478 0.5028 0.0018 

Affine Cev −0.0017 0.0128 1.1318 0.0374 0.5424 0.0013 

Poly Cev −0.0021 0.0131 1.1216 0.0392 0.5435 0.0013 

Affine Poly −0.0029 0.0129 1.1568 0.0395 0.5472 0.0012 

Poly Poly −0.0034 0.0132 1.1452 0.0375 0.5410 0.0014 

SVJ model class 

Affine SQR −0.0061 0.0122 1.1115 0.0363 0.5417 0.0021 

Poly SQR −0.0032 0.0127 1.1109 0.0366 0.5380 0.0017 

Affine One −0.0045 0.0121 1.1155 0.0363 0.5330 0.0016 

Poly One −0.0043 0.0126 1.1008 0.0379 0.5298 0.0018 

Affine 3/2 −0.0072 0.0126 1.3490 0.0480 0.4928 0.0024 

Poly 3/2 −0.0052 0.0134 1.3810 0.0488 0.4977 0.0024 

Affine Cev −0.0052 0.0122 1.1488 0.0387 0.5210 0.0018 

Poly Cev −0.0047 0.0129 1.1285 0.0387 0.5283 0.0018 

Affine Poly −0.0049 0.0123 1.1669 0.0403 0.5245 0.0021 

Poly Poly −0.0039 0.0131 1.1540 0.0401 0.5310 0.0019 

SVCJ model class 

Affine SQR −0.0049 0.0126 1.1011 0.0375 0.5278 0.0019 

Poly SQR −0.0029 0.0125 1.0543 0.0357 0.5289 0.0015 

Affine One −0.0042 0.0129 1.0582 0.0375 0.5221 0.0019 

Poly One −0.0038 0.0131 1.0613 0.0379 0.5215 0.0016 

Affine 3/2 −0.0071 0.0128 1.2896 0.0476 0.4834 0.0031 

Poly 3/2 −0.0071 0.0128 1.2823 0.0482 0.4870 0.0029 

Affine Cev −0.0061 0.0129 1.0618 0.0381 0.5018 0.0023 

Poly Cev −0.0053 0.0123 1.0568 0.0381 0.5103 0.0020 

Affine Poly −0.0051 0.0128 1.0564 0.0368 0.5159 0.0020 

Poly Poly −0.0040 0.0131 1.0547 0.0382 0.5162 0.0018 
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or squared log returns over a trading month. Neuberger (2012) and

Bondarenko (2014) , however, show that an alternative definition

based on the difference between simple and log returns has theo-

retical advantages for variance risk premium calculations. In this

section, we use the measure proposed in Neuberger (2012) and

Bondarenko (2014) which is given by 

˜ RV t = 2 

N t ∑ 

i =1 

(r t,i − log (1 + r t,i )) (14)

where r t, i denotes the i th daily simple return in month t and N t 

is the number of trading days in month t . This measure has three

advantages compared to using the sum of squared (log) returns.

First, the risk-neutral expectation of this measure can be inferred

from option prices for (risk-neutral) martingale processes and this

expectation is identical to the (properly scaled) squared VIX in-

dex. Second, the risk-neutral expectation is model-free, in partic-

ular it accounts for jumps in the asset price process. Finally, the

risk-neutral expectation is independent of the sampling frequency

of the returns used in the realized variance definition. 24 All of our

empirical results below are robust to using alternative definitions. 
24 For our application, the only small bias arises due to the fact that we simulate 

S&P 500 index returns and not futures returns. Because we base our simulations on 

monthly realized variances, this bias is likely to be negligible. We have also used 

other definitions of realized variance and find qualitatively and quantitatively simi- 

lar results. 

w  

t  

d  

s  

f

We follow Carr and Wu (2007) and Bondarenko (2014) and de-

ne the expected variance risk premium as follows 

og 
(
E t−1 

(˜ RV t 

))
− log (V IX 

2 
t−1 ) (15)

here the first term denotes the logarithm of the expected real-

zed variance under the real-world probability measure and the

econd term is the logarithm of the squared VIX index, scaled to

 monthly frequency. This definition effectively compares the risk-

eutral and the real-world expectation of monthly realized vari-

nce, that is V IX 2 t−1 = E ∗t−1 

(˜ RV t 
)

where E ∗ denotes the expectation

nder the risk-neutral measure. 

The computation of the expected realized variance in Eq.

15) depends on a parametric variance model, and we compare al-

ernative specifications analyzed in this paper to calculate this ex-

ectation. The expectation in Eq. (15) is approximated by simula-

ion using our estimation and filtering output, based on 22 trading

ays. In addition we compute the ex-post realization of this invest-

ent as 

og 

( 

2 

N t ∑ 

i =1 

(r t,i − log (1 + r t,i )) 

) 

− log (V IX 

2 
t−1 ) , (16)

here we use the simple return of the S&P 500 index over one

rading day for r t,i . Close-to-close returns for the S&P 500 index are

ownloaded from CRSP and the VIX index is from the CBOE web-

ite. Note that we calculate monthly expected variance risk premia

rom 20 0 0 to 2013 to avoid overlapping periods. 

http://realized.oxford-man.ox.ac.uk/
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Table 9 

Regression of RV on Filtered Variances - Crisis Period. 

This tables provides estimation results for the regression model RV t = a m + b m ̂  V F,m 
t + 

ε t,m , where RV t denotes the daily realized variances and ˆ V F,m 
t denotes the filtered vari- 

ances of model m on day t . The regression is based on realized and filtered variances 

for the Lehman crisis time period September 2, to December 31, 2008. Realized variance 

estimator (5-min using 1-min subsamples) are downloaded from Oxford Man Institute 

( http://realized.oxford-man.ox.ac.uk/ ). 

Models a m b m R 2 

Mean S. E. Mean S. E. Mean S. E. 

SV model class 

Affine Sqr 0.0032 0.0104 1.4454 0.0156 0.8424 0.0 0 03 

Poly Sqr 0.0048 0.0107 1.3139 0.0147 0.8370 0.0 0 03 

Affine One 0.0024 0.0103 1.0838 0.0098 0.8929 0.0 0 02 

Poly One 0.0023 0.0100 1.1753 0.0110 0.8971 0.0 0 01 

Affine 3/2 0.0040 0.0098 1.0747 0.0091 0.9246 0.0 0 02 

Poly 3/2 0.0038 0.0102 1.0926 0.0096 0.9220 0.0 0 03 

Affine Cev 0.0022 0.0101 1.0663 0.0099 0.9012 0.0 0 02 

Poly Cev 0.0018 0.0099 1.1594 0.0104 0.9042 0.0 0 01 

Affine Poly 0.0024 0.0098 1.0847 0.0095 0.9082 0.0 0 02 

Poly Poly 0.0018 0.0100 1.1525 0.0105 0.9104 0.0 0 01 

SVJ model class 

Affine Sqr 0.0048 0.0110 1.4889 0.0165 0.8272 0.0 0 04 

Poly Sqr 0.0051 0.0113 1.3629 0.0157 0.8278 0.0 0 04 

Affine One 0.0034 0.0106 1.0851 0.0107 0.8795 0.0 0 02 

Poly One 0.0022 0.0101 1.1675 0.0113 0.8884 0.0 0 02 

Affine 3/2 0.0044 0.0097 1.0913 0.0094 0.9162 0.0 0 03 

Poly 3/2 0.0044 0.0100 1.1011 0.0096 0.9159 0.0 0 03 

Affine Cev 0.0026 0.0097 1.0678 0.0100 0.8972 0.0 0 02 

Poly Cev 0.0019 0.0100 1.1412 0.0106 0.8985 0.0 0 02 

Affine Poly 0.0027 0.0097 1.0831 0.0098 0.9059 0.0 0 02 

Poly Poly 0.0022 0.0098 1.1508 0.0103 0.9079 0.0 0 02 

SVCJ model class 

Affine Sqr 0.0051 0.0104 1.7085 0.0185 0.8420 0.0 0 03 

Poly Sqr 0.0056 0.0111 1.4604 0.0168 0.8333 0.0 0 04 

Affine One 0.0044 0.0102 1.1198 0.0116 0.8651 0.0 0 03 

Poly One 0.0030 0.0105 1.1833 0.0118 0.8736 0.0 0 03 

Affine 3/2 0.0088 0.0106 1.1506 0.0119 0.8781 0.0 0 06 

Poly 3/2 0.0074 0.0097 1.1557 0.0107 0.8853 0.0 0 05 

Affine Cev 0.0045 0.0098 1.1015 0.0101 0.8880 0.0 0 03 

Poly Cev 0.0041 0.0104 1.1596 0.0117 0.8851 0.0 0 03 

Affine Poly 0.0041 0.0099 1.1135 0.0104 0.8840 0.0 0 03 

Poly Poly 0.0039 0.0104 1.1582 0.0113 0.8787 0.0 0 03 

Table 10 

Variance Risk Premium - Full Sample. 

This tables provides estimation for the expected log return of the variance swap 

under different model assumptions. The last line shows the ex-post realization of 

the log return. We use monthly data from January 20 0 0 to December 2013. 

Models SV class SVJ class SVCJ class 

Est. S. E. Est. S. E. Est. S. E. 

Affine Sqr −0.338 0.043 −0.349 0.041 −0.530 0.044 

Poly Sqr −0.376 0.042 −0.374 0.042 −0.487 0.041 

Affine One −0.333 0.043 −0.335 0.043 −0.452 0.043 

Poly One −0.337 0.041 −0.344 0.041 −0.451 0.042 

Affine 3/2 −0.427 0.038 −0.428 0.038 −0.638 0.043 

Poly 3/2 −0.437 0.038 −0.439 0.038 −0.660 0.042 

Affine Cev −0.327 0.042 −0.340 0.043 −0.535 0.044 

Poly Cev −0.341 0.041 −0.356 0.041 −0.508 0.043 

Affine Poly −0.342 0.042 −0.345 0.042 −0.482 0.042 

Poly Poly −0.351 0.041 −0.365 0.041 −0.487 0.043 

Ex Post −0.463 0.062 −0.463 0.062 −0.463 0.062 
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The results for this exercise are summarized in Table 10 and

ig. 5 . First, consistent with previous literature, integrated variance

nder the risk-neutral measure is higher than under the real world

easure, resulting in negative variance risk premia. The mean ex-

ost return realization is −0.46. In general we observe that models

rom the SV and SVJ class overestimate (less negative) the ex-post

ealization of the variance premium. The only exception is the SV
nd SVJ 3/2 specification, which provides average values similar to

he ex-post average. For the SVCJ models the model-based expec-

ations match the ex-post observed variance risk premium much

ore closely. Again, for the 3/2 diffusion the variance risk pre-

ium is lower compared to other models of the same model class.

hat is, in terms of producing reasonable values for the variance

isk premium, SVCJ models outperform SV and SVJ models; this

onfirms our results in Section 4.2 . Finally, our findings confirm

hat the diffusion specification has a much larger impact on model

erformance than the drift. Table 10 shows that the change in ex-

ected variance risk premia is much larger for alternative diffusion

pecification whereas drift specification have a minor impact. 

Fig. 5 contrasts the time series of the expected variance risk

remia for SV and SVCJ models. For ease of exposition we restrict

he time period from 2004 to 2008. We find that the risk pre-

ium expectation in SVCJ models is almost always lower than for

V models. This highlights that our results in Table 10 are not due

o outliers, but that the differences are consistent across time. 

. Realized variance as estimation input 

In this section we analyze whether previously reported results

re robust to using realized variance as an additional input in the

stimation. In particular, we study whether our model ranking in

ection 4.2 is robust to including high-frequency intradaily vari-

http://realized.oxford-man.ox.ac.uk/
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Fig. 5. VRP vs. Realized Cash Flow - Lehman Crisis. 

This figure shows the expected log return of the variance swap for different SV 

and SVCJ model specifications. The time period is restricted from 2004 to 2008 to 

increase visibility of the differences. The top panel shows the SV AffineSqr model 

as solid line and the SVCJ AffineSqr model as dotted line. The bottom panel shows 

the AffinePoly specifications for the SV model class as solid line and for the SVCJ 

model class as dotted line. 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Parameter Estimators for the SV Model Class with RV. 

This table shows posterior means and standard deviations (in brack- 

ets) of model parameters for drift and diffusion specifications of the 

SV class. The three best performing models in terms of the DIC mea- 

sure as reported in Table 5 as well as the affine benchmark are pre- 

sented. Parameter estimation is based on daily S&P 500 percentage re- 

turns from January 1983 until December 2013 and used the realized 

variance measure as additional information. 

Par AffineSqr PolySqr AffineOne PolyOne BoxCox 

μ 0.0257 0.0280 0.0347 0.0346 0.0393 

(0.0088) (0.0086) (0.0086) (0.0086) (0.0089) 

α0 0.0241 0.0025 0.0158 0.0124 −0.0082 

(0.0023) (0.0022) (0.0018) (0.0026) (0.0023) 

α1 – 0.0054 – 0.0 0 05 –

– (0.0 0 08) – (0.0 0 04) –

α2 −0.0208 −0.0104 −0.0106 −0.0057 −0.0204 

(0.0023) (0.0023) (0.0033) (0.0034) (0.0030) 

α3 – −0.0 0 02 – −0.0012 –

– (0.0 0 02) – (0.0 0 07) –

β0 – – – – 0.1766 

– – – – (0.0119) 

β2 0.1679 0.1780 0.1961 0.1959 –

(0.0067) (0.0070) (0.0082) (0.0083) –

ρ −0.6262 −0.6185 −0.6336 −0.6342 −0.5865 

(0.0270) (0.0278) (0.0275) (0.0275) (0.0362) 

δ – – – – −0.2409 

– – – – (0.0529) 
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ance measures in the MCMC algorithm. 25 Similar approaches have

been proposed in Jones (2003b) who uses the VIX index or Eraker

(2004) who uses option prices in addition to daily return data.

More recently, Maneesoonthorn et al. (2017) use bipower variation

as additional data in MCMC algorithms to estimate index return

models. Our previous analysis resorts to realized variance only to

test alternative specifications out-of-sample. Since we now use re-

alized variance in the estimation step we no longer base our model

ranking on the tests discussed in Sections 4.3 and 4.4 but focus on

the DIC model ranking. 

To incorporate realized variance into the MCMC algorithm de-

scribed in Section 3 , similar to Maneesoonthorn et al. (2017) , we
25 We would like to thank an anonymous referee for this suggestion. 

d

T

ssume a functional relationship between model-based and real-

zed variance: 

og (RV t ) = c 0 + c 1 log (V t−1 ) + σε t (17)

here εt is standard normally distributed. This assumption im-

lies that RV t is a noisy signal of the un-observable variance pro-

ess which results in an additional term in the posterior distribu-

ion. Note that this specification is an approximation since for the

ajority of models used in our study the exact distributional re-

ationship between the realized variance and the model implied

ariance is not known in closed form. Since Eq. (17) is not ex-

ct, we are careful to ensure that the imposed log-linear relation-

hip does not bias our results. To do so, we also estimate non-

inear extensions such as log (RV t ) = c 0 + c 1 log (V t−1 ) + c 2 
1 

log (V t−1 ) 
+

 3 log (V t−1 ) 
2 + σε t , which are motivated by our model setup in Eq.

3) , as well as functional relationships based on levels. In untab-

lated results we find, however, that the functional form has no

ajor impact on the overall conclusions presented in this section.

e omit detailed results for these extensions to economize on

pace. 26 Since data for realized variance estimators are available

rom 20 0 0 to 2013 and to ensure comparability to our results in

ection 3.3 we use the return time series from 1983 to 2013 and

dd realized variances from 20 0 0 to 2013 for model estimation. 

Tables 11–13 provide our estimation results. We find that esti-

ated model parameters only change marginally compared to es-

imates in Tables 2–4 . As an example, the value for the leverage

arameter ρ in Table 11 for the AffineSqr model is −0.6262 and in

able 2 it is −0.5997. The value of β3 for the SVCJ AffineCev model

s 1.2333 in Table 4 versus 1.1188 in Table 13 . More importantly,

n Table 14 we compare more formally the impact on our model

ankings using the DIC criterion. We find that the model rankings

hange when compared to the results in Table 6 . For example, the

or the SVCJ model class the Affine3/2 and AffineCev swap posi-

ions in the ranking, the SVCJ AfineSqr model does outperform all

VJ models, or PolySqr is no longer the best specification for the
26 The additional term mainly affects draws of the daily variances, as we now 

raw V t−1 conditional on the return and the additional information provided by RV t . 

he residual term can be interpreted as the sum of measurement and model error. 
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Table 12 

Parameter Estimators for the SVJ Model Class with RV. 

This table shows posterior means and standard deviations (in brackets) 

of model parameters for all drift and diffusion specifications of the SVJ 

class. The three best performing models in terms of the DIC measure as 

reported in Table 5 as well as the affine benchmark are presented. Pa- 

rameter estimation is based on daily S&P 500 percentage returns from 

January 1983 until December 2013 and used the realized variance mea- 

sure as additional information. 

Par AffineSqr PolySqr AffineOne PolyOne BoxCox 

μ 0.0278 0.0294 0.0376 0.0379 0.0472 

(0.0087) (0.0085) (0.0086) (0.0086) (0.0093) 

α0 0.0212 0.0022 0.0139 0.0107 −0.0069 

(0.0022) (0.0019) (0.0017) (0.0024) (0.0020) 

α1 – 0.0049 – 0.0 0 05 –

– (0.0 0 07) – (0.0 0 04) –

α2 −0.0186 −0.0091 −0.0089 −0.0046 −0.0152 

(0.0022) (0.0021) (0.0031) (0.0030) (0.0025) 

α3 – −0.0 0 02 – −0.0011 –

– (0.0 0 02) – (0.0 0 06) –

β0 – – – – 0.1589 

– – – – (0.0110) 

β2 0.1567 0.1676 0.1879 0.1877 –

(0.0065) (0.0069) (0.0080) (0.0080) –

ρ −0.6683 −0.6631 −0.6759 −0.6760 −0.6749 

(0.0261) (0.0264) (0.0261) (0.0259) (0.0335) 

λ 0.0034 0.0035 0.0066 0.0067 0.0169 

(0.0013) (0.0013) (0.0032) (0.0032) (0.0074) 

μY −3.1638 −3.1158 −1.5943 −1.5926 −1.0254 

(1.0531) (1.0113) (0.6991) (0.7150) (0.3873) 

σ Y 3.1617 3.1105 1.9344 1.9204 1.5889 

(0.6573) (0.6106) (0.3395) (0.3257) (0.2074) 

δ – – – – −0.2812 

– – – – (0.0535) 

Table 13 

Parameter Estimators for the SVCJ Model Class with RV. 

This table shows posterior means and standard deviations (in brack- 

ets) of model parameters for all drift and diffusion specifications of 

the SVCJ class. The three best performing models in terms of the DIC 

measure as reported in Table 5 as well as the affine benchmark are 

presented. Parameter estimation is based on daily S&P 500 percentage 

returns from January 1983 to December 2013 and used the realized 

variance measure as additional information. 

Par AffineSqr Affine3/2 Poly3/2 AffineCev BoxCox 

μ 0.0429 0.0574 0.0580 0.0455 0.0467 

(0.0088) (0.0090) (0.0091) (0.0089) (0.0091) 

α0 0.0190 0.0031 0.0011 0.0081 −0.0111 

(0.0021) (0.0010) (0.0 0 09) (0.0018) (0.0024) 

α1 – – 0.0 0 04 – –

– – (0.0 0 02) – –

α2 −0.0343 −0.0098 −0.0105 −0.0163 −0.0153 

(0.0031) (0.0041) (0.0037) (0.0040) (0.0025) 

α3 – – −0.0 0 05 – –

– – (0.0 0 05) – –

β0 – – – – 0.1412 

– – – – (0.0114) 

β2 0.1186 0.1339 0.1264 0.1619 –

(0.0071) (0.0065) (0.0066) (0.0084) –

β3 – – – 1.1188 –

– – – (0.0552) –

ρ −0.7137 −0.7288 −0.7710 −0.7639 −0.7034 

(0.0347) (0.0387) (0.0348) (0.0353) (0.0385) 

λ 0.0137 0.0228 0.0283 0.0236 0.0099 

(0.0032) (0.0050) (0.0058) (0.0060) (0.0040) 

μY −0.5984 −0.7685 −0.2448 0.1699 −1.2976 

(0.4973) (0.3957) (0.3416) (0.3949) (0.7044) 

σ Y 1.7086 1.4517 1.3530 1.4236 1.6876 

(0.2186) (0.1520) (0.1427) (0.1633) (0.2333) 

ρ J −1.0824 −0.5510 −1.4171 −2.0430 −1.0119 

(0.2855) (0.5167) (0.5755) (0.6618) (0.9546) 

μV 1.4482 0.6074 0.5037 0.5798 0.6078 

(0.2729) (0.0999) (0.0763) (0.1157) (0.1210) 

δ – – – – −0.1757 

– – – – (0.0701) 

Table 14 

Rankings of Models by DIC with RV. 

The table shows the Deviance Information Criterion (DIC) rankings for 

all models based on S&P 500 data for the time period January 1983 un- 

til December 2013. The DIC column gives the overall DIC value where 

lower values indicate a better model performance. The Deviance Infor- 

mation Criterion consists of two parts p D the penalty term measuring 

model complexity and D̄ measuring model fit (see Spiegelhalter et al., 

2002 ). 

Model DIC pD D̄ 

SVCJ AffineCev 16624.0 4347.5 12276.5 

SVCJ Poly3/2 16664.2 4573.4 12090.8 

SVCJ Affine3/2 17377.4 4097.0 13280.3 

SVCJ AffineSqr 17556.7 3804.0 13752.7 

SVJ AffineOne 18099.4 3360.1 14739.4 

SVJ PolyOne 18104.3 3363.6 14740.7 

SVCJ BoxCoxAffineOU 18212.0 3964.5 14247.6 

SVJ AffineSqr 18236.7 3255.6 14981.1 

SVJ PolySqr 18266.7 3207.7 15059.0 

SVJ BoxCoxAffineOU 18570.6 3774.9 14795.7 

SV PolyOne 18659.7 2904.2 15755.4 

SV AffineOne 18659.8 2897.7 15762.2 

SV AffineSqr 18778.1 2820.1 15958.0 

SV PolySqr 18815.7 2757.2 16058.4 

SV BoxCoxAffineOU 19522.7 2833.5 16689.2 
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V model class. Our main conclusions, however, are confirmed by

hese additional estimation results: jump models outperform pure

tochastic volatility models, non-affine specifications provide supe-

ior model fit, and Box–Cox models are outperformed by models

hat include non-linearities directly into the variance process. 

. Conclusion 

We analyze the model performance of a large set of drift and

iffusion specifications for modeling S&P 500 index returns. Mod-

ls are ranked using complexity-adjusted return fit statistics and by

omparing model-based variance paths with non-parametric high-

requency bipower variation estimates of variance. The best return

t is generated by a non-affine SVCJ model with a Cev diffusion

arameter greater than one. Intuitively, such a process facilitates

ast moving variances during periods of market uncertainty, and

his feature leads to a superior return fit. This result is robust for

arious sub-sample periods. 

The analysis of model-based variance paths further highlights

he finding that model performance is nearly exclusively driven by

he choice of the diffusion component of the SV process. Therefore,

odel complexity should focus on extending the diffusion func-

ion in a non-affine way with a Cev parameter of at least one. Our

esults indicate that sophisticated drift specifications add surpris-

ngly little additional performance gain. Simple linear drift spec-

fications provide sufficient flexibility and also have fewer model

arameters, which may improve the stability during estimation.

urther, we observe that all models perform equally well in calm

arket regimes, but they show considerable differences in perfor-

ance during times of market stress. The comparison of realized

nd model-based variance confirms these findings and further sup-

orts jumps in both prices and variance. We show that jump mod-

ls give more reliable estimators for the expected log return of a

ariance swap contract than pure stochastic volatility models. Our

onclusions are robust to adding a realized variance estimator in

he estimation procedure. 

ppendix A. Simulation study 
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Table 15 

Simulation Study. 

This table reports the parameter estimation results from a Monte Carlo study where 100 sample paths with 4000 daily returns are simulated from the true 

model with parameters shown as Sim . The simulation is performed using an Euler discretization with 100 time steps per day. The average estimated parameter 

of these simulated paths are reported in line Est . RMSE and standard errors ( StdErr ) are also reported. We use 20 0,0 0 0 MCMC draws with a burn-in period of 

50,0 0 0 draws in every estimation run. 

Para μ α0 α1 α2 α3 β0 β1 β2 β3 ρ λ μy σ y ρ J μV 

Panel A: SV PolyPoly model 

Sim 0.038 0.009 0.001 −0.004 −0.001 0.002 0.142 0.045 1.363 −0.614 – – – – –

Est 0.035 0.009 0.002 −0.005 −0.002 0.003 0.127 0.056 1.061 −0.601 – – – – –

RMSE 0.003 0.001 0.001 0.001 0.0 0 0 0.001 0.017 0.013 0.302 0.013 – – – – –

StdErr 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.001 0.001 0.002 0.0 0 0 – – – – –

Panel B: SVJ PolyPoly model 

Sim 0.046 0.006 0.001 −0.002 −0.001 0.001 0.136 0.033 1.517 −0.674 0.012 −1.231 1.681 – –

Est 0.046 0.007 0.001 −0.003 −0.001 0.001 0.112 0.048 1.079 −0.662 0.013 −1.433 1.700 – –

RMSE 0.0 0 0 0.001 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.025 0.016 0.439 0.012 0.001 0.208 0.024 – –

StdErr 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.001 0.001 0.002 0.0 0 0 0.0 0 0 0.005 0.001 – –

Panel A: SVCJ PolyPoly model 

Sim 0.043 0.003 0.001 −0.006 −0.001 0.001 0.096 0.059 1.185 −0.743 0.012 −0.456 1.669 −2.137 0.650 

Est 0.036 0.003 0.001 −0.003 −0.001 0.001 0.099 0.048 1.021 −0.731 0.010 −0.700 1.744 −2.295 0.810 

RMSE 0.007 0.0 0 0 0.0 0 0 0.003 0.0 0 0 0.0 0 0 0.006 0.012 0.166 0.012 0.002 0.292 0.080 0.245 0.161 

StdErr 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.001 0.001 0.002 0.0 0 0 0.0 0 0 0.016 0.003 0.019 0.002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

C  

 

 

 

C  

 

D  

D  

D  

D  

D  

E  

 

E  

E  

 

 

G  

 

H  

 

 

 

 

 

 

J  

 

J  

 

References 

Ait-Sahalia, Y., 1996. Testing continuous-time models of the spot interest rate. Rev.

Financ. Stud. 9 (2), 385–426. doi: 10.1093/rfs/9.2.385 . 
Aït-Sahalia, Y., Kimmel, R., 2007. Maximum likelihood estimation of stochastic

volatility models. J. Financ. Econ. 83 (2), 413–452. doi: 10.1016/j.jfineco.2005.10.
006 . 

Andersen, T. , Benzoni, L. , Lund, J. , 2002. An empirical investigation of continuous–
time equity return models. J. Finance 57 (3), 1239–1284 . 

Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H., 2001. The distribution of

realized stock return volatility. J. Financ. Econ. 61 (1), 43–76. doi: 10.1016/
S0304-405X(01)0 0 055-1 . 

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001. The distribution of real-
ized exchange rate volatility. J. Am. Stat. Assoc. 96 (March), 42–55. doi: 10.1198/

016214501750332965 . 
Andersen, T.G., Fusari, N., Todorov, V., 2015. The risk premia embedded in index

options. J. Financ. Econ. 117 (3), 558–584. doi: 10.1016/j.jfineco.2015.06.005 . 

Bakshi, G., Ju, N., Ou-Yang, H., 2006. Estimation of continuous-time models with
an application to equity volatility dynamics. J. Financ. Econ. 82 (1), 227–249.

doi: 10.1016/j.jfineco.20 05.09.0 05 . 
Bakshi, G.S., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pric-

ing models. J. Finance 52 (5), 2003–2049. doi: 10.1111/j.1540-6261.1997.tb02749.
x . 

Bandi, F.M., Reno, R., 2016. Price and volatility co-jumps. J. Financ. Econ. 119 (1),

107–146. doi: 10.1016/j.jfineco.2015.05.007 . 
Barndorff-Nielsen, O.E., Shephard, N., 2004. Power and bipower variation with

stochastic volatility and jumps. J. Financ. Econometr. 2 (1), 1–37. doi: 10.1093/
jjfinec/nbh001 . 

Bates, D.S., 1996. Jumps and stochastic volatility: exchange rate processes implicit in
deutsche mark options. Rev. Financ. Stud. 9 (1), 69–107. doi: 10.1093/rfs/9.1.69 . 

Bates, D.S., 20 0 0. Post-’87 crash fears in the s&p 50 0 futures option market. J. Econ.

94, 181–238. doi: 10.1016/S0304-4076(99)0 0 021-4 . 
Bates, D.S., 2012. U.S. stock market crash risk, 1926–2010. J. Financ. Econ. 105 (2),

229–259. doi: 10.1016/j.jfineco.2012.03.004 . 
Bates, D. S., 2016. How crashes develop: intradaily volatility and crash evolution.

Working Paper. 
Benzoni, L., 2002. Pricing options under stochastic volatility: an empirical investiga-

tion. Working Paper. 

Berg, A., Meyer, R., Yu, J., 2004. Deviance information criterion for comparing
stochastic volatility models. J. Bus. Econ. Stat. 22 (1), 107–120. doi: 10.1198/

073500103288619430 . 
Bondarenko, O., 2014. Variance trading and market price of variance risk. J. Econ.

180 (1), 81–97. doi: 10.1016/j.jeconom.2014.02.001 . 
Britten-jones, M. , Neuberger, A. , 20 0 0. Option prices, implied price processes, and

stochastic volatility. J. Finance 55 (2), 839–866 . 
Broadie, M. , Chernov, M. , Johannes, M. , 2007. Model specification and risk premia:

evidence from futures options. J. Finance 62 (3), 1453–1490 . 

Carr, P., Wu, L., 2007. Variance risk premiums. Rev. Financ. Stud. 22 (3), 1311–1341.
doi: 10.1093/rfs/hhn038 . 

Carr, P., Wu, L., 2009. Variance risk premiums. Rev. Financ. Stud. 22 (3), 1311–1341.
doi: 10.1093/rfs/hhn038 . 

Casella, G., George, E.I., 1992. Explaining the gibbs sampler. Am. Stat. 46 (3), 167–
174. doi: 10.2307/2685208 . 

Chan, K.C. , Karolyi, G.A. , Longstaff, F.A. , Sanders, A.B. , 1992. An empirical compar-

ison of alternative models of the short-term interest rate. J. Finance 47 (3),
1209–1227 . 

Chernov, M., Gallant, A.R., Ghysels, E., Tauchen, G., 2003. Alternative models for
stock price dynamics. J. Econ. 116 (1–2), 225–257. doi: 10.1016/S0304-4076(03)

00108-8 . 
hib, S. , Greenberg, E. , 1995. Understanding the metropolis-hastings algorithm. Am.

Stat. 49 (4), 327–335 . 
Chourdakis, K., Dotsis, G., 2011. Maximum likelihood estimation of non-affine

volatility processes. J. Empir. Finance 18 (3), 533–545. doi: 10.1016/j.jempfin.

2010.10.006 . 
hristoffersen, P., Heston, S., Jacobs, K., 2009. The shape and term structure of the

index option smirk: why multifactor stochastic volatility models work so well.
Manag. Sci. 55 (12), 1914–1932. doi: 10.1287/mnsc.1090.1065 . 

Christoffersen, P., Jacobs, K., Mimouni, K., 2010. Volatility dynamics for the s&P500:
evidence from realized volatility, daily returns, and option prices. Rev. Financ.

Stud. 23 (8), 3141–3189. doi: 10.1093/rfs/hhq032 . 

onley, T.G. , Hansen, L.P. , Luttmer, E.G.J. , Scheinkman, J.A. , 1997. Short-term interest
rates as subordinated diffusions. Rev. Financ. Stud. 10 (3), 525–577 . 

Coval, J.D. , Shumway, T. , 2001. Expected option returns. J. Finance 56 (3), 983–1009 .
rechsler, I., Yaron, A., 2011. What’S vol got to do with it. Rev. Financ. Stud. 24 (1),

1–45. doi: 10.1093/rfs/hhq085 . 
uan, J.C., Yeh, C.Y., 2010. Jump and volatility risk premiums implied by VIX. J. Econ.

Dyn. Control 34 (11), 2232–2244. doi: 10.1016/j.jedc.2010.05.006 . 

uffie, D. , Pan, J. , Singleton, K. , 20 0 0. Transform analysis and asset pricing for affine
jump–diffusions. Econometrica 68 (6), 1343–1376 . 

urham, G. , 2013. Risk-neutral modelling with affine and non-affine models. J. Fi-
nanc. Econometr. 11 (4), 650–681 . 

urham, G. , Park, Y. , 2013. Beyond stochastic volatility and jumps in returns and
volatility. J. Bus. Econ. Stat. 31 (1), 107–121 . 

gloff, D., Leippold, M., Wu, L., 2010. The term structure of variance swap rates and

optimal variance swap investments. J. Financ. Quant. Anal. 45 (05), 1279–1310.
doi: 10.1017/S0022109010 0 0 0463 . 

raker, B. , 2004. Do stock prices and volatility jump? reconciling evidence from spot
and option prices. J. Finance 59 (3), 1–37 . 

raker, B. , Johannes, M. , Polson, N. , 2003. The impact of jumps in volatility and re-
turns. J. Finance 58 (3), 1269–1300 . 

Ferriani, F., Pastorello, S., 2012. Estimating and testing non-affine option pricing

models with a large unbalanced panel of options. Econ. J. 15 (2), 171–203.
doi: 10.1111/j.1368-423X.2012.00372.x . 

ilks, W.R., Best, N.G., Tan, K.K.C., 1995. Adaptive rejection metropolis sampling
within gibbs sampling. J. R. Stat. Soc. Ser. C (Appl. Stat.) 44 (4), 455–472.

doi: 10.2307/2986138 . 
ansen, P.R. , Lunde, A. , 2006. Consistent ranking of volatility models. J. Econ. 131,

97–121 . 
Heston, S.L. , 1993. A closed-form solution for options with stochastic volatility with

applications to bond and currency options. Rev. Financ. Stud. 6 (2), 327–343 . 

Ignatieva, K., Rodrigues, P., Seeger, N., 2015. Empirical analysis of affine versus non-
affine variance specifications in jump–diffusion models for equity indices. J. Bus.

Econ. Stat. 33 (1), 68–75. doi: 10.1080/07350015.2014.922471 . 
Jacquier, E. , Polson, N.G. , Rossi, P.E. , 1994. Bayesian analysis of stochastic volatility

models. J. Bus. Econ. Stat. 12 (4), 371–389 . 
Jacquier, E., Polson, N.G., Rossi, P.E., 2004. Bayesian analysis of stochastic volatility

models with fat-tails and correlated errors. J. Econ. 122 (1), 185–212. doi: 10.

1016/j.jeconom.20 03.09.0 01 . 
ohannes, M. , Polson, N. , 2009. MCMC methods for continuous-time financial econo-

metrics. In: Ait-Sahalia, Y.L.H. (Ed.), Handbook of Financial Econometrics, Vol 2.
North Holland, pp. 1–72 . 

ohannes, M.S., Polson, N.G., Stroud, J.R., 2009. Optimal filtering of jump diffusions:
extracting latent states from asset prices. Rev. Financ. Stud. 22 (7), 2759–2799.

doi: 10.1093/rfs/hhn110 . 

http://dx.doi.org/10.1093/rfs/9.2.385
http://dx.doi.org/10.1016/j.jfineco.2005.10.006
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0003
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0003
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0003
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0003
http://dx.doi.org/10.1016/S0304-405X(01)00055-1
http://dx.doi.org/10.1198/016214501750332965
http://dx.doi.org/10.1016/j.jfineco.2015.06.005
http://dx.doi.org/10.1016/j.jfineco.2005.09.005
http://dx.doi.org/10.1111/j.1540-6261.1997.tb02749.x
http://dx.doi.org/10.1016/j.jfineco.2015.05.007
http://dx.doi.org/10.1093/jjfinec/nbh001
http://dx.doi.org/10.1093/rfs/9.1.69
http://dx.doi.org/10.1016/S0304-4076(99)00021-4
http://dx.doi.org/10.1016/j.jfineco.2012.03.004
http://dx.doi.org/10.1198/073500103288619430
http://dx.doi.org/10.1016/j.jeconom.2014.02.001
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0016
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0016
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0016
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0017
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0017
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0017
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0017
http://dx.doi.org/10.1093/rfs/hhn038
http://dx.doi.org/10.1093/rfs/hhn038
http://dx.doi.org/10.2307/2685208
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0021
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0021
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0021
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0021
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0021
http://dx.doi.org/10.1016/S0304-4076(03)00108-8
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0023
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0023
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0023
http://dx.doi.org/10.1016/j.jempfin.2010.10.006
http://dx.doi.org/10.1287/mnsc.1090.1065
http://dx.doi.org/10.1093/rfs/hhq032
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0027
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0027
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0027
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0027
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0027
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0028
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0028
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0028
http://dx.doi.org/10.1093/rfs/hhq085
http://dx.doi.org/10.1016/j.jedc.2010.05.006
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0031
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0031
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0031
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0031
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0032
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0032
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0033
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0033
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0033
http://dx.doi.org/10.1017/S0022109010000463
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0035
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0035
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0036
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0036
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0036
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0036
http://dx.doi.org/10.1111/j.1368-423X.2012.00372.x
http://dx.doi.org/10.2307/2986138
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0039
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0039
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0039
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0040
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0040
http://dx.doi.org/10.1080/07350015.2014.922471
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0042
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0042
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0042
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0042
http://dx.doi.org/10.1016/j.jeconom.2003.09.001
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0044
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0044
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0044
http://dx.doi.org/10.1093/rfs/hhn110


A. Kaeck et al. / Journal of Banking and Finance 83 (2017) 85–103 103 

J  

J  

 

K  

K  

 

L  

M  

 

M  

N
O  

P  

 

S  

 

S  

 

S  

S  

 

Y  

Y  

Z  

 

ones, C.S., 2003. Nonlinear mean reversion in the short-term interest rate. Rev. Fi-
nanc. Stud. 16 (3), 793–843. doi: 10.1093/rfs/hhg014 . 

ones, C.S., 2003. The dynamics of stochastic volatility: evidence from underlying
and options markets. J. Econ. 116 (1–2), 181–224. doi: 10.1016/S0304-4076(03)

00107-6 . 
aeck, A., Alexander, C., 2012. Volatility dynamics for the s&p 500: further evidence

from non-affine, multi-factor jump diffusions. J. Bank. Finance 36 (11), 3110–
3121. doi: 10.1016/j.jbankfin.2012.07.012 . 

aeck, A., Alexander, C., 2013. Stochastic volatility jump–diffusions for european

equity index dynamics. Eur. Financ. Manag. 19 (3), 470–496. doi: 10.1111/j.
1468-036X.2011.00613.x . 

i, H., Wells, M.T., Yu, C.L., 2008. A bayesian analysis of return dynamics with lévy
jumps. Rev. Financ. Stud. 21 (5), 2345–2378. doi: 10.1093/rfs/hhl036 . 

aneesoonthorn, W., Forbes, S., Martin, G.M., 2017. Inference on self-exciting jumps
in prices and volatility using high-frequency measures. J. Appl. Econometr. 32,

504–532. doi: 10.1002/jae.2547 . 

ijatovic, A., Schneider, P., 2014. Empirical asset pricing with nonlinear risk premia.
J. Financ. Econometr. 12 (3), 479–506. doi: 10.1093/jjfinec/nbt018 . 

euberger, A. , 2012. Realized skewness. Rev. Financ. Stud. 25 (11), 3423–3455 . 
rnthanalai, C. , 2014. Levy jump risk: evidence from options and returns. J. Financ.

Econ. 112, 69–90 . 
an, J., 2002. The jump-risk premia implicit in options: evidence from an integrated

time-series study. J. Financ. Econ. 63 (1), 3–50. doi: 10.1016/S0304-405X(01)

0 0 088-5 . 
anta-Clara, P., Yan, S., 2010. Crashes, volatility, and the equity premium: lessons
from s&p 500 options. Rev. Econ. Stat. 92 (2), 435–451. doi: 10.1162/rest.2010.

11549 . 
hephard, N., Sheppard, K., 2010. Realising the future: forecasting with high-

frequency-based volatility (heavy) models. J. Appl. Econometr. 25, 197–231.
doi: 10.1002/jae . 

piegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures
of model complexity and fit. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 64 (4), 583–

639. doi: 10.1111/1467-9868.00353 . 

troud, J.R., Johannes, M.S., 2014. Bayesian modeling and forecasting of 24-hour
high-frequency volatility. J. Am. Stat. Assoc. 109 (508), 1368–1384. doi: 10.1080/

01621459.2014.937003 . 
u, J., 2005. On leverage in a stochastic volatility model. J. Econ. 127, 165–178.

doi: 10.1016/j.jeconom.20 04.08.0 02 . 
u, J., Yang, Z., Zhang, X., 2006. A class of nonlinear stochastic volatility models and

its implications for pricing currency options. Comput. Stat. Data Anal. 51, 2218–

2231. doi: 10.1016/j.csda.2006.08.024 . 
hang, X., King, M.L., 2008. Box–Cox stochastic volatility models with heavy-tails

and correlated errors. J. Empir. Finance 15, 549–566. doi: 10.1016/j.jempfin.2007.
05.002 . 

http://dx.doi.org/10.1093/rfs/hhg014
http://dx.doi.org/10.1016/S0304-4076(03)00107-6
http://dx.doi.org/10.1016/j.jbankfin.2012.07.012
http://dx.doi.org/10.1111/j.1468-036X.2011.00613.x
http://dx.doi.org/10.1093/rfs/hhl036
http://dx.doi.org/10.1002/jae.2547
http://dx.doi.org/10.1093/jjfinec/nbt018
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0053
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0053
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0054
http://refhub.elsevier.com/S0378-4266(17)30132-2/sbref0054
http://dx.doi.org/10.1016/S0304-405X(01)00088-5
http://dx.doi.org/10.1162/rest.2010.11549
http://dx.doi.org/10.1002/jae
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1080/01621459.2014.937003
http://dx.doi.org/10.1016/j.jeconom.2004.08.002
http://dx.doi.org/10.1016/j.csda.2006.08.024
http://dx.doi.org/10.1016/j.jempfin.2007.05.002

	Equity index variance: Evidence from flexible parametric jump-diffusion models
	1 Introduction
	2 Model description
	3 Estimation methodology
	3.1 Discretization
	3.2 Estimation
	3.3 Model comparison
	3.4 Model implementation

	4 Empirical results
	4.1 Model estimation
	4.2 Return fit
	4.3 Variance paths
	4.4 Realized variance regressions
	4.5 Implications for variance swaps

	5 Realized variance as estimation input
	6 Conclusion
	Appendix A Simulation study
	 References


