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Abstract

Background Gait variability and stability measures might

be useful to assess gait quality changes after fall prevention

programs. However, reliability of these measures appears

limited.

Aims The objective of the present study was to assess the

effects of measurement strategy in terms of numbers of

subjects, measurement days and measurements per day on

the power to detect relevant changes in gait variability and

stability between conditions among healthy elderly.

Methods Sixteen healthy older participants [65.6 (SD 5.9)

years], performed two walking trials on each of 2 days.

Required numbers of subjects to obtain sufficient statistical

power for comparisons between conditions within subjects

(paired, repeated-measures designs) were calculated (with

confidence intervals) for several gait measures and for

different numbers of trials per day and for different num-

bers of measurement days.

Results The numbers of subjects required to obtain suf-

ficient statistical power in studies collecting data from one

trial on 1 day in each of the two compared conditions

ranged from 7 to 13 for large differences but highly

correlated data between conditions, up to 78–192 for data

with a small effect and low correlation.

Discussion Low correlations between gait parameters in

different conditions can be assumed and relatively small

effects appear clinically meaningful. This implies that large

numbers of subjects are generally needed.

Conclusion This study provides the analysis tools and

underlying data for power analyses in studies using gait

parameters as an outcome of interventions aiming to reduce

fall risk.

Keywords Measurement design � Gait variability � Local
dynamic stability � Walking � Between-day variance �
Within-day variance

Introduction

A large proportion of falls in older adults occurs during

locomotion [1–3]. These falls are often attributed to a

decreased quality of gait, due to age-related, peripheral [4]

and central [5] impairments. Gait variability and local

dynamic stability have received much attention as indica-

tors of fall-related measures of gait quality [6, 7] and

several studies have confirmed that these parameters are,

indeed, related to fall risk [8–13]. Although ultimately the

ability to predict actual fall risk would remain to be shown,

the use of gait quality measures as outcome variables in

intervention studies might allow faster iterative develop-

ment of fall prevention programs, as actual fall risk by

gathering fall incidence data requires a long follow-up

period. While reliability of gait variability and stability

estimates can to some extent be improved by treadmill

walking to collect data from a large number of strides [14–

17], a recent study indicated that reliability between
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sessions is still only moderate [18]. The statistical conse-

quences of limited test–retest reliability can be overcome

by adjusting the measurement strategy, but previous reports

do not allow inferences on optimal measurement strategies.

In studies investigating differences in gait quality between

conditions in a population, the optimal measurement

strategy, in terms of the number of subjects and the number

of measurements per subject, depends on the variance of

the gait parameters between and within subjects.

The first and main aim of this study was to estimate

between- and within-subject variance components of gait

variability and stability measures in treadmill walking, to

allow estimation of the number of subjects necessary to

obtain sufficient statistical power in studies that are aimed

at detecting relevant differences between conditions in a

repeated-measures design using subjects as their own

controls. The second aim was to determine how the number

of measurement days or measurements per day (i.e., the

within-subject data collection strategy) influences the

required numbers of subjects to detect differences between

conditions with sufficient statistical power.

Materials and methods

Subjects

Sixteen older subjects [nfemale = 9, nmale = 7, mean age

65.6 (SD 5.9) years, mean weight 77.5 (SD 15.3) kg, mean

height 1.74 (SD 0.09) m], without physical impairments

interfering with their walking ability, participated in this

study. All subjects gave informed written consent. The

ethics committee of the Faculty of Human Movement

Sciences, VU University Amsterdam approved the exper-

imental protocol in accordance with the Declaration of

Helsinki.

Study design

Time series of 5 min of treadmill walking at 3.0 km h-1

were collected during four trials (two trials on each of

2 days). In between the walking trials, subjects performed

a 15-min trial of perturbed walking at 3.0 km h-1 for

another study. Subjects were allowed to rest as long as

needed in between walking trials. The median number of

days in between the two measurement days was 5 (range

1–21). Subjects were asked to perform their normal

activities on the day before each measurement day.

Procedure

Upon arrival at the laboratory, each subject was first

informed about the measurement procedure and then

familiarized with treadmill walking. Subjects were allowed

to practice treadmill walking for any amount of time. In

general, subjects were comfortable with treadmill walking

within 5 min. Subjects were instrumented with clusters of 3

LED’s on the trunk, at the level of T6, and on both feet. An

optoelectronic system (Optotrak Northern Digital Inc.,

Waterloo, Ontario) measured the LED positions at

50 samples s-1.

Gait measures

The extracted gait variability measures were variability of

medio-lateral trunk center of mass velocity (VARml),

stride-time-variability (VARST) and step-width-variability

(VARSW) of the final 150 strides of each trial (approxi-

mately the final 2–3 min). VARml was calculated as the

mean of the standard deviations of medio-lateral trunk

velocities at each increment of normalized time (0–100 %)

of the measured strides. Trunk center of mass position was

estimated based on the position of the LED-cluster attached

to the trunk, trunk circumference and the position of sev-

eral bony landmarks relative to the cluster [19]. The data

were low-pass filtered (20 Hz, second-order lowpass But-

terworth), for gait variability measures only, before 3-point

differentiation to obtain trunk velocities. VARST was cal-

culated as the standard deviation of the final 150 stride

times. Stride time was calculated as the time between

consecutive foot contacts of the same foot, which were

determined as the local minima of the vertical position of

the feet cluster markers. Step width was calculated as the

maximal perpendicular distance relative to the walking

direction between the lateral malleoli for each step.

VARSW was calculated as the standard deviation of the

final 300 steps.

Gait stability was quantified using local divergence

exponents (LDE) [20]. LDEs describe how small initial

differences in kinematics progress over the course of a step.

The method for calculating the LDE has been described

previously in more detail [16, 20]. In the present study, we

used a reconstructed state-space based on a single time-

series of medio-lateral trunk velocity and a state-space

reconstructed from trunk kinematics in six degrees of

freedom, to obtain LDEml and LDEtrunk, respectively.

Parameters for state space reconstruction were based on

data-driven estimates of the appropriate time-delay using

the average mutual information procedure and the required

number of embedded dimensions using the global false

nearest neighbor analysis. LDEml was determined from a

5-dimensional state-space from embedded medio-lateral

trunk velocity time-series, with a delay of 10 samples.

LDEtrunk was based on a 12-dimensional state space

reconstructed by combining the 3-dimensional linear and

angular velocities of the trunk and their time delayed
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copies. The embedding delay for this 12-dimensional state-

space was 25 samples. Rosenstein’s algorithm was used to

calculate the LDE [21] from the state space reconstruc-

tions. In short, for each time point in state-space, a nearest

neighbor was found and the Euclidean distance between

these points in state-space was tracked, resulting in a

number of time–distance curves equal to the number of

time points in state space. The divergence curve was then

calculated as the mean of the natural log of the time–dis-

tance curves. Finally, the LDE was determined as the slope

of the linear fit through the first 50 samples (time needed

for one step on average) of the divergence curve, corre-

sponding to the initial period of rapid exponential diver-

gence. Thus, the LDE indicates the rate of logarithmic

divergence as a result of differences in initial conditions

over the time needed for one step. A positive LDE indi-

cates local instability.

Statistical analysis

As pointed out in the introduction, power calculations in

gait studies require information about between-subjects

and within-subjects variance components of the gait mea-

sures of interest, the latter including variances between

measurement days and between trials within a day. All gait

measures were obtained, as described above, in two sepa-

rate trials on each of two different days for each subject.

The parent data set, thus, consisted of 64 values for each

gait measure (16 subjects 9 2 days 9 2 trials). These 64

values provided the basis for the analyses of variance and

power, performed for each separate gait measure. A nested

random model was used to estimate variance components

[22], by solving expected mean squares of the two-way

(subject, day) ANOVA corresponding to this model. This

assumes that no systematic sources of variance (fixed

effects) are present in the data. To check the validity of this

assumption, a repeated-measures ANOVA was performed

to test for effects of day (first vs second) and trial (first vs

second, within day) on each of the gait measures. Neither

day, trial nor their interaction had any systematic effect

(p[ 0.05, absolute differences\5 %).

The estimates obtained from the parent data were the

overall mean (m) and three variance components: variance

between subjects (s2BS), variance between days within

subjects (s2BD), and variance between trials within days

within subjects (s2WD). These parameters can be used to

estimate the number of subjects required to obtain suffi-

cient power for different measurement strategies as out-

lined in the ‘‘Appendix’’. For all analyses, the desired level

of significance was set to 0.05 and power was set to 0.80.

Additional assumptions needed regard the correlation (q)
between measurements in the two compared conditions

(e.g., before and after an intervention) at the level of

individuals, i.e., the predictability of the result in one

condition from that in the other for any particular subject.

As far as we know, such values have not been reported for

gait measures in the literature. Therefore, we explored a

range of values of q (0.3–0.6–0.9) as possible scenarios.

Based on these settings, we estimated the required

number of subjects, ns, to detect effects of 10 and 30 % of

the mean of the reference condition for repeated-measures

(paired) designs, under the scenario that only one trial was

performed by each subject in each condition. The detect-

able effect sizes were arbitrarily chosen, but are in the

order of magnitude reported in the literature for compar-

isons between fallers and non-fallers [8–10, 23–25].

To answer the second research question, we evaluated

how a change in the number of measurement days or trials

per day would influence the required number of subjects at

a maintained statistical power. One or 2 measurement days

and 1–3 trials per day were selected as realistic measure-

ment strategies in clinical gait studies.

To estimate the prediction intervals of the calculated

distribution parameters in the parent data set (m, s2BS, s
2
BD,

s2WD), and of the required numbers of subjects, we used a

bootstrap technique [26, 27]. In short, sixteen subjects were

randomly drawn with replacement from the original 16

subjects, keeping the results from the four trials of each of

the 16 selected subjects. Thus, one resampled bootstrap

data set contained the same number of subjects and trials as

the parent data set. For the resampled data set, the mean

and variance components (m, s2BS, s
2
BD, s

2
WD) as well as ns

were estimated for all combinations of number of days and

number of trials. This procedure was repeated for 5000

bootstrap data sets, and bias-corrected 95 % prediction

intervals for each of the estimated parameters were

obtained from the distribution of the 5000 determinations

as a measure of estimation uncertainty [28]. All statistical

analyses were done in R 2.13 [29].

Results

All three variance components, key factors for estimat-

ing the required numbers of subjects in any particular

data collection strategy, were substantial (see Table 1).

For the gait variability measures VARST, VARSW, and

VARml, between-subject variance was larger than

within-subject variance. For LDE measures, the sum of

the two within-subject variance components was similar

to the between-subjects variance, and between-days

variance was two to three times larger than within-day

variance. All variance components had wide 95 % pre-

diction intervals.
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The numbers of subjects required to obtain sufficient

statistical power in studies collecting data from one trial on

1 day in each of the two compared conditions ranged from

7 to 13 for highly correlated (q = 0.9) data with a large

effect (30 %), up to 78–192 for data with a low correlation

(q = 0.3) and with a small effect (10 %; Table 2).

The effect of changing the measurement strategy on the

required number of subjects is illustrated for VARST in

Fig. 1. Similar effects of changing the measurement strat-

egy were obtained for the other gait measures. The largest

decrease in the required numbers of subjects occurred

when an additional measurement day was added. Con-

ducting more trials on the same day did result in fewer

required subjects, but it was generally less effective than

increasing the number of measurement days, in particular

when increasing the number of trials from two to three.

Discussion

The main objective of this paper was to assess the numbers

of subjects required to obtain sufficient statistical power

(80 %) for detecting specified differences in gait measures

between two conditions using subjects as their own con-

trols, i.e., a repeated-measures design. In this study, we set

the differences to 10 and 30 % of the mean value in the

reference condition based on results reported in literature.

These differences are in line with suggested meaningful

changes reported by Brach et al. [30], i.e., 0.01 s for stance

time and swing time variability and 0.25 cm for step length

variability. These changes correspond to approximately 10

and 30 %, respectively, of the baseline mean value of these

gait measures. However, more research on clinically rele-

vant change in gait variability is warranted. To the best of

Table 1 Distribution parameters of gait measures

Mean s2BS s2BD s2WD

VARST 39.5 ms (34.2–47.3) 156.8 (17.0–407.0) 45.9 (8.0–106.4) 32.9 (18.4–57.1)

VARSW 2.8 cm (2.5–3.4) 0.67 (0.09–1.6) 0.09 (0.005–0.21) 0.21 (0.13–0.30)

VARml 2.8 cm s-1 (2.6–3.1) 3.3e-3 (8.8e-4–7.5e-3) 6.3e-4 (3.6e-5–1.4e-3) 8.8e-4 (5.2e-4–1.4e-3)

LDEml 1.7 (1.6–2.0) 0.17 (0.06–0.30) 0.09 (0.03–0.16) 0.04 (0.01–0.07)

LDEtrunk 1.1 (1.1–1.3) 0.04 (0.01–0.07) 0.03 (0.01–0.04) 0.01 (0.00–0.03)

Mean value and variance components between subjects (s2BS), within subjects between days (s
2
BD), and within subjects and days within days (s

2
WD)

for stride time variability, step width variability, variability of medio-lateral trunk velocity, and medio-lateral and trunk local divergence

exponents. In brackets: 95 % prediction intervals, as derived from the bootstrap simulations

VARST stride time variability, VARSW step width variability, VARml variability of medio-lateral trunk velocity, LDEml the local divergence

exponent of medio-lateral trunk velocity, LDEtrunk the local divergence exponent of trunk kinematics

Table 2 Required numbers of

subjects to detect differences of

10 and 30 % of the reference

group mean value for repeated-

measures (paired) research

designs with different values of

correlations between

measurements within subjects

(q)

ns
a

q = 0.3 q = 0.6 q = 0.9

D10 %b D30 %b D10 %b D30 %b D10 %b D30 %b

VARST 192 (78–306) 24 (12–38) 145 (70–213) 18 (10–26) 98 (57–138) 13 (10–18)

VARSW 151 (81–237) 19 (12–29) 113 (72–159) 15 (11–21) 74 (55–96) 11 (10–14)

VARml 78 (38–127) 11 (7–17) 58 (31–89) 9 (7–13) 39 (24–57) 7 (7–10)

LDEml 119 (80–167) 15 (11–21) 95 (67–131) 13 (11–18) 70 (46–106) 10 (8–15)

LDEtrunk 81 (59–108) 11 (9–15) 67 (49–90) 10 (9–14) 53 (35–76) 8 (7–11)

Results with 95 % prediction intervals in brackets, as obtained by bootstrap simulation, are shown for stride

time variability, step width variability, variability of medio-lateral trunk velocity, and medio-lateral and

trunk local divergence exponents. All results refer to a data collection strategy of one trial on 1 day per

subject and measurement condition

VARST stride time variability, VARSW step width variability, VARml variability of medio-lateral trunk

velocity, LDEml the local divergence exponent of medio-lateral trunk velocity, LDEtrunk the local diver-

gence exponent of trunk kinematics
a Required numbers of subjects, each of which is measured in both compared conditions (e.g., before and

after an intervention)
b Difference between conditions, expressed in percentage of the group mean value in the control condition,

cf. Eq. (2) in ‘‘Appendix’’
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our knowledge, there is no literature on meaningful or

relevant changes of LDE. While we have exemplified

calculation procedures and effects on study sizes using the

10 and 30 % differences, any other expected effects can be

addressed using the data and equations presented in the

paper and ‘‘Appendix’’.

Regarding effects of physical training on gait variability,

one small study [31] reported a large effect (35 %) and one

large study a small (4 %) and non-significant effect [31].

To our best knowledge, no reports are available on effects

of physical training on gait LDE. A meta-analysis on

training effects on standing balance reported a small effect

size, i.e. 11 % [32]. The results of the present study

demonstrate that when expected differences are small, as

illustrated by a 10 % change of the group mean, the

required numbers of subjects is large (Table 2). Since a
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Fig. 1 The required number of subjects to detect differences in stride

time variability, VARST, between two conditions using different

repeated-measures designs. The required numbers of subjects (each

measured in both conditions) to detect a 10 % (filled circles, left axis)

or 30 % (unfilled circles, right axis) change of VARST in in paired

designs with q = 0.3, 0.6, 0.9 (b, c, d, respectively). Solid and dashed

lines indicate measurement strategies of 1 and 2 measurement days

(nd = 1 and nd = 2), respectively. Results for one measurement day

and one trial per day are identical to those shown in Table 2. Error

bars show 95 % prediction intervals according to the bootstrap

procedure
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10 % change, or even less, in gait measures between

conditions might be clinically relevant [30], it is advisable

to measure a large number of subjects and to report both

significant and non-significant results of several gait mea-

sures to allow future meta-analyses.

The dominant cause of the need for large study sizes is

the large gross between-subjects variance of gait measures,

which in turn depends on the between-subjects variance

and the variance associated with estimating a mean value

of a gait measure in each subject. The latter affects the

uncertainty associated with gait studies in its own right and

also decreases the effective correlation between pairs of

measurements (cf. ‘‘Appendix’’). Like the clinically rele-

vant effect sizes, the correlations between pairs of mea-

surements before and after intervention, which quantify the

predictability of the intervention result for any subject, are

largely unknown. Van Schooten et al. [33] found correla-

tions between conditions ranging from 0.55 to 0.97 for gait

variability measures and LDE (personal communication).

Hak et al. [34] found that the predictability of gait vari-

ability and stability measures varied with the effect size,

small effects showing correlations from 0.33 to 0.79 and

large effects showing correlations between -0.28 and 0.56

(personal communication). A conservative estimate of the

correlation may therefore be justified. We tested different

sizes of the ‘‘true’’, error-free correlation between mea-

surements in the pre- and post-intervention conditions in

our analyses. From Fig. 1, it is clear that the correlation

had a large influence on the required numbers of subjects.

The error-free correlation is effectively reduced by the

substantial within-subjects error associated with determin-

ing gait measures (see ‘‘Appendix’’).

In the present study, we used treadmill walking at a

fixed gait speed. Treadmill walking was used to allow

collecting data from a large number of strides, to improve

precision of estimates of gait variability [14, 15] and

stability [16, 17]. In clinical practice, gait data is often

collected in overground walking, using optoelectronic

methods or electronic walkways, which limit data col-

lection to a few strides. This increases within-subject

variance and thus decreases statistical power to detect

differences between groups and conditions. Data on larger

numbers of strides can be collected in overground walking

when using inertial sensors [35, 36], but the number of

consecutive strides is usually still limited by spatial

constraints. Therefore, as an alternative to collecting a

large number of consecutive strides, the number of trials

can be increased [37, 38]. It should be kept in mind that

treadmill walking in itself affects gait variability and

stability [39] and this may limit generalizability of the

present results to overground walking, although statistical

precision of stability estimates appears similar between

overground [36, 38] and treadmill walking [18]. The fixed

gait speed used, may have affected the between- and

within-subjects variance components. However, since we

did not establish preferred gait speeds, and since there is

no consensus on the nature of the relationship between

gait speed on the one hand and gait variability [40–44]

and LDE [40, 41, 45–47] on the other hand, it is impos-

sible to estimate the effect of gait speed on the results.

Thus, generalization to studies using preferred speed

should be done with care.

For VARST and LDEml and LDEtrunk, the between-days

variance was higher than the within-day variance, but the

between-days variance was also substantial for the other

gait measures. Since subjects were exposed to similar

conditions on both measurement days, the large between-

day variances imply that other factors might influence the

gait measures on a particular day. It could be that healthy

subjects have a broad array of variability and LDE within

which, for example, balance and agility are sufficient, and

thus not further controlled. This could imply that a more

challenging gait assessment, i.e., using mechanical and/or

cognitive challenges to bring gait more toward the boundary

of stable gait, is required to assess gait quality. The

requirement to maintain global stability in such conditions

might reduce the redundancy of gait performance and

consequently reduce within-subject variance. In addition,

more challenging test conditions, whether mechanical or

cognitive, may increase effect sizes, much like these con-

ditions often increase between-group differences in stability

and variability [e.g. 48, 49]. However, decreased between-

group differences under more challenging conditions have

also been described [e.g., 50] and consequently the effect of

using more challenging test conditions on statistical power

of measurement strategies requires further study.

Our analysis of the effects of changing the number of

measurements days per subject and trials per day clearly

demonstrated that the former is more effective in reducing

the number of required subjects than the latter, but that both

have an effect. The large increase in statistical power when

measuring subjects on multiple days is an effect of the

generally large between-days variance, while within-day

variances were, in general, smaller. It should be noted,

though, that it will always be more beneficial to allocate

multiple measurements to different days than to collect them

on the same day, since this will more effectively reduce the

gross between-subject variance (‘‘Appendix’’, Eq. 4).

Within-subject variance components as well as between-

subject variance may be dependent on the subject group

studied. The present study involved healthy and relatively

young (mean age 65 years) older adults. Results can, thus,

not be generalized to patient populations and older and

potentially more frail elderly.

Calculations of LDE allow for many different choices of

the number of embedding dimensions and time-delays
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when constructing the state-space. While it is most com-

mon to use a fixed dimensionality (5D or 12D) of the state-

space, different approaches to estimate these parameters

have also been used [51]. Furthermore, the region of the

divergence curve used to estimate the slope also needs to

be selected. We did not investigate the effects of these

choices on statistical power of LDE in gait studies. How-

ever, a study on the effects of these choices on the relia-

bility of LDE exponents demonstrated that a fixed state-

space reconstruction is generally more reliable than an

individualized approach [36].

The prediction intervals of variance components

(Table 1) and thus of the required number of subjects

(Table 2) were wide, in the latter case particularly when

investigating small differences between conditions. Wide

prediction intervals of variance components are in line with

reports from a few studies assessing postures and muscle

activity in occupational settings [27, 52]. These wide pre-

diction intervals complicate the determination of the

required numbers of subjects. It has been suggested to base

the study size on the 80th percentile of the distribution of

the required number of subjects (cf. Table 2) rather than on

the point estimate, which is in general downward (‘‘opti-

mistically’’) biased [53]. The wide prediction intervals also

imply that a pilot study with a small number of subjects is

not likely to result in reliable data for power calculations.

An unreliable power analysis could lead to underpowered

studies and hence a waste of time, effort, and money in

executing a study that will probably be inconclusive, but it

could also result in overpowered studies, which would,

indeed, have a high probability of resulting in statistically

significant findings, but also consume unnecessarily large

resources in reaching these results.

Conclusions

The results of the present study indicate that studies

attempting to detect small changes in gait variability and

stability between conditions measured in the same subjects

(i.e., a repeated-measures design) need a large sample of

subjects, generally well over 50, to obtain sufficient sta-

tistical power. To increase statistical power, increasing the

number of measurement days is more effective than

increasing the number of trials within a day. The presented

results are important when interpreting studies that report

small and non-significant effects.
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Appendix

The variance in the parent data set was partitioned using a

nested random model [22]:

GMsdt ¼ lþ as þ bsd þ esdt ð1Þ

where, GMsdt is the value of the gait measure in trial t,

collected on day d in subject s; l is the group mean; as the
effect of subject, s = 1, 2, … , 16; bsd the effect of day

within subject, d = 1,2; esdt the residual corresponding to

trial within day and subject, t = 1, 2.

Variance components were estimated by solving

expected mean squares of the two-way nested ANOVA

corresponding to Eq. (1). Thus, the parent data were used to

estimate the overall mean (m, the estimate of l) and the

three variance components: variance between subjects (s2BS,

the estimated variance of as), variance between days within

subjects (s2BD, the estimated variance of bsd), and variance

between trials within days within subjects (s2WD, the esti-

mated variance of esdt).
The required number of subjects to obtain sufficient

statistical power to detect a significant difference between

two conditions within subjects by means of a paired t test is

given by:

ns ¼
s2D � tns�1;1�b þ tns�1;1�a=2

� �2

D2
ð2Þ

where ns is the required number of subjects (each mea-

sured in both conditions); D the specified effect to be

detected; s2
D
the variance of the difference between con-

ditions; tdf,p the p percentile of the t distribution with df

degrees of freedom, 1 - b desired level of statistical

power, and a desired level of significance. s2
D
depends on

the gross between-subjects variance (s2
S
) and the adjusted

correlation between conditions in the paired design (q0) as
shown in Eq. (3):

s2D ¼ 2� s2S � 1� q0ð Þ ð3Þ
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where s2
S
is the gross between-subjects variance, which in

turn depends on the between-subjects variance (s2BS) and

the variance associated with estimating a mean value of a

gait measure in one subject according to:

s2S ¼ s2BS þ
s2BD
nd

þ s2WD

nd � nt
ð4Þ

where nd is number of measured days per subject and nt are

number of trials per day and subject.

In Eq. (3), q0 is the adjusted correlation between results

obtained by a subject in the two compared conditions, i.e.,

an estimate of the predictability of the result in one con-

dition from that in the other (e.g., the predictability of an

intervention effect). q0 depends on the ratio of s2BS–s
2
S
:

q0 ¼ q� s2BS
s2S

ð5Þ

where q is the ‘‘true’’ within-subject correlation between

measurements in the two compared conditions in the ideal

case of error-free measurements.

Equation (2) has to be solved by iterative methods

because ns occurs on both sides of the equal sign.

References

1. Berg WP, Alessio HM, Mills EM et al (1997) Circumstances and

consequences of falls in independent community-dwelling older

adults. Age Ageing 26(4):261–268

2. Niino N, Tsuzuku S, Ando F et al (2000) Frequencies and cir-

cumstances of falls in the National Institute for Longevity Sci-

ences, Longitudinal Study of Aging (NILS-LSA). J Epidemiol

10(1 Suppl):S90–S94

3. Robinovitch SN, Feldman F, Yang Y et al (2013) Video capture

of the circumstances of falls in elderly people residing in long-

term care: an observational study. Lancet 381(9860):47–54

4. Granacher U, Muehlbauer T, Gollhofer A et al (2011) An inter-

generational approach in the promotion of balance and strength

for fall prevention—a mini-review. Gerontology 57(4):304–315

5. Seidler RD, Bernard JA, Burutolu TB et al (2010) Motor control

and aging: links to age-related brain structural, functional, and

biochemical effects. Neurosci Biobehav Rev 34(5):721–733

6. Hamacher D, Singh NB, Van Dieen JH et al (2011) Kinematic

measures for assessing gait stability in elderly individuals: a

systematic review. J R Soc Interface R Soc 8(65):1682–1698

7. Bruijn SM, Meijer OG, Beek PJ et al (2013) Assessing the sta-

bility of human locomotion: a review of current measures. J R

Soc Interface R Soc 10(83):20120999

8. Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and

fall risk in community-living older adults: a 1-year prospective

study. Arch Phys Med Rehabil 82(8):1050–1056

9. Maki BE (1997) Gait changes in older adults: predictors of falls

or indicators of fear. J Am Geriatr Soc 45(3):313–320

10. Toebes MJP, Hoozemans MH, Furrer R et al (2012) Local

dynamic stability and variability of gait are associated with fall

history in elderly subjects. Gait Posture 36(3):527–531

11. Weiss A, Brozgol M, Dorfman M et al (2013) Does the evalua-

tion of gait quality during daily life provide insight into fall risk?

A novel approach using 3-day accelerometer recordings. Neu-

rorehabil Neural Repair 27(8):742–752

12. Rispens SM, van Schooten KS, Pijnappels M et al (2015) Iden-

tification of fall risk predictors in daily life measurements: gait

characteristics’ reliability and association with self-reported fall

history. Neurorehabil Neural Repair 29:54–61

13. van Schooten KS, Pijnappels M, Rispens SM et al (2015)

Ambulatory fall risk assessment: quality and quantity of daily life

gait predict falls in older adults. J Gerontol 70:608–615

14. Hollman JH, Childs KB, McNeil ML et al (2010) Number of

strides required for reliable measurements of pace, rhythm and

variability parameters of gait during normal and dual task

walking in older individuals. Gait Posture 32(1):23–28

15. Owings TM, Grabiner MD (2003) Measuring step kinematic

variability on an instrumented treadmill: how many steps are

enough? J Biomech 36(8):1215–1218

16. Bruijn SM, van Dieen JH, Meijer OG et al (2009) Statistical

precision and sensitivity of measures of dynamic gait stability.

J Neurosci Methods 178(2):327–333

17. Kang HG, Dingwell JB (2006) Intra-session reliability of local

dynamic stability of walking. Gait Posture 24(3):386–390

18. Reynard F, Terrier P (2014) Local dynamic stability of treadmill

walking: intrasession and week-to-week repeatability. J Biomech

47(1):74–80

19. Zatsiorsky V (2002) Kinetics of human motion. Human Kinetics,

Champaign

20. Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis

of normal and pathological human walking. Chaos 10(4):848–863

21. Rosenstein MT, Colling JJ, DeLuca CJ (1993) A practical method

for calculating largest Lyapunov exponents from small data sets.

Phys D 65:117–134

22. Searle SR, Casella G, McCulloch CE (1992) Variance Compo-

nents. John Wile & Sons Inc, Hoboken

23. Barak Y, Wagenaar RC, Holt KG (2006) Gait characteristics of

elderly people with a history of falls: a dynamic approach. Phys

Ther 86(11):1501–1510

24. Hausdorff JM, Edelberg HK, Mitchell SL et al (1997) Increased

gait unsteadiness in community-dwelling elderly fallers. Arch

Phys Med Rehabil 78(3):278–283

25. Paterson K, Hill K, Lythgo N (2011) Stride dynamics, gait

variability and prospective falls risk in active community

dwelling older women. Gait Posture 33(2):251–255

26. Diaconis P, Efron B (1983) Computer-intensive methods in

statistics. Sci Am 248(5):116

27. Mathiassen SE, Burdorf A, van der Beek AJ (2002) Statistical

power and measurement allocation in ergonomic intervention

studies assessing upper trapezius EMG amplitude. A case study

of assembly work. J Electromyogr Kinesiol 12(1):45–57

28. Efron B, Tibshirani R (1986) Bootstrap methods for standard

errors, confidence intervals, and other measures of statistical

accuracy. Stat Sci 1(1):54–77

29. Development Core Team R (2011) R: A language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna

30. Brach JS, Perera S, Studenski S et al (2010) Meaningful change

in measures of gait variability in older adults. Gait Posture

31(2):175–179

31. Granacher U, Muehlbauer T, Bridenbaugh S et al (2010) Balance

training and multi-task performance in seniors. Int J Sports Med

31(5):353–358

32. Latham NK, Bennett DA, Stretton CM et al (2004) Systematic

review of progressive resistance strength training in older adults.

J Gerontol 59(1):48–61

33. Van Schooten KS, Sloot LH, Bruijn SM et al (2011) Sensitivity

of trunk variability and stability measures to balance impairments

264 Aging Clin Exp Res (2016) 28:257–265

123



induced by galvanic vestibular stimulation during gait. Gait

Posture 33(4):656–660

34. Hak L, Houdijk H, Steenbrink F et al (2012) Speeding up or

slowing down?: gait adaptations to preserve gait stability in

response to balance perturbations. Gait Posture 36:260–264

35. Bruijn SM, Ten Kate WR, Faber GS et al (2010) Estimating

dynamic gait stability using data from non-aligned inertial sen-

sors. Ann Biomed Eng 38(8):2588–2593

36. van Schooten KS, Rispens SM, Pijnappels M et al (2013)

Assessing gait stability: the influence of state space reconstruc-

tion on inter- and intra-day reliability of local dynamic stability

during over-ground walking. J Biomech 46(1):137–141

37. Kressig RW, Beauchet O (2006) Guidelines for clinical appli-

cations of spatio-temporal gait analysis in older adults. Aging

Clin Exp Res 18(2):174–176

38. van Schooten KS, Rispens SM, Elders J et al (2013) Towards

ambulatory balance assessment: estimating variability and sta-

bility from short bouts of gait. Gait Posture 46:137–141

39. Dingwell JB, Cusumano JP, Cavanagh PR et al (2001) Local

dynamic stability versus kinematic variability of continuous

overground and treadmill walking. J Biomech Eng 123(1):27–32

40. Dingwell JB, Marin LC (2006) Kinematic variability and local

dynamic stability of upper body motions when walking at dif-

ferent speeds. J Biomech 39(3):444–452

41. Bruijn SM, van Dieen JH, Meijer OG et al (2009) Is slow walking

more stable? J Biomech 42(10):1506–1512

42. Jordan K, Challis JH, Newell KM (2007) Walking speed influ-

ences on gait cycle variability. Gait Posture 26(1):128–134

43. Moe-Nilssen R, Helbostad JL (2005) Interstride trunk accelera-

tion variability but not step width variability can differentiate

between fit and frail older adults. Gait Posture 21(2):164–170

44. Yamasaki M, Sasaki T, Torii M (1991) Sex difference in the

pattern of lower limb movement during treadmill walking. Eur J

Appl Physiol 62(2):99–103

45. England SA, Granata KP (2007) The influence of gait speed

on local dynamic stability of walking. Gait Posture 25(2):

172–178

46. Kang HG, Dingwell JB (2008) Effects of walking speed, strength

and range of motion on gait stability in healthy older adults.

J Biomech 41(14):2899–2905

47. Buzzi UH, Ulrich BD (2004) Dynamic stability of gait cycles as a

function of speed and system constraints. Mot Control 8(3):

241–254

48. Beurskens R, Wilken JM, Dingwell JB (2014) Dynamic stability

of individuals with transtibial amputation walking in destabiliz-

ing environments. J Biomech 47(7):1675–1681

49. Lamoth CJ, van Deudekom FJ, van Campen JP et al (2011)

Gait stability and variability measures show effects of

impaired cognition and dual tasking in frail people. J Neuroeng

Rehabil 8:2

50. Lamoth CJ, Ainsworth E, Polomski W et al (2010) Variability

and stability analysis of walking of transfemoral amputees. Med

Eng Phys 32(9):1009–1014

51. Gates DH, Dingwell JB (2009) Comparison of different state

space definitions for local dynamic stability analyses. J Biomech

42(9):1345–1349

52. Liv P, Mathiassen SE, Svendsen SW (2012) Accuracy and pre-

cision of variance components in occupational posture record-

ings: a simulation study of different data collection strategies.

BMC Med Res Methodol 12(1):58

53. Browne RH (1995) On the use of a pilot sample for sample size

determination. Stat Med 14(17):1933–1940

Aging Clin Exp Res (2016) 28:257–265 265

123


	Measurement strategy and statistical power in studies assessing gait stability and variability in older adults
	Abstract
	Background
	Aims
	Methods
	Results
	Discussion
	Conclusion

	Introduction
	Materials and methods
	Subjects
	Study design
	Procedure
	Gait measures
	Statistical analysis

	Results
	Discussion
	Conclusions
	Conflict of interest
	Appendix
	References




