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Abstract

This paper investigates business cycle relations among different economies in the Euro
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1 Introduction

The comparisons of business cycle comovement among different economies is usually static.

Ad-hoc sub-samples are analysed by computing parametric and non-parametric statistics from

which some conclusions are drawn. The explicit modelling of relevant features does not take

place. In this paper we propose a modelling strategy that avoids many of the shortcomings of

previous studies. Important features and relevant regime switches are estimated simultaneously

within a multivariate time series model. Time-varying phase shifts and time-varying degrees of

association are explicitly modelled. Transition to different regimes will take place smoothly.

The main motivation on developing these models is the analysis of business cycles relations

within the European Union countries, particularly those in the Euro area. In a context of single

currency and common monetary policies in the Euro area, the resemblance of the business

cycles of the participant countries is a major concern. This paper also contributes to the

documentation of the degree of association and synchronisation between the aggregate Euro

Area output business cycle fluctuations and those of various European Union countries as well

as the U.S. The results presented are mostly in line with those from similar studies. Namely,

there is an increasing resemblance (higher degree of association and higher synchronisation)

among the business cycles of the European Union countries analysed, although with some

important exceptions. The purpose of our analysis is merely descriptive. There is no attempt

to state that the main features of the recent past can be relevant in future analysis or judgement.

Furthermore, we focus entirely on time series dynamics; no explanation for the identified stylised

facts is attempted.

1.1 Literature overview

Various authors have tried to assess and explain business cycles convergence and synchronisa-

tion. Artis and Zhang (1997) address the question of whether the Exchange Rate Mechanism

(ERM) has implied an increasing conformity among the business cycles of the participant

countries. Two sub-samples are analysed, corresponding to the periods before and after the

formation of the ERM. The Hodrick-Prescott (HP) filter is used to obtain the cyclical compo-

nent of industrial production indices. They show that the cycles in the ERM countries became

more synchronised with the German one. Angeloni and Dedola (1999) compare business cy-

cle fluctuations of output, industrial production, stock indices and prices across countries in

various sub-samples. These fluctuations are recovered using the HP filter but also 1-quarter

and 4-quarters logarithmic differences. They conclude that in the latest sub-sample, from 1993

to 1997, correlations are almost always higher, suggesting the existence of encouraging signs

regarding the success of the monetary union. Also, they add to the analysis the comparison of

correlation between supply and demand shocks across countries in the same sub-samples. The
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shocks are estimated applying the bivariate structural vector autoregressive (VAR) methodol-

ogy of Bayoumi and Eichengreen (1993). In this case the previous conclusion would not be

valid, since no evidence was found on higher degrees of association of the identified shocks in

the more recent period. Wynne and Koo (2000) document differences and similarities between

business cycles in the European Union and business cycles in the Federal Reserve districts in

the U.S. The business cycle fluctuations are recovered using the band-pass filter proposed by

Baxter and King (1999). They compare business cycle fluctuations of output, employment

and prices using simply linear correlation estimated by generalised method of moments. Belo

(2001) uses several parametric and non-parametric statistics to investigate whether annual out-

put cycles obtained with the HP filter have converged to the Euro area cycle. The analysis of

convergence was made by considering two and sometimes three sub-samples. He concludes that

there was in general an increase in the various measures of association employed, identifying

the patterns documented by Wynne and Koo (2000). Additionally, he identifies a leading cycle

from the U.S. and the U.K., when compared to the Euro area. However, if the time shifts in the

cross-correlation functions are taken into account, then the U.K. displays a strong association

with the Euro area in the period 1979-1999, whereas in the case of the U.S. this association is

modest.

1.2 Contribution of paper

Our approach differs from common practice in important ways. For instance, instead of com-

paring parametric and non-parametric statistics in various sub-samples, we use an extension of

the multivariate unobserved components model with phase shifts among cyclical components

developed by Rünstler (2002). This model is itself an extension of the similar cycles model

proposed by Harvey and Koopman (1997). We incorporate mechanisms that model either in-

creasing or diminishing phase shifts as well as mechanisms that model time-varying association

patterns in the cyclical components. Regime switches may appear as limiting cases, but the

time points of transition are estimated, not imposed by the researcher. Since these extensions

are only related to the cycle component of the model, usual trend specifications can also be

considered. However, since our focus is on dynamic relations among different cycles, we will iso-

late these by imposing a definition of cyclical fluctuations. Specifically, the original integrated

series will be band-pass filtered. We will however use the best performing and most flexible

linear filter available, the band-pass filter proposed by Christiano and Fitzgerald (2003). This

means, just as in the case of the authors aforementioned, that our focus is on the growth cycle,

the deviations of output from its trend. This follows the definition of business cycles by Lucas

(1977).
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There has been a renewed interest in classical cycle analysis, which follows the seminal

contribution of Burns and Mitchell (1946). However, instead of the more or less ad-hoc dating

of the peaks and troughs in the level of various series, both univariate and multivariate Markov-

switching (vector) autoregressions (MS-VAR) have been employed, following extensions of the

model proposed by Hamilton (1989). Diebold and Rudebusch (1996) incorporate dynamic

factors in these models, allowing the simultaneous analysis of comovement and regime switch.

This implicitly means the imposition of restrictions in the VAR representation of the model.

However, their intention was mainly to capture comovements across many variables in the

same economy, not across economies. Krolzig and Toro (2002) show that in the analysis of

European GDP series the MS-VAR models capture dynamics that are consistent with the

classical approach. The analysis of comovement and synchronization within these models (either

univariate or multivariate) can be made using non-parametric statistics such as concordance

(see Harding and Pagan (1999)), by simply comparing dates at which the various regimes

coincide or by looking at contemporaneous correlation of the smoothed probability of being in

a recession (see Artis, Krolzig, and Toro (2002)). Other stylized facts can be detected such as the

differences in volatility and duration of each regime. We view our approach as complementary

to this. Our focus is on business cycle frequencies, or frequencies usually associated with the

business cycle. The detrending and modeling strategy implies straightforward interpretations

of the proposed measures of association and synchronisation. In the above approaches, the

assessment of at least synchronisation is judgmental. It may mask differences in the dynamics

of fluctuations at usual business cycle frequencies. Coincidence in the regime is not sufficient

(not even necessary) to coincidence phases in periodic components at different frequencies.

The empirical results presented are consistent with those of previous studies. For example,

France and Germany display a high degree of association with the Euro area across the sample.

Their cycles are synchronised with those of the Euro area. Spain and Italy became more

synchronised with the Euro area in the last twenty years. The U.S. leading cycle with respect

to the Euro area and the lower degree of association are well established in the literature and

are also identified by our model.

1.3 Plan of paper

The remaining of the paper is organised as follows. In section 2 the similar cycles model with

shifts is presented. In section 3 this model is extended to include time-varying phase shifts

and time-varying covariance matrices. In section 4 estimation results, obtained by considering

bivariate combinations of real GDP series from various economies, are presented. Section 5

concludes.
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2 Common similar stochastic cycles with shifts

This section introduces the multivariate unobserved component model with stochastic cycles.

The cycles can be subject to shifts and can be correlated, contemporaneously and between

different time periods. Limiting cases include cycles that evolve independent of each other over

time and cycles that are common to each other. The development of the models in this section

are discussed in detail in Appendices B and C for univariate and bivariate versions of the general

multivariate model. Some basics on trigonometrics and cycles are provided in Appendix A.

2.1 Multivariate stochastic cycle model

Various specifications for the multivariate cycle component ψt can be considered in general. For

example, multiple cycles can be modelled within vector autoregressive processes, see Chan and

Wallis (1978) and Bayoumi and Eichengreen (1993) for illustrations. In this paper we model

multivariate stochastic cyclical processes explicitly by trigonometric terms with time-varying

amplitudes and phases. Such stochastic cyclical components can be embedded in a multivariate

unobserved components time series model. The stochastic cycle vector ψt will be modelled as(
ψt+1

ψ+
t+1

)
= φ

[
cos(λ)IN sin(λ)IN

− sin(λ)IN cos(λ)IN

](
ψt

ψ+
t

)
+

(
κt

κ+
t

)
, t = 1, . . . , n, (1)

where Ik is the k × k identity matrix. The N × 1 vector ψt consists of similar cycles with

common frequency λ and common autoregressive coefficient |φ| < 1. The N × 1 vector ψ+
t is a

constructed variable; see Appendices A and B. The N × 1 disturbance vectors κt and κ+
t are

serially and mutually uncorrelated, and are normally distributed with mean zero and variance

matrix

Var

(
κt

κ+
t

)
=

[
Σκ 0

0 Σκ

]
,

which implies that κt and κ+
t have a common variance matrix Σκ. This specification generates

stationary multiple cyclical processes with period f = 2π/λ. The individual cycles in ψt have

similar properties due to the common φ and λ. Similar cycles have been introduced by Harvey

and Koopman (1997) and they have explored the stochastic properties. For example, the

autocovariance function for ψt is given by

Γ(τ) = (1− φ2)−1φτ cos(τλ)Σκ, τ = 0, 1, 2, . . . ,

from which it follows that the variance matrix of the cycle is given by Γ(0) = (1 − φ2)−1Σκ.

The imposition of the same period of the cycle and the same damping factor is appealing, as

it reflects the similar dynamics of business cycle fluctuations across macroeconomic time series
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from the same economy or from different economies. In the case of our empirical study in

section 4, there may be evidence that the persistence of real GDP business cycle fluctuations

varies across countries, the differences are not dramatic, see also Azevedo (2002).

The vector variable y that is subject to a cyclical time series process and that is possibly

measured with noise can be modelled by

yt = µ+ ψt + εt, εt ∼ NID(0,Σε), t = 1, . . . , n, (2)

where yt is a N × 1 vector of time series. The N × 1 constant vector µ is unknown and the

N×1 irregular vector εt with mean zero and N×N variance matrix Σε is mutually uncorrelated

with the disturbances associated with the cycle vector ψt, both contemporaneously and between

different time periods. The unknown parameters in the cycle model (2) are the variance matrices

Σε and Σκ together with the autoregressive coefficient φ and the cycle frequency λ. These

parameters can be estimated by maximum likelihood for which the Kalman filter is employed

to compute the loglikelihood function for a given set of parameters, see Harvey (1989) and

Durbin and Koopman (2001).

For the purpose of estimation, parameters are transformed into a vector θ such that the

likelihood maximation process can take place without constraints. The irregular variance matrix

is assumed diagonal and specified as

Σε = diag{exp(2θε,1), . . . , exp(2θε,N)},

where θε,i is the log standard deviation of the i-th element of irregular vector εt for i = 1, . . . , N .

The cycle disturbance variance matrix is specified as

Σκ = CRC, (3)

where matrix C is diagonal with standard deviations and matrix R consists of contemporaneous

correlations, that is

C = diag{exp(θκ,1), . . . , exp(θκ,N)}, R =


1 ρκ,2,1 . . . ρκ,N,1

ρκ,2,1 1 . . . ρκ,N,2
...

...
. . .

...

ρκ,N,1 ρκ,N,2 . . . 1

 , (4)

where θκ,i is a log standard deviation and matrix R is restricted to be positive semi-definite.

For the bivariate case of N = 2 it is sufficient to have −1 ≤ ρκ,2,1 ≤ 1 which we specify as

ρκ,2,1 = θκ,2,1/
√

1 + θ2
κ,2,1, (5)

so that ρκ,2,1 → ±1 as θκ,2,1 → ±∞. When correlations are estimated zero (or significantly

close to zero), the individual cycles in ψt are independent of each other. In the opposite case,
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when correlations are significantly close to one (that is ±1), individual cycles are common and

variance matrix Σκ has a lower rank. For the multivariate case N > 2, it is more intricate to

specify R subject to the appropriate restrictions. A possible specification is

R = K−1LL′K−1, K = [diagonal(LL′)]1/2, (6)

where L is a lower unity triangular matrix and diagonal(A) is a diagonal matrix with the

corresponding diagonal elements of matrix A. The transformation ensures that R has the

interpretation of a correlation matrix and that it is always positive semi-definite. The lower

triangular elements of matrix L can be estimated without further restrictions. It turns out that

the specification of R in (6) for N = 2 is equivalent to (5). A large negative or positive element

in the lower triangular part of L implies that the corresponding element in R is close to one or

minus one, respectively. Finally, we have φ = exp θφ/(1 + exp θφ) and f = 2 + exp θλ where θφ

and θλ are the transformed parameters that can be estimated directly for the cycle model.

2.2 Multivariate stochastic cycle model with shifts

The multivariate cycle model can be modified to allow for phase shifts between cycles as is

shown by Rünstler (2002). A time series model for a vector variable y with a multivariate

stochastic cycle component that can be subject to shifts is given by

yt = µ+ diag{cos(λdξ)}ψt + diag{sin(λdξ)}ψ+
t + εt, (7)

where dξ is the real vector

dξ = (ξ1, . . . , ξN)′,

with its first element restricted to be equal to zero, that is ξ1 = 0. We notice that

diag{cos(λdξ)} = diag{1, cos(λξ2), . . . , cos(λξN)},
diag{sin(λdξ)} = diag{0, sin(λξ2), . . . , sin(λξN)},

where diag{x} is a diagonal matrix with its diagonal elements as in vector x. The restriction

implies that the phase of the first cycle element in ψt is the reference for the phase shifts of the

other cycle elements. The phase shift between yit and yjt is given by ξj − ξi for i, j = 1, . . . , N .

The variance of the cycle component is given by

Γ(0) =
1

1− φ2 Σκ � cos(Λ), Λ = λ(1d′ξ − dξ1
′), (8)

and the (multivarariate) autocovariance function is given by

Γ(τ) =
φ|τ |

1− φ2 Σκ � cos(Λτ ), Λτ = λ(τ11′ + 1d′ξ − dξ1
′), (9)
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where 1 is the unity vector (1, . . . , 1)′ and where cos(λA) is a matrix with its element (i, j)

equal to cos(λAij) for any real matrix A with Aij as its (i, j) element. We note that � refers

to element by element multiplication so that the (i, j) element of C = A � B is Cij = AijBij

for all elements.

Proof of variance and autocovariances is given by Rünstler (2002, Appendix A.1). When Σκ

is diagonal, Γ(τ) is also diagonal and does not depend on vector dξ since the leading diagonal of

matrix dξ1
′−1d′ξ is zero. In this case phase shifts are not identifiable. For estimation purposes

the shift element ξi is transformed as

ξi =
π

λ

[
exp θξ,i(1 + exp θξ,i)

−1 − 0.5
]
, (10)

that ensures −π/2 < λξi < π/2 for i = 2, . . . , N . Also, θξ,i = 0 implies ξi = 0.

Phase shifts are therefore modelled as shifts in the autocovariance function of the cycle

component itself. This means that the effect of (correlated) innovations in the behaviour of the

cycle component might be subject to time shifts when compared to model (1), but with the

same dynamical behaviour. This property allows us to define the correlation matrix implied by

Σκ in (9), as the phase adjusted correlation matrix among cyclical innovations, which is also the

phase adjusted correlation matrix among cyclical elements. Also from (9) the autocovariances

of a particular series are opportunely independent of the phase shifts. It is also clear that phase

shifts are transitive across series. Finally, restriction (10) implies no ambiguity in the definition

of pro or counter cyclicality. As shown by Rünstler (2002), phase shifts as defined above and

the corresponding phase adjusted correlation matrix are closely related to coherence and phase

spectra of model (7), respectively. However, in the remaining of the paper we will only consider

the time domain interpretations. Some further consequences of a bivariate cycle component

with a shift are discussed in Appendix C.

3 Synchronisation and convergence of cycles

3.1 Synchronisation of multiple cycles

The multivariate model (7) with a similar stochastic cycle component with shifts can be mod-

ified to have different shift lengths at different periods. For instance, the shift between two

variables can be relatively large in one period and relatively small in another period. It is par-

ticularly interesting to investigate whether business cycles of, for example, European countries

are in the process of synchronisation. This implies that the cyclical processes of two business

cycle components are shifted from each other by a small number of time-points in earlier years

while they match (without shifts) in more recent years. The time-varying nature of the shift

parameter ξi (i = 2, . . . , N) in model (7) can be established in different ways. Firstly, different
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ξi’s for different time periods can be considered so that shifts over time are subject to struc-

tural breaks. The periods with different shifts need to be selected a-priori and this needs to

be done on an ad-hoc basis. Secondly, the shift can be taken as a flexible but smooth function

depending on time. For example, a regression spline function can be considered as is described

by Poirier (1976). Also in this case some degree of ad-hoc decisions need to be made a-priori

to control for flexibility at the cost of smoothness.

In the remainder of this paper we will specify the time-variation of a phase shift via the

deterministic logit function

ξi,t =
π

λ
{exp θξi

(1+exp θξi
)−1−0.5}×exp(sξi,t){1+exp(sξi,t)}

−1, sξi,t = sξi
×(t−τ ξi

), (11)

for i = 2, . . . , N and where sξi
determines the shape of the logit function and τ ξi

determines

the mid-time position of the change. The parameters θξi
, sξi

and τ ξi
can be estimated within

the maximum likelihood process provided that correlations between the cycle exist (non-zero);

see the discussion in Appendix C. This specification allows for the estimation of τ ξi
which

implies that no a-priori decision is needed about the time when a change in the shift occur.

The limitation of our specification of cycle synchronisation (11) is that the logit function is

monotone in time. The function either increases or decreases depending on θξi
. For the purpose

of our empirical study in the next section, the limitation is useful since we want to determine

whether business cycles of European countries do synchronise or do not synchronise. Similar

logit mechanisms as in (11) have been used in the context of nonlinear smooth transition

autoregressive models which are reviewed in van Dijk, Terasvirta, and Franses (2002).

The consequence of modelling synchronisation is that the dynamic properties of the cycle

component is not time-invariant. In the same way the shift depends on a deterministic function

of time, the autocovariance function (9) also depends on time since Λτ is time-varying, that is

Λτ,t = λ(τ11′ + 1d′ξ,t − dξ,t1
′), dξ,t =

(
0, ξ2,t, . . . , ξN,t

)′
.

A similar type of time-variation applies to variance matrix Γ(0) in (8).

3.2 Convergence for multiple stochastic cycles

The multivariate stochastic cycle model (2) or the model with shifts (7) can be modified so that

correlations between the cycle elements are not constant for all time points t = 1, . . . , n. For

instance, we may have two distinct periods for which in the first period cycles are correlated,

that is |ρκ,i,j| < 1 whereas in the other period the cycles are common and, therefore, perfectly

correlated, that is ρκ,i,j = 1. This case is of interest from an economic perspective since we can

refer to these as converging cycles. It implies that comovements between cycles become stronger

and can even become equivalent (up to a scaling constant). An interesting economic example
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is the consideration of business cycles of, say, Germany and France which may be moving more

closely due to the process of economic and monetary integration in Europe.

To allow for a smooth transition from one period to another period with different correla-

tions between two similar cycles, we follow a similar strategy as in Luginbuhl and Koopman

(2003) although a different specification is used in this paper. The variance matrix of the cycle

disturbance vector Σκ can be made time-varying by incorporating smooth time functions within

the decomposition of the correlation matrix R in (6). By adopting the variance specification in

(3), the correlations can be made time-varying directly while the variances remain constant over

time. The correlations are made time-varying via a smooth time function (similar to the one

used for synchronisation) for a particular lower triangular element of L in (6). In the bivariate

case, the correlation between the two elements of the cycle disturbance vector is specified as

ρκ,2,1 = ±[1− (1− b)× exp(sκ2,t){1 + exp(sκ2,t)}−1], sκ,2,1,t = sκ,2,1 × (t− τκ,2,1), (12)

for i, j = 1, . . . , N , i 6= j, where coefficient sκ,i,j determines the shape of the function and τκ,i,j

the midtime-point at which the transition takes place. The logit function keeps correlation

values between zero and one. The coefficient b, which should be between zero and one, adds

further flexibility and it ensures that the correlation is between b and one. For the purpose

of estimation b is specified as b = [1 + exp(θb)]
−1 where θb is an unknown coefficient. The

specification in (12) allows the time-varying correlations to be positive or negative only. This

restriction can be relaxed but for the illustrations in the next section this has proven to be

a natural restriction. The coefficients sκ,i,j, τκ,i,j and θb can be estimated simultaneously

within the likelihood maximisation procedure. Finally, an alternative is to adopt the dynamic

conditional correlation specification of Engle (2002) for a time-varying correlation matrix R.

4 Bivariate illustrations of GDP for Euro area and U.S.

4.1 Data transformations

To study the properties and relations among business cycles fluctuations of real GDP using

the models presented in the previous section we need first to define and measure the business

cycle. We follow Baxter and King (1999) who define business cycles as “fluctuations with

a specified range of periodicities”. We define this range as the 6 to 32 quarters band, the

band usually considered in the analysis of the U.S. and Euro area business cycles; see Stock

and Watson (1998) for the U.S. and the ECB (2001) report for the Euro area. It follows

that fluctuations with periodicities below 6 quarters are considered noisy and consequently not

important to business cycle dynamics and periodicities above 32 quarters are part of a slowly

evolving component related to long-term growth. We do not provide an economic interpretation
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of the fluctuations. All we want is to analyse components that produce specified deviations

from an apparently ever-growing component. An important element of definition is assumed in

this approach.

By defining business cycles as fluctuations within a range of periodicities (corresponding

to a range of frequencies in the frequency domain) the ideal filter should retain the desired

frequencies and perfectly eliminate the remaining while inducing no phase shift. Since it is

not possible in a finite sample to apply an ideal filter we use the approximation proposed by

Christiano and Fitzgerald (2003). This filter is obtained by minimising, for each t, the function

Q with respect to the filter weights where

Q =

∫ π

−π

∣∣W (ω)−Bt(e
−iω)

∣∣2 fx(ω)dω, (13)

with W (ω) as the frequency response function of the ideal filter isolating the desired frequencies

band. The frequency response function Bt(e
−iω) is for the filter

Bt(L) =
t−1∑

j=−(T−t)

bt,jL
j,

with sample size T , lag operator L (L±syt = yt∓s) and filter weights bt,j. We note that e−iω =

cosω − i sinω with i =
√
−1. Finally, fx(ω) in (13) is the spectrum (or pseudo-spectrum, in

the case of integrated series) of the observation series xt to be filtered.

This method of band-pass filtering is equivalent, in the time domain, to the method of

obtaining optimal estimates (in the mean square error sense) of ideal filtered observations. The

criterion Q depends on the true process generating the data. But for unit-root series, Christiano

and Fitzgerald (2003) show that the procedure is nearly optimal when the process is assumed

to follow a random walk. There is little advantage in knowing (or estimating) the process. We

will therefore use this nearly optimal approximation.

We could use the models proposed by Harvey and Koopman (1997) to decompose with a

single model the trend and cycle components of real GDP series for various countries. However,

this is not always a good option. Although business cycle dynamics are apparently similar across

countries when we look at real GDP, the model may have difficulty in capturing those dynamics

for some of them. This is a consequence of the dominant role played by low frequencies in

the behavior of macroeconomic time series. These frequencies frequently mask business cycle

dynamics. Also, the number of parameters would increase dramatically and make the estimation

of the full model computationally burdensome. Another option would be to impose restrictions

on a model with a trend specification in order to implicitly define a band-pass filter, see Harvey

and Trimbur (2003).
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One of the consequences of using a band-pass filter is that the period of the cycle is roughly

fixed. This period corresponds to the lower cut-off frequency chosen to define the band of

interest. The advantage is that we do not need to estimate the period of the cycle and this will

be equal for all series. However, the definition of business cycle fluctuations may be viewed as

arbitrary. Still, for the purpose of this paper we are only interested in those fluctuations, even

if they do not correspond to some ideal definition of the business cycle.

A slight drawback in the application of the referred filter is that the resulting series is not

“exactly” stationary since the variance of filtered observations is time-varying. Also, there

is some revision in the endpoints of the sample when new observations are available. Despite

this, endpoints filtered observations are highly correlated with ideal filtered observations and the

variance stabilises quite rapidly; see Azevedo (2003) for further details. Since these observations

are informative we will not drop them.

4.2 Estimation and computational details

In the illustrations below we consider the multivariate stochastic cycle model (7) with time-

varying shifts (11) and time-varying correlations (12). The former aims at detecting synchroni-

sation and the latter aims at convergence. The implied covariance structure of the time series

is time-varying due to these two sources of time variation: synchronization implies that matrix

Λτ is time-varying and convergence implies that matrix Σκ is time-varying. The autocovariance

matrix Γ(τ) depends on both matrices and is therefore time-varying as well. Both mechanisms

can be incorporated simultaneously and estimation can be carried out using standard Kalman

filtering techniques. The cycle model can be casted straightforwardly into the linear Gaussian

state space model that has time-varying system elements. State space methods are used for

estimation and signal extraction; for a general and recent exposition see, for example, Durbin

and Koopman (2001). The computations are implemented using the object-oriented matrix

programming environment Ox 3.0 of Doornik (2001) and using the library of C functions for

state space models SsfPack by Koopman, Shephard, and Doornik (1999). It is evident that

estimation by numerically maximising the likelihood function becomes more problematic as the

number of parameter increases while the number of observations remain constant.

Since we use band-pass-filtered data, noisy fluctuations have been eliminated. This means

that the irregular component in (7) may be safely dropped1. This simplification is convenient.

All the time-varying covariance matrices and shifts refer to the isolated cyclical fluctuations,

not to a general unobservable cyclical component. Also, by definition, the mean of the band-

pass filtered series is zero, so we fix µ = 0 in model (7). Additionally, the definition of cyclical

fluctuations implies in general a period of the cycle of 32 quarters, so we fix λ = 2π/32.

1In practice we estimate the model with the irregular variance set at 10−12 only to achieve numerical stability.

12



4.3 Empirical results for the Euro area

We consider band-pass filtered time series of (logs of) real, seasonally adjusted GDP for six

European Union countries (Germany, France, Italy, Spain, The Netherlands and the U.K.) and

also for the Euro area (12 countries) aggregate and the U.S2. The sample consists of 32 years

of quarterly observations and covers the periods 1970:1 to 2001:1. We estimate the model

as described above with N = 2, applying it to bivariate combinations of GDP series for the

Euro area and the individual European countries. In addition we consider some bivariate

combinations that involve GDP series of the U.S.

We first report and discuss estimation results for the GDP series of six European countries

individually that are modelled together with the GDP series of the Euro area. All figures in this

section display the estimated time-varying phase shift, time-varying phase adjusted correlation,

time-varying contemporaneous correlation and the similar cycle components for the GDP series

of the Euro area and an individual country.
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Figure 1: Estimated cycle model for Italy and Euro area: (i) estimated time-varying phase shift;

(ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous correlation;

(iv)band-pass filtered series (rescaled)

Figure 1 compares the Euro area cycles to those of Italy. It can be seen that the model

detects a phase shift of around two quarters in the 1970’s, with Italy lagging the Euro area

2The data for individual countries is obtained from OECD Main Economic indicators. For the Euro area
data is obtained from Fagan, Henry, and Mestre (2001).
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cycle. From 1980 onwards the estimated phase shift is zero. The phase-adjusted correlation

is around 0.88 in 1970 and it steadily converges to almost 1. Contemporaneous correlation is

naturally smaller in 1970 (around 0.8) and it displays a jump in 1980, coinciding with the break

in the phase effect at that period.

Germany leads the Euro area cycle by more than two quarters in the early 1970’s. This phase

shift then decreases sharply, reaching zero around 1982. Phase adjusted correlation is around

0.83 until around 1985. It then increases steadily, converging to almost 1. Contemporaneous

correlation is around 0.75 in the 1970’s. It then displays a jump around 1982 and thereafter it

steadily increases, but with higher rates in the 1990’s.
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Figure 2: Estimated cycle model for Germany and Euro area: (i) estimated time-varying

phase shift; (ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous

correlation; (iv) band-pass filtered series (rescaled)

For France the phase effect is negligible in the whole sample. The estimated model implies

a very small lead of the Euro area in the 1970’s, not even reaching one quarter. Phase adjusted

correlation is 0.83 in 1970 and it then increases steadily, reaching more than 0.95 in the end

of the sample. Given the small estimated phase shift, contemporaneous correlation equals

phase-adjusted correlation, the only exception (not relevant) occurring in the 1970’s.

Comparing business cycle fluctuations of the Euro area to those of The Netherlands, we

identify a zero phase effect until around 1986. From then on, The Netherlands displays a lead

of around one quarter. Phase-adjusted correlation and contemporaneous correlation start with
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Figure 3: Estimated cycle model for France and Euro area: (i) estimated time-varying phase

shift; (ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous correla-

tion; (iv) band-pass filtered series (rescaled)

values below 0.6, but increase steadily to values around 0.95 and 0.9, respectively.

In the case of Spain, a lag of three quarters with relation to the Euro area is estimated in

the period from 1970 to the early 1980’s. The phase effect is estimated as zero thereafter. Both

contemporaneous and phase adjusted correlation are, in the beginning of the sample, much

lower than in the previous cases, starting respectively at 0.5 and 0.56. A relevant increase in

these measures of association occurs only during the 1990’s.

Relevant increases in the overall correlation appear in most countries at the beginning of

the 1980’s, shortly after the start of the Exchange Rate Mechanism in 1979. However, further

evidence would be needed to conclude that this event was the cause of the reported results.

4.4 Empirical results for U.K., U.S. and Euro area

The U.K. leads the Euro area by a bit more than three quarters in most of the sample. Only

at the end of the sample the phase shift is estimated as zero. Phase adjusted correlation and

contemporaneous correlation are also much lower than in previous cases but an increase in these

measures of association takes place, reaching almost 1 in the end of the sample. This increased

synchronisation and association of the U.K. with the Euro area in the last 5 to 6 years were

not reported so far, also because data was not available.
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Figure 4: Estimated cycle model for the Netherlands and Euro area: (i) estimated time-varying

phase shift; (ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous

correlation; (iv) band-pass filtered series (rescaled)

With respect to the U.S., a lead of three quarters compared to Euro area is estimated

in most parts of the sample. Only until 1972 the phase effect is estimated as zero. Phase-

adjusted correlation increases steadily from around 0.4 in 1970 to 0.8 in 2000. Contemporaneous

correlation varies between 0.4 and 0.7, with a small decrease in the mid 1970’s. These values for

contemporaneous and phase-adjusted correlation in the 1970’s are strikingly low and seem not

to be consistent with a casual inspection of filtered series. This is also true when we compare

the Euro area with the U.K.

It should be noted that the proposed synchronisation/dessynchronisation and convergence/

divergence mechanisms are “one way”, in the sense that phase shifts and phase-adjusted corre-

lations can only either increase or diminish across the sample, not both. In view of this, some

of the results are not entirely satisfactory. Estimated phase shifts and correlations seem some-

times to be averages of varying patterns within the same regime. In the case of phase-adjusted

correlation, the apparent high association of business cycle fluctuations in the 1970’s may be

masked by the middle of the sample dynamics in some cases. However, the “direction” of both

phase effect and phase-adjusted correlation seems in general to be reasonable. The model may

not be able to capture the non-monotone time-varying dynamics, it provides an estimate of the

predominant path (either increasing or decreasing) of both phase shift and correlation.
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Figure 5: Estimated cycle model for Spain and Euro area: (i) estimated time-varying phase

shift; (ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous correla-

tion; (iv) band-pass filtered series (rescaled)

5 Conclusions

Analysis of business cycle comovements among economies is often static. Furthermore, no

modelling of relevant features takes place. More or less ad-hoc sub-samples are analysed,

parametric and non-parametric statistics computed, and conclusions are drawn. Our modelling

strategy avoids many of these shortcomings. Important features and relevant regime switches

are estimated. Time-varying phase shifts and time-varying degree of association are explicitly

modelled. Transition to different regimes can take place smoothly.

Most results presented are consistent with those of previous studies. Namely, France and

Germany display a high degree of association with the Euro area across the sample. Also, their

cycles are now synchronised with those of the Euro area, although Germany displayed a leading

cycle in the 1970’s. Spain, Italy and the Netherlands had a relevant increase in the association

with the Euro area, reaching levels of association close to those of Germany and France in the

end of the sample. Spain and Italy became more synchronised with the Euro area while The

Netherlands displayed a small lead in the end of the sample.

The U.S. leading cycle with respect to the Euro area and the lower degree of association

are well established in the literature and were identified by our model. As for the U.K., the

estimated synchronisation with the Euro area ocurring in the last years of the sample is worth

17



1970 1980 1990 2000

0.4

0.6

0.8

1.0 (ii)

1970 1980 1990 2000

0.25

0.50

0.75

1.00 (iii)

1970 1980 1990 2000
−3

−2

−1

0

1

2

3
(i)

1970 1980 1990 2000

−0.02

0.00

0.02

(iv)

cycleEuro cycleUK 

Figure 6: Estimated cycle model for UK and Euro area: (i) estimated time-varying phase shift;

(ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous correlation;

(iv) band-pass filtered series (rescaled)

noting. However, the low degree of association of these two countries with the Euro area

reported for the 1970’s revealed one of the limitations of the model. Association and phase

shifts can only either increase or decrease across a given sample, not both. Future research is

planned to increase flexibility in this respect using either deterministic or stochastic functions.

Appendix: stochastic cycles

In this Appendix we develop the stochastic cycle model for univariate and bivariate time series.

In the latter case we discuss the consequences for synchronisation and convergence of two

stochastic cycles.

A. Deterministic cycles

The deterministic cycle ψt = a cos(λt − b) with amplitude a, phase b and frequency λ can be

expressed as a sine-cosine wave, that is

ψt = α cos(λt) + β sin(λt), t = 1, . . . , n, (14)
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Figure 7: Estimated cycle model for US and Euro area: (i) estimated time-varying phase shift;

(ii) time-varying phase adjusted correlation; (iii) time-varying contemporaneous correlation;

(iv) band-pass filtered series (rescaled)

where α = a cos b and β = a sin b. The reverse transformation is a = α2+β2 and b = tan−1(β/α).

The equivalence follows directly from the first of two trigonometric identies

cos(λ± ξ) = cosλ cos ξ ± sinλ sin ξ, sin(λ± ξ) = cosλ sin ξ ∓ sinλ cos ξ, (15)

with ξ = b. The frequency 0 ≤ λ ≤ π is measured in radians and the period of the cycle is

given by f = 2π/λ. The shift is measured in radians as well and the phase shift in time units

is given by b/λ. The cycle can be expressed via a recursion which follows from repeatingly

applying the trigonometric identities (15). The recursive expression of the cycle is(
ψt+1

ψ+
t+1

)
=

[
cosλ sinλ

− sinλ cosλ

](
ψt

ψ+
t

)
, (16)

for t = 0, . . . , n and with ψ0 = α and ψ+
0 = β. The variable ψ+

t appears by construction.

The phase shift b is with respect to cycle wave cosλt. Shifts can also be observed between

different cycles. Consider two cycles with the same frequency λ, that is

ψy,t = αy cos(λt) + βy sin(λt), ψx,t = αx cos(λt) + βx sin(λt).

In the notation of (16) we have ψy,t = (1, 0)ψ̄y,t and ψx,t = (1, 0)ψ̄x,t where

ψ̄y,t+1 = Tλψ̄y,t, ψ̄x,t+1 = Tλψ̄x,t, (17)
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and we define

ψ̄y,t =

(
ψy,t

ψ+
y,t

)
, ψ̄x,t =

(
ψx,t

ψ+
x,t

)
, Tλ =

[
cosλ sinλ

− sinλ cosλ

]
. (18)

In the case that phases at the origin of both cycles are equal, that is ψ+
y,0/ψy,0 = ψ+

x,0/ψx,0, a

phase shift of ψx,t with respect to ψy,t can alternatively be established by

ψx,t = αx cos[(t− ξ)λ] + βx sin[(t− ξ)λ],

where −1
2
π ≤ ξλ ≤ 1

2
π is measured in radians. The cycle ψx,t has moved ξ time units “to the

right” from cycle ψy,t. In the notation of (17), the shift is obtained by replacing Tλ by Tλ−ξλ in

(17). More elegantly, the shift can also be accomplished by cos(λξ)ψx,t + sin(λξ)ψ+
x,t to obtain

ψx,t = {cos(λξ), sin(λξ)} ψ̄x,t, ψ̄x,t+1 = Tλψ̄x,t, (19)

which follows from the trigonometric identities (15).

B. Stochastic cycles: univariate case

Following Harvey (1989), a stochastic cycle can be based on (16) with the addition of a damping

term φ and white noise disturbances, that is(
ψt+1

ψ+
t+1

)
= φ

[
cosλ sinλ

− sinλ cosλ

](
ψt

ψ+
t

)
+

(
κt

κ+
t

)
, (20)

where κt and κ+
t are white noise disturbances and mutually independent for t = 1, . . . , n. The

damping term 0 ≤ φ ≤ 1 ensures that the stochastic process ψt is stationary. By adopting

the notation used in (18) we introduce the Gaussian stationary cycle time series component

associated with variable y by

ψy,t = (1, 0)ψ̄y,t, ψ̄y,t+1 = φTλψ̄y,t + κ̄y,t, κ̄y,t ∼ NID(0, σ2
κ,yI2), (21)

with κ̄t = (κt, κ
+
t )′ where the two elements of κ̄t are independent with the same variances. Time

series observations for the variable y may be measured with noise and with a mean different

from zero so that

yt = µy + ψy,t + εy,t, εy,t ∼ NID(0, σ2
ε,y), t = 1, . . . , n, (22)

where yt is the observation at time t for variable y with fixed and unknown mean µy and

observation noise εy,t that is mutually independent of κy,t and κ+
y,t at all time points. Stochastic

properties of the stationary time series yt are explored in Harvey (1989). The unknown fixed

parameters including mean µy, variances σε,y and σ2
κ,y, frequency λ and damping factor φ can

be based on log-likelihood maximisation using state space methods; see Durbin and Koopman

(2001) for a recent discussion.
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C. Similar stochastic cycles: bivariate case

The same stochastic cycle model (22) may be adopted for another variable, say x. We then

have

xt = µx + ψx,t + εx,t, εx,t ∼ NID(0, σ2
ε,x), t = 1, . . . , n, (23)

with the same definitions for mean µx, stochastic cycle ψx,t as in (21) and observation noise

εx,t as for variable y. The cycle disturbances associated with variables y and x are assumed

contemporaneously correlated, that is

E(κy,tκx,t) = E(κ+
y,tκ

+
x,t) = ρκσκ,yσκ,x, t = 1, . . . , n.

All serial cross-correlations are zero. The cycle of x is said to be similar to y when frequency λ

and damping factor φ are restricted to the same values. Stochastic properties of the similar cycle

component including variance, autocovariance and cross-autocovariance functions are explored

by Harvey and Koopman (1997). For example, the cross-autocovariance function at lag τ is

given by

γy,x(τ) = (1− φ2)−1φτ cos(τλ)ρκσκ,yσκ,x,

for τ = 1, 2, . . ..

The stochastic cycle component of variable x can be shifted by modifying the cycle specifi-

cation for xt as

xt = µx + cos(λξ)ψx,t + sin(λξ)ψ+
x,t + εx,t, t = 1, . . . , n, (24)

where −1
2
π ≤ (λξ) ≤ 1

2
π is measured in radians. The same arguments apply as for the shifted

deterministic cycle (19). The specification for the cycle of variable y remains the same with

common frequency λ and damping factor φ. The properties of the similar stochastic cycle

component with shifts are explored by Rünstler (2002). For example, the autocovariances

γy(τ) and γx(τ) and the cross-autocovariance γy,x(τ) functions at lag τ are given by

γi(τ) = (1− φ2)−1φτ cos(λτ)σ2
κ,i, i = y, x, (25)

γy,x(τ) = (1− φ2)−1φτ cos{λ(τ + ξ)}ρκσκ,yσκ,x, (26)

for τ = 1, 2, . . .. It follows that when ρκ = 0, cycle cross-autocovariances are zero and do not

depend on ξ so that ξ can not be identified in the likelihood function.

In the limiting case of E(κy,tκx,t) = E(κ+
y,tκ

+
x,t) = σκ,yσκ,x and ρκ = 1, the cycles are said to

be common. In this case, the cycle model for xt with shifts can be specified as

xt = µx + δ
[
cos((λξ))ψy,t + sin((λξ))ψ+

y,t

]
+ εx,t, t = 1, . . . , n, (27)

where δ adjusts for the different amplitude of the cycle of xt with respect to that of yt. Although

the shifted cycles have common dynamic properties such as the ones described in Engle and

Kozicki (1993), the cycles associated with yt and xt have not such properties; see the discussion

in Rünstler (2002).
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