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ABSTRACT

Data replication is a technique to increase the availability of data. Two popu-
lar algorithms for maintaining consistency among the replicas are Weighted
Voting [1] and Available Copies [2]. In recent papers [3,4] it has been shown
that under common circumstances Available Copies (AC) performs better
than Weighted Voting (WV). However, the issue of network partitioning is
ignored in AC. We present an improvement of WV that, if configured
accordingly, performs as well as AC, but does not ignore the partitioning
problem.

1. Introduction

Data replication in distributed operating systems is a technique to increase the availabil-
ity of data. It can also increase the performance of the system, since an application can use
nearby copies of the data. Similarly it can decrease network overhead. A problem is to make
the collection of replicated data look like one object, even under concurrent access. Users
should always see the most recent version. This prerequisite is called serial consistency or
one-copy- serializability .

Two popular algorithms for achieving serial consistency are Weighted Voting[1] and
Available Copies[2]. Weighted Voting (WV) trades off read availability for write availabil-
ity, and may need more than one copy available to perform an operation. Available Copies
(AC) works as long as there is at least one available copy, but works incorrectly in the pres-
ence of communication errors or network partitioning.

We propose a method that has none of the disadvantages of the algorithms stated above.
Both WV and AC are special cases of the proposed method, which we call Voting with
Ghosts (VWG). The read and write availabilities in VWG are at least as good as those of
WYV and AC. VWG uses WYV as its basic algorithm, but substitutes so-called ghosts for una-
vailable copies. The ghost gets the votes of the original copy, but can only use them for write
quorums.

We will assume that the network can only be partitioned at certain places. We will call
the parts of the network that cannot be further partitioned a segment. If a segment is down,
the nodes within that segment will not be able to communicate. If a segment is up, all the
running nodes in this segment can communicate among each other. We will need this pro-
perty since, as we shall see, a ghost is started on the same segment as the unavailable copy.
The assumption of a segmented network reflects current network technology.

This research was supported in part by the Netherlands Foundation for the Advancement of Pure
Research (Z.W.0.) under grant 125-30-10.
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In the following section we will describe the VWG method in detail. In section 3 we
will analyze the method in the presence of node crashes and network partiions. Section 4
compares VWG to WV and AC. Section 5 concludes.

2. Algorithm

VWG uses WV as the basic algorithm. In section 2.1 we will briefly describe WV. In
the following section we will introduce ghosts to increase the write availability of the basic
algorithm significantly. The last section describes how ghosts are generated.

2.1. Weighted Voting

In WV every copy of a replicated object is assigned a number of votes. To read the
object the user has to collect a read quorum of r votes, and to write the object a write
quorum of w votes. r+w has to be greater than the total number of votes in all the copies, N,
to ensure that there is an intersection between a read quorum and a write quorum. This inter-
section will always contain the most current version of the object, that is, the contents of the
last write operation. To keep track of versions a version number is associated with every
object.

A write to a copy of the object contains the new version number of the object, which 1s
the incremented current version number. If w#N and the current version number 1s unknown,
a read quorum is needed to obtain the current version number. If w=N there is no need to
maintain a version number since every copy will always contain the latest version. A user
that reads the copies in a read quorum can get the latest version by taking the one with the
highest version number. If a quorum cannot be obtained, the operation will either fail of wait
until the quorum can be reached.

By having a small read quorum, and therefore a large write quorum, we obtain a high
read availability, but a correspondingly low write availability. If a container (= storage node)
crashes, and the write quorum can no longer be acquired, the object will not be available for
writing.

2.2. Ghosts

It 1s this last problem that can be overcome with ghosts. In the event of a container
crash, a ghost 1s started within the same segment. A ghost 1s a process without storage. It
will be assigned the votes of the crashed object. How the crash of a container is detected and
the ghost 1s started 1s the subject of the next section. For now we will assume that ghosts are
started directly after a container crash.

Since the ghost has no storage, it cannot reply to a read request, and thus cannot partici-
pate in a read quorum. However, the ghost 1s allowed to participate in a write quorum. In
this case it discards the data that is received with the subsequent write request, and it answers
with a special reply. A write can only succeed if the write quorum contains at least one non-
ghost copy. Basically, the voting algorithm uses ghosts to detect that a copy is unavailable
due to a crash, and not due to a network partition.

When the container 1s rebooted, the copies in the container will have to be synchronized
with the other copies. This is necessary since the ghost pretended to have performed the
write operations, whereas in reality these operation were not performed. A copy that is to be
recovered 1S said to be comatose. One strategy to make the copy available again is to keep
acting like a ghost until a write request has been received. If a read quorum is available, the
copy can be recovered immediately by copying the current version.

If a read quorum cannot be achieved, all the copies that contain the most recent version
may be unavailable, and thus 1t 1s 1mpossible to recover immediately. Instead, the recovery
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procedure will have to wait until all sites are either available or comatose. Now the latest

version available among the copies of the objects is automatically the current version. Using
this version the comatose objects can recover and can become available again.

Note that a write quorum must contain at least one stable container, that is, a container
in which the copies remain internally (contents and version number) consistent over crashes.
Otherwise it 1s possible that data be lost if all containers crash. WV, in contrast, requires that
all containers are stable, since there is no recovery involved after a crash.

2.3. Boot Service

Container crashes are detected by the boot service. There is a boot service per segment
that has containers. All copies and their votes are registered with the boot service. It polls
the containers at regular intervals, and expects an I-am-ok reply within a maximum time
interval. If this reply is not received, the boot service will try to reboot the container, and
poll the container again afterwards. If there is still no positive response, it will ensure that
the container will stay unavailable. This can be done by resetting the hardware, disconnect-
ing 1t from the network, or by switching off the power using an electronic switch. Now, in
the same segment, it will start a ghost for the container with the votes of the copies in the
container. If an application detects that a container is unavailable, it can speed up this pro-
cess by sending a message to the boot service.

Ghosts crashes are handled in the same way. The boot service itself is protected against
crashes by replicating it on several nodes in the segment. The boot service can use either
WYV or AC to maintain consistency internally. This consistency is required to get concensus
about which containers are down, and which server is going to restart the container. Since
the servers for the boot service reside on one segment they do not have to handle partitions.
The boot servers can poll each other to recover from crashes. If the boot service becomes
unavailable anyway, the algorithm degrades to WV.

2.4. Correctness

If the correctness of WV is understood, then the correctness of VWG is easily seen. A
write quorum consists of w votes with at least one non-ghost copy. A read quorum consists
of r votes with only non-ghost copies. Since r+w>N we have a non-empty intersection
between the read and the write quorum. Since the write quorum consists of current copies,
and the read quorum consists of non-ghosts, the intersection consists of current, non-ghost
copies. Itis a copy from this set that the read operation uses.

3. Analysis

In this section we will analyze the behavior of VWG 1n the event of container crashes
and network partitions. We define availability as the probability of an object being accessi-
ble at any given time. Such an object could be replicated data as a whole, or just a single
copy. An object could also be a gateway between segments of a network, or a segment itself.
We will assume that the boot service is always available and creates ghosts immediately after
a crash.

3.1. Node Crashes

For now we will also assume that the network 1s not partitioned and is always available,
and that each copy has the same (independent) availability p and has exactly one vote. We
will calculate the read and write availability of data replicated using VWG. These calcula-
tions are based on the reliability theory of k—out—of -N systems [5]. In section 4 we will
compare the results with WV and AC.
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k—out—of —-N gives the availability of replicated data if at least k of its N copies are
needed for access. Clearly, 1—outr—of =N is the probability that not all copies are inaccessible:
1—(1-p)N. Using probability theory we can see that:

k=1 (ar) . :
k—out—of -N =1- 3, | |p'(1-p)""

i=0

This formula gives the availability of data if k available copies are needed for a quorum.
In VWG the read availability is r—out—of =N. Since a write operation only needs one avail-
able copy, the write availability of the data is 1—out—of -N. Fig.1 gives the read and write
availability of VWG for different combinations of r and w as function of the availability of
the copies p. For these statistics hold r+w =N+1=9. The dotted line in the graphs gives the
availability of the data if it would not have been replicated.

t T
avail avail WA RA
N =38 N=28
=l r =3
[Hﬁ w=28 w=06
0 o 1 0 5 1
(a) P (b)

Fig.1. The read availability (RA) and write availability (WA) of a replicated object
under VWG as function of the availability of the copies, for different values of 7
and w. The dotted lines give the availability if replication would not have been
used.

3.2. Network Partitioning

In this section we will calculate the read and write availability in VWG from any part of
the network. We will allow network partitions, and that copies have different availabilities
and numbers of votes. Note that the availability of a replicated object is different observed
from different locations in the network. First we will represent a network as a graph. We
represent containers, segments, and gateways between segments as nodes in the graph, and
the connections between these parts of the network as edges. Each node in the graph has an
availability and a number of votes attached to it. Segment nodes always have O votes, but a
gateway may well have votes if the machine is also used for storage.

An example of a network and the corresponding graph is shown in Fig.2. Here we have
a backbone network (1) that connects four segments (4-7) using two repeaters (2, 3). An
extra gateway (11) is added between segments 5 and 6. Nodes 8 to 14, including gateway 11,
are containers. In the graph representation we see all the parts of this configuration as nodes.
For ease of use we made the segment nodes elliptic and the gateway nodes square.

A simple algorithm for calculating the availability from any node in the graph can be
constructed as follows. The algorithm considers every possible state of the segmented net-
work. For each state (up/down combination of all the nodes) it calculates the probability of
this state. This is the product of the availabilities of the nodes that are up, and the



Fig.2. A typical segmented network and its graph representation. The square nodes
are gateways, and the elliptical nodes are network segments.

unavailabilities (one minus the availability) of the nodes that are down. From the node that
we are interested in a check is made whether or not enough votes can be acquired by travel-
Ing the graph, stopping at unavailable nodes. If a quorum can be reached, the probability of
the combination is added to the total availability. The complete algorithm can be found in
Appendix A.

Using the algorithm on the example of Fig.2 we find the availabilities in Fig.3 for
quorums of 1, 5, and 16 votes. Users on segment 7 have, for a read quorum of 5, a relatively
low availability. To improve this, we could try to move a container to segment 5, or to
increase the number of votes of node 14. For comparison the last column contains the availa-
bilities if the data was not replicated, and situated at node 13. (This data was generated by
assigning all votes to node 13, and none to the other nodes.) For example, a user on segment
> needing a quorum of 1 vote finds an availability of the data of 0.970. If the data would not
have been replicated, but stored only on node 13, the availability would have been 0.912.
Moreover, in the unlucky event that node 13 crashes, the data would be completely unavail-
able.

4. Comparison

WYV and AC are two popular algorithms for maintaining serial consistency of replicated
data. In this section we will compare the availability of replicated data in these algorithms to
VWG. For the probabilistic analysis we will assume again a network without partitions, that
each copy has one vote, and that each copy has the same (independent) availability p.

4.1. Weighted Voting

The pure WYV algorithm has been described in section 2.1. The read availability of the
data is r—out—of-N, which is the same as that of VWG. The write availability is
w—out—of -=N. If we want high read availability we have to choose a small read quorum.
Since r+w>N we will have a large write quorum, and thus low write availability. The read
and write availability for different combinations of » and w is shown in Fig.4. The contrast
with VWG can be observed by comparing Fig.4 to Fig. 1.

VWG gives for any combination of r and w optimal write availability. In a non-
partitionable network we get optimal overall availability by choosing r =1 and w =N. A
disadvantage of VWG is that copies need to be synchronized after crashes. This involves

disallowing write access to one copy during the recovery. If crashes are sufficiently rare, this
disadvantage need not be a problem.



input output
node # avail || quorum | quorum | quorum no repl.
number | votes 1 5 16 data on 13

_ —

1 0 98 977 976 S04 918

2 0 .95 950 950 514 891

3 0 95 950 948 514 .894
4 0 97 || 970 965 514 865 |

5 0 97 970 969 514 912

6 0 97 970 969 514 941

7 0 97 962 919 514 867

8 1 93 930 901 514 804

9 4 98 980 947 514 847

10 1 94 940 911 514 S

11 4 99 990 989 514 931

12 1 92 920 892 Sl14 866

13 3 97 970 940 S14 970

14 2 | 85 || .850 782 514 737

Fig.3. The availabilities for different quorums of the example network.
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w==6
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Fig.4. The read availability (RA) and write availability (WA) of a replicated object

under WV as function of the availability of the copies, for different values of r and
w.

To allow caching of data, weak representatives[1] can be used. Weak representatives
are temporary copies that do not have any votes, but can still be included in any quorum.
Especially a user can include a weak representative on the local machine in read quorums. If
the weak representative has the current version number, the data can be copied from that
representative. In VWG 1t 1s unnecessary to create ghosts for weak representatives; after a
crash the weak representative disappears completely.

To cut down on the storage requirements witnesses[6] can be used. Witnesses are
copies that only maintain the version number of the copy, and not the data itself. In a quorum
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there has to be at least one real copy. Otherwise witnesses have no effect on the voting
mechanism. |

4.2. Available Copies

AC reads one copy, and writes all available copies. When an unavailable copy becomes
available again it 1s recovered from any available copy. If all copies are unavailable, the
recovery procedure will have to wait until all sites are comatose, and then select the most
recent version, as 18 done in VWG. An improvement of this strategy can be achieved by
keeping track of which sites were available in every updat, so recovery can take place with
only the sites that were available at the last update. (This technique can be applied to VWG
as well.)

AC does not tolerate communication errors. If, due to a bad connection, an available
copy appears to be unavailable, the copy will become inconsistent. In the case of a network
partition the algorithm will allow writes in all parts, thereby creating inconsistent versions of
the data.

avail

avail

0 1 0
p? >

Fig.5. The availability (read and write) of AC.

To compare AC with VWG we will assume perfect communication (no errors, no parti-
tioning). The availability of replicated data using the AC method 1s given 1n Fig.5. For both
read and write availability only one copy is needed. If we compare Fig.5 to Fig. 1(a) we see
that VWG, with a read quorum of 1, performs the same as AC. However, VWG also works
correctly with non-perfect communication, and then allows flexible configuration for read
and write availability. Furthermore, VWG needs to lock only one copy for recovery, instead

of all.

An interesting alternative to AC is Regeneration [7]. Here unavailable copies are
immediately replaced by new copies on other containers (provided that other containers are
available). Using this technique the availability of data can be restored after container
crashes. This technique can also be used in VWG. After a crash detection, the boot service
can first try to generate a new copy on a different container within the same segment. If this

fails, 1t can start a ghost as usual.

5. Conclusion

Voting with Ghosts combines the advantages of Weighted Voting and the advantages of
Available Copies. It provides the flexibility of configuration as in WV, and the high write
availability of AC. We have presented a technique for calculating the availability of
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replicated data from any point in an internetwork, to allow designing an optimal configura-
tion.

Using VWG we are currently designing a replicated directory service for the Amoeba
distributed operating system [8]. A directory maps ASCII names to object identifiers in the
form of capabilities [9]. We will support atomic lookup, install, and delete operations on

directory entries of multiple directories. In a version-based system this will allow installing a

new version of a set of objects atomically. Amoeba already provides a boot service to sup-
port immortality of services.
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Appendix A

* This algorithm calculates the availability of replicated data in a *)
* network of vulnerable components with independent availabilities. *)

* can be described using a connection matrix of type bmatrix, where *)

* bmatrix(i] [J] 1s true if there is a connection between nodes i and *)

(
(
(* The availability appears different from node to node. The network *)
(
(
(

* J. bmatrix([i] [j] is false if i = j or if there is no connection. *)

const NNODES = ..

W (* number of nodes in network graph *)

type nodenum = 1. .NNODES;
bvector = array[nodenum] of boolean;
ivector = array[nodenum] of integer;
rvector = array[nodenum] of real;
bmatrix = array[nodenum] of bvector;

(* Calculate availability of data in a node of a network graph ¥*)

function analyse (

connected: bmatrix; (* graph description *)

votes: ivector; (* votes per node *)

avail: rvector; (* availability of nodes *)

node: nodenum; (* node to investigate *)

quorum: integer (* quorum to acquire *) ) : real;

var up, visited: bvector;

prob, result: real;

1: nodenum; done: boolean:;

(* Recursive function to walk the graph starting in node ‘‘src.’’ *)
(* Returns the number of votes that it could collect. Pruning is ¥*)
(* done 1f the quorum is reached before searching all nodes. *)

function collect (src: nodenum; have: integer): integer;

var dst: nodenum;

begin (* collect *)
if up([src] then (* only visit nodes that are up ¥*)
begin
visited[src] := TRUE;
have := have + votes|[src]; (* acquired some votes *)

(* recursively visit all nodes, prune if have >= quorum *)

ds

t

s= L

while (have < quorum) and (dst <= NNODES) do
begin

1f not visited[dst] and connected[src] [dst] then
have := collect (dst, have):;
ast (= dst. + 1
end

end;
collect := have
end;

(* collect *)
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begin (* analyse *)
for 1 := 1 to NNODES do up[i] := FALSE;
result = 0;
repeat (* for each up/down combination of nodes *)

(* calculate probability of this up/down combination *)
prob. =il 03

for 1 := 1 to NNODES do

begin |

i1f up([i] then prob := prob * avail[i]

prob * (1 = .availl[a]):

else prob :
visited([(i] := FALSE
end;
(* 1f quorum collected add probability to result *)
1f collect (node, 0) >= quorum then

result := result + prob;
(* calculate next up/down combination *)
1 ti= s
repeat

up (1] := not up(i];

if up[i] or (i = NNODES) then done := TRUE
else begin done := FALSE; i := i + 1 end
until done

until not upli];

analyse := result

end;

(* analyse *)
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