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Abstract 
In this paper logical techniques developed to formalise the analysis of multi-interpretable 

information, in particular belief set operators and selection operators, are applied to an 

ecological domain. A knowledge-based decision support system is described that determines 

the abiotic (chemical and physical) characteristics of a site on the basis of samples of plant 

species that are observed. The logical foundation of this system is described in terms of a 

belief set operator and a selection operator.  

1.  Introduction 

In most real-life situations humans receive information that can be interpreted in many 

different ways. The context often determines the view with which this information is 

interpreted, but also other factors may be of influence. One domain in which multi-

interpretable observations can be analysed using a technique based on the distinction of 

different views, is the domain of ecology. 

 Plants only grow in areas where conditions are appropriate. Knowledge of which set 

of factors is necessary for species to germinate and complete their life-cycle, has been 

acquired by experts over a large number of years. This knowledge of environmental 

preferences of plant species makes it possible to derive information about a terrain’s 

abiotic (physical and chemical) characteristics on the basis of the plant species found. 

More specifically, experts are able to derive the abiotic conditions of the site studied in 

terms of acidity, nutrient value and moisture from the abiotic preferences of the species 

comprising the vegetation.  

 If knowledge on abiotic preferences of plant species is available, nature 

conservationists can use their knowledge of the plant species found in a specific terrain 

to determine the abiotic conditions. Often, however, nature conservationists responsible 
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for terrains do not possess this detailed knowledge. An Environmental Knowledge-

based System, EKS, has been designed to support them in this decision making process. 

Once the abiotic conditions of a terrain have been determined, nature conservationists 

can then use this knowledge to manage the terrain; e.g., new measures can be derived to 

improve the quality of the site. 

 The specific domain of application in the current implementation is grasslands. The 

knowledge-based system, the development of which was funded by the organisations 

International Plant Technology Services (IPTS) and the State Forestry Department of 

the Dutch Ministry of Agriculture (Staatsbosbeheer), is based on knowledge acquired 

from experts in the fields of Plant Ecology, Eco-hydrology, and Soil Sciences. 

Acquiring consensus between experts on the meaning of individual plant species with 

respect to their specific abiotic conditions is one of the main aims of this project. The 

observations made in the field, a sample, can often be interpreted in different ways. To 

model this expert reasoning task, an approach based on belief set operators (introduced 

in [8]) is applied. 

 In this paper, the application domain is introduced in Section 2. In Section 3 the 

knowledge-based system EKS is described. Section 4 introduces belief set operators and 

shows how the expert reasoning task can be formalised using these operators. In Section 

5 the correspondence between the formalisation and the system design is shown. 

Finally, in Section 6 the reported results are discussed. 

2.  Domain of Application 

Experts identify the current abiotic conditions of a terrain on the basis of plant species 

they encounter. The process of identification of abiotic conditions was analysed in 

cooperation with experts, resulting in the distinction of three tasks: (1) grouping the 

plant species that "belong together", (2) selecting the set of plant species experts 

consider most "defining", and (3) identifying the related abiotic conditions. These 

conditions are expressed as values for each of the abiotic factors: acidity (basic, neutral, 

slightly acid, fairly acid, acid), nutrient value (nutrient poor, fairly nutrient rich, nutrient 

rich, very nutrient rich) and moisture (very dry, fairly dry, fairly moist, very moist, 

fairly wet, very wet). 

 In a sample of plant species taken from an abiotic homogeneous site, a common set 

of abiotic conditions can be found that are shared by the plant species. A technique to 

determine the abiotic conditions in this case is described in Section 2.1. In practice, 

however, the samples often include groups of plant species that, according to the 

knowledge available, could not possibly grow under the same abiotic conditions. One 

cause could be that the knowledge about the abiotic conditions in which species can live 
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is incomplete. Another cause could be that the sample has been taken from a 

heterogeneous site: a site where the abiotic conditions vary over space and time (for 

instance, on a site in transition between dry and wet soil). An expert needs to analyse 

and interpret the available information and can, for example, determine that a sub-set of 

the sample is most dominant. A method to determine which compatible groups of plant 

species can be distinguished within a sample is described in Section 2.2. 

2.1.  Homogeneous Sample: Greatest Common Denominator 

 

In a sample of plant species taken from a homogeneous site, at least one set of abiotic 

conditions can be found that is shared by all species on the site. An example of a sample 

of species that can all grow in a homogeneous site is used to illustrate a technique to 

find this set of common abiotic conditions. Examination of the plant species, depicted 

in Table 1, shows all possible values for each of the three abiotic factors, for each of the 

plant species. For example, the abiotic requirements of Caltha palustris L., are: 

 - very moist or fairly wet, 

 - basic, neutral or slightly acid, 

 - nutrient poor, fairly nutrient rich or nutrient rich terrain. 

For the species Poa  trivialis L. a terrain needs to be 

 - fairly moist, very moist or fairly wet, 

 - basic or neutral, 

 - nutrient rich or very nutrient rich. 

If both species occur in a terrain, this implies that the terrain can only be: 

 - very moist or fairly wet, 

 - basic or neutral, 

- nutrient rich. 

 



 4

 

 Moisture Acidity Nutrient Value 

 Species vd fd fm vm fw vw bas neu sac fac ac np fnr nr vnr 

 Angelica sylvestris       x x   x x         x x    

 Caltha palustris ssp palustris       x x   x x x     x x x    

 Carex acutiformis       x x   x x         x x    

 Carex acuta       x x x x x x       x x x  

 Deschampsia caespitosa     x x x   x x x       x x x  

 Epilobium parviflorum     x x     x x x       x x    

 Equisetum palustre     x x x x x x x     x x x    

 Galium palustre       x x   x x x     x x x x  

 Glyceria fluitans       x x x x x x x     x x x  

 Juncus articulatus       x x   x x x     x x x x  

 Lathyrus pratensis     x x     x x x       x x    

 Myosotis palustris       x x   x x x       x x x  

 Phalaris arundinacea     x x x x x x           x x  

 Phleum pratense ssp pratense     x x     x x           x x  

 Poa trivialis     x x x   x x           x x  

 Scirpus sylvaticus       x x x x x x       x x    

 
Moisture  (vd: very dry, fd: fairly dry, fm: fairly moist, vm: very moist, fw: fairly wet, vw: very wet) 

Acidity    (bas: basis, neu: neutral, sac: slightly acid, fac: fairly acid, ac: acid)  

Nutrient value (np: nutrient poor, fnr: fairly nutrient rich, nr: nutrient rich, vnr: very nutrient rich) 

Table 1.  A homogeneous sample. 

Note that not only can the occurrence of a single species restrict the possible abiotic 

conditions of the terrain, but the occurrence of species in combination can restrict the 

possible abiotic conditions even further. 

 Analysis of the abiotic conditions for all plant species presented in Table 1 shows 

that only a restricted number of possibilities (but more than one) for the abiotic 

conditions can be found in which all of these plant species can abide. This greatest 

common denominator  for the given plant species is defined by the following set of 

abiotic conditions: 

 - very moist 

 - basic or neutral 

 - nutrient rich 

The combination of these plant species indicates that a terrain on which these plant 

species are found has to fulfill these conditions. 

2.2.  Inhomogeneous Sample: Maximal Indicative Subsets 

In a sample taken from an inhomogeneous site, the sample does not have a common 

denominator of abiotic conditions. A real example sample is shown in Table 2, together 
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with the possible values for the three abiotic factors for each plant species. Focusing on 

the acidity of a terrain shows that the plant species Angelica sylvestris L., for example, 

only grows on a basic or neutral terrain, whereas the species Carex panicea L., also 

found in the same sample, only grows on a slightly or fairly acid terrain. These two 

species, however, are in the same sample. One common set of possible values of the 

abiotic factors for all plant species can not be derived. 

 Further analysis of the abiotic factors of the plant species in the sample is required. 

Groups of plant species for which a set of shared abiotic conditions can be found are 

grouped together.  These groups of plant species are homogeneous groups of plants as 

defined above in Section 2.1. The largest possible homogeneous groups of plant species 

are called maximal indicative subsets. 

 These subsets are maximal with respect to compatibility of the plant species in the 

subset. In other words, all plant species in the sample that are compatible with the group 

of plant species in a maximal indicative subset (those plant species that can grow on a 

site with the same abiotic conditions), are in the subset. As shown in Table 3, in the 

example sample two maximal indicative sets of plant species can be distinguished. The 

first maximal indicative subset contains all plant species that can grow in 

 - very moist 

 - basic or neutral 

 - nutrient rich 

environments. The second maximal indicative subset contains all plant species that can 

grow in 

 - very moist 

 - slightly acid 

 - fairly nutrient rich 

environments. 
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 Moisture Acidity Nutrient 

Value 

 Species vd fd fm vm fw vw bas neu sac fac ac np fnr nr vnr 

 Angelica sylvestris       x x   x x         x x    

 Anthoxanthum odoratum   x x x         x x   x x      

 Caltha palustris ssp palustris       x x   x x x     x x x    

 Carex acutiformis       x x   x x         x x    

 Carex acuta       x x x x x x       x x x  

 Carex nigra     x x x       x x x x x      

 Carex panicea     x x x       x x   x x      

 Carex riparia       x x x x x           x x  

 Cirsium oleraceum       x x   x x         x x    

 Cirsium palustre       x     x x x     x x x    

 Crepis paludosa     x x x   x x x       x x    

 Deschampsia caespitosa     x x x   x x x       x x x  

 Epilobium palustre     x x x       x     x x      

 Epilobium parviflorum     x x     x x x       x x    

 Equisetum palustre     x x x x x x x     x x x    

 Filipendula ulmaria       x     x x x     x x x    

 Galium palustre       x x   x x x     x x x x  

 Glyceria fluitans       x x x x x x x     x x x  

 Juncus articulatus       x x   x x x     x x x x  

 Juncus conglomeratus   x x x         x x   x x      

 Lathyrus pratensis     x x     x x x       x x    

 Lotus uliginosus     x x x   x x x     x x x    

 Lychnis flos cuculi       x x   x x x       x x    

 Lysimachia vulgaris     x x x   x x x     x x x    

 Myosotis palustris       x x   x x x       x x x  

 Phalaris arundinacea     x x x x x x           x x  

 Phleum pratense ssp pratense     x x     x x           x x  

 Poa trivialis     x x x   x x           x x  

 Scirpus sylvaticus       x x x x x x       x x    

  Moisture (vd: very dry, fd: fairly dry, fm: fairly moist, vm: very moist, fw: fairly wet, vw: very wet), 

  Acidity (bas: basis, neu: neutral, sac: slightly acid, fac: fairly acid, ac: acid),  

  Nutrient value (np: nutrient poor, fnr: fairly nutrient rich, nr: nutrient rich, vnr: very nutrient rich) 

Table 2.  An inhomogeneous sample. 

 

 Note that the two maximal indicative subsets share a number of plants (the 

intersection of the two subsets). These plants have a relatively broad spectrum of 

environmental preferences. 
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 Moisture Acidity  Nutrient  

Value 

 Species vd fd fm vm fw vw bas neu sac fac ac np fnr nr vnr 

                

 Angelica sylvestris       x x   x x         x x    

 Carex acutiformis       x x   x x         x x    

 Carex riparia       x x x x x           x x  

 Cirsium oleraceum       x x   x x         x x    

 Phalaris arundinacea     x x x x x x           x x  

 Phleum pratense ssp pratense     x x     x x           x x  

 Poa trivialis     x x x   x x           x x  

                

 Caltha palustris ssp palustris       x x   x x x     x x x    

 Carex acuta       x x x x x x       x x x  

 Cirsium palustre       x     x x x     x x x    

 Crepis paludosa     x x x   x x x       x x    

 Deschampsia caespitosa     x x x   x x x       x x x  

 Epilobium parviflorum     x x     x x x       x x    

 Equisetum palustre     x x x x x x x     x x x    

 Filipendula ulmaria       x     x x x     x x x    

 Galium palustre       x x   x x x     x x x x  

 Glyceria fluitans       x x x x x x x     x x x  

 Juncus articulatus       x x   x x x     x x x x  

 Lathyrus pratensis     x x     x x x       x x    

 Lotus uliginosus     x x x   x x x     x x x    

 Lychnis flos cuculi       x x   x x x       x x    

 Lysimachia vulgaris     x x x   x x x     x x x    

 Myosotis palustris       x x   x x x       x x x  

 Scirpus sylvaticus       x x x x x x       x x    

                

 Anthoxanthum odoratum   x x x         x x   x x      

 Carex nigra     x x x       x x x x x      

 Carex panicea     x x x       x x   x x      

 Epilobium palustre     x x x       x     x x      

 Juncus conglomeratus   x x x         x x   x x      

 
 

 

Moisture (vd: very dry, fd: fairly dry, fm: fairly moist, vm: very moist, fw: fairly wet, vw: very wet) 

Acidity   (bas: basis, neu: neutral, sac: slightly acid, fac: fairly acid, ac: acid)  

Nutrient value (np: nutrient poor, fnr: fairly nutrient rich, nr: nutrient rich, vnr: very nutrient rich) 

Table 3.  Maximal indicative subsets within an inhomogeneous sample. 
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Note also that the conditions for the plant species that these two groups do not have in 

common are mutually exclusive with respect to acidity and (partially) nutrient value. 

 To decide which maximal indicative set is the most appropriate for a given site, 

additional knowledge is required. For example, in this case, the expert knows that the 

sample has been taken from a site that has a particular type of stratification (so-called 

rainwater lenses): two different layers of soil can be found on the same site.  This 

explains the presence of the two abiotic indicative sets of plant species. Additional 

detailed knowledge on abiotic conditions for plant species can also be taken into 

account; e.g., knowledge on the optimal conditions for specific plant species. 

3.  The Decision Support System EKS 

The above described expert knowledge on the determination of abiotic conditions on the 

basis of a terrain’s vegetation, has been used to design a knowledge-based system to 

support ecologists in the upkeep of nature reserves. This knowledge-based system, the 

EKS system, has been modelled, specified and implemented within the compositional 

development method DESIRE (see e.g., [1], [4]). 

3.1.  The Compositional Development Method DESIRE 

 

DESIRE is a compositional development method for the design and implementation of 

knowledge-based and multi-agent systems. A knowledge engineer is supported during 

all (iterative) phases of design: from initial conceptualisation to implementation, by the 

DESIRE development method supported by the dedicated software environment. 

 The development method focuses on the identification and specification of the 

following types of knowledge, the types of knowledge used to define a model: 

(1)  process composition 

• identification of the processes or tasks involved at different levels of process 

abstraction; 

• knowledge of task and role delegation between systems (human and/or 

automated): task and role delegation; 

• knowledge of the information exchanged between processes: information 

exchange; 

• knowledge of when and how processes are activated (in parallel or sequential, 

under which conditions): task control; 

(2)  knowledge composition  

• identification of the types of information and knowledge used at different levels 

of knowledge abstraction; 
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• specification of the knowledge structures and the way in which they are 

composed; 

(3)  relations between process composition and knowledge composition 

• Knowledge on which knowledge structures are used in which processes. 

 

Initial knowledge analysis focuses on the acquisition of a shared task model: an 

intermediary agreed model shared by both the expert and the knowledge engineer, in 

which these types of knowledge are made explicit (see [2], [3]).  This knowledge is first 

identified at an abstract level, and refined during the further design process. 

 Tasks distinguished during conceptual design are modelled as components. 

Components can be primitive or complex: a component may encompass a number of 

other (either primitive or complex) components, or it may not. If not, the component is 

either a reasoning component with a knowledge base or a component with a so-called 

alternative specification  (meaning that only its input and output are explicitly specified 

in the DESIRE modelling language, e.g., databases, OR-algorithms, neural networks, 

etc.). A knowledge-based system’s behaviour as a whole is defined by the interaction 

between components, and between the system and its users. The DESIRE software 

environment consists of: 

• a graphical editor to support conceptual and detailed design; 

• an implementation generator that translates DESIRE specifications into 

executable 

code; 

• an execution environment in which the translated code can be executed. 

3.2.  Design of EKS 

 

In Section 2, three tasks are distinguished: (1) grouping of plant species that "belong 

together", (2) selecting the set of plant species experts consider most "defining", and (3) 

identifying the related abiotic conditions. 

 

 

selection 
of a maximal 

indicative 
subset

determination 
of abiotic 

 conditions

determination 
of maximal 
indicative 
subsets

possible maximal 
indicative subsets

 set of observed  
 species

 possible abiotic conditions  
 for the selected maximal 
 indicative subset

selected maximal 
indicative subset

 

Figure 1.  The global design of EKS. 
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Task Composition 

These three tasks are modelled by three components as shown in Figure 1. The first 

task, the determination of maximal indicative subsets, entails analysis of the plant 

species in the sample and the corresponding abiotic conditions to determine maximal 

indicative subsets of plant species. The choice of the most defining subset is performed 

by the component selection of a maximal indicative subset. The third task, 

determination of abiotic conditions, is relatively simple, and includes the presentation 

of the abiotic conditions of a maximal indicative subset. 

 
Information Exchange 

The initial information needed by the system to determine the abiotic conditions of a 

terrain is a list of observed plant species. This is the input for the first component. The 

maximal indicative sets of plant species derived in the first task are the input for the 

second task. The result of the selection process (the second task), one of the maximal 

indicative subsets, in turn, is input for the third task (determination of abiotic 

conditions). The final output consists of the possible abiotic conditions for the selected 

maximal indicative subset. 

 

Figure 2.  Input window of EKS. 
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Task Activation 

Task activation is straightforward. Completion of the first task results in activation of 

the second. Completion of the second task results in activation of the third. Completion 

of the third task results in completion of the entire task. 

 

Task Delegation 

The first task and the third task are performed by the system. The second task is 

performed by the user. 

 

Knowledge Structures 

The knowledge includes knowledge of plant species and the abiotic conditions in which 

they can abide, part of which is presented above in table format (see Tables 1 and 2). 

Each plant species has related values for each of the three abiotic factors. For reasons of 

efficiency, the first component is specified by an alternative specification. 

 

 The system EKS has been developed using the DESIRE method and software 

environment. In addition, a graphical user interface has been designed specifically for 

EKS. 

 

 

Figure 3.  Presentation of the maximal indicative subsets. 

3.3.  User-System Interaction 

Initially a user is presented with a screen with which he/she can enter the plant species 

found on a terrain, as shown in Figure 2. The system analyses this information, resulting 

in the two maximal indicative subsets of plant species. This information is presented to 

the user as shown in Figure 3. The overlap between the two maximal indicative subsets 
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of plant species is presented on the screen as the list of shared plant species. The 

remaining plants are listed separately for each of the maximal indicative subsets as 

abiotic indicative groups. The user chooses which maximal subset is most appropriate.  
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very 
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very 
wet
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nutrient 
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nutrient 
rich

basicacid fairly 
acid

slightly 
acid

neutral

 
 

Figure 4  Abiotic conditions for the first maximal indicative set. 

 The final output of the system is a graphical presentation of the abiotic conditions for 

the terrain in question. In Figure 4 and 5 the two possible outputs are shown: for the 

first maximal indicative subset and for the second maximal indicative subset, 

respectively. Figure 4 shows that the first subset indicates that the terrain is nutrient rich 

and very moist, and the acidity is somewhere in the interval from basic to neutral. The 

second subset indicates that the terrain is slightly acid, very moist and fairly nutrient 

rich.  
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acid
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acid

neutral

 
 

Figure 5  Abiotic conditions for the second maximal indicative set. 
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4. Formalisation by a Belief Set Operator and a Selection Operator 

In Section 2, three tasks are distinguished: determination of groups of plants that belong 

together, selection of one of these groups, and then identification of  its related abiotic 

conditions. The second task is performed by the user, and the last task is rather 

straightforward. As mentioned before, the first task is the most complex; it is formalised 

in this section. From an abstract point of view, this task can be seen as follows. The 

given observations together provide a partial view of the world (these observations are 

the plant species on the terrain). It is partial in the sense that it is not yet known which 

(group of) plants are most defining for the terrain. The first task consists of finding 

possible extensions of this partial view, by adding additional beliefs about which plants 

are defining (and, as said before, this can, in general, be done in multiple ways). Such 

forms of reasoning, in which a partial view on the world is extended to multiple (more 

informed) views, after which a selection from these can be made, have been formalised 

using belief set operators and selection operators in [8]. In this section these 

formalisations are related to the application at hand. To this purpose, a brief overview of 

the main ideas and concepts of [8] is presented. 

 A propositional language,  L, is assumed, together with its corresponding set of 

models,  Mod, and the standard (semantic) consequence relation  |=  ⊆ Mod x L. A set 

of formulas which is closed under propositional consequence is called a belief set. A 

belief set can be seen as a possible set of beliefs of an agent with perfect (propositional) 

reasoning capabilities. 

Definition 4.1  (Belief set operator) 

a)  A belief set operator  B  is a function B : 7(L) → 7(7(L))  that assigns a set of 

belief sets to each set of initial facts. 

b)  A belief set operator  B  satisfies inclusion if  for all X ⊆ L and all T � B(X) it 

holds  X ⊆ T. A belief set operator  B  satisfies non-inclusiveness  if  for all X ⊆ L 

and all  S, T � B(X), if S ⊆ T  then  S = T. 

The kernel  KB : 7(L)→ 7(L)  of  B  is defined by KB(X) =  � B(X). 

 

The first condition expresses conservativity: it means that a possible view on the world 

at least satisfies the given facts; the belief set operator defines a method of extending 

partial information (instead of, for instance, revising it). The condition of non-

inclusiveness guarantees a relative maximality of the possible views. The kernel of a 

belief set operator yields the most certain conclusions given a set of initial facts, namely 

those which are in every possible view of the world. To give an example of a belief set 
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operator, consider a set of default rules (the reader is referred to the next section for a 

definition of default logic). A set of initial facts, together with the default rules, gives 

rise to a number of extensions (which can be considered belief sets). An operator that 

assigns the corresponding set of extensions to each set of initial facts is a belief set 

operator. The kernel of this operator yields the sceptical (see e.g., [11]) conclusions. 

 Often, as is the case in the application, after a number of belief sets have been 

generated, the process will focus on (or make a commitment to) one (or possibly more) 

of the belief sets, because it seems the most promising, or interesting, possible view on 

the world. This selection process can be formalized by selection operators. 

Definition 4.2  (Selection operator and selective inference operation) 

a)  A selection  operator  s  is a function s : 7(7(L)) → 7(7(L))  that assigns to 

each set of belief sets a subset (for all A ⊆ 7(L) it holds s(A) ⊆ A) such that 

whenever A ⊆ 7(L) is non-empty, s(A) is non-empty. A selection operator s is 

single-valued if for all non-empty  A  the set  s(A) contains exactly one element. 

b)  A selective inference operation for the belief set operator  B  is a function 

C : 7(L) → 7(L)  that assigns a belief set to each set of facts, such that for all X ⊆ L 

it holds  C(X) � B(X)  

 

A formalisation of (the first task of) the application described in this paper can be made 

using the notions defined above. The language L is the propositional language of which 

the atoms are the ground atoms defined by the following signature: 

 

plant species names (P):    achillea_millefolium, achillea_ptarmica, .... 

abiotic factors (A):     moisture, acidity, nutrient_value 

values for each of the abiotic factors (V):  very_dry, fairly_dry, ......,  

       basic, neutral, ......,  

       nutrient_poor, fairly_nutrient_rich,... . 

 

Predicates: 

 

  occurs(P) 

  is_negative_indication_for(P, A, V) 

  has_value(A, V) 

  is_indicative(P) 
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The constants  achillea_millefolium, achillea_ptarmica, ....  represent the names of the 

plant species (see Figure 2). The abiotic factors are the three factors introduced in 

Section 2. The predicate occurs(P) refers to the presence of plant species  P in the 

sample of the terrain (this is input to the reasoning process). The predicate 

is_negative_indication_for(P, A, V) expresses the fact that abiotic factor  A  does not 

have value  V. The predicate has_value(A, V) expresses the fact that factor  A  has value  

V, and is_indicative(P)  the fact that  P  is regarded as an indicative species (giving 

evidence to the terrain having certain abiotic factors). 

 

There is a set, KB, that consists of propositional formulae expressing knowledge (about 

the domain of determination of abiotic factors), which is of the following form: 

 

•  a (large) number of ground instances of: 

 

 is_negative_indication_for(P, A, V) 

 

These instances represent the experts’ knowledge of which species may occur in 

terrains with certain abiotic factors. 

 

•  all ground instances of the generic rule 

 

is_indicative(P) � is_negative_indication_for(P, A, V)  o   ��has_value(A, V) 

 

This rule makes it possible to conclude that certain abiotic factors do not have a certain 

value. This derivation can be made if an indicative species has been found that does not 

(generally) occur in terrains for which the factor  A  has value  V. 

 

•  statements expressing that for each abiotic attribute at least one value should apply 

 

  has_value(moisture, very_dry) � has_value(moisture, fairly_dry) �  ... 

  has_value(acidity, basic) � has_value(acidity, neutral) �  ... 

  has_value(nutrient_value, nutrient_poor) �  

   has_value(nutrient_value, fairly_nutrient_rich) �  ... 

 

For a given set of observed species OBS, i.e., input of the form 

  { occurs(p) | p � OBS } 

the set 

  X = KB �  { is_indicative(p) | p � OBS } 
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may be inconsistent. That is, it may be inconsistent to assume that all observed species 

are indicative for the terrain. This may occur if there is an abiotic factor  A0  such that 

for all of its possible values  V, a species  P  is observed that negatively indicates this 

value (which means we have both  is_indicative(P)  and  is_negative_indication_for(P, 

A0, V)). With the generic rule, the conclusion  � has_value(A0, V)  is drawn for all 

possible values  V  of  A0.  But this is inconsistent with the statement  has_value(A0, V0) 

� has_value(A0, V1) �  ...  which is in  KB. However, as explained earlier, the set of 

maximal indicative subsets containing  KB  may be considered. This is defined as 

follows: 

 

Definition 4.3  (Maximal indicative subset)�

Let�OBS�⊆ P�be a given set of species�

a)  The set of species�5 ⊆ P is an indicative set of species if the theory 

 KB � {is_indicative(p) | p � S}  

is consistent. 

b)  The set S � OBS  is a maximal indicative subset of  OBS if it is an indicative set 

of species and for each indicative set of species T with S ⊆ T ⊆ OBS it holds S = T. 

The set of maximal indicative subsets of OBS is denoted by  maxind(OBS) . 

 

Note that if OBS is an indicative set of species itself, there is only one maximal 

indicative subset of OBS, namely OBS itself. 

 Based on these notions the following belief set operator can be defined. 

 

Definition 4.4  (Belief set operator for the application domain) 

For a set X ⊆ L, define the set of observations implied by X by   

 OBS(X) = {p | occurs(p) � Cn(X)}. 

The belief set operator Bmaxind  is defined by  

 Bmaxind (X) = { Cn(X § KB § {is_indicative(p) | p � S}) |  S � maxind(OBS(X)) } 

for each X ⊆ L. 

 

Actually, here the interesting sets X are the sets of the form {p | occurs(p) � OBS} for 

some set of species OBS�⊆ P. The operator Bmaxind satisfies a number of properties of 

well-behavedness as defined in [8]. 

 

The fact that in the case of an observed set of species OBS  a unique interpretation 

occurs is expressed as: for each subset of species OBS�⊆ P the following are equivalent: 
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 (i)  Bmaxind ({p | occurs(p) � OBS})  contains just one element. 

 (ii)  the set OBS is an indicative set of species. 

If these (equivalent) conditions are satisfied, all observed species are indicative, and the 

user does not need to do selection. The possible values of the abiotic factors are 

contained in  Bmaxind ({p | occurs(p) � OBS}). 

 If Bmaxind ({p | occurs(p) � OBS})  contains more than one element, the user must select 

one. But even before this selection process, conclusions can be drawn: the kernel of the 

Bmaxind  operator contains the most certain conclusions, so KBmaxind
 ({p | occurs(p) � OBS})  

may be inspected. For instance, there may be two possible views in Bmaxind ({p | occurs(p) 

� OBS})  as species have been observed which only grow in dry terrains, and other 

species have been observed which only grow in moist terrains. However, all of these 

species may indicate that the terrain is not acid, and this conclusion will be in 

KBmaxind
 ({p | occurs(p) � OBS}). If acidity is all one is interested in, there is no need for 

selection. If one is interested also in the moistness, this selection has to take place. If 

one is interested in the species which are in both maximal indicative sets, one can either 

examine KBmaxind
 ({p | occurs(p) � OBS}), or the intersection of the maximal indicative 

sets: 

 KBmaxind
 (X) ��{ is_indicative(p) | p ��P } = 

    { is_indicative(p) | p ����maxind(OBS(X)) }. 

So, the kernel contains the atoms is_indicative(p) precisely for p in the set of shared 

plant species (see Figure 3, lower part), which is the intersection of the maximal 

indicative subsets (the two rectangles in Table 3). 

 

The formalisation in terms of a belief set operator is semantical of nature. However, a 

syntactical representation can be found as well, in terms of a normal default theory 

based on (in addition to the world theory KB) the following set of defaults  D: 

 

(occurs(p) : is_indicative(p)) / is_indicative(p)      for all species  p in P. 

 

To see the equivalence, the following is needed. Let  ¯�=  < W, D >  be a default theory. 

A set of sentences  E  is called a Reiter extension  of ¯  if the following condition is 

satisfied: 

 E =  � Ei 

  where 

     E0 = Cn(W),  
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  and for all  i =�0  

     Ei+1 = Cn(Ei � { ZA | (D���E1,...,En) / ZA  ��D, D���Ei  and   

           ��E1 ½�E, ... , ��En ½�E }) 

The set of Reiter extensions of ¯ is denoted by Ext(¯) . 

 

Theorem 4.5 

The belief set operator  Bmaxind  is representable by the normal default theory  

< KB, D >, i.e., for all X it holds  Bmaxind(X)   = Ext(<KB ��X, D>) . 

 

The proof is as follows. Let  X  be a set of formulas in L. Let  X ��KB  be consistent (if 

it is not, verification is straightforward and omitted). The extensions of < KB ��X, D > 

are sets of the form  Cn(KB ��X ��S),  where  S  is a subset of  

{ is_indicative(p) | occurs(p) � Cn(X) }, which is maximal such that Cn(KB � X � S)  is 

consistent. This is proved below. The sets Cn(KB � X � S)  with  S  as above together 

comprise Bmaxind(X). First of all, let  S  be such a maximal set, and let  E = Cn(KB ��X 

��S). Then if the  Ei  are defined in the definition of a default extension as above, the 

following holds: 

 E0 = Cn(KB ��X), 

 E1 = Cn(E0 ��{ is_indicative(p) | occurs(p) ��E0 , ��is_indicative(p) ½�E } ) 

As  E1  does not contain more instances of the  occurs  predicate than  E0  (this follows 

from the fact that  X  contains only the  occurs  predicate, whereas  KB  does not), Ei = 

E1  for all  i > 1. The claim is that  

  { is_indicative(p) | occurs(p) ��E0 , ��is_indicative(p) l�E } = S.  

Suppose occurs(p) ��E0  and  ��is_indicative(p) ½�E. Then occurs(p)  is in  Cn(X)  and 

Cn(KB ��X ��S ��{ is_indicative(p) } )  is consistent. But as  S  was maximal with 

respect to these properties, is_indicative(p) ��S. On the other hand, if is_indicative(p) 

��S, then occurs(p) ��E0  and ��is_indicative(p) ½�E (as E = Cn(KB ��X ��S) is 

consistent). Now let  E  be an extension of  < KB ��X, D >, then it is of the form 

Cn(KB � X ��S), where S  contains (only) formulas of the form is_indicative(p). 

Examination of  KB  (and the restriction on the language of  X), shows that only if 

occurs(p) ��Cn(X)  is is_indicative(p) ��E. As extensions are always consistent (if each 

rule has a justification and the axioms are consistent), Cn(KB � X � S)  must be 

consistent. Suppose there exists a T ��S  (strict inclusion) respecting the conditions, 

then there must be a default rule  occurs(p) : is_indicative(p) / is_indicative(p), with 

occurs(p) � Cn(X) ��E  and Cn(KB � X ��S ��{ is_indicative(p) } ) consistent, 
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implying that  ��is_indicative(p) ½�E. But that means there is an applicable default rule 

for which the conclusion is not in  E, contradicting the assumption that  E  is an 

extension. Therefore  S  must be maximal. 

 

At this point the reader may wonder what the benefit is of the (syntactical) 

representation in default logic. The belief set operator Bmaxind  arose during the analysis 

and formalization of an application to be described in the next section. A system, EKS, 

was implemented based on this operator Bmaxind. The implementation in fact follows the 

definition (Definition 4.1) rather closely. A representation in terms of default logic may 

provide some more familiarity for readers. Besides, the results of the current section 

indicate that alternatively a theorem prover for default logic (or, rather, a program 

computing extensions of default theories) could be used.  

5.  Correspondence Between the Formalisation and the 

System 

The correspondence between the formalisation of the expert reasoning task and the 

interactive knowledge-based system EKS that models the task is shown in Figure 6. The 

first component of the system, determination_of_maximal_indicative_subsets, is 

formalised by the belief set operator  Bmaxind  defined in Section 4 (depicted by the grey 

arrow at the left hand side in Figure 6). The component 

selection_of_a_maximal_indicative_subset (which models the selection process by the user) 

is formalised by a single-valued selection function suser  (depicted by the grey arrow at 

the right hand side in Figure 6). The composition CEKS of Bmaxind and suser  defined by 

 

    CEKS(X)  = suser (Bmaxind (X))        for X ��L 

 

is a non-monotonic inference operation, which is selective for Bmaxind (as described in 

Definition 4.2b). This inference operation formalises the reasoning of the system in 

interaction with the user as a whole (depicted by the grey arrow at the bottom of Figure 

6). Note that one of the two functions of which this overall function is composed, is 

fixed and defined by the system itself (i.e., Bmaxind), and that  the other function can be 

changed dynamically, depending on the user  (i.e., suser). 
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Figure 6.  Correspondence between the formalisation and the system. 

 

6.  Discussion 

The outcomes of the work reported in this paper can be discussed at two levels: the 

level of the specific application domain and system, and the more generic level of the 

logical techniques used. 

 

6.1. Domain of Application and EKS 

 

The multi-interpretability of samples of plant species has proven to be a central issue in 

this domain of application. Given the assumption that samples are always correct (the 

plant species named are indeed the plant species encountered), and that samples are 

only taken from sites which are homogeneous, the only reason for conflicting indicative 

information is that the specific domain knowledge on which conclusions are based is 

incorrect or incomplete. During the design of EKS this specific domain knowledge was 

continual subject of discussion between experts. The knowledge currently implemented 

in EKS is the result of consensus between experts, and is no longer a likely reason for 

conflicting indicative information. 

 The lack of homogeneity of a terrain is the cause of most conflicts, requiring 

additional expert knowledge to understand the nature of the inhomogeneity. The reason 

for the lack of homogeneity can, for example, be vertical stratification, as in the 

inhomogeneous example discussed earlier. Another possibility is the development of a 

terrain over time: what has and has not been done to a terrain can influence its 

vegetation and transitions in vegetation. Inhomogeneous terrains are more common than 

initially supposed: multi-interpretable samples are not the exception, but the rule.  The 
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way in which experts analyse samples from inhomogeneous terrains was at first unclear.  

A first model determined the, in some sense ‘average’, conditions for the species in the 

sample. This model, although originally agreed by the experts involved to be an 

acceptable model, did not work: experts found it difficult to interpret the outcome of the 

analyses. The second model displayed the ranges of conditions encountered as a kind of 

summary of results. However, this model was problematic  for two reasons: (1) It was 

unclear to the user whether the ranges of conditions displayed were meant to be possible 

for all species or only for subsets (the difference between an or interpretation of a range 

and an and interpretation), (2) The different values in the ranges could not be traced 

back to the species on which they are based. As a result of experiencing these first two 

experimental models,  the experts agreed that the different views of a sample were 

essential to the analysis of the plant species observed. EKS identifies these views and 

presents these views to the user. Which view is (or which views are) most appropriate 

requires additional heuristic (strategic) knowledge. The selection of a view is currently 

performed by the user of the system. Future research will focus on the acquisition of 

this knowledge to be able to support users in the selection process.  

 One of the research questions to be addressed as well might be whether the basic 

assumption used, namely that the three main factors are considered independent 

variables could be replaced by some dependence relations as well. However, domain 

experts have strongly preferred to consider them as independent until now, and don’t 

see apparent dependence relations. 

 Other research questions concern the applicability of the approach in other domains. 

In further research it is aimed to find another suitable realistic domain and to apply the 

approach in this domain. 

 

6.2.  The Logical Techniques Used 

 

The idea that information about the world can often be interpreted in different and 

conflicting manners was a central theme in the research reported in [14], [8]. Using 

techniques to formalise non-monotonic reasoning, such as default logic (e.g., [13], [5], 

[11]), often different (and often conflicting) possible outcomes of a reasoning process 

are obtained. In the area of research on non-monotonic reasoning, in general this is 

considered to be disturbing (e.g., it is called the multiple extension problem). To come 

to one set of conclusions, in the literature often the non-monotonic inference operation 

defined by the intersection of all possible outcomes is taken (sceptical approach), or 

sometimes the union of all possible outcomes (credulous approach). (The original paper 

on default logic, [13], however, proposed that a choice should be made for one 

outcome, using some mechanism outside default logic itself.) 
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 For a particular domain such as the ecological domain addressed in this paper, both 

approaches are unsatisfactory: the sceptical approach often does not lead to any possible 

conclusions on the abiotic conditions, whereas the credulous approach often leads to 

inconsistent information. For reasons like these, in [14], [8], [9], [12] the multiple 

outcomes of a non-monotonic reasoning process are not considered to be a problem, but 

are instead exploited as a useful feature that can provide an adequate formalisation of 

the multi-interpretability often present in real-life information. In [14] this feature is 

expressed by adding as an extra parameter a selection function to a default theory. In [6] 

and [7] a similar approach is developed, based on priority orderings between defaults. 

In [8] the notion of belief set operator is introduced to formalise the multiple outcomes 

of a non-monotonic reasoning process, and a selection operator to make a choice 

between the different options.  

 For the application domain discussed in this paper the latter approach is more 

suitable, because in this approach first all alternative interpretations are generated, and 

the selection is made afterwards. In the approaches of [14], [6], and [7] the reasoning 

process itself is controlled by the selection knowledge in such a manner that only one 

outcome is generated, and other options remain invisible. Such strategic knowledge is 

not yet available. However, in the future of this project such strategic knowledge may 

be acquired so that not all possible options need to be generated. In that case approaches 

as described in [14], [6], or [7] might become useful. Another issue for future research 

is to characterize the domains in which the approach discussed in this paper for the 

ecological domain can be applied, thus making the method more general. 
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