
VU Research Portal

Comparing Formal Specification Languages

van Harmelen, F.A.H.; Lopez de Mantaras, R.; Malec, J.; Treur, J.

published in
Formal Specification of Complex Reasoning Systems
2005

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
van Harmelen, F. A. H., Lopez de Mantaras, R., Malec, J., & Treur, J. (2005). Comparing Formal Specification
Languages. In Formal Specification of Complex Reasoning Systems (pp. 257-282). Ellis Horwood.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 29. Mar. 2024

https://research.vu.nl/en/publications/d78ba0ae-4e5f-4271-b8f7-a8a35d7036ed

In: Formal Specification of Complex Reasoning Systems J. Treur and Th. Wetter (eds.),
pp. 257-282, Ellis Horwood 1993

Comparing Formal Speci�cation Languages

for Complex Reasoning Systems

Frank van Harmelen�

University of Amsterdam

Department of Social Science Informatics

Roetersstraat ��� NL����� WB Amsterdam� The Netherlands

frankh�swi�psy�uva�nl

Ramon L�opez de M�antarasy

IIIA� CEAB�CSIC

Cam�	 de Santa B
arbara

����� Blanes� Girona� Spain

mantaras�ceab�es

Jacek Malecz

Department of Computer and Information Sciences

Link
oping University

S���� �� Link
oping� Sweden

jam�ida�liu�se

Jan Treur

Free University Amsterdam

Department of Mathematics and Computer Science

Arti�cial Intelligence Group

De Boelelaan ����a� NL����� HV Amsterdam� The Netherlands

treur�cs�vu�nl

Abstract

This paper presents a comparison between eight speci�cation languages
discussed during the Workshop on Formal Speci�cation Techniques for Com�
plex Reasoning Systems held in Vienna during the ECAI��� conference� The
languages as discussed here possess many important common characteristics�
but also di�er substantially� The analysis discussed here departs from look�
ing at the purposes of the presented languages �Section 	
� The comparison
in Section � focuses on the way of dealing with heuristic knowledge in the
speci�cation of the common example task� In Section � some di�erences
between the languages are discussed�

� expressive power

� the way of specifying control knowledge

� layering of the system architecture�

In Section � we identify where already a certain consensus can be found

points are discussed that are in common for most of the languages�

� modularity

� local declarativeness

� multi�level view on a speci�cation

� distinct speci�cation of static and dynamic aspects

� separation of generic and domain�speci�c parts of a speci�cation

� object�meta distinctions in speci�cations

� the level of speci�cation�

Moreover� in Section ��� the major open problems are presented�

�Partially funded by the ESPRIT Programme of the of the European Communities as project
number ���� �KADS�II��

yPartially supported by the ESPRIT�BRA DRUMS�II ��	����
zSupported by the Center for Industrial Information Technology �CENIIT��

�

Introduction

This paper presents a comparison between eight speci�cation languages discussed
during the Workshop on Formal Speci�cation Techniques for Complex Reasoning
Systems held in Vienna during the ECAI��� conference �cf� this volume ��� 	�
� ��
�� �
� ��� �	��� The languages as discussed here possess many important common
characteristics� but also di�er substantially� The analysis discussed here departs
from looking at the purposes of the presented languages �Section ��� The com�
parison in Section � focuses on the way of dealing with heuristic knowledge in the
speci�cation of the common example task �cf� ����� In Section � some di�erences
between the languages are discussed�

� expressive power�

� the way of specifying control knowledge�

� layering of the system architecture�

In Section 	 we identify where already a certain consensus can be found� points are
discussed that are in common for most of the languages�

� modularity�

� local declarativeness�

� multi�level view on a speci�cation�

� distinct speci�cation of static and dynamic aspects�

� separation of generic and domain�speci�c parts of a speci�cation�

� object�meta distinctions in speci�cations�

� the level of speci�cation�

Moreover� in Section 	�� the major open problems that are felt are presented�
In this Introduction we give a summary of the list of criteria for comparison

that were collected before the workshop� Table � is based on the author�s own
opinions about their languages with respect to these criteria� The list consisted of
the following items�

�� Expressive power�

�� Transparency�

�� Knowledge level speci�cation or not�

�

	� Declarativeness�

�� Adequacy to specify dynamic aspects of reasoning patterns�

� Possibility to specify multi�level �e�g�� global vs� local� architectures ade�
quately�

�� Possibility to distinguish between generic and non�generic parts of a speci��
cation adequately�

�� Possibility to specify re�ective reasoning patterns adequately�

�� Adequacy to specify non�classical reasoning patterns �reasoning with uncer�
tainty� non�monotonic reasoning� etc���

�
� Possibility to specify integrated systems �with conventional components� ad�
equately�

��� Executability� Possibility to generate prototype implementations automati�
cally�

��� Availability of a clear semantics�

��� Availability of a solid formal semantics�

An important issue related to this list is the interpretation of �a language o�ers
a possibility of doing something� �notice that the word �possibility� is used exten�
sively in the list�� The weakest interpretation is that the language does not exclude
doing something� But of course a stronger interpretation is more interesting� does
the language actually o�er constructs that are easy to use and does it encourage �or
force� the user to exploit these constructs� During the workshop one more criterion
has been added to the list� namely the question of support for incrementality� both
during the formalization �conceptualization� stage� and during the implementation
phase�

One more issue related to this list is its vagueness� In other words� its posi�
tions can be �and actually have been� understood di�erently by di�erent authors�
Already the �rst position can be understood either as a formal expressive power
�studied along e�g� ����� or just as richness of the o�ered vocabulary� This partic�
ular ambiguity will be addressed later in the paper� but some other ones �e�g� the
meaning of the word �transparency� or the understanding of what constitutes a
�re�ective� reasoning pattern� have not been discussed here� Therefore� �although
we tried to avoid this� a possibility exists that the answers listed in the same row
of the table are actually answering di�erent interpretations of the questions�

The results are presented in Table ��

	

Property ML� MC AIDE KARL
� FOL� FOL RESTRICTED FOL RESTRICTED FOL

META�LOGIC� META�LOGIC ALSO PROCEDURAL
DYNAMIC LOGIC

� YES YES YES
� YES YES YES YES
� YES YES ONLY AT LOCALLY

DOMAIN LEVEL
� YES BY THE USER YES YES
� YES YES YES YES ��	

 YES YES NO YES
� YES YES NO NO
� NO YES NO NO
�
 LIMITED YES LIMITED YES
�� ONLY SIMULATION BY THE USER YES YES
�� YES UNDER DEVELOPMENT PARTIAL YES
�� COMPONENT�WISE COMPONENT�WISE NO COMPONENT�WISE

Property DESIRE OBJ� MILORD II KbsSF
� ��VALUED FOL� ALGEBRAIC MULTI�VALUED ORDER�SORTED

META�LOGIC� SPECIFICATION LOGIC LOGIC
TEMPORAL LOGIC LANGUAGE

ELEMENTS
� YES YES YES
� YES YES PARTIAL
� YES ��	 YES YES ��	 Dmodules only
� YES NO ��	 YES YES
� YES YES YES YES

 YES YES YES YES
� YES NO YES HARD
� YES NO YES VIA PARAMETERIZED

DEDUCTION
�
 YES YES POOR YES
�� YES YES YES NO
�� YES YES YES YES
�� COMPONENT�WISE YES PARTIAL COMPONENT�WISE

Table �� Table based on the author�s opinions about properties of the languages�
Notes�

	� Besides the three global layers of KADS
 there is also a possibility of introducing a hierarchy
of inference actions within the second �inference� layer and a corresponding �induced�
hierarchy in the task layer�

�� Component�wise �within each module and within the supervisor� declarativeness in classical
sense� compositionality �combining the component�wise semantics by the interactions��
according to a temporal logic interpretation�

� Control is imposed by appropriate ordering of speci�cation with respect to the rewrite
system used as the interpreter�

�� Component�wise �within each module� declarativeness according to multi�valued logic�

�

� A purpose�driven comparison

�Ramon L�opez de M�antaras�

One of the key issues in trying to compare the di�erent languages described
during the Workshop is the intended purpose of these languages� It is clear that
there are two categories� those languages aiming at delivering an executable system
for some concrete applications �diagnosis of a particular disease� design of a partic�
ular device� etc�� and those aiming at obtaining a formal speci�cation of general
tasks� problem solving methods� domain models� etc� These two di�erent purposes
imply very di�erent approaches during the de�nition and construction of the lan�
guage �i�e� its constructs� expressive power� reasoning capabilities� control aspects�
declarativeness� etc��� To be more precise� MILORD II is an example of a language
aiming at delivering expert systems for complex diagnostic reasoning applications
and therefore it has been designed following a bottom�up process� That is� the
characteristics of MILORD II have been driven by the needs to solve the problems
arising from the speci�c di�culties encountered in medical diagnostic reasoning
tasks �de�nition of modules� rule�based language within the modules� reasoning
with uncertainty� declarative control by means of meta�rules� etc���

AIDE is also a language whose purpose is an executable system� although the
emphasis is in the particular aspect of improving the explanations given by the �nal
systems� In this case� this was the main reason to do the speci�cation �high level
model of expertise or conceptual model in KADS terminology� of the system�

At the other extreme we have those languages whose intended purpose is not to
deliver a running system but a speci�cation� As such� their conceptors have been
able to follow a top�down approach during their design i�e� they are intended to
be able to specify generic task models or KADS models �KbsSF� OBJ�� DESIRE�
�ML��� KARL�� Among them DESIRE� KARL and OBJ� have some prototyping
capabilities� DESIRE can automatically generate prototype implementations from
a formal speci�cation into either NEXPERT OBJECT code or PROLOG code�
KARL o�ers the possibility of automatically mapping the obtained speci�cation
into an operational one that allows to evaluate the speci�ed model of expertise by
means of prototyping� The OBJ� speci�cation is executable as a term rewriting
system and therefore it allows to generate and evaluate prototype speci�cations as
in the case of KARL and DESIRE�

We may ask ourselves the trivial question �but not at all trivial answer� of how to
make this approaches to converge to somemiddle ground� To do this� the bottom�up
approach should include in its aims the genericity aspect paying the price of losing
a computational e�ciency �mainly in terms of speed� that in some applications
could be unacceptable� On the other hand� the top�down approach could aim
also to deliver e�ciently executable systems� This of course would imply a loss of
genericity power as well as a loss of solidity of the formal semantics of the language

because in this case the language would be more ad�hoc� As an example of this let
us consider the problem of deciding a therapy in a medical decision making task� In
general� it is necessary to administrate several drugs simultaneously and this implies
computing the di�erent doses to be administrated� Such computations are to be
performed by several operations� In a bottom�up approach we would introduce in
the language particular operators that cope with the particular semantics of each
operation� this lack of genericity results in a more di�cult way of extending the set
of operators when needed� On the other hand� in a top�down approach we would
provide the language with the capability of de�ning any operator whose properties
have to be syntactically de�ned in the language what would imply an extra e�ort
to check them when introducing the knowledge and would also imply writing more
code�

Another way to bridge the gap between the two approaches is suggested by
observing the common need of local reasoning �modularization� in all the languages�
As an example let us discuss the particularly interesting idea present in the MC
language of de�ning a module �context in MC� as an axiomatic formal system� This
allows to structure the speci�cation in terms of local reasoning tasks performed
within the di�erent modules� It is indeed quite remarkable that all these languages
independently of the approach �bottom�up or top�down� share such a common
middle ground� This commonality suggests that perhaps the formal speci�cation
e�ort should be spent at the module level� i�e� inside the modules� leaving the issues
of control �module or context switching� backtracking� etc�� not formally speci�ed
but tailored according to the di�erent speci�c application problems being solved�
The diversity of solutions provided by the di�erent languages concerning the control
aspects in the example task proposed in the Workshop is a clear evidence of the
great di�culty to formally specify control� As an example of this diversity� in
MILORD II the control is done declaratively through a re�ection mechanism� in
MC is not automatic but guided by the user� in AIDE� �ML��� KARL� and KbsSF
is procedural� in OBJ� is functional �with recursive constructs� and in DESIRE is
speci�ed declaratively and realized procedurally by re�ection mechanisms like in
MILORD II� We think then that it is worth pursuing research e�orts along this
module level speci�cation� After all why should we specify everything�

�

� The treatment of heuristic knowledge

�Frank van Harmelen�

The purpose of this section is to compare the various languages on how they
deal with some speci�c aspects of the example task� In particular� we compare how
the various languages have dealt with specifying the heuristic knowledge that is
used in the scheduling task�

��� The heuristic knowledge used in the example task

Heuristic knowledge is used in the scheduling task in three places�

�H�� Assumption generation�

This heuristic is used in generating candidates for scheduling� The prescribed
version of the heuristic says that any not currently scheduled activity can be
scheduled in any time period which has not turned out to be inadequate for
that time activity in the context of the current assumptions�

�H�� Assumption selection�

This heuristic is used in selecting an assumption from the candidates� The
selected assumption is the one that will be added to the schedule� The pre�
scribed version of the heuristic says that we should select an assumption that
schedules an activity in a time period as early as possible�

�H�� Assumption retraction�

This heuristic is used in choosing which assumption to withdraw if a partial
schedule turns out to violate any of the requirements� The prescribed version
of the heuristic says that the most recently made assumption will be retracted�

Notice that H� is not really a heuristic� heuristics are usually seen as rules that
limit the search space in a way that may not be strictly correct all of the time� H�
neither limits the search space �since it prescribes all logically possible candidates
as actual candidates� and is always correct �no incorrect decision will ever be made
because of H��� H� and H� both are real heuristics in the sense that they both
limit the search space and do not guarantee optimal �or even correct� solutions�

In general� heuristic knowledge �as opposed to factual knowledge� is an inter�
esting focal point for comparing languages� We can compare the ways in which the
languages deal with heuristic knowledge on the following grounds�

� does the encoding di�erentiate between the role of the heuristic in the reason�
ing process and the actual contents of the heuristic� For instance� a language
may simply encode the selection heuristic H�� or it may explicitly specify the

�

role of H� as a selection heuristic� and subsequently state the speci�c version
of the heuristic as given above�

� Furthermore� languages di�er on their ability to specify a heuristic indepen�
dently from its procedural use� Ideally� we want to separate the declarative
contents of a heuristic from the procedural way it is used in the reasoning
process�

� Often� heuristics only partially specify behaviour� and leave behaviour in
the remaining cases unspeci�ed� For instance� H� does not specify which
assumption should be selected if two candidates schedule activities at the
same earliest time period� How do the languages deal with this indeterminacy
in a speci�cation�

Beside these general points� the heuristics H�� H� and H� are particularly in�
teresting focal points for analyzing the various languages for the following reasons�

� H� requires reference to the current process state ��any not currently sched�
uled activity���

� H� is a control heuristic that requires reference to domain knowledge ��a time
period as early possible���

� H� requires reference to the process history ��the most recently made as�
sumption���

��� How the languages specify the heuristics

Below we brie�y characterize for each of the languages how they encode heuristics
H�� H� and H�� and discuss the languages on the basis of the criteria given above�

�ML�� In general� it is possible in �ML�� to distinguish between the role of a
heuristic and the actual contents of it� H� for instance is referenced in the axiom
for assumption selection ����� p� �
� lower part�� but the actual contents of H� �an
ordering relation among candidates based on time�slots� is de�ned as a separate
formula �in the lift�rule on p� �
� upper part�� However� this clean separation for
H� has not been applied to the other two heuristics�

Similarly� the declarative contents of H� �the de�nition of the ordering in the lift
rule� has been separated from its procedural use �select a top element of the order�
ing�� The price that is paid for this separation is that the declarative speci�cation
of H� does not immediately suggest an e�cient algorithm for actually selecting a
top element of the ordering� a direct implementation of H� as speci�ed in �ML��

would result in a quadratic algorithm� while simple optimizations would lead to a
linear computation�

�

�ML�� deals with the indeterminacy of H� by not specifying the behaviour of
the system in such cases� The reason given for this is that apparently the behaviour
of the system is not important in such cases� and should be left as a decision for the
implementor of the speci�cation �and not arbitrarily enforced by the speci�cation��

Reference to the process state �for H�� p� ��� is possible in �ML�� by referring to
special variables that encode this state� Similarly� reference to the process history
�for H�� p� ��� is possible in �ML�� through the use of special variables that keep
track of the computational history� although the crucial exploitation of encoding
the ObjectDescription as a list to maintain the ordering of the assignments is rather
implicit in the speci�cation� The access to domain knowledge by H� is achieved
through the lift�rules that instantiate the generic form of H� �a preference relation�
with a speci�c domain relation �the ordering among time�slots��

MC The MC formalization only speci�es the required dependencies between in�
put and output of the scheduling task� and does not specify how the search during
the computation should proceed� Thus� neither H� nor H� are encoded in the MC
speci�cation� As a result� it is not possible to discuss how MC would deal with
heuristic knowledge on the basis of the given speci�cation�

Heuristic H� is enforced in the MC speci�cation by means of axiom PSC
 �p�
���� which exploits the fact that problem solving contexts are essentially represented
by lists of assumptions whose order is maintained� This makes it possible to recover
an old context by retracting the most recently made assumption�

AIDE In AIDE� all three heuristics are represented in the body of inference
steps �tasks� p� �
����� as in e�g� �ML�� as discussed above� No separation is made
between the role of a heuristic and its actual contents �although this could have
been done via the introduction of additional tasks�� The heuristics are all speci�ed
in procedural form� and no separation is made between their declarative contents
and their procedural use�

The heuristics have direct access to domain knowledge �enabling the formulation
of H��� Reference to the process state �required for H�� is made through the
predicates that range over domain objects ��is�scheduled�in�� and over relations
��is�inadequate�for��� The process history �required for H�� is explicitly encoded
via the �last� predicate ranging over domain relations�

The indeterminacy in H� is resolved in H� by marking all possible selections
as �selected�� Thus� the speci�cation is left genuinely non�deterministic� and the
AIDE interpreter makes a speci�c choice�

KARL Of all languages� KARL has most consistently separated the role of the
heuristics from their actual contents� and their declarative contents from their pro�
cedural use� This is true of both H� �p� ��	����� and H� �p� ��	������

�

The reference to domain knowledge for the purposes of H� is resolved in way
similar to �ML��� by means of an explicitly encoded relation between a generic
preference criterion and a speci�c domain relation �p� �����

Reference to the process state and process history is achieved by explicitly en�
coding the history through keeping track of the partial models that have been
computed before� in the knowledge role design�states� This allows computation of
all currently unscheduled activities �for the purpose of H��� A previous solution in
KARL used the knowledge role design�objects for this purpose� Since this knowl�
edge role contained all currently unscheduled activities� it was a su�cient encoding
of the process state for the purposes of H�� Filtering out of previously known
violations as part of H� is not realized in the KARL speci�cation�

Although the KARL speci�cation does not follow the task description for the
retraction heuristic� and instead speci�es a rather more elaborate revision step� the
encoding of the process history through the knowledge role design�states is clearly
su�cient to specify chronological backtracking� The use of an explicit history is
an improvement over the previous KARL speci�cation which only represented the
most recent assignment that was made� thus capturing the computational history
only one level deep�

The situation concerning non�determinism in KARL is rather curious� The
prescribed task description is underspeci�ed in the selection step �since multiple
candidates may remain after the selection step�� Various languages �e�g� DESIRE
or �ML���� choose to preserve this non�determinism in their speci�cation� and leave
it to the execution environment or to the implementor to make whatever choice is
most convenient� KARL on the other hand removes the non�determinism from the
speci�cation altogether by specifying that remaining candidates are selected on the
basis of the alphabetic ordering of their identi�ers� The discussion section in the
KARL paper indicates that this rather arbitrary choice could have been avoided by
pursuing all alternative candidates simultaneously� but this would again have lead
to a deterministic speci�cation �albeit a di�erent one�� It is unclear why a genuine
non�determinism �through underspeci�cation� would be impossible in KARL�

DESIRE As before in �ML��� AIDE and KARL� DESIRE speci�es the heuristic
knowledge in the body of the inference steps �p� ����� Although no separation is
made between the role of the heuristic knowledge and its contents� the declarative
contents and procedural use of this knowledge are separated� A good example of
this is H�� which declaratively speci�es when an assumption is selected �p� ����� and
only later speci�es how this knowledge should be used procedurally� DESIRE �rst
computes all eliminated assumptions and then applies a closed world assumption
to compute the selected assumptions� The same declarative knowledge could have
been used in entirely di�erent control�regimes�

Concerning the non�determinacy of H�� the same phenomenon happens in DE�

��

SIRE as in AIDE� the speci�cation seems to be genuinely non�deterministic� and
the interpreter for DESIRE makes a speci�c choice�

Reference to the state of the computation �for the bene�t of H�� is possible in
DESIRE by keeping track of �and being able to refer to� the partial models that
have been computed for other theories during the computation� Reference to the
process history �as required by H�� seems to be explicitly encoded in the DESIRE
speci�cation by the module �store�process��

OBJ� The OBJ� speci�cation of the scheduling task strongly separates the role
of a heuristic from its contents �p� ��������� Since OBJ� speci�es no control regime
whatsoever� the issue of separating declarative contents from procedural use does
not arise�

Since no separation between domain and task knowledge is made in OBJ�� no
problem arises in the reference of domain knowledge for the purpose of H��

OBJ� is one of the most extreme examples of how a language without facilities
for referencing process history or state can be made to do so by explicitly encoding
the computational trace of the system� In the OBJ� example this is done through
the data�type DESIGN�TASK on p� ����

MILORD II The analysis of MILORD II in this context is somewhat problem�
atic� since the MILORD II speci�cation is based on a rather di�erent algorithm
from the one used in the other speci�cations� Whereas the other speci�cations use
an algorithm that iteratively assigns an additional activity to a time period� the
MILORD II algorithm simultaneously assigns multiple time intervals to all activities
and proceeds by trying to narrow these assignments to those intervals that satisfy
the requirements� Thus� the MILORD II speci�cation is based on simultaneous
assignment� whereas H�� H� and H� are phrased in terms of iterative assignment�

As a result of this� no explicit candidate generation and selection occurs in
MILORD II� The closest analogous construction is the initial assignment of all
time�periods to all assignments �rules R

��R

	� p� ����� The analogue to H�
�candidate selection� is the strategy that in a con�icting schedule lower bounds
of the possible periods for an activity are increased� instead of the upper bounds
decreased �rules M

��M

�� p� ���������

No separation is made between the role of these heuristics and their actual
contents� and between contents and use�

The process state is available in the MILORD II speci�cation because truth�
assignments are used to capture the assignments of time�slots to activities and
MILORD II can explicitly reason about truth�assignments� The predicateK�a� �t�� t���
represents the fact that the time�slots in the interval �t�� t�� are still considered
possible for activity a� and because only lower�bounds are adapted� and are only
increased� this encodes the fact that in the process history all time�intervals before

��

t� have already been considered and found inadequate for a� The �most recent
assumption withdrawal� heuristic is irrelevant because of MILORD�s simultaneous
assignment strategy� The order in which di�erent alternatives are being explored
is declaratively unspeci�ed� and is determined by the procedural implementation
of MILORD�s �res� operator�

KbsSF KbsSF successfully exploits its strong parameterization mechanism to
achieve a high degree of separation between the generic role of the various heuristics
�p� �	�� and their speci�c contents �p� �	���	��� and between their declarative
contents and their procedural use�

The non�determinacy of H� is dealt with by the built�in �one�of� operator which
speci�es an unspeci�ed element from a set� Thus� as with other languages above�
KbsSF leaves the behaviour partially unspeci�ed where this behaviour is not im�
portant for the desired behaviour of the system�

KbsSF contains a notion of variables and assignment� These variables can
capture the process state to a degree su�cient for expressing H�� Reference to
the process history �required by H�� is more problematic� and is implicit in the
execution of the design task� As pointed out by the authors� explication of such
knowledge would require the full encoding of process states �in the same vein as in
OBJ� above��

��� Conclusions of the comparison on modeling the heuris�
tics

From the above� we can distill the following general points�

� All languages allow a separation of existence of heuristic from actual con�
tents� although not all example speci�cations actually exploit this to the
fullest potential� Although such separation is strictly speaking possible in all
languages� some languages seem to encourage this more than others� This
might be explained by the di�erent conceptual models that underlie some
of the languages� because some of these conceptual models strongly advo�
cate such separations� Thus� the underlying conceptual models rather than
the syntactic constructions of the languages themselves can account for this
di�erence�

� Not all languages allow separation of declarative contents from procedural
use�

� All languages allow reference from control heuristics to domain knowledge�
but in varying degrees of indirectness�genericity�

��

� Some languages have built�in facilities for reference to process state and�or
reference to process history� other languages require this to be encoded by the
speci�er of a particular task�

� Most but not all languages seem to be able to deal with underspeci�ed �non�
deterministic� behaviour in the speci�cation� and leave it either to the imple�
mentor of the speci�cation or to the interpreter for the language to resolve
the non�determinacy one way or the other�

� Di�erences between the languages

�Jacek Malec�

In this section we will focus on di�erences between the languages with respect
to the following comparison criteria�

� Expressive power�

� Adequacy to specify the dynamic aspects of the reasoning pattern �abbrevi�
ated as �speci�cation of control���

� Possibility to specify multi�level architectures adequately�

��� Expressive power

The task of judging the expressive power of a given language has to be done relative
to some reference language� as there exists no objective measure of expressiveness
of a language� In the context of specifying reasoning patterns one has to remember
that the main issue is to analyze the language�s ability to express some reasoning
pattern rather than the domain knowledge this reasoning pattern is used for� On
the other hand� if a speci�cation formalism were able to express complex reasoning
tasks but only for conceptually poor domains� then probably it would not be judged
as useful nor even interesting�

So the analysis of the systems presented at the workshop will be done both
in terms of the expressive power of their domain�knowledge language and the
ability of specifying �complex� reasoning tasks consisting of appropriate manip�
ulations �either syntactical or semantical� on the domain�language items� The
obvious reference language immediately coming to mind is the language of the
�rst order predicate calculus �FOL�� It is usually seen as the standard language
for expressing knowledge about some domain� It is also the standard language of
meta�mathematics� in this case able to express �on the meta�level� some piece of
reasoning performed on the object level�

�	

Another question that has to be answered after choosing the reference language�
but before making the comparison itself is� What is the procedure of comparing the
expressive power of two given languages� At least two distinct forms of comparison
are conceivable� On the �rst level one compares the expressiveness by checking
whether all the theories expressible in one language can be expressed in the second�
This corresponds to the approach advocated by ���� In the case when two languages
have the same expressive power in the abovementioned sense one can ask the ques�
tion of economy or e�ciency of representation� i�e� in which of the languages the
description of a given theory is shorter �more concise� modular� more readable�
etc��� To be able to answer this question� one obviously has to provide some mea�
sure of this economy of representation� However� such concepts as �readability� or
�modularity� are quite hard to be stated in a quantitative way�

Throughout the following section we have tried to adhere to the �rst under�
standing of the comparison� i�e� we are interested whether the sets of theories and
reasoning patterns expressible in the compared languages are equal or not� How�
ever� this comparison has not been done in any formal way � such formal analysis
is still a challenging open problem� The following should rather be seen as an initial
e�ort towards providing guidelines for such formal comparison� In other words� the
conclusions drawn have the status of disprovable conjectures rather than theorems�
and re�ect the intuitions of the author of this section�

Assuming that the scale from FOL to its standard extensions �modal� temporal�
etc�� is taken as reference� we can partially order �with respect to their expressive
power� the languages presented during the workshop� Such ordering should be
done taking into account di�erent aspects of reasoning process� as illustrated by
the three bottom layers of the KADS architecture� i�e� the domain layer �for coding
domain knowledge�� the inference layer �for expressing inference rules� and the
task layer �for specifying the reasoning pattern itself�� There is a risk that such
strict layering of comparison might appear incompatible with some intended way
of using a speci�cation language �this is actually the case for OBJ� on one hand�
where there is no discrimination of layers of speci�cation at all� and for DESIRE�
MC� and MILORD II on the other hand� where layering� or rather interconnection
between modules� can be much more complex and moreover speci�ed by the user��
For the purpose of comparing expressive power of the presented systems we will
analyze the domain level language used in each of them� �exibility of speci�cation
of reasoning patterns� and �nally the control �or task� knowledge expressiveness�
The discussion of layering aspects is deferred to the later section� Moreover� the
reader is asked to bear in mind that the conclusions drawn here are �partial views�
of the problem� strongly depending on the assumed criteria�

The relative ordering of the eight speci�cation systems is presented in the fol�
lowing three diagrams�

Diagram �� Domain knowledge expressiveness

��

FOL

������������������������������������

�ML���

MC

AIDE

KARL

DESIRE

� � � � � � � � � � � � � � � � � � �

K��bs�SF

OBJ�

� � � � � � � � � � � � � � � � � � �

MILORD II

Diagram � presents a relative ordering �or rather positioning� of the systems
with respect to the expressive power of domain languages� Beginning with the com�
monalities� the �rst observation is that the presented languages either are equally
or more expressive than FOL� with the exception of AIDE and KARL�� so this
property is not very distinctive in this context� When analyzing the economy of
representation one can notice that all the systems except MILORD II use sorted
languages� Another observation is that some systems explicitly support some form
of modularization of theories and introduce operations on theories into their reper�
toire of accessible tools� As this topic is discussed later� we present here only a short
list of features� �ML�� o�ers union of theories� KbsSF o�ers a more extensive set of
operations on theories� MILORD II and DESIRE introduce connectable modules
corresponding to separate theories� and MC o�ers the ability to connect theories
themselves �via bridge rules��

Although AIDE is classi�ed as less expressive than other systems �because only
a subset of FOL is supported�� it o�ers the advantage of using semantic networks
as a knowledge representation tool� The syntactic form of KARL�s domain rep�
resentation language is also a restricted form of FOL� but the authors claim that
KARL�s expressive power is increased due to the constructs introduced into the
language�

�MC�� o�ers full �rst order logic� The possibility of extensions towards inten�
sional �modal� temporal� etc�� logics is only mentioned� DESIRE on the other hand
o�ers the three�valued �rst order logic as the domain language� However� comparing
the �theory expressiveness�� three�valued FOL is equal to standard FOL because
each theory in the former language can be syntactically transformed into an appro�
priate theory in the latter� So the advantage of using DESIRE is noticeable on the
�economy of representation� level�

�The recent improvements of KARL have changed its properties
 expressiveness included�
However
 the comparison made here refers to the systems as presented during the workshop�

�

A couple of languages �OBJ� and KbsSF� incorporate algebraic speci�cation
techniques and therefore is separated in the diagram� OBJ� has been put in the
middle of the spectrum� because a direct comparison of expressive power of FOL
and of this algebraic speci�cation language is impossible� Some constructs easily
representable in OBJ� have to be laboriously written down in FOL �say� arithmetics
or elementary set theory�� On the other hand the algebraic form of the speci�cation
excludes e�g� advantages of unrestricted use of negation� As KbsSF o�ers both FOL
and the tools of algebraic speci�cation� it has been put towards the right of the
diagram�

MILORD II is using multi�valued propositional logic for expressing the domain
knowledge� It has been positioned at the level of FOL to express an �unproven�
conjecture that the lack of �rst order constructs is compensated by multi�valuedness
of the logic� However the ultimate ranking of MILORD II�s object language may
depend on the kind of domain knowledge one wants to deal with� Both kinds of
domains �i�e� those requiring a �rst order language� and those requiring a truth
scale more �ne�grained than just
 and �� are easily imaginable� so we are not able
to give any �nal conclusion here and hence MILORD II forms a separate entry in
the diagram�

We can conclude this part by observing that expressiveness of the domain lan�
guage is a non�discriminating criterion of comparison �cf� Diagram �� as expressive�
ness of all the presented formalisms lays close to standard FOL� The real di�erences
between the languages begin to appear in the inference�related parts of speci�ca�
tion� i�e� in the form the meta� �or inference� knowledge is represented and used�

��

Diagram �� Flexibility of speci�cation of the meta�level rea�
soning

fixed structure flexible

��

�ML���

MC

AIDE

KARL

DESIRE

MILORD II

K��bs�SF

It can be argued that meta�level constructs increase the expressiveness of the
domain language� On one hand this is the case� because the reasoning at the
meta�level can extend the user�s possibilities of asserting facts �e�g� by introducing
assumptions into object�level theory�� On the other hand� from the domain knowl�

edge level point of view those meta�level�introduced facts have the same status as
others � they are distinguishable only from the point of view of meta�level� where
some contexts �or modules� or theories� have the status of hypotheses� and others
of solid�fact�based theories� Therefore the analysis of expressiveness of the spec�
i�cation of reasoning pattern has to be separated from the issues related to the
domain level language�

On one end of the spectrum we have AIDE with �xed� global structure of spec�
i�cation� The next group consists of �ML�� and KARL� where there also exist only
three �domain� inference� and task� layers of description of reasoning pattern� In
contrast to AIDE� however� those formalisms provide some tools for modulariza�
tion and hierarchization� so that applicability of inferences can be limited to speci�c
parts �subtheories� of the domain knowledge�

KbsSF is a two�level system� but due to the �exibility of con�gurations of its
BModules it is a bit closer to the �exible side of the diagram� The same observa�
tion can be made about MILORD II� Although the set of allowed interactions in
MILORD II is limited to object�object type only� and the meta�knowledge is local
within each module� the user is still able to express more complex dependencies by
imposing appropriate hierarchy of modules importing facts from other modules�

On the other end of the spectrum we have formalisms allowing arbitrary inter�
connections between reasoning modules� therefore o�ering the greatest degree of
�exibility in speci�cation� Both languages provide tools for interconnecting reason�
ing modules �bridge rules in MC� named forms of interactions in DESIRE�� The
basic advantage of this group of formalisms is that one can specify not only the sin�
gle meta�level with the set of all possible inferences� but arbitrarily many of them�

��

what allows for easy modeling of complex reasoning patterns� with dependencies
spanning across a couple of meta�object relationships�

The issues related to the object�meta dependencies and to the degree of con�g�
urability of the speci�cation modules are discussed in more detail in sections ���
and ����

Diagram �� Control �task� knowledge expressiveness

none partial total

���

�ML���

MC

AIDE

KARL

DESIRE

OBJ�

MILORD II

K��bs�SF

The biggest di�erences between languages are noticeable on the level of actual
reasoning speci�cation �understood as imposing some form of control over usage of
existing inference rules�modules�� The spectrum begins with MC system� where no
information can be provided about the intended sequencing of usage of inference
rules except via the meta�level speci�cation� On one hand this gives the user the
total freedom in specifying arbitrary problems� moreover in purely declarative way�
On the other hand� the system�s ability to solve a problem depends ultimately on
user�s skills in using the system and its supporting tools �such as GETFOL��

Another language o�ering no explicit way of a�ecting reasoning is OBJ�� Sim�
ilarly to MC� the user is expected to provide a declarative speci�cation of the
reasoning patterns and the rest is left to the rewriting system interpreting the
speci�cation� Of course� as it is often the case with symbol manipulating programs�
there exists a way of in�uencing the behavior of the system� namely by appropriate
sequencing the formulae in the speci�cation itself� However it can hardly be seen
as a proper way of specifying the functioning of some reasoning pattern�

The next system in the diagram is MILORD II� In this case the speci�cation
of reasoning is done locally in each module by providing appropriate Horn�like
rules at the meta�level of the module� The ordering of these rules is important�
i�e� it in�uences the ordering of inferences performed at the object level� The
actual speci�cation of the reasoning pattern is done by imposing a hierarchy of
dependencies between the modules� This hierarchy is built by using generic modules
facility and module combination and re�nement�

Another system providing declarative control locally for each module is DE�
SIRE� Within a module� the situation is very similar to the previous one� the

��

sequence of inferences can be controlled by providing a declarative representation
in the form of meta�rules� Then the process of downward re�ection provides the
control for object�level inferences� What make DESIRE di�erent form MILORD II
are the explicit supervision rules declaratively specifying the �ow of control between
di�erent modules� Another di�erence is that in DESIRE the meta�level knowledge
resides in another �meta��module� whereas in MILORD II it is given in the same
module�

AIDE is equipped with a rule�based language �resembling PROLOG� specify�
ing the control �ow between di�erent inference actions� Sequencing of rules is an
important factor in�uencing the way inferences are performed�

KbsSF is a system equipped with a procedural language for specifying ordering
of application of inference actions� This language includes such constructs as as�
signment� iteration� call and non�deterministic choice operator� So the user is able
to control the behavior of the system in an explicit way� but the language itself�
due to its procedural character� lacks a declarative semantics and therefore cannot
be treated as a speci�cation per se�

KARL is another system which provides the user with a procedural language
for speci�cation of control �ow� Its set of constructs resembles the one of KbsSF�
it contains loops� branches� sequence operator and subtasking facility� Recently�
after the workshop� the language has been assigned a declarative semantics based
on dynamic logic�

�ML�� is the system o�ering the facilities of a procedural language for control
�ow speci�cation �assignment� sequence and choice operators� non�deterministic
iteration and test�� Although simple� it appears su�cient to specify complex com�
binations of inferences� and on the other hand possesses a fully declarative semantics
�as in the case of KARL� dynamic logic is used for this purpose��

��� Global vs� local layering of speci�cation

One very important characteristic of the discussed languages is their support for
introducing layering into a speci�cation� Comparing them with respect to this
aspect one can distinguish two groups of languages� The �rst one� in�uenced or
motivated by the KADS methodology� supports or even forces global layering of a
speci�cation� This group consists of �ML��� AIDE� KARL and KbsSF� The other
group� consisting of DESIRE� MILORD II and MC� supports speci�cations in the
form of a set of interconnected reasoning modules� where each module is treated
as an independent unit� In case of MILORD II each module has its own object
and meta�level� in case of DESIRE and MC the meta�level for some object module
has to be speci�ed in another module� This second approach obviously entails
the �rst one because one can impose a rigid global layering when using languages
belonging to this group� OBJ� is somewhat outside this classi�cation as it imposes
no assumptions at all about the architecture of a speci�cation�

�

The languages assuming global layering of a knowledge based system allow for
further introduction of some hierarchy within the system� but it can be done only
within a global layer� For example� in KARL we have the possibility of composing
simple inferences into more complex ones� which are treated further on in the same
way as primitive ones� There is also a mechanism �knowledge roles� allowing to
restrict the applicability of an inference rule to some �sub�theory �some part of
the domain knowledge base�� thus introducing a kind of localization of reasoning�
However� this limitation of the scope of reasoning patterns is secondary� the user
is allowed to exploit it but not forced to do it� KbsSF also supports the global
strati�cation by supporting two kinds of modules corresponding directly to the
task and inference �BModules�� and domain �DModules� layers of KADS�

The systems assuming the structure consisting of a set of interacting but inde�
pendent modules di�er in their mechanisms for supporting global speci�cation of
control� In case of MC the user is free to do anything including introduction of a
global context governing the reasoning performed within local contexts �this has
been the case in the example task�� DESIRE names the possible interactions be�
tween modules� thus supporting some kind of global division into domain and meta
layers� However� the user is free to introduce any kind of possible interaction so
the resulting structure may appear to be totally �at �all modules on the same level�
with no interactions of the type meta�object or object�meta� or purely hierarchical
�where each interaction is of the type object�meta�� MILORD II limits interactions
between modules to object�object only� thus forcing purely local application of the
meta�knowledge�

��� Interactions between modules�theories

Another aspect di�erentiating the languages is their support for modularization
of knowledge� As before� one can distinguish two major classes of systems� �rst
strongly encouraging the user to encapsulate the �local� knowledge in modules
and to explicitly state the interactions between the modules� and second limiting
themselves to providing constructs for such modularization� but not forcing the
user to exploit them�

The �rst group consists of MC� DESIRE� MILORD II� KARL� �ML�� and
KbsSF� Using MC system one is forced to explicitly state all interactions between
contexts in the form of bridge rules� In the case of DESIRE the user has to provide
explicit speci�cation of input�output interface between modules �both at the same
level or at di�erent levels of reasoning�� MILORD II and KbsSF also require such
import�export interface speci�cation� although in case of MILORD II it is limited
to the interaction between object levels �this is due to the overall control mecha�
nism in MILORD II� where passing control to an from a module has to be done via
import�export interface of the object level�� In KARL modules are not transparent
�i�e� accessible from outside� unless when explicitly stated� One can obviously use

��

in each case one big module for specifying a problem� but it would be unreasonable
provided the tools each system is equipped with� In �ML�� there exists a tool for
�domain knowledge� modularization� namely the concept of union of sub�theories�
but it is not a must� rather an add�on� However� on the higher levels �ML�� is also
enforcing the user to think in terms of module�like entities�

The second group of systems consists of AIDE and OBJ�� Neither AIDE nor
OBJ� provide any explicit modularization tools� Everything is in the hands of
a user who might or might not be able to introduce a reasonable modularization
of a problem� One might object that neither the �rst class of system forces the
user to extensively exploit modularization� and s�he would obviously be right� On
the other hand� the manner of presentation of those systems stresses the idea of
interacting modules whereas in the case of the latter group such possibility exists
only potentially�

� Commonalities and open problems

�Jan Treur�

In this section we identify what characteristics are in common for a majority of
the current languages and what open problems are felt that should be solved in the
�near� future�

��� Commonalities between the languages

In the previous section it was pointed out on what aspects the eight speci�cation
languages di�er� Stressing these di�erences� it may seem that currently there is no
common view on the characteristics of a formal speci�cation language for complex
reasoning systems� However� during the workshop it turned out that there is a
number of important common characteristics the majority of the designers of these
languages aim at� The following list of required characteristics was created�

�� Modeling a complex reasoning system according to a composed structure�

�� Local declarativeness�

�� Multi�level view on the speci�cation�

	� Distinct speci�cation of static aspects and dynamic aspects�

�� Distinction between generic and domain�speci�c parts of the speci�cation�

� The use of object�meta distinctions in the speci�cations�

�� High level speci�cation�

In this section we will discuss these characteristics�

��

�� Modeling a complex reasoning system according to a composed struc�
ture

A very general principle in �conventional� speci�cation languages is that the overall
speci�cation is composed of more basic building blocks �modules�� In our more
speci�c case of speci�cation of �complex� reasoning systems this can be worked
out as a modularization of both the knowledge and of the reasoning pattern in
terms of interactions between more local reasoning processes within each of the
modules� Usually this modularization can be �and is� used to describe the task
decomposition of a reasoning task� Points of attention are� to what extent the
knowledge in the building blocks is speci�ed in a declarative manner� how process
aspects are speci�ed� and what types of relations are possible between the building
blocks�

AIDE Here the strategic knowledge is structured according to basic building
blocks called tasks� adopted �and generalized� from Clancey�s NEOMYCIN ap�
proach� They are speci�ed by a �local� knowledge base mainly in a procedural
form and they have mutual relations that are de�ned in a procedural manner�
Process aspects are speci�ed in the building blocks�

DESIRE Here basic building blocks are reasoning modules� They are speci�ed
by a declarative knowledge base� A number of relations between them are possible�
union�like relations as well as relations of object�meta type� Some of the process
aspects are speci�ed in the building blocks themselves� �meta��information on what
target sets and targets can be used� and what inputs are requestable� For other
process aspects �and speci�c control knowledge about them� separate modules can
be de�ned that have an object�meta relation with the module�s� they are about�

KARL In KARL basic building blocks are inference actions �adopted fromKADS��
The task decomposition can be modeled hierarchically� according to a number of
levels of abstraction� They are speci�ed by a declarative knowledge base and can
be related in a union�like manner� Process aspects are not speci�ed in the building
blocks themselves �global process aspects are speci�ed in the task layer��

KbsSF Basic building blocks are of two types� distinguished according to whether
they specify data and knowledge �DModules� or behaviour �BModules� using the
knowledge from the DModules�� The DModules are speci�ed by a declarative
knowledge base and in BModules related by a number of union�like operations�
also more procedural and inference�based relations are possible�

MC Basic building blocks are contexts that are de�ned by a �sub�language and
a declarative knowledge base �called theory� containing knowledge relevant to the

��

context� Contexts can be related according to bridge rules� a very general notion
that can be used to specify in a declarative�like style inference rules involving more
than one context� As examples of the use of bridging rules one can specify a union�
like combination of contexts� or a speci�c object�meta relation between contexts�
Process aspects are not speci�ed�

�ML�� Basic building blocks in the �rst place are primitive inference actions
known from KADS �formerly called knowledge sources�� in �ML�� they are speci�ed
by declarative knowledge bases �called theories�� that may be speci�ed according
to a further modularization� They can be combined according to a union operator�
Process aspects are not speci�ed in the building blocks themselves �global process
aspects are speci�ed in the task layer��

MILORD II Basic building blocks are modules that are speci�ed by both �declar�
ative� object�level knowledge and control knowledge �Modeling process aspects��
They are related by union�like operations �via import and export�� Also hierarchi�
cal decomposition of modules can be described�

OBJ� Here basic building blocks are inherited from the notion of module in
algebraic speci�cation languages� Basically modules are de�ned by sets of equations
expressing the relevant knowledge in a declarative� algebraic manner� and modules
are related by a union�like operation� Process aspects are encoded in the equations
as well�

Notice that the model of the reasoning task presented in the Example Reasoning
Task Description ��� was based on the technique of task decomposition� a technique
that is very familiar in knowledge analysis �for instance� one of the corner stones
of KADS�� This enabled the authors to use the possibilities for modularization
provided by their languages�

�� Local declarativeness

From the previous point it has become clear that in almost all cases locally �in a
basic building block� the knowledge can be described in a declarative manner� The
view that a complex reasoning system should be speci�ed according to local declar�
ative knowledge bases is shared by all authors� Most languages already adequately
support this view �see point ���� In all these cases the system can be viewed as a
collection of local theories that are turned into action in alternation�

However� if it comes to the point of how these theories interact with �relate to�
each other� the approaches di�er� In fact to give an overall semantics relating them
is felt as one of the major open problems �see Section 	���� Some approaches only
allow a union�like relation between the theories� whereas others �DESIRE� �ML���

�	

MC� MILORD II� allow object�meta relations as well� Other di�erences occur at
the point of specifying control knowledge locally� In AIDE� DESIRE and MILORD
II this is possible� in AIDE in a procedural form� in DESIRE and MILORD II
in a declarative form �here downward re�ection is used to transform declarative
conclusions into the intended actions��

A discussion on declarative semantics for control knowledge can be found in 	�
below�

�� Multi�level view on the speci�cation

The languages DESIRE� �ML��� KARL� KbsSF are very similar in the manner
in which they provide explicit language constructs to distinguish a global level
description from the local level descriptions� By only looking at these global level
speci�cations enable the speci�er can get an overall view of the system� This
distinction is similar to the distinction between domain layer and the higher layers
�inference� task and strategic layer� in KADS� Using global level language constructs
the basic building blocks can be used �by name� as objects� and �global� relations
between them can be speci�ed� this speci�es the possibilities for global data �ow
between the components� Using the global level language the strategic or task
knowledge �describing the global control �ow� can also be speci�ed �to be discussed
in point 	���

In MC language elements can be used to refer to �global� basic building blocks
�contexts�� but here the levels are not separated� They occur in an integrated
manner� the global language elements occur �integrated with local level elements�
in the bridging rules� Also in AIDE� MILORD II and OBJ�� local and global
elements occur in an integrated manner�

	� Distinct speci�cation of static aspects and dynamic aspects

In almost all languages it is possible to specify knowledge about �control of� the
reasoning process state and behaviour in some explicit� separate form� Exceptions
are MC �where control comes from the user� and OBJ� �where control is encoded
in an integrated manner in the equational knowledge��

In AIDE a control layer is speci�ed that integrates both local and global process
elements� The language has a procedural character� In DESIRE� �ML��� KARL�
MILORD II and KbsSF a global task structure can be speci�ed explicitly �at the
global level as discussed in point ���� The languages that are used di�er� For �ML��

dynamic logic is used� for KARL� KbsSF and MILORD II a procedural language is
used for the control at the global level� In DESIRE a declarative if�then format is
used� with an additional interpretation of the conclusions by means of downward
re�ection� Knowledge on local process aspects can be locally speci�ed in an ex�
plicit declarative manner in MILORD II and DESIRE� with a similar additional

��

interpretation of the conclusions by means of downward re�ection�
As already mentioned in point � above� it is possible to specify control knowledge

in a declarative form �see some of the approaches� e�g�� DESIRE and MILORD II��
However� the intended e�ect of conclusions about control is that some �procedural�
actions should be undertaken �turning the words into the actions�� These e�ec�
tuations fall beyond the immediate declarativeness� one could say� On the other
hand� meta�level architectures provide a standard possibility for such e�ects� there
the notion of downward re�ection is used to transform declarative conclusions into
the intended actions� This can be given a formal declarative semantics� if temporal
aspects are taken into account explicitly �see ������ Another approach to obtain
declarativeness for the control knowledge is based on dynamic logic� The paper on
�ML�� shows this approach� recently also for KARL this dynamic logic approach
was adopted�

� Distinction between generic and domain�speci�c parts of the speci��
cation

This point concerns the separation of a generic part of the speci�cation �generic task
model or task�speci�c architecture� that can be reused in other domains� Many of
the languages show possibilities for this option� DESIRE� KARL� KbsSF� MILORD
II� �ML��� OBJ�� In KADS�related languages such as �ML�� and KARL� the sep�
aration between speci�c and generic elements in a speci�cation coincides with the
distinction between domain layer and inference �and task� layer� As generic task
models �or interpretation models� in terms of KADS�� and libraries of them play a
prominent role in knowledge analysis� there is much agreement that a speci�cation
language should support this notion�

�� The use of object�meta distinctions in the speci�cations

At least four of the speci�cation languages use some form of distinction between
object�level and meta�level information and knowledge� So� viewed globally this
is a common point� However� the manner in which this distinction is applied
di�ers signi�cantly� In MILORD II in a module both an object�level and meta�level
knowledge base can be included� Re�ection occurs within the module� to control
its reasoning� In MC and DESIRE there can be de�ned object�meta relations
between components of the reasoning system� Re�ection occurs as a speci�c type
of interaction between components� In DESIRE and �ML�� �and� to a certain extent
KARL� the global level is de�ned by means of a �global� meta�language with respect
to the languages of the object�level� In DESIRE re�ection is used to link global
control with local inferences� In �ML�� the inference and task layer serve as a kind
of meta�interpreter for the domain layer�

�

�� High level speci�cation

Many of the languages aim at a speci�cation that gives a high�level description
of the reasoning system and its behaviour� not messed up with implementation
details� It is� however� hard to give a clear de�nition of the term �high�level��
Some authors claim their language is able to specify �knowledge level models�� but
the precise meaning of the term �knowledge level� is unclear� We will not try to
give a decisive contribution to the discussion about the meaning of these terms�
A related point of discussion is whether a distinction should be made between a
speci�cation of a knowledge model and a speci�cation of the system �including all
behavioural aspects as well��

For practical use of the speci�cation languages� these points of discussion have
some relevance� For instance� is it useful to have separate documents with the
outcomes of knowledge analysis and of design� respectively� Can both be formally
speci�ed adequately� How do these documents relate� Is it possible to have one
document specifying in detail a design for a reasoning system �including its be�
haviour� that can be an adequate basis for implementation in di�erent available
implementation environments �e�g�� C��� PROLOG� LISP�SCHEME� a given
Expert System Shell��

��� Major open problems

The following important open problems can be recognized� They can be considered
a research agenda for the area of formal speci�cation of complex reasoning systems�

�� The lack of overall semantics of a system composed of components that each
have their own �component�wise� semantics�

� types of interactions between components�

� declarative semantics and procedural semantics�

� the use of a distinguished component for global control �supervisor� task
layer��

Recent approaches to this open problem are based on dynamic logic ��ML���
currently also KARL� or on a combination of dynamic and temporal semantics
�DESIRE��

�� How to describe dynamic reasoning patterns in an adequate manner�

� dynamic introduction and retraction of assumptions�

� standard built�in possibilities for updating and revision of information�

��

� identi�cation of types of strategic knowledge to control more sophis�
ticated updating and revision processes �in relation to overall search
strategies used��

�� How to integrate formal speci�cation of reasoning systems in a conventional
software engineering environment�

In KARL components speci�ed using Structured Analysis techniques can be
integrated� In KbsSF and OBJ� conventional algebraic speci�cations can be
integrated easily� In DESIRE interfaces to conventional speci�cations can be
speci�ed in what are called conventional modules�

	� Formal mappings between the di�erent speci�cation languages in order to
make a more formal comparison�

In a research project that will start in ���� such a mapping will be investigated
for �ML�� and DESIRE�

�� How to deal with a dynamic �external� environment where actions can be
carried out� and where unexpected events can occur�

Here the notion of state and �non�conservative� state transition may become
important� DESIRE uses such a notion in an integrated manner� Also in
�ML�� a notion of state has been introduced�

	 Conclusions

In this paper the state of the art of the area of formal speci�cation languages for
complex reasoning systems has been discussed and compared� Central issues in this
�eld have been identi�ed� It turns out that besides a number of di�erences between
the current languages also there is consensus among a majority of the researchers
about the following�

� Modeling a complex reasoning system according to a composed structure�

� Local declarativeness�

� Multi�level view on the speci�cation�

� Distinct speci�cation of static aspects and dynamic aspects�

� Distinction between generic and domain�speci�c parts of the speci�cation�

� The use of object�meta distinctions in the speci�cations�

� High level speci�cation�

��

Among the research issues for the near future is the question how to obtain an ade�
quate overall formal semantics for these languages where both the static �data and
knowledge� and dynamic �behaviour� aspects are covered in an integrated manner�
Currently elements from dynamic logic� dynamic semantics and temporal logic are
investigated to obtain such semantics�

References

��� J� Angele� D� Fensel� and R� Studer� Formalizing and operationalizing models
of expertize with KARL� Technical report� Institut f�ur Angewandte Informatik
und Formale Beschreibungsverfahren� �����

��� F� Baader� A formal de�nition of the expressive power of knowledge represen�
tation languages� Research Report RR��
�
�� DFKI� ���
� Short version in
Proc� ECAI��
� Stockholm�

��� J� R� Balder� F� van Harmelen� and M� Aben� A KADS��ML�� model of a
scheduling task� In Treur and Wetter ����� �This volume��

�	� E� Giunchiglia� P� Traverso� and F� Giunchiglia� Multi�context systems as a
speci�cation framework for complex reasoning systems� In Treur and Wetter
����� �This volume��

��� F� van Harmelen and J� R� Balder� �ML��� A formal language for KADS model
of expertise� Knowledge Acquisition Journal� 	���� �����

�
� G� Kassel and C� Gr�eboval� How AIDE succeeds in an example design task�
In Treur and Wetter ����� �This volume��

��� D� Landes� D� Fensel� and J� Angele� Formalizing and operationalizing a design
task with KARL� In Treur and Wetter ����� �This volume��

��� I� A� van Langevelde� A� W� Philipsen� and J� Treur� An example reasoning
task description� In Treur and Wetter ����� �This volume��

��� I� A� van Langevelde� A� W� Philipsen� and J� Treur� A compositional archi�
tecture for simple design formally speci�ed in DESIRE� In Treur and Wetter
����� �This volume��

��
� A� T� Nakagawa� T� Sakakihara� and K� Futatsugi� Algebraic speci�cation of
reasoning systems� In Treur and Wetter ����� �This volume��

���� C� Sierra and L� Godo� Specifying simple scheduling tasks in a re�ective and
modular architecture� In Treur and Wetter ����� �This volume��

��

���� J� Treur� Towards dynamic and temporal semantics for meta�level architec�
tures� Technical Report IR����� Vrije Universiteit Amsterdam� Department of
Mathematics and Computer Science� �����

���� J� Treur and Th� Wetter� editors� Formal Speci�cation of Complex Reasoning

Systems� Ellis Horwood� ����� �This volume��

��	� L� in�t Veld� W� Jonker� and J� W� Spee� Speci�cation of complex reasoning
tasks in KBSSF� In Treur and Wetter ����� �This volume��

�

