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Abstract. One of the main advantages of using semantically annotated
data is that machines can reason on it, deriving implicit knowledge from
explicit information. In this context, materializing every possible im-
plicit derivation from a given input can be computationally expensive,
especially when considering large data volumes.
Most of the solutions that address this problem rely on the assumption
that the information is static, i.e., that it does not change, or changes very
infrequently. However, the Web is extremely dynamic: online newspapers,
blogs, social networks, etc., are frequently changed so that outdated in-
formation is removed and replaced with fresh data. This demands for a
materialization that is not only scalable, but also reactive to changes.
In this paper, we consider the problem of incremental materialization,
that is, how to update the materialized derivations when new data is
added or removed. To this purpose, we consider the ρdf RDFS frag-
ment [12], and present a parallel system that implements a number of al-
gorithms to quickly recalculate the derivation. In case new data is added,
our system uses a parallel version of the well-known semi-naive evaluation
of Datalog. In case of removals, we have implemented two algorithms,
one based on previous theoretical work, and another one that is more
efficient since it does not require a complete scan of the input.
We have evaluated the performance using a prototype system called
DynamiTE , which organizes the knowledge bases with a number of in-
dices to facilitate the query process and exploits parallelism to improve
the performance. The results show that our methods are indeed capa-
ble to recalculate the derivation in a short time, opening the door to
reasoning on much more dynamic data than is currently possible.

1 Introduction

One of the main advantages of using semantically annotated data is that ma-
chines can reason on it, deriving new, implicit, knowledge from existing infor-
mation. To this end, several systems have been developed over the last few years
to make all possible conclusions from a given input explicit, so that no reasoning
is needed when the user queries the knowledge base.

This task, also called materialization, can be computationally expensive, es-
pecially if the input is large. In fact, while some of these systems can perform



the materialization of several billions of statements [10, 16, 20], they still demand
for significant computational resources, and the process may require up to a few
days to complete. Because of this, most of these systems work under the as-
sumption that the input data is static, i.e., that it does not change, or changes
very infrequently. This assumption does not match with the current Web, which
is extremely dynamic: online newspapers, blogs, social networks, are frequently
changed and updated. This demands for a materialization process that is not
only scalable, but also reactive to changes, by reducing the cost of updating
the materialization. A new research area, called stream reasoning, has recently
emerged to address this specific problem [4].

With this paper, we contribute to this area by considering the problem of
incrementally maintaining a large materialized knowledge base in the presence
of frequent changes, using monotonic rule-based reasoning as the method to
derive new information. More specifically, we propose DynamiTE , a parallel
system capable of efficiently generating the complete materialization of large
RDF knowledge bases, and maintaining it after the knowledge base is updated.

We consider two types of updates: (i) the addition of new information, which
requires a re-computation of the materialization to add new derivations, and
(ii) the removal of existing information, which requires the deletion of the ex-
plicit knowledge, and also of all the implicit information that is no longer valid. x
For the addition updates, DynamiTE applies in parallel the well-known Datalog
semi-naive evaluation. For the removal updates, it implements two algorithms:
one that was presented in the literature but only from a theoretical perspec-
tive [11], and another one, which is more efficient since it does not require a
complete scan of the input for every update.

To evaluate the performance of DynamiTE , we consider the minimal RDFS
fragment ρdf [12], which captures the main semantic functionality of RDFS [9]
limiting the materialization accordingly. Furthermore, its ruleset can be ex-
pressed with Datalog [1] and this allows us to reuse its theory to define the
semantics of our process. We designed some experiments to study the behavior
of our system over large amounts of data, trying to understand, from a system
point of view, what are the main factors that drive the performance. The results
show that our system is capable of efficiently computing the materialization of
large knowledge bases up to one billion statements, and can alter them in a
range from hundred of milliseconds to less than two minutes when considering
substantial updates of two hundred thousand triples.

The remaining of this paper is organized as follows: Section 2 contains some
background information to make the reader familiar with the concepts we use
throughout the paper. Next, Section 3 reports an overview of our system while
Sections 4 and 5 focus on the crucial task of the system, i.e., the incremental
maintenance of the materialization. After this, we present an evaluation of our
system in Section 6. Finally, Section 7 discusses related work and Section 8
concludes the paper, also reporting some indications for future research.



2 Background

To describe our system, we use the notions and notations of the Datalog lan-
guage. Because of space constraints, we cannot present a complete overview of
this language. Therefore, we only present some basic concepts that we use in the
paper, and we refer the reader to existing literature, e.g. [1], for more details.

First of all, a Datalog program P is defined as a finite set of rules in the
form R1(w1) ← R2(w2), R3(w3), ..., Rn(wn), where each component Ri(wi) is
called a literal. A literal is composed of a predicate (e.g. Ri) and a tuple of terms
wi := t1, ..., tm. A term ti can be either a variable from a finite domain V or a
constant term from another disjoint finite domain C. We denote with tj ∈ Ri(wi)
the term that appears at the jth position of wi.

We define var(Ri(wi)) as the set of all variables in the literal Ri(wi), and
const(Ri(wi)) as the set of all its constants. The left side of a rule r is called the
head of r (head(r)), while the right side is defined as its body (body(r)). Datalog
imposes that each variable that appears in the head of the rule must also appear
in its body. This means that ∀v ∈ var(R1(w1)) there must be an i ∈ (2..n) so
that v ∈ var(Ri(wi)). Furthermore, Datalog makes a distinction between edb
predicates, which never appear in the head of a rule, and idb predicates, which
appear in the head of some rule.

A literal containing only constants is called a fact. We say that a fact f
instantiates the literal l if they share the same predicate, every ci ∈ const(l)
that appears in l at position i is equal to the corresponding term ti of f , and
if there is a variable v ∈ var(l) which appears in l at two different positions i
and j, then ti = tj in f . We call f1 ← f2, f3, ..., fn an instantiation of a rule
R1(w1) ← R2(w2), R3(w3), ..., Rn(wn) if every fi∈{1..n} is an instantiation of
the corresponding Ri(wi), and that any term tj ∈ fi is equal to another term
tm ∈ fj∈{1..n}∧i6=j if vi ∈ var(Ri(wi)), vj ∈ var(Rj(wj)), and vi = vj .

In Datalog, the operator TP is called the immediate consequence operator of
P . This operator maps a generic database I (defined as a finite set of facts) to
another database TP (I) that contains all facts that are direct consequences for
I and P . A fact f is a direct consequence for I and P if either f ∈ I(R)1 for
some edb predicate R in P or f ← f1, f2, ..., fn is an instantiation of a rule in P
and each fi∈{1..n} ∈ I. Intuitively, TP can be seen as the abstract operator that
applies the rules in P over I to derive new conclusions.

TP is monotonic: given two databases I, I′, if I ⊆ I′, then TP (I) ⊆ TP (I′).
Because of this, repeated executions of the TP operator over augmented versions
of a database I will lead to a fix-point. This means that if we define TnP (I) as

TnP (I) =

{
I n = 0

TP (Tn−1P (I)) n > 0

there is a n′ such that Tn
′+1

P (I) = Tn
′

P (I). In this case, Tn
′

P (I) is named as the
fix-point of TP , and denoted with TωP (I). TωP (I) is the materialization of I, since
it contains all the possible derivations that can be obtained from I and P .

1 The database I(R) contains all and only the facts f ∈ I with predicate R.



Head Body

Ti(A,P,B) ⇐ Te(A,P,B)
Ti(A, SPO, C) ⇐ Ti(A, SPO, B), Ti(B, SPO, C)
Ti(A,P,B) ⇐ Ti(Q, SPO, P ), Ti(A,Q,B)
Ti(A, TYPE, C) ⇐ Ti(B, SCO, C), Ti(A, TYPE, B)
Ti(A, SCO, C) ⇐ Ti(A, SCO, B), Ti(B, SCO, C)
Ti(A, TYPE, D) ⇐ Ti(P, DOMAIN, D), Ti(A,P,B)
Ti(A, TYPE, R) ⇐ Ti(P, RANGE, R), Ti(B,P,A)

Table 1: Supported ruleset. Datalog variables are in italics; constants are in
fixed-width characters. The abbreviations SPO, SCO, TYPE, RANGE and DOMAIN

stand for the URIs rdfs:subProperty, rdfs:subClassOf, rdf:type, rdfs:range, and
rdfs:domain. The first rule is only used to map the edb predicate Te to the idb
predicate Ti that is used in the other rules.

A trivial way to compute TωP (I) is to start from n = 0, execute TP , and
increase n until the fix-point is reached. This approach, known as the naive
evaluation, is very inefficient since, at each iteration, an application of TP will
recompute all the derivations already computed in the previous iterations.

A more efficient algorithm, called semi-naive evaluation [1], optimizes this
process by instantiating a rule r only if at least one fact that instantiates a literal
in body(r) was derived in the previous iteration. In this way, the algorithm is
able to significantly decrease the number of duplicates.

The semi-naive evaluation can be implemented by annotating each fact in
the database with a numeric step that indicates at which stage of the derivation
that information was derived (facts in the original input are marked with a step
of zero). Then, at every nth iteration of the evaluation, the operator Tp accepts
only instantiations if at least one fact that instantiates a literal has a step that
is equal or greater than n − 1. This significantly reduces the number of rules
execution and consequently the number of duplicates that are generated.

3 DynamiTE: System Overview

The purpose of DynamiTE is to efficiently compute and incrementally maintain
the materialization of a database, which consists of RDF triples. We consider the
minimal RDFS fragment ρdf [12], and execute the rules presented in Table 1.

To formalize our problem in Datalog, let P be a program consisting of the
rules in Table 1, and I a given database, which represents the initial RDF knowl-
edge base expressed as a set of Datalog facts Te(s, p, o) where Te is an edb pred-
icate, and s, p, o are respectively the subject, predicate, and object of a RDF
triple that are mapped to constant terms in Datalog.

DynamiTE implements three main tasks: (i) First, it computes the com-
plete materialization of I. Then, it maintains it after a set of triples δ is either
(ii) added, or (iii) removed. More formally, in (i) the system calculates TωP (I),
in (ii), TωP (I ∪ δ), and in (iii) TωP (I \ δ) is computed.



Storage Layer Plain Files Six B-Tree Indices

Compress 
InputSTART Create Indices Full 

Materialization
Copy into 
Indices

If there is an update... Compress 
update

Incremental 
Reasoning END

Fig. 1: DynamiTE : General System Workflow

3.1 System Workflow

Fig. 1 shows the general workflow of DynamiTE . The initial input consists of a
collection of triples encoded with the N-Triples format. First, DynamiTE per-
forms the Compress Input operation, which converts the textual terms into num-
bers using the technique of dictionary encoding. The algorithm used for this
phase is an adaptation of the distributed MapReduce version presented in [17].

The next operation, Create Indices, stores the compressed data into B-Tree
indices (along with the dictionary tables to allow quick decompression). Since the
size of the database can easily become too large to fit in main memory, we need
to consider data structures that can be off-loaded to disk. To this end, we use
six on-disk B-Trees to store all the possible permutations of the input triples.
We chose the B-Tree data structure because we want our system to support
generic querying, and storing six indices has proven to be ideal for SPARQL [14]
querying, allowing an efficient retrieval for all possible atomic queries [21]. As we
will show in the evaluation, the Create Indices operation is the most expensive
of the entire workflow. To reduce its cost, DynamiTE sorts the triples before
insertion (in our tests, this improves the performance by at least 10%).

Next, DynamiTE performs the Full Materialization. We describe this process
in detail in Section 4.1. This operation implements a parallel version of the semi-
naive evaluation, which iteratively reads the entire input and augments it with
new derivations. The B-Trees are not particularly efficient in supporting these
operations. Therefore, during the full materialization, the system writes the new
derivation on plain files, and copies them on the B-Trees in the next operation,
Copy into Indices. According to some tests we performed, using files makes the
entire process at least 30% faster.

At this point, DynamiTE is ready to receive updates (see Fig. 1, bottom). For
each update δ, it first compresses the content of δ, and then performs incremental
reasoning. We describe this last operation in Sections 4 and 5.

3.2 Physical Rules Instantiation

In order to physically instantiate the rules, we make a fundamental distinction
between schema and generic triples. We denote as schema all those triples having
SPO, SCO, DOM, or RANGE as predicate. We call all the others generic triples. The
design and implementation of our algorithm for rules instantiation relies on the



assumption that the number of schema triples in the input is significantly smaller
than the rest, so that all of them (explicit and inferred) will fit in main memory.
This assumption holds for the vast majority of web data [16], but there can be
scenarios where this is no longer true.

First, the system assigns all the rules to three disjoint subsets, named Type 1 ,
Type 2 , and Type 3 , depending on the number and type of their literals. The
assignment criteria for a rule r are defined as follows:

– Type 1. All the literals in r can be instantiated only by schema triples.
– Type 2. The body of r consists of only one literal and can be instantiated by

generic triples.
– Type 3. The body of r contains exactly two literals, one of them can be

instantiated only by schema triples while the other is instantiated by generic
triples.

DynamiTE implements a different rules instantiation strategy depending on
the type of the rules. Rules of Type 1 are instantiated by first loading all schema
triples, i.e., all the triples that can instantiate the literals in body(r), in memory.
Then, in case there is only one literal in body(r) the instantiation becomes trivial
since the system only needs to generate a new triple that instantiates head(r)
and copy the values of the variable in the body to the corresponding position
in the head. If there are multiple literals in the body, then the system must
join the triples having common terms. Consider for example the second rule in
Table 1: its application needs to find all the pairs of triples s, p, o, and s′, p′, o′,
such that p = p′ = SPO and o = s′. The system performs this operation in
memory, computing a hash join between the two sets of triples.

Rules of Type 2 are similar to rules of Type 1 with only one literal in their
body. The only difference is that here the system cannot assume that they fit
into the main memory and thus it needs to retrieve them from the disk.

Rules of Type 3 are the most challenging, since they require a join between
two sets of triples, schema and generic triples, where the second set can be
quite large. In previous work, we tackled this problem proposing a distributed
execution over multiple processing nodes using the MapReduce model and the
Hadoop framework [16]. Schema triples were replicated on every node, and a
hash join was performed against the generic triples that were being read from
the input. While this approach proved to be scalable, it introduced high latency
(due to the usage of Hadoop), which conflicts with our need for reactivity. In
DynamiTE , we re-implemented similar algorithms to replicate the MapReduce
programming model without using a resilient and distributed architecture such
as Hadoop, but instead exploiting the parallelism offered by modern multi-core
hardware to reduce the processing time.

4 Materialization After Data Additions

We distinguish two types of updates, depending on whether the initial database
is empty. In the first case we perform a full materialization, while in the second
an incremental materialization is done.
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Fig. 2: DynamiTE : One iteration of the full materialization. In this figure, there
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Type 3 , RGS1...RGSk.

4.1 Full Materialization

For this task, DynamiTE provides a parallel implementation of the semi-naive
evaluation to exploit the parallelism of modern computer architectures. As we
described in Section 2, the semi-naive evaluation performs multiple iterations,
until it reaches a fix-point. Fig. 2 shows a single iteration in our system. On top
of the figure there is the database, physically stored both on six B-Trees and
on a number of files. During the full materialization, we read the database and
write the derivation only to files, except for the schema triples that are always
being replicated on the B-Trees to improve their retrieval in the next iterations.

First, DynamiTE applies all the rules of Type 1 . This step is shown in the
gray box marked with a “1”. The execution is parallel, with each rule r being
instantiated in a separate thread t. Each thread t retrieves from the B-Trees the
schema triples that instantiate the literals in body(r), joins them, if needed, and
generates the triples that instantiate head(r). Finally, it stores all derivations
both in the B-Trees and on files.

Next, DynamiTE instantiates rules of Type 2 and Type 3 . They require a
complete scan over the input, which can potentially be large. DynamiTE op-
timizes this step by partitioning the input files into smaller blocks, with each
block b being read by a different thread t. First, each thread t applies the rules
of Type 2 on the triples in b. Then, it applies rules of Type 3 , considering both
the original input and the output of the rules of Type 2 . Rules of Type 3 are
instantiated using the MapReduce algorithm outlined in Fig. 2. Notice that,
for executing rules of Type 3 , DynamiTE also accesses the B-Trees for retriev-
ing schema triples. After execution, all the derivations are stored on files, while
schema triples are also replicated in the B-Trees.

As mentioned, DynamiTE implements the semi-naive evaluation, where only
the last derivations are considered during rule execution. To make this possible,
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it marks each triple with a step attribute, representing the step when it was
first derived. For example, at the first iteration all the triples derived by rules of
Type 1 have step one; the derivations from rules of Type 2 are marked with step
two, and so on. After the first iteration, the system accepts a derivation only if
at least one of the triples that instantiate a literal in the body of the rule has a
step greater or equal than the current one minus three.

The algorithm stops iterating the rules instantiation when none of them
derived new triples. As described in the previous section (see Fig. 1), after the
materialization is complete, all the derived triples are copied into the B-Tree
indices for efficient querying.

4.2 Incremental Materialization

The previous section showed how DynamiTE computes the full materialization
of a knowledge base and stores it into B-Tree indices. Now, we show how it
maintains this materialization in the presence of data additions.

Our system performs this operation incrementally, fully exploiting the ex-
isting materialization TωP (I). The process can be divided into three main steps:
(i) Load the update into a set called δ, which is stored in main memory. (ii) Per-
form a semi-naive evaluation on TωP (I) ∪ δ to derive new triples. In this case a
rule is instantiated only if at least one fact is contained in δ. (iii) Add all the
new derivations into the B-Tree indices, making them available for querying.

Fig. 3 shows how the semi-naive evaluation in phase (ii) is implemented in
DynamiTE . Every gray block in Fig. 3 is implemented as shown in Fig. 2 and is
executed in parallel. At every iteration, these blocks consider only rules where
at least one literal in the body can be instantiated from a triple in δ, and might
produce new derivations that become the new δ in the next iteration. Moreover,
all previously derived triples remain available in main memory since they might
contribute in the following iterations to produce new derivation.

The first block considers rules of Type 1 and reads schema triples from both
memory and B-Trees. The last block reads only the generic triples in δ and
executes on them rules of Type 2 . We split the execution of rules of Type 3
into three blocks: one reads both schema and generic triples from memory; one
reads only schema triples in δ and the generic triples from the B-Trees; the
last one reads schema triples from the B-Trees and generic triples from δ. This



division enables us to reduce the amount of information read from the B-Trees,
and hence from TωP (I), to only the triples necessary to produce new derivations.
This is achieved by first reading a triple t from δ, and then retrieving from the
B-Trees only the triples that can be joined with t to complete the instantiation.

After launching the execution of these blocks on different threads, DynamiTE
waits for them to finish, removes the duplicates, and continues to iterate until
no new derivation is produced.

5 Materialization After Data Removals

When removing a set of triples δ from a database I, we also need to remove
from the materialized view all the triples that cannot be derived from I \ δ.
In this section, we describe the implementation of two algorithms, one already
described in [11] (but only from a theoretical perspective) and another one that
is based on the idea of counting all the direct derivations.

5.1 DRed Algorithm (and Derivatives)

The first algorithm implemented by DynamiTE is known as Delete and Rederive
(DRed) and was first introduced in [7]. It works in two steps: (i) First, it com-
putes all the triples that can be derived from δ, and removes them from the
knowledge base. This process clearly computes an overestimation of the triples
to remove, since some of them can have alternative derivations in I\δ. Therefore,
as a second step, (ii) the algorithm re-derives the triples that are still valid, and
adds them again to the knowledge base.

Our implementation is based on a similar version of DRed, presented in [11],
which has the advantage of using only the original set of rules for maintaining
the materialization. More precisely, it implements the first phase (Delete) as a
semi-naive evaluation that only considers rule evaluations in which at least one
literal in the body of the rule is instantiated from a triple in δ (or derived from
δ in previous iterations). All the triples derived in this phase are removed from
the knowledge base. The second phase (Rederive) is again implemented as a
semi-naive evaluation, which considers all the triples left in the knowledge base.

Since we assume that the size of our update (and the derivations it produces)
is small, we first load δ in memory. Then, we start executing the Delete phase:
we do so by using the implementation of the semi-naive evaluation presented in
Fig. 3. This means that we consider only derivations that involve triples in δ (or
derived from δ in previous steps) and we store the output of the computation in
memory, until we reach the fix-point.

After the first phase completes, we remove all the derivations stored in mem-
ory from the knowledge base, and we start the second, Rederive phase. Here too,
we exploit the implementation of the semi-naive evaluation described above. This
step outputs (and stores in main memory) all the triples that were removed from
the knowledge base in the Delete phase, but that could actually be derived from
I \ δ. As a final step, we add them again into our knowledge base.
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5.2 Counting Algorithm

During the Delete phase, the previous algorithm computes all the triples that can
be derived using triples in δ. Let us call this set Tδ. We call Dδ ⊂ Tδ the subset of
triples that cannot be derived from I\δ, and Aδ = Tδ\Dδ. While only the triples
in Dδ have to be removed from the knowledge base, the previous algorithm does
not have enough information for recognizing them. For this reason, it removes
all the triples in Tδ and then recalculates the set Aδ during the Rederive phase.

To improve the performance, we propose an alternative method, where all
the triples are annotated with additional information that allows for immediate
discrimination between the two sets Aδ and Dδ. This additional information
consists of a new count attribute, which represents the number of possible rule
instantiations that produced t as a direct consequence, plus one if the triple was
also present in the original input.

As an example of how the count attribute is computed, consider Fig. 4.
The figure shows a simple graph of derivations, where nodes represent triples
and arrows represent applications of rules. For instance, T5 can be derived by
applying rule R1 to T0 and T1. T0, T1, T2, and T3 are the facts in the original
input. They are stored in the knowledge base with count equal to one. T4 can
be derived from rule R2 using T2, and from rule R3 using T3, so its count is two.
Similarly, T5 can be derived using R1 from T0 and T1, and from T4 with R2, so
its count is two. Finally, T6 can be derived from T0 and has count equal to one.
Notice that we consider only direct derivations: although T4 can be derived in
two ways, it participates in the count of T5 only once.

During the Delete phase, the presence of the count attribute enables us to
discriminate between triples in Dδ and Aδ. As an example, consider again the
graph in Fig. 4, and assume that we want to remove T0, i.e., δ = {T0}.

We start a semi-naive evaluation to compute all the triples that can be derived
from T0, i.e., T5 and T6, and we decrement their counts by one. All the triples
whose count goes to zero (T6, in our example) do not have alternative derivations.
They belong to Dδ, and can be removed from the knowledge base. On the other
hand, T5 has count two in the materialized database: by removing T0, its count
is decreased by one, but still there is one derivation left. This means that T5 is



part of Aδ (i.e., it can still be derived from I \ δ), and should not be removed
from the materialized database.

In this simple example, the semi-naive evaluation just required one iteration
to reach the fix-point. If more iterations are needed the algorithm works as
follows: at iteration n, it considers only rule instantiations that involve triples
that were actually removed from the knowledge base at iteration n − 1, i.e.,
triples whose count went to zero at iteration n− 1.

Using this algorithm, the Delete phase computes only the triples that actu-
ally need to be removed from the knowledge base, i.e., the triples in Dδ. As a
consequence, we can skip the Rederive phase.

Finally, notice that the counting algorithm requires the count attribute to
be computed and maintained for each triple in the knowledge base. To do so,
we implemented a slightly different version of the algorithms described in the
previous sections for computing the (complete or incremental) materialization in
case of data additions. In particular, after each derivation step, we never remove
duplicates. Instead, every time we add a triple to the knowledge base, we check
whether it was already present or not. If it is new, we add it with a count of one;
otherwise, we increase its count by one.

6 Evaluation

Our evaluation has two goals: first, we want to test the absolute performance of
DynamiTE when considering the computation of a full materialization and its
maintenance in case of updates. Second, we want to compare the behavior of an
existing state of the art algorithm for incremental update, namely DRed, with
our own counting algorithm. To perform the experiments, we used one machine
in the DAS-4 cluster2, which is equipped with a dual quad-core Intel E5620
CPU, 24GB of main memory, two hard disks of 1TB connected with RAID-0,
and one 500GB SSD disk.3.

Dynamite is fully written in Java4, and it uses BerkeleyDB Java Edition [13]
as implementation of the on-disk B-Trees. We chose BerkeleyDB since it is among
the most widely used databases, and it fully supports many functionalities such
as transactions and concurrency. We use the LUBM [5] benchmark test to eval-
uate the performance of our system. We chose this dataset for two reasons: (i) it
is one of the de-facto standard benchmarks to test the performance of reasoning
on RDF data; (ii) it allows us to tune the experiments to control the amount of
derivation that is produced.

We present three sets of experiments, with the following goals: (i) to evaluate
the costs of performing the complete materialization; (ii) to evaluate the cost of
the updates, and (iii) to discover the performance bottlenecks of our system.

Complete Materialization. Fig. 5 (left) shows the execution time required by
each single task of the initial workflow (see Fig. 1) to materialize the LUBM(1000)

2 http://www.cs.vu.nl/das4
3 In some experiments the machine had only a 256GB SSD disk.
4 The code is available online at http://github.com/jrbn/dynamite
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Fig. 5: (Left) Execution time for all the tasks during the loading of the database.
(Right) Execution time of the complete closure.

dataset, which contains about 138 million triples. From this table, we notice that
both compression and materialization take a relatively short time compared to
the operation of copying the triples into the B-Tree indices. This last task is not
related to reasoning, yet it is a necessary part in our workflow.

To better understand the performance of our system in computing the full
materialization, we study this single operation in more detail. To this pur-
pose, Fig. 5 (right) shows how the execution time for the full materialization
changes with the number of triples present in the original input, starting from
LUBM(125), consisting of 16 million triples, to LUBM(8000), of about one bil-
lion triples. We observe that our implementation has good scalability, since the
execution time increases linearly with respect to the size of the input. Further-
more, the system has a high throughput: it computes the closure of about one
billion LUBM triples in about 4400 seconds, which results in an input processing
ratio of about 227K triples/sec. As an informal comparison, the throughput per
machine of WebPIE [16] to materialize the same dataset with RDFS was about
55K triples/sec, four times lower than DynamiTE .

Incremental Updates. After the system has materialized the input knowledge
base, the user can update it by removing or adding new triples. Unfortunately,
to the best of our knowledge there is no benchmark tool to evaluate reasoning
on a sequence of additions and removals. Because of this, to evaluate the per-
formance of this operation, we created six different type of updates from the
LUBM dataset:5

– Update 1. Add/Remove one triple, which does not trigger any reasoning.
– Update 2. Add/Remove ∼ 16k triples, which do not trigger any reasoning.
– Update 3. Add/Remove∼ 8k triples with the predicate LUBM:emailAddress.

This update triggers reasoning so that a fixed number of triples is derived.
– Update 4. Remove the triple indicating that the property LUBM:headOf is

a subproperty of LUBM:worksFor. This removal triggers a reasoning process
that derives a number of triples proportional to the input size. To simulate
the same reasoning for the addition, we add two new triples that indicate
that LUBM:headOf is a subproperty of a new property LUBM:responsibleOf,
which is also a subproperty of a new LUBM:Manager.

5 For reproducibility, also these updates are available in the repository of the project.



– Update 5 and 6. Add/Remove respectively one and two entire universities.

We chose Update 1 and Update 2 to evaluate the insertion cost and the
overhead of checking that no reasoning can be applied. Update 3 represents a
small update that produces only limited reasoning. Update 4 consists of schema
information, which has a consistent impact on the knowledge base. Update 5
and Update 6 represent large updates, which trigger the execution of multiple
rules. Notice that significantly larger updates are not possible since we store the
update in main memory. Such updates can be handled either by splitting them
in chunks so that the produced data can fit in memory, or by re-launching a full
materialization which can be more efficient since it reads the input from plain
files rather than the B-Trees.

Table 2 shows the execution time of these updates using the three algorithms
explained above. We noticed a certain fluctuation in the runtime, so we repeated
every measurement five times and report their average. First of all, we notice that
the runtime for the addition ranges from 117 ms (insertion of one triple) to 31.8 s
(addition of two universities, i.e., ∼ 250k triples). Even though these runtimes
cannot always guarantee a real-time processing, they are significantly lower than
recomputing a complete materialization. A significant result is represented by
the results obtained in Update 1 and in Update 2. In both cases, no reasoning is
triggered; however, Update 2 is significantly slower, since it requires DynamiTE
to add 16k triples into the BTrees. Once again, this experiment demonstrates
how accessing the B-Trees on disk represents the main cost for DynamiTE .

Considering the removal, we immediately observe that the DRed algorithm
is very slow, with a runtime that is always larger than 30 minutes. This is
due to the fact that the Rederive phase needs to access the entire input to re-
compute possible conclusions that were incorrectly removed in the Delete phase.
In contrast, the counting algorithm is much faster, with a runtime that ranges
from 117 ms (removal of a triple) to 135 s (removal of two universities). We
must remark that the procedure of enabling the counting slows down the initial
preprocessing by about 49%6. However, the advantage obtained during a removal
is so significant that this additional cost is quickly amortized after only a few
updates.

Performance Bottleneck. To further investigate the behavior of DynamiTE ,
and to identify the main performance bottlenecks, we launched the complete ma-
terialization and the incremental Update 4 changing two critical settings of the
system: the kind of disk adopted and the number of threads used for processing.

First, we changed the disk storage from an SSD to a normal HDD. The full
closure was only 6% slower, but the incremental addition and removal became
30 times and 15 times slower, respectively. This clearly indicates that the disk
speed is a performance bottleneck for accessing and updating the B-Tree indices.

Second, we decreased the degree of parallelism by decreasing the number of
concurrent processing threads from eight to four (the SSD disk was used for
the storage). The runtime of the materialization became 12% slower, while the

6 This overhead is already included in the results presented in Fig. 5.



Update Addition (sec.) Removal (sec.)
DRed Counting

Update 1 0.117 2902.7 0.117
Update 2 8.2 2049.6 25.7
Update 3 3.7 2121.9 25.4
Update 4 31.8 2132.2 51.0
Update 5 16.8 2196.0 74.6
Update 6 30.5 3830.2 135.8

Table 2: Runtime of four type of updates on LUBM(1000) after a complete
materialization that required about 15 minutes (see Fig. 5).

runtime of the incremental addition and removal became respectively at most
6% and 30% slower.

From these experiments, we can conclude that the degree of parallelism is an
important component in shaping the performance, especially for the full materi-
alization. However, disk throughput remains the largest performance bottleneck
for the incremental updates, since the disk-based data structure heavily relies
on it to retrieve the data.

7 Related Work

The problem of updating derived information upon changes in the knowledge
base has been widely studied by both the AI and database communities in the
contexts of truth maintenance [3] and deductive databases [6]. In this last case,
the idea of incrementally updating derived information has been studied since
the beginning of the 1980s, leading to two main algorithms: DRed (Delete and
Rederive) [7], and PF (Propagate Filter) [8]. Both algorithms share the same
idea: when some base facts are removed, they first compute an overestimation
of the derived knowledge that needs to be deleted, and then rederive the infor-
mation that is still valid.

A declarative version of the DRed algorithm was first introduced in [15] and
then extended in [18, 19] to consider also updates in the ruleset. These algo-
rithms, however, create an update program that can be significantly larger than
the original program (in terms of number of rules). Moreover, the update pro-
gram can include negations, even if they are not present in the original program.
Our implementation of the DRed algorithm follows the work presented in [11],
which overcomes the limitations listed above and manages incremental updates
without changing the set of derivation rules. As we show in the evaluation, DRed
has the disadvantage of always requiring to read full knowledge base.

The counting algorithm is significantly more efficient than DRed, since it
avoids (when possible) a complete scan over the input. This algorithm is based on
the operation of counting and decrementing the number of possible derivations.
This operation was also introduced in the original DRed paper [7], but it was
not implemented nor designed for a declarative language.



Recently, new solutions for incremental materialization in the domain of
stream reasoning were being proposed [4]. In particular, in [2], the authors pro-
posed a novel algorithm and implemented it into the C-SPARQL execution en-
gine. In this algorithm all data structures are stored in the main memory. The
evaluation of this approach, based on the transitive property, proved that it is
faster than DRed for updates that involve less than 13% of changes into the
knowledge base. However, this algorithm is tailored for a specific application
scenario (stream reasoning in C-SPARQL), and relies on some strong assump-
tions, e.g., that the expiration time of triples is known a-priori. In practice, this
only happens if triples are observed through a fixed time window; unpredictable
changes or other kinds of observation windows are not supported.

8 Conclusions

In this paper, we presented DynamiTE , a parallel system designed to efficiently
compute and maintain the materialization of a knowledge base in the presence
of addition or removal of triples.

For data addition, DynamiTE implements a parallel version of the well-
known semi-naive evaluation. For data removal, it implements two algorithms,
one that is among the state of the art in the literature, and a more efficient one.
DynamiTE is designed to exploit multi-core hardware for improved performance,
adopting data structures that enable fast retrieval of information, e.g., to effi-
ciently execute queries. Our evaluation shows the efficiency of DynamiTE , both
in computing a complete materialization, and in managing incremental updates.
Furthermore, it shows how the removal algorithm that we propose significantly
outperforms existing state of the art approaches.

As future work, we plan to extend the algorithms implemented in DynamiTE
to support different types of reasoning rules, and dynamic changes in the ruleset.
Furthermore, future research could explore whether the implemented algorithms
can be improved with heuristics. Finally, we intend to investigate how distributed
processing can further increase the scalability.

To conclude, we have shown how our system encodes efficient parallel meth-
ods to perform full and incremental materialization adapting well-known algo-
rithms to the task of reasoning. The throughput is higher than state of the art
methods (per machine), while the response time to updates ranges from hundreds
of milliseconds to a few minutes. This allows the system to perform a large-scale
materialization on much more dynamic inputs than currently possible.
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