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A Decision Procedure for (Co)datatypes in SMT Solvers

Andrew Reynolds and Jasmin Christian Blanchette*
Department of Computer Science, The University of lowa, USA and
Inria Nancy — Grand Est & LORIA, Villers-les-Nancy, France

Abstract

Datatypes and codatatypes are useful to represent
finite and potentially infinite objects. We describe a
decision procedure to reason about such types. The
procedure has been integrated in CVC4, a modern
SMT (satisfiability modulo theories) solver, which
can be used both as a constraint solver and as an
automatic theorem prover. An evaluation based on
formalizations developed in the Isabelle proof as-
sistant demonstrates the potential of our procedure.

1 Introduction

In the past decade, satisfiability modulo theories (SMT)
solvers [Nieuwenhuis er al., 2006] have emerged as one of
the most powerful ways to prove theorems in first-order logic.
These solvers are also useful for model finding, or constraint
solving: given a set of constraints, they can be used to find a
variable assignment that satisfy them.

A great benefit of the SMT approach is that it provides a
general framework for composing optimized decision proce-
dures and other solvers for various theories, including equal-
ity, linear arithmetic on Z and R, and first-order quantifiers
(¥, 3J). In this context, two recurrent scientific questions are:

— Which theories would be useful to applications?
— Which theories can be coded efficiently in SMT solvers?

This paper suggests the following partial answer: freely
generated algebraic and coalgebraic datatypes—also called
datatypes and codatatypes, respectively. Datatypes are ubiq-
uitous in functional programs and formal specifications. They
are useful to represent finite data structures in computer sci-
ence but also arise in formalized mathematics. And to rep-
resent infinite objects, a natural choice is to turn to codata-
types, their non-well-founded dual. Despite their reputation
for esotericism, codatatypes have a role to play in computer
science. For example, Leroy’s verified C compiler [2009] and
Lochbihler’s formalized Java memory model [2014] both de-
pend on codatatypes to express infinite processes.

Codatatypes are freely generated by their constructors, but
in contrast with datatypes, infinite constructor terms are also
legitimate values for codatatypes (Section 2). The values
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of a codatatype consist of all well-typed finite and infinite
variable-free constructor terms, and only those. As a simple
example, the codatatype specification

codata enat = Z | S(enat)

introduces a type that captures the natural numbers Z, S(Z),
S(S(2)), ..., in Peano (unary) notation, extended with an in-
finite value oo = S(S(S(...))). The equation S(e0) = o holds
as expected, because both sides expand to the infinite term
S(S(S(...))), which uniquely identifies co.

Datatypes and codatatypes are an integral part of many
proof assistants, including Coq, Isabelle, and PVS. In recent
years, datatypes have emerged in a few automatic theorem
provers as well. In this paper, we present a unified decision
procedure for universal problems involving datatypes and co-
datatypes in combination (Section 3). The procedure is de-
scribed abstractly as a calculus and can be composed with
other theories in an SMT solver. It generalizes the procedure
by Barrett et al. [2007], which covers only datatypes.

Datatypes and codatatypes share many properties, so it
makes sense to consider them together. There are, however,
at least three important differences. First, codatatypes need
not be well-founded. For example, the type

codata stream, = SCons(7, stream:)

of infinite sequences or streams over an element type 7 is al-
lowed, even though it has no base case. Second, a unique-
ness rule takes the place of the acyclicity rule of datatypes.
Cyclic constraints such as x & S(x) are unsatisfiable for data-
types, thanks to an acyclicity rule, but satisfiable for codata-
types. For the latter, a uniqueness rule ensures that two val-
ues having the same infinite expansion must be equal; from
x =~ S(x) and y =~ S(y), it deduces x ~ y. These two rules
cannot be finitely axiomatized, so they naturally belong in
a decision procedure. Third, it must be possible to express
cyclic values as closed terms and to enumerate them. The
p-binder notation associates a name with a subterm, making
it possible to represent cyclic values. For example, the u-term
SCons(1, us. SCons(0, SCons(9, s))) stands for the sequence
1,0,9,0,9,0,9,....

Our procedure is implemented in the SMT solver CVC4
[Barrett et al., 2011]. It consists of about 2000 lines of C++.
An evaluation on problems generated from Isabelle formal-
izations demonstrates its usefulness (Section 4).



The original version of this paper was presented at the
CADE-25 conference in Berlin, Germany [Reynolds and
Blanchette, 2015]. An more comprehensive version will ap-
pear in a special issue of the Journal of Automated Reasoning.
We refer to these for a description of related work.

2 (Co)datatypes

Our setting is a monomorphic (many-sorted) first-order logic.
We fix a signature consisting of a set of types 9" and a set
of function symbols #. The types are partitioned into " =
Vae W Veodt W Ford, Where Vg are the datatypes, Yeoqr are the
codatatypes, and Yyq are the remaining ordinary types. The
function symbols are partitioned into F = Fyr W Fgel, Where
Tt are the constructors and Fge are the selectors. There is no
need to consider further function symbols because they can be
abstracted away as variables when combining theories.

In an SMT problem, the signature is typically given by
specifying first the uninterpreted types in any order, then the
(co)datatypes with their constructors and selectors in groups
of £ mutually recursive datatypes or corecursive codatatypes,
and finally any other function symbols.

Each (co)datatype ¢ is equipped with m > 1 constructors,
and each constructor takes zero or more arguments and re-
turns a ¢ value. To every argument corresponds a selector.
The names for the (co)datatypes, the constructors, and the se-
lectors must be fresh. Schematically:

(co)data 61 = Cyi([s{y:] Tip-wws [ST1:] 711 [+ | Camy (-2)

and 55 = C[](...) | | C[mf(...)

with Cj; : Tl»lj X e X Tl-"-"f — 6; and si’? 10; — le The 6 con-
structors and selectors are denoted by ¥, and 3. For types
with several constructors, it is useful to provide discrimi-
nators dj; : 6; — bool. We let d;;(¢) be an abbreviation for
1= Cyj(sfi(0),...,s;j (1)).

Datatypes and codatatypes share many basic properties.
All properties below are implicitly universally quantified and
range over all i, j, j/, and k within bounds:

Distinctness: Cjj(X) % Cy(¥) if j # j'
Injectivity: Cij(x1,.., X)) & Cij(V1s-- - Yny) — Xk A2 Yk
Exhaustiveness: dji (x) V -+ V djp, (x)
Selection: S[I;(C,-j(xl,...,xnﬁ)) R X

Datatypes are additionally characterized by an induction prin-
ciple. For the natural numbers constructed from Z and S,
induction prohibits models that contain infinite values. For
codatatypes, the dual notion is called coinduction: Two val-
ues that yield the same observations must be equal, where the
observations are made through selectors and discriminators.
Codatatypes are also guaranteed to contain all values corre-
sponding to infinite variable-free constructor terms.

3 The Decision Procedure

Given a fixed signature, the decision procedure for the uni-
versal theory of (co)datatypes determines the satisfiability of
finite sets E of literals: equalities and disequalities between

first-order terms, whose variables are interpreted existentially.
The decision procedure is formulated as an abstract calculus.
Proving a universal quantifier-free conjecture is reduced to
showing that its negation is unsatisfiable.

To simplify the presentation, we make a few assumptions
about the signature. First, all codatatypes are corecursive.
This is reasonable because noncorecursive codatatypes can
be seen as nonrecursive datatypes. Second, all ordinary types
have infinite cardinality. Without quantifiers, the constraints
E cannot entail an upper bound on the cardinality of any unin-
terpreted type, so it is safe to consider these types infinite. As
for ordinary types interpreted finitely by other theories (e.g.,
bit vectors), each interpreted type having finite cardinality n
can be viewed as a datatype with n nullary constructors.

Our calculus for the theory of (co)datatypes consists of
derivation rules. A derivation rule can be applied to E if the
specified premises are met. The conclusion either specifies
equalities to be added to E or is L (contradiction). One of
the rules has multiple conclusions, denoting branching. An
application of a rule is redundant if one of its non-_L conclu-
sions leaves E unchanged. A derivation tree is a tree whose
nodes are finite sets of equalities, such that child nodes are
obtained by a nonredundant application of a derivation rule
to the parent. A derivation tree is closed if all of its leaf nodes
are 1. A node is saturated if no nonredundant instance of a
rule can be applied to it.

The derivation rules are partitioned into three phases, given
in Figures 1, 2, and 3. The first phase computes the bidi-
rectional closure of E. The second phase makes inferences
based on acyclicity (for datatypes) and uniqueness (for co-
datatypes). The third phase performs case distinctions on
constructors for various terms occurring in E. The rules be-
longing to a phase have priority over those of subsequent
phases. The rules are applied until the derivation tree is closed
or all leaf nodes are saturated.

3.1 Phase 1: Computing the Bidirectional Closure

In conjunction with Refl, Sym, and Trans, the Cong rule com-
putes the congruence (upward) closure, whereas the Inject and
Clash rules compute the unification (downward) closure. For
unification, equalities are inferred based on the injectivity of
constructors by Inject, and failures to unify equated terms are
recognized by Clash. Conflict recognizes when an equality and
its negation both occur in E, in which case E has no model.

teT(E) ~uck
—————— Refl ————— Sym
E:=E t~t E:=E u~t
s%t,t%ueET frucE f(t),f(ﬁ)efI(E)C
———— lrans p- on
E=E s~u E = E. () ~{(a) g
tRu, t#uckE (f)=C(a) € E
——  Conflict = Inject
1 ontie E—Ei~a 0

Figure 1: Derivation rules for bidirectional closure



Let T (E) denote the set of terms occurring in E. At the
end of the first phase, E induces an equivalence relation over
7T (E) such that two terms ¢ and u are equivalent if and only
if t = u € E. Thus, we can regard E as a set of equivalence
classes of terms. For a term t € T(E), we write [¢] to de-
note the equivalence class of # in E. Moreover, at the end
of this phase, each equivalence class [f] contains at most one
constructor term that is unique up to congruence. Thus, in the
subsequent phases, when considering the case that [¢] contains
constructor terms, it is enough to select an arbitrary construc-
tor term from [f] among these.

3.2 Phase 2: Applying Acyclicity and Uniqueness

The rules in this phase are described in terms of a mapping 4
that assigns to each equivalence class a y-term.

Formally, u-terms are defined recursively as being either a
variable x or an applied constructor ux.C(f) for some C € Foy,
and u-terms f of the expected types. The variable x need not
occur free in the u-binder’s body, in which case the binder
can be omitted. FV(r) denotes the set of free variables oc-
curring in the p-term t. A u-term is closed if it contains no
free variables. It is cyclic if it contains a bound variable. The
a-equivalence relation t =, u indicates that the u-terms ¢ and
u are syntactically equivalent for some capture-avoiding re-
naming of y-bound variables—e.g., ux. D(y, x) =4 pz. D(3,2),
but px. C(x) #q px. D(y,x) #a px. D(z,x) #a py. D(y,x).
Two u-terms can denote the same value despite being a-
disequivalent—e.g., ux. S(x) #q uy. S(S(y)).

The mapping 4 is constructed as follows. With each equiv-
alence class [u], we associate a fresh variable u of the same
type as u. For a term ¢ € T (E), we write f to denote the vari-
able associated with the equivalence class [7]. Initially, we set
A[u] := u for each equivalence class [u]. Because u is uncon-
strained, this indicates that there are initially no constraints on
the values for any equivalence class [u]. The mapping 4 is re-
fined by applying the following unfolding rule exhaustively:

ueFv(a) C(t,....tn) €u] CE Ferr
A:=A[u pu. C(f1,..., 1))

FV(A4) denotes the set of free variables occurring in A’s
range, and 4[x — 1] denotes the variable-capturing substitu-
tion of ¢ for x in A4’s range. It is easy to see that the height of
terms produced as a result of the unfolding is bounded by the
number of equivalence classes of E, and thus the construction
of 4 will terminate.

The p-term A[t] describes a class of values that 7 and other
members of #’s equivalence class can take in models of E.
When 7 is a datatype, a cyclic u-term describes an infeasible
class of values.

t:6€ Y Al =px.u

L

x €FV(u)

Acyclic

LU € Yoar Alt] =¢ Alu]
E=E t~u

Unique

Figure 2: Derivation rules for acyclicity and uniqueness

Example 1. Suppose that E contains four distinct equiva-
lence classes [w], [x], [y], and [z] such that C(w,y) € [x] and
C(z,x) € [y] for some C € Fo;. A possible sequence of un-
folding steps is given below, omitting trivial entries such as
[w] — w.

1. Unfold x: 4 = {[x] — ux.C(w,y)}

2. Unfold y: 4 = {[x] = uX.C(w, uy.C(7, X)),
] = uy.C(z, %) }

3. Unfold X: 4 = {[x] — uX.C(w, uy.C(Z, X)),

] = uy.C(z, ux.C(w,y))}
The resulting 4 indicates that the values for x and y in mod-
els of E must be of the forms C(w,C(z,C(w,C(Z,...)))) and
C(z,c(w,C(z,C(w,...)))), respectively. [

Given the mapping A4, the Acyclic and Unique rules work
as follows. For acyclicity, if [7] is a datatype equivalence
class whose values A[t] = ux. u are cyclic (expressed by
x € FV(u)), then E is unsatisfiable. For uniqueness, if 1],
[u] are two codatatype equivalence classes whose values 41|,
A[u] are a-equivalent, then 7 is equal to u. Comparison
for a-equivalence may seem too restrictive, since px. S(x)
and py. S(S(y)) specify the same value despite being a-
disequivalent, but the rule will make progress by discover-
ing that the subterm S(y) of py. S(S(y)) must be equal to the
entire term, as demonstrated next.

Example 2. Let E = {x ~ S(x), y ~ S(S(y))}. After
phase 1, the equivalence classes are {x, S(x)}, {y, S(S(»))}.
and {S(y)}. Constructing 4 yields

Al = 587 Ab] = 4. SwSH). SG))

AS(y)] = uS()- S(uy. S(S()))
Since A[y] =, A[S(y)], the Unique rule applies to derive
y ~ S(y). At this point, phase 1 is activated again, yield-
ing the equivalence classes {x, S(x)} and {y, S(y), S(S(»))}.
The mapping 4 is updated accordingly:

Al = pESsE  AD] = 45 S0)
Since A[x] =, 4[y], Unique can finally derive x ~ y. [

3.3 Phase 3: Branching

If a selector is applied to a term ¢, or if #’s type is a finite data-
type, t’s equivalence class must contain a § constructor term.
This is enforced in the third phase by the Split rule. Another
rule, Single, focuses on the degenerate case where two terms
are of a singleton type (one for which there exists only one
value), and are therefore equal. Notice that corecursive sin-
gleton types may have infinite values. A simple example is

t:6 teT(E) %5 ={Ci,...,.Cu}
(s(t) € T(E) and s € F2)) or (6 € ¥ and ¢ is finite)

| E = E, t~Ci(s! (1),....5} (1))
t,ue T(E) ¢ isasingleton
E:=E t=u

Split

tu: o€ %odt

Single

Figure 3: Derivation rules for branching



codata a = A(a), which is corecursive and yet has a cardinal-
ity of one; its unique value is pa. A(a). Both Split’s finiteness
assumption and Single’s singleton constraint can be evaluated
statically based on a recursive computation of the cardinali-
ties of the constructors’ argument types.

3.4 Termination and Correctness

We state the following properties of derivation trees generated
by the calculus.

Theorem 1 (Termination). All derivation trees are finite.

Theorem 2 (Refutation Soundness). If there exists a closed
derivation tree with root node E, then E is unsatisfiable.

Theorem 3 (Solution Soundness). If there exists a deriva-
tion tree with root node E containing a saturated node, then
E is satisfiable.

By Theorems 1, 2, and 3, the calculus is sound and com-
plete for the universal theory of (co)datatypes. We may
rightly call it a decision procedure for that theory. The proof
of solution soundness is constructive in that it provides a
method for constructing a model for a saturated configuration.

4 Evaluation

The decision procedure for (co)datatypes is useful both for
proving (via negation, in the refutational style) and for model
finding [Ge and de Moura, 2009; Reynolds et al., 2013]. Tt
is in fact vital for finite model finding, because the acyclicity
and uniqueness rules are necessary for solution soundness,
without which the generated models would often be spurious.
For example, given the constraints

zeros = SCons(0, zeros) repeat(n) =~ SCons(n, repeat(n))

the conjecture zeros = repeat(0) would be “refuted” by a spu-
rious countermodel that interprets zero and repeat(0) by two
distinct values us. SCons(0, s), violating uniqueness.

By contrast, the contributions of the decision procedure to
proving are less obvious; they depend on how often acyclic-
ity and uniqueness are necessary for a proof. To evaluate
this, we generated benchmark problems from existing inter-
active proof goals arising in existing Isabelle formalizations,
using Sledgehammer [Blanchette et al., 2013] as translator.
We included all the formalizations from the Isabelle distribu-
tion (Distro, 1179 goals) and the Archive of Formal Proofs
(AFP, 3014 goals) that define codatatypes falling within the
supported fragment. We also included formalizations about
Bird and Stern—Brocot trees (SBT, 265 goals). To exercise
the datatype support, formalizations about finite lists and trees
were added to the first two benchmark sets.

For each proof goal in each formalization, we used Sledge-
hammer to select either 16 or 256 lemmas, which were mono-
morphized and translated to SMT-LIB along with the goal.
The resulting problem was given to the development version
of CVC4 (from 15 September 2015) and to Z3 4.3.2 for com-
parison, each running for up to 60 s. Problems not involving
any (co)datatypes were left out.

CVC4 was run on each problem several times, with the
support for datatypes and codatatypes either enabled or dis-
abled. The contributions of the acyclicity and uniqueness

rules were also measured, by selectively enabling or disabling
the rules. Even when the decision procedure is disabled, the
problems may contain basic lemmas about constructors and
selectors, allowing some (co)datatype reasoning. This is es-
pecially true for problems generated using 256 lemmas. The
problems with 16 lemmas put more stress on the decision pro-
cedure but are less typical of Sledgehammer problems.

n=16 n =256
CVC4 Z3 CVC4 Z3
No (co)datatypes 1099 1097 2209 1911
Datatypes without Acyclic 1116 - 2211 -
Full datatypes 1120 1121 2211 1901
Codatatypes without Unique 1132 - 2208 -
Full codatatypes 1137 - 2220 -
Full (co)datatypes 1157 - 2219 -

Table 4: Number of solved goals with n lemmas per goal

The results are summarized in Table 4. For the 16-lemma
problems, it accounts for an overall success rate increase of
over 5%. Moreover, every aspect of the procedure, including
the more expensive rules, makes a contribution. For the 256-
lemma problems, the difference is much smaller, at 0.5%. Ta-
ble 4 indicates that the theoretically stronger instances of the
decision procedure do not always subsume the weaker ones in
practice. The raw data reveal that the full procedure proved
27 goals that could not be proved without it, but failed for
17 goals that could be proved without it.

5 Conclusion

We presented a decision procedure for the universal theory of
datatypes and codatatypes. Our approach relies on p-terms
to represent cyclic values. Although this aspect is primarily
motivated by codatatypes, it makes a uniform account of data-
types and codatatypes possible—in particular, the acyclicity
rule for datatypes exploits u-terms to detect cycles. The em-
pirical results on Isabelle benchmarks confirm that CVC4’s
new capabilities improve the state of the art.

This work is part of a wider program that aims at enrich-
ing automatic provers with high-level features and at reducing
the gap between automatic and interactive theorem proving.
We are currently interfacing CVC4’s finite model finding ca-
pabilities for generating counterexamples in proof assistants
[Reynolds er al., 2015]. The acyclicity and uniqueness rules
are crucial to exclude spurious counterexamples.
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