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7GENERAL INTRODUCTION

   General introduction

Alzheimer disease (AD) is the most common cause of dementia, accounting for 50-
70% of the estimated 46 million patients with dementia world-wide [1, 2]. AD dementia 
is a main cause of disability and death, and has a major impact on the lives of patients 
and their families [3, 4]. The disease is defined by amyloid plaque and tau tangle 
formation in the brain, which are accompanied by neurodegeneration and cognitive 
decline [5]. Dementia is the end-stage of AD [6]. There is currently no treatment 
to slow or halt the disease. Despite significant investments of pharmaceutical 
companies, investigators, study participants and their caregivers, all clinical trials thus 
far have failed [3]. The simple explanation for the negative results would be that all 
treatment compounds were ineffective. Still, in retrospect, there can also have been 
shortcomings in the design of the trials, in particular the participant selection and 
timing of the interventions [7].

 1.1 Clinical trials in relation to biomarker developments
One major issue hampering clinical trials in AD in the past was diagnostic uncertainty. 
According to screening data of previous clinical trials 10-25% of patients with a clinical 
diagnosis of AD-type dementia did not have evidence amyloid plaque accumulation 
in the brain [8-10]. This is particularly problematic for experimental treatment studies, 
because many of the compounds target amyloid plaques [11]. During the past two 
decades, biomarkers became available that can measure amyloid accumulation 
during life using cerebrospinal fluid (CSF) or positron emission tomography (PET) 
imaging. The use of these biomarkers allows confirmation of AD pathophysiology 
in patients with AD dementia at study enrolment, which ensures that the right  
patients are treated. 
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 Using AD biomarkers, it became clear that AD pathology may be present long 
before the onset of dementia [12, 13]. Individuals with amyloid pathology may be 
treated during this period to delay or prevent the onset of dementia [14-16]. Another 
explanation for the lack of treatment effects is that the interventions were initiated 
too late in the disease process. An hypothesis is that equivalent interventions may 
be effective when started earlier, e.g., in pre-dementia AD [17]. In a new branch of 
research into pre-dementia AD, individuals without dementia undergo AD biomarker 
measurements and are followed over time. To conduct trials in pre-dementia AD, we 
need to understand when to intervene, how to find suitable participants, and develop 
methods to evaluate effectiveness in pre-dementia AD. Those are topics investigated 
in this thesis.
 This chapter has the following structure: (2) a brief summary of the current 
hypothesis on the development of AD and explanation of relevant terminology and 
methods, which both provide background for the following chapters, (3) progress and 
challenges in clinical trials for AD, (4) project descriptions, (5) the specific aims and 
outline of this thesis. 

2	 Understanding	and	defining	Alzheimer	disease	
 2.1  Biological progression model of Alzheimer disease 
In 1992, Hardy and Higgins pose the amyloid cascade hypothesis [18], which Jack and 
colleagues adapt into the disease progression model of AD, based on early biomarker 
studies [19]. According to this hypothesis, AD dementia develops in a sequential 
order of biomarker and clinical abnormality over decades. The first sign is amyloid 
accumulation, followed by neuronal injury and dysfunction, neurodegeneration, 
cognitive decline, and functional decline (Figure 1). Several publications support 
this AD progression model. Firstly, early biomarker studies show that 30% of  

Figure 1  Alzheimer disease progression model and clinical stages 
Adapted from Jack et al. 2013 [5]. 
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individuals, who are older than 65 years have evidence of amyloid accumulation in 
their brain, but have no dementia [20], which is also conform neuropathology studies. 
It indicates that pathophysiological changes start before symptoms are present 
[5]. Second, there is a gap of ~20 to 30 years between the increases of amyloid 
accumulation and AD-type dementia prevalence [20]. Based on amyloid accumulation 
rates, the pre-dementia period is estimated to be approximately 17 years [21]. Lastly, in 
the presence of AD pathology, cognitively normal individuals show higher progression 
rates to mild cognitive impairment and dementia compared to individuals without 
AD pathology [22-25]. This evidence suggests that there is a long pre-dementia 
period as window of opportunity for interventions to prevent dementia, warranting  
further investigation.  

 2.2 Clinical stages of Alzheimer disease
To study pre-dementia stages of AD, research expert groups developed criteria which 
divide AD into clinical stages [14, 26, 27]. These criteria have been updated several 
times over the past 10 years. In this thesis, I use an amyloid-centric definition: if 
amyloid accumulation is present, this is referred to as AD. Preclinical AD refers then to 
individuals without any signs of cognitive impairment. Prodromal AD and mild cognitive 
impairment (MCI) due to AD are both referring to the mild cognitive impairment stage, 
in which there is cognitive impairment, but no functional impairment. In AD dementia, 
patients have become dependent on others in their activities of daily living, as a result 
of progressive cognitive impairment [6]. AD dementia has a mild, moderate and severe 
dementia stage, according the level of functional dependence on others. 
 Clinically, most individuals progress from normal cognition via mild cognitive 
impairment to dementia, but the duration of the stages has not been well-described 
(see Ch. 2.1 of this thesis). Some individuals revert to less severe stages or fluctuate 
between clinical stages [28]. This clinically deviating group of patients are interesting 
to study as they might inform us on the prognostic factors for clinical progression  
of AD (Ch. 2.2).

 2.3 Risk factors for Alzheimer disease 
Many risk and protective factors for AD dementia have been identified, including 
genetic and environmental factors [2]. In less than 1% of patients, AD is caused by 
a genetic mutation in the PSEN1, PSEN2 or APP gene. The most common genetic 
risk factor for AD dementia is the presence of one or two APOE ɛ4 alleles. There are 
also many risk and protective factors found in epidemiological studies of which the 
mechanisms are unknown. Risk factors for AD type-dementia include female sex, 
lower level of education, hypertension, and depressive symptoms. More exercise and 
more social and intellectual engagement seem protective. The effect of these risk 
factors can also be stage-specific (Ch. 2.1) Unraveling risk factors for AD dementia 
can help to target treatments or stratify clinical trial enrolment and evaluation  
of outcomes (Ch. 3.2). 
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 2.4 Structural neuroimaging and connectivity
In AD, patients have neurodegenerative changes that can be detected and characterized 
with structural brain imaging. For clinical trials, structural magnetic resonance imaging 
(MRI) can be useful for selecting participants most likely to undergo cognitive decline, 
or to measure treatment response [29]. The temporal cortex appears preferentially 
vulnerable to atrophy in AD. Well-established techniques for assessing temporal lobe 
atrophy include visual medial temporal lobe atrophy (MTA) rating scale and automated 
volumetrics [30-32]. More recent studies are able to measure cortical thickness in 
multiple brain regions, suggesting that cortical thinning in multiple brain regions, 
including in the parietal lobe, may be a sensitive marker of AD-related changes [33]. 
Growing evidence also suggests disruptions in grey matter connectivity as an early 
feature of AD [34-36].
 In this thesis, we apply the single-subject whole-brain grey matter covariance 
network approach (Ch. 4) [37]. This method is based on the fact that brain structures 
develop and maintain in an organized manner, which results in similarity between brain 
areas and that is correlated to healthy brain function [38, 39]. This similarity can be 
described as a network using graph theory properties, such as the number of nodes 
and connections, the average path length between nodes and the level of clustering 
(see Box 1 Chapter 4.1 on page 116 for details). The networks have previously been 
shown to be disrupted in AD dementia patients [36]. Additionally, in cognitively healthy 
individuals grey matter network disruptions are associated with amyloid accumulation 
levels [40, 41]. This suggests that network changes occur early in the disease and that 
this may be developed into an endpoint for clinical trials in pre-dementia AD. Studying 
brain connectivity can also be useful to better understand the development of the 
disease.

	 2.5	 Cerebrospinal	fluid	biomarkers	
CSF protein levels are used to diagnose AD, as well as to study biological changes 
(Ch. 4.2). The proteins used for diagnosis AD include reflections of β-amyloid 
(Aβ) and tau (phosphorylated [pTau], total [tTau]) accumulation. More biological 
processes can be reflected in the CSF by protein levels, such as amyloid processing, 
neurodegeneration, inflammation and synaptic damage [42-47]. We use the ratio of 
Aβ42/40  as a marker of amyloid aggregation, Aβ40 for amyloid processing, pTau for  
hyperphosphorylation of tau and tTau for neuronal injury. Neuronal calcium-sensor 
protein (VILIP1) reflects neuronal death and neurofilament light chain (NfL) axonal 
degeneration. Furthermore, levels of chitinase-3-like protein 1 (YKL-40), an astrocyte 
marker, and soluble TREM2, a microglia marker, are assessed to detect inflammation. 
SNAP-25 is used to detect presynaptic damage and neurogranin (Ng) to detect 
postsynaptic damage. Combining CSF markers with grey matter connectivity may 
allow delineation of which processes contribute to network disruptions over the AD 
trajectory (Ch. 4.2). 

CHAPTER 1



11

3 Clinical trials 
 3.1 Clinical trials for prevention of AD
Three types of prevention exist in medicine. The first type is primary prevention, 
referring to a preventive treatment for individuals without pathological signs of the 
disease. In AD, one testable hypothesis can be to prevent amyloid accumulation by 
intervening in the amyloid production. Secondary prevention applies to individuals with 
pathological signs of the disease, who do not yet exhibit symptoms, i.e., preclinical AD 
(no cognitive impairment) or MCI due to AD (no dementia). An AD-specific example 
is to aim to delay the onset of cognitive impairment, for example by the removal of 
amyloid. Finally, tertiary prevention applies to individuals with both pathological signs 
and symptoms, and should prevent further complications or decline of the disease, 
i.e., stabilize or improve AD dementia. Depending on how symptomatic is defined, 
prevention of further decline in MCI due to AD can be considered tertiary prevention 
(prevention of decline in symptomatic disease), but it can also fall under secondary 
prevention (delay of the onset of dementia). The scope entails secondary prevention 
aimed at disease-modification. This means to change the disease course, as opposed 
to a symptomatic treatment suppressing disease symptoms. The phase 2 proof-of-
concept trials is when target engagement needs to be proven. 

 3.2 Prevention trials using AD biomarker inclusion criteria
Prevention trials with AD biomarker-inclusion criteria emerge from 2009, affecting 
enrolment and screening procedures (Figure 2). The first prevention trial to require 
abnormality in a biological marker related to AD in the trial selection criteria is the 
Lipididiet study, starting March 2009 [48]. Shortly thereafter, in May 2009, another 
prevention trial in MCI is the first to specifically require evidence of amyloid accumulation, 
operationalized as either abnormal CSF Aβ, or an abnormal CSF Aβ to tau ratio [49]. 

Figure 2  Biomarker inclusion criteria for clinical trials by start date
Every tickmark represents a study: 1) NCT02569398; 2) NCT02008357; 3) NCT02000583; 
4) NCT02547818; 5) NCT01953601 6) NCT01522404; 7) NCT01429623; 8) NCT01227564; 9) 
NCT01224106 10) NCT00890890; 11) NTR1705; 12) NCT02670083 13) NCT02389413; 14) 
NCT02477800; 15) NCT02322021; 16) NCT02292238; 17) NCT02245737; 18) NCT02054208; 19) 
ACTRN12613000777796; 20) NCT01767311; 21) NCT01561430; 22) NCT01255163
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The requirement of an abnormal amyloid PET scan, aside of an MCI diagnosis, is used 
for the first time in the trial testing ACC-001+QS21 (active Aβ immunization) in 2011. 
The first secondary prevention study in cognitively normal individuals with amyloid 
accumulation is an exercise trial in 2013 [50]. The first pharmaceutical trial in this 
group is the ‘Anti-Amyloid Treatment in Asymptomatic Alzheimer’s study’ (A4 study) 
in 2014 [51]. 

 3.3 Challenges of secondary prevention trials in Alzheimer disease 
Participants for trials in preclinical AD, such as A4, do not present in large quantities 
in memory clinics, because most of them do not experience complaints. Therefore, 
they need to be recruited from the general population, where the biomarker status is 
unknown. Additionally, trials have strict eligibility criteria on co-morbidities and require 
a serious commitment from participants. This is a novel challenge for recruitment, 
finding and screening these individuals, which can lead to major delays in trial 
completion or even unfinished studies [52] (Ch. 3). 
 Traditional endpoints include decline on cognitive and functional measures, but 
in the pre-dementia stages in AD these measures may not be sensitive enough to 
detect decline over time during the trial [53]. Yet, without a functional endpoint, it is 
difficult to define the clinical benefit for patients. This is another reason, why a more 
comprehensive understanding of the total course of AD would be useful to inform 
clinical trial design and guide the implementation of future treatments. There are two 
large international consortia, both including academic and private sector partners, 
aimed at understanding the development of AD dementia and the execution of 
interventions that play a major role in this thesis, the European prevention of Alzheimer 
Dementia (EPAD) project and the Dominantly Inherited Alzheimer disease network 
(DIAN).   

4 Consortia in sporadic and autosomal dominant Alzheimer disease 
 4.1 EPAD project
In 2015, the EPAD project, funded through the Innovative Medicine Initiative (IMI), 
is initiated with a dual purpose of setting up a framework to execute secondary 
prevention trials and in parallel study pre-dementia AD [53, 54]. The goal is to set 
up a platform trial structure, which allows multiple compounds to be investigated 
according the same protocol. In a platform-trial, sponsors can share placebo-groups, 
and less participants are needed per study. Additionally, individuals are first included 
in a ‘trial-ready’ cohort, in which they are phenotyped, with clinical and cognitive 
tests, neuroimaging and blood and CSF collection, and are followed over time. About 
25% of participants in the trial-ready cohort are expected to participate in a clinical 
trial during the time frame of the project. Data collected in the trial-ready cohort may 
be used as run-in data to increase the power of the trial. 
 In addition, individuals for the trial-ready cohort should be recruited from other 
studies, enabling preselection. As part of this thesis, we investigate this novel method 
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of participant recruitment for AD studies. We set up a virtual registry, to which the 
pre-existing studies can be linked, and have participants that qualify join the EPAD 
trial-ready cohort (Ch. 3). The idea is that this approach results in less recruitment 
delay and less screen failures. 

 4.2 DIAN project 
In 2008, the DIAN project starts collecting data for its observational study of carriers of 
an autosomal dominantly inherited genetic mutation of AD and their family members 
[55]. In this form of AD, the age of onset of dementia is usually between 40 and 50 
years of age [56]. As the age of symptom onset is similar within the mutation type, 
we can use the estimated years to symptom onset (EYO) as an alternative time scale 
(irrespective of mutation status). This allows exact staging of individuals including the 
pre-symptomatic persons, and that is not yet possible in sporadic AD. For example, if 
someone is 35 years and for the mutation in their family, the average age of onset of 
dementia is 50, the EYO is minus 15. 
 The participants undergo regular clinical and cognitive tests, neuroimaging and 
blood and lumbar puncture for CSF [57]. All family members were included, such that 
noncarriers are a natural control group. Figure 3 shows how we compare mutation 
carriers, and non-carrier family members over the disease trajectory. Previous work 
in this study demonstrated divergence between mutation carriers and noncarriers 
in CSF Aβ more than 20 years, CSF tau 10 years, and memory decline seven years 
before dementia onset [57]. The DIAN project also encompasses an intervention 
study, which is shaped as a platform clinical trial structure and started in 2012 with 
the first two trial arms [58]. Results of the DIAN observational study are used to design 
that trial. We use the data of the DIAN observational study to investigate when and 
how grey matter network change in autosomal dominant AD (ADAD). As disruptions 
of structural grey matter networks are seen early in sporadic AD, these networks 
may provide an alternative endpoint for clinical trials in pre-dementia AD. Therefore, 
we attempt to validate those findings in this pure form of AD, and also investigate the 
biological correlates of grey matter networks (Ch. 4). 

Figure 3  Illustration of comparison by years to symptom onset
Adapted from Bateman et al. NEJM [57]
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5 Aim and outline
The purpose of the thesis is to use biomarker and clinical measurements to provide new 
input into how clinical trials should be structured that aim to evaluate novel secondary 
prevention strategies for AD. This includes the duration of pre-dementia AD and 
influencing factors, recruitment and selection of participants, and the development of 
endpoints to measure treatment response in trials. 
The studies address three specific aims: 
 1 Improve the understanding of the clinical course of Alzheimer disease  
  (2.1,2.2).
 2 Set up the EPAD virtual registry for participant recruitment for the EPAD
   trial-ready cohort and trials, and evaluate learnings (3.1,3.2).
 3 Understand how grey matter networks change with disease   
  progression and identify biological correlates in autosomal dominant  
  Alzheimer disease (4.1,4.2).

 5.1 Thesis outline
First, we tie together the short-term follow-up of individuals of all AD clinical stages, 
using the multi-state model technique, to estimate the duration of each stage and 
of the complete disease course, which can provide information on prognosis (2.1). 
In the second chapter, we investigate the value of AD biomarkers for the prognosis 
of a clinically diverting group. Individuals with initially mild cognitive impairment, who 
improved to normal cognition were continued to be followed on clinical markers. This 
group is known to be at an increased risk for dementia, and we hypothesize that the 
underlying cause was AD (2.2). The second topic of this thesis is the set-up of EPAD 
Registry, a project for linking existing cohorts to enable engagement and selection 
of participants for EPAD cohort study and secondary prevention trials, and we then 
evaluate this novel method (3.1,3.2). The final topic addresses changes of structural 
grey matter networks over the course of AD, to study their use as a potential clinical 
trial endpoint. We investigate if findings on grey matter network disruptions in sporadic 
AD translate to individuals with autosomal dominant AD (4.1), and which biological 
processes, as measured in CSF, may be underlying the disruptions (4.2). 
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Abstract

INTRODUCTION: We estimated the age-specific duration of the preclinical, prodromal 
and dementia stages of AD, and the influence of sex, setting, APOE, and CSF tau on 
disease duration. 
METHODS: We performed multi-state modeling in a combined sample of 6 cohorts 
(n=3,268) with death as the end-stage, and estimated the preclinical, prodromal and 
dementia stage duration. 
RESULTS: The overall AD duration varied between 24 years (age 60) and 15 years (age 
80). For individuals presenting with preclinical AD, age 70, the estimated preclinical 
AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, 
clinical setting, APOE ɛ4 genotype and abnormal CSF tau were associated with a 
shorter duration and these effects depended on disease stage. 
DISCUSSION: Estimates of AD disease duration become more accurate if age, sex, 
setting, APOE and CSF tau are taken into account. This will be relevant for clinical 
practice and trial design. 

1 Introduction
Alzheimer disease (AD) is highly prevalent, and a major cause of dementia and death 
in elderly individuals [1-3]. Accumulation of amyloid in the brain is believed to be the 
first sign of the disease and can precede a clinical diagnosis of dementia by up to 
20 years [1, 4, 5]. Based on the degree of cognitive impairment, AD is often divided 
into three stages: the preclinical stage, characterized by normal cognitive ability, the 
prodromal stage, characterized by mild cognitive impairment (MCI), and the dementia 
stage, with functional impairment [6-9], but it is unclear how long individuals with 
amyloid pathology spend in each stage. A better understanding of the stage-specific 
duration of AD is needed to inform patients, caregivers, and clinicians. This information 
is also useful for the design of clinical studies, as well as to provide context for the 
interpretation of trial results, in particular the clinical trials that include individuals in 
pre-dementia stages and aim to slow down progression to AD dementia. 
 Attempts to quantify the duration of AD should be age-specific, because age 
imposes the greatest risk for both dementia and mortality, and take into account 
APOE genotype, sex, and cerebrospinal fluid (CSF) tau levels [4, 6, 10-12]. Setting is 
also important, as progression from MCI to dementia was longer in research settings 
than in clinical settings [13]. Previous studies on the length of the AD dementia 
stage reported a duration of 3 to 10 years [14, 15]. Younger age, female sex and 
lower CSF total tau (tTau) were found to be associated with a longer duration of the 
AD dementia stage, while the effect of APOE genotype was equivocal [14-17]. The 
median duration of prodromal AD was three years in a pooled memory clinic cohort 
study, but no age-specific estimates were provided and mortality was not taken into 
account [18]. The patients with prodromal AD and increased CSF tTau levels tended to 
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convert sooner to AD dementia [19, 20]. The duration of the preclinical AD stage has  
been estimated in combination with the prodromal AD stage, which was 17 years, 
based on extrapolations of change in positron emission tomography (PET) amyloid 
load over time [21]. 
 We estimated disease duration by applying a multi-state modeling approach, 
which has been previously used in AD research [22-25], and can offer an estimate 
of disease duration based on stage progression and mortality rates in the absence 
of very long follow-up duration. The aim of this study was therefore to estimate the 
disease duration for preclinical, prodromal and AD dementia stage according to age, 
setting (clinical versus research), sex, APOE genotype, and baseline CSF tTau levels.

2 Methods
 2.1  Participants
Six longitudinal cohort studies, including three memory clinic cohorts (Amsterdam 
Dementia cohort (ADC), DESCRIPA, and ICTUS), and three research cohorts 
(Alzheimer Disease Neuroimaging Initiative (ADNI), Australian Imaging, Biomarker & 
Lifestyle Flagship Study of Ageing (AIBL) and Prospective Population Study of Women 
in Gothenburg H70 (Gothenburg H70)), provided data for the study (Supplement A for 
more cohort information) [26-31]. From these cohorts, we selected participants aged 
50 years and older with evidence of amyloid accumulation, and with information on 
diagnosis and/or mortality at follow-up available. Evidence of amyloid pathology was 
an inclusion criterion for this study, defined by at least one abnormal marker of amyloid 
accumulation. The amyloid PET scans were visually rated or a published threshold 
was applied and for CSF amyloid-beta 1-42 (Aβ42) cohort-specific thresholds were 
applied (Supplement A). In absence of amyloid measures for the ICTUS cohort, only 
the patients with a clinical diagnosis of AD-type dementia were included and analyses 
repeated without this cohort. All studies were approved by an ethical review board 
and their participants gave informed consent.

 2.2  AD stages
AD was categorized into four clinical stages: preclinical AD, prodromal AD, mild 
AD dementia, and moderate to severe AD dementia (from here on shortened to 
moderate AD dementia). Preclinical AD was defined by amyloid accumulation 
and normal cognition (Supplement A). Prodromal AD was in this study defined by 
amyloid accumulation and a diagnosis of MCI, amnestic and non-amnestic [9, 32, 
33]. AD dementia was diagnosed according to the NINCDS-ADRDA criteria, and 
if an amyloid evaluation was available this had to be confirmative [7]. AD dementia 
was subdivided in mild AD dementia (Clinical Dementia Rating (CDR) below 2, or 
CDR sum of boxes (CDR-SOB) <10, or (if no CDR was available) MMSE>20), 
and moderate AD dementia (CDR>1, CDR-SOB>9, or (if no CDR was available)  
MMSE<21) [34, 35]. 
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 2.3  Mortality assessment
The ADC cohort mortality data were obtained from the Dutch population register, 
while the other studies provided mortality data recorded during the study. In AIBL 
the exact mortality date of those who died was unknown (n=19) and therefore set at 
the next planned visit, which is 1.5 years after the last follow-up. In others cases of a 
missing mortality date (n=4), the date was set 2 years after last follow-up. 

 2.4  Predictor variables
For all participants, age, sex and setting were available. The setting was classified as 
clinical for ADC, DESCRIPA and ICTUS and research for ADNI, AIBL and Gothenburg 
H70. APOE genotype was dichotomized according to the presence or absence of 
the AD-associated ε4 allele of APOE and was available in all cohorts except ICTUS. 
Baseline CSF tTau was classified as normal or abnormal by applying the cohort-
specific cut-off and available for the ADC, DESCRIPA, ADNI and Gothenburg H70 
studies (Supplement A). 

 2.5  Statistical analyses
Baseline characteristics between diagnostic groups were compared using Chi-
square, Kruskal-Wallis or ANOVA tests with Tukey post-hoc, where appropriate. To 
estimate the disease duration, a multi-state model (MSM) with the four stages of AD 
and death as the end-stage was fitted [36]. All transition rates between stages were 
incorporated in one model (Figure 1). Reversions from prodromal to preclinical AD 
were also included in the model. Reversion in the dementia stages were fitted using 
misclassification (see Supplement B for additional methods and specifications of 
multi-state model analysis).
 Multi-state models with different numbers of covariates were fitted to the data. 
Age was a time-dependent covariate, and centered at age 70. For each covariate a 
hazard ratio was calculated for each transition. As most covariate effects on mortality 

Figure 1 Multi-state Model 
Arrows indicate fitted progression and reversion rates between stages in the multi-state model. 
Moderate to severe AD dementia is shortened to moderate AD dementia for readability.
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were not estimable; a restricted model was applied. The first model included only age 
as covariate, the second model included setting as well, and the third model had age, 
setting, and sex as covariates. The fourth model included age, setting, and APOE, 
while the fifth model had age, setting, and tau as covariates, and the sixth model 
included all five covariates. As not all covariates were available for all participants, 
the number of participants varied between models. The resulting transition rates and 
hazard ratios are based on every observation of every participant in combination with 
the time in between the observations. 

In a second step, using the MSM maximum likelihood estimate as input, the 
duration for every stage was estimated. Confidence intervals of 95% were derived 
by simulation using the asymptotic properties of the maximum likelihood estimation, 
which allowed comparison between age-specific estimates for the different 
covariates. R-packages msm for the multi-state transition model and ELECT version 
0.3 (Estimating Life-Expectancies for interval censored data) were used to estimate 
the duration estimates and confidence intervals [36, 37]. Sensitivity analyses included, 
aside of fitting all covariates in one model, sequentially removing cohorts from the 
analysis to ensure results were not driven by a single cohort. We also reran all models 
in the subset with data on all covariates (n=1518). 

3 Results
A total of 3,268 participants were included in the analyses across the six cohorts 
combined. The mean (SD) age at baseline was 73 (8) years with a range of 50 to 96 
years. The mean (SD) number of follow-up years was 2.8 (1.9) with a range of 0.3 to 
20 years, and a median (IQR) number of 4 (3-5) visits. Progression to at least one 
consecutive stage was apparent in 981 (32% of 3,034) participants. Table 1 shows 
how participants in the baseline stages differed in sex, APOE e4 genotype, abnormal 
CSF tTau, follow-up length and mortality (Suppl. table B.5 for subgroups with data on 
APOE and CSF tTau available).

 3.1  Transition rates
In the model that included age, sex and setting, all transition rates to subsequent 
disease were significantly influenced by age, except mortality in the preclinical AD 
stage and progression from prodromal AD to mild AD dementia (Suppl. table B.2 for 
all estimates of the models). Compared to data collected in a research setting, data 
from clinical settings was associated with a higher progression rate (HR=4.40 [95% 
CI, 2.80-6.94]) and reversion rate (HR=1.98 [95% CI, 1.15-3.39]) between preclinical 
and prodromal AD. Additionally, in the clinical setting the progression rates from 
the prodromal AD to the mild AD dementia stage (HR=1.48 [95% CI, 1.34-1.92]) and 
from the mild AD to the moderate AD dementia stage (HR=1.41 [95% CI,1.16-1.72]) 
were higher. Females had a higher progression rate from mild AD to moderate AD 
dementia, compared to males (HR=1.24 [95% CI, 1.04-1.47]), while their mortality risk 
in moderate AD dementia was lower (HR=0.60 [95% CI, 0.46-0.80]).
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Table 1  Baseline characteristics according to diagnosis 

3.2  AD stage duration according to age, sex, and setting
The predicted total disease duration, based on the model with age, for an individual 
with preclinical AD at age 70 was 20 years (95% CI, 17-21), consisting of a preclinical 
stage of 10 years (95% CI, 8-11), followed by a prodromal stage of 4 years (95% CI, 
3-5), mild AD dementia for 3 years (95% CI, 2-3), and moderate AD dementia for 3 
years (95% CI, 2-3, Table 2). Figure 2A shows for those with preclinical AD a lower 
predicted overall disease duration at older age, which ranged from 24 years (95% CI, 
22-25) at age 60 to 15 years (95% CI, 11-17) at age 80. The duration of preclinical AD 
at age 70 was shorter in a clinical setting (4 years [95% CI, 3-5]) than in a research 
setting (11 years [95% CI, 9-13]). In the clinical setting, for individuals with prodromal 
AD, the stage duration of prodromal AD was also shorter, and while the dementia 
stage duration for these individuals was equal between settings, more time was spent 

Preclinical 
AD
(n = 438)

Prodromal 
AD
(n = 729)

Mild AD 
dementia
(n = 1867)

Moderate to 
severe AD 
dementia
(n = 234)

p-value 
overall 
group 
difference

Age (years) 73 (7) 72 (7) 73 (9) 75 (10) <0.01a

Male (n) 204 (47%) 417 (57%) 781 (42%) 74 (33%) <0.01

MMSE (0-30, median 
(IQR)) (n=3252) 

29 (28-30) 27 (26-29) 22 (19-24) 16 (13,19) <0.01b

APOE e4 genotype* (n) 
(n=1984) 

210 (49%) 466 (66%) 554 (71%) 35 (51%) <0.01

Abnormal CSF total tau* 
(n) (n=1563)

87 (38%) 346 (57%) 535 (80%) 47 (82%) <0.01

Follow-up years (median 
(IQR))

3.8 (2-4.5) 3.9 (2.5-4.8) 2.0 (1.5-2.5) 2.0 (1.2-2.3) <0.01c

Progression to next 
clinical disease stage (n)

87 (20%) 325 (45%) 569 (30%) NA NA

Death at follow-up (n) 12 (3%) 76 (10%) 215 (12%) 54 (23%) NA

Participants by cohort 
(n ADC/ ADNI/ AIBL/ 
DESCRIPA/ Gothenburg/ 
ICTUS)

40/ 180/ 
191/ 23/
4/ 0 

140/ 449/ 
73/ 49/
18/ 0

507/ 224/
69/ 0/
1/ 1066

64/ 1/
3/ 0/
0/ 166

NA

Mean (SD), unless otherwise specified. In Tukey posthoc: a  Moderate to severe AD dementia older 
than the MCI and Mild AD dementia group; b All groups significantly different from each other; c 
Normal cognition and MCI longer follow-up than dementia groups * Available in subset of cohorts, 
APOE not for ICTUS.
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in the moderate AD stage (Suppl. table B.7a and b). The estimated total duration with 
starting stage preclinical AD ranged in the clinical setting 19 years (95% CI, 17-20) 
at age 60 to 11 years (95% CI, 10-12) at age 80 and in the research setting from 26 
years (95% CI, 23-28) at age 60 to 15 years (95% CI, 12-17) at age 80. In females the 
moderate AD dementia stage duration was longer than in males (e.g. 2.1 years (95% 
CI, 1.1-3.2, p<0.0001 at age 70 in a clinical setting; Figure 2B, Suppl. table B.3). 
 

Table 2  Estimated stage-specific duration of Alzheimer Disease

Estimates based on model including age as covariate (Model 1 in suppl. table B.2). Moderate AD 
dementia = Moderate to severe AD dementia. Stage estimates significantly different from estimates 
at age 70: * p<0.05 † p<0.01; ‡ p<0.001; § p<0.0001.

Starting stage Duration, time in 
years (95% CI)

Age 60 Age 70 Age 80

Preclinical AD Preclinical AD 13 (10.4, 14.9) † 9.9 (8.4, 11.5) 7.6 (5.6, 9.7) †

Prodromal AD 4.4 (3.7, 4.8) 4.0 (3.3, 4.7) 3.5 (2.3, 4.5) *

Mild AD dementia 3.5 (3, 3.8) § 2.9 (2.4, 3.3) 2.1 (1.4, 2.5) §

Moderate AD 
dementia

3.5 (2.8, 4.1) § 2.6 (2.1, 3.3) 1.7 (1.1, 2.4) §

Total duration 24.1 (21.8, 25.4) 19.5 (17.3, 20.8) 15.0 (11.0, 16.9)

Preclinical AD 3.2 (2.2, 4.3) ‡ 1.6 (1.1, 2.1) 0.7 (0.4, 1.2) §

Prodromal AD Prodromal AD 4.6 (4.0, 5.3) 4.4 (3.9, 4.8) 4.0 (3.4, 4.7)

Mild AD dementia 4.5 (4.0, 4.9) ‡ 3.9 (3.5, 4.2) 3.0 (2.5, 3.4) §

Moderate AD 
dementia

4.9 (4.2, 5.5) § 3.9 (3.3, 4.5) 2.7 (2.2, 3.5) §

Total duration 17.2 (15.8, 18.3) 13.6 (12.7, 14.5) 10.3 (9.3, 11.5)

Mild AD dementia Mild AD dementia 5.0 (4.3, 5.7)† 4.3 (4.0, 4.7) 3.6 (3.2, 3.9) §

Moderate AD 
dementia

6.0 (5.1, 6.7) ‡ 4.8 (4.2, 5.5) 3.6 (3.0, 4.5) §

Total duration 10.9 (10.1, 11.8) 9.0 (8.4, 9.7) 7.1 (6.4, 7.9)

Moderate AD 
dementia 

Moderate AD 
dementia

6.5 (5.4, 7.5) ‡ 5.2 (4.0, 6.0) 4.1 (3.5, 5.1) ‡

DURATION OF PRECLINICAL, PRODROMAL, AND DEMENTIA STAGES OF AD



26

Figure 2  Estimated Stage-specific Duration for Starting Stage Preclinical AD 
The panels show the predicted time spend in each stage stacked and stratified for (a) age (model 1); 
for (b) age, sex, and setting (model 3); and for (c) age, APOE genotype, and setting (model 4).  
Models include age as continues, and (b) sex or (c) APOE, and setting as dichotomous covariates. 
The age refers to the starting stage with preclinical AD and the estimated duration the predicted 
duration in the subsequent stages in years. The 95% confidence intervals and p-values for  
estimate comparison can be found for (a) in table 2, for panel (b) in suppl. table B.3, and for  
panel (c) in suppl. table B.4)

 

 3.3  APOE	effect
APOE ε4 carriers had, compared to non-carriers, an increased rate of progression 
from the preclinical AD to prodromal AD stage (HR=1.63 [95% CI, 1.11-2.41]) and from 
the prodromal AD to mild AD dementia stage (HR=1.50 [95% CI, 1.18-1.90]), and a 
trend for slower decline from the mild to the moderate AD dementia stage (HR 0.77 
[95% CI, 0.60-1.00]). When compared to a non-carrier, an APOE ε4 carrier aged 70 
in the clinical setting had a 1.6 years (95% CI, 0.4-3.3; p=0.0295) shorter estimated 
preclinical AD stage duration, and 1.1 years (95% CI, 0.3-2.1; p=0.0110) shorter 
prodromal AD stage duration, but 1.0 year (95% CI, 0.3-1.8; p=0.0050) longer mild 
dementia stage duration (Suppl. table B.4). Figure 2C shows how the total predicted 
disease duration ranged from 12 to 25 years depending on APOE ε4 genotype,  
age and setting. 
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 3.4		 Tau	effect
As normal CSF tTau level may become abnormal over time only the estimated duration 
of the starting stages are presented in Table 3. Individuals with preclinical AD and 
abnormal CSF tTau showed a trend for an increased progression rate from preclinical 
to prodromal AD (HR=1.49 [95% CI, 0.95-2.35]). In prodromal AD, abnormal tau 
associated with a decreased reversion rate to preclinical AD stage (HR=0.41 [95% CI, 
0.23-0.71]) and increased progression rate to the mild AD dementia stage (HR=1.91 
[95% CI, 1.48-2.48]). The estimated preclinical AD stage was shortened by around 
3 years and the prodromal AD stage by around 2.5 years (Table 3). There was no 
association of baseline abnormal tTau with the duration of the dementia stages.

Table 3 Estimated stage-specific duration stratified for baseline CSF total tau by 
setting at age 70 years

Tau = baseline CSF total tau. Abbreviations: Moderate AD = moderate to severe AD. Estimates 
based on model including age as continues and baseline CSF tTau and setting as dichotomous 
covariates (Model 5 in suppl. table B.2). 

 3.5  Sensitivity analyses
Consecutively removing each of the cohorts did not affect the estimates (Suppl. table 
B.6). When all variables were combined in one model, most estimates remained 
unchanged. In the additional analysis of the same models in the subset of individuals 
with all covariates (n=1518, see Suppl. Table B.8), the effects were similar. Varying the 
mortality assumptions for unknown mortality dates of those who died, did not change 
the results. 

Clinical setting Research setting

Starting 
stage

Duration, 
in years 
(95% CI)

Tau 
normal 

Tau 
abnormal

Difference 
(95% CI; 
p-value)

Tau 
normal

Tau 
abnormal

Difference 
(95% CI; 
p-value)

Preclinical 
AD 

Preclinical 
AD

5.6 
(3.7, 8.9)

3 
(1.9, 4.3)

2.6
(0.7, 5.5; 
p=0.034)

11.6
(8.3, 14.3)

7.7
(5.6, 9.9)

3.7 
(0.4, 7.3; 
p=0.033)

Prodromal 
AD

Prodromal 
AD

5.4 
(4.0, 7.0)

3 
(2.3, 3.7)

2.4 
(1.2, 3.7; 
p=0.0002)

6.8 
(5.5, 8.1)

3.9 
(3.3, 4.6)

2.9 
(1.4, 4.2; 
p=0.0001)

Mild AD 
dementia

Mild AD 
dementia

4.4 
(3.2, 5.9)

3.6
(2.9, 4.4)

0.8 
(-0.4, 2.2; 
p=0.230)

6.4
(4.7, 7.9)

5.4 
(4.2, 6.5)

1.1 
(-0.5, 2.7; 
p=0.197)

Moderate 
AD 
dementia

Moderate 
AD 
dementia

4.9 
(3.1, 7.7)

5.9 
(4.1, 8.7)

-0.9 
(-3.0,1.6; 
p=0.439)

2.8 
(1.8, 4.1)

3.5
(2.5, 4.7)

-0.6 
(-2.0, 1.0; 
p=0.438)
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4  Discussion
We estimated the duration of the preclinical, prodromal, mild dementia, and moderate 
dementia stages of AD using a multi-state model. Depending on age, sex, APOE 
genotype, baseline CSF tTau and setting, the total disease duration varied between 12 
and 25 years, the preclinical stage between 2 and 15, the prodromal stage between 
3 to 7, mild AD dementia stage between 2 and 6 and moderate AD dementia stage 
between 1 and 7 years. 

	 4.1	 Effect	of	age
Age had the strongest effect on the duration of the preclinical and dementia stages, 
which could be explained by higher progression and mortality rates. The decrease 
of disease duration of the preclinical AD stage could also be due to a reduction in 
resilience to AD pathology at higher age, for example due to co-morbid brain disorders, 
resulting in a faster clinical progression [38]. Alternatively, older individuals may have 
spent a longer period in the preclinical AD stage before inclusion in the study. Our 
estimated duration of the combined preclinical and prodromal stage for a 70-year-
old (17 years) was very similar to the estimated duration of 17 years pre-dementia AD 
based on differential equation modeling of the amyloid accumulation rate in individuals 
aged 72 years on average [21]. 

	 4.2	 Effect	of	setting
The shorter duration of the preclinical and prodromal stage in the clinical compared to 
the research setting could be explained by the fact that individuals who present in a 
clinical setting are in a more advanced stage of the disease. An alternative explanation 
is that individuals who present in a clinical setting have a more aggressive disease 
form of the disease, whereas those with a slower progressive variant would be picked 
up in the research setting [39]. The estimated differences between settings may be 
underestimated in the current study, as part of the individuals from the AIBL and ADNI 
research cohorts were recruited in memory clinics.  The effects of setting on disease 
progression are consistent with other AD studies [40, 41]. 

 4.3	 Effect	of	APOE genotype
The shorter age-specific duration of the preclinical stage in APOE ε4 carriers is 
consistent with the observed earlier onset of dementia due to AD in epidemiological 
studies and the faster cognitive decline of APOE ε4 carriers with preclinical AD in 
research studies [11, 42-44]. While the prodromal stage was shorter in APOE ε4 
carriers, the dementia stage was longer which would imply that the total symptomatic 
disease duration is similar, but differently divided over the stages. These findings are 
important for clinical trials. For example, exclusion of ɛ4 carriers during a trial, what 
happened in the high-dose group of the BAN2401 trial, may affect rate of progression 
and possibly the power of the study [45].
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	 4.4	 Effect	of	sex
The dementia stage duration was longer in women, which was driven by lower 
mortality in this group. The study did not reveal significant sex differences in the 
duration of preclinical and prodromal AD stages. 

	 4.5		 Effect	of	tau
The presence of increased CSF tTau was associated with a shorter pre-dementia 
disease duration, which confirms that increased tau is associated with faster disease 
progression. Unlike previous studies, no effect of tau on mortality and duration of the 
AD dementia stage were found, which may be explained by dichotomization of CSF 
tTau in our analysis [16, 17]. 

 4.6 Duration and mortality 
The estimation of total disease duration estimates were in some cases longer than 
the residual life expectancies of population data [46]. For example, the residual life 
expectancy at age 80 was reported to be 8-10 years in the USA and Australia (data 
from 2010-2012), while in our study this ranged from 4 years for those with moderate 
AD to 15 years for individuals with preclinical AD. One explanation for the longer 
duration is that we may have overestimated disease duration because mortality had 
not been checked systematically in all studies. On the other hand, mortality rates 
in our study cohorts may also be lower because both volunteers participating in 
studies and memory clinic patients may be healthier at study entry than individuals 
not participating in research or attending memory clinics. 

 4.7 Strengths and limitations
A strength of the study is the large sample of participants with amyloid accumulation. 
The multi-state model approach is another strength, because it enabled the 
incorporation of multiple clinical stages, including fluctuations between stage, and 
the mortality risk in a data driven manner. A limitation of the modeling approach 
is the underlying assumption that progression risk is independent on the previous 
time spend in a stage, while progression risk may actually change after being 
in a stage for a longer period of time. This was addressed by taking age as the  
time-dependent covariate, which has been applied before to overcome this issue  
[22, 47]. To estimate the disease duration, we had to combine data of multiple cohorts 
across the disease spectrum. As such, the sample consisted of over 3000 individuals,  
still not all the effects were estimable. Combining cohort data leads to heterogeneity, 
i.e. due to different application of diagnostic criteria, cognitive testing and amyloid 
status. Another limitation was that amyloid status and APOE genotype were unknown 
for AD-type dementia patients of the ICTUS study, but the sensitivity analysis 
without the ICTUS, yielded very similar results. Additionally, we used the old criteria 
for the preclinical AD definition, while the recent research criteria also require tau 
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positivity [8]. Finally, our sample is not representative of the general population,  
but may be representative of the patients who physicians need to inform, and 
volunteers that participate in clinical trials.

 4.8  Implications 
Our estimates are of practical use to clinicians needing to provide prognostic 
information to research participants and patients. For instance, in a research 
study with disclosure of abnormal amyloid status, these estimates can give 
an indication of the prognosis, often asked for by the trial participants before 
joining the study. The estimates of AD duration are also useful to define target 
populations for trials. Furthermore, these estimates can be used to indicate 
how a preventive treatment in the early stage of the disease could impact total  
disease duration. 

 4.9.  Conclusion
We provided age-specific disease estimates of the duration of AD, including the long 
pre-dementia stage, according to setting, sex, APOE genotype, and presence of tau 
pathology. Our findings will be useful to provide patients a prognosis, to inform clinical 
trial design, and can help to model how interventions in early stage AD may influence 
long-term outcome. 
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Table A2  Participants numbers and baseline characteristics of participants by cohort

ADC=Amsterdam Dementia Cohort; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = 
Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; Gothenburg = Prospective 
Population Study of Women in Gothenburg.

Table A3  Total amyloid positive participants and numbers excluded by cohort

For ADNI number of individuals is at download date. ADC is a clinical database, which was recently 
updated, so numbers cannot be traced back

ADC
(N=751)

ADNI 
(N=854)

AIBL
(N=336)

DESCRIPA
(N=72)

Gothenburg
(N=23)

ICTUS
(N=1232)

Baseline 
Diagnosis

Normal 
cognition, 
No.

40 180 191 23 4 0

Mild 
Cognitive 
Impairment, 
No.

140 449 73 49 18 0

Mild AD 
dementia, 
No.

507 224 69 0 1 1066

Moderate to 
severe AD 
dementia, 
No.

64 1 3 0 0 166

Follow-up, 
y median 
(IQR)

3 (1.5-4.5) 3 (2-4.2) 4.5 (1.5-4.5) 2.5 (2-3) 12 (8-16) 2 (1.5-2)

Age, y 
mean (SD) 66 (7) 74 (7) 74 (7) 69 (8) 74 (4) 77 (7)

Female, % 50 45 51 46 100 65

ADC ADNI AIBL DESCRIPA Gothenburg ICTUS

Amyloid 
positive 751 882 418 101 23 n/a

After 
removal 
duplicate 
cases of 
ADC or no 
Dx

n/a n/a 418 83 n/a 1301

 N included 
with FU 751 854 336 72 23 1232
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Table A4  Overview characteristics included versus not included due to no follow-up  
by cohort and baseline diagnosis 
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ADNI methods
Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD).

 References supplement A
1. Landau SM, Breault C, Joshi AD, et al. Amyloid-beta imaging with Pittsburgh compound B  
 and florbetapir: comparing radiotracers and quantification methods. J Nucl Med 2013; 
 54(1): 70-7.
2. Bertens D, Tijms BM, Scheltens P, Teunissen CE, Visser PJ. Unbiased estimates of   
 cerebrospinal fluid beta-amyloid 1-42 cutoffs in a large memory clinic population. Alzheimers  
 Res Ther 2017; 9(1): 8.
3. Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature 
 in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 2009; 65(4): 403-13.
4. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive   
 impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
5. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies,  
 towards a consensus: report of the International Working Group on Mild Cognitive Impairment.  
 J Intern Med 2004; 256(3): 240-6.
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Supplement B.  
Methods	and	Specifications	Multistate	Model	Analysis	and	Estimations	
of Disease Duration

Background multistate model and disease duration
A multistate model is a Markov model in which multiple transition rates can be estimated in a single 
model, while also allowing non-linear rates over time with age as a time-dependent covariate (i.e. 
being age-specific). This technique was previously used in AD research to estimate age-related AD 
biomarker abnormality prevalence and to extrapolate the effect on the prevalence if a preventive 
treatment would come available (Jack et al. 2016, Brookmeyer et al. 2018). The multistate model  
was fit with the R-package msm (Jackson, 2011). After determining the transition rates, the 
maximum likelihood estimate can be used as input for predicting the duration for every stage, as 
well as to derive 95% confidence intervals by simulation using the asymptotic properties of the 
maximum likelihood estimation. These calculations were done with the R-package created by Ardo 
van den Hout called Estimating Life-Expectancies for interval censored data (ELECT) (van den Hout 
2017, Jackson 2011). P-values of differences of the duration estimates between covariates specified 
in a model were obtained with the same software. More specifically each of the simulations were 
subtracted between two groups of a fitted model (i.e. male vs female) to derive a 95% confidence 
interval of the difference, and then calculate the p-value of the estimate. The same seed was set for 
all simulations to assure the same samples were drawn from the same multivariate distribution. We 
build up several models with the goal to estimate disease durations and investigate the effects of 
certain covariates. This supplement describes the data input and the choices in more detail.   

Figure B.1  Five stage multistate model 

Rationale of model choice
Data on clinical diagnosis and survival at every follow-up visit were used to fit a multistate model 
that included five stages. This model contained four living stages: preclinical AD, prodromal AD, mild 
dementia, and moderate to severe dementia. Death was the end-stage (Figure B1). Reversion from 
prodromal AD to preclinical AD was kept in the model as MCI is a clinically defined syndrome based 
on test scores, from which a participant can at least temporary improve, even in the presence of 
amyloid pathology (n=62 in this dataset). As a result, we report a duration in the preclinical stage for 
participants with prodromal AD at baseline. Reversions from mild dementia to prodromal AD or from 
moderate to mild dementia were treated as being misclassified in the more severe stage previous 
to the reversion, because it was considered that these reversions were due to variability in clinical 
scores rather than improvement of the disease. The probabilities for misclassifications were low; with 
0.014 (95% CI, 0.010-0.021) of true state prodromal AD being misclassified as mild AD  
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dementia and 0.043 (95% CI, 0.037-0.049) of true state mild AD being misclassified as moderate to 
severe AD dementia. Few participants with preclinical or prodromal AD received during follow-up 
a clinical diagnosis of non-AD dementia at follow-up (n=10), and were classified as having mild or 
moderate to severe dementia based on the global CDR score.
 
Specifics	of	data	
Table B.1a shows the state table of the dataset. This table contains all observations. Each individual 
can have multiple observations. ‘From’ does not refer to baseline diagnosis, but to diagnosis at 
previous visit. The time interval between visits varies. Table B.1b-d present the number observations 
at each moment in time, the number of observations per individual and the number of observations 
per stage. 

Basic	model	specifications	
The baseline estimates (transition rates) were centered at age 70. First the hazard ratios per year 
increase in age were estimated in Model 1 of which the estimates are in table B.2 below. Here the 
transition rates are defined for age in years. Based on these models, we estimated the duration of 
stages in Table 2 according to age. In the multistate model the rate for transitioning out of a state 
can be based on more than one rate. For instance the rate for moving from preclinical AD is based 
on the rates of preclinical AD to prodromal AD and of preclinical AD to death. In this case, the rate 
for preclinical AD to prodromal AD should not be interpreted in isolation. Interpretation of a fitted 
model is typically done using hazard ratios, as presented in the manuscript. 

Table B.1a     Summary of all transitions – Multistate model state table

             To

From

CN MCI Mild AD 
dementia

Moderate 
AD 
dementia

Death End of 
follow-up

CN 1094 105 9 0 13 70

MCI 72 1819 344 11 31 133

Mild AD 
dementia

0 17 3787 684 187 620

Moderate 
AD 
dementia 

0 0 124 782 135 192
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Table B.1b     Number of observations per follow-up time
Table B.1c      Number of observations per individual
Table B.1d     Number of observations per stage
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Models with covariates sex and setting 
We build up the model by adding the effects setting and then of sex, shown in Table B.2, model 2 
and 3. As there is a covariate effect on every transition, the number of parameters increases rapidly 
when adding covariates to a model. In particular the point estimates of effect of covariates on the 
transitions from preclinical AD, prodromal AD and mild AD dementia to death were not estimable, 
leading to incredibly large or small hazard ratios with confidence intervals of more than 3 times  
the hazard ratios. The only exception was the transition from mild AD dementia to death for sex  
in model 3. The others were omitted.

Model with APOE 
We next performed the analysis with APOE ε4 as predictor (Table B.2, model 4). In the subset of 
individuals with APOE data (n=1984) the effects of age, sex and setting on stage transitions were  
not different from those in the full dataset. Sex did no longer predict transition from mild dementia  
to death. The sample demographics are shown in table B.5a and the prediction of the age only 
model in table B.6a. The effects of the covariates on death in the preclinical, prodromal and mild  
AD dementia stage were again omitted because they were not estimable. Model 4 with age, APOE 
and setting was used to generate the estimates with starting stage preclinical AD in Figure 2 and 
Table B.4.  

Model with CSF total tau 
We next performed the analysis with baseline CSF total tau as predictor (Table B.2, model 5).  
In the subset of individuals with baseline CSF total tau (n=1563) data (table B.5a),  the effect of age  
and sex, setting on stage transitions were similar to those in the full dataset. The confidence intervals 
were wider, and the effect of age and sex on mild AD dementia to moderate AD dementia lost 
significance. The sample demographics are shown in table B.5b and the prediction of the age only 
model in table B.6b. Model 5 with age, setting and tau was used to generate the estimates in Table 
3. Model 6 includes all covariates and was part of the sensitivity analysis showing similar estimates 
(Table B.2). 
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Table B.3a      Estimated stage-specific duration for starting stage preclinical 
AD stratified by sex and setting
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Table B.2 All six models with baseline transition rates and hazard ratios (HR)
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Table B.3b     P-values and estimated difference in duration 
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Table B.4a     Estimated stage-specific duration for starting stage preclinical AD stratified 
 by APOE and setting
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Table B.4b    P-values and estimated difference in duration 
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Table B.5a    Baseline characteristics of participants with APOE data classified by baseline AD stage

Table B.5b   Baseline characteristics of participants with baseline CSF tau classified by 
baseline AD stage 

^ Available in subset of cohorts. Moderate AD dementia = moderate to severe AD dementia.

Preclinical 
AD
(N = 431)

Prodromal 
AD
(N = 709)

Mild AD 
dementia
(N= 776)

Moderate AD 
dementia
(N = 68)

P-value

Age, year mean (SD) 73 (7) 72 (8) 69 (9) 66 (8) <0.01

Male, No. (%) 200 (46%) 407 (57%) 394 (51%) 25 (37%) <0.01

MMSE (0-30), median (IQR) 29 (2) 28 (3) 22 (5) 13 (8.2) <0.01

APOE e4 genotype, No. (%) 210 (49%) 466 (66%) 554 (71%) 35 (51%) <0.01

Abnormal CSF tau^, No. (%) 85 (37%) 328 (56%) 517 (80%) 47 (82%) <0.01

Follow-up, years median (IQR) 4 (2.5) 3.9 (2.3) 2.5 (3) 3.5 (3) <0.01

Visits, No. median (IQR) 4 (2) 5 (2) 3 (2) 2 (1) <0.01

Progression to next stage, No. (%) 86 (20%) 320 (45%) 200 (26%) NA NA

Death at follow-up, No. (%) 11 (2%) 68 (10%) 106 (14%) 23 (34%) NA

Preclinical 
AD
 (N = 231)

Prodromal 
AD
 (N = 607)

Mild AD 
dementia
(N= 668)

Moderate AD 
dementia
(N = 57)

P-value

Age, years mean (SD) 73 (7) 72 (7) 68 (8) 66 (8) <0.01

Male, No. (%) 98 (42%) 352 (58%) 343 (51%) 22 (39%) <0.01

MMSE (0-30), median (IQR) 29 (2) 28 (3) 22 (4) 14 (7) <0.01

APOE e4 genotype, No. (%) 117 (52%) 383 (65%) 464 (72%) 30 (53%) <0.05

Abnormal CSF tau, No. (%) 87 (38%) 346 (57%) 535 (80%) 47 (82%) <0.01

Follow-up, years median (IQR) 3 (2) 3.8 (2.4) 2.5 (3) 3.5 (2.5) <0.01

Visits, No. median (IQR) 4 (2) 5 (3) 3 (2) 2 (1) <0.01

Progression to next stage, No. (%) 57 (24%) 270 (44%) 166 (25%) NA NA

Death at follow-up, No. (%) 10 (4%) 63 (10%) 98 (15%) 21 (37%) NA
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Table B.6a    Predicted stage-specific disease duration – subset with APOE or baseline CSF total tau
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Table B.6b    Predicted stage-specific disease duration – subsequently removing cohorts
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Table B.7a    Estimated difference in duration and p-values between setting
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Table B.7b     Estimated duration by setting
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Table B.8  All six models with baseline transition rates and hazard ratios, sensitivity analysis  
in those with complete covariate data ( = reduced sample size, n=1518)
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Model 2  AGE/SETTING
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Model 4  AGE/APOE/SETTING
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Model 5  AGE/TAU/SETTING
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Model 6  subsample with all variables (n=1518) AGE/SEX/APOE/ TAU/ SETTING
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Abstract

OBJECTIVE: To identify potential predictors for outcome in individuals with mild 
cognitive impairment (MCI) who have reverted to normal cognition (NC).
METHODS: We selected individuals with MCI, who reverted at follow-up to NC, 
with follow-up after reversion from ADNI. Common clinical markers, AD biomarkers, 
and neurodegeneration imaging markers were used to compare MCI reverters 
based on subsequent clinical outcome (i.e. subsequent decline or stable reversion).  
For independent comparison, findings of the clinical Amsterdam Dementia Cohort  
are presented.
RESULTS: Seventy-seven (10%) out of 757 individuals with MCI reverted to NC and 
61 individuals of these had follow-up data available. After 3.2±2.2 years 16 (24%) 
progressed to MCI, and 3 (5%) to dementia. Those who declined were older and had 
a higher amyloid PET burden and higher cerebrospinal fluid (CSF) tau levels. 
CONCLUSION: In MCI reverters, abnormal biomarkers for AD pathology are 
associated with subsequent decline. AD biomarkers may aid in the prognosis  
of reverting MCI.

AD BIOMARKERS MAY AID IN THE PROGNOSIS OF MCI REVERTERS



64

1 Introduction
Individuals with mild cognitive impairment (MCI) are at increased risk to develop 
dementia [1]. Yet, up to 25% of individuals with MCI revert to normal cognition (NC) 
[2, 3]. Although improved cognition seems to be a positive event, individuals reverting 
from MCI remain at increased risk to develop dementia compared to NC individuals 
[1, 4, 5]the Sydney Memory and Ageing Study. RESULTS While prevalence of MCI 
and different MCI subtypes remains relatively stable across all assessments, reversion 
from MCI and transitions between different MCI subtypes were common. Up to 46.5% 
of participants classified with MCI at baseline reverted at some point during follow-up. 
The majority (83.8%. Timely identification of individuals with a higher risk will increase 
prognostic certainty for patients and be useful for health care planning. 
 In individuals with NC and MCI, low memory function, abnormal biomarkers for 
Alzheimer Disease (AD), and neurodegeneration predict dementia [6, 7]. While MCI 
reverters deviate from the common clinical trajectory, the same disease processes may 
be underlying. Our aim was to investigate whether MCI reverters who subsequently 
showed clinical decline have more abnormal AD markers than MCI reverters who 
remain stable.

2 Methods
 2.1 Participants
Data analyzed were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu, downloaded at 2017/8/9). From the individuals 
with at least two years clinical follow-up, we selected all individuals with prevalent 
and incident MCI reverting to NC with additional follow-up after reversion [8]. The 
ADNI was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychological assessment can 
measure progression to MCI and early AD. Next to the primary analyses in ADNI, we 
selected from the Amsterdam Dementia Cohort (ADC) all MCI reverters with follow-
up after reversion. Similar clinical and biomarker assessments are presented for 
this small, independent clinical sample for illustration purposes only (for cohort and  
biomarker methods [9]). 

 2.2 Standard protocol approvals, registrations, and participant consents
All protocols were approved by an ethical review board and participants signed 
informed consent. 

 2.3 Clinical markers and APOE
All individuals had baseline data on age, sex and education. APOE genotype was 
dichotomized into ɛ4 carriers and non-carriers. Overall cognitive status was assessed 
by the MMSE, memory by the Rey Auditory Verbal Learning Test (RAVLT) immediate 
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(0-75) and delayed total recall (0-15), executive function by the Trial making test (TMT) 
A and B (seconds) and depressive symptoms by the Geriatric Depression Scale (GDS) 
(0-15). Subthreshold depression was classified as GDS>4 [10]. 

Figure 1  Flow diagram sample selection ADNI
N = number of individuals; MCI = Mild cognitive impairment; NC = cognitively normal; FU= follow-up 
visit; DX= diagnosis

 2.4  Biomarkers of AD and neurodegeneration
We studied CSF amyloid beta 1-42 (Ab1-42) and total tau (tTau) (Luminex in ADNI 
[11]; Innotest in ADC [12]), and amyloid PET (Florbetapir and PIB ) as markers for AD 
pathology. PIB scans were harmonized to Florbetapir by: new value=PIB standard 
uptake value ratio (SUVr)*.67+.15[13]. For imaging markers of neurodegeneration, 
we studied FDG-PET, hippocampal volume (HV, UCSF in Freesurfer v4.4/v5.1), 
normalized to total intracranial volume, and white matter hyperintensity volume (WMH 
[14]2 and the primary goal of ADNI, the lifetime risk for stroke equals and may exceed 
the risk of AD in some circumstances 3. In addition, MRI evidence of asymptomatic 
cerebrovascular disease (CVD). Cut points for abnormality for dichotomized 
analysis in ADNI were: CSF Ab1-42<192 pg/ml, CSF tTau>93pg/ml, amyloid PET 
SUVr>1.10, FDG-PET SUVr METAROI<1.21 and raw HV<6732 mm3 ([11, 12, 15, 16] for  
procedures and processing). Data collected within one year before or after MCI 
diagnosis were included. 
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Table 1  MCI reverters with follow-up of ADNI and ADC

 

ADNI MCI reverters
Amsterdam 
Dementia Cohort 
MCI reverters

Persistent 
normal 
cognition
(n = 42)

Decline 
to MCI or 
dementia
(n = 19)

p-value 
ADNI group 
comparison

p-value 
adjusted 
for age, 
sex, 
education, 
APOE ε4

Persistent 
normal 
cognition
(n = 24)

Decline 
to MCI or 
dementia
(n = 2)

Baseline characteristics

Age,  y 69 (8) 74 (8) 0.016 NA 65 (7) 71 (7)

Female, % 50% 26% 0.146 NA 29% 100%

Education, ADNI, y ADC, 
Verhage scale 17.2 (2.6) 16.3 (2.0) 0.095 NA 5 (1.4) 5 (1.4)

APOE E4 carrier, % 38% 32% 0.839 NA 46% 50%

Follow-up

Total follow-up y, median 
(IQR) 4 (2.3) 5 (2.5) 0.109 NA 3.0 (1.8) 5.3 (1.6)

Time to reversion y, median 
(IQR) 1 (1.8) 2 (2) 0.462 NA 1.3 (1.0) 1.8 (0.7)

Follow-up after reversion y, 
median (IQR) 2 (1.8) 3 (2) 0.265 NA 1.4 (0.9) 3.6 (1.0)

Time to progression after 
reversion y, median (IQR) NA 1 (1) NA NA NA 1 (0)

N with > 1 reversion 4 2 >0.99 NA 2 1

Clinical

MMSE 28.7 (1.4) 28.3 (1.8) 0.573 0.904 27.5 (1.6) 29

RAVLT immediate total 
recall 43 (11) 47 (12) 0.262 0.002 36 (10) 19

RAVLT delayed total recall 6.6 (4.2) 8.3 (4.6) 0.185 0.002 5.6 (1.6) 3

Trial making test A 31 (10) 34 (11) 0.496 0.700 38 (11) 44 (1)

Trial making test B 72 (24) 80 (31) 0.362 0.973 90 (36) 94 (30)

Geriatric depression scale 
(GDS) 1.1 (1) 1.6 (2) 0.138 0.018 3.7 (3) 3.5 (2)

GDS > 4, n (%) 2 (5%) 1 (5%) >0.99 0.508 7 (32%) 1 (50%)
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ADNI MCI reverters
Amsterdam 
Dementia Cohort 
MCI reverters

Persistent 
normal 
cognition
(n = 42)

Decline 
to MCI or 
dementia
(n = 19)

p-value 
ADNI group 
comparison

p-value 
adjusted 
for age, 
sex, 
education, 
APOE ε4

Persistent 
normal 
cognition
(n = 24)

Decline 
to MCI or 
dementia
(n = 2)

AD biomarkers

Amyloid PET, SUVR 1.08 
(0.15)

1.21 
(0.21) 0.026 0.016 - -

Amyloid PET, n SUVR > 
1.10 (%) 10 (30%) 9 (64%) 0.065 0.018 - -

Luminex CSF Ab1-42, pg/
mL̂

218 (45) 
^

190 (65) 
^ 0.214 0.213 - -

Innotest CSF Ab1-42, pg/
mL̂ - - 1047 

(243)^
780 
(5) ^

Abnormal CSF Ab1-42, n 
(%)^ 9 (31%) 5 (45%) 0.629 0.455 4 (20%) 2 

(100%)
Luminex CSF total tau, pg/
mL̂ 53 (17) ^ 84 (42) ^ 0.042 0.020 - -

Innotest CSF total tau, pg/
mL̂ - - 284 (140) 

^
955 
(24) ^

Abnormal CSF total tau, n 
(%)^ 0 (0%) 3 (27%) 0.024 0.009 3 (15%) 2 

(100%)
Imaging markers of 
neurodegeneration

FDG PET METAROI, SUVR 1.34 
(0.11)

1.27 
(0.14) 0.051 0.458 - -

FDG PET METAROI, SUVR < 
1.21, n (%) 5 (13%) 6 (35%) 0.126 0.627 - -

Hippocampus/Intracranial 
volume, cm3

0.48 
(0.07)

0.42 
(0.09) 0.092 0.591 - -

Hippocampus volume < 
6673 mm3, n (%) 6 (27%) 5 (56%) 0.280 0.731 - -

White matter hyperintensities 
volume, cm3

1.80 
(2.69)

4.29 
(6.24) 0.263 0.054 - -

Data are mean (SD) unless otherwise specified; Bold = significant level < 0.05; Italic < 0.10; * if 
no biomarker data was available at the first MCI visit the data within 12 months was used. ^for 
ADNI: Luminex assay abnormality threshold: CSF Ab1-42 <192 pg/mL, total tau >93 pg/mL; in 
ADC Innotest values corrected for upwards drift with abnormality thresholds CSF Ab1-42 <813 
pg/mL; total tau >375 pg/mL; Verhage scale range 1 to 7. MMSE=Mini-mental state examination. 
RAVLT=Rey auditory verbal learning test. Sample sizes in ADNI: Amyloid PET: n = 47;  FDG PET: n 
= 55; MR hippocampal volumes n = 31; White matter hyperintensities: n = 58; CSF: n = 40. Sample 
sizes in Amsterdam Dementia Cohort: RAVLT: n=24; GDS: n=24; CSF: n =22.
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 2.5  Statistical analysis
MCI reverters with NC at last follow-up and MCI reverters with subsequent decline 
were compared on clinical and biomarkers using Chi-square, Wilcoxon and t-tests 
when appropriate. We report results unadjusted and adjusted for age, sex, education, 
and APOE ε4 genotype with univariate linear regression models, and scaling of 
continuous outcomes, to facilitate comparability of effects. 

 2.6  Data-sharing statement
Data used for this study are available from the corresponding author, upon reasonable 
request. 

3 Results
In ADNI, 757 individuals with prevalent or incident MCI had been followed for at least 
two years (Figure 1). Of these, 77 (10%) reverted to NC, and 61 (79%) had additional 
follow-up available. After 3.2±2.2 years (mean±SD) 16 (24%) had converted to MCI, 
and 3 (5%) to dementia. One individual was excluded, due to missing data. 
 MCI reverters who showed subsequent clinical decline were on average 5 
years older than reverters remaining NC, and had, adjusted for age, sex, education 
and APOE, higher and more often abnormal AD biomarkers (amyloid PET and CSF 
tTau), less impaired memory and higher GDS scores (Table 1/Figure 2). Follow-up 
after reversion seemed slightly shorter for stable MCI reverters (p=0.11). Repeating 
analyses including this covariate did not essentially changed the results (Table S1).
 Post-hoc analyses further showed that biomarkers of MCI reverters were on 
average more similar to NC than non-reverting MCI, except for amyloid, which was 
more often abnormal in MCI reverters than in NC (Table S2). Still, MCI reverters showed 
higher clinical progression rates (110/1000 person-years) compared to baseline NC 
(52/1000 person-years, hazard ratio [95% CI] = 2.3 [1.4-4.0], p=0.002, Table S3/
Figure S1). The biomarker associations with progression were similar for NC and MCI 
reverters, whereas associations with progression and cognitive test scores were less 
consistent (Table S4/Figure S2). 

CHAPTER 2.2



69

Figure 2  Standardized beta’s AD clinical and biomarker for decliner group  
Immediate and delayed recall of the RAVLT (Rey auditory verbal learning test); TMT = Trail making 
test; GDS = Geriatric depression scale; WMH = white matter hyperintensities; HV = hippocampal 
volume. Models were adjusted for age, sex, education and APOE ε4.

 3.1   Outcome of MCI reverters in clinical ADC cohort
In the ADC, of 735 patients with MCI and a follow-up visit, 75 (10%) reverted to NC. 
Twenty-six (35%) patients had 1.6±0.8 years (mean±SD) follow-up available after 
reversion, after which 24 (92%) remained NC and 2 (8%) had dementia. Small group 
size precluded formal statistical testing. The two decliners had abnormal CSF Ab1-42 
and tTau (Table 1). The majority of individuals remaining NC had normal CSF Ab1-42 
(80%) and tTau (85%). Thirty-two percent of the stable reverters showed baseline 
subthreshold depression. 

4 Discussion
Age and AD biomarkers are associated with decline in MCI patients who initially 
reverted to normal cognition. MCI reverters showed higher clinical progression rates 
than NC individuals, which is in line with previous reports [1, 4]. MCI reverters with 
subsequent decline had an increased amyloid PET burden and CSF tau compared 
to reverters remaining normal. Between amyloid markers, amyloid PET showed a 
significant association with the subsequent decline group in MCI reverters, while this 
association was significant for CSF Aβ42 in NC. Although previous  research suggests 
that CSF amyloid becomes abnormal before PET [17, 18], the findings are in line with 
other reports that this may not apply to all individuals [19, 20], which contributes to the 
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notion that CSF Aβ42 and amyloid PET may represent different AD-related processes.
 An outstanding question is why individuals with underlying AD temporarily 
improved. Our results suggest that at baseline MCI reverters were more similar 
to NC than non-reverting MCI. Furthermore, biomarker values associated with 
subsequent decline were similar for reverting MCI and NC, while cognitive measures 
were less consistent. Possibly, reverters with decline received an MCI diagnosis 
very early in their clinical disease course, as their biomarker profiles was alike the 
non-reverting MCI. A modest improvement e.g., due to learning effects, resolving of 
(subthreshold) depressive symptoms or measurement error, may have contributed to  
reclassification as normal. Here we observed that when AD is present, such 
improvement is often not lasting.
 Furthermore, it remains unclear as to why individuals who reverted and remained 
NC over time were initially diagnosed with MCI. Aside neurodegenerative diseases, 
depressive symptoms are a common cause of MCI. Low depressive symptoms 
scores in ADNI reflect inclusion criteria. In the ADC subthreshold depression was 
more common. Another possibility is that distress or insecurity led to a suboptimal 
performance. The question remains how to deal with the classification of these 
individuals in the context of AD disease progression research, when MCI is often 
regarded as an intermediate disease stage. A practical implementation could be to 
classify reverting MCI with normal biomarkers as NC. Alternatively, including stability 
of the diagnosis in the classification has been suggested [4]. 
 A limitation of this study is the relatively short follow-up time, and so we cannot 
exclude the possibility that some individuals in the stable group may progress again. 
Compared to population-based studies, reversion rates in both cohorts were low 
[3]. Possibly, this reflects that clinicians will not easily reverse a known diagnosis. 
Reversion rates may even be lower, because we based reversion rates on individuals 
with MCI that met our inclusion criteria. Individuals with MCI excluded from these 
analyses as they were lost to follow-up were somewhat older and more cognitively 
impaired, which are characteristics that associate with decline [1] (Table S5). Although 
further replication in large population-based studies is necessary, our results  
suggest that AD biomarkers aid in the prognosis of MCI reverters, and could help to 
identify those with a good short term prognosis and those likely to decline again in 
the longer term.
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Supplemental data Chapter 2.2 

Table S1  MCI reverters stable versus decliner adjusted for follow-up time after revision.

ADNI MCI reverters

p-value adjusted for age, sex, education, 
APOE ε4, and 
duration FU after reversion

Clinical

MMSE 0.915

 RAVLT immediate total recall 0.003

RAVLT delayed total recall 0.003

Trial making test A 0.817

Trial making test B 0.979

Geriatric depression scale (GDS) 0.023

GDS > 4, n (%) 0.540

AD biomarkers

Amyloid PET, SUVR 0.017

Amyloid PET, n SUVR > 1.10 (%) 0.019

Luminex CSF Aβ42, pg/mL 0.219

Abnormal CSF Aβ42, n (%) 0.461

Luminex CSF total tau, pg/mL 0.020

Abnormal CSF total tau, n (%) 0.008

Imaging markers of neurodegeneration

FDG PET METAROI, SUVR 0.980

FDG PET METAROI, SUVR < 1.21, n (%) 0.879

Hippocampus/Intracranial volume, cm3 0.605

Hippocampus volume < 6673 mm3, n (%) 0.743

White matter hyperintensities volume, cm3 0.030
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Table S2  Baseline NC and non-reverting MCI compared to baseline MCI reverters 

NC

MCI
Non-
reverting

MCI 
reverters NC vs MCI reverters

Non-reverting MCI vs 
reverters

(n = 
460) (n = 637) (n = 67) p-value

Adjusted
for age, 
sex, 
education, 
APOE ε4 p-value

Adjusted 
for age, 
sex, 
education, 
APOE ε4

Baseline 
characteristics

Age,  y 74 (6) 73 (7) 69 (8) <0.001 - <0.001 -

Female, % 51% 40% 43% 0.327 - 0.738 -

Education, y 16.4 
(2.7)

15.9 
(2.8)

16.8 
(2.3) 0.306 - 0.018 -

APOE ε4 carrier, % 28% 51% 39% 0.102 - 0.089 -

Total follow-up, y 5 (3) 4 (2) 5 (2) <0.001 - <0.001 -

Follow-up after 
reversion, y (n=53) - - 3 (2) - - - -

Average % yearly 
progression to MCI 
or dementia

4.4% - 9.8% - - - -

Average % yearly 
progression to 
dementia

1.2% 9.7% 1.5% - - - -

Clinical

MMSE 29.1 
(1.2)

27.5 
(1.8)

28.7 
(1.3) 0.025 0.012 <0.001 <0.001

RAVLT immediate 
total recall 45 (10) 34 (10) 43 (11) 0.282 0.006 <0.001 <0.001

RAVLT delayed total 
recall 7.6 (4) 3.6 (3.7) 7.1 (4) 0.368 0.068 <0.001 <0.001

Trail making test A 34 (12) 42 (19) 32 (10) 0.085 0.828 <0.001 0.003

Trail making test B 83 (40) 117 (66) 76 (23) 0.022 0.868 <0.001 <0.001

GDS 0.8 (1) 1.7 (1) 1.3 (1) 0.002 0.003 0.024 0.013

GDS>4 8 (2%) 30 (5%) 3 (4%) 0.312 0.328 >0.99 0.836
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All >=2yr FU after baseline visit. Baseline CN includes the CN with incident MCI and then reversion. 
MCI reverters includes all  MCI reverters with MCI at the baseline visit, also those without additional 
FU, but not the incident MCI who reverted. Available sample: amyloid PET n=651, CSF n=865, FDG 
n=894, HV=779, WMH=1139.

NC

MCI
Non-
reverting

MCI 
reverters NC vs MCI reverters

Non-reverting MCI vs 
reverters

(n = 
460) (n = 637) (n = 67) p-value

Adjusted
for age, 
sex, 
education, 
APOE ε4 p-value

Adjusted 
for age, 
sex, 
education, 
APOE ε4

AD biomarkers

Amyloid PET, SUVR 1.11 
(0.18)

1.22 
(0.22)

1.12 
(0.16) 0.362 0.203 0.005 0.025

Amyloid PET SUVR 
> 1.11, %

87 
(35%)

202 
(58%) 22 (41%) 0.240 0.021 0.038 0.167

Luminex CSF Aβ42, 
pg/mL̂ 204 (52) 168 (52) 206 (47) 0.708 0.934 <0.001 <0.001

Abnormal CSF Aβ42, 
n (%)^

133 
(40%)

327 
(68%)

19 
(37%) 0.801 0.950 <0.001 <0.001

Luminex CSF total 
tau, pg/mL̂ 67 (32) 92 (53) 62 (27) 0.203 0.892 <0.001 <0.001

Abnormal CSF total 
tau, n (%)^

63 
(19%)

188 
(39%) 3 (6%) 0.037 0.178 <0.001 <0.001

Imaging of 
neurodegeneration

FDG PET METAROI, 
SUVR

1.31 
(0.12)

1.24 
(0.13)

1.32 
(0.12) 0.535 0.575 <0.001 0.001

FDG PET METAROI, 
SUVR < 1.21, %

65 
(19%)

195 
(40%) 11 (17%) 0.929 0.594 0.001 <0.001

Hippocampus/
Intracranial volume, 
cm3

0.46 
(0.1)

0.39 
(0.1)

0.48 
(0.1) 0.214 0.918 <0.001 <0.001

Hippocampus 
volume < 6673 
mm3, %

132 
(41%)

305 
(72%) 9 (26%) 0.131 0.826 <0.001 <0.001

WMH volume, cm3 3.5 (7.7) 4.0 (6.9) 2.6 (4.1) 0.791 0.925 0.487 0.333
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Table S3  Hazard ratio’s for progression of MCI reverters to MCI or dementia compared to NC

Figure S1  Cumulative incidence of MCI or dementia in NC (green) compared to baseline MCI  
who reverted (orange). 

Model 1 of table above. The groups include all baseline NC (n=506, progression n=101 (5 immediate 
to dementia) and MCI reverters (n=53, progression n=16) with follow-up visits. For the MCI only 
those with baseline MCI to avoid overlapping subjects. Progression to MCI or dementia for NC was 
52 per 1000 person-years, and for the MCI reverters 110 per 1000 person-years. 

HR [95% CI] p-value

Model 1 (unadjusted) NC vs MCI reverters 2.34 (1.38-3.99) 0.002

Model 2 (adjusted) NC vs MCI reverters 2.30 (1.33-3.92) 0.003

Age at baseline or reversion 1.04 (1.01-1.07) 0.010

Sex - male 1.39 (0.95-2.04) 0.088

Education 0.95 (0.89-1.02) 0.137

APOE e4 1.59 (1.08-2.34) 0.019
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Table S4   ADNI Predictors of progression in baseline NC compared to the MCI reverters 

All baseline NC with >= 2y follow-up (n=460). ^Clinical, AD and imaging markers comparisons are 
adjusted for age, sex, education, and APOE ε4.  

Baseline CN stable vs progression MCI reverters (copy table 1)

Persistent 
normal 
cognition
(n = 377)

Decline 
to MCI or 
dementia
(n = 83)

CN 
stable 
vs CN 
decline
p-value^

Persistent 
normal 
cognition
(n = 42)

Decline 
to MCI or 
dementia
(n = 19) p-value^

Baseline characteristics

Age,  y 74 (6) 76 (5) <0.001 69 (8) 74 (8) 0.016

Female, % 52% 45% 0.281 50% 26% 0.146

Education, y 16.5 (2.7) 16.1 (2.5) 0.216 17.2 (2.6) 16.3 (2.0) 0.095

APOE ε4 carrier, % 27% 34% 0.270 38% 32% 0.839

Total follow-up y, median (IQR) 4 (2) 5.5 (7) <0.001 4 (2.3) 5 (2.5) 0.109

Clinical

MMSE 29.1 (1.2) 29.1 (1.1) 0.262 28.7 (1.4) 28.3 (1.8) 0.904

RAVLT immediate total recall 46 (10) 41 (10) 0.003 43 (11) 47 (12) 0.002

RAVLT delayed total recall 8 (3.8) 6 (3.9) 0.001 6.6 (4.2) 8.3 (4.6) 0.002

Trail making test A 34 (11) 38 (13) 0.042 31 (10) 34 (11) 0.700

Trail making test B 82 (40) 88 (37) 0.998 72 (24) 80 (31) 0.973

GDS 0.8 (1) 1.1 (1) 0.009 1.1 (1) 1.6 (2) 0.018

GDS>4 5 (1%) 3 (4%) 0.085 2 (5%) 1 (5%) 0.508

AD biomarkers

Amyloid PET, SUVR 1.11 (0.17) 1.17 (0.21) 0.207 1.08 (0.15) 1.21 
(0.21) 0.016

Amyloid PET SUVR > 1.11, % 70 (32%) 16 (55%) 0.070 10 (30%) 9 (64%) 0.018

Luminex CSF Aβ42, pg/mL̂ 207 (51) 188 (51) 0.050 218 (45) 190 (65) 0.213

Abnormal CSF Aβ42, n (%)^ 105 (38%) 30 (54%) 0.094 9 (31%) 5 (45%) 0.455

Luminex CSF total tau, pg/mL̂ 64 (30) 82 (35) 0.001 53 (17) 84 (42) 0.020

Abnormal CSF total tau, n (%)^ 42 (15%) 21 (38%) <0.001 0 (0%) 3 (27%) 0.009

Imaging markers of 
neurodegeneration

FDG PET METAROI, SUVR 1.32 (0.11) 1.28 (0.13) 0.053 1.34 (0.11) 1.27 
(0.14) 0.458

FDG PET METAROI, SUVR < 1.21, % 46 (16%) 18 (31%) 0.053 5 (13%) 6 (35%) 0.627

Hippocampus/Intracranial volume, 
cm3

0.47 
(0.07)

0.43 
(0.05) <0.001 0.48 (0.07) 0.42 

(0.09) 0.591

Hippocampus volume < 6673 mm3, % 92 (36%) 40 (61%) 0.002 6 (27%) 5 (56%) 0.731

WMH volume, cm3 3.32 
(6.47)

4.28 
(11.95) 0.577 1.80 (2.69) 4.29 

(6.24) 0.054
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Table S5  Included and excluded MCI individuals based at least 2 years of follow-up time   

 
Included sample 
of MCI individuals

Excluded MCI 
individuals Included vs Excluded

(n = 757) (n = 177) p-value

Adjusted for 
age, sex, 
education, 
APOE ε4

Baseline characteristics

Age,  y 73 (8) 76 (8) <0.001 -

Female, % 41% 41% 0.985 -

Education, y 16.0 (2.8) 15.6 (2.9) 0.149 -

APOE ε4 carrier, % 48% 54% 0.209 -

Clinical

MMSE 27.7 (1.8) 27.4 (2.0) 0.090 0.426

RAVLT immediate total recall 35 (11) 32 (11) 0.002 0.058

RAVLT delayed total recall 4.0 (3.9) 3 .2(3.5) 0.006 0.090

Trail making test A 40 (18) 44 (22) 0.027 0.014

Trail making test B 112 (63) 131 (71) 0.001 0.014

GDS 1.6 (1) 1.9 (2) 0.187 0.033

AD biomarkers

Amyloid PET, SUVR 1.21 (0.22) 1.25 (0.24) 0.159 0.788

Amyloid PET, n SUVR > 1.10 (%) 55% 64% 0.106 0.646

Luminex CSF Aβ42, pg/mL 172 (54) 165 (49) 0.196 0.734

Abnormal CSF Aβ42, n (%)  352 (65%) 65 (71%) 0.262 0.814

Luminex CSF total tau, pg/mL 89 (51) 98 (59) 0.155 0.612

Abnormal CSF total tau, n (%) 229 (36%) 57 (37%) 0.824 0.464

Imaging markers of neurodegeneration

FDG PET METAROI, SUVR 1.25 (0.13) 1.20 (0.14) 0.001 0.007

FDG PET METAROI, SUVR < 1.21, n (%)  217 (38%)  53 (49%) 0.053 0.246

Hippocampus/Intracranial volume, cm3 0.40 (0.08) 0.40 (0.08) 0.943 0.479

Hippocampus volume < 6673 mm3, n (%) 328 (69%)  91 (72%) 0.529 0.909

White matter hyperintensities volume, cm3 3.94 (7.04) 3.96 (6.77) 0.306 0.598
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Figure S2  Biomarkers beta’s for progression group vs stable group in normal cognition. 

WMH = white matter hyperintensities; HV = hippocampal volume. Univariate analysis.

AD BIOMARKERS MAY AID IN THE PROGNOSIS OF MCI REVERTERS



80

3



81

 Recruitment for 
 Alzheimer disease 
    research
Chapter 3.1

 European Prevention of Alzheimer
 Dementia (EPAD) Registry:    
 recruitment and pre-screening   
 approach for a longitudinal cohort  
 and prevention trials.

Lisa Vermunt, Colin D. Veal, Lea ter Meulen, Charalambos Chrysostomou, Wiesje 
van der Flier, Giovanni B. Frisoni, Idris Guessous, Miia Kivipelto, Moira Marizzoni, 
Pablo Martinez-Lage, José Luis Molinuevo, David Porteous, Karen Ritchie, Philip 
Scheltens, Pierre-Jean Ousset, Craig W. Ritchie,  Gerald Luscan, Anthony J. 
Brookes, Pieter Jelle Visser

As published in Alzheimer’s & Dementia 2018 Jun; 14 (6): 837-842.

3
EPAD REGISTRY: RECRUITMENT AND PRE-SCREENING APPROACH



82

Abstract

BACKGROUND: It is a challenge to find participants for Alzheimer  Disease (AD) 
prevention trials within a short period of time. The European Prevention of Alzheimer 
Dementia (EPAD) Registry aims to facilitate recruitment by preselecting subjects from 
ongoing cohort studies. This paper introduces this novel approach.
METHODS: A virtual registry, with access to risk factors and biomarkers for AD 
through minimal datasets of ongoing cohort studies, was set up. 
RESULTS: To date, ten cohorts have been included in the EPAD Registry. Around 
2500 participants have been selected, using variables associated with the risk for AD. 
Of these, 15% were already recruited in the EPAD longitudinal cohort study, which 
serves as a trial readiness cohort.
DISCUSSION: This study demonstrates that a virtual registry can be used for the 
preselection of participants for AD studies.

1  Introduction
 1.1  Finding participants for secondary prevention of Alzheimer Disease
Finding participants for Alzheimer Disease (AD) trials is challenging [1]. This is 
particularly the case for studies with prodromal or preclinical AD participants, 
because these persons may not seek care for their problems and are unaware of the 
presence of amyloid pathology. An increasing number of AD trials aims to delay the 
onset of dementia in prodromal and preclinical AD. Traditional ad-hoc recruitment 
strategies, such as advertising in newspapers, result in a costly, labor-intensive and 
long recruitment process with many screen failures. Novel pre-selection and patient 
recruitment strategies are warranted. Online registries or the use of existing data 
sources may help to facilitate recruitment [2]. EPAD Registry makes use of existing 
data sources for recruitment in a virtual registry in order to speed up recruitment, 
reduce recruitment efforts, and reduce screen failures. 

 1.2  EPAD Registry as part of the EPAD project 
The EPAD Registry is part of the European Prevention of Alzheimer Dementia 
(IMI-EPAD) project. This project is meant to create a platform for AD secondary 
prevention trials and to improve the understanding of the development of AD, by 
setting up the EPAD Registry, EPAD longitudinal cohort study (EPAD-LCS) and 
EPAD proof-of-concept trials (EPAD-PoC) [3]. The EPAD Registry was set-up to find 
participants without dementia for the EPAD-LCS. In the EPAD-LCS participants 
undergo longitudinal assessments of cerebral spinal fluid (CSF), blood, MRI, AD 
risk factors and cognition. The primary outcome is the Repeatable Battery for the 
Assessment of Neuropsychological Status (RBANS). The EPAD-LCS serves as the 
trial readiness cohort for EPAD-PoCs. The first EPAD-PoC is planned to start in 2018.   
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 The EPAD Registry preselects participants from ongoing cohort studies and 
uses data from these cohorts for prescreening. The EPAD Registry involves several 
steps (figure 1). First the collaboration with an ongoing cohort study representative is 
established. Second a minimal dataset from the ongoing cohort study is created that 
can be queried in a software tool, called PREPAD. Potential participants are identified 
and invited for the EPAD-LCS by the EPAD study team. The results of these efforts are 
monitored. 

2  Methods
 2.1  Selection of and engagement with ongoing cohort studies
Cohorts that are selected for the EPAD Registry fulfil the following criteria: they are 
willing to provide participants for the EPAD-LCS, include participants without dementia 
over the age of 50, collected data suitable for prescreening, and have consent to 
contact their participants about the EPAD-LCS. In return the ongoing cohort studies 
will receive the data collected within the EPAD project for their participants. When 
interest is expressed by a cohort representative, cohort characteristics are collected 
online either in the European Medical Information Framework (EMIF) or Dementia 
Platform UK (DPUK) catalogues [4, 5]. Legal contracts are developed to cover 
interactions between cohorts and EPAD. These contracts cover the use of the virtual 
registry for EPAD purposes and receiving the EPAD data of their own participants. 

 2.2  Minimal dataset and PREPAD query platform 
Each cohort is asked to provide a minimal dataset of variables that can be used 
to preselect participants with an increased risk for AD. The variables comprise 
age, gender, education, apolipoprotein E ε4 (APOE ε4) genotype, family history of 
dementia, diagnosis of cognitive disorder, CSF biomarkers, MRI hippocampal atrophy, 
memory test scores, and baseline and longitudinal minimal mental state examination 
(MMSE) scores. At least 4 of the above variables are required. The minimal dataset 
of each cohort is harmonized. Cohort specific harmonisation rules are run with every 
update. Cohort representatives were supported by a small EPAD Registry workgroup 
consisting of software developers and AD-researchers. AD-researchers used mock 
files from each of the cohorts to define harmonisation rules and shared those with the 
developers supporting the harmonisation.   The minimal dataset is uploaded on a 
regular basis to the PREPAD software tool. PREPAD was developed to search these 
minimal datasets. It was adapted from an existing data discovery platform to allow for 
querying federated datasets and allow complex queries [6]. To ensure participants 
remain anonymous in the EPAD Registry, a software called ‘Deridiom’ was created 
that generates ‘Derivative IDs’ (derIDs). Deridiom converts cohort local identification 
numbers to derIDs. 

Searching participants with PREPAD involves a number of steps. First an 
algorithm is defined that aims to identify participants, according to the needs of 
the EPAD-LCS and EPAD-PoC. The algorithm is tailored for each cohort allowing 
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selection of participants in different risk-stages for AD. An algorithm can for example 
be a decreased memory score and age over 65. The search results in a list of derIDs. 
This list is provided to a cohort representative who converts derIDs into local IDs and 
selects participants to invite for EPAD-LCS screening. 

Figure 1  Schematic overview of data and participant flow in EPAD. 
Abbreviations: EPAD-LCS = EPAD longitudinal cohort study; EPAD-PoC = EPAD proof-
of-concept trials

 2.3  From EPAD Registry to EPAD-LCS and measuring recruitment rate
After participants have been selected via PREPAD, cohort representatives use local 
additional pre-screening information to decide whether a participant should be invited 
for EPAD-LCS screening. Next, a cohort representative approaches a potential 
participant. Dependent on local preferences and legislation, an opt-in letter is sent 
or a phone call is made to invite participants to one of the EPAD centres where 
screening activities and EPAD-LCS procedures will be conducted by the EPAD-LCS 
team. During the first contact by EPAD with a potential participant, usually by phone, 
in- and exclusion criteria are checked, such as the availability of a study partner. At 
each step, summary counts are collected of the number of participants in the process 
and predefined reasons for pre-screen failure such as contra-indication, no contact 
possible, in other study, unspecified reason, no interest of the participant, and prefer 
to invite later. 

3  Results 
 3.1  Cohorts
Twenty cohorts representatives from 8 countries completed the first step, the 
questionnaire about cohort characteristics, each of them giving access to 100 to 
500,000 potential participants. Ten cohorts from France, Italy, the Netherlands, 
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Sweden, Spain, Switzerland and the UK are currently formally signed-up to PREPAD, 
providing access to 17,500 potential participants aged over 50 and without dementia 
[7-13]. Incentives for cohorts to participate were: acquiring follow-up and biomarker 
measures in a subset of the cohort, scientific involvement in EPAD project, and 
providing clinical trial access for participants. In Table 1a the distribution according 
to diagnosis and age is presented. The variables available in each of the cohorts are 
shown in Table 1b. Memory clinic cohorts often have amyloid data available, and 
almost all cohorts have information on the APOE ε4 status. All cohorts have at least 
one parameter on cognitive status. 

 3.2  Recruitment for EPAD-LCS via EPAD Registry
As of the first of June 2017, 2433 participants of the EPAD Registry were pre-selected, 
of whom 75% were invited for EPAD-LCS screening by the team of the collaborating 
cohorts. The main reason for not contacting a participant was a known exclusion 
criterion. Most cohorts chose to contact participants by phone. Thus far around 15% 
of the subjects selected were suitable and agreed to undergo EPAD-LCS screening. 
This percentage may increase as more of the participants in the EPAD Registry will be 
considered for EPAD-LCS screening. Reasons of potential participants not entering 
EPAD-LCS screening are variable and partly dependent on collaborating cohort 
type. We will monitor uptake prospectively and report on this in detail once we have 
sufficient data available. 

Table 1 Number of participants of existing cohorts in the EPAD Registry June 2017 by age group

Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment, SCI, subjective cognitive 
impairment. NOTE. The 2433 participants already selected are not included in the table.

Age CN SCI MCI Total

50-64 9,065 511 83 9,659

65-79 5,160 265 219 5,644

>= 80 845 9 182 1,036

All 15,070 785 484 16,339
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Table 2   Prescreening data available on participants in existing cohorts of EPAD Registry June 2017  
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4  Discussion
The EPAD Registry provides a novel recruitment strategy. It is sufficiently flexible as 
we can adapt the screening algorithms to the type of data collected in a cohort and 
the type of participants needed for future EPAD-PoCs. The collaborating cohorts have 
different levels of information and draw on different populations. We chose not to define 
strict criteria for collaboration, but instead to use the data that are available within the 
cohorts. This approach leads to collaboration with more cohorts than would have been 
possible otherwise. However, a limitation is that risk estimates vary over cohorts. The 
efficacy of the approach will be monitored and reported on in the future. This includes 
the recruitment rate and the characteristics of population recruited, which can then be 
compared to other strategies. It may well be that this approach is particularly effective 
for specific populations of volunteers of patients. The adaptation of existing software 
led to a fast implementation. Plans for further development of the EPAD Registry 
functions entail extending PREPAD with other risk factors and inclusion of information 
on exclusion criteria. We also intend further automation of the harmonization process.  
 Our approach for recruitment and prescreening differs from those used in other 
studies and trials aimed at preventing disease progression in preclinical AD. Examples 
are the Early trial with a BACE-inhibitor from Janssen and another BACE inhibitor 
trial, the A4 study, that stepwise screen individuals from over 65 years old found 
via advertisements or a website. Additionally for the Early trial, persons between 60 
and 64 that have an additional risk factor, being a positive family history for AD or 
being an APOE ε4 allele carrier can be screened [14, 15]. The API-APOE4 trial from 
the Banner Institute pioneers with APOE genotyping as a screening method to find 
suitable trial participants [16]. The MOPEAD project is set up to formally test different 
recruitment and pre-screening strategies, including an online memory screening and 
recruitment via a diabetes mellitus outpatient clinic [17]. Another approach is to let 
potential participants register online individually. Registrants provide prescreening 
information, after which the platform matches them to ongoing studies. The Brain 
Health Registry is a leading example of this. All studies mentioned are ongoing and 
have not reported yet on the recruitment and the screen failure rate. When the EPAD-
PoCs have started, the EPAD Registry approach can be evaluated in terms of trial 
participation. Combining insights from these various approaches has the potential to 
greatly improve our understanding of the best ways to find participants for preclinical 
AD trials in the near future. Our approach could be adapted for other projects in the 
AD field and beyond, or to find participants within projects, if a minimal dataset for 
prescreening is available. 
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Abstract

BACKGROUND: Recruitment is often a bottleneck in secondary prevention trials 
in Alzheimer disease (AD). Furthermore, screen-failure rates in these trials are 
typically high due to relatively low prevalence of AD pathology in individuals without 
dementia, especially among cognitively unimpaired. Prescreening on AD risk factors 
may facilitate recruitment, but the efficiency will depend on how these factors link to 
participation rates and AD pathology. We investigated whether common AD-related 
factors predict trial-ready cohort participation and amyloid status across different pre-
screen settings. 
METHODS: We monitored the prescreening in 4 cohorts linked to the European 
Prevention of Alzheimer Dementia (EPAD) Registry (n=16,877; mean±SD age=64±8 
years). These included a clinical cohort, a research in-person cohort, a research 
online cohort, and a population-based cohort. Individuals were asked to participate in 
the EPAD longitudinal cohort study (EPAD-LCS), which serves as a trial-ready cohort 
for secondary prevention trials. Amyloid positivity was measured in cerebrospinal 
fluid as part of the EPAD-LCS assessment. We calculated participation rates and 
numbers needed-to-prescreen (NNPS) per participant that was amyloid-positive.  
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We tested if age, sex, education level, APOE status, family history for dementia, 
memory complaints or memory scores, previously collected in these cohorts, could 
predict participation and amyloid status. 
RESULTS: 2,595 participants were contacted for participation in the EPAD-LCS. 
Participation rates varied by setting between 3% and 59%. The NNPS were 6.9 
(clinical cohort), 7.5 (research in-person cohort), 8.4 (research online cohort), and 
88.5 (population-based cohort). Participation in the EPAD-LCS (n=413 (16%)) was 
associated with lower age (odds ratio (OR) age = 0.97 [0.95-0.99]), high education 
(OR=1.64 [1.23-2.17]), male sex (OR=1.56 [1.19-2.04]), and positive family history of 
dementia (OR=1.66 [1.19-2.31]). Among participants in the EPAD-LCS, amyloid 
positivity (33%) was associated with higher age (OR=1.06 [1.02-1.10]) and APOE 
ɛ4 allele carriership (OR=2.99 [1.81-4.94]). These results were similar across  
prescreen settings.
CONCLUSIONS: Numbers needed-to-prescreen varied greatly between settings. 
Understanding how common AD risk factors link to study participation and 
amyloid positivity is informative for recruitment strategy of studies on secondary  
prevention of AD. 

1 Background
Recruitment of participants for secondary prevention trials in Alzheimer Disease 
(AD) is challenging, which can cause substantial delays in study completion  
[1, 2]. The target population for these types of clinical trials typically comprises of 
individuals without signs of dementia, and with evidence of amyloid pathology [3]. 
Clinical trial screening of these mildly symptomatic or asymptomatic participants 
is accompanied by large numbers of screen failures [1]. The solution may be 
to introduce low-burden prescreening steps, which would limit the screening 
efforts to individuals with an increased prospect of enrolment into the study  
[4-7]. However, there is little empirical evidence on prescreening for secondary 
prevention trials and whether the efficacy depends on recruitment setting [8-11].   
 The European Prevention of Alzheimer Dementia (EPAD) Registry was set 
up as a virtual registry from existing cohorts [12]. The purpose was to enable 
recruitment and preselection of individuals for participation in the EPAD longitudinal 
cohort study (EPAD-LCS) [13], which also serves as a trial-ready cohort for the 
EPAD secondary prevention trials [14]. Data on several AD-related factors were 
available in these existing cohorts, including age, sex, education, APOE genotype, 
family history of dementia, subjective cognitive decline (SCD), and memory tests, 
as well as on common exclusion criteria. Furthermore, unlike in most trials, where 
a participant contacts a site following advertisements, in EPAD, researchers 
invited participants from the cohorts in the EPAD Registry into the EPAD-LCS.  
This approach allowed for investigation of how AD risk factors related to the 
participation rate, an important consideration for the feasibility assessment of 
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recruitment strategies. The recruitment settings linked to the registry include memory 
clinics, online and in-person brain research cohorts, and population-based cohorts, 
thereby offering the opportunity to compare them. We assessed participation rates 
across different recruitment settings, and provide a number needed-to-prescreen 
(NNPS) to identify one eligible and amyloid-positive individual. We also tested 
the AD-related factors as predictors for participation in the EPAD-LCS and for  
amyloid positivity.

2. Methods 
 2.1 Population
The analysis included participants from the first four cohorts that were linked to the 
EPAD Registry. The French Trial Registry in Toulouse selected patients referred by 
GPs and self-referral from memory clinics [15]. Inclusion criteria were: interest in 
clinical trials, available study partner and no obvious exclusion criteria for clinical 
trials. Data from 195 participants without dementia, with visits between July 
2016 and February 2018, had been linked to the EPAD Registry. The ALFA Study 
included cognitively unimpaired individuals who expressed interest in participating 
in AD research and data of 2,595 participants aged over 50 years, with first visits 
in 2013 and 2014, were linked to the EPAD Registry [16]. Generation Scotland 
(GS) was a population-based study which collected data between 2006 and 2011 
in Scotland on randomly drawn individuals with a relative to co-enrol [17]. Its aim 
was to create a resource of human biological samples and information for medical 
research, and data on 13,681 participants aged over 50 years, without a known 
diagnosis of dementia, were linked to the EPAD Registry. The pilot ‘hersenonderzoek.
nl’ (pilotHO.nl) was a web-based registry with the aim of recruiting people from the 
general public for brain research and ran from Sept 2016 to Sept 2017 when the 
final  version of the registry was launched. This pilot registry had 412 participants,  
age over 50 years and without a self-reported diagnosis of dementia, linked to the 
EPAD Registry.

 2.2  EPAD Registry selection and prescreening process
The enrolment process for the EPAD-LCS consisted of 4 steps. In step 1, participants 
were preselected from the 4 cohorts using algorithms in the EPAD Registry online 
tool [18], based on different combinations of age, sex, diagnosis of mild cognitive 
impairment (MCI), APOE genotype, SCD, memory test scores, and/or family history for 
dementia, available in the parent cohort (Table 1). Flexible algorithms were tailored to 
each of the cohorts, and adjusted if the number of individuals meeting the algorithmic 
criteria was low. The algorithms selected individuals older than 50 years across an AD 
dementia risk spectrum [13]. These included those with low and medium risk for AD to 
reach the recruitment targets for the study, as well as to avoid AD risk status disclosure 
by invitation. In step 2, the cohorts’ investigators checked eligibility of selected 
individuals, using data from their databases. These criteria included the EPAD in-  
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and exclusion criteria, which involve absence of disorders that could interfere with 
trial participation, absence of dementia, and openness to potentially participate in 
intervention studies and receive disclosure [13]. In three of the cohorts, preselected 
individuals were then approached by telephone for participation. The population-
based cohort GS sent an opt-in letter. In step 3, the EPAD sites performed a telephone 
screen to check eligibility amongst those who expressed interest in participating. 
Prescreen failures during the first 3 steps were categorized as: ‘matching an exclusion 
criterion’, ‘no interest in participation in the study’, ‘not returning the opt-in letter’, 
‘other reason, not specified’ [12]. In step 4, participants visited a site and enrolled in 
the EPAD-LCS for a screening/baseline visit, after which eligibility was confirmed and 
amyloid status was determined [13].

 2.3 Data collected as part of the EPAD-LCS
From the EPAD-LCS baseline visit we used, clinical information, i.e., the CDR sum of 
boxes (CDR-SOB) and Mini-Mental State Examination (MMSE); structural MR imaging 
visual rating scales, i.e., the medial-temporal atrophy scale (MTA) mean score and 
Fazekas deep score of white matter hyperintensities. From the cerebrospinal fluid 
(CSF) analysis, we used Elecsys Aβ42, total tau, and phosphorylated tau values, 
and from the blood analyses, for some participants, APOE ɛ4 genotype. For a full 
description of the EPAD-LCS protocols, we refer to [13].

 2.4  Predictors 
The predictors as collected in the cohorts linked to the Registry were: age, sex, 
education level (low to normal or high), APOE genotype (ɛ4 non-carrier or carrier), 
presence of family history for dementia, presence of SCD, and a low score on a 
delayed recall memory test (z-score < -1.28, details on definitions of variables 
Supplement, legend Table 1). All cohorts had data available on demographics. SCD 
data was present in all cohorts, except GS. APOE genotype was available in the 
ALFA Study, GS, and a subset of pilotHO.nl. Family history and memory test scores 
were available for all participants of the ALFA Study and GS, and for the majority 
in the Toulouse Registry and pilotHO.nl. The definitions of the predictors were as 
follows: high education was 14 years or more in Toulouse Registry, the ALFA Study, 
and GS, and in pilotHO.nl a score of 6 or more on the Verhage scale, equivalent 
to college or university level [19]. Subjective cognitive decline: presence of memory 
complaints in the absence of impairment on cognitive tests (Toulouse Registry); a 
positive answer on the question whether the participant memory had complaints 
(ALFA study), a positive answer on the questions whether the participant memory had 
complaints and worries about their memory (pilotHO). Low memory delayed recall 
z-score < -1.28 on the FCSRT delayed recall (Toulouse), the memory binding test  
(ALFA study), the Wechsler logical memory - delayed recall (GS), and the Muistikko-
test (pilotHO).
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 2.5 Outcomes
The first outcome measure was enrolment into the EPAD-LCS, indicating participation 
in a screening/baseline visit. The second outcome was amyloid positivity, defined as 
CSF Aβ42 below 1098 pg/mL [20-22], for participants who completed and passed the 
eligibility checks of the EPAD-LCS screening visit. 

 2.6  Statistical analysis
Participation rate was defined as the percentage of individuals who underwent the 
EPAD-LCS screening visit out of the individuals approached for participation in the 
EPAD-LCS. The NNPS was defined as the ratio between the number of individuals 
contacted for participation and the number of individuals that passed baseline visit 
classified as amyloid positive. The number needed-to-screen (NNS) was the ratio 
between the number of individuals with baseline data and the number of individuals 
that passed screening visit who were classified as amyloid positive. To test the 
association between AD risk factors (predictors) and participation into the EPAD-LCS, 
and among those enrolled, between AD risk factors and amyloid positivity, we applied 
univariate logistic mixed models with a random term for cohort and fixed term for the 
predictor. Age was centered at 65. Explorative analyses included analyses stratified 
now by cohort using univariate logistic regression models. Additionally, as a second 
step, all significant predictors for either of the two outcomes were combined in two 
final multivariate models to summarize the results. Statistical analyses were performed 
in R version 3.4.2, using packages ‘lme4’ and ‘lmerTest’ [23, 24].  

3 Results
The four cohorts linked to the EPAD Registry included 16,877 participants. The 
participants were on average 64 (SD=8) years old and 39% were male, and expected 
amyloid positivity was calculated to be 19% based on a published meta-analysis 
[4] (Table 1). Figure 1 and Table 2 describe the recruitment flow of participants to 
enrolment and amyloid measurement in the EPAD-LCS between May 2016 and March 
2018. Table 3 presents clinical, imaging and CSF markers of the EPAD-LCS baseline 
visit for participants recruited from each of the cohorts, stratified by amyloid status.  
 From the EPAD Registry, 3009 individuals were preselected for participation in 
the EPAD-LCS and 2,595 individuals were contacted, of whom 413 (16%) agreed to 
participate and were eligible for the EPAD-LCS screening visit. To prevent contacting 
individuals matching exclusion criteria for the EPAD-LCS, most cohorts conducted a 
database check. This was most efficient in the Toulouse registry (100%). Of individuals 
with exclusion criteria in the ALFA Study 75% (110/147), and in pilotHO.nl 55% (24/53) 
were found during the database check. Participation rate varied by setting; in the 
Toulouse Registry it was 59%, in the ALFA Study 56%, in GS 3%, and in pilotHO.nl 
46%. The primary reasons for not participating were not returning the opt-in leaflet 
(67%), no interest (16%), and other reasons (13%). Of the 324 participants who had 
passed the eligibility checks during EPAD-LCS screening visit and had their amyloid 
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status available, 107 (33%) participants were amyloid positive. The total number of 
amyloid-positive individuals was similar between cohorts (Toulouse Registry n=23, 
ALFA Study n=36, GS n=22, pilotHO.nl n=26). However, the NNPS to find one eligible 
amyloid-positive participant varied; in the Toulouse Registry it was 6.9, in the ALFA 
Study 7.5, in GS 88.5, and in pilotHO.nl 8.4. Among individuals enrolled in the EPAD-
LCS, the NNS in order to find one amyloid-positive individual passing the screening 
visit was between 3.0 and 3.8 in all settings (Table 2). 

Table 1 Baseline available data and characteristics of cohorts

Legend: * high education: Toulouse Registry: >=14 years; ALFA Study:>=14 years; GS:>=14 years; 
pilotHO.nl: >=6 on the Verhage scale. ^ SCD: Toulouse Registry: physician diagnosis and MCI 
patients excluded; ALFA Study: memory complaints question; pilotHO.nl: questions on memory 
complaints with worries; $ Low memory delayed recall z-score < -1.28: Toulouse Registry: FCSRT 
delayed recall, normalised by formula (score-11)/2, at raw score cut-off < 9; ALFA Study: memory 
binding test, normalised to sample, at raw score cut-off  <18; GS: Wechsler logical memory - 
delayed recall was normalized, at raw score cut-off  <9; pilotHO.nl: online Muistikko-test, normalized 
to sample, at raw score cut-off <9. # MCI: Toulouse Registry: physician diagnosis; pilotHO.nl:  
self-report. 

Toulouse 
Registry

ALFA Generation 
Scotland

pilotHO.nl

Setting Memory 
clinic

In-person 
research 
cohort

Population- 
based

Online 
research 
cohort 

N 195 2,589 13,681 412

Age, y 68 (7) 60 (6) 64 (9) 65 (9)

Male, n (%) 56 (29%) 962 (37%) 5399 (39%) 155 (38%)

Highly educated, n (%) (n= 15239)* 97 (60%) 1,225 (47%) 4,860 (40%) 313 (77%)

APOE ɛ4 genotype, n (%) (n= 16185) NA 872 (34%) 3,695 (28%) 84 (31%)

Family history for dementia, n (%) (n= 
16844)

131 (71%) 2,470 (95%) 1,386 (10%) 193 (50%)

Subjective cognitive decline, n (%) 
(n=3175)^

151 (83%) 312 (12%) NA 81 (20%)

% low memory, n (%) (n= 16420)$ 17 (15%) 242 (9%) 1,684 (12%) 20 (9%)

Diagnosed with MCI, n (%)# 13 (7%) 0 3 (0%) 4 (1%)

Estimated amyloid-positive individuals 
based on [4], taking into account age- 
bins, n (%)

~40 (22%) ~430 (17%) ~2680 
(20%)

~80 (20%)
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Table 2  Recruitment flow from EPAD Registry by recruitment setting 

Legend: Number of individuals unless otherwise specified. EPAD-LCS v500 is the currently available 
data, quality checked at data lock. N=51 EPAD screening visit details not yet available. N=5 CSF 
results missing. N=32 screen failure: 11x other disease/incidental findings/CDR>=1, 18x procedures 
not possible, 3xinvestigator decision/no reason provided/no contact possible. 

Cohorts Total

Toulouse 
Registry

ALFA Study Generation 
Scotland

pilotHO.nl

Setting Memory 
clinic

In-person 
research 
cohort

Population- 
based

Online 
research 
cohort 

Step 1 Selection by PREPAD tool 169 618 1,947 275 3,009

Step 2 Not eligible 11 347 1 55 414

• Exclusion criterion 10 110 1 29 150

• Other 1 237 0 26 264

Selected for step 3 158 271 1,946 220 2,595

Step 3 Not eligible  65 119 1,879 119 2,182

• No interest 64 24 178 83 349

• No response to letter NA NA 1,470 NA 1,470

• Exclusion criterion 0 37 12 24 73

• Other 1 58 219 12 290

Eligible, selected for step 4 93 152 67 101 413

• % from step 2 56% 25% 3% 37% 14%

• % from step 3 59% 56% 3% 46% 16%

Step 4 EPAD-LCS screening visit 70 137 67 88 362

Eligible & CSF A1-42 analyzed 64 124 61 75 324 

• CSF A1-42 < 1098 pg/
mL(positivity) 

23 (36%) 36 (29%) 22 (36%) 26 (35%) 107 
(33%)

Number needed-to-screen 3.0 3.8 3.0 3.4 3.4

Number needed-to-prescreen 6.9 7.5 88.5 8.5 24.3
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Table 3  Included participants in EPAD Longitudinal cohort study per recruitment setting 
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Table 4  Univariate logistic regression for enrolment and CSF Aβ42 positivity in whole sample and 
stratified by  recruitment setting   
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Figure 1 Prescreening to enrolment: flow from EPAD Registry to EPAD trial-ready cohort 
Legend: CSF = cerebrospinal fluid; EPAD = European Prevention of Alzheimer Dementia. 

 3.1  Predictors for participation rate
The AD risk factors that were univariately associated with participation in the EPAD-
LCS, for all cohorts combined, were lower age (odds ratio (OR): age=0.97 [0.95-
0.99]), high education level (OR=1.64 [1.23-2.17]), male sex (OR=1.56 [1.19-2.04]) 
and family history of dementia (OR=1.66 [1.19-2.31], Table 4, for AUCs Table S2). In 
single cohorts, participation rates in the Toulouse Registry were predicted by SCD 
(OR=0.29; [0.09-0.76]), in the ALFA Study by male sex (OR=2.03 [1.24-3.35]), in GS 
by male sex (OR=1.81 [1.11-3.01]), high education (OR=2.20 [1.34-3.59], and family 
history (OR=2.95 [1.73-4.91], and in pilotHO.nl by age (OR=0.96 [0.93-1.00]). As a 
next step, we combined the predictor variables age, sex, education, family history, 
and APOE in a multivariate model (Figure 2, Supplement Table S1 and S3). Study 
enrolment was still associated with age, sex, education and family history (n with all  
variables = 2322).

 3.2  Predictors for amyloid positivity
Among all individuals enrolled in EPAD-LCS, amyloid positivity was univariately 
predicted by older age (OR= 1.06 [1.02-1.10]) and carrying an APOE ɛ4 allele (OR=2.99 
[1.81-4.94]) (Table 4, for AUCs Table S2). In individual cohorts, amyloid positivity in the 
Toulouse Registry was predicted by higher age (OR=1.10 [1.01-1.20]), gender (male 
OR=0.30 [0.08-0.96]), APOE ɛ4 (OR=6.42 [1.93-24.1]), and low memory (OR=18.90 
[2.87-377], in the ALFA Study by none, in GS by higher age (OR=1.23 [1.08-1.45]) 
and APOE ɛ4 (OR=7.20 [2.20-28.77]), and in pilotHO.nl by APOE ɛ4 (OR=3.34 [1.22-
9.48]). In the multivariate model, including predictor variables age, sex, education, 
family history, and APOE, amyloid status was predicted by age, APOE ɛ4, and 
weakly by family history (p=0.03, n with all variables = 322, Figure 2, Supplement  
Table S1 and S3). 
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Figure 2  Multivariate model for enrolment and amyloid positivity
Legend: EPAD-LCS = EPAD longitudinal cohort study (trial-ready cohort). APOE = Apolipoprotein  
E genotype.

4  Discussion 
Across settings, participation rates varied, while predictors for participation into the 
trial-ready cohort and amyloid positivity were comparable. Among those contacted for 
participation, enrolment was higher for individuals who were younger, more educated, 
males or had a family history of dementia, while amyloid positivity in the trial-ready 
cohort was only associated with being older and carrying an APOE ɛ4 allele. 
 The NNPS to find one amyloid-positive eligible participant in the population-
based Generation Scotland study was ten times higher than for those cohorts 
focused on brain disorders, which may be explained by their willingness to take part 
in an AD study [25]. Generation Scotland study visits have been completed, and the 
time between the last Generation Scotland study visit and EPAD recruitment was also 
longer than for the other cohorts. In addition, an opt-in letter was sent to Generation 
Scotland participants, while other cohorts contacted individuals by telephone, which 
may have lowered the response [26]. Moreover, the EPAD study site was at a travel 
time of 1-3 hours from the recruitment region. Finally, the cohorts from the other 
settings excluded persons with known exclusion criteria beforehand based on data 
from their cohort database, which may have decreased later stage prescreen failures. 
Still, the number of participants recruited of the large population-based Generation 
Scotland cohort were comparable to the bespoke cohorts, suggesting that there is 
scope and willingness within these type of cohorts to participate in dementia related 
intervention studies.
 Lower participation at older ages, and higher participation for both highly 
educated participants and those with a family history of dementia is in line with 
studies with dementia patients and online registers [9, 10, 27-29]. Barriers for older 
individuals to participate may include morbidities, difficulties to travel, and not 
having an study partner. The higher participation rate of males was unexpected, 
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as many research studies have lower male than female participation [9, 10, 30, 31].  
 The predictors for amyloid positivity, i.e., age and APOE, were as expected and 
in line with previous studies, including an EPAD-LCS full dataset analysis [4, 6, 32, 
33]. Low memory scores, in contrast, were only a significant predictor for amyloid 
positivity in the memory clinic cohort and the presence of SCD did not predict 
amyloid positivity in our sample. As low memory scores low memory scores were 
the best predictor for amyloid positivity in the memory clinic setting, memory tests 
may form a useful prescreen in this situation. An explanation for the discrepancy with 
previously reported associations of these factors with amyloid status, could be the 
non-standardized test data, and could possibly show better predictive effects with the 
use of tailored sensitive tests and questionnaires [9, 11, 32, 34-37]
.  The prevalence of amyloid positivity in those enrolled in the EPAD-LCS was 
33%. This prevalence was enriched around 1.5 times compared to the estimated 
prevalence in the whole cohorts based on a meta-analysis of prevalence in cognitively 
normal individuals [4]. The limited increase in prevalence of amyloid positivity could be 
explained by the fact that the variables available for prescreening each have a modest 
predictive accuracy for amyloid positivity [4, 6]. Another explanation is that low- and 
intermediate-risk individuals were selected from the cohorts in order to prevent risk 
disclosure by invitation and to have sufficient enrolment in the EPAD-LCS. 
 An advantage of our approach compared to other recruitment strategies such 
as media campaigns advertisement is that the use of existing data helped to exclude 
individuals with known exclusion criteria for secondary prevention trials. However, no 
direct comparison of efficiency relative to other prescreening strategies (e.g. advertising) 
could be made. A disadvantage of our approach is that consent to re-contact needs 
to be present in the cohorts and some costs are involved in the prescreening. In 
addition, cohorts become depleted, as shown for the smaller cohorts in our study. 
Future projects could involve direct comparisons between recruitment strategies and 
focus on cost and effort monitoring and comparison. Another important factor when 
recruiting from collaborating studies, as well as in the gathering of a ‘trial ready cohort’ 
is the aspect of time and cohort maintenance costs of both the recruitment cohorts 
and EPAD-LCS, but substantial. As AD is a progressive disorder, the time between 
testing in a parent cohort and time of selection may be important. Future work on the 
EPAD-LCS and similar projects needs to optimize the costs and efforts of maintaining 
a trial ready cohort. This should also involve monitoring the rate at which individuals 
become ineligible over time, for example because they develop comorbidities that are 
exclusion criteria.   
 A limitation is that the analyses were done with the risk factors available in each 
cohort, such that not all risk factors were available in all cohorts for all individuals. 
Also, the use of the available data and adaptation to local standard procedures meant 
that there was variability in the operationalization of variables. Secondly, algorithms for 
preselection in the EPAD Registry tool included predictor variables of the current study. 
Still, that is unlikely to influence the association between each of the risk factors and 

CHAPTER 3.2



103

participation rate as multivariate models yielded similar results. Additionally, cohorts 
were different from each other in more than one factor, such as sample size, population 
characteristics and communication style. Therefore differences in recruitment rate 
may be explained by several factors. Despite the differences, participation rate was 
associated with similar AD risk factors across cohorts. Finally, we have now studied 
the participation in a trial-ready cohort, but enrolment into an actual clinical trial might 
give different results, depending on study-specific in- and exclusion criteria and trial 
design [38]. Strengths of our study are the prospective prescreening and the large 
sample in which amyloid-testing was performed.
  Our comparison of common AD risk factors for their association with participation 
rate and amyloid positivity has several implications for prescreening strategies for 
secondary prevention trials aimed at individuals with amyloid pathology. Age was 
a relatively strong predictor for amyloid positivity. However, we also showed that 
elderly individuals were less likely to participate in the study, which would limit the 
prescreening efficiency of age for amyloid positivity. Therefore, addressing barriers 
for older individuals to participate could increase recruitment of eligible participants 
[29, 39]. Carrying an APOE ɛ4 allele was also a strong predictor of amyloid status 
but, as published before, the disadvantage is that around 40% of amyloid positive 
individuals are APOE ɛ4 non-carriers [40]. The prevalence of APOE ɛ4 positivity is 
around 20-30% and this may therefore not be optimal for prescreening in a small 
cohort. Disclosure of genotype could also be an issue [10, 41]. These limitations may 
be overcome by using a family history for dementia as a pre-screener. The advantage 
of this risk factor is the association with a greater enrolment rate, but the disadvantage 
is that its association with amyloid positivity is weak and the prevalence in the general 
population low. Subtle memory decline or concerns were not a useful prescreen for 
amyloid status in our study, but more specific tests or questionnaires may perform 
better [11, 42, 43]. A promising alternative may be blood tests for amyloid [5, 44, 
45]. With a sensitive threshold, such a test has the advantage to more effectively 
prescreen relatively younger individuals, who often comprise a large part of a 
registry population and are more likely to participate, but have a low prevalence of  
amyloid pathology.

5  Conclusions
We found that enrolment rates show major differences between cohorts, although 
predictors for participation were similar. The provided NNPS to find one eligible 
amyloid-positive participant are indicators that future recruitment strategies can relate 
to. The findings highlight considerations of clinical trial investigators, balancing a gain 
in the ease of recruitment with potentially reducing the generalizability of the trial. 
Measures to increase efficiency for recruitment for secondary prevention trials may 
include using prospective registries with continuous enrolment of participants, adding 
a prescreening step with sensitive measures, such as a blood test, and addressing 
barriers for older and lower-educated individuals to participate.
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Supplemental data Chapter 3.2 

Table S1 Multivariate logistic regression for enrolment and CSF Aβ1-42 positivity in whole sample  

Odds ratio (95% confidence intervals). CSF = cerebrospinal fluid. APOE = Apolipoprotein E gene. 
Shown effect sizes are: Age per 5 years older at baseline, APOE ɛ4 in contrast to no APOE ɛ4, male 
in contrast to female, highly educated in contrast to low or normal level educated, family history for 
dementia positive in contrast to family history for dementia reported. 

Table S3 AUC on multivariate model figure 2 

Models included: Multivariate AUCs calculated with pROC package in R of glm models 
(family=binominal, with DeLong confidence intervals). CSF = cerebrospinal fluid. Age at baseline, 
APOE ɛ4 status, gender, highly educated in contrast to low or normal level educated, status on 
family history for dementia. * No APOE genotype included in enrolment analysis. 

Enrolment  CSF Aβ1-42 positivity

Sample size N=2322 N=322

Outcome Univariate Multivariate Multivariate 
p-values

Univariate Multivariate Multivariate 
p-values

Age years 0.97 
(0.95-0.99)

0.97 
(0.95-0.99)

0.011 1.06 
(1.02-1.10)

1.10 
(1.05- 1.15)

<0.001

APOE ɛ4 
genotype

0.95 
(0.70-1.28)

0.85 
(0.62-1.15)

0.291 2.99 
(1.81-4.94)

3.69
(2.18-6.24)

<0.001

Male 1.56 
(1.19-2.04)

1.79 
(1.31-2.45)

<0.001 1.28 
(0.81-2.04)

1.20 
(0.72-2.00)

0.476 

Highly 
educated

1.64 
(1.23-2.17)

1.58 
(1.15-2.17)

0.005 0.89 
(0.56-1.42)

0.99 
(0.60-1.66)

0.977

Family history 
of dementia

1.66 
(1.19-2.31)

1.93 
(1.29-2.88)

0.001 1.58 
(0.83-2.61)

1.91 
(1.05-3.49)

0.034

Multivariate model figure 2 

Cohort Enrolment (AUC) Decreased CSF Aβ +ve^ (AUC)

Toulouse Registry* 0.57 (0.47-0.67) 0.77 (0.65-0.89)

ALFA Study 0.62 (0.55-0.68) 0.66 (0.55-0.77)

Generation Scotland 0.70 (0.64-0.76) 0.88 (0.79-0.96)

pilotHO.nl 0.63 (0.54-0.71) 0.71 (0.58-0.84)
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Table S2  AUC for binominal ROC curves of table 4
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Abstract

INTRODUCTION: Structural grey matter covariance networks provide an individual 
quantification of morphological patterns in the brain. These networks are disrupted 
in sporadic Alzheimer disease, and show associations with early Alzheimer disease 
pathological changes and cognitive decline. Therefore, these networks might be 
disease progression markers. However, it remains unclear when and how grey 
matter networks change with disease progression. We investigated these questions 
in autosomal dominant Alzheimer disease mutation carriers, whose conserved age 
at dementia onset allows individual staging based upon their estimated years to 
symptom onset.
METHODS: From the Dominantly Inherited Alzheimer Network observational cohort, 
we selected T1-weighted MRI scans from 269 mutation carriers and 170 non-carriers 
(mean age 38±15 years, mean estimated years to symptom onset -9±11), of whom 
237 had longitudinal scans with a mean follow-up of 3.0 years. Single-subject grey 
matter networks were extracted, and we calculated for each individual the network 
properties which describe the network topology, including the size, clustering, path 
length and small worldness. We determined at which time point mutation carriers 
and non-carriers diverged for global and regional grey matter network metrics, both 
cross-sectionally and for rate of change over time.
RESULTS: Based on cross-sectional data, the earliest difference was observed in path 
length which was decreased for mutation carriers in the precuneus area at 13 years 
and on a global level 12 years before estimated symptom onset. Based on longitudinal 
data, we found the earliest difference between groups on a global level 6 years before 
symptom onset, with a greater rate of decline of network size for mutation carriers. 
We further compared grey matter network measures with established biomarkers for 
AD  (i.e., amyloid accumulation, cortical thickness, brain metabolism, and cognitive 
function). We found that greater amyloid accumulation at baseline was associated 
with faster decline of network measures over time, and decline in grey matter network 
measures over time was accompanied by decline in brain metabolism, cortical 
thinning, and cognitive decline.
CONCLUSION: In summary, grey matter networks deteriorate in autosomal dominant 
Alzheimer disease in a similar fashion as in sporadic Alzheimer disease, and the 
network measures show decline over time prior to estimated symptom onset. These 
data suggest that single-subject networks obtained from structural MRI scans form an 
additional non-invasive tool for understanding the substrate of cognitive decline and 
measuring progression from preclinical to severe clinical stages of Alzheimer disease.
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1 Introduction 
In order to advance clinical trials to slow or halt Alzheimer disease, the most frequent cause 
of dementia [1], it is important both to understand the evolution of pathophysiological 
changes occurring and to develop disease progression markers [2]. Current 
biomarkers reliably detect Alzheimer disease pathology [3], however predicting and 
monitoring disease progression remains difficult. Brain networks are linked to cognitive 
function [4-6], and may offer insights into disease progression in Alzheimer disease. 
 One way to measure of brain networks is by determining the similarity of grey matter 
morphological measures between brain regions across individuals, i.e., grey matter 
covariance networks [7-9] (Panel 1). This approach is based on the notion that brain 
regions involved in distinct cognitive functions tend to develop in a similar way, possibly 
due to shared neurotrophic factors [10-12]. Common developmental trajectories and 
functional coactivation result in similar grey matter tissue properties, as measured 
on structural MR imaging [13-15]. These covariance patterns are related to normal 
cognition [16, 17], and reveal in healthy individuals an optimal, ‘small-world’, organization 
by graph theory description [18, 19]. In sporadic Alzheimer disease dementia, grey 
matter networks are disrupted, showing a less optimal, random organization [20-22]. 
In predementia stages, such network disruptions predict clinical progression and 
cognitive decline [23, 24]. The presence of amyloid β (Aβ) pathology in cognitively 
normal individuals has also been associated with grey matter network alterations [25-
27]. Together, these observations suggest that these networks change over the course 
of Alzheimer disease, from early stages, and that individual grey matter networks 
could possibly be used to monitor disease progression. However, as previous findings 
were based on one-time grey matter network extractions, it remains unclear whether, 
and when, these networks change within individuals as they progress in their disease. 
 A complication when studying sporadic Alzheimer disease is the difficulty of 
placing presymptomatic individuals on their disease timeline [28-32]. This issue is 
less problematic for carriers of a genetic mutation that causes autosomal dominant 
Alzheimer disease, because the age at onset of dementia can be estimated, from 
the age at onset in family members or carriers of the same specific mutation 
type. The estimated years to symptom onset (EYO) can serve as a proxy for 
disease duration [33, 34]. Using this paradigm, previous work demonstrated 
that Aβ aggregation starts more than two decades before dementia onset [35-
37]. Closer to symptom onset, individuals show accelerated hypometabolism 
and cortical thinning, which is followed by cognitive decline [38-40]. When 
during these processes grey matter networks start to decline remains unknown.  
 Here, we investigated for the first time single-subject grey matter networks over 
the course of autosomal dominant Alzheimer disease. We assessed when, and how, 
the networks change as a function of EYO, both cross-sectionally and longitudinally, 
on a global and regional level. To understand the relationship between grey matter 
network changes and disease progression, we also investigated how the networks 
alter with established Alzheimer disease markers.
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2 Materials and methods 
 2.1 DIAN study design and participants
In the worldwide Dominantly Inherent Alzheimer Network (DIAN) longitudinal 
cohort study, families with individuals carrying a PSEN1, PSEN2 or APP mutation 
undergo genetic testing and repeated clinical, cognitive, fluid, and brain imaging 
assessments. The non-carrier family members act as an inherent control group. 
Participants generally have study visits every three years at earlier disease stages 
and these assessments become yearly when either symptoms are present, or they 
are within three years of their EYO. DIAN protocols had supervisory approval from 
the ethical review board of Washington University in St. Louis, and all participants 
gave informed consent. For this study, we selected data from all participants who 
had undergone at least one MRI scan that passed quality control in the 12th data 
freeze. Families with the Dutch or Flemish APP mutation were excluded because 
these mutations result in a different phenotype, with predominantly cerebral  
amyloid angiopathy.

 2.2  Estimated years to symptom onset (EYO)
We calculated the EYO for mutation carriers and non-carriers identically: The EYO 
was defined as the mutation-specific mean age at onset subtracted by the individuals’ 
visit age [34]. In case of an unknown mutation-specific age at onset, the parental 
age at disease onset, reported by the participant, was used instead. For example, 
if the mean age at symptom onset for a specific mutation is 50 years, then a 35 
year old individual would have an EYO of -15. For the carriers of the ADAD mutation, 
this indicates that the individual is expected to show clinical symptoms of Alzheimer 
disease 15 years later. 

 2.3  Clinical evaluation and cognition
Disease severity was measured using the Clinical Dementia Rating scale (CDR) [41], 
administered to the participant and study partner by blinded raters. Participants 
were classified as being unimpaired (global CDR score=0) or symptomatic (global 
CDR 0.5, 1, 2 & 3). In addition, cognitive function was summarized using a cognitive 
composite developed in the DIAN project [42], consisting of the average of equally 
weighted z-scores of the Logical Memory delayed recall total score from the Wechsler 
Memory Scale-Revised, DIAN Word List Test delayed free recall score, Digit Symbol 
Coding total score from the Wechsler Adult Intelligence Scale-Revised Digit Symbol 
Substitution Test, and the total score from the Mini Mental State Examination.

 2.4  MR imaging acquisition and preprocessing
MRI T1-weighted scans (1.1 x 1.1 x 1.2 mm3 voxels, repetition time = 2300 ms, 
echo time = 2.95 ms, flip angle 9°) were acquired according to Alzheimer Disease 
Neuroimaging Initiative (ADNI) protocols [43]. We segmented T1 images into grey 
and white matter and CSF, using the Statistical Parametric Mapping software version 
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12 (SPM12; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 
London, UK). All segmentations were checked visually, after which 51 scans were 
removed due to failed segmentations or severe motion artifacts. Native space grey 
matter segmentations were resampled into 2 x 2 x 2 mm3 voxels. This voxel-wise data 
was used as input for connectivity analyses.

 2.5  Single-subject Grey Matter Networks and Metrics 
Grey matter networks were computed according to a previously published, automated 
pipeline [7] that includes two steps figurated in Panel A: (1) grey matter network 
extraction (https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks; 
implemented in Matlab2016b (MathWorks, Natick, MA)), and (2) graph theory-based 
metric calculation [7, 44]. To extract single-subject grey matter networks, we parcellated 
each individual’s native space grey matter segmentation into 6 x 6 x 6 mm3 cubes, 
containing 27 voxels. These non-overlapping cubes serve as the ‘nodes’ in the network. 
Connections between each pair of cubes across an individual’s scan were established 
by calculating the Pearson’s correlation coefficient between the corresponding 
voxels. This approach takes into account both the grey matter probability (i.e. from 
the tissue segmentation) as well as the spatial information present in 27 voxels within 
each cube. All correlations were stored in a matrix, and the presence or absence 
of connections between nodes was dichotomized according to an individualized 
threshold that ensured a maximum of 5% spurious connections for each individual [7]. 
 For each individual’s binarized grey matter network, we calculated graph theory 
metrics describing the global network properties: size, degree, connectivity density, 
clustering coefficient, path length, normalized clustering, normalized path length, 
and small world coefficient (see Panel 1 for explanation of these metrics). We also 
calculated regional network properties. In order to aid comparability with other studies 
previously performed in DIAN, regional network metrics were calculated within each 
region of the Desikan-Killiany atlas [45]. The regional masks were obtained by first 
parcellating each individual’s T1 image into 34 anatomical regions of interest (ROIs) 
from the Desikan atlas using Freesurfer 5.3 [46] (http://surfer.nmr.mgh.harvard.edu). 
The Freesurfer output was then aligned to the native space T1 using FSL (https://fsl.
fmrib.ox.ac.uk/fsl), and this transform was used to register the parcellation into native 
space. The network values of the degree, clustering coefficient, and path length were 
subsequently averaged within a region. Graph theory metrics were calculated using 
scripts from the brain connectivity toolbox (https://sites.google.com/site/bctnet/), 
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Panel 1 Grey matter network metrics 

A. Grey matter network 
extraction from the individual 
brain segmentation (described 
in text)

B. The sum of the number 
of nodes, i.e., the number 
of cubes, is the size of 
the network. The degree 
is the average number of 
connections per node. The 
connectivity density is the 
percentage of the number of 
connections in the network 
compared to the maximum 
number of connections 
possible. The clustering 
coefficient of a node describes 
the proportion  
of connections between 
neighbors for every node. 
For example, in case a 
node connects to 3 other 
nodes, there are 3 possible 
connections between those 
3 adjacent nodes. If only 
1 connection is present 
between 2 of the 3 other 
nodes, the clustering of the 
primary node is 1 out of 3, 
0.33. Global clustering is 
determined by taking averaging clustering values across all nodes. Path length is  
the mean of the shortest paths for a node to reach every other node in the network. 
The global path length is the average path length across all nodes. 

C. Normalized clustering and normalized path length describe how on a global level 
a network organization differs from a randomly organized network. The networks 
are randomized by rewiring the connections randomly in each network, while 
keeping intact the total number of nodes and degrees [47]. The network’s observed 
clustering and path length are divided by the clustering and path length values, 
respectively, of averaged random networks to obtain the normalized values. Lastly, 
the small world coefficient is the normalized clustering divided by the normalized 
path length. The network has the “small world property” if this ratio is higher than 1, 
indicating a path length close to the random networks, yet a greater then random 
clustering. This is optimal, because of fast exchange of information between remote 
clusters, and specialized information processing within clusters.

(Picture adapted from Verfaillie, HBM 2018, with permission)
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 2.6 Other DIAN imaging data
We examined regional data for Aβ using PET imaging with 11C-Pittsburgh Compound 
B (Aβ PET), glucose metabolism with 18F-Fluorodeoxyglucose PET (FDG-PET), and 
cortical thickness and volumes from structural MRI. Details on data processing have 
previously been described [36]. The Freesurfer ROIs were used to process the amyloid 
and FDG-PET data. PET data are processed using a cerebellar grey reference region 
and partial volume corrected using a geometric transfer matrix approach [48, 49]. In 
this study, we utilized the MRI precuneus cortical thickness, the precuneus Aβ PET, 
and to match a previously defined meta-ROI, the average of the left and right isthmus 
cingulate and inferior parietal region in FDG-PET for crossmodal comparison with 
grey matter network properties [50].

 2.7  Statistical analyses
We compared mutation carriers and non-carriers to determine (1) the EYO at which 
grey matter network metrics showed cross-sectional differences between groups, 
and (2) the EYO at which the groups had a different rate of change over time by fitting 
linear mixed effects models. Specifically, we used Bayesian inference methods [36, 
51] to determine the EYO point that 99% credible intervals of the difference distribution 
did not overlap 0. To allow for non-linear effects, without assuming a particular shape, 
we applied a restricted cubic spline with knots at the 0.10, 0.50 and 0.90 of the EYO 
distribution, also described previously [36], that included a linear term (EYOlinear) 
and a cubic term (EYOcubic). Cross-sectional models contained fixed terms for EYO, 
mutation status, their interaction, and a random effect for family cluster. Longitudinal 
models included fixed terms for baseline EYO (two terms: EYOlinear and EYOcubic), 
time after baseline, mutation status and, all 2- and 3-way interactions (see formulas in 
Sup., p.6). Additionally, the models included random intercept terms for subject and 
family cluster, and a random slope for subject. The covariates whole-brain grey matter 
volume and sex were included as fixed terms. Equivalent to previous work, when 
size, degree or connectivity density were found to be associated with mutation status 
in any of the models, they were included as additional covariate as these variables 
also influence more complex network metrics [21]. Regional models were additionally 
adjusted for regional grey matter volume. Model parameters were estimated as 
previously described, applying a Hamiltonian Markov chain Monte Carlo sampling 
of the posterior distribution, with 10,000 iterations in 8 chains, thinning retaining 
1 out of every 10 iterations, and cauchy prior in the STAN package for R [52, 53].  
 We examined relationships between grey matter networks and established AD 
markers within mutation carriers. Previous research suggested grey matter networks 
may be disrupted in response to Aβ accumulation, precipitating cognitive decline [26]. 
For this reason, our models included either precuneus PET Aβ as a predictor and grey 
matter network metrics as outcomes, or grey matter network metrics as a predictor 
and cortical thickness (precuneus), brain metabolism (meta-ROI), or cognition (DIAN 
cognitive composite) as the respective outcomes. These predictors and outcomes 
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were z-scored to the whole group. We fitted three sets of linear mixed effects models 
that were all adjusted for baseline grey matter volume, age, and sex, and with random 
intercept for family cluster, in lme4 package in R [54] (see detailed formulas in Sup., 
p.6). If models failed to converge, the term for family cluster was removed. Models 
were divided into three sections. The first were baseline comparisons. The second set 
were longitudinal comparisons in participants with at least 2 data points, and included 
additional random effects for subject intercept and slope of the predictor. The final 
set of models were used to evaluate whether baseline data could predict change 
over time in the outcome. These models had fixed effects for baseline predictor, time 
from baseline, and its interaction, and a random subject intercept and slope of time 
from baseline. We focused on the grey matter network small world coefficient, as this 
metric is indirectly derived from all other network metrics, and can thus be considered 
a summary statistic (Panel 1 p.8). 
  
 2.8 Data availability 
The data of the study can be freely requested online at https://dian.wustl.edu/

3 Results 
In total, 439 participants from the DIAN study, with a mean±SD age of 38±11 years 
and a mean±SD EYO of -9±11), had MRI scans of sufficient quality to be included in 
the present analyses. The group consisted of 269 (61%) ADAD mutation carriers and 
170 (39%) non-carrier family members (Table 1). Of this sample, 237 (54%) participants 
had longitudinal MRI scans, with a mean of 2.5 scans per participant and a maximum 
of 6 acquired over a mean±SD 3.0±1.5 years of follow-up (clinical and PET data in 
Sup. Table S1).

Table 1  Group characteristics 

Mean (SD), unless otherwise specified. MMSE=Mini Mental State Examination. Estimated years to 
symptom onset is the expected age at onset of the mutation that runs in the family.  

Non-carriers
(n=170)

Asymptomatic  
mutation carriers
 (n=174)

Symptomatic 
mutation carriers
(n=95)

Baseline age, years 38 (11) 34 (9) 46 (10)

Female, n (%) 101 (59%) 100 (57%) 50 (53%)

Estimated years to onset -11 (12) -14 (8) 1 (7)

MMSE 29.1 (1.2) 29.1 (1.2) 22.9 (6.6)

Total MR scans, 1/2/3/4-6, n 84/61/18/7 84/59/28/3 34/30/17/14

Follow-up time MR visits, years 3.3 (1.5) 3.2 (1.5) 2.2 (1.3)
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 3.1.   Cross-sectional divergences between mutation carriers  
  and non-carriers 
The mutation carriers diverged from non-carriers on all grey matter network metrics, 
except for network size and raw path length (Figure 1, Sup. Table S2). Lower network 
metric values for mutation carriers relative to non-carriers were observed earliest in 
normalized path length at EYO -12, followed by lower normalized clustering at EYO 
-8.7, small world coefficient at EYO -8.4, clustering coefficient at EYO -7.5, connectivity 
density at EYO -5.6, and degree at EYO 0. Using the same methods, but now 
implemented on a regional level, the earliest divergence between mutation carriers 
relative to non-carriers was found for path length in the precuneus at EYO -13.1, for 
clustering in the superior temporal gyrus at EYO -10, and for network degree in the 
banks of the superior temporal gyrus at EYO -7 (Figure 3, Sup. Table S3). 

Figure 1  Grey matter networks by estimated year of onset at baseline between mutation carriers 
and non-carriers
The fitted lines are based on all data points extending to -38 to +20. Left of EYO 0 is before 
expected symptom onset, and right of EYO 0 is after expected symptom onset. The EYO were 
first jittered, and then the data points before -20 and after EYO +8 removed to avoid accidental 
unblinding of participants. Dotted line is the point of divergence between mutation carriers and non-
carriers. N=439.
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Figure 2  Rate of change grey matter network for mutation carriers and non-carriers by  
estimated year of onset
The fitted lines are based on all data points extending to -38 to +20. Left of EYO 0 is before expected 
symptom onset, and right of EYO 0 is after expected symptom onset. The EYO were first jittered, 
and then the data points before -20 and after EYO +8 removed to avoid accidental unblinding of 
participants. Dotted line is the point of divergence between mutation carriers and non-carriers.

 
Figure 3 Regional EYO of diversion between mutation carriers and non-carriers for grey matter 
network degree, clustering coefficient and path length  
Linear mixed models adjusted for sex, total grey matter volume and regional volume. MC=mutation 
carrier, NC= non-carrier. For details EYO by region see supplement table S3. N=416.

 3.2   Longitudinal divergences between mutation carriers compared 
  to non-carriers
When comparing rates of change over time, mutation carriers diverged from non-
carriers by EYO for all grey matter network metrics, except connectivity density. 
Steeper decline for mutation carriers relative to non-carriers was detected earliest 
for network size, at baseline EYO -6.0, followed by small world coefficient at EYO 
-4.7, normalized clustering at EYO -4.6, degree at EYO -4.4, normalized path length 
at EYO -2.8, clustering coefficient at EYO -2.6, and path length at +1.0 (Figure 2, Sup. 
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Table S2 and Figure S1). When additionally adjusting for degree the estimates for 
network metrics yielded similar results, except for clustering coefficient, which lost 
significance. On a regional level, the earliest steep decline rate for mutation carriers 
compared to non-carriers was detected for degree in the lateral occipital gyrus at EYO 
-7.4, for clustering in the parahippocampal gyrus at EYO -6.2, and for path length in 
the precentral gyrus at EYO -4.2. (Figure 3, Supplement Table S3). 

 3.3  Association of grey matter networks with other neuroimaging 
  and cognition
Established markers of Alzheimer disease showed significant relationships with the 
small world coefficient used as a global network summary statistic. We examined 
crossmodal relationships between baseline markers; over repeated measures; and 
whether baseline values could predict further decline in the other marker. We found that 
higher Aβ deposition load on PET was cross-sectionally related to a lower small world 
coefficient (β±SE = -0.22±0.05, p=3x10-6, Figure 4). In a longitudinal design, faster 
amyloid accumulation over time related to concurrent small world coefficient decline 
(β±SE = -0.33±0.06, p=1x10-7). Thirdly, a higher amyloid load at baseline predicted 
steeper decline of the small world coefficient over time (β±SE = -0.07±0.01, p=4x10-8). 
 Grey matter networks and the markers of Alzheimer disease progression 
showed significant relationships, both cross-sectionally and longitudinally (Figure 
5). Specifically, a lower small world coefficient was cross-sectionally related to lower 
FDG-PET metabolism in the meta-ROI (B±SE = 0.44±0.08, p=2x10-7), as well as 
lower precuneus cortical thickness (β±SE = 0.50±0.06, p=2x10-15). For cognition, a 
lower small world coefficient was cross-sectionally related to lower scores on the DIAN 

Figure 4  Association of amyloid PET with grey matter network small world coefficient in  
mutation carriers
For visualization purposes plotted extracted slopes with mixed model and line fitted with simple 
regression line in ggplot in R. Models to obtain beta and p-values specified in methods. GM network 
= grey matter network. Yellow circle = CDR 0 at baseline, Red triangle = CDR>0 at baseline. Amyloid 
PET = precuneus SUVr, Cross-sectional n= 222, Longitudinal n= 120, Predict change n= 131. For 
other grey matter network metrics see supplemental figure S2.
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cognitive composite (β±SE = 0.28±0.08, p=3 x10-4). In a longitudinal design, decline 
of the small world coefficient over time related to concurrent decreases of FDG-PET 
metabolism (β±SE = 0.54±0.06, p=5x10-14) and faster precuneus cortical thinning 
(β±SE = 0.55±0.06, p=1 x10-17). A declining small world coefficient over time was related 
to concurrent decline on the cognitive composite (β±SE = 0.47±0.06, p=2x10-11). 
Thirdly, a lower small world coefficient at baseline predicted faster neurodegeneration 
as measured by FDG-PET metabolism (β±SE = 0.12±0.02, p=2x10-8) and precuneus 
cortical thinning (β±SE = 0.10±0.01, p=4x10-12), and steeper cognitive decline over 
time (composite B±SE = 0.08±0.02, p=2 x10-7). Associations for the other network 
properties can be found in Sup. Figures S2-5.  

Figure 5  Associations of grey matter network small world coefficient with FDG-PET metabolism, 
cortical thickness and cognition 
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For visualization purposes plotted extracted slopes with mixed model and line fitted with simple 
regression line in ggplot in R. Models to obtain beta and p-values specified in methods. Inversed 
small world coefficient to aid visualization, see also supplemental table S4. Yellow circle = CDR 
0 at baseline, Red triangle = CDR>0 at baseline. MRI thickness = cortical thickness precuneus, 
FDG-PET = METAROI SUVr as described in methods. DIAN composite: equally weighted z-score of 
Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List Test (comparable to 
International Shopping List Test), Digit Symbol Substitution Test and Mini Mental State Examination. 
Cross-sectional FDG-PET N=238 MR thickness n= 260, Cognition N=251; Longitudinal: FDG-PET 
n= 129 MR thickness n=146 , Cognition N= 140;Predict change: FDG-PET n= 131 MR thickness n= 
146, Cognition n= 143. For other grey matter network metrics see supplemental figures S3-5.

 4 Discussion
Using a single-subject approach, we found that structural grey matter networks 
deteriorate over the course of autosomal dominant Alzheimer disease and that moving 
to a more random topology closely correlates with cognitive function. When comparing 
mutation carriers to non-affected family members global network disruptions were 
detected cross-sectionally as early as 12 years before expected symptom onset. 
Longitudinally, increased rates of decline of network metrics were evident from 6 
years before expected symptom onset. In line with our hypotheses based on cross-
sectional studies in sporadic AD, grey matter network disruptions were associated 
with abnormalities and decline of established markers of Alzheimer disease. Thus, our 
grey matter network analysis in this unique cohort of autosomal dominant Alzheimer 
disease can contributes to our understanding of the Alzheimer disease trajectory, 
and indicates that our methods may potentially be a useful additional non-invasive 
tool for tracking disease progression.  As Alzheimer disease progresses, there is 
substantial amyloid accumulation, volumetric loss, hypometabolism, and cognitive 
decline, but how grey matter networks fit into these processes remained unclear. 
Prior work in sporadic Alzheimer disease has shown that grey matter networks might 
be sensitive to biological changes during the preclinical stages of the disease [25-
27]. In the current work, we observed similar alterations of grey matter networks in 
autosomal dominant Alzheimer disease as a function of estimated years to symptom 
onset. Using amyloid PET, we extended previous cross-sectional findings from 
studies in sporadic Alzheimer disease [26], by showing that higher baseline amyloid 
PET and higher amyloid accumulation rates are related to faster decline of grey matter 
networks over time. The consistency between sporadic and autosomal dominant 
Alzheimer disease strengthens the hypothesis that grey matter network disruptions 
are one of the downstream effects of amyloid accumulation. The networks were also 
related to sensitive markers of Alzheimer disease neurodegeneration and cognitive 
decline, in cross-sectional and longitudinal design. This suggested these processes 
occur, at least partly, in parallel [40], and supports the notion that grey matter network 
decline is a sign of progression of Alzheimer disease. 
 Previous studies in sporadic Alzheimer disease had suggested decline over 
time of grey matter networks, as there was a decrease over disease stages cross-
sectionally [22, 27, 55]. Here, we show that grey matter networks decline over time 
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within individuals, and how decline rates start to increase with disease severity. 
Differences between mutation carriers and non-carriers in the rate of decline were 
generally detected later than cross-sectionally, which could have occurred because 
cross-sectional estimates across individuals by EYO may overestimate changes 
due to variance in the EYO measure (i.e., Some individuals at EYO -12 are actually 
only 5 or 6 years from actual onset) [35]. Another potential cause of cross-sectional 
and longitudinal estimate differences include sample sizes, with less individuals 
who had longitudinal data. Measurement variability over repeated measures 
within individuals can also have contributed to later detection of differences in the 
longitudinal design if these exceeded subtle rates of change. By extending follow-
up time and numbers, an earlier observation decline over time may be possible.  
 Altering of network properties was not detected for every metric. This may be 
an indication that these metrics pick up different aspects of neurodegeneration. 
The small world measures (normalized clustering, and normalized path length and 
small world coefficient) showed early cross-sectional changes and seemed most 
sensitive to measure change over time. This is in line with network theory and 
previous findings in Alzheimer disease [23], which indicated that brain networks 
tend to become more similar to random networks over the disease course. The 
normalized network metrics reflect how different a network is from random, which 
may be why these best capture decline over time. Future studies should identify the 
most valid summary statistic to track longitudinal grey matter network disruptions. 
 On a regional level, cross-sectional network alterations were evident earliest in 
the parietal regions, and then spread across the brain. Most brain regions showed a 
difference first for path length, then for clustering and then for degree, except for the 
temporal regions, in which earlier and more pronounced lowering of the clustering 
coefficient was seen. Regional cross-sectional patterns showed early alterations for path 
length and clustering in areas with most pathology in autosomal dominant Alzheimer 
disease, including the precuneus. Regions of the default mode network also showed 
early alterations. Compared to previous sporadic Alzheimer disease studies, we find 
more widely affected connectivity, but the patterns are largely overlapping [23, 26, 56].  
 Compared to other structural grey matter imaging, the cross-sectional differences 
in the most sensitive grey matter network metrics were detected earlier than cortical 
thickness and volumetric measures. It was not part of this study to investigate 
whether grey matter networks have the same or higher sensitivity to early alterations 
than other structural MRI markers. Still, we adjusted for grey matter volume to assure 
measuring value beyond simple volumes. The rates of change were detected at a 
similar stage to the volumetrics, and later precuneus cortical thinning in dominantly 
inherited Alzheimer disease, which is the earliest region of change [36, 39]. The results 
merit application of grey matter networks in future deeper investigations, for example 
using multimodal network approaches with white matter and functional connectivity, 
to better understand the substrate of cognitive decline. The observation that network 
disruptions increase over time in a large multicenter study is relevant for clinical trials. 
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As the method only requires standard T1 scans and the available pipeline for network 
calculation, a next step is to test the approach retrospectively in clinical trial populations. 
One of the strengths of the current study design is the use of a previously validated 
method for grey matter network extraction. The unique traits of the DIAN cohort 
provided the ability to map changes in grey matter networks across decades of 
disease time. It should be noted that the estimates as a function of the expected 
symptom onset in dominantly inherited Alzheimer disease are influenced by sample 
size. Still, this method provides a way to detect and compare changes due to 
Alzheimer disease before symptom onset, and combine different families. Additionally, 
the rich characterization of DIAN participants provided the ability to relate observed 
changes in networks to other neuroimaging markers of pathology as well as cognition. 
A potential limitation is that our study included an average time period of 3 years in the 
longitudinal cohort, which may not be enough time to reliably measure changes due 
to Alzheimer disease in its very early stages. Yet, we show the longitudinal analysis of 
structural grey matter networks alongside of the cross-sectional results, which to the 
best of our knowledge has not been studied before and warrants further investigation 
of how grey matter networks deteriorate over time in sporadic Alzheimer disease. 
 In conclusion, in autosomal dominant Alzheimer disease individual grey matter 
networks are robustly associated with Alzheimer disease severity and progression as 
shown by the associations with EYO, amyloid accumulation, rate of neurodegeneration, 
and cognitive decline. These data suggest that single-subject grey matter networks 
obtained from structural MRI scans provide an additional, non-invasive tool for 
understanding and measuring progression from preclinical to severe clinical stages of 
Alzheimer disease. These grey matter networks can reflect the asynchronous start of 
brain pathology following Alzheimer disease-related cellular damage and inflammatory 
processes, informing about changes in grey matter covariance [56].
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Supplemental data Chapter 4.1 

Table S1  Summary data other modalities 

Mean (SD), unless otherwise specified. DIAN METAROI = Mean of 4 Desikan regions of Freesurfer: 
isthmus cingulate and inferior parietal, both left and right hemisphere. DIAN composite: equally 
weighted z-score of Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List 
Test (comparable to International Shopping List Test), Digit Symbol Coding and Mini Mental State 
Examination.

Asymptomatic  
mutation carriers
(N=174)

Symptomatic 
mutation carriers
(N=95)

N observations per 
participant

Amyloid PET scans, 1/2/3/4-7 83/ 58/ 16/ 3 31/ 28/ 11/ 6

FDG-PET scans, 1/2/3/4-7 88/ 54/ 21/ 3 28/ 33/ 11/ 9

Cognitive composite, 1/2/3/4-7 76/ 61/ 27/ 5 33/ 22/ 12/ 16

Baseline value  Amyloid PET precuneus, SUVr 2.0 (1.0) 3.5 (1.4)

FDG-PET, DIAN METAROI 1.68 (0.16) 1.46 (0.23)

Cognitive composite, z-score 0.37 (0.50) -0.83 (0.64)

Cortical thickness precuneus 4.8 (0.3) 4.2 (0.5)

Total grey matter volume*1000 627 (64) 567 (72)
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Table S2  Divergence between carriers and non-carriers by estimated years to symptom onset 
(EYO) cross-sectional and longitudinal, with sensitivity analysis for different models 

Output cross-sectional analysis 99% credible intervals of the difference line; gm volume = total grey 
matter volume; gm volume and average degree were mean-centered; all models include a random 
family intercept and in the longitudinal models also for subject intercept and slope.  

EYO of divergence

Covariates: 
sex 0 = male 
- gm volume 
mean-
centered 

Covariates:
- sex 0 = 
female 
- gm volume 
mean-
centered

Covariates: 
- sex 0 = 
male 
- gm volume 
mean-
centered 
- average 
degree 
mean-
centered

No 
covariates. 
with family 
term 

No 
covariates. 
no family 
term

Cross-sectional

Size no diff no diff n/a no diff

Average degree 0.0 +1.0 n/a -1.2

Connectivity Density -5.6 -5.6 n/a -5.8

Average clustering -7.5 -7.3 -8.6 -7.6

Normalized clustering -8.7 -8.5 -9.6 -7.7

Average path length no diff no diff n/a -3.5

Normalized path length -12 -11.9 -12.4 -8.8

Small world property -8.4 -8 -7.7 -7.5

Longitudinal 

Size -6.0 -6.3 n/a -6.1 -6.0

Average degree -4.4 -4.0 n/a -3.4 -3.5

Connectivity Density no diff no diff n/a no diff no diff

Average clustering -2.6 -3.3 no diff -3.5 -2.8

Normalized clustering -4.6 -4.4 -4.5 -4.7 -4.7

Average path length +1.0 +0.9 -4.8 +1.1 +1.2

Normalized path length -2.8 -3.0 -4.2 -2.4 -2.4

Small world property -4.7 -4.7 -4.4 -4.3 -4.4
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Table S3  Regional point of divergence between carriers and non-carriers by estimated years to 
symptom onset (EYO) cross-sectionally and longitudinal rate of change

Lobe Region Cross-sectionally Longitudinal rate of change

Degree Clustering Path 
length Degree Clustering Path 

length

F/P/T Insula - -4.7 -8.7 - - -

F Caudal middle frontal - -6.8 -7.4 - - -1.1

F Frontal pole - -0.8 - - - -

F Lateral orbitofrontal - -5.8 - +4.7 +0.5 -

F Medial orbito frontal +1.7 +0.0 - - - -

F Para central - -3.8 -1.7 - - -

F Pars opercularis - -4.0 -9.5 - - -

F Pars orbitalis - -1.7 - - - -

F Pars triangularis - -4.3 -4.5 - - +0.4

F Pre central - -4.2 -6.3 - - -4.2

F Rostral middle frontal - -6.8 -9.7 - - -2.4

F Superior frontal - -7.9 -4.6 - - -

F (C) Caudal anterior cingulate - -1.4 - - - -

F (C) Rostral anterior cingulate - -1.8 -3.8 - - -

P Inferior parietal +0.4 -4.9 -6.9 - - -1.9

P Post central - -7.4 -10.3 - - -

P Precuneus - -7.9 -13.1 - - -2.3

P Superior parietal - -3.8 -12.0 - - -1.7

P Supramarginal - -3.3 -8.4 - - -1.0

P (C) Isthmus cingulate +3.0 -4.0 -6.3 -3.0 - -

P (C) Posterior cingulate - -5.2 -8.8 - - -

O Cuneus - -7.4 -6 - - +0.5

O Lateral occipital +0.3 -7.6 - -7.4 - -

O Lingual +1.7 -6.7 -7.3 - - +3.5

O Pericalcarine -3.2 -5.0 -10.5 - - -

T Banks superior temporal -7.0 -2.0 -7.2 0.9 - -

T Entorhinal +1.8 -4.1 -4.7 - - -

T Fusiform -3.5 -6.1 -5.3 -4 -2.1 -

T Inferior temporal -3.1 -3.7 - -4.7 -3.6 -

T Middle temporal -2.4 -6.4 -7.9 -0.7 - -

T Parahippocampal -0.7 -4.0 - -1.4 -6.2 -

T Superior temporal - -10.0 -4.2 - - -

T Temporal pole - -4.2 - - - -

T Transverse temporal - -2.9 -8.4 - - -1.1
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Output cross-sectional analysis 99% credible intervals of the difference line; all models include a 
random family intercept and in the longitudinal models also for subject intercept and slope. The 
models for degree are adjusted for baseline grey matter volume, mean-centered, baseline regional 
volume, mean-centered, and sex (0=male), and for clustering and path length also for baseline 
degree, mean-centered. T=temporal lobe, P=parietal lobe, F=frontal lobe, C=cingulate, O=occipital. 
EYO = estimated years to symptom onset.

Table S4  Associations between grey matter network small world property and other imaging and 
clinical markers in mutation carriers 

Linear models adjusted for baseline age, sex, total grey matter volume, and if possible family cluster. 
Additionally, in model 2 random effect for subject intercept and subject predictor slope, and in model 
3 subject intercept and slope after baseline, plus fixed effect time after baseline and interaction 
between time and predictor. Amyloid PET = precuneus SUVr, MR thickness = cortical thickness 
precuneus, FDG-PET = METAROI SUVr as described in methods. DIAN composite: equally 
weighted z-score of Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List 
Test (comparable to International Shopping List Test), Digit Symbol Coding and Mini Mental State 
Examination. All predictor and outcome variables were scaled.

Model Outcome Predictor Beta (SE) p-value

Model 1 Cross-sectional Small world property Amyloid PET -0.22 (0.05) 3e-06

FDG-PET Small world property 0.44 (0.08) 2e-07

MR thickness Small world property 0.50 (0.06) 2e-15

Cognitive composite Small world property 0.28 (0.08) 3e-04

Model 2 Longitudinal; fixed 
effect predictor 

Small world property Amyloid PET -0.33 (0.06) 1e-07

FDG-PET Small world property 0.54 (0.06) 5e-14

MR thickness Small world property 0.55 (0.06) 1e-17

Cognitive composite Small world property 0.47 (0.06) 2e-11

Model 3 Predict change 
with baseline value; fixed 
effect interaction predictor 
over time after baseline

Small world property Amyloid PET  -0.07 (0.01) 4e-08

FDG-PET Small world property 0.12 (0.02) 2e-08

MR thickness Small world property 0.10 (0.01) 4e-12

Cognitive composite Small world property 0.08 (0.02) 2e-07
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Figure S1  Raw data longitudinal grey matter networks with estimated points of divergence 
between mutation carriers and noncarriers
The fitted lines are based on all data points extending to -38 to +20. The graph was adapted to avoid 
accidental unblinding of participants, including 1 outlier removed. Left of EYO 0 is before expected 
symptom onset, and right of EYO 0 is after expected symptom onset. The EYO were first jittered, 
and then the data points before -20 and after EYO +8 removed. Dotted line is approximately the 
point of divergence between mutation carriers and non-carriers. 
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Parameters in statistical models 

1  EYO comparisons: 

a.  Cross-sectional

Networkmetric   = β0 +β1*EYOlinear+β2*EYOcubic+β3*Mutationstatus +β4 
       * EYOlinear*Mutationstatus+ β5*EYOcubic*Mutationstatus 

            +(Random intercept|Familycluster )  +βx*covariates

b.  Longitudinal

Networkmetric    = β0+β1*EYOlinear+β2*EYOcubic+β3* time+β4Mutationstatus +β5
         * EYOlinear*time+β6*EYOcubic*time +β7*Mutationstatus* time+β8 
        * EYOlinear*Mutationstatus* time+β9*EYOcubic*Mutationstatus*time 
        +(Random intercept+time |Individual)+ (Random intercept|Familycluster )   
        + βx*covariates

2 Crossmodal comparisons mutation carriers only

a.  Cross-sectional

Outcome_baseline= β0+β1*Predictor_baseline 
   + (Random intercept|Familycluster )  + βx *covariates

b.  Longitudinal

Outcome = β0+β1*Predictor+ (Random intercept+predictor|Individual) 
  + (Random intercept|Family_cluster )+ βx*covariates

c.  Predict rate of change over time

Outcome = β0+β1*Predictorbaseline+β2*time+β3*predictorbaseline*time  
  + (Random intercept+time|Individual)+ (Random intercept|Familycluster ) 
  + βx*covariates
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Figure S2  Comparisons PIB and other grey matter network with mutation carriers 
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S3  Comparisons other grey matter network measures and FDG metabolism in 
mutation carriers
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S4  Comparisons other grey matter network measures and cortical thickness  
in mutation carriers 
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S5  Comparisons other grey matter network measures and cognition in mutation carriers 
 Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Chapter 4.2

 Biological correlates of grey matter 
 network disruption in autosomal 
 dominant Alzheimer disease
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Neill R. Graff-Radford, Celeste Karch, Jens Kuhle, Christoph Laske, Johannes Levin, 
Colin L. Masters, E. McDade, Hiroshi Mori, John C. Morris, James M. Noble, Richard 
J. Perrin, Oliver Preische, Peter R. Schofield, Marc Suarez Calvet, Chengjie Xiong, 
Philip Scheltens, Pieter Jelle Visser, Tammie L.S. Benzinger, Randall J. Bateman, 
Anne M. Fagan, Brain A. Gordon, Betty M. Tijms, on behalf of DIAN investigators.
 

In preparation

Abstract

BACKGROUND: Structural grey matter covariance networks are disrupted in 
neurodegenerative disorders such as Alzheimer disease (AD). These disruptions are 
related to early amyloid aggregation and cognitive decline, but the precise biological 
underpinnings of network changes remain unknown. Besides amyloid aggregation, 
many other pathological processes occur in AD, including synaptic dysfunction 
and loss, axonal degeneration, neuronal damage, and inflammatory processes, 
that may contribute to grey matter network disruptions. Therefore, we investigated 
how cerebrospinal fluid (CSF) proteins concentrations, reflecting these pathological 
processes, are associated with grey matter network disruptions in autosomal 
dominantly inherited AD (ADAD) mutation carriers.
METHODS: From the Dominantly Inherited Alzheimer Network (DIAN) Observational 
study, we included 219 mutation carriers and 136 noncarriers with both T1-weighted 
MRI and CSF collection. CSF biomarkers included: Aβ40/42 ratio (amyloid aggregation), 
pTau (hyperphosphorylation), tTau and VILIP-1 (neuronal injury and death), SNAP-25 
and neurogranin, (synaptic damage), NfL (axonal injury), YKL-40 and soluble TREM2 
(neuro-inflammation). We examined relationships between CSF levels of these markers 
and grey matter network integrity as quantified by the small world coefficient. This 
measure indicates whether networks deviate from a randomly organized network. We 
further tested whether relationships were dependent on disease stage, and fitted the 
trajectory of the disease course for each of the markers.  
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RESULTS: Increased pTau, tTau, SNAP-25, Ng, VILIP-1, NfL and YKL-40 were 
associated with lower small world values in mutation carriers. NfL showed the 
strongest relationship with the small world coefficient (β±SE = -0.72±0.05; p<0.001). 
Within carriers, these relationships were not significantly different across disease 
stages. Abnormalities in the traditional CSF biomarkers and synaptic and neuronal 
injury markers preceded grey matter network disruptions by several years, while YKL-
40 and NfL abnormalities co-occurred.  
CONCLUSION: Our results suggest that axonal loss may contribute to disrupted grey 
matter networks as observed in AD. 

1 Introduction
Brain areas implicated in similar functions show covariation in cortical morphology 
on magnetic resonance imaging (MRI), and these covariation patterns can be 
precisely quantified with a network approach [1-3]. In neurodegenerative diseases, 
such as Alzheimer disease (AD), grey matter networks become disrupted [3-
5]. With increasing disease severity in AD, grey matter networks become more 
randomly organized, as consistently indicated by a lower small world coefficient [6]. 
These network disruptions are related to impaired cognition and future cognitive 
decline, both in sporadic and autosomal dominant AD (ADAD) [6-13]. Network 
disruptions can already be detected in cognitively normal individuals with amyloid 
aggregation (presumed preclinical AD) [6, 14, 15]. Still, the biological mechanisms 
that explain the deterioration of network organization remain unclear. Changes in 
grey matter networks could result from multiple pathophysiological processes such 
as synaptic dysfunction and loss, axonal degeneration, neuronal loss, and local 
swelling in response to infiltration of inflammatory cells. A better understanding of 
network disruptions over the course of AD may inform new hypotheses regarding 
how brain connectivity could be maintained in order to preserve cognitive function. 
 In cerebrospinal fluid (CSF), proteins can be measured that reflect ongoing 
biological processes in the brain. CSF biomarkers are used for the biological definition 
of AD based on abnormal concentrations of β-amyloid 1-42 (ratio of β-amyloid 1-42/1-
40 [Aβ42/40]), hyperphosphorylation of tau (181-phosphorylated fraction [pTau]), and 
neuronal injury (total tau [tTau]) [16]. In addition to these core AD measures, other 
biomarkers have robustly been related to AD, and provide information on additional 
pathological brain alterations occurring in the disease [17]. Increased levels of 
synaptosomal-associated protein-25 (SNAP-25) and neurogranin (Ng) levels are 
markers of pre-synaptic and post-synaptic dysfunction, respectively; visinin-like protein 
1 (VILIP-1) of neuronal death; and neurofilament light chain (NfL) of axonal damage [18-
23]. In addition, chitinase-3-like protein 1 (YKL-40), an astrocyte marker, and soluble 
TREM2 (sTREM2) [19, 20, 23, 24], a marker of activated microglia, are also elevated in 
AD and provide insight into inflammatory processes. It is conceivable that abnormal of 
levels of these markers may impact brain connectivity, but this remains largely unknown.  
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 Here, we studied this question in carriers of ADAD genetic mutations, which 
has the advantage of a relatively conserved dementia onset age and few age-related 
co-pathologies due to the relatively young age of symptoms [25]. We assessed the 
associations between both the core and emerging CSF biomarkers for AD and the 
individual grey matter network summary statistic the ‘small world coefficient’. We 
further tested within mutation carriers whether the relationships observed were 
depended on disease stage, as determined by a combination of the pTau/Aβ42 ratio 
(normal, abnormal) and the clinical dementia rating score (CDR).

2 Methods
 2.1  Participants and design
Data was obtained from the Dominant Inherited Alzheimer Network Observational 
Study (DIAN-Obs) [26]. For the DIAN study, ADAD mutation carriers (MC) (presenilin 
1 [PSEN1], presenilin 2 [PSEN2] and amyloid precursor protein [APP]) and their 
noncarrier (NC) family members undergo longitudinal clinical and cognitive 
examinations, neuroimaging and biospecimen donations. We evaluated data that 
passed quality control and was included in data freeze 12. Families with Flemish 
and Dutch mutations were excluded from analyses, because these mutation result 
in a different phenotype, with primarily cerebral amyloid angiopathy. The study was 
approved by the ethical review board at Washington University, St. Louis, Missouri, 
USA and local IRBs. The estimated years to symptom onset (EYO) for each individual 
was defined as the mutation-specific (e.g. for the PSEN1 G206A mutation, the mean 
age at onset is 53) mean age at onset subtracted from the individuals’ visit age [25]. 
In case mutation age of onset was unknown, the family-specific parental age of 
disease onset was used instead. For example, if the mean age at symptom onset 
is 53 years for a specific family mutation, then a 43 year old individual, regardless 
of mutation status, would have an EYO of -10. This indicates an individual with the 
mutation is expected to show clinical symptoms of AD 10 years later, and allows 
comparison of biomarkers with the NCs on the same timeline, as well as between 
MCs and NCs from different families and mutations. For the for the biomarker 
comparisons, we selected the first visit at which individuals had both CSF and MRI  
data available. 

	 2.2	 	Group	definitions
Participants were stratified in two ways. The first set of analyses focus on comparing 
all MCs to their familial NC controls. The second set of analyses staged MCs into 
4 groups based upon their biomarker status and CDR [27]. Group 1 had a normal 
CSF ratio of pTau/Aβ42 (< 0.019 [28]) (indicating absence of underlying brain amyloid). 
Group 2-4 had abnormal ratios (indicating presence of amyloid) and increasing CDRs 
of: group 2: CDR= 0, no impairment; group 3: CDR = 0.5, very mild dementia; group 
4: CDR >= 1 mild to severe dementia. 
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 2.3  MR preprocessing 
MR scans were collected and preprocessed according the protocols of the 
Alzheimer’s Disease neuroimaging Initiative (1.1 by 1.1 by 1.2 mm3 voxels, repetition 
time = 2300, echo time = 2.95, flip angle 9°), described in detail in [29, 30]. For 
the network extractions, T1-weighted scans were first segmented into grey matter, 
white matter and CSF in native space with Statistical Parametric Mapping 12 (SPM12; 
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK). 
The segmentations were checked and resliced into 2mm by 2mm by 2mm voxels, and 
this was the input for the grey matter network extraction. 

 2.4 Calculation of grey matter network metrics
Single-subject grey matter network metrics were extracted from preprocessed grey 
matter segmentations  according to previously published procedures, (https://github.
com/bettytijms/Single_Subject_Grey_Matter_Networks)[2] as follows: Grey matter 
segmentations were parcellated into cubes of 3 by 3 by 3 voxels, and these cubes 
formed the nodes of the network. The Pearson’s correlation coefficient was then 
calculated for grey matter intensities across the voxels for each pair of cubes. Next, 
correlation values were binarized and only significant connections retained. Finally, 
we calculated for each network the small world coefficient using scripts from the 
brain connectivity toolbox (https://sites.google.com/site/bctnet/ [31] modified for large 
sized networks. In this study, we use the small world coefficient, which is a whole 
brain summary statistic and normalized for individual differences in degree and size 
of networks. A network with a small world coefficient of 1 has a random organization, 
while a value higher than 1 indicates the networks exhibits the ‘small world property’. 
Technically, networks are ‘small world’ when the level of clustering is high, while the 
path length to every other node is still relatively short [32, 33]. 

	 2.5		 Cerebrospinal	fluid	markers	
Participants underwent lumbar puncture after overnight fasting. Samples were 
collected via gravity drip in polypropylene tubes and sent on dry ice to the DIAN 
biomarker laboratory at Washington University. The samples were aliquoted in 0.5mL 
polypropylene tubes, stored at -84°C before measurements of SNAP-25, Ng, VILIP-1 
and YKL-40. Additional aliquots of each sample were shipped on dry ice for the 
measurements of Aβ40, Aβ42, pTau and tTau by the Shaw laboratory at the University 
of Pennsylvania [34], of NfL by the Kuhle laboratory in Basel [35], and of sTREM2 by 
the Haass laboratory in Mϋnich [36]. For details on the protocols, see [21, 22, 24, 37]. 
Briefly, Aβ40, Aβ42, pTau and tTau levels were determined using the automated Elecsys 
assay, and values of Aβ40 and Aβ42 outside the measurement ranges were extrapolated 
on the calibration curve [37]. SNAP-25, Ng and VILIP-1 were measured with antibodies 
developed in the laboratory of Dr. Jack Ladenson at Washington University in St. 
Louis, as part of micro-particle-based immunoassays using the Singulex (now part  
of EMD Millipore; Alameda, CA) Erenna system [22]. YKL-40 was measured with  
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All 
(n=136)

NCs < 40 
years old
(n=81)

All 
(n=216)

MCs: 
ratio neg 
(n=84)

MCs: 
CDR 0, 
ratio pos 
(n=63)

MCs: 
CDR 0.5, 
ratio pos 
(n=43)

MCs: 
CDR 1-3, 
ratio pos 
(n=26)

Demographics
N (%) Male 53 (39%) 32 (40%) 96 (44%) 35 (42%) 28 (44%) 19 (44%) 14 (54%)
Age, years 38 ± 12 31 ± 6 39 ± 10 32 ± 8 38 ± 9 47 ± 9 47 ± 9
EYO, years -10 ± 12 -17 ± 9 -9 ± 11 -17 ± 8 -8 ± 7 1 ± 6 4 ± 4
Years of education, 
median±IQR

15 ± 3 15 ± 2 14 ± 4 15 ± 3 15 ± 4 14 ± 4 12 ± 2

CDR (0/0.5-1/2-3), N 131/5/0 0/2/0 142/66/8 79/5/0 63/0/0 0/43/0 0/18/8

MMSE, median±IQR 30 ± 1 30 ± 1 29 ± 3 29 ± 1 29 ± 2 26 ± 4 16 ± 10

Grey matter network

Small world 
coefficient

1.62 ± 
0.05

1.65 ± 
0.05

1.59 ± 
0.08

1.64 ± 
0.06

1.60 ± 
0.05

1.55 ± 
0.08

1.46 ± 
0.07

Noncarriers (NCs) Mutation carriers (MCs)

Table 1  Demographics and baseline summary data on predictors and outcomes. 

Traditional CSF 
markers
Aβ42 pg/ml 1,407 ± 

466
1,292 ± 
442

974 ± 634 1,526 ± 
655

716 ± 279 553 ± 
208

510 ± 217

Aβ40 pg/ml 15,698 ± 
4418

14,398 ± 
4,204

14,862 ± 
4760

15,607 ± 
5,080

15,004 ± 
4,749

14,483 ± 
4,114

12,741 ± 
4,241

pTau pg/ml 14 ± 5 13 ± 4 31 ± 23 14 ± 4 32 ± 18 46 ± 23 57 ± 28

tTau pg/ml 169 ± 55 154 ± 49 290 ± 
162

177 ± 48 305 ± 120 375 ± 142 475 ± 241

Ratio aβ42/40 0.089 ± 
0.01

0.089 ± 
0.007

0.066 ± 
0.035

0.099 ± 
0.031

0.049 ± 
0.017

0.039 ± 
0.012

0.042 ± 
0.015

ratio Aβ42/40 ↓0.075, 
N (%)

6 (4%) 1 (1%) 144 (67%) 19 (23%) 58 (92%) 42 (98%) 25 (96%)

ratio pTau/ Aβ42 0.010 ± 
0.004

0.010 ± 
0.002

0.052 ± 
0.053

0.010 ± 
0.004

0.051 ± 
0.034

0.091 ± 
0.049

0.120 ± 
0.065

ratio pTau/Aβ42 
↑0.0198, N (%)

2 (1%) 0 (0%) 132 (61%) - - - -

Emerging CSF 
markers
SNAP-25 pg/ml 3.6 ± 1.3 3.2 ± 1.1 4.6 ± 1.9 3.6 ± 1.1 4.5 ± 1.5 5.2 ± 1.7 6.4 ± 2.7

Ng pg/ml 1,563 ± 
741

1,447 ± 
765

2,297 ± 
1,212

1,638 ± 
682

2,526 ± 
1,109

2,673 ± 
1,164

3,120 ± 
1,748

NfL pg/ml 793 ± 
544

564 ± 
396

1,939 ± 
1,762

531 ± 190 1,033 ± 
650

2,630 ± 
1,643

3,873 ± 
1,657

VILIP-1 pg/ml 133 ± 50 122 ± 48 174 ± 79 135 ± 47 179 ± 71 198 ± 75 236 ± 114

YKL-40 ng/ml 133 ± 66 98 ± 37 173 ± 88 109 ± 37 169 ± 69 229 ± 81 280 ± 89

 sTREM2, relative to 
reference sample 

0.47 ± 
0.22

0.43 ± 
0.21

0.58 ± 
0.29

0.42 ± 
0.15

0.48 ± 
0.28

0.73 ± 0.3 0.74 ± 0.3

Legend: CSF biomarkers not available for the whole sample: SNAP (n=330), Ng (n=331), VILIP1 (n=330), 
YKL40 (n=331), NfL (n=169 (incl. 19 with no MRI data), sTREM2 (n=164).
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plate-based enzyme-linked immunoassay (MicroVue ELISA; Quidel, San Diego, 
CA) [22]. NfL was measured with a single-molecule array assay using the capture 
monoclonal antibody 47:3 and biotinylated detection antibody 2:1 (UmanDiagnostics 
AB, Sweden) [21]. sTREM2 was measured using the MSD platform with an in-house 
developed ELISA based on commercially available antibodies [24]. The sTREM2 
concentrations are reported relative to the pooled sample that was loaded onto all 
plate, as a way to account for plate variation. 

 2.6  Statistical analysis
In all linear models pTau, tTau, SNAP-25, Ng, VILIP-1, YKL-40, NfL and sTREM2 were 
log-transformed to approach normality. To aid comparability of slope estimates, the 
variables were Z-transformed according to the total group. We tested the associations 
between the CSF biomarkers as predictors and the small world coefficient as the 
outcome with three linear regression models. Model 1 was adjusted for sex; Model 
2 also included a fixed term for mutation status and its interaction with the predictor; 
Model 3 had additional adjustment for age effects. We further performed a subgroup 
analysis within MCs only to investigate disease stage effects, by running models that 
included the CSF predictor, a fixed term for the severity groups and its interaction with 
the predictor. We ran post-hoc pairwise comparisons using the Tukey HSD procedure. 
Lastly, we estimated trajectories for all markers studied by EYO, using a previously 
developed Bayesian inference linear mixed effect model [29, 38] to obtain insight into 
the relative ordering of biomarker trajectories (details in Supplemental data). Before 
fitting this model, the CSF and MRI biomarkers were Z-scored to young NCs (<40 
years old, n=81, table 1). All statistical analyses were conducted in R (version 3.5.3) 
using the stats, emmeans. car, lmer, rstan and stanarm-packages [39].

3 Results
The presented analyses included 136 NCs and 219 MCs (age mean±SD 39±11; EYO 
mean±SD -9±11). In the MC group, 84 (39%) individuals had normal CSF ratio pTau/
Aβ42. Among MCs with an abnormal CSF pTau/Aβ42 ratio, 64 (29%) individuals had 
CDR 0, 43 (20%) CDR 0.5 and 26 (12%) CDR 1-3. The group characteristics are 
shown in Table 1.

 

BIOLOGICAL CORRELATES OF GREY MATTER NETWORK DISRUPTION IN AD



146

Figure 1  Associations between CSF biomarkers and grey matter networks for mutation carriers 
and noncarriers
Legend: Adjusted for sex. Prediction with 95% confidence intervals. sTREM2 = soluble TREM2 
relative to a reference sample.

 3.1   Associations between CSF biomarkers and the small 
	 	 world	coefficient
Across the whole group, we found that all AD markers were related to alterations in 
grey matter networks (Table 2). Higher levels of NfL most strongly related to lower small 
world values (β±SE = -0.72±0.05; p<0.001), followed by YKL-40 (β±SE = -0.53±0.05; 
p<0.001), and pTau (β±SE = -0.53±0.05; p<0.001, Table 2). Models taking into account 
interaction terms of mutation status and CSF predictor, were significant for SNAP-
25, Ng, pTau, tTau, NfL, VILIP-1 and YKL-40 (p<0.05, Fig. 1). Post-hoc comparisons 
showed that higher levels of SNAP-25 (-0.37 [CI 95%, -0.50,-0.24]) and Ng (-0.35 [CI 
95%, -0.48,-0.21]), pTau (-0.58 [CI 95%, -0.69,-0.48]), tTau (-0.55 [CI 95%, -0.67,-0.44]) 
and VILIP-1 (-0.29 [CI 95%, -0.42,-0.16]) were related to lower small world values 
specifically in MCs. The association of higher NfL and YKL-40 and lower small world 
values was observed in both MCs and NCs, and this was stronger in MCs (NfL: MC 
= -0.76 [CI 95%, -0.89, -0.64] & NC = -0.44 [CI 95%, -0.77,-0.17]; YKL-40: MC = -0.61 
[CI 95%, -0.72, -0.49] & NC = -0.32 [CI 95%, -0.48,-0.17]). When repeating models 
correcting for age, interaction effects for mutation status remained for SNAP-25, Ng, 
pTau, tTau, NfL and YKL-40 (p<0.05), but not for VILIP-1 (p=0.06). Next, we further 
studied in MCs whether the observed associations were specific to disease stage 
(Table S1, Fig. 2). No significant interaction terms with disease stage were observed, 
suggesting that associations of biomarkers and small world values were not specific 
to a certain stage.
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3.2   Grey matter network and CSF biomarker trajectory by EYO
Finally, we estimated trajectories for all CSF and structural MRI markers according to 
EYO for the MCs, NCs, and the difference between MCs and NCs (Fig. 3; Table S2&3). 
Biomarker trajectories of the Aβ42/40 ratio (EYO -18), Aβ42 (EYO -16), pTau (EYO -18), 
tTau (EYO= -19), SNAP-25 (EYO= -15), Ng (EYO= -19) and VILIP-1 (EYO= -18) levels 

Model 1 
Predictor

Model 2 Mutation status* Predictor Model 3 Mutation status* Predictor
& adjustment for age

Predictors
Predictor 
(beta)

Interaction
(t)

Noncarriers  
(est slope)

Carriers
(est slope)

Interaction
(t)

Noncarriers  
(est adj 
slope)

Carriers
(est adj 
slope)

Aβ42/40 ratio 0.43 (0.05); 
p<0.001

1.8; 
p= 0.075

-0.01 (-0.47, 
0.45); 
p=0.957

0.42 
(0.31,0.52); 
p<0.001

1.9; 
p= 0.064

-0.18 (-0.57, 
0.22); 
p=0.374

0.20 
(0.11,0.30); 
p<0.001

pTau -0.53 
(0.05); 
p<0.001

-2.5; 
p= 0.014

-0.21 
(-0.49, 
0.07); 
p=0.144

-0.58 
(-0.69,
-0.48); 
p<0.001

-2; 
p= 0.047

0.06 (-0.18, 
0.31); 
p=0.605

-0.39 
(-0.49, 
-0.29); 
p<0.001

tTau -0.48 
(0.05); 
p<0.001

-3.1; 
p= 0.002

-0.16 
(-0.38, 
0.07); 
p=0.167

-0.55 
(-0.67,
-0.44); 
p<0.001

-2.6; 
p= 0.010

0.05 (-0.14, 
0.24); 
p=0.596

-0.36 
(-0.46, 
-0.26); 
p<0.001

SNAP-25 -0.33 
(0.05); 
p<0.001

-2.1; 
p= 0.035

-0.13 (-0.31, 
0.05); 
p=0.162

-0.37 
(-0.50,
-0.24); 
p<0.001

-2.2; 
p= 0.026

0.04 (-0.12, 
0.19); 
p=0.645

-0.14 
(-0.25,
-0.02); 
p=0.019

Ng -0.28 
(0.05); 
p<0.001

-2.9; 
p= 0.004

-0.02 
(-0.20, 
0.16); 
p=0.836

-0.35 
(-0.48,
-0.21); 
p<0.001

-2.7; 
p= 0.008

0.07 (-0.07, 
0.22); 
p=0.317

-0.20 
(-0.31,
-0.09); 
p=0.001

NfL -0.72 (0.05); 
p<0.001

-2.2; 
p= 0.032

-0.44 
(-0.71, 
-0.17); 
p=0.002

-0.76 
(-0.89,
-0.64); 
p<0.001

-3.7; 
P< 0.001

0.01 (-0.30, 
0.32); 
p=0.940

-0.53 
(-0.68,
-0.38); 
p<0.001

VILIP-1 -0.26 
(0.05); 
p<0.001

-2.0; 
p= 0.046

-0.05 
(-0.24, 
0.14); 
p=0.574

-0.29 
(-0.42,
-0.16); 
p<0.001

-1.9; 
p= 0.060

0.07 (-0.09, 
0.22); 
p=0.401

-0.10 (-0.21, 
0.01); 
p=0.078

YKL-40 -0.53 
(0.05); 
p<0.001

-2.9; 
p= 0.004

-0.32 
(-0.48,
-0.17); 
p<0.001

-0.61 
(-0.72,
-0.49); 
p<0.001

-3.6; 
P< 0.001

0.05 (-0.11, 
0.22); 
p=0.534

-0.30 
(-0.43,
-0.18); 
p<0.001

sTREM2 -0.33 
(0.08); 
p<0.001

-2; 
p= 0.052

-0.08 
(-0.33, 
0.17); 
p=0.542

-0.40 
(-0.61,
-0.19); 
p<0.001

-1.3; 
p= 0.195

0.13 (-0.08, 
0.34); 
p=0.229

-0.01 
(-0.20,
0.18); 
p=0.912

Table 2  Associations between CSF markers and the small world coefficient  

Legend: All models were adjusted for sex; outcome = small world coefficient. sTREM2 = soluble 
TREM2 relative to a reference sample. All CSF markers, except the ratio are log-transformed.
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were different in MCs as compared to NCs before differences were observed in grey 
matter networks (EYO= -8). NfL (EYO= -7) and YKL-40 (EYO= -7) trajectories were 
abnormal around the same time as grey matter networks, and sTREM2 (EYO= -3.5) 
and Aβ40 (EYO= 0.5) showed abnormal levels in MCs compared to NCs later than grey  
matter networks.

4 Discussion
The main finding of our study is that CSF pathologic biomarkers showed associations 
with alterations in grey matter networks, and that axonal damage as measured with 
NfL showed the strongest relationship with worse grey matter network disruptions. 
Increased concentrations of the CSF markers for hyperphosphorylation of tau (pTau), 
neuronal injury and death (tTau and VILIP-1), and specific synaptic injury (SNAP-25 
and Ng) were related to worse grey matter network organization in the MCs only. 
The observed associations were not dependent on staging based on a combination 
of the pTau/Aβ42 ratio and the global CDR, suggesting that they were similar across 
disease development. According biomarker trajectories, most CSF markers showed 
abnormal levels before grey matter network abnormality in the MCs compared to 
the NCs, and for NfL and YKL-40 the timing was closest together with grey matter  
network alterations.   

Figure 2  Associations between CSF biomarkers and grey matter networks within mutation 
carriers by disease stage
Legend: Adjusted for sex. Prediction with 95% confidence intervals. sTREM2 = soluble TREM2 
relative to a reference sample. 

CHAPTER 4.2



149

 So far, only the role of amyloid aggregation had been studied in relation to grey 
matter networks [14, 15]. Those findings suggested that grey matter networks are 
sensitive to brain structural changes related to amyloid aggregation in sporadic AD. 
Here, we found also that lower Aβ42/40 ratios were associated with grey matter network 
disruptions. We further detected relationships between markers of other pathological 
processes in AD and grey matter network disruptions. The most pronounced 
association was observed for NfL, which suggests that loss of axonal integrity is 
an important factor for loss of grey matter network organization. The link between 
deterioration of grey matter covariance in AD to axonal tract damage supports the 
idea that grey matter covariance networks reflect, at least in part, axonal connectivity. 

 We also observed that higher levels of the synaptic markers (SNAP-25 and Ng), 
hyper-phosphorylation (pTau) and neuronal damage (tTau and VILIP-1) were associated 
with grey matter network disruption, and this was specific for MCs. Synaptic damage 
in neurodegeneration could possibly influence brain connectivity in the opposite way 
as during brain development, when synaptic maturation and co-activation play a role 
in increasing brain connectivity [3]. The biomarker trajectories suggest that synaptic 
damage and neuronal loss precedes the changes we observe with MRI, therefore MRI 
changes could be a downstream effect. Recent analyses had already demonstrated 
that CSF pTau and tTau increases very early in the course of ADAD, in a more parallel 

Figure 3  CSF and MRI biomarkers abnormality curves by EYO standardized to young noncarriers
Legend: The graphs show the median estimated curves standardized to the noncarriers mean and 
standard deviation (Table 1). All fitted lines are the median of the mixed models with a cubic spline, 
family random intercept and sex as covariate, and for the small world coefficient also total grey 
matter volume. These analyses depend on sample sizes, which were for: small world N=439; Aβ42, 
Aβ40, pTau, tTau N = 352; SNAP-25, VILIP1 N=330, Ng & YKL-40 N=331, sTREM2 N=218; NfL N = 
210. The tickmarks are the point that the 99% credible intervals of the difference between mutation 
carriers and noncarriers is different than 0. 
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fashion with amyloid aggregation than according to hypothetical models [28]. The 
findings suggest that loss of connectivity structures at the microscale, in neurons, could 
lead to disrupted connectivity of the brain as measured on MRI. Longitudinal studies are 
needed to further examine the temporal relationship of these processes in more detail.  
 The associations between increased NfL and the astrocyte marker YKL-40 
and network disruptions were also observed in NCs. Previous studies have shown 
that during aging NfL and YKL-40 levels increase [19, 23, 40, 41], and grey matter 
networks measure decline [42], though less pronounced than in predementia AD. 
Our findings suggest that also in non-AD related aging, loss of axonal integrity and 
inflammation may impact on grey matter network integrity. A next step to disentangle 
whether these are pathological processes that may render the brain more vulnerable 
for neurodegeneration and possibly reflect cognitive decline in normal and/or 
non-AD related aging. sTREM2, released by microglia, fluctuates over the course 
of AD, with an increase close to symptom onset [24, 43]. sTREM2 levels showed 
a complex relationship with grey matter networks, as the association disappeared 
in mutation carriers when analyses were corrected for age. The trajectory curves 
for sTREM2 showed changes a few years later than for grey matter networks, 
thus the inflammatory process, reflected by sTREM2 increases may not be directly 
related to the brain structure changes as captured by the grey matter networks.  
 A strength is that we studied the pathophysiology over the full course of AD. 
Investigating ADAD MCs of the DIAN study, along with NCs, was a powerful way for a 
parallel investigation of multiple disease processes that may contribute to grey matter 
network disruption. Due to the causative genes, the cross-sectional trajectory can 
inform longitudinal changes. Still, the reality is more complex [44], meaning further 
study in a longitudinal design is needed to understand of the drivers and downstream 
effect in disease progression of AD. A shortcoming of fitting AD biomarker trajectories 
over the expected years to symptom onset is that results in part depend on sample 
sizes and model assumptions. Most EYOs of divergence were similar to previous 
studies, except for Ng and YKL-40, which is an indication of the level of robustness 
across modeling methods [23]. In addition, the exact meaning of the biomarkers levels 
is not fully understood, and we were unable to investigate brain tissue as part of 
this study. Another limitation is that we assessed linear relationships between CSF 
and grey matter network values, which may underestimate existing relationships. 
Therefore, we evaluated whether patterns depended on disease severity, which 
may give rise to non-linear patterns. Still, some of those disease stage groups 
were of small size, and larger samples are required to further investigate these 
relationships in detail. Lastly, we studied a primary summary measure of network 
organization, which was a way to reduce the number of comparisons and increase 
the interpretability. The findings warrant follow-up research to further investigate, 
whether associations are specific for specific brain areas and network measures.  
 To summarize, loss of synaptic integrity and in particular axonal integrity as 
measured with increased NfL in CSF seems to be related to disrupted grey matter 
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network organization in ADAD. These findings suggest that normalization of neuronal 
injury or synaptic processes might lead to stabilization or improvement of grey matter 
network integrity.
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Supplemental data Chapter 4.2 

 Methods and materials

Table S1  Association of CSF markers with the small world coefficient within MCs by  
severity groups  

Legend: All models were adjusted for sex; outcome = small world coefficient. sTREM2 = soluble 
TREM2 relative to a reference sample. All CSF markers, except the ratio are log-transformed.

 Within MCs: interaction of group and CSF predictor

Predictors
Interaction
(F)

Ratio negative
(est slope)

Ratio positive & 
CDR 0
(est slope)

Ratio positive & 
CDR 0.5
(est slope)

Ratio positive & 
CDR 1-3
(est slope)

Aβ42/40 ratio 0.63; p=0.59 0.03 
(-0.13,0.20); 
p=0.68

0.0 (-0.36,0.35); 
p>0.99

0.44 
(-0.14,1.02); 
p=0.13

0.09 
(-0.53,0.71); 
p=0.77

pTau 0.68; p=0.57 -0.02 
(-0.41,0.37); 
p=0.92

-0.17 
(-0.4,0.05); 
p=0.13

-0.36 (-0.67,-
0.06); p=0.02

-0.18 (-0.54, 
0.19); p=0.34

tTau 0.34; p=0.8 -0.04 
(-0.36,0.27); 
p=0.78

-0.13 
(-0.35,0.1); 
p=0.27

-0.25 
(-0.56,0.05); 
p=0.10

-0.2 
(-0.52,0.12); 
p=0.23

SNAP-25 0.36; p=0.78 0.06 
(-0.19,0.31); 
p=0.64

-0.03 
(-0.24,0.17); 
p=0.75

-0.14 
(-0.43,0.16); 
p=0.36

-0.07 
(-0.34,0.2); 
p=0.61

Neurogranin 0.24; p=0.87 0.01 
(-0.21,0.23); 
p=0.92

-0.07 
(-0.3,0.16); 
p=0.53

-0.06 
(-0.36,0.24); 
p=0.69

-0.15 (-0.47, 
0.17); p=0.35

NfL log 0.16; p=0.92 -0.77 (-1.36,-
0.18); p=0.01

-0.51 
(-1.17,0.14); 
p=0.12

-0.67 (-1.04,-
0.3); p<0.01

-0.50 (-1.26, 
0.26); p=0.2

VILIP-1 0.30; p=0.83 0.09 
(-0.15,0.33); 
p=0.46

-0.06 
(-0.26,0.15); 
p=0.58

-0.02 
(-0.3,0.26); 
p=0.89

0.02 (-0.25, 
0.28); p=0.9

YKL-40 0.75; p=0.52 -0.22 
(-0.45,0.02); 
p=0.07

-0.11 
(-0.35,0.13); 
p=0.37

-0.46 (-0.84,-
0.07); p=0.02

-0.18 
(-0.66,0.3); 
p=0.46

sTREM2 0.82 ; p=0.48 -0.13 
(-0.57,0.32); 
p=0.58

-0.07 
(-0.5,0.36); 
p=0.74

-0.07 
(-0.52,0.38); 
p=0.76

0.36 
(-0.15,0.86); 
p=0.17
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Details statistical methods of biomarker trajectory model:
The statistical model to fit biomarker trajectories by EYO, described by (Gordon, Blazey et al. 
2018),   allowed for non-linear effects by using a restricted cubic spline to model EYO, with knots on 
the 0.1, 0.5 and 0.9 of the distribution. The models had fixed terms for EYO, mutation status, their 
interaction and a random effect for family cluster. Models were adjusted for sex, and for the small 
world coefficient additionally for total grey matter volume. For the trajectories we used the biomarker 
data of the first available visit (Table S1 below). Model parameters were estimated with Hamiltonian 
Markov chain Monte Carlo sampling of the posterior distribution, with cauchy prior, 10,000 iterations 
in 8 chains, and thinning of 10 in the STAN and rstanarm package for R (Carpenter, Gelman et al. 
2017). The EYO point of divergence is when the 99% credible intervals of the difference distribution 
between MCs and NCs did not overlap 0. We also provide the 95% and 99.5% of the credible 
intervals (Table S2).

R code: model_fit <- stan_glmer(standardized_biomarker_value ~ ( 1 | family_id ) + eyo_1 + eyo_2 + 
mutation_status + eyo_term_1*mutation_status + eyo_term_2*mutation_status + sex, data = data, 
family = gaussian(), prior = cauchy(), prior_intercept = cauchy(),  chains = 8, cores = 1,  iter = 10000, 
thin = 10)

Table S2  Baseline values for biomarkers used for EYO in comparison to crossmodal data

 

Legend: Light grey color are the values of table 1 for the main analysis of crossmodal comparison 

 Noncarriers 
(NCs)

Noncarriers 
(NCs)

Mutation 
carriers (MCs)

Mutation 
carriers (MCs)

Grey matter network

Small world coefficient 1.63 ± 0.05 1.62 ± 0.05 1.59 ± 0.09 1.59 ± 0.08

Traditional CSF markers

Aβ42 pg/ml 1,379 ± 464 1,407 ± 466 951 ± 635 974 ± 634

Aβ40 pg/ml 15,491 ± 4490 15,698 ± 4418 1,4763 ± 4851 14,862 ± 4760

pTau pg/ml 14 ± 5 14 ± 5 32 ± 24 31 ± 23

tTau pg/ml 168 ± 56 169 ± 55 295 ± 169 290 ± 162

Ratio aβ42/40 0.088 ± 0.010 0.089 ± 0.010 0.065 ± 0.034 0.066 ± 0.035

Emerging CSF markers

SNAP-25 pg/ml 3.6 ± 1.3 3.6 ± 1.3 4.6 ± 1.9 4.6 ± 1.9

Ng pg/ml 1,529 ± 736 1,563 ± 741 2303 ± 1186 2,297 ± 1,212

NfL pg/ml 820 ± 622 793 ± 544 1925 ± 1900 1,939 ± 1,762

VILIP-1 pg/ml 132 ± 52 133 ± 50 176 ± 78 174 ± 79

YKL-40 ng/ml 135 ± 66 133 ± 66 178 ± 92 173 ± 88

 sTREM2, relative to  
reference sample 

0.48 ± 0.22 0.47 ± 0.22 0.59 ± 0.29 0.58 ± 0.29
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Table S3 Estimated years to onset of divergence between mutation carriers and noncarriers

Legend: These analysis depend on sample sizes, which were for: small world N=439; Aβ42, Aβ40, 
pTau, & tTau N = 352; SNAP-25 & VILIP1 N=330, Ng & YKL-40 N=331, sTREM2 N=218; NfL N = 210. 
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Partial support by the Research and Development Grants for Dementia from Japan Agency for 
Medical Research and Development, AMED, and the Korea Health Technology R&D Project through 
the Korea Health Industry Development Institute (KHIDI). This manuscript has been reviewed by 
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EYO of divergence 
according 99% 
credible interval

EYO of divergence 
according 95% 
credible interval

EYO of divergence, 
according 99.5% 
credible interval 

Grey matter network

Small world coefficient -8 -10.4 -7.5

Traditional CSF markers

Aβ42/40 ratio -17.8 -18.4 -17.6

Aβ42 -15.5 -16.4 -15.2

Aβ40 0.5 -1 1.2

pTau -17.7 -19.1 -17.2

tTau -19.2 -20.4 -18.4

Emerging CSF markers

SNAP-25 -14.8 -17.9 -12.6

Ng -19 -20.1 -18.2

NfL -7 -8.1 -6.7

VILIP-1 -17.9 -19.8 -16.8

YKL-40 -7 -10.1 -6

sTREM2 -3.5 -6.7 -2.2
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 Summary and 
 general discussion

Secondary prevention trials in Alzheimer disease (AD) aim to delay, or even prevent, 
the onset of dementia. Most novel, and challenging, are clinical trials intervening in the 
preclinical stage, when disease signs are subtle and outcome measures have been 
shown to have insufficient sensitivity. How to optimally design and conduct these 
types of trials is thus a timely topic of scientific debate. Our incomplete insight in the 
natural course of pre-dementia AD (preclinical + prodromal) complicates 
creating appropriate selection criteria and outcomes to measure effectiveness. In 
addition, a good enrolment rate is essential, but it is not yet established how to find and 
screen these potential participants, who present in insufficient numbers in memory 
clinics. This thesis contains several studies relevant for secondary prevention of AD. 
We estimated the duration of preclinical, prodromal, and dementia stages of AD (Ch. 
2.1,2.2); studied strategies for recruitment and selection of participants for secondary 
prevention studies (Ch. 3.1,3.2); and investigated grey matter network disruption as a 
potential outcome measure (Ch. 4.1,4.2). 
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The	main	findings	are:	

(1) Clinical course of AD 
• Total AD duration varied between 24 years for an individual aged 60, and  

15 years for an individual aged 80.
• For an individual aged 70 with preclinical AD, estimated duration of preclinical 

AD was 10 years, of prodromal AD 4 years, and of dementia 6 years.
• The duration of AD stages is dependent on age, setting, sex, APOE, and  

CSF tau. 

(2) Recruitment for Alzheimer disease research
• We set up the virtual EPAD Registry to show the feasibility to preselect   

individuals from ongoing studies for future AD prevention studies. 
• Lower age, higher education, male sex, and a family history of dementia were 

associated with an increased willingness and ability to participate in future AD 
prevention studies. 

• Higher age and APOE ɛ4 carriership was associated with an increased risk for 
amyloid pathology.

(3)   Grey matter network analysis is a potential surrogate endpoint for trials
• Individuals who carry an autosomal dominant AD mutation show increased 

decline over time in grey matter connectivity 6 years before the estimated time 
of symptom onset. 

• Loss of grey matter connectivity correlates with cognitive decline.   
• Loss of grey matter connectivity was associated with CSF markers of tau, 

synaptic and axonal degeneration, and astrocyte activation. 

Figure 1  Thesis results incorporated in AD progression model with prevention strategy
Adapted from Jack et al. 2013 [49].
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This chapter has the following structure: (1) a summary of the studies with context, 
(2) relevance and implications of the findings for trials and future treatment, (3) 
methodological considerations, and (4) future directions for clinical research on 
secondary prevention of AD and conclusion.     

1 Summary of the thesis and context 
 1.1  Clinical course of AD 
Duration of clinical AD stages and prognostic factors
In Chapter 2.1, we estimated duration of the preclinical (amyloid-positive normal 
cognition), prodromal (amyloid-positive MCI), and dementia stages of AD according 
the individuals’ age, sex, APOE genotype, CSF tau levels and the setting (clinic or 
research). The estimates were based on multi-cohort data of 3,268 individuals. The 
overall duration of AD from amyloid-positivity ranged from 24 years at age 60 to 15 
years at age 80. The estimates for an individual with preclinical AD, aged 70, were 10 
years in the preclinical AD stage, 4 years in the prodromal AD stage, and 6 years in the 
dementia stages. Comparable to our study, one previous study estimated that pre-
dementia AD is 17 years based on amyloid accumulation rates [1]. Lower age-specific 
durations of preclinical and prodromal AD were driven by higher mortality, faster 
decline, and lower reversion from MCI. This is in concordance with an exponential 
increase in AD dementia prevalence with age [2]. Higher progression rates at higher 
ages may be driven by a longer exposure duration at baseline or lower resilience [3]. 
 We found a pronounced effect of cohort: for example preclinical AD, at age 70, 
had in a research setting a duration of 11 years, which was almost 3 times larger 
than the duration in clinical setting of 4 years. The shorter pre-dementia stages in the 
memory clinic patients compared to research participants may have two reasons. 
Individuals are longer in that stage at entry or those with more aggressive disease 
present more frequent at memory clinics. Compared to non-carriers, APOE ɛ4 
carriers had a shorter duration of preclinical (~ -1.5 to -4 years) and prodromal AD (~-1 
year). The shorter pre-dementia duration in APOE ɛ4 carriers is in line previous studies 
showing higher amyloid accumulation rates and an earlier dementia onset in APOE ɛ4 
carriers [4-6]. When CSF tau was abnormal at baseline, preclinical AD was ~3 years 
and prodromal AD ~2.5 years shorter. The shortened preclinical and prodromal AD 
stages for individuals with elevated CSF tau levels at baseline is also in accordance 
with many studies showing to faster cognitive decline and neurodegeneration in those 
groups [7-10]. In conclusion, the estimations of AD duration improve when age, sex, 
APOE genotype, tau and setting are taken into account. 

MCI reverters
Not all individuals with MCI progress to dementia. Ten to 30 percent of individuals 
with MCI show improvement to normal cognition [11], which seems a positive 
event. However, others had shown that MCI reverters remain at increased risk for 
dementia [12, 13]. We postulated this increased risk could be due to underlying AD. 
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In Chapter 2.2, we investigated which baseline factors, i.e., demographics, cognition, 
CSF and imaging markers, were associated with decline to MCI or dementia 
after initial reversion. We selected two independent samples of MCI reverters, 
the Alzheimer Disease Neuroimaging Initiative (ADNI) and Amsterdam Dementia 
Cohort. We found that the MCI reverters who subsequently showed decline were 
older and had abnormal amyloid PET and CSF tau levels more often compared to 
those who remained normal. In this clinically diverting group, AD biomarkers aid in 
distinguishing, a good prognosis, the stable MCI reverters, from those that are likely  
to decline again. 

 1.2  Strategies for recruitment and prescreening for studies on 
  prevention of AD dementia
Trials for a secondary prevention strategy for AD have started to involve the search 
for individuals with normal cognition and evidence of amyloid pathology (EARLY and 
A4 trial) [14], or genetic risk factors, APOE ɛ4 and/or TOMM40 (TOMMORROW and 
Generation I&II trial). As individuals from the general population have a relatively low 
prevalence of amyloid accumulation or AD risk alleles as well as contra-indications 
for trial participation, these studies are facing high (pre)screen failure rates [15]. In the 
A4 trial, the total screen failure rate was 83% [16]. We set up the EPAD Registry, as 
an alternative to memory clinic referrals, outreach and advertisement. The aim was to 
facilitate recruitment and reduce screen failure for the EPAD longitudinal cohort study 
by enabling prescreening of individuals from existing studies. A subset of the EPAD 
participants will enroll in future clinical trials, thus general contra-indications for trials 
are checked, but amyloid-positivity is not required to pass the screening (Chapter 
3.1). We compared the enrolment from 4 settings (memory clinic, general population, 
online and in-person volunteers research). Participation rates were highest in the 
memory clinic (59%) and lowest in the population-based cohort (3%). Despite the 
difference in participation rates, the total recruitment numbers were similar between 
settings as cohorts with a low participation rate had the largest number of participants 
in our study. 
 The percentages amyloid-positive individuals were around 30% in both the 
A4 trial screening and the EPAD trial-ready cohort participants. In Chapter 3.2, we 
assessed whether the presence of AD risk factors influenced participation rates and 
prevalence of amyloid positivity across the different settings of the recruitment sources. 
We found that individuals who were relatively young, had a higher education, male 
sex, and a family history of dementia were more often willing and able to participate 
in the EPAD trial-ready cohort. Among those who enrolled in the EPAD trial-ready 
cohort, the prevalence of amyloid positivity was higher for those who were at baseline 
relatively old and those carrying the APOE ɛ4 allele. These predictors were robust 
across settings.  
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1.3  Grey matter networks as potential surrogate endpoint for trials
Grey matter network changes align with progression in autosomal dominant AD
For a reliable measurement of treatment effects in secondary prevention, we need 
outcome measures that can track change in pre-dementia stages. In chapter 4.1, 
we studied a novel marker of AD progression, i.e., grey matter network measures. 
We tested whether, and how, such networks declined over the disease course in 
individuals carrying an autosomal dominant AD (ADAD) mutation compared to their 
noncarrier family members, as a function of estimated years to symptom onset. 
Mutation carriers had an increased rate of decline of the global grey matter network 
measures from 6 years before symptom onset. This was the first study to show that 
network disruptions decline within individuals with AD over time. The speed of grey 
matter network decline was predicted by the rate of amyloid accumulation, and closely 
associated to other markers of neurodegeneration on MR, FDG-PET and to cognitive 
decline. It provides a validation of grey matter network measures as a marker for 
disease progression in AD. 

What are the biological correlates of grey matter networks disruption in AD?
In chapter 4.2, we further investigated the biological mechanisms underlying grey 
matter network disruptions in ADAD. To this end, we studied how grey matter network 
disruptions related to pathological markers in CSF that are known to be involved in 
AD, covering amyloid and tau aggregation, neuronal death, synaptic and axonal injury, 
and inflammation. We found that more abnormal levels of the CSF markers correlated 
with network disruptions. For elevated levels of markers of synaptic injury, tau, and 
neuronal death the associations with network disruption were specific for the mutation 
carriers, while the associations were also present in the noncarriers for axonal injury 
(NfL) and astrocyte activation. Higher NfL levels were most strongly associated with 
disrupted networks, which supports that axonal integrity plays a role in grey matter 
networks [17]. When comparing biomarker trajectories by the estimated years to 
symptom onset, we found that amyloid, tau, synaptic, and neuronal death markers 
diverged between the mutation carriers and noncarriers before, and axonal injury 
and astrocyte activation around the same time as grey matter network measures. 
The findings suggest that grey matter network disruptions may reflect loss of axonal 
connectivity in AD, occurring downstream from synaptic and neuronal injury. 

2		 Relevance	of	the	findings	for	design	of	secondary	prevention	studies	
 2.1  Implications for trial design and inclusion criteria
Our finding that the pre-dementia period was 12 to 17 years has several implications. 
Trials in younger subjects with preclinical AD would take 15-20 years before the 
effect on progression to dementia can be assessed, which may make prevention 
trials challenging. A solution for this problem is to use surrogate endpoints [18]. The 
A4 and EARLY trial have a cognitive composite, but surrogate endpoints could also 
be biomarkers of disease progression, such as connectivity loss. When the disease 
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trajectory is well established, health economic models, taking into account age and 
setting, can extrapolate treatment effects, as measured at intermediate time points 
to estimate outcomes relevant for patients and/or society. In addition, the prognostic 
information on amyloid-positivity and MCI reversion forms an improvement for the 
previously available information for (potential) trial participants.

Enrichment and stratification with APOE and tau within amyloid-positive individuals
The pre-dementia period was influenced by age, APOE, CSF tau, meaning that further 
stratification by these factors could increase the power of secondary prevention trials. 
Enrichment for the APOE ɛ4 allele may result in more short-term progression and faster 
decline [4]. An advantage of stratification by APOE ɛ4 is that it increases the etiological 
and phenotypical homogeneity of the sample. However 40% of individuals with AD 
do not carry this allele and a treatment is also needed for them [19]. Enrichment with 
abnormal CSF tau would also increase the power to detect clinical and cognitive 
decline in amyloid-positive individuals without dementia [9]. Moreover, individuals who 
improve spontaneously are detrimental for the power of trial. Individuals with amyloid 
and tau-positive MCI rarely revert to normal cognition, and if so, are at increased 
risk to decline again. Of note, enrichment by markers related to fast decline will not 
necessarily increase the likelihood for trial success, in case an enrichment marker 
negatively affects the treatment response. For example: while a decreased cortical 
thickness is prognostic for faster cognitive decline, individuals with more atrophy at 
baseline could respond worse to a specific treatment. Therefore, it is important to take 
hypotheses on the relation between enrichment factors and the mode of action of the 
compound into consideration for the design of trial. 

Detection of late-stage preclinical AD
We found that within amyloid-positive individuals a clinical visit, generally prompted 
by complaints of the patient or their relatives, is a strong prognostic factor for clinical 
progression. The finding suggests that these individuals are in late-stage preclinical AD, 
which would be a window of high potential impact of a preventive treatment (Figure 1). 
It also supports the pursuit to delineate which subjective signs and complaints reflect 
very early clinical progression of AD [20-22] in order to refine selection of individuals 
who may have clinical benefit from a treatment. 

 2.2 Implications for recruitment and prescreening for studies on  
  prevention of AD dementia
Registries for participant selection and engagement
The EPAD Registry approach successfully kick-started enrolment for the project, 
with low screen failure due to contra-indications. However, we noted an issue with 
sustainability, as existing cohorts became depleted if not continuously enrolling new 
participants. A registry with continued enrollment, with a wider purpose seems more 
sustainable; either facilitating more studies and/or including data collection. In the 
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Netherlands, we performed a small pilot, modelled after the Brain Health Registry in 
USA [23]. The mature version of this participant registry was launched launched in 
2019 [Zwan et al. in preparation]. Initiatives with related scopes include: TrialMatch 
(USA), JoinDementiaResearchUK (UK), and StepUP (Australia). We found that the set-
up and maintenance require expertise in AD, online recruitment and engagement, and 
technological aspects. A generic registry is thus associated with substantial costs, 
but reduces the recruitment efforts in other projects, and probably even improves the 
percentage of studies with successfully completed enrolment. Nonetheless, it may 
be difficult to prove efficacy of registries, as recruitment effort and time tend to be 
underestimated [15]. 

Implementation of strategies for trial screening
Another implication of our studies on recruitment and screening was that currently 
available predictors for amyloid positivity have a modest predictive value. To obtain 
lower screen failure rates based on amyloid negativity, the population that qualifies 
for screening should to be massively restricted. If additional selection criteria beyond 
amyloid-positivity were to be included, as suggested in previous paragraphs, the 
prevalence of eligible individuals will be even lower, which proportionally increases the 
recruitment challenge [24]. A powerful way to decrease the screening burden is the 
commonly applied step-wise screening approach. In light of the recent developments 
in blood tests for Abeta and neurodegeneration [25-28], a blood test as a first 
step during screening could reduce the number of PET scans or CSF collections.  
A potential advantage of using a biological state marker, rather than a risk factor such 
as family history for dementia, is that larger proportion of individuals who may qualify 
can have access to the study screening. When these participants are drawn from a 
participant registry, and they subsequently screen fail for one study, the collected 
information can be (re)used for prescreening in future studies. Participants can then 
apply for re-screening, when a biomarker retest is sensible, after comorbidities have 
resolved, or personal circumstances have changed. In addition, the registry can 
enable the participants to share their data with multiple scientists, minimizing tedious 
repetition for the participant.

 2.3 Implications for grey matter networks as surrogate endpoint
The investigation of grey matter networks in ADAD showed with respect to the potential 
use as a surrogate endpoint for trials that the networks decline within individuals 
over time in AD. However, most of the pure extracted measures, network degree, 
connectivity density and path length showed large variations within individuals over 
time. This intra-individual variability limits its use as an endpoint in clinical trials. In 
contrast, normalization to a reference network seemed to increase the ability to 
track change over time. Therefore, these small world measures are better suited as 
potential endpoints. Grey matter networks measures predicted future cognitive decline 
and neurodegeneration, which suggests that reduced decline of the grey matter 
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connectivity, or even improvement, may point towards robust disease modification. 
Our investigations should be extended by power calculations, as well as testing which 
of network metric(s) is superior and whether network measures have added value 
compared to current surrogate outcomes on cognition. It may also be possible to 
identify an optimal combination of structural grey matter markers with increased 
statistical power to detect change over time. 

3   Methodological considerations
 3.1 Staging and duration of the disease course of AD 
A problem of studying a slowly progressive disease as AD is that the ‘exposure 
duration’ differs between individuals at study entry. The rate and the degree of 
preceded brain damage are unknown, while these influence the speed of progression 
[29]. Staging models intent to align individuals better on the disease severity [30-35]. 
The assumption is that when the staging within preclinical AD is more precise, disease-
related abnormalities stand out. For all new modeling approaches, the balance between 
identification of plausible, relevant patterns, without over-specification towards the 
hypothesis presents a challenge. This is for example a risk when we include variables 
that are also part of the diagnostic criteria for MCI and dementia as predictors in 
classification modeling. In our ADAD project, we used the mutation-specific age at 
dementia onset as a surrogate timeline [36]. For interpreting an EYO of divergence 
between mutation carriers and noncarriers, it is important keep in mind that this time 
point is influenced by sample size, model specifications, the exact definition of EYO, 
as well as between subject variability, floor- and ceiling-effects of the investigated 
disease markers. In addition, longitudinal analyses do not always overlap completely 
with the cross-sectional trajectories [37]. In our study on grey matter networks decline 
over time was detectable later, likely due to a lower sample size. Still, the shape of the 
curves overlapped, pointing consistently towards an accelerating rate of decline of 
grey matter networks over the disease course.  
 In chapter 2.1, we used short-term longitudinal data of amyloid-positive individuals 
to estimate the AD clinical stage durations [38, 39]. Here, it is also important to 
remember the assumptions made. An assumption in our MSM model was that we 
presume that everyone who is amyloid-positive is on a trajectory to AD dementia. A 
limitation was that we could not include a separate tau stage in preclinical AD, due to 
few repeated measurements of tau. Mortality risk can be accounted for by multi-state 
or competitive risk models, but has mostly been ignored in AD studies. The primary 
reason for not incorporating mortality in prognostic studies with biomarkers is often 
because it is simply not systematically checked after attrition or completion of study 
visits. This was also a limitation in our study, and may be an explanation for the low 
mortality proportion in the preclinical AD group. Repeating this analysis with longer 
follow-up until death would improve the accuracy, and may allow further refinement of 
the model with additional covariates or stages. 
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 3.2  Study population 
We found low MCI reversion rates in the memory clinic cohort, and a shorter duration of 
pre-dementia stages in a clinical compared a research setting. This is in concordance 
with setting effects on the incidence of MCI and dementia, in amyloid biomarkers 
confirmed individuals with normal cognition or MCI, respectively [10, 40, 41]. Improved 
phenotyping may lead to better alignment between different cohort types, but at this 
stage, the different absolute risk estimates across populations warrants cautiousness 
when extrapolating results, for example in economic models. 
 We also studied the ADAD population. By definition, ADAD and sporadic AD 
differ in genetic causes, leading to questions on the generalizability of findings in 
ADAD. An advantage of studying the development of AD in mutation carriers of ADAD 
is the limited aging effects, due to the relatively young age of dementia onset. Grey 
matter network disruptions were consistent between the forms of AD. With regards 
to treatment development it is critical to learn whether causative cascades between 
these forms of AD converge, and based on our findings this convergence is likely to 
be upstream from grey matter network disruptions. 

4 Future perspectives and conclusion
Studying the disease course of AD
Utilizing the larger datasets and increasingly follow-up durations, researchers started 
to apply more advanced methods to better understand progression of AD in the pre-
dementia stages. Yet, repeated biomarkers measurements over long time periods, and 
observations of biomarker transitions at still rare [32, 42]. Information on biomarkers 
during early and mid-life is also sparse, though important, because early-life changes 
or a disequilibrium from an early-life homeostasis may relate to the development of 
AD in late-life. Another restriction in the advancement of prevention trial design are 
challenges with regards to the markers available for the disease monitoring. First, while 
most markers have a good diagnostic value, most are less suitable for predicting and 
monitoring disease progression. As it is unlikely that we can find one perfect disease 
marker for progression, the development of a practical toolbox seems more realistic, 
to which grey matter network measure can be added. Secondly, aging individuals 
can have multiple pathologies contributing to the speed of decline. Therefore, good 
markers for the other pathologies are important for AD modeling, to enable accounting 
for other factors. With a precise individual prognosis, we would be able to offer a future 
treatment to the appropriate persons at the right disease stage [43].
 
Run-in data for selection and treatment evaluation in trials
With regards to treatment evaluation, a run-in period (without any treatment) has been 
shown to have the potential to increase the power over cross-sectional baseline values 
[44, 45]. A run-in period is already implemented in DIAN-TU and the EPAD project to 
reduce the number of participants needed. Future trials should continue to refine and 
optimize the use of a run-in period. 
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 Selection criteria intent to restrict the inclusion to individuals with potential benefit 
from a treatment [43]. While selection criteria on clinical, cognitive and biological signs 
with cross-sectional cut-offs are practical, the premorbid levels of those markers differ 
between individuals. Therefore, a cross-sectional value within the normal range does not 
exclude decline from the premorbid levels. In future trials, longitudinal inclusion criteria 
may facilitate selection of the appropriate individuals. Further investigations should clarify 
the pros and cons of essentially restricting enrolment to those who demonstrated decline 
(or no improvement) over time on specific markers before the start of trial. 

Research participants motivation and engagement, why and how?
Prevention trial participation will not fit everyone’s personal circumstances, life style 
and personality. Motivations include aspects of: having an affected family member 
or partner, altruism, help the next generation, passion for science, worries about 
cognition, curiosity about their body, meaningful activity, prospect of frequent check-
ups, or hope for personal benefit. The population in clinical trials in Europe and the 
USA, and also in EPAD, is very homogenous Caucasian and higher-than-average 
educated. While upholding the appreciation for those participating, it would be better 
for the generalizability and recruitment rates if clinical trial populations had more diverse 
backgrounds. Increasing diversity requires specific adaptations to the trial design and 
recruitment strategy [46]. Interaction with the new type of research participants can 
teach us what drives individuals to join AD studies and which practical aspects of 
clinical trials may hamper participation. An alternative way to increase the recruitment 
(and retention) may be to lower the burden for participants [47]. This could include 
for example to develop cognitive tests that are less boring to complete, or replacing 
site visits by teleconferencing or home visits. Another practicality is the requirement 
for an informant about the participants daily functioning, which can preclude (trial) 
participation and cause attrition. Possibly the development of clinical trial robots, 
similar to care robots [48], could offer an alternative to a human informant for the trial, 
and by home observations reduce the number of tests and site visits needed. 
 

 4.1 Conclusion
In this thesis, we have investigated the trajectory of AD with different methods and figure 
1 places these findings in the context of AD pathological cascade. This knowledge is 
important for understanding the development of AD, how to structure future trials in 
different stages, as well as for the implementation of treatments when these become 
available. Most previous secondary prevention trials targed amyloid, also the focus 
in our studies. Relatively new is that novel leads are more diverse and now include 
anti-tau compounds. Therefore, the maturation of participant registries and better 
blood-based screening markers will allow flexibility for adaptions in selection criteria. 
With our modern tools, tireless efforts of researchers and participants, and inspired 
by recent treatment successes in neurological diseases, a break-though could be 
around the corner. When this will happen is a matter of speculation.
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 Nederlandstalige samenvatting

Doel van het proefschrift
In dit proefschrift maken we gebruik van biomarkers en klinische metingen 
om nieuwe inzichten te genereren voor de opzet en uitvoering van secundaire 
preventiestrategieën ter voorkoming van dementie door de ziekte van Alzheimer. We 
gebruiken onderzoeksgegevens van verschillende internationale cohortonderzoeken 
van de deelnemers met en zonder dementie om het klinisch beloop van de ziekte van 
Alzheimer beter te begrijpen. We schatten de duur en beïnvloedende factoren van het 
preklinische (geen cognitieve stoornissen), prodromale (milde cognitieve stoornissen 
[MCI]), en dementie-stadium van de ziekte van Alzheimer (hoofdstuk 2.1,2.2). We 
presenteren strategieën voor werving en selectie van deelnemers voor secundair 
preventie- en cohortonderzoek met als voorbeeld het EPAD-project (hoofdstuk 
3.1,3.2). Het grijze-stofnetwerk is een hersenmaat berekend op structurele MRI, die 
de kwaliteit van de samenwerking van hersenonderdelen representeert. In hoofdstuk 
4 onderzoeken we verstoring van dit hersennetwerk bij de ziekte van Alzheimer 
ziekteprogressie kan meten en daarmee een als potentiele nieuwe uitkomstmaat voor 
interventie-onderzoek kan fungeren (hoofdstuk 4.1,4.2).

Inleiding 
De ziekte van Alzheimer is de meest voorkomende oorzaak van dementie. Deze 
ziekte heeft een grote invloed op het leven van patiënten en hun families, en is een 
veelvoorkomende oorzaak van overlijden. In de hersenen wordt de ziekte gekenmerkt 
door ophopingen van de eiwitten amyloïde en tau, wat gepaard gaat met schade 
aan de hersencellen, en achteruitgang van het denkvermogen. Het proces van 
hersenkrimp en cognitieve achteruitgang bij de ziekte van Alzheimer duurt jaren, maar 
is altijd progressief. Uiteindelijk heeft een individu hulp nodig bij activiteiten van het 
dagelijks leven, en spreken we van dementie. Er is momenteel geen behandeling om 
de ziekte van Alzheimer te stoppen. Uit eerder onderzoek is wel duidelijk geworden 
dat kenmerken van de ziekte van Alzheimer lang vóór het begin van dementie in 
de hersenen aanwezig zijn. Hierdoor is het idee ontstaan dat we personen met 
biologische aanwijzingen voor de ziekte van Alzheimer moeten behandelen om het 
ontstaan van dementie uit te stellen, of zelfs voorkomen. Dit concept noemen we in 
de geneeskunde secundaire preventie. 
 Een leidende hypothese is dat amyloïde ophopingen in de hersenen een van 
de eerste kenmerken zijn van de ziekte van Alzheimer (Figuur 1 H1 p.8), vervolgens 
ontstaan tau ophopingen en daarna hersenkrimp en cognitieve problemen. Het 
meest innovatieve, en uitdagende, zijn de medicijnonderzoekonderzoeken die 
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interveniëren in het preklinische stadium van de ziekte van Alzheimer, wanneer er 
geen objectiveerbare cognitieve problemen, maar al wel biologische kenmerken 
van de ziekte. De ontwikkeling van dit soort medicijnonderzoeken is echter niet 
eenvoudig. In het voorstadium van de ziekte van Alzheimer zijn hersenafwijkingen 
subtiel en de standaard uitkomstmaten om de effectiviteit van Alzheimermedicatie te 
bepalen onvoldoende gevoelig om verandering over tijd te meten. Onvolledige begrip 
over het natuurlijke beloop van het voorstadium van Alzheimer-dementie bemoeilijkt 
het vaststellen van passende selectiecriteria voor deelname aan behandelonderzoek, 
evenals de ontwikkeling van geschikte uitkomstmaten. Bovendien is een goede 
werving van onderzoekdeelnemers essentieel, maar het is nog niet duidelijk hoe de 
deelnemers te vinden en te testen op geschiktheid voor deelname. Hoe secondair 
preventie-onderzoek bij Alzheimer optimaal vorm te geven en uit te voeren, is dus een 
actueel onderwerp van wetenschappelijk debat.

Hoofstuk 2 Klinisch beloop van de ziekte van Alzheimer  
In hoofdstuk 2.1 schatten we de duur van de preklinische (amyloïde-positieve normale 
cognitie), prodromale (amyloïde-positieve MCI) en dementie stadium van de ziekte van 
Alzheimer in. De schattingen zijn gebaseerd in totaal 3.268 individuen uit meerdere 
cohorten. We hielden hierbij rekening met leeftijd, geslacht, APOE-genotype, 
een verhoogde liquor tau-concentratie en de populatie (geheugenkliniek of puur 
onderzoek). De opgetelde duur van de ziektestadia varieerde van 24 jaar op 60-jarige 
leeftijd tot 15 jaar op 80-jarige leeftijd. Voor een individu in het preklinische stadium, 
leeftijd 70 jaar, was de geschatte duur opeenvolgend 10 jaar in het preklinische,  
4 jaar in het prodromale en daarna 6 jaar in het dementie stadium. Verklaringen voor 
de kortere totale ziekteduur op hogere leeftijd zijn een langere blootstellingsduur bij 
presentatie en een lagere veerkracht van de hersenen. We vonden een uitgesproken 
effect van populatie: zo was op 70-jarige leeftijd de schatting van het preklinische 
stadium bij puur onderzoek 11 jaar en bij de geheugenkliniek 4 jaar. Mogelijk waren 
patiënten van de geheugenkliniek al langer in het preklinische Alzheimer-stadium bij 
presentatie, óf ze hadden een agressievere vorm van de ziekte. De preklinische en 
prodromale stadia waren één tot enkele jaren korter bij APOE ɛ4-allel dragerschap of 
een verhoogde liquor tau-concentratie. Dit past bij eerdere bevindingen. Concluderend 
verbeterden onze schattingen de bestaande kennis over de duur van de ziekte van 
Alzheimer, en werden deze nauwkeuriger bij rekening houden met leeftijd, geslacht, 
APOE-genotype, liquor tau-concentratie en de onderzochte populatie. 
 In hoofdstuk 2.2 onderzochten we individuen die verbeterde na een initiële 
diagnose van MCI. Tien tot 30 procent van de individuen met MCI vertoont verbetering, 
en functioneert daarna weer op normaal niveau. Dit lijkt een positieve gebeurtenis. 
Echter, eerder onderzoek toonde aan dat deze verbeteraars een verhoogd risico 
op dementie houden. We vermoedden dat dit verhoogde risico te wijten is aan 
onderliggende ziekte van Alzheimer. We onderzochten welke eigenschappen 
geassocieerd waren met opnieuw achteruitgang naar MCI of zelfs dementie, 
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m.b.t. demografie, cognitie, liquor- en beeldvormingsmarkers. We selecteerden de 
verbeteraars van MCI in twee onafhankelijke onderzoeken, het Alzheimer Disease 
Neuroimaging Initiative (ADNI) en het Amsterdam Dementia Cohort. De verbeteraars 
die vervolgens achteruitgang naar MCI of dementie vertoonden waren ouder en hadden 
vaker een abnormale amyloïde PET-scan en verhoogde liquor tau-concentraties in 
vergelijking tot de stabiele verbeteraars. Dat betekent dat in deze patiëntengroep, 
met een niet-typisch klinisch beloop, de Alzheimer-biomarkers een ondersteunende 
waarde hadden bij het onderscheiden van individuen met een goede prognose, de 
stabiele MCI-verbeteraars, ten opzichte van hen met een hoger risico om op korte 
termijn weer achteruitgang te vertonen. 

Hoofdstuk 3  Werving van deelnemers voor Alzheimer-preventie onderzoek
Medisch onderzoek loopt vaak vertraging op en wordt regelmatig zelfs nooit 
afgemaakt, door een gebrek aan onderzoekdeelnemers. In hoofdstuk 3.1 beschreven 
we de aanpak bij het European prevention of Alzheimer Dementia (EPAD) project. 
Voor onderzoek naar preventie van dementie door de ziekte van Alzheimer vindt de 
werving van deelnemers zowel op bij geheugenpoliklinieken als hierbuiten plaats. 
De doelgroep heeft alleen lichte of zelfs geen geheugenklachten en -problemen, en 
bezoekt dus die niet per sé een kliniek. In de afgelopen jaren startten een aantal 
medicijnonderzoeken met een secundaire preventiestrategie voor individuen met 
bewezen normale cognitie en amyloïde ophopingen in de hersenen, dan wel genetische 
risicofactoren, APOE ɛ4 genotype en/of TOMM40. Die werving ging via advertenties, 
en gepaard met veel afvallers bij de geschiktheidstesten. Als alternatief voor werving 
via geheugenpoliklinieken en advertenties zetten we voor het EPAD-project een virtueel 
register op. Het doel was om de werving verbeteren en het percentage afvallers bij het 
geschiktheidsonderzoek van het EPAD longitudinale cohortonderzoek (EPAD-cohort) 
verminderen door voorselectie van individuen uit bestaande studies te faciliteren. Het 
EPAD-cohort heeft twee doelstellingen; het verbeteren van de kennis over hoe de 
ziekte van Alzheimer ontstaat, en het vormen van een zogenaamd ‘trial-ready cohort 
voor preventie-onderzoek’. Dit laatste betekent dat deelnemers van de EPAD-cohort 
kunnen gaan deelnemen aan (nog onbepaalde) interventie-onderzoeken, als ze dat 
willen en in aanmerking komen. 
 In hoofdstuk 3.2 vergeleken we de werving van deelnemers voor het EPAD-
cohort in Europa via 4 verschillende routes (geheugenpolikliniek, populatie-cohort, 
online- en offline-onderzoekdeelnemers). De wervingspercentages waren het hoogst 
in de geheugenkliniek (59%) en het laagst in het populatie-cohort (3%). Ondanks 
het verschil in wervingspercentage, waren totale deelnemersaantallen vergelijkbaar 
tussen de wervingsroutes. Het percentage deelnemers met amyloïde ophopingen 
was ongeveer 30%. We bekeken ook of de aanwezigheid van risicofactoren voor 
Alzheimer de werving en de amyloïde status beïnvloedden. We vonden dat individuen 
die relatief jong waren, hoger opgeleid, een mannelijk geslacht hadden, en/of dementie 
in de familie hadden vaker bereid en in staat waren om deel te nemen aan het EPAD-
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cohort. Onder de deelnemers van het EPAD-cohort, hadden de relatief oudere 
deelnemers en de dragers van een APOE ɛ4-allel vaker een positieve amyloïde status. 
De effecten van de voorspellers waren vergelijkbaar tussen de wervingsroutes. De 
bevindingen laten zien dat deze werving via verschillende routes mogelijk is. De cijfers 
bieden toekomstige onderzoeken een indicatie van hoeveel mensen te benaderen en 
testen om een benodigd aantal deelnemers te vinden. 

Hoofdstuk 4  Grijze-stofnetwerk van de hersenen, een nieuwe  
   uitkomstmaat voor interventies?
We hebben uitkomstmaten nodig die in predementie-stadia betrouwbaar 
ziekteprogressie meten om de effecten van nieuwe behandelingen te evalueren. Wij 
bestudeerden in hoofdstuk 4.1 of het individuele grijze-stofnetwerk een goede marker 
vormt van ziekteprogressie bij de ziekte van Alzheimer (zie Panel 1 H4.1 p.116 voor 
de technische details over deze netwerk-methode). Gebruikmakend van de grijze-
stof extracties van de structurele T1 scans, bepaalden we het grijze-stofnetwerk 
voor elk individu. We berekenden de netwerkmaten, zoals gemiddelde clustering 
coëfficiënt en het small-world effect, met behulp van grafentheorie. We onderzochten 
deelnemers van het DIAN-cohort, met leden van families waarin een autosomaal-
dominante Alzheimer-mutatie (APP, PSEN1/2) voorkomt. Familieleden zonder de 
mutatie vormen de controlegroep. Bij deze erfelijke vorm van de ziekte van Alzheimer 
is de leeftijd waarop cognitieve achteruitgang begint erfelijk binnen families. Dat geeft 
een unieke mogelijkheid om het voorstadium van de ziekte te bestuderen, wanneer 
we alle deelnemers op een continue tijdslijn van het aantal jaar voor of na verwachte 
aanvang van dementie in hun familie plaatsen. Het vergelijken van de groep met en 
zonder de mutatie op elke tijdspunt, geeft inzicht in de dynamische veranderingen van 
markers over het hele ziekteproces (zie H1 inleiding, figuur 3). 
 De grijze-stofnetwerken vertoonden gedurende het ziekteproces steeds gelijkenis 
met willekeurig getekende netwerken. Bij de groep met de mutatie versnellende de 
achteruitgang in netwerkverstoring vanaf 6 jaar voor diagnose van dementie. Dit was 
de eerste studie die verergering van netwerkverstoringen over tijd binnen individuen 
met de ziekte van Alzheimer aantoonde. Het verband tussen netwerkverstoring 
en ziekteprogressie werd verder ondersteund door de bevinding dat de snelheid 
van achteruitgang van de grijze-stofnetwerken voorspeld werd door de mate van 
amyloïde ophopingen. De netwerkverstoring over tijd was ook sterk gecorreleerd met 
bekende markers van neurodegeneratie, en, belangrijk, met cognitieve achteruitgang. 
Dit onderzoek biedt daarmee een validatie van grijze-stofnetwerken als marker voor 
ziekteprogressie bij de ziekte van Alzheimer. 
 In hoofdstuk 4.2 onderzochten we welke biologische mechanismen ten  
grondslag liggen aan verstoringen van het grijze-stofnetwerk, wederom in het 
DIAN-cohort. We bekeken het verband tussen verstoring van het grijze-stofnetwerk 
en Alzheimer-gerelateerde liquor biomarkers. De liquor biomarkers reflecteren: 
amyloïde (Aβ42/40) en tau (p-tau) ophopingen, cel-schade (VILIP-1, totaal tau), 
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synaptische (SNAP-25, neurogranin) en axonale schade (neurofilament light - NfL) 
en ontstekingsmechanismen (YKL-40, sTREM2). Des te abnormaler de liquor-
concentraties van deze markers waren, hoe ernstiger het hersennetwerk verstoord 
was. De associatie tussen hogere NfL-concentraties en netwerkverstoring was het 
sterkst. Dit ondersteunt een basale theorie dat axonale integriteit van belang is voor 
dit hersennetwerk dat berust op covariantie-patronen in de grijze stof. Als laatste 
bekeken we weer de dynamiek van de biomarkers ten opzichte van de tijd tot familie-
specifieke diagnose van dementie. Veranderingen in amyloïde, tau, synaptische en cel-
schade-biomarkers traden op in een vroeger stadium dan achteruitgang in de grijze-
stofnetwerkmaten. Axonale schade en verhoogde astrocyten-activatie traden op rond 
hetzelfde moment als de netwerkmaten begonnen af te wijken bij de familieleden 
met de genetische mutatie. De bevindingen suggereren dat verstoringen van het 
grijze-stofnetwerk het verlies van axonale connectiviteit bij de ziekte van Alzheimer 
weerspiegelen, optredend na de eerste schade aan de synapsen en neuronen.

Implicaties voor secondaire-preventie onderzoek
Onze bevinding in hoofdstuk 2 dat het voorstadium van dementie naar schatting 
12 tot 17 jaar duurt is relevant voor interventie-onderzoek, omdat het dus lang kan 
duren voordat een klinisch relevant effect meetbaar is. De resultaten geven ook een 
verbeterde indicatie van de ziekteduur van alle stadia van de ziekte van Alzheimer, 
wat van prognostische waarde is. APOE-genotype en liquor tau-concentratie 
waren voorspellend voor snellere progressie in het voorstadium, en hebben 
mogelijk toepassing om deelnemers verder te stratificeren of verrijken om de power 
van secondair preventie onderzoek te vergroten. In hoofdstuk 3 zagen we dat de 
momenteel beschikbare voorspellers voor amyloïde ophopingen niet zo sensitief en 
specifiek zijn. Voor prescreenings-toepassingen, lijkt de implementatie van de recent 
ontwikkelde bloedmarkers veelbelovend. Ons onderzoek naar grijze-stofnetwerken 
liet zien dat deze maat robuust geassocieerd is met ziekteprogressie. Het suggereert 
dat deze maat verder ontwikkeld zou kunnen worden om als surrogaat uitkomstmaat, 
mogelijk in combinatie met andere hersenmaten, ziekteprogressie te monitoren. 
 De snelheid van ziekteprogressie verschilde tussen onderzoekomgevingen/ 
populaties. De voorspellers van ziekteprogressie waren wel vergelijkbaar. Mogelijk 
kan nog betere biologische en klinische fenotypering dit verschil verkleinen. In de 
patiëntenpopulatie met preklinische ziekte van Alzheimer lijkt er een zelf-, partner- 
of zorgverlenerselectie richting ‘late-stage’ preklinische ziekte van Alzheimer. Vanuit 
klinisch perspectief zou het optimaal zijn als we dat stadium kunnen herkennen en 
bevestigen, i.e., vlak voordat er cognitieve problemen ontstaan. Onze bevindingen 
wijzen erop dat het mogelijk moet zijn om deze individuen te identificeren. 

Kanttekeningen
Een probleem bij het bestuderen van een langzaam voortschrijdende ziekte als die 
ziekte van Alzheimer is dat de ‘blootstellingsduur’ tussen individuen verschilt bij 

APPENDIX



181

aanvang van het onderzoek. De mate en snelheid van voorafgaande hersenschade zijn 
onbekend, terwijl dit de snelheid van ziekteprogressie beïnvloedt. Stageringsmodellen 
zijn bedoeld om individuen beter te orderenen op ziekte-ernst. De aanname is 
dat wanneer de stadiëring binnen preklinische ziekte van Alzheimer preciezer is, 
de ziekte-gerelateerde afwijkingen er beter uitspringen en de cascade zichtbaar 
wordt. Het blijven echter modellen, beïnvloed door factoren als de selectiebias, 
steekproefgrootte, model-specificaties, de exacte definitie van variabelen, en bodem- 
en plafondeffecten van de markers. 
 We hebben twee onderzoeken gedaan bij de autosomaal-dominante ziekte 
van Alzheimer, wat leidt tot vragen over de generaliseerbaarheid van bevindingen 
naar sporadische ziekte van Alzheimer. Een voordeel van het bestuderen van deze 
mutatiedragers was de beperkte verouderingseffecten. Dat komt door de relatief 
jonge leeftijd van ontstaan van cognitieve problemen. Verstoringen van grijze-
stofnetwerken waren consistent tussen sporadische en autosomaal-dominantie 
ziekte van Alzheimer. Met betrekking tot de ontwikkeling van behandelingen is het 
met name van cruciaal belang om te weten te komen of oorzakelijke cascades tussen 
deze vormen convergeren. Onze bevindingen suggereren dat convergentie eerder 
optreedt in het ziekteproces dan de netwerkverstoringen. 

Toekomstperspectieven en conclusie 
Ziekte-modellen 
Nu datasets in de afgelopen jaren snel groter worden en individuen met biomarker-
metingen steeds langer gevolgd zijn over de tijd, starten we met het toepassen 
geavanceerdere methoden om de ziekteprogressie in het voorstadium van de ziekte 
van Alzheimer beter te begrijpen. Met een precieze individuele prognose zouden we 
in de toekomst precies op tijd; voor het ontstaan van cognitieve problemen, maar zo 
laat mogelijk een behandeling kunnen starten. 

Deelnemersregisters
De werving van deelnemers via lopende onderzoeken bij het EPAD-project 
werkte goed om bij de start van het project vlot van slag te gaan, en het aantal 
deelnemers dat niet door het geschiktheidsonderzoek kwam was relatief laag. 
Echter voor een duurzame oplossing voor werving van deelnemers is een 
continue investering nodig. Evenals onderzoekers wereldwijd, zijn wij daarom met 
Hersenonderzoek.nl gestart, onder leiding van Marissa Zwan en Niels Prins. Dit is 
een online platform waarop alle Nederlandse hersenwetenschappers deelnemers 
kunnen werven. We hebben geconstateerd dat de opzet en het onderhoud van 
een online platform expertise vereisen over zowel de ziekte van Alzheimer, als 
online werving, als wetenschapscommunicatie, als technologische aspecten. 
Een generiek register gaat dus gepaard met aanzienlijke kosten, maar vermindert 
de wervingsinspanningen in andere projecten en verbetert waarschijnlijk zelfs het 
percentage studies met een succesvolle voltooiing van de inschrijving. Toch zal 
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voorlopig een uitdaging blijven om de waarde van deze registers aan te tonen, omdat 
de wervingsinspanningen en -tijd vaak worden onderschat, en regelmatig niet eens in  
project-begrotingen voorkomen.  

‘Run-in data’ voor selectie en evaluatie van resultaat bij interventie-onderzoek
Voor de evaluatie van interventie-onderzoek is aangetoond dat een aanloopperiode 
(‘run-in’ = waarbij deelnemers al worden gevolgd, maar nog niet behandeld) de 
power van de studie kan verbeteren ten opzichte van het negeren van het natuurlijke 
ziektebeloop voor randomisatie voor de interventie. Een aanloopperiode is al 
geïmplementeerd in DIAN-TU-medicijnonderzoeken en het EPAD-project, wat ervoor 
dat het aantal benodigde deelnemers per project lager is dan bij een traditioneel 
design. Toekomstige medicijnonderzoeken kunnen het onderzoeksdesign met een 
aanloopperiode verfijnen en optimaliseren, en mogelijk ook implementeren voor 
selectie van de deelnemers voor een onderzoek. 

Motivatie en betrokkenheid van onderzoekdeelnemers, waarom en hoe?
Zonder deelnemers is onderzoek niet mogelijk. Deelname aan onderzoek ter 
preventie van dementie, en zeker medicijnonderzoek, past niet bij ieders persoonlijke 
omstandigheden, levensstijl en persoonlijkheid. Motivaties omvatten aspecten van: 
dementie in de persoonlijk sfeer, altruïsme, bijdragen voor de volgende generatie, 
passie voor wetenschap, zorgen over cognitie, nieuwsgierigheid naar het lichaam, 
zingevende activiteit, uitzicht op frequente controles of hoop op persoonlijk 
voordeel. Interactie met de preventie-onderzoekdeelnemers kan ons leren welke 
praktische aspecten motiverend en belemmerend werken. Dit biedt weer richting 
voor de verlaging van de lasten voor de deelnemers, wat de werving (en retentie)  
kan verbeteren. 

Conclusie
In dit proefschrift hebben we het beloop van de ziekte van Alzheimer onderzocht met 
verschillende methoden en figuur 1 in H.5 plaatst de bevindingen in de context van 
pathologische cascade van deze ziekte. De opgedane kennis is van belang voor begrip 
over het ziektebeloop, het structureren van toekomstige interventie-onderzoeken in 
verschillende ziektestadia, en de implementatie van behandelingen wanneer deze 
beschikbaar komen. Momenteel is het meeste secundaire preventie-onderzoek gericht 
op amyloïde ophopingen, ook de voornaamste focus in onze studies. Relatief nieuw 
is dat er middelen voor meer diverse aangrijpingspunten ver zijn in de ontwikkeling 
richting klinisch onderzoek, die onder meer anti-tau-middelen bevatten. Daarom 
zullen duurzame deelnemersregisters met diverse samenstelling en betere bloed 
biomarkers nodig zijn om flexibiliteit te bieden voor veranderende selectiecriteria. Met 
onze moderne tools, onvermoeibare inspanningen van onderzoekers en deelnemers, 
en geïnspireerd door recente behandelingssuccessen bij andere neurologische 
aandoeningen, zou er zo maar een doorbraak aan kunnen komen.
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 Nederlandstalige blogs 
 voor algemene publiek 

Tijdens mijn PhD-periode heeft Astrid Hooghiemstra me aangespoord om blogs over 
mijn onderzoek te schrijven. Samen vormen de blogs een natuurlijke samenvatting 
van dit boek, vandaar ik dat ik het passend vond ze hieronder nogmaals te publiceren. 

De duur van de ziekte van Alzheimer ingeschat (H2.1)
Door: Lisa Vermunt, Sietske Sikkes, Pieter Jelle Visser 
De ziekte van Alzheimer komt veel voor, maar niemand weet hoe lang de ziekte van 
Alzheimer duurt en hoe dat per persoon verschilt. Sinds enige jaren kunnen we de 
biologische kenmerken van de ziekte van Alzheimer vaststellen met biomarkers. 
Biomarkers zijn lichaamseigen stofjes die iets zeggen over de processen die spelen 
in het lichaam en die we kunnen meten met speciale apparatuur. In dit onderzoek, 
gepubliceerd in Alzheimer’s & Dementia, knoopten we internationale gegevens aan 
elkaar van mensen die deze allereerste biologische afwijkingen hadden. Met een 
wiskundige schatting berekenden we de duur vanaf die allereerste afwijkingen, het 
voorstadium, tot aan het eindstadium van de ziekte van Alzheimer.
 Het belangrijkste resultaat was dat het voorstadium van de ziekte van Alzheimer 
wel meer dan 17 jaar kan duren. Voor oudere mensen was de duur korter dan voor 
jongere mensen. Ook voor mensen met een genetisch risico, tau-eiwitstapeling, of als 
mensen hulp hadden gezocht voor geheugenklachten was de duur korter. Daarnaast 
vonden we dat de gemiddelde overlevingsduur van mensen met dementie gemiddeld 
8 jaar was, en dat deze langer was voor vrouwen dan voor mannen.
 Voor deze methode waren een hoge computerkracht en veel gegevens nodig. 
Dit laatste was mogelijk door een grote internationale samenwerking. We mochten 
gegevens gebruiken uit de Verenigde Staten, Australië en Europa. Hierdoor hadden 
we een grote groep om een betrouwbaardere schatting over de ziekteduur te maken.
Met de resultaten kunnen artsen hun patiënten in verschillende stadia beter informeren 
over het ziektebeloop. Mocht er in de toekomst een behandeling komen voor de 
ziekte van Alzheimer, dan kunnen deze resultaten helpen om het verwachte effect en 
het startmoment te bepalen.

Alzheimer biomarkers helpen te voorspellen of verbetering van cognitie 
blijvend is. (H2.2)
Door: Lisa Vermunt, Betty Tijms 
Mensen met milde cognitieve stoornissen hebben een verhoogde kans om dementie 
te ontwikkelen. Het opvallende is dat er bij een kwart van deze mensen soms een 
verbetering van de klachten optreedt. Hoewel verbetering een positieve verandering 

APPENDIX



186

is, liet eerder onderzoek zien dat deze ‘verbeteraars’ toch nog steeds een verhoogd 
risico hebben om dementie te ontwikkelen. Die bevinding geeft onzekerheid bij artsen 
en patiënten. Mensen met een verhoogd risico zou je immers willen uitnodigen voor 
herhaalbezoeken, terwijl anderen zonder verhoogd risico juist niet terug hoeven te 
komen. Maar hoe maak je dat onderscheid?

Onderzoek en resultaten
Om daarachter te komen, bestudeerden wij gegevens van deze ‘verbeteraars’. 
In ons onderzoek vergeleken we twee groepen mensen die een verbetering van 
geheugenklachten lieten zien. De eerste groep waren ‘stabiele’ verbeteraars en de 
tweede groep bestond uit mensen bij wie de verbetering tijdelijk was. We onderzochten 
de uitslagen van geheugen- en aandachts-testen, de hersenscans en we keken naar 
aanwijzingen voor de ziekte van Alzheimer in het hersenvocht, namelijk klontering van 
de eiwitten amyloïd-bèta en tau.
 We kwamen tot de conclusie dat alzheimer biomarkers na initiële verbetering van 
geheugenproblemen kunnen bijdragen aan de voorspelling wie langdurig gezond blijft 
en bij wie de verbetering van klachten tijdelijk is. De groep die verbeterde en stabiel 
bleef was relatief jonger en de hersenfoto en de alzheimer biomarkers waren vaker 
normaal. We denken dat de verbeteraars mogelijk slecht hadden gescoord op de 
geheugentesten doordat ze wellicht nerveus waren voor de testen, en een enkeling 
door depressieve klachten. In de groep die slechts tijdelijk verbeterde zaten meer 
oudere en hoogopgeleide mensen, die op de testen net te laag hadden gescoord. 
Deze groep mensen, bij wie de verbetering tijdelijk was, hadden juist wel aanwijzingen 
voor hersenschade op de scan en voor de ziekte van Alzheimer in het hersenvocht. 
We weten nog niet goed waarom de mensen tijdelijk verbeterden. Uit dit onderzoek 
blijkt opnieuw dat alzheimer bij iedereen anders verloopt.

Belang van het onderzoek
De resultaten van het onderzoek geven handvatten aan artsen om hun patiënten een 
nauwkeurigere prognose te geven. Daarmee kunnen ze de patiënten beter informeren 
en hun begeleiding aanpassen aan de patiënt.

De methode van werving voor dementie-preventie onderzoek is nog niet 
uitgekristalliseerd (H3)
Door: Lisa Vermunt, Marissa Zwan
Klinische onderzoeken worden zeer regelmatig niet afgerond doordat er onvoldoende 
geschikte deelnemers worden gevonden. Dat is natuurlijk zonde van het geld, maar 
zeker ook van de moeite van de deelnemers die wel meededen. Het is dus belangrijk 
goede wervingsmethoden te ontwikkelen en deze te blijven verbeteren. Biomarker-
onderzoek naar het ontstaan en voorkómen van dementie door de ziekte van 
Alzheimer is relatief nieuw. Een eerste stap is om reeds bestaande wervingsmethoden 
met elkaar te vergelijken. Dat deden we bij het Europese ‘EPAD-cohort’ onderzoek.
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Uitvoering en resultaten
Verschillende wervingsroutes werden vergeleken: een online-onderzoekregister 
(Hersenonderzoek.nl) in Nederland, een geheugenkliniek in Frankrijk, een offline 
onderzoekregister in Spanje en een gezondheidsonderzoek in Schotland. Via 
elke route waren voldoende deelnemers voor onderzoek te vinden, alleen de 
slagingspercentages verschilden. Op basis van onze bevindingen kunnen we nu 
beter inschatten hoeveel méér aanmeldingen in een register nodig zijn, ten opzichte 
van patiënten in de polikliniek om hetzelfde aantal onderzoekdeelnemers te vinden.  
De beste methode hangt af van de lokale expertise en specifieke doelstellingen. 
We vergeleken ook of kenmerken de daadwerkelijke deelnemers van het EPAD-cohort 
met degenen die niet wilden of konden deelnemen. De uiteindelijke deelnemers  
waren relatief jonger, vaker hoger opgeleid, vaker man en dementie kwam vaker voor 
in de familie. 
 Interventie-onderzoeken richten zich tegenwoordig vaak op mensen met 
amyloïde (Alzheimereiwit) ophopingen in de hersenen. We onderzochten daarom 
ook welke eigenschappen daarmee samenhingen. Deze bleken juist verband te 
houden met een oudere leeftijd, en met een bepaalde genetische variant. De werving 
voor klinische onderzoeken naar het ontstaan en voorkómen van dementie door de 
ziekte van Alzheimer zou dus kunnen verbeteren als meer relatief oudere mensen 
zouden deelnemen, omdat zij een hogere kans hebben op het hebben van amyloïde 
ophopingen. 
 We hebben in dit onderzoek niet precies bijgehouden waarom mensen niet 
konden of wilden deelnemen. Wel zagen we dat medische problemen van henzelf of 
hun partner vaak een rol speelden. Een mogelijke oplossing zou zijn om deelname aan 
onderzoek minder belastend te maken, bijvoorbeeld door het onderzoek gedeeltelijk 
vanuit huis uit te voeren. 

EPAD
Dit onderzoek was mogelijk door samenwerking met collega’s in heel Europa in het 
kader van EPAD. Het project loopt nog steeds en wordt gesteund door de Europese 
Unie in een publiek-private samenwerking met bedrijven. Het EPAD-cohort heeft 
nu bijna 2.000 deelnemers en dankzij hun medewerking kunnen de beschikbare 
onderzoeksgegevens ook worden gebruikt voor onderzoek door onze (inter)nationale 
collega’s naar het ontstaan en voorkómen van dementie. 

Naar het buitenland met Alzheimer Nederlandbeurs (H4 - 1)
Door: Astrid Hooghiemstra, Lisa Vermunt
Eind vorig jaar ontvingen 4 promovendi een beurs van Alzheimer Nederland die het 
mogelijk maakt om enkele maanden te verblijven en mee te lopen bij een buitenlandse 
onderzoeksgroep. De kennis en ervaring die de jonge onderzoekers opdoen tijdens 
deze periode vormt een waardevolle aanvulling voor hun promotieonderzoek. Wat ze 
precies gaan doen en hopen te leren in het buitenland? Lees het hieronder.
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 Met de Alzheimer Nederland subsidie ga ik naar Washington University in St. 
Louis, USA. Binnenkort sluit ik me tijdelijk aan bij het onderzoeksteam van het DIAN-
onderzoek van Washington University. Het DIAN-onderzoek is uniek in de wereld. 
In het DIAN-onderzoek worden al jaren families gevolgd met het mensen met een 
afwijking in een van de Alzheimer-genen. Veel familieleden met een afwijking in het 
Alzheimer-gen hebben nog geen klachten, maar doen toch mee. Daardoor geven 
ze wetenschappers de kans om het voorstadium van de ziekte van Alzheimer beter 
te leren begrijpen. Het is een grote kans voor mij om veel te leren, want het DIAN-
onderzoeksteam heeft veel expertise zowel inhoudelijk, als in de samenwerking met 
hun deelnemers. De groep waar ik bij ga werken verdiept zich in hersenscans en staat 
onder leiding van dr. Tammie Benzinger. We gaan de hersenscans gebruiken om te 
kijken hoe de samenwerking tussen hersengebieden verandert in het voorstadium van 
de ziekte van Alzheimer. Een verandering in de samenwerking tussen hersengebieden 
noemen we ook wel een ‘netwerkverstoring’. We denken dat dit een van de eerste 
signalen is van de ziekte van Alzheimer. We willen netwerkverstoring bij Alzheimer 
beter begrijpen, zodat we beter kunnen meten welk vooruitzicht iemand heeft. Bent 
u nieuwsgierig waarom het meten van ‘netwerkverstoring’ ook belangrijk is voor 
medicijnonderzoeken? Houd dan mijn blog in de gaten dat ik zal bijhouden tijdens 
mijn bezoek aan Washington University.

‘Meet me in St. Louis’ (H4 - 2)
Door: Lisa Vermunt, redacteur: Astrid Hooghiemstra
Vorig jaar ontving ik een bijdrage van Alzheimer Nederland om een periode in het 
buitenland ervaring op te doen. Ik wilde graag naar Washington University (St. Louis, 
Missouri, VS) vanwege de vooruitstrevende bijdragen aan het dementieonderzoek. 
St. Louis is bij ons Nederlanders minder bekend als stad. De stad ligt in de ‘mid-
West’ van de Verenigde Staten. Het heeft de hoofdrol in de muziekfilm ‘Meet me in 
St. Louis’ uit 1944. In deze film zingt Judy Garland de ‘Trolley song’. De film speelt 
zich af in de hoogtijdagen van de stad, in 1903. Dat was het jaar voorafgaand aan de 
wereldtentoonstelling en de Olympische spelen alhier. Eens was St. Louis de 4e stad 
van de Verenigde Staten. Nu is van die grootsheid nog maar weinig te zien, met als 
uitzondering Washington University.
 Bij Washington University is de bravoure duidelijk zichtbaar. Al in de jaren 
’70 speelde de onderzoekers van Washington University een belangrijke rol bij de 
ontwikkeling van de PET-scan (Positron Emission Tomography). Het gebouw waar 
ik werk, herinnert me dagelijks aan deze geschiedenis. Er staan meerdere van deze 
oude PET-scanners in het gebouw tentoongesteld. Ik heb er twee op de foto gezet.
 Wat is een PET-scan eigenlijk? De PET-scan maakt gebruik van radioactieve 
stofjes om processen in de hersenen zichtbaar maken. De scans zien er tegenwoordig 
anders uit, maar werken op dezelfde manier. Op mijn foto’s zijn computerchips te 
zien. Dit zijn gevoelige ontvangers van de radioactieve straling. Ze zitten rondom 
het gat waar iemand zijn hoofd in legt. Doordat ze helemaal rondom zijn geplaatst, 
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verschilt het opgevangen signaal tussen de ontvangers. De signalen gaan naar een 
computer, die ons vertelt uit welk deel van de hersenen elk signaal komt. Zo konden 
onderzoekers voor het eerst de energiehuishouding van de hersenen bekijken. Dit 
bleek verslechterd bij Alzheimerpatiënten in vergelijking met mensen zonder de ziekte. 
Het onderzoek naar nieuwe stofjes om herseneiwitten of hersenprocessen zichtbaar 
te maken met de PET-scan, is in de afgelopen jaren enorm ontwikkeld. We denken 
dat dit belangrijk is om de ziekte van Alzheimer beter te herkennen en begrijpen.
 Op mijn afdeling werkt professor Raichle, een van de uitvinders van de eerste 
PET-scan. Hij is inmiddels 81 jaar, maar nog steeds volop aan het werk. Ik heb zijn 
PhD-studenten gevraagd naar zijn geheim. Wat zij zeiden? ‘Hij vindt het werk te 
leuk en heeft nog veel te veel om uit te zoeken.’ Daar sluit ik me volledig bij aan. 
Ik werk hard, maar heb nog meer te doen om mijn project hier te voltooien. Ons 
project over netwerkverstoring bij de ziekte van Alzheimer zal ik mijn volgende blog 
verder uitleggen. De stad St. Louis heeft ook veel te doen om de bravoure van weleer 
terug te vinden. De gemeente en vrijwilligers werken aan een veilige stad en meer 
gelijke kansen. Wellicht komen dan de Olympische zomerspelen een keer terug  
in St. Louis.

Netwerkverstoringen in de hersenen belangrijk voor medicijnonderzoeken? 
(H4 - 3)
Door: Lisa Vermunt, redacteur: Betty Tijms
Bij Washington University in St Louis bestudeer ik ‘netwerkverstoring’ op de 
hersenscan van het DIAN-onderzoek (Dominantly Inherited Alzheimer Network). In dit 
onderzoek doen families mee waar de erfelijke variant van de ziekte van Alzheimer 
voorkomt. Bij deze zeldzame vorm van Alzheimer begint dementie op jonge leeftijd, 
vaak al tussen het 35e en 55e levensjaar. Alle familieleden kunnen meedoen aan DIAN. 
Degenen zonder afwijking in het Alzheimer-gen vormen de ‘controlegroep’. Door de 
controlegroep met de dragers van genetische afwijking te vergelijken, kunnen we 
erachter komen welke veranderingen te maken hebben met de ziekte van Alzheimer 
en welke met normaal ouder worden.
 Binnen het DIAN-onderzoek nemen sommige mensen ook deel aan 
medicijnonderzoek. DIAN-onderzoekers en farmaceuten bestuderen of nieuwe 
medicijnen de ziekte kunnen remmen. Alleen mensen met de genetische afwijking 
kunnen meedoen aan deze medicijnonderzoeken. Sommige van de deelnemers aan 
het medicijnonderzoek hebben nog geen klachten. Bij hen is het doel om het ontstaan 
van klachten uit te stellen.
 Maar, als iemand nog geen klachten heeft, hoe kun je dan bepalen of een 
medicijn werkt en klachten remt? Metingen die als doel hebben om de werkzaamheid 
van een nieuw medicijn te beoordelen, noemen we ‘uitkomstmaten’. Hoe preciezer de 
uitkomstmaat, sneller bekend is of een middel werkzaam is. Om nieuwe uitkomstmaten 
te maken bestuderen we wat er in de hersenen verandert bij de mensen met de 
afwijking in het Alzheimer-gen, die in het voorstadium zijn van de ziekte van Alzheimer. 
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Ons vermoeden is dat ‘netwerkverstoring’ op de hersenscan een goede uitkomstmaat 
kan zijn, omdat we uit eerder onderzoek weten dat netwerkverstoring optreedt 
voordat er klachten ontstaan. We weten alleen nog niet wanneer het optreedt en hoe 
netwerkverstoring samenhangt met andere kenmerken van Alzheimer.
 Daarom, onderzoeken we nu in het DIAN-onderzoek wanneer in de ziekte 
netwerkverstoringen beginnen. In onze eerste resultaten zien we dat ongeveer 
5 jaar voordat iemand klachten krijgt, netwerkverstoring optreedt. Verder blijkt 
dat netwerkverstoring samenhangt met geheugenproblemen en ophoping van 
het ‘amyloïde eiwit’. Er is ook een lichte mate van netwerkverstoring bij normale 
veroudering. In een volgende stap kijken we hoe onze metingen veranderen bij 
mensen die meerdere hersenscans hebben ondergaan.
 Net als ik, werken meer onderzoekers van het DIAN-team aan nieuwe 
uitkomstmaten om medicijnonderzoeken te verbeteren. De ideale uitkomstmaat 
is naast zeer precies, ook zo min mogelijk belastend voor de deelnemers van 
medicijnonderzoeken. De ambitieuze hoofdonderzoeker van DIAN, dr. Bateman, 
probeert een bloedtest te ontwikkelen die het beloop van de ziekte van Alzheimer kan 
meten. Dat blijkt niet zo makkelijk, maar gelukkig deinzen ze hier niet terug voor een 
flinke uitdaging. Dat geldt ook voor alle deelnemers van het DIAN-onderzoek, die het 
onderzoek mogelijk maken, en vaak het vliegtuig nemen om deel te kunnen nemen.

Als je ver wilt komen, ga dan samen. (H4 - 4)
Door: Lisa Vermunt, redacteur: Melanie Bremer
Dat was een spannende week. Na een aantal maanden onderzoek te hebben 
gedaan aan Washington University, mocht ik mijn resultaten presenteren. Tijdens het 
voorbereiden van de presentatie keek ik terug op mijn bezoek.
 Aan Washington University heb ik samen met het team aldaar me ingezet om 
preciezere uitkomstmaten voor medicijnonderzoek te ontwikkelen (meer info vind je 
in mijn vorige blog). Om dit te doen hebben wij ‘netwerkverstoringen’ bestudeerd op 
de hersenscans van het DIAN-onderzoek (Dominantly Inherited Alzheimer Network). 
Hiervoor gebruikten we een zogenaamde ‘supercomputer’ en heel veel verschillende 
gegevens (data). Dit vergt nogal wat van de infrastructuur, want al die data moet 
opgeslagen en onderhouden worden. Toen ik aankwam viel me meteen op dat de 
excellente reputatie van Washington University volledig terecht is. Iedereen, van de 
professoren tot het ICT-team, is erg toegankelijk. Dat is ook hard nodig, want om dit 
soort toponderzoek uit te voeren moet iedereen nauw samenwerken. Gelukkig had ik 
het werken met de ‘supercomputer’ snel onder de knie. Mede dankzij een toegewijde 
programmeur, bij wie ik altijd kon binnenlopen met vragen. Dankzij het hele team had 
ik binnen de paar maanden dat ik op bezoek was alle gegevens verzameld voor mijn 
presentatie.
 Presenteren voor een onderzoeksgroep kan best spannend zijn. Wetenschappers 
staan erom bekend dat zij kritische vragen stellen. Voor een buitenstaander kan dat 
ongemakkelijk overkomen. De bedoelingen zijn echter goed, door kritische vragen te 
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stellen help je elkaar verder. Die middag liep ik tijdens mijn presentatie vast in een paar 
technische details. Een aantal Wiskundige onderzoekers die aanwezig waren stelden 
pittige vragen. Gelukkig kon ik het later opzoeken en alsnog toelichten. Dat was voor 
ons allemaal nuttig. Het deed me denken aan een Afrikaans spreekwoord dat een 
Washington University professor gebruikte. Vrij vertaald luidt het: ‘Als je snel wilt gaan, 
ga dan alleen. Als je ver wilt komen, ga dan samen.’
 De trouwe volgers van mijn blogs willen vast weten welke resultaten ik 
heb gepresenteerd. Kan onze maat van netwerkverstoring gebruikt worden als 
uitkomstmaat voor medicijnonderzoeken? Het antwoord is gelukkig positief: 
Jazeker, onze resultaten ondersteunen dit. Maar, de hersenscan kan het ook niet 
alleen, het is niet specifiek genoeg als uitkomstmaat. De netwerkmaat van de 
hersenscan kan het beste gecombineerd worden met geheugentesten en andere 
hersenscans om medicijnonderzoeken sneller te laten verlopen en eerder tot een  
behandeling te komen.
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