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 Grey matter 
 networks, a potential 
 endpoint for trials

Chapter 4.1 
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Abstract

INTRODUCTION: Structural grey matter covariance networks provide an individual 

in sporadic Alzheimer disease, and show associations with early Alzheimer disease 
pathological changes and cognitive decline. Therefore, these networks might be 
disease progression markers. However, it remains unclear when and how grey 

in autosomal dominant Alzheimer disease mutation carriers, whose conserved age 
at dementia onset allows individual staging based upon their estimated years to 
symptom onset.
METHODS: From the Dominantly Inherited Alzheimer Network observational cohort, 
we selected T1-weighted MRI scans from 269 mutation carriers and 170 non-carriers 
(mean age 38±15 years, mean estimated years to symptom onset -9±11), of whom 
237 had longitudinal scans with a mean follow-up of 3.0 years. Single-subject grey 
matter networks were extracted, and we calculated for each individual the network 
properties which describe the network topology, including the size, clustering, path 
length and small worldness. We determined at which time point mutation carriers 
and non-carriers diverged for global and regional grey matter network metrics, both 
cross-sectionally and for rate of change over time.
RESULTS: 
length which was decreased for mutation carriers in the precuneus area at 13 years 
and on a global level 12 years before estimated symptom onset. Based on longitudinal 

symptom onset, with a greater rate of decline of network size for mutation carriers. 
We further compared grey matter network measures with established biomarkers for 
AD  (i.e., amyloid accumulation, cortical thickness, brain metabolism, and cognitive 
function). We found that greater amyloid accumulation at baseline was associated 
with faster decline of network measures over time, and decline in grey matter network 
measures over time was accompanied by decline in brain metabolism, cortical 
thinning, and cognitive decline.
CONCLUSION: In summary, grey matter networks deteriorate in autosomal dominant 
Alzheimer disease in a similar fashion as in sporadic Alzheimer disease, and the 
network measures show decline over time prior to estimated symptom onset. These 
data suggest that single-subject networks obtained from structural MRI scans form an 
additional non-invasive tool for understanding the substrate of cognitive decline and 
measuring progression from preclinical to severe clinical stages of Alzheimer disease.
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1 Introduction 

of dementia [1], it is important both to understand the evolution of pathophysiological 
changes occurring and to develop disease progression markers [2]. Current 
biomarkers reliably detect Alzheimer disease pathology [3], however predicting and 

 
 One way to measure of brain networks is by determining the similarity of grey matter 
morphological measures between brain regions across individuals, i.e., grey matter 
covariance networks [7-9] (Panel 1). This approach is based on the notion that brain 
regions involved in distinct cognitive functions tend to develop in a similar way, possibly 
due to shared neurotrophic factors [10-12]. Common developmental trajectories and 
functional coactivation result in similar grey matter tissue properties, as measured 
on structural MR imaging [13-15]. These covariance patterns are related to normal 
cognition [16, 17], and reveal in healthy individuals an optimal, ‘small-world’, organization 
by graph theory description [18, 19]. In sporadic Alzheimer disease dementia, grey 
matter networks are disrupted, showing a less optimal, random organization [20-22]. 
In predementia stages, such network disruptions predict clinical progression and 

normal individuals has also been associated with grey matter network alterations [25-
27]. Together, these observations suggest that these networks change over the course 
of Alzheimer disease, from early stages, and that individual grey matter networks 

were based on one-time grey matter network extractions, it remains unclear whether, 
and when, these networks change within individuals as they progress in their disease. 

placing presymptomatic individuals on their disease timeline [28-32]. This issue is 
less problematic for carriers of a genetic mutation that causes autosomal dominant 
Alzheimer disease, because the age at onset of dementia can be estimated, from 

type. The estimated years to symptom onset (EYO) can serve as a proxy for 
disease duration [33, 34]. Using this paradigm, previous work demonstrated 

37]. Closer to symptom onset, individuals show accelerated hypometabolism 
and cortical thinning, which is followed by cognitive decline [38-40]. When 
during these processes grey matter networks start to decline remains unknown.  

the course of autosomal dominant Alzheimer disease. We assessed when, and how, 
the networks change as a function of EYO, both cross-sectionally and longitudinally, 
on a global and regional level. To understand the relationship between grey matter 
network changes and disease progression, we also investigated how the networks 
alter with established Alzheimer disease markers.
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2 Materials and methods 
 2.1 DIAN study design and participants
In the worldwide Dominantly Inherent Alzheimer Network (DIAN) longitudinal 
cohort study, families with individuals carrying a PSEN1, PSEN2 or APP mutation 

assessments. The non-carrier family members act as an inherent control group. 
Participants generally have study visits every three years at earlier disease stages 
and these assessments become yearly when either symptoms are present, or they 
are within three years of their EYO. DIAN protocols had supervisory approval from 
the ethical review board of Washington University in St. Louis, and all participants 
gave informed consent. For this study, we selected data from all participants who 

freeze. Families with the Dutch or Flemish APP mutation were excluded because 
 

amyloid angiopathy.

 2.2  Estimated years to symptom onset (EYO)
We calculated the EYO for mutation carriers and non-carriers identically: The EYO 

age at disease onset, reported by the participant, was used instead. For example, 

year old individual would have an EYO of -15. For the carriers of the ADAD mutation, 
this indicates that the individual is expected to show clinical symptoms of Alzheimer 
disease 15 years later. 

 2.3  Clinical evaluation and cognition
Disease severity was measured using the Clinical Dementia Rating scale (CDR) [41], 
administered to the participant and study partner by blinded raters. Participants 

CDR 0.5, 1, 2 & 3). In addition, cognitive function was summarized using a cognitive 

weighted z-scores of the Logical Memory delayed recall total score from the Wechsler 
Memory Scale-Revised, DIAN Word List Test delayed free recall score, Digit Symbol 
Coding total score from the Wechsler Adult Intelligence Scale-Revised Digit Symbol 
Substitution Test, and the total score from the Mini Mental State Examination.

 2.4  MR imaging acquisition and preprocessing
MRI T1-weighted scans (1.1 x 1.1 x 1.2 mm3 voxels, repetition time = 2300 ms, 

Neuroimaging Initiative (ADNI) protocols [43]. We segmented T1 images into grey 
and white matter and CSF, using the Statistical Parametric Mapping software version 
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12 (SPM12; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 
London, UK). All segmentations were checked visually, after which 51 scans were 
removed due to failed segmentations or severe motion artifacts. Native space grey 
matter segmentations were resampled into 2 x 2 x 2 mm3 voxels. This voxel-wise data 
was used as input for connectivity analyses.

 2.5  Single-subject Grey Matter Networks and Metrics 
Grey matter networks were computed according to a previously published, automated 

extraction (https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks; 
implemented in Matlab2016b (MathWorks, Natick, MA)), and (2) graph theory-based 
metric calculation [7, 44]. To extract single-subject grey matter networks, we parcellated 
each individual’s native space grey matter segmentation into 6 x 6 x 6 mm3 cubes, 
containing 27 voxels. These non-overlapping cubes serve as the ‘nodes’ in the network. 
Connections between each pair of cubes across an individual’s scan were established 

voxels. This approach takes into account both the grey matter probability (i.e. from 
the tissue segmentation) as well as the spatial information present in 27 voxels within 
each cube. All correlations were stored in a matrix, and the presence or absence 
of connections between nodes was dichotomized according to an individualized 
threshold that ensured a maximum of 5% spurious connections for each individual [7]. 
 For each individual’s binarized grey matter network, we calculated graph theory 
metrics describing the global network properties: size, degree, connectivity density, 

calculated regional network properties. In order to aid comparability with other studies 
previously performed in DIAN, regional network metrics were calculated within each 

parcellating each individual’s T1 image into 34 anatomical regions of interest (ROIs) 
from the Desikan atlas using Freesurfer 5.3 [46] (http://surfer.nmr.mgh.harvard.edu). 
The Freesurfer output was then aligned to the native space T1 using FSL (https://fsl.
fmrib.ox.ac.uk/fsl), and this transform was used to register the parcellation into native 

scripts from the brain connectivity toolbox (https://sites.google.com/site/bctnet/), 
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Panel 1 Grey matter network metrics 

A. Grey matter network 
extraction from the individual 
brain segmentation (described 
in text)

B. The sum of the number 
of nodes, i.e., the number 
of cubes, is the size of 
the network. The degree 
is the average number of 
connections per node. The 
connectivity density is the 
percentage of the number of 
connections in the network 
compared to the maximum 
number of connections 
possible. The clustering 

 of a node describes 
the proportion  
of connections between 
neighbors for every node. 
For example, in case a 
node connects to 3 other 
nodes, there are 3 possible 
connections between those 
3 adjacent nodes. If only 
1 connection is present 
between 2 of the 3 other 
nodes, the clustering of the 
primary node is 1 out of 3, 
0.33. Global clustering is 
determined by taking averaging clustering values across all nodes. Path length is  
the mean of the shortest paths for a node to reach every other node in the network. 
The global path length is the average path length across all nodes. 

C. Normalized clustering and normalized path length describe how on a global level 

are randomized by rewiring the connections randomly in each network, while 
keeping intact the total number of nodes and degrees [47]. The network’s observed 
clustering and path length are divided by the clustering and path length values, 
respectively, of averaged random networks to obtain the normalized values. Lastly, 
the is the normalized clustering divided by the normalized 
path length. The network has the “small world property” if this ratio is higher than 1, 
indicating a path length close to the random networks, yet a greater then random 
clustering. This is optimal, because of fast exchange of information between remote 
clusters, and specialized information processing within clusters.

(Picture adapted from Verfaillie, HBM 2018, with permission)

CHAPTER 4.1



117

 2.6 Other DIAN imaging data

cortical thickness and volumes from structural MRI. Details on data processing have 
previously been described [36]. The Freesurfer ROIs were used to process the amyloid 
and FDG-PET data. PET data are processed using a cerebellar grey reference region 
and partial volume corrected using a geometric transfer matrix approach [48, 49]. In 

cingulate and inferior parietal region in FDG-PET for crossmodal comparison with 
grey matter network properties [50].

 2.7  Statistical analyses
We compared mutation carriers and non-carriers to determine (1) the EYO at which 

we applied a restricted cubic spline with knots at the 0.10, 0.50 and 0.90 of the EYO 
distribution, also described previously [36], that included a linear term (EYOlinear) 

time after baseline, mutation status and, all 2- and 3-way interactions (see formulas in 
Sup., p.6). Additionally, the models included random intercept terms for subject and 
family cluster, and a random slope for subject. The covariates whole-brain grey matter 

size, degree or connectivity density were found to be associated with mutation status 
in any of the models, they were included as additional covariate as these variables 

adjusted for regional grey matter volume. Model parameters were estimated as 
previously described, applying a Hamiltonian Markov chain Monte Carlo sampling 
of the posterior distribution, with 10,000 iterations in 8 chains, thinning retaining 
1 out of every 10 iterations, and cauchy prior in the STAN package for R [52, 53].  
 We examined relationships between grey matter networks and established AD 
markers within mutation carriers. Previous research suggested grey matter networks 

matter network metrics as outcomes, or grey matter network metrics as a predictor 
and cortical thickness (precuneus), brain metabolism (meta-ROI), or cognition (DIAN 
cognitive composite) as the respective outcomes. These predictors and outcomes 
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that were all adjusted for baseline grey matter volume, age, and sex, and with random 
intercept for family cluster, in lme4 package in R [54] (see detailed formulas in Sup., 
p.6). If models failed to converge, the term for family cluster was removed. Models 

were longitudinal comparisons in participants with at least 2 data points, and included 

set of models were used to evaluate whether baseline data could predict change 

from baseline, and its interaction, and a random subject intercept and slope of time 

metric is indirectly derived from all other network metrics, and can thus be considered 
a summary statistic (Panel 1 p.8). 
  
 2.8 Data availability 

https://dian.wustl.edu/

3 Results 
In total, 439 participants from the DIAN study, with a mean±SD age of 38±11 years 

the present analyses. The group consisted of 269 (61%) ADAD mutation carriers and 
170 (39%) non-carrier family members (Table 1). Of this sample, 237 (54%) participants 
had longitudinal MRI scans, with a mean of 2.5 scans per participant and a maximum 

Sup. Table S1).

Table 1  Group characteristics 

symptom onset is the expected age at onset of the mutation that runs in the family.  

Non-carriers
(n=170)

Asymptomatic  
mutation carriers
 (n=174)

Symptomatic 
mutation carriers
(n=95)

Baseline age, years 38 (11) 34 (9) 46 (10)

Female, n (%) 101 (59%) 100 (57%) 50 (53%)

Estimated years to onset -11 (12) -14 (8) 1 (7)

MMSE 29.1 (1.2) 29.1 (1.2) 22.9 (6.6)

Total MR scans, 1/2/3/4-6, n 84/61/18/7 84/59/28/3 34/30/17/14

Follow-up time MR visits, years 3.3 (1.5) 3.2 (1.5) 2.2 (1.3)
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 3.1.   Cross-sectional divergences between mutation carriers  
  and non-carriers 
The mutation carriers diverged from non-carriers on all grey matter network metrics, 
except for network size and raw path length (Figure 1, Sup. Table S2). Lower network 
metric values for mutation carriers relative to non-carriers were observed earliest in 
normalized path length at EYO -12, followed by lower normalized clustering at EYO 

density at EYO -5.6, and degree at EYO 0. Using the same methods, but now 
implemented on a regional level, the earliest divergence between mutation carriers 
relative to non-carriers was found for path length in the precuneus at EYO -13.1, for 
clustering in the superior temporal gyrus at EYO -10, and for network degree in the 
banks of the superior temporal gyrus at EYO -7 (Figure 3, Sup. Table S3). 

Figure 1  Grey matter networks by estimated year of onset at baseline between mutation carriers 
and non-carriers

expected symptom onset, and right of EYO 0 is after expected symptom onset. The EYO were 

unblinding of participants. Dotted line is the point of divergence between mutation carriers and non-

carriers. N=439.
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Figure 2  Rate of change grey matter network for mutation carriers and non-carriers by  
estimated year of onset

participants. Dotted line is the point of divergence between mutation carriers and non-carriers.

 
Figure 3 Regional EYO of diversion between mutation carriers and non-carriers for grey matter 

Linear mixed models adjusted for sex, total grey matter volume and regional volume. MC=mutation 
carrier, NC= non-carrier. For details EYO by region see supplement table S3. N=416.

 3.2   Longitudinal divergences between mutation carriers compared 
  to non-carriers
When comparing rates of change over time, mutation carriers diverged from non-
carriers by EYO for all grey matter network metrics, except connectivity density. 
Steeper decline for mutation carriers relative to non-carriers was detected earliest 

-4.7, normalized clustering at EYO -4.6, degree at EYO -4.4, normalized path length 
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Table S2 and Figure S1). When additionally adjusting for degree the estimates for 

compared to non-carriers was detected for degree in the lateral occipital gyrus at EYO 
-7.4, for clustering in the parahippocampal gyrus at EYO -6.2, and for path length in 
the precentral gyrus at EYO -4.2. (Figure 3, Supplement Table S3). 

 3.3  Association of grey matter networks with other neuroimaging 
  and cognition

crossmodal relationships between baseline markers; over repeated measures; and 
whether baseline values could predict further decline in the other marker. We found that 

 
 Grey matter networks and the markers of Alzheimer disease progression 

FDG-PET metabolism in the meta-ROI (B±SE = 0.44±0.08, p=2x10-7), as well as 

Figure 4  
mutation carriers

= grey matter network. Yellow circle = CDR 0 at baseline, Red triangle = CDR>0 at baseline. Amyloid 
PET = precuneus SUVr, Cross-sectional n= 222, Longitudinal n= 120, Predict change n= 131. For 
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time (composite B±SE = 0.08±0.02, p=2 x10-7). Associations for the other network 
properties can be found in Sup. Figures S2-5.  

Figure 5 
cortical thickness and cognition 
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0 at baseline, Red triangle = CDR>0 at baseline. MRI thickness = cortical thickness precuneus, 

Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List Test (comparable to 
International Shopping List Test), Digit Symbol Substitution Test and Mini Mental State Examination. 
Cross-sectional FDG-PET N=238 MR thickness n= 260, Cognition N=251; Longitudinal: FDG-PET 
n= 129 MR thickness n=146 , Cognition N= 140;Predict change: FDG-PET n= 131 MR thickness n= 

 4 Discussion
Using a single-subject approach, we found that structural grey matter networks 
deteriorate over the course of autosomal dominant Alzheimer disease and that moving 
to a more random topology closely correlates with cognitive function. When comparing 

detected cross-sectionally as early as 12 years before expected symptom onset. 
Longitudinally, increased rates of decline of network metrics were evident from 6 
years before expected symptom onset. In line with our hypotheses based on cross-
sectional studies in sporadic AD, grey matter network disruptions were associated 
with abnormalities and decline of established markers of Alzheimer disease. Thus, our 

disease can contributes to our understanding of the Alzheimer disease trajectory, 
and indicates that our methods may potentially be a useful additional non-invasive 
tool for tracking disease progression.  As Alzheimer disease progresses, there is 
substantial amyloid accumulation, volumetric loss, hypometabolism, and cognitive 

Prior work in sporadic Alzheimer disease has shown that grey matter networks might 
be sensitive to biological changes during the preclinical stages of the disease [25-
27]. In the current work, we observed similar alterations of grey matter networks in 
autosomal dominant Alzheimer disease as a function of estimated years to symptom 

studies in sporadic Alzheimer disease [26], by showing that higher baseline amyloid 
PET and higher amyloid accumulation rates are related to faster decline of grey matter 
networks over time. The consistency between sporadic and autosomal dominant 
Alzheimer disease strengthens the hypothesis that grey matter network disruptions 

related to sensitive markers of Alzheimer disease neurodegeneration and cognitive 
decline, in cross-sectional and longitudinal design. This suggested these processes 
occur, at least partly, in parallel [40], and supports the notion that grey matter network 
decline is a sign of progression of Alzheimer disease. 
 Previous studies in sporadic Alzheimer disease had suggested decline over 
time of grey matter networks, as there was a decrease over disease stages cross-
sectionally [22, 27, 55]. Here, we show that grey matter networks decline over time 
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within individuals, and how decline rates start to increase with disease severity. 

generally detected later than cross-sectionally, which could have occurred because 
cross-sectional estimates across individuals by EYO may overestimate changes 
due to variance in the EYO measure (i.e., Some individuals at EYO -12 are actually 
only 5 or 6 years from actual onset) [35]. Another potential cause of cross-sectional 

who had longitudinal data. Measurement variability over repeated measures 

longitudinal design if these exceeded subtle rates of change. By extending follow-
up time and numbers, an earlier observation decline over time may be possible.  
 Altering of network properties was not detected for every metric. This may be 

The small world measures (normalized clustering, and normalized path length and 

sensitive to measure change over time. This is in line with network theory and 

tend to become more similar to random networks over the disease course. The 

may be why these best capture decline over time. Future studies should identify the 
most valid summary statistic to track longitudinal grey matter network disruptions. 
 On a regional level, cross-sectional network alterations were evident earliest in 
the parietal regions, and then spread across the brain. Most brain regions showed a 

temporal regions, in which earlier and more pronounced lowering of the clustering 

length and clustering in areas with most pathology in autosomal dominant Alzheimer 
disease, including the precuneus. Regions of the default mode network also showed 

 

in the most sensitive grey matter network metrics were detected earlier than cortical 
thickness and volumetric measures. It was not part of this study to investigate 
whether grey matter networks have the same or higher sensitivity to early alterations 
than other structural MRI markers. Still, we adjusted for grey matter volume to assure 
measuring value beyond simple volumes. The rates of change were detected at a 
similar stage to the volumetrics, and later precuneus cortical thinning in dominantly 
inherited Alzheimer disease, which is the earliest region of change [36, 39]. The results 
merit application of grey matter networks in future deeper investigations, for example 
using multimodal network approaches with white matter and functional connectivity, 
to better understand the substrate of cognitive decline. The observation that network 
disruptions increase over time in a large multicenter study is relevant for clinical trials. 
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calculation, a next step is to test the approach retrospectively in clinical trial populations. 
One of the strengths of the current study design is the use of a previously validated 

provided the ability to map changes in grey matter networks across decades of 
disease time. It should be noted that the estimates as a function of the expected 

size. Still, this method provides a way to detect and compare changes due to 

the rich characterization of DIAN participants provided the ability to relate observed 
changes in networks to other neuroimaging markers of pathology as well as cognition. 
A potential limitation is that our study included an average time period of 3 years in the 
longitudinal cohort, which may not be enough time to reliably measure changes due 
to Alzheimer disease in its very early stages. Yet, we show the longitudinal analysis of 
structural grey matter networks alongside of the cross-sectional results, which to the 
best of our knowledge has not been studied before and warrants further investigation 
of how grey matter networks deteriorate over time in sporadic Alzheimer disease. 
 In conclusion, in autosomal dominant Alzheimer disease individual grey matter 
networks are robustly associated with Alzheimer disease severity and progression as 
shown by the associations with EYO, amyloid accumulation, rate of neurodegeneration, 
and cognitive decline. These data suggest that single-subject grey matter networks 
obtained from structural MRI scans provide an additional, non-invasive tool for 
understanding and measuring progression from preclinical to severe clinical stages of 

processes, informing about changes in grey matter covariance [56].
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Supplemental data Chapter 4.1 

Table S1  Summary data other modalities 

weighted z-score of Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List 
Test (comparable to International Shopping List Test), Digit Symbol Coding and Mini Mental State 
Examination.

Asymptomatic  
mutation carriers
(N=174)

Symptomatic 
mutation carriers
(N=95)

N observations per 
participant

Amyloid PET scans, 1/2/3/4-7 83/ 58/ 16/ 3 31/ 28/ 11/ 6

FDG-PET scans, 1/2/3/4-7 88/ 54/ 21/ 3 28/ 33/ 11/ 9

Cognitive composite, 1/2/3/4-7 76/ 61/ 27/ 5 33/ 22/ 12/ 16

Baseline value  Amyloid PET precuneus, SUVr 2.0 (1.0) 3.5 (1.4)

FDG-PET, DIAN METAROI 1.68 (0.16) 1.46 (0.23)

Cognitive composite, z-score 0.37 (0.50) -0.83 (0.64)

Cortical thickness precuneus 4.8 (0.3) 4.2 (0.5)

Total grey matter volume*1000 627 (64) 567 (72)
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Table S2  Divergence between carriers and non-carriers by estimated years to symptom onset 

matter volume; gm volume and average degree were mean-centered; all models include a random 
family intercept and in the longitudinal models also for subject intercept and slope.  

EYO of divergence

Covariates: 
sex 0 = male 
- gm volume 
mean-
centered 

Covariates:
- sex 0 = 
female 
- gm volume 
mean-
centered

Covariates: 
- sex 0 = 
male 
- gm volume 
mean-
centered 
- average 
degree 
mean-
centered

No 
covariates. 
with family 
term 

No 
covariates. 
no family 
term

Cross-sectional

Size n/a

Average degree 0.0 n/a -1.2

Connectivity Density -5.6 -5.6 n/a -5.8

Average clustering -7.5 -7.3 -8.6 -7.6

Normalized clustering -8.7 -8.5 -9.6 -7.7

Average path length n/a -3.5

Normalized path length -12 -11.9 -12.4 -8.8

Small world property -8.4 -8 -7.7 -7.5

Longitudinal 

Size -6.0 -6.3 n/a -6.1 -6.0

Average degree -4.4 -4.0 n/a -3.4 -3.5

Connectivity Density n/a

Average clustering -2.6 -3.3 -3.5 -2.8

Normalized clustering -4.6 -4.4 -4.5 -4.7 -4.7

Average path length -4.8

Normalized path length -2.8 -3.0 -4.2 -2.4 -2.4

Small world property -4.7 -4.7 -4.4 -4.3 -4.4
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Table S3  Regional point of divergence between carriers and non-carriers by estimated years to 
symptom onset (EYO) cross-sectionally and longitudinal rate of change

Lobe Region Cross-sectionally Longitudinal rate of change

Degree Clustering
Path 
length 

Degree Clustering 
Path 
length

F/P/T Insula - -4.7 -8.7 - - -

F Caudal middle frontal - -6.8 -7.4 - - -1.1

F Frontal pole - -0.8 - - - -

F Lateral orbitofrontal - -5.8 - -

F Medial orbito frontal - - - -

F Para central - -3.8 -1.7 - - -

F Pars opercularis - -4.0 -9.5 - - -

F Pars orbitalis - -1.7 - - - -

F Pars triangularis - -4.3 -4.5 - -

F Pre central - -4.2 -6.3 - - -4.2

F Rostral middle frontal - -6.8 -9.7 - - -2.4

F Superior frontal - -7.9 -4.6 - - -

F (C) Caudal anterior cingulate - -1.4 - - - -

F (C) Rostral anterior cingulate - -1.8 -3.8 - - -

P Inferior parietal -4.9 -6.9 - - -1.9

P Post central - -7.4 -10.3 - - -

P Precuneus - -7.9 -13.1 - - -2.3

P Superior parietal - -3.8 -12.0 - - -1.7

P Supramarginal - -3.3 -8.4 - - -1.0

P (C) Isthmus cingulate -4.0 -6.3 -3.0 - -

P (C) Posterior cingulate - -5.2 -8.8 - - -

O Cuneus - -7.4 -6 - -

O Lateral occipital -7.6 - -7.4 - -

O Lingual -6.7 -7.3 - -

O Pericalcarine -3.2 -5.0 -10.5 - - -

T Banks superior temporal -7.0 -2.0 -7.2 0.9 - -

T Entorhinal -4.1 -4.7 - - -

T Fusiform -3.5 -6.1 -5.3 -4 -2.1 -

T Inferior temporal -3.1 -3.7 - -4.7 -3.6 -

T Middle temporal -2.4 -6.4 -7.9 -0.7 - -

T Parahippocampal -0.7 -4.0 - -1.4 -6.2 -

T Superior temporal - -10.0 -4.2 - - -

T Temporal pole - -4.2 - - - -

T Transverse temporal - -2.9 -8.4 - - -1.1
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random family intercept and in the longitudinal models also for subject intercept and slope. The 
models for degree are adjusted for baseline grey matter volume, mean-centered, baseline regional 
volume, mean-centered, and sex (0=male), and for clustering and path length also for baseline 
degree, mean-centered. T=temporal lobe, P=parietal lobe, F=frontal lobe, C=cingulate, O=occipital. 
EYO = estimated years to symptom onset.

Table S4  Associations between grey matter network small world property and other imaging and 
clinical markers in mutation carriers 

Linear models adjusted for baseline age, sex, total grey matter volume, and if possible family cluster. 

between time and predictor. Amyloid PET = precuneus SUVr, MR thickness = cortical thickness 

weighted z-score of Logical Memory Delayed Recall of the Wechsler memory test, DIAN Word List 
Test (comparable to International Shopping List Test), Digit Symbol Coding and Mini Mental State 
Examination. All predictor and outcome variables were scaled.

Model Outcome Predictor Beta (SE) p-value

Model 1 Cross-sectional Small world property Amyloid PET -0.22 (0.05) 3e-06

FDG-PET Small world property 0.44 (0.08) 2e-07

MR thickness Small world property 0.50 (0.06) 2e-15

Cognitive composite Small world property 0.28 (0.08) 3e-04

Small world property Amyloid PET -0.33 (0.06) 1e-07

FDG-PET Small world property 0.54 (0.06) 5e-14

MR thickness Small world property 0.55 (0.06) 1e-17

Cognitive composite Small world property 0.47 (0.06) 2e-11

Model 3 Predict change 

over time after baseline

Small world property Amyloid PET  -0.07 (0.01) 4e-08

FDG-PET Small world property 0.12 (0.02) 2e-08

MR thickness Small world property 0.10 (0.01) 4e-12

Cognitive composite Small world property 0.08 (0.02) 2e-07
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Figure S1  Raw data longitudinal grey matter networks with estimated points of divergence 
between mutation carriers and noncarriers

accidental unblinding of participants, including 1 outlier removed. Left of EYO 0 is before expected 

point of divergence between mutation carriers and non-carriers. 
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Parameters in statistical models 

1  EYO comparisons: 

a.  Cross-sectional

Networkmetric   linear cubic status  
       * EYOlinear*Mutationstatus cubic*Mutationstatus 

            cluster

b.  Longitudinal

Networkmetric    linear cubic status 

         * EYOlinear cubic status  
        * EYOlinear*Mutationstatus cubic*Mutationstatus*time 

cluster )   

2 Crossmodal comparisons mutation carriers only

a.  Cross-sectional

Outcome_baseline  

cluster

b.  Longitudinal

 

c.  Predict rate of change over time

baseline baseline*time  

cluster ) 
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Figure S2  Comparisons PIB and other grey matter network with mutation carriers 
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S3  Comparisons other grey matter network measures and FDG metabolism in 
mutation carriers
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S4  Comparisons other grey matter network measures and cortical thickness  
in mutation carriers 
Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Figure S5  Comparisons other grey matter network measures and cognition in mutation carriers 
 Yellow circle = asymptomatic; red triangle = symptomatic at baseline 
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Chapter 4.2

 Biological correlates of grey matter 
 network disruption in autosomal 
 dominant Alzheimer disease
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Jasmeer P. Chhatwal, Carlos Cruchaga, Michael Ewers, Nick Fox, Bernardino Ghetti, 
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Philip Scheltens, Pieter Jelle Visser, Tammie L.S. Benzinger, Randall J. Bateman, 
Anne M. Fagan, Brain A. Gordon, Betty M. Tijms, on behalf of DIAN investigators.
 

In preparation

Abstract

BACKGROUND: Structural grey matter covariance networks are disrupted in 
neurodegenerative disorders such as Alzheimer disease (AD). These disruptions are 
related to early amyloid aggregation and cognitive decline, but the precise biological 
underpinnings of network changes remain unknown. Besides amyloid aggregation, 
many other pathological processes occur in AD, including synaptic dysfunction 

that may contribute to grey matter network disruptions. Therefore, we investigated 

processes, are associated with grey matter network disruptions in autosomal 
dominantly inherited AD (ADAD) mutation carriers.
METHODS: From the Dominantly Inherited Alzheimer Network (DIAN) Observational 
study, we included 219 mutation carriers and 136 noncarriers with both T1-weighted 

40/42 ratio (amyloid aggregation), 
pTau (hyperphosphorylation), tTau and VILIP-1 (neuronal injury and death), SNAP-25 
and neurogranin, (synaptic damage), NfL (axonal injury), YKL-40 and soluble TREM2 

measure indicates whether networks deviate from a randomly organized network. We 

trajectory of the disease course for each of the markers.  
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RESULTS: Increased pTau, tTau, SNAP-25, Ng, VILIP-1, NfL and YKL-40 were 
associated with lower small world values in mutation carriers. NfL showed the 

stages. Abnormalities in the traditional CSF biomarkers and synaptic and neuronal 
injury markers preceded grey matter network disruptions by several years, while YKL-
40 and NfL abnormalities co-occurred.  
CONCLUSION: Our results suggest that axonal loss may contribute to disrupted grey 
matter networks as observed in AD. 

1 Introduction
Brain areas implicated in similar functions show covariation in cortical morphology 
on magnetic resonance imaging (MRI), and these covariation patterns can be 

such as Alzheimer disease (AD), grey matter networks become disrupted [3-
5]. With increasing disease severity in AD, grey matter networks become more 

These network disruptions are related to impaired cognition and future cognitive 
decline, both in sporadic and autosomal dominant AD (ADAD) [6-13]. Network 
disruptions can already be detected in cognitively normal individuals with amyloid 
aggregation (presumed preclinical AD) [6, 14, 15]. Still, the biological mechanisms 
that explain the deterioration of network organization remain unclear. Changes in 
grey matter networks could result from multiple pathophysiological processes such 
as synaptic dysfunction and loss, axonal degeneration, neuronal loss, and local 

network disruptions over the course of AD may inform new hypotheses regarding 
how brain connectivity could be maintained in order to preserve cognitive function. 

42/40]), hyperphosphorylation of tau (181-phosphorylated fraction [pTau]), and 
neuronal injury (total tau [tTau]) [16]. In addition to these core AD measures, other 
biomarkers have robustly been related to AD, and provide information on additional 
pathological brain alterations occurring in the disease [17]. Increased levels of 
synaptosomal-associated protein-25 (SNAP-25) and neurogranin (Ng) levels are 
markers of pre-synaptic and post-synaptic dysfunction, respectively; visinin-like protein 

23]. In addition, chitinase-3-like protein 1 (YKL-40), an astrocyte marker, and soluble 
TREM2 (sTREM2) [19, 20, 23, 24], a marker of activated microglia, are also elevated in 

levels of these markers may impact brain connectivity, but this remains largely unknown.  
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has the advantage of a relatively conserved dementia onset age and few age-related 
co-pathologies due to the relatively young age of symptoms [25]. We assessed the 
associations between both the core and emerging CSF biomarkers for AD and the 

further tested within mutation carriers whether the relationships observed were 

42 ratio 
(normal, abnormal) and the clinical dementia rating score (CDR).

2 Methods
 2.1  Participants and design
Data was obtained from the Dominant Inherited Alzheimer Network Observational 
Study (DIAN-Obs) [26]. For the DIAN study, ADAD mutation carriers (MC) (presenilin 
1 [PSEN1], presenilin 2 [PSEN2] and amyloid precursor protein [APP]) and their 
noncarrier (NC) family members undergo longitudinal clinical and cognitive 
examinations, neuroimaging and biospecimen donations. We evaluated data that 

and Dutch mutations were excluded from analyses, because these mutation result 

approved by the ethical review board at Washington University, St. Louis, Missouri, 
USA and local IRBs. The estimated years to symptom onset (EYO) for each individual 

age at onset is 53) mean age at onset subtracted from the individuals’ visit age [25]. 

disease onset was used instead. For example, if the mean age at symptom onset 

of mutation status, would have an EYO of -10. This indicates an individual with the 
mutation is expected to show clinical symptoms of AD 10 years later, and allows 
comparison of biomarkers with the NCs on the same timeline, as well as between 

 
data available. 

all MCs to their familial NC controls. The second set of analyses staged MCs into 
4 groups based upon their biomarker status and CDR [27]. Group 1 had a normal 

42 (< 0.019 [28]) (indicating absence of underlying brain amyloid). 
Group 2-4 had abnormal ratios (indicating presence of amyloid) and increasing CDRs 
of: group 2: CDR= 0, no impairment; group 3: CDR = 0.5, very mild dementia; group 
4: CDR >= 1 mild to severe dementia. 
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 2.3  MR preprocessing 
MR scans were collected and preprocessed according the protocols of the 
Alzheimer’s Disease neuroimaging Initiative (1.1 by 1.1 by 1.2 mm3 voxels, repetition 

white matter and CSF in native space with Statistical Parametric Mapping 12 (SPM12; 
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK). 
The segmentations were checked and resliced into 2mm by 2mm by 2mm voxels, and 
this was the input for the grey matter network extraction. 

 2.4 Calculation of grey matter network metrics
Single-subject grey matter network metrics were extracted from preprocessed grey 
matter segmentations  according to previously published procedures, (https://github.
com/bettytijms/Single_Subject_Grey_Matter_Networks)[2] as follows: Grey matter 
segmentations were parcellated into cubes of 3 by 3 by 3 voxels, and these cubes 

calculated for grey matter intensities across the voxels for each pair of cubes. Next, 

brain connectivity toolbox (https://sites.google.com/site/bctnet/ [31] 

while a value higher than 1 indicates the networks exhibits the ‘small world property’. 
Technically, networks are ‘small world’ when the level of clustering is high, while the 
path length to every other node is still relatively short [32, 33]. 

Participants underwent lumbar puncture after overnight fasting. Samples were 
collected via gravity drip in polypropylene tubes and sent on dry ice to the DIAN 

polypropylene tubes, stored at -84°C before measurements of SNAP-25, Ng, VILIP-1 

40 42, pTau and tTau by the Shaw laboratory at the University 
of Pennsylvania [34], of NfL by the Kuhle laboratory in Basel [35], and of sTREM2 by 

40 42, pTau and tTau levels were determined using the automated Elecsys 

40 42 outside the measurement ranges were extrapolated 
on the calibration curve [37]. SNAP-25, Ng and VILIP-1 were measured with antibodies 
developed in the laboratory of Dr. Jack Ladenson at Washington University in St. 
Louis, as part of micro-particle-based immunoassays using the Singulex (now part  
of EMD Millipore; Alameda, CA) Erenna system [22]. YKL-40 was measured with  
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All 
(n=136)

NCs < 40 
years old
(n=81)

All 
(n=216)

MCs: 
ratio neg 
(n=84)

MCs: 
CDR 0, 
ratio pos 
(n=63)

MCs: 
CDR 0.5, 
ratio pos 
(n=43)

MCs: 
CDR 1-3, 
ratio pos 
(n=26)

Demographics

N (%) Male 53 (39%) 32 (40%) 96 (44%) 35 (42%) 28 (44%) 19 (44%) 14 (54%)

Age, years 38 ± 12 31 ± 6 39 ± 10 32 ± 8 38 ± 9 47 ± 9 47 ± 9

EYO, years -10 ± 12 -17 ± 9 -9 ± 11 -17 ± 8 -8 ± 7 1 ± 6 4 ± 4

Years of education, 15 ± 3 15 ± 2 14 ± 4 15 ± 3 15 ± 4 14 ± 4 12 ± 2

CDR (0/0.5-1/2-3), N 131/5/0 0/2/0 142/66/8 79/5/0 63/0/0 0/43/0 0/18/8

30 ± 1 30 ± 1 29 ± 3 29 ± 1 29 ± 2 26 ± 4 16 ± 10

Grey matter network

Small world 1.62 ± 
0.05

1.65 ± 
0.05

1.59 ± 
0.08

1.64 ± 
0.06

1.60 ± 
0.05

1.55 ± 
0.08

1.46 ± 
0.07

Noncarriers (NCs) Mutation carriers (MCs)

Table 1  Demographics and baseline summary data on predictors and outcomes. 

Traditional CSF 
markers

42 pg/ml 1,407 ± 
466

1,292 ± 
442

974 ± 634 1,526 ± 
655

716 ± 279 553 ± 
208

510 ± 217

40 pg/ml 15,698 ± 
4418

14,398 ± 
4,204

14,862 ± 
4760

15,607 ± 
5,080

15,004 ± 
4,749

14,483 ± 
4,114

12,741 ± 
4,241

pTau pg/ml 14 ± 5 13 ± 4 31 ± 23 14 ± 4 32 ± 18 46 ± 23 57 ± 28

tTau pg/ml 169 ± 55 154 ± 49 290 ± 
162

177 ± 48 305 ± 120 375 ± 142 475 ± 241

42/40 0.089 ± 
0.01

0.089 ± 
0.007

0.066 ± 
0.035

0.099 ± 
0.031

0.049 ± 
0.017

0.039 ± 
0.012

0.042 ± 
0.015

42/40 0.075, 
N (%)

6 (4%) 1 (1%) 144 (67%) 19 (23%) 58 (92%) 42 (98%) 25 (96%)

42 0.010 ± 
0.004

0.010 ± 
0.002

0.052 ± 
0.053

0.010 ± 
0.004

0.051 ± 
0.034

0.091 ± 
0.049

0.120 ± 
0.065

42 
0.0198, N (%)

2 (1%) 0 (0%) 132 (61%) - - - -

Emerging CSF 
markers

SNAP-25 pg/ml 3.6 ± 1.3 3.2 ± 1.1 4.6 ± 1.9 3.6 ± 1.1 4.5 ± 1.5 5.2 ± 1.7 6.4 ± 2.7

Ng pg/ml 1,563 ± 
741

1,447 ± 
765

2,297 ± 
1,212

1,638 ± 
682

2,526 ± 
1,109

2,673 ± 
1,164

3,120 ± 
1,748

NfL pg/ml 793 ± 
544

564 ± 
396

1,939 ± 
1,762

531 ± 190 1,033 ± 
650

2,630 ± 
1,643

3,873 ± 
1,657

VILIP-1 pg/ml 133 ± 50 122 ± 48 174 ± 79 135 ± 47 179 ± 71 198 ± 75 236 ± 114

YKL-40 ng/ml 133 ± 66 98 ± 37 173 ± 88 109 ± 37 169 ± 69 229 ± 81 280 ± 89

 sTREM2, relative to 
reference sample 

0.47 ± 
0.22

0.43 ± 
0.21

0.58 ± 
0.29

0.42 ± 
0.15

0.48 ± 
0.28

0.73 ± 0.3 0.74 ± 0.3

Legend: CSF biomarkers not available for the whole sample: SNAP (n=330), Ng (n=331), VILIP1 (n=330), 
YKL40 (n=331), NfL (n=169 (incl. 19 with no MRI data), sTREM2 (n=164).
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CA) [22]. NfL was measured with a single-molecule array assay using the capture 
monoclonal antibody 47:3 and biotinylated detection antibody 2:1 (UmanDiagnostics 
AB, Sweden) [21]. sTREM2 was measured using the MSD platform with an in-house 
developed ELISA based on commercially available antibodies [24]. The sTREM2 
concentrations are reported relative to the pooled sample that was loaded onto all 
plate, as a way to account for plate variation. 

 2.6  Statistical analysis
In all linear models pTau, tTau, SNAP-25, Ng, VILIP-1, YKL-40, NfL and sTREM2 were 
log-transformed to approach normality. To aid comparability of slope estimates, the 
variables were Z-transformed according to the total group. We tested the associations 

outcome with three linear regression models. Model 1 was adjusted for sex; Model 

the predictor. We ran post-hoc pairwise comparisons using the Tukey HSD procedure. 
Lastly, we estimated trajectories for all markers studied by EYO, using a previously 

the relative ordering of biomarker trajectories (details in Supplemental data). Before 

years old, n=81, table 1). All statistical analyses were conducted in R (version 3.5.3) 
using the stats, emmeans. car, lmer, rstan and stanarm-packages [39].

3 Results
The presented analyses included 136 NCs and 219 MCs (age mean±SD 39±11; EYO 
mean±SD -9±11). In the MC group, 84 (39%) individuals had normal CSF ratio pTau/

42 42 ratio, 64 (29%) individuals had 
CDR 0, 43 (20%) CDR 0.5 and 26 (12%) CDR 1-3. The group characteristics are 
shown in Table 1.
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Figure 1  Associations between CSF biomarkers and grey matter networks for mutation carriers 
and noncarriers

relative to a reference sample.

 3.1   Associations between CSF biomarkers and the small 

Across the whole group, we found that all AD markers were related to alterations in 
grey matter networks (Table 2). Higher levels of NfL most strongly related to lower small 

p<0.001), and pTau 

25, Ng, pTau, tTau, NfL, VILIP-1 and YKL-40 (p<0.05, Fig. 1). Post-hoc comparisons 
showed that higher levels of SNAP-25 (-0.37 [CI 95%, -0.50,-0.24]) and Ng (-0.35 [CI 
95%, -0.48,-0.21]), pTau (-0.58 [CI 95%, -0.69,-0.48]), tTau (-0.55 [CI 95%, -0.67,-0.44]) 
and VILIP-1 (-0.29 [CI 95%, -0.42,-0.16]) were related to lower small world values 

values was observed in both MCs and NCs, and this was stronger in MCs (NfL: MC 
= -0.76 [CI 95%, -0.89, -0.64] & NC = -0.44 [CI 95%, -0.77,-0.17]; YKL-40: MC = -0.61 
[CI 95%, -0.72, -0.49] & NC = -0.32 [CI 95%, -0.48,-0.17]). When repeating models 

pTau, tTau, NfL and YKL-40 (p<0.05), but not for VILIP-1 (p=0.06). Next, we further 

to a certain stage.
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3.2   Grey matter network and CSF biomarker trajectory by EYO
Finally, we estimated trajectories for all CSF and structural MRI markers according to 

42/40 42 (EYO -16), pTau (EYO -18), 
tTau (EYO= -19), SNAP-25 (EYO= -15), Ng (EYO= -19) and VILIP-1 (EYO= -18) levels 

Model 1 
Predictor

Model 2 Mutation status* Predictor Model 3 Mutation status* Predictor
& adjustment for age

Predictors
Predictor 
(beta)

Interaction
(t)

Noncarriers  
(est slope)

Carriers
(est slope)

Interaction
(t)

Noncarriers  
(est adj 
slope)

Carriers
(est adj 
slope)

42/40 ratio 0.43 (0.05); 
p<0.001

1.8; 
p= 0.075

-0.01 (-0.47, 
0.45); 
p=0.957

0.42 
(0.31,0.52); 
p<0.001

1.9; 
p= 0.064

-0.18 (-0.57, 
0.22); 
p=0.374

0.20 
(0.11,0.30); 
p<0.001

pTau -0.53 
(0.05); 
p<0.001

-2.5; 
p= 0.014

-0.21 
(-0.49, 
0.07); 
p=0.144

-0.58 
(-0.69,
-0.48); 
p<0.001

-2; 
p= 0.047

0.06 (-0.18, 
0.31); 
p=0.605

-0.39 
(-0.49, 
-0.29); 
p<0.001

tTau -0.48 
(0.05); 
p<0.001

-3.1; 
p= 0.002

-0.16 
(-0.38, 
0.07); 
p=0.167

-0.55 
(-0.67,
-0.44); 
p<0.001

-2.6; 
p= 0.010

0.05 (-0.14, 
0.24); 
p=0.596

-0.36 
(-0.46, 
-0.26); 
p<0.001

SNAP-25 -0.33 
(0.05); 
p<0.001

-2.1; 
p= 0.035

-0.13 (-0.31, 
0.05); 
p=0.162

-0.37 
(-0.50,
-0.24); 
p<0.001

-2.2; 
p= 0.026

0.04 (-0.12, 
0.19); 
p=0.645

-0.14 
(-0.25,
-0.02); 
p=0.019

Ng -0.28 
(0.05); 
p<0.001

-2.9; 
p= 0.004

-0.02 
(-0.20, 
0.16); 
p=0.836

-0.35 
(-0.48,
-0.21); 
p<0.001

-2.7; 
p= 0.008

0.07 (-0.07, 
0.22); 
p=0.317

-0.20 
(-0.31,
-0.09); 
p=0.001

NfL -0.72 (0.05); 
p<0.001

-2.2; 
p= 0.032

-0.44 
(-0.71, 
-0.17); 
p=0.002

-0.76 
(-0.89,
-0.64); 
p<0.001

-3.7; 
P< 0.001

0.01 (-0.30, 
0.32); 
p=0.940

-0.53 
(-0.68,
-0.38); 
p<0.001

VILIP-1 -0.26 
(0.05); 
p<0.001

-2.0; 
p= 0.046

-0.05 
(-0.24, 
0.14); 
p=0.574

-0.29 
(-0.42,
-0.16); 
p<0.001

-1.9; 
p= 0.060

0.07 (-0.09, 
0.22); 
p=0.401

-0.10 (-0.21, 
0.01); 
p=0.078

YKL-40 -0.53 
(0.05); 
p<0.001

-2.9; 
p= 0.004

-0.32 
(-0.48,
-0.17); 
p<0.001

-0.61 
(-0.72,
-0.49); 
p<0.001

-3.6; 
P< 0.001

0.05 (-0.11, 
0.22); 
p=0.534

-0.30 
(-0.43,
-0.18); 
p<0.001

sTREM2 -0.33 
(0.08); 
p<0.001

-2; 
p= 0.052

-0.08 
(-0.33, 
0.17); 
p=0.542

-0.40 
(-0.61,
-0.19); 
p<0.001

-1.3; 
p= 0.195

0.13 (-0.08, 
0.34); 
p=0.229

-0.01 
(-0.20,
0.18); 
p=0.912

Table 2

TREM2 relative to a reference sample. All CSF markers, except the ratio are log-transformed.
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matter networks (EYO= -8). NfL (EYO= -7) and YKL-40 (EYO= -7) trajectories were 
abnormal around the same time as grey matter networks, and sTREM2 (EYO= -3.5) 

40 (EYO= 0.5) showed abnormal levels in MCs compared to NCs later than grey  
matter networks.

4 Discussion

with alterations in grey matter networks, and that axonal damage as measured with 
NfL showed the strongest relationship with worse grey matter network disruptions. 
Increased concentrations of the CSF markers for hyperphosphorylation of tau (pTau), 

and Ng) were related to worse grey matter network organization in the MCs only. 
The observed associations were not dependent on staging based on a combination 

42 ratio and the global CDR, suggesting that they were similar across 
disease development. According biomarker trajectories, most CSF markers showed 
abnormal levels before grey matter network abnormality in the MCs compared to 
the NCs, and for NfL and YKL-40 the timing was closest together with grey matter  
network alterations.   

Figure 2  Associations between CSF biomarkers and grey matter networks within mutation 
carriers by disease stage

relative to a reference sample. 
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 So far, only the role of amyloid aggregation had been studied in relation to grey 

sensitive to brain structural changes related to amyloid aggregation in sporadic AD. 

42/40 ratios were associated with grey matter network 
disruptions. We further detected relationships between markers of other pathological 
processes in AD and grey matter network disruptions. The most pronounced 
association was observed for NfL, which suggests that loss of axonal integrity is 
an important factor for loss of grey matter network organization. The link between 
deterioration of grey matter covariance in AD to axonal tract damage supports the 

 

 We also observed that higher levels of the synaptic markers (SNAP-25 and Ng), 
hyper-phosphorylation (pTau) and neuronal damage (tTau and VILIP-1) were associated 

as during brain development, when synaptic maturation and co-activation play a role 
in increasing brain connectivity [3]. The biomarker trajectories suggest that synaptic 
damage and neuronal loss precedes the changes we observe with MRI, therefore MRI 

that CSF pTau and tTau increases very early in the course of ADAD, in a more parallel 

Figure 3  CSF and MRI biomarkers abnormality curves by EYO standardized to young noncarriers
Legend: The graphs show the median estimated curves standardized to the noncarriers mean and 

42, 

40, pTau, tTau N = 352; SNAP-25, VILIP1 N=330, Ng & YKL-40 N=331, sTREM2 N=218; NfL N = 
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fashion with amyloid aggregation than according to hypothetical models [28]. The 

lead to disrupted connectivity of the brain as measured on MRI. Longitudinal studies are 
needed to further examine the temporal relationship of these processes in more detail.  
 The associations between increased NfL and the astrocyte marker YKL-40 
and network disruptions were also observed in NCs. Previous studies have shown 
that during aging NfL and YKL-40 levels increase [19, 23, 40, 41], and grey matter 
networks measure decline [42], though less pronounced than in predementia AD. 

whether these are pathological processes that may render the brain more vulnerable 

of AD, with an increase close to symptom onset [24, 43]. sTREM2 levels showed 
a complex relationship with grey matter networks, as the association disappeared 
in mutation carriers when analyses were corrected for age. The trajectory curves 
for sTREM2 showed changes a few years later than for grey matter networks, 

related to the brain structure changes as captured by the grey matter networks.  
 A strength is that we studied the pathophysiology over the full course of AD. 
Investigating ADAD MCs of the DIAN study, along with NCs, was a powerful way for a 
parallel investigation of multiple disease processes that may contribute to grey matter 
network disruption. Due to the causative genes, the cross-sectional trajectory can 
inform longitudinal changes. Still, the reality is more complex [44], meaning further 
study in a longitudinal design is needed to understand of the drivers and downstream 

over the expected years to symptom onset is that results in part depend on sample 
sizes and model assumptions. Most EYOs of divergence were similar to previous 
studies, except for Ng and YKL-40, which is an indication of the level of robustness 
across modeling methods [23]. In addition, the exact meaning of the biomarkers levels 
is not fully understood, and we were unable to investigate brain tissue as part of 
this study. Another limitation is that we assessed linear relationships between CSF 
and grey matter network values, which may underestimate existing relationships. 
Therefore, we evaluated whether patterns depended on disease severity, which 
may give rise to non-linear patterns. Still, some of those disease stage groups 

relationships in detail. Lastly, we studied a primary summary measure of network 
organization, which was a way to reduce the number of comparisons and increase 

 
 To summarize, loss of synaptic integrity and in particular axonal integrity as 
measured with increased NfL in CSF seems to be related to disrupted grey matter 
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injury or synaptic processes might lead to stabilization or improvement of grey matter 
network integrity.
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Supplemental data Chapter 4.2 

 Methods and materials

Table S1  

severity groups  

TREM2 relative to a reference sample. All CSF markers, except the ratio are log-transformed.

 Within MCs: interaction of group and CSF predictor

Predictors

Interaction

(F)

Ratio negative

(est slope)

Ratio positive & 

CDR 0

(est slope)

Ratio positive & 

CDR 0.5

(est slope)

Ratio positive & 

CDR 1-3

(est slope)

42/40 ratio 0.63; p=0.59 0.03 

(-0.13,0.20); 

p=0.68

0.0 (-0.36,0.35); 

p>0.99

0.44 

(-0.14,1.02); 

p=0.13

0.09 

(-0.53,0.71); 

p=0.77

pTau 0.68; p=0.57 -0.02 

(-0.41,0.37); 

p=0.92

-0.17 

(-0.4,0.05); 

p=0.13

-0.36 (-0.67,-

0.06); p=0.02

-0.18 (-0.54, 

0.19); p=0.34

tTau 0.34; p=0.8 -0.04 

(-0.36,0.27); 

p=0.78

-0.13 

(-0.35,0.1); 

p=0.27

-0.25 

(-0.56,0.05); 

p=0.10

-0.2 

(-0.52,0.12); 

p=0.23

SNAP-25 0.36; p=0.78 0.06 

(-0.19,0.31); 

p=0.64

-0.03 

(-0.24,0.17); 

p=0.75

-0.14 

(-0.43,0.16); 

p=0.36

-0.07 

(-0.34,0.2); 

p=0.61

Neurogranin 0.24; p=0.87 0.01 

(-0.21,0.23); 

p=0.92

-0.07 

(-0.3,0.16); 

p=0.53

-0.06 

(-0.36,0.24); 

p=0.69

-0.15 (-0.47, 

0.17); p=0.35

NfL log 0.16; p=0.92 -0.77 (-1.36,-

0.18); p=0.01

-0.51 

(-1.17,0.14); 

p=0.12

-0.67 (-1.04,-

0.3); p<0.01

-0.50 (-1.26, 

0.26); p=0.2

VILIP-1 0.30; p=0.83 0.09 

(-0.15,0.33); 

p=0.46

-0.06 

(-0.26,0.15); 

p=0.58

-0.02 

(-0.3,0.26); 

p=0.89

0.02 (-0.25, 

0.28); p=0.9

YKL-40 0.75; p=0.52 -0.22 

(-0.45,0.02); 

p=0.07

-0.11 

(-0.35,0.13); 

p=0.37

-0.46 (-0.84,-

0.07); p=0.02

-0.18 

(-0.66,0.3); 

p=0.46

sTREM2 0.82 ; p=0.48 -0.13 

(-0.57,0.32); 

p=0.58

-0.07 

(-0.5,0.36); 

p=0.74

-0.07 

(-0.52,0.38); 

p=0.76

0.36 

(-0.15,0.86); 

p=0.17
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Details statistical methods of biomarker trajectory model:

Markov chain Monte Carlo sampling of the posterior distribution, with cauchy prior, 10,000 iterations 
in 8 chains, and thinning of 10 in the STAN and rstanarm package for R (Carpenter, Gelman et al. 

between MCs and NCs did not overlap 0. We also provide the 95% and 99.5% of the credible 
intervals (Table S2).

family = gaussian(), prior = cauchy(), prior_intercept = cauchy(),  chains = 8, cores = 1,  iter = 10000, 
thin = 10)

Table S2  Baseline values for biomarkers used for EYO in comparison to crossmodal data

 

Legend: Light grey color are the values of table 1 for the main analysis of crossmodal comparison 

 Noncarriers 

(NCs)

Noncarriers 

(NCs)

Mutation 

carriers (MCs)

Mutation 

carriers (MCs)

Grey matter network

1.63 ± 0.05 1.62 ± 0.05 1.59 ± 0.09 1.59 ± 0.08

Traditional CSF markers

42 pg/ml 1,379 ± 464 1,407 ± 466 951 ± 635 974 ± 634

40 pg/ml 15,491 ± 4490 15,698 ± 4418 1,4763 ± 4851 14,862 ± 4760

pTau pg/ml 14 ± 5 14 ± 5 32 ± 24 31 ± 23

tTau pg/ml 168 ± 56 169 ± 55 295 ± 169 290 ± 162

42/40 0.088 ± 0.010 0.089 ± 0.010 0.065 ± 0.034 0.066 ± 0.035

Emerging CSF markers

SNAP-25 pg/ml 3.6 ± 1.3 3.6 ± 1.3 4.6 ± 1.9 4.6 ± 1.9

Ng pg/ml 1,529 ± 736 1,563 ± 741 2303 ± 1186 2,297 ± 1,212

NfL pg/ml 820 ± 622 793 ± 544 1925 ± 1900 1,939 ± 1,762

VILIP-1 pg/ml 132 ± 52 133 ± 50 176 ± 78 174 ± 79

YKL-40 ng/ml 135 ± 66 133 ± 66 178 ± 92 173 ± 88

 sTREM2, relative to  
reference sample 

0.48 ± 0.22 0.47 ± 0.22 0.59 ± 0.29 0.58 ± 0.29
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Table S3 Estimated years to onset of divergence between mutation carriers and noncarriers

pTau, & tTau N = 352; SNAP-25 & VILIP1 N=330, Ng & YKL-40 N=331, sTREM2 N=218; NfL N = 210. 
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EYO of divergence 
according 99% 
credible interval

EYO of divergence 
according 95% 
credible interval

EYO of divergence, 
according 99.5% 
credible interval 

Grey matter network

-8 -10.4 -7.5

Traditional CSF markers

42/40 ratio -17.8 -18.4 -17.6

42 -15.5 -16.4 -15.2

40 0.5 -1 1.2

pTau -17.7 -19.1 -17.2

tTau -19.2 -20.4 -18.4

Emerging CSF markers

SNAP-25 -14.8 -17.9 -12.6

Ng -19 -20.1 -18.2

NfL -7 -8.1 -6.7

VILIP-1 -17.9 -19.8 -16.8

YKL-40 -7 -10.1 -6

sTREM2 -3.5 -6.7 -2.2
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