VU Research Portal

Distributed Operating Systems
Tanenbaum, A.S.; van Renesse, R.

published in
ACM Computing Surveys

1985

DOI (link to publisher)
10.1145/6041.6074

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S., & van Renesse, R. (1985). Distributed Operating Systems. ACM Computing Surveys, 17(4),
419-470. https://doi.org/10.1145/6041.6074

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 18. Oct. 2021

https://doi.org/10.1145/6041.6074
https://research.vu.nl/en/publications/3abe4f41-8c05-40d2-9355-42e839e00c3f
https://doi.org/10.1145/6041.6074

Distributed Operating Systems

ANDREW S. TANENBAUM and ROBBERT VAN RENESSE

Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

Distributed operating systems have many aspects in common with centralized ones, but
they also differ in certain ways. This paper is intended as an introduction to distributed
operating systems, and especially to current university research about them. After a
discussion of what constitutes a distributed operating system and how it is distinguished
from a computer network, various key design issues are discussed. Then several examples
of current research projects are examined in some detail, namely, the Cambridge
Distributed Computing System, Amoeba, V, and Eden.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]:
Distributed Systems—network operating system; D.4.3 [Operating Systems]: File
Systems Management—distributed file systems; D.4.5 [Operating Systems]:
Reliability—fault tolerance; D.4.6 [Operating Systems]: Security and Protection—access
controls; D.4.7 [Operating Systems): Organization and Design—distributed systems

General Terms: Algorithms, Design, Experimentation, Reliability, Security

Additional Key Words and Phrases: File server

INTRODUCTION

Everyone agrees that distributed systems
are going to be very important in the future,
Unfortunately, not everyone agrees on
what they mean by the term “distributed
system.” In this paper we present a view-
point widely held within academia about
what is and is not a distributed system, we
discuss numerous interesting design issues
concerning them, and finally we conclude
with a fairly close look at some experimen-
tal distributed systems that are the subject
of ongoing research at universities.

To begin with, we use the term “distrib-
uted system” to mean a distributed operat-
ing system as opposed to a database system
or some distributed applications system,
such as a banking system. An operating
system is a program that controls the re-
sources of a computer and provides its users
with an interface or virtual machine that is

more convenient to use than the bare ma-
chine. Examples of well-known centralized
(i.e., not distributed) operating systems are
CP/M,! MS-DOS,? and UNIX.?

A distributed operating system is one that
looks to its users like an ordinary central-
ized operating system but runs on multi-
ple, independent central processing units
(CPUs). The key concept here is transpar-
ency. In other words, the use of multiple
processors should be invisible (transparent)
to the user. Another way of expressing the
same 1dea is to say that the user views
the system as a “virtual uniprocessor,” not
as a collection of distinct machines. This
is easier said than done.

Many multimachine systems that do not
fulfill this requirement have been built. For

! CP/M is a trademark of Digital Research, Inc.
2MS-DOS is a trademark of Microsoft.
3 UNIX is a trademark of AT&T Bell Laboratories.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0360-0300/85/1200-0419 $00.75

Computing Surveys, Vol. 17, No. 4, December 1985

420 .
CONTENTS

INTRODUCTION
Goals and Problems
System Models
1. NETWORK OPERATING SYSTEMS
1.1 File System
1.2 Protection
1.3 Execution Location
1.4 An Example: The Sun Network
File System
2. DESIGN ISSUES
2.1 Communication Primitives
2.2 Naming and Protection
2.3 Resource Management
2.4 Fault Tolerance
2.5 Services
3. EXAMPLES OF DISTRIBUTED
OPERATING SYSTEMS
3.1 The Cambridge Distributed
Computing System
3.2 Amoeba
3.3 The V Kernel
3.4 The Eden Project
3.5 Comparison of the Cambridge,
Amoeba, V, and Eden Systems
4. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

example, the ARPANET contains a sub-
stantial number of computers, but by this
definition it is not a distributed system.
Neither is a local network consisting of
personal computers with minicomputers
and explicit commands to log in here or
copy a file from there. In both cases we
have a computer network but not a distrib-
uted operating system. Thus it is the soft-
ware, not the hardware, that determines
whether a system is distributed or not.

As a rule of thumb, if you can tell which
computer you are using, you are not using
a distributed system. The users of a true
distributed system should not know (or
care) on which machine (or machines) their
programs are running, where their files
are stored, and so on. It should be clear by
now that very few distributed systems are
currently used in a production environ-
ment. However, several promising research
projects are in progress.

Computing Surveys, Vol. 17, No. 4, December 1985

A. S. Tanenbaum and R. van Renesse

To make the contrast with distributed
operating systems stronger, let us briefly
look at another kind of system, which we
call a “network operating system.” A typical
configuration for a network operating sys-
tem would be a collection of personal com-
puters along with a common printer server
and file server for archival storage, all tied
together by a local network. Generally
speaking, such a system will have most of
the following characteristics that distin-
guish it from a distributed system:

e Each computer has its own private oper-
ating system, instead of running part of
a global, systemwide operating system.

e Each user normally works on his or her
own machine; using a different machine
invariably requires some kind of “remote
login,” instead of having the operating
system dynamically allocate processes to
CPUs.

o Users are typically aware of where each
of their files are kept and must move files
between machines with explicit “file
transfer” commands, instead of having
file placement managed by the operating
system.

o The system has little or no fault toler-
ance; if 1 percent of the personal com-
puters crash, 1 percent of the users are
out of business, instead of everyone sim-
ply being able to continue normal work,
albeit with 1 percent worse performance.

Goals and Problems

The driving force behind the current inter-
est in distributed systems is the enormous
rate of technological change in micropro-
cessor technology. Microprocessors have
become very powerful and cheap, compared
with mainframes and minicomputers, so it
has become attractive to think about de-
signing large systems composed of many
small processors. These distributed sys-
tems clearly have a price/performance ad-
vantage over more traditional systems.
Another advantage often cited is the rela-
tive simplicity of the software—each pro-
cessor has a dedicated function—although
this advantage is more often listed by
people who have never tried to write a

distributed operating system than by those
who have.

Incremental growth is another plus; if
you need 10 percent more computing
power, you just add 10 percent more pro-
cessors. System architecture is crucial to
this type of system growth, however, since
it is hard to give each user of a personal
computer another 10 percent of a personal
computer. Reliability and availability can
also be a big advantage; a few parts of the
system can be down without disturbing
people using the other parts. On the minus
side, unless one is very careful, it is easy
for the communication protocol overhead
to become a major source of inefficiency.
There has been built more than one system
requiring the full computing power of its
machines just to run the protocols, leaving
nothing over to do the work. The occasional
lack of simplicity cited above is a real prob-
lem, although in all fairness, this problem
comes from inflated goals: With a central-
ized system no one expects the computer to
function almost normally when half the
memory is sick. With a distributed system,
a high degree of fault tolerance is often, at
least, an implicit goal.

A more fundamental problem in distrib-
uted systems is the lack of global state
information. It is generally a bad idea to
even try to collect complete information
about any aspect of the system in one table.
Lack of up-to-date information makes
many things much harder. It is hard to
schedule the processors optimally if you are
not sure how many are up at the moment.

Many people, however, think that these
obstacles can be overcome in time, so there
is great interest in doing research on the
subject.

System Models

Various models have been suggested for
building a distributed system. Most of them
fall into one of three broad categories,
which we call the “minicomputer” model,
the “workstation” model, and the “proces-
sor pool” model. In the minicomputer
model, the system consists of a few (per-
haps even a dozen) minicomputers (e.g.,

Distributed Operating Systems . 421

VAXs), each with multiple users. Each user
is logged onto one specific machine, with
remote access to the other machines. This
model is a simple outgrowth of the central
time-sharing machine.

In the workstation model, each user has
a personal workstation, usually equipped
with a powerful processor, memory, a bit-
mapped display, and sometimes a disk.
Nearly all the work is done on the work-
stations. Such a system begins to look dis-
tributed when it supports a single, global
file system, so that data can be accessed
without regard to their location.

The processor pool model is the next
evolutionary step after the workstation
model. In a time-sharing system, whether
with one or more processors, the ratio of
CPUs to logged-in users is normally much
less than 1; with the workstation model it
is approximately 1; with the processor pool
model it is much greater than 1. As CPUs
get cheaper and cheaper, this model will
become more and more widespread. The
idea here is that whenever a user needs
computing power, one or more CPUs are
temporarily allocated to that user; when
the job is completed, the CPUs go back into
the pool to await the next request. As an
example, when ten procedures (each on a
separate file) must be recompiled, ten pro-
cessors could be allocated to run in parallel
for a few seconds and then be returned to
the pool of available processors. At least
one experimental system described below
(Amoeba) attempts to combine two of these
models, providing each user with a work-
station in addition to the processor pool for
general use. No doubt other variations will
be tried in the future.

1. NETWORK OPERATING SYSTEMS

Before starting our discussion of distrib-
uted operating systems, it is worth first
taking a brief look at some of the ideas
involved in network operating systems,
since they can be regarded as primitive
forerunners. Although attempts to connect
computers together have been around for
decades, networking really came into the
limelight with the ARPANET in the early

Computing Surveys, Vol. 17, No. 4, December 1985

422 .

1970s. The original design did not provide
for much in the way of a network operating
system. Instead, the emphasis was on using
the network as a glorified telephone line to
allow remote login and file transfer. Later,
several attempts were made to create net-
work operating systems, but they never
were widely used [Millstein 1977].

A. 8. Tanenbaum and R. van Renesse

file systems. In this approach, programs on
one machine can open files on another ma-
chine by providing a path name telling
where the file is located. For example, one
could say

open(''/machinel/pathname'', READ);
open(''machinel!pathname’'', READ);
or

