
VU Research Portal

Streaming the Web: Reasoning over dynamic data

Margara, Alessandro; Urbani, Jacopo; Van Harmelen, Frank; Bal, Henri

published in
Journal of Web Semantics
2014

DOI (link to publisher)
10.1016/j.websem.2014.02.001

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Margara, A., Urbani, J., Van Harmelen, F., & Bal, H. (2014). Streaming the Web: Reasoning over dynamic data.
Journal of Web Semantics, 25, 24-44. https://doi.org/10.1016/j.websem.2014.02.001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 19. Apr. 2021

https://doi.org/10.1016/j.websem.2014.02.001
https://research.vu.nl/en/publications/29462648-d942-4241-ae9f-3c6d4eb31e12
https://doi.org/10.1016/j.websem.2014.02.001

Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Review article

Streaming the Web: Reasoning over dynamic data
Alessandro Margara ∗, Jacopo Urbani, Frank van Harmelen, Henri Bal
Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 January 2013
Received in revised form
3 February 2014
Accepted 11 February 2014
Available online 2 March 2014

Keywords:
Semantic Web
Stream reasoning
Survey
Stream processing
Complex Event Processing

In the last few years a new research area, called stream reasoning, emerged to bridge the gap between rea-
soning and stream processing. While current reasoning approaches are designed to work onmainly static
data, the Web is, on the other hand, extremely dynamic: information is frequently changed and updated,
and new data is continuously generated from a huge number of sources, often at high rate. In other words,
fresh information is constantly made available in the form of streams of new data and updates.

Despite somepromising investigations in the area, stream reasoning is still in its infancy, both from the
perspective of models and theories development, and from the perspective of systems and tools design
and implementation.

The aim of this paper is threefold: (i) we identify the requirements coming from different application
scenarios, and we isolate the problems they pose; (ii) we survey existing approaches and proposals in the
area of stream reasoning, highlighting their strengths and limitations; (iii) we draw a research agenda
to guide the future research and development of stream reasoning. In doing so, we also analyze related
research fields to extract algorithms, models, techniques, and solutions that could be useful in the area of
stream reasoning.

© 2014 Elsevier B.V. All rights reserved.

Contents

1. Introduction.. 25
2. Motivations for stream reasoning... 25

2.1. Motivating scenarios ... 25
2.2. Requirements of the use cases .. 27
2.3. Analysis of requirements... 29

3. Survey: background ... 29
3.1. Stream processing.. 29

3.1.1. Data Stream Management Systems... 29
3.1.2. Complex Event Processing systems... 30

3.2. Reasoning ... 30
3.3. Related work .. 30

4. Survey: systems review ... 31
4.1. Classification criteria ... 31
4.2. Analysis of existing systems.. 31

4.2.1. Semantic stream processing .. 32
4.2.2. Semantic event processing... 34
4.2.3. Time-aware reasoning.. 34
4.2.4. Surveys and visions .. 34

5. Survey: discussion.. 35
6. Next steps: a research agenda... 35

∗ Corresponding author.
E-mail addresses: a.margara@vu.nl, Alessandro.margara@gmail.com (A. Margara), jacopo@cs.vu.nl (J. Urbani), frank.van.harmelen@cs.vu.nl (F. van Harmelen),

bal@cs.vu.nl (H. Bal).
http://dx.doi.org/10.1016/j.websem.2014.02.001
1570-8268/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2014.02.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2014.02.001&domain=pdf
mailto:a.margara@vu.nl
mailto:Alessandro.margara@gmail.com
mailto:jacopo@cs.vu.nl
mailto:frank.van.harmelen@cs.vu.nl
mailto:bal@cs.vu.nl
http://dx.doi.org/10.1016/j.websem.2014.02.001

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 25
6.1. System models ... 37
6.1.1. Modeling data ... 37
6.1.2. Modeling operations... 38

6.2. System implementation .. 39
6.2.1. Big data.. 39
6.2.2. Dynamic data .. 39
6.2.3. Distributed data .. 40

6.3. Stream reasoning in action ... 40
7. Conclusions... 41

Acknowledgment ... 41
References... 41
1. Introduction

The Web is highly dynamic: new information is constantly
added, and existing information is continuously changed or re-
moved. Large volumes of data are produced andmade available on
theWeb by on-line newspapers, blogs, social networks, etc., not to
mention data coming from sensors for environmental monitoring,
weather forecast, traffic management, and domain specific infor-
mation, like stock prices. It has been estimated that every minute
on the Internet 600 videos are uploaded on YouTube, 168 millions
e-mails are sent, 510,000 comments are posted on Facebook and
98,000 tweets are delivered in Twitter.1

In these scenarios information changes at a very high rate, so
that we can identify a stream of data on which we are called to op-
erate with high efficiency. In the last few years, several researchers
and practitioners have proposed solutions for processing streams
of information on-the-fly, according to somepre-deployed process-
ing rules or queries [1]. This led to the development of various Data
StreamManagement Systems (DSMSs) [2] and Complex Event Pro-
cessing (CEP) systems [3,4] that effectively deal with the transient
nature of data streams, providing low delay processing even in the
presence of large volumes of input data generated at a high rate.

All these systems are based on datamodels, like for example the
well known relational model, which allow only a predefined set of
operations on streams with a fixed structure. This allows the im-
plementation of ad-hoc optimizations to improve the processing.

However, the Web provides streams of data that are extremely
heterogeneous, both at a structural and at a semantical level. For
example, a Twitter stream is radically different from a stream de-
livered fromanews channel, not only because they are storedusing
different formats, but also because they contain different types of
information.

Furthermore, the ability of operating on-the-fly on several of
these streams simultaneously would allow the implementation of
real-time services that can select, integrate, aggregate, and process
data as it becomes available, for example to provide updated an-
swers to complex queries or to detect situations of interests, to
automatically update the information provided by a web site or
application.

The Semantic Web is an extension of the current World Wide
Web, where the semantics of information is encoded in a set of
RDF statements. Currently, we are witnessing an explosion of the
availability of RDF data on the Web since both public and private
organizations have chosen this format to release their public data.2

The choice of RDF as data model, in combination with onto-
logical languages (e.g., OWL [5]), enables the implementation of
algorithms that can ‘‘reason’’ on existing data to infer new knowl-
edge. Current solutions and technologies for reasoning on RDF data
are designed to work on scenarios where changes occur at low

1 http://www.go-gulf.com/blog/60-seconds.
2 http://linkeddata.org.
volumes and frequencies, and this clashes with the dynamic na-
ture of the streams on the Web.

To bridge this gap, a number of recent works propose to unify
reasoning and stream processing, giving birth to the research field
of stream reasoning. In 2009, stream reasoning was defined as an
‘‘unexplored yet high impact research area’’ [6]. After a few years
of research, despite some interesting preliminary investigations
in the field, we observe that the stream reasoning research area
remains vastly unexplored, both from a theoretical point of view
and from the perspective of systems and tools supporting it.
Contributions. In this paper, we first report some example appli-
cation areas that can benefit from stream reasoning and analyze
the requirements they pose. Then, we survey existing approaches
in this field, and show why none of them can currently represent
a complete answer to all the requirements of various application
fields. Starting from this analysis, we isolate some key challenges
that need to be addressed to offer full fledged tools for stream rea-
soning.

Finally, we elaborate a number of possible solutions to over-
come the limitations of current approaches. We analyze related
research fields to explore whether some topics or solutions, but
also algorithms, techniques, and best practices could apply to solve
open issues in stream reasoning. In doing so, we intend to illustrate
the current state of the stream reasoning research area and to sum-
marize a possible research agenda to further advance in this field.
Outline. The remainder of this paper is organized as follows. Sec-
tion 2 introduces some example application scenarios for stream
reasoning and analyzes the requirements they pose. Section 3 re-
ports a high level introduction to the problem of stream reasoning
by describing the research fields that are related to streamprocess-
ing and reasoning. Next, Section 4 presents a survey of current pro-
posals for stream reasoning and highlights their advantages and
limitations. Section 5 extracts the open issues in our current con-
text and Section 6 presents some possible concrete solutions to
overcome these issues. Finally, Section 7 provides some conclusive
remarks.

2. Motivations for stream reasoning

This section presents some motivations for the need of stream
reasoning technologies. It is divided in three parts. In the first part,
we present different application scenarios. In the second part, we
extract some general requirements that could help identifying the
main features expected from stream reasoning. In the third part,
we briefly analyze these requirements, with particular focus on
their mutual dependencies. Some of the scenarios listed below
have already been introduced in previousworks on stream reason-
ing [6,7]. Others are relatively new: for them, the benefits of stream
reasoning technologies are discussed for the first time in this paper.

2.1. Motivating scenarios

Semantic Sensor Web. The Semantic Sensor Web (SSW) approach
aims at increasing and integrating the communication between

http://www.go-gulf.com/blog/60-seconds
http://linkeddata.org

26 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
sensor networks [8]. To this end, it introduces semantic annota-
tions for describing: (i) the data produced by the sensors, intro-
ducing spatial, temporal, or situation/context semantics; (ii) the
sensors and sensor networks that provide such data, to specify de-
tails like the measurement precision, battery level, owner or re-
sponsible party.

The communities that contribute to this vision are also work-
ing on defining suitable ontologies for data and sensors to enable
not only the integration of data frommultiple sensor networks and
external sources, but also to enable reasoning on such data. As an
example, a flexible representation of time based on the Time On-
tology in OWL has been proposed in [9], while the W3C Seman-
tic Sensor Network Incubator Group [10] developed an ontology to
describe sensors and sensor networks.

Sensor data represents an ideal scenario for stream reasoning
for several reasons. First, the amount of information collected
from sensors on the Web is enormous, and information is often
produced at high frequencies. Second, integrating data coming
from different sensors (and from different sensor networks) may
be necessary in many settings for deriving useful information.

Moreover, sensors provide low level data, like for example
temperature readings, and it is challenging to filter out noise and
to extract higher level findings, to guide the understanding of
complex situations and possibly planning interventions. This task
often requires reasoning on time-changing values: for example, it
may be relevant to capture the evolution of temperature and wind
over time to predict the presence of a tornado.

Some of the scenarios discussed below represent specific
application fields for the Semantic Sensor Web. For space reasons,
we focus on the domains in which the use of semantic information
has been explored in more details. Nevertheless, the requirements
identified above generally apply to almost all areas related to
sensor networks and to the Internet of Things [11].
Smart cities. Smart Cities represent a specific field where the idea
of Semantic Sensor Web can find a concrete application. The final
goal of the research in this area is to process and understand the
information relevant for the life of a city and use it to make the city
run better, faster, and cheaper [12,13].

This poses several challenges, as clearly identified by the ex-
perts in the field. First of all, it becomes necessary to deal with
significant volumes of data: currently, the sensors in the city of
Dublin produce every day about four to six GB of data about the
public transport [12], and in the future more sensors will be de-
ployed which will produce more complex data (e.g., HD cameras).

Second, data is extremely dynamic: for example, the position of
monitored vehicles can be sensed and updated every few seconds
and this demands for efficient algorithms for on-the-fly informa-
tionmanagement. In this context, the reasoning process must pro-
vide enough expressiveness to abstract high level concepts from
low level and time annotated data.

Moreover, smart cities require the integration of different data
types and sources: as an example, traffic information can be
retrieved from sensors, as well as from citizen navigation systems,
and from posts on social networks. In this context, it is necessary
to consider the veracity and the precision of information.
Smart grids. Smart grids [14] represent another scenario that re-
quires data monitoring and integration, situation detection, and
(partially or completely) automated decision making. The goal of
smart grids is to make current energy grids more efficient and sus-
tainable by collecting and interpreting information coming from
different stake holders, e.g., energy producers, grid operators, or
appliance manufacturers. Similar to smart cities, smart grids re-
quire integration, management of large volumes of dynamic data,
and on-the-fly analysis of time-annotated data to extract high level
knowledge and to timely provide support for decision.
Remote health monitoring. Remote health monitoring [15,16] aims
at generating automated and personalized systems for remote
patient monitoring. In particular, these systems focus on collect-
ing information from multiple sources (e.g., sensors for monitor-
ing the heart rate or blood pressure), applying a reasoning step to
understand the context or situation of the patient and to guide the
decisionmaking process. Also in this context, one of themain chal-
lenges is the integration of data frommultiple sources: e.g., it may
be useful to know the current activity of the patient to understand
if the measured heart rate is too high.
Nanopublications. Nanopublications [17,18] represent a new and
vastly unexplored field of research. They have been proposed as
a way to represent the key findings of scientific research and
publications, usingmodels and languages that allowamore refined
representation of the meaning of the data. In this way the data
can be understood and processed more efficiently by computers,
enabling automatic detection of inconsistencies, classification of
existing literature, and analysis of provenance.

Differently from the previous scenarios, nanopublications do
not (currently) introduce strict real-time constraints. However, in
this domain there is a significant amount of backgroundknowledge
that can be used to guide the validation of new information
published on the Web, for example on Wikipedia or on blogs of
experts. Moreover, nanopublications can facilitate the integration
of scientific and experimental data so that they can be exploited to
guide and support the process of discovering new findings.
Drug discovery. Drug discovery represents a concrete field of re-
search in which semantic data is being used for guiding the dis-
covery process. For example, this has been investigated in the
Open PHACTS project [19,20], which aims at reducing the commu-
nication barriers between different universities and companies by
providing tools and services for integrating their data. While drug
discovery does not introduce strict real-time constraints, efficiency
remains a key requirement. Drug Discovery tests are usually con-
ducted by multiple parties with high costs. Because of this, it is
important to know as soon as possible whenever a part of drug
discovery test has failed in order to stop or adapt other tests and
preserve further costs.
Abstracting and reasoning over ship trajectories. Another field in
which the use of complex reasoning over time-annotated data
has been investigated is Maritime Safety and Security [21], where
sensor data from ships is combined with external data to derive
newknowledge. This scenario uses temporal relations andpatterns
of changes to extract higher level knowledge from low level data
collected from sensors.

In this context, it is particularly important to define methods
that can correctly handle the uncertainty that comes from the in-
put. Uncertainty is inevitably linked to sensor data and may ap-
pear in different forms, from incorrect measurements to data loss,
and it is particularly important in this scenario since the communi-
cation often takes place over unreliable channels. Complex forms
of modeling, which involve advanced analysis of time annotated
data received from ships,may help to infer correct knowledge even
in presence of temporary data loss. Similarly, the integration with
other sources of information may enable to re-construct missing
data and to validate measurements coming from the sensors.

Currently, reasoning over ship trajectories has only been per-
formed on historical data, analyzing the time-annotated data re-
ceived from sensors after it has been collected and stored. Moving
to on-the-fly processing of data as it is generated would allow for
immediate detection (and possibly reaction) of anomalies such as,
for example, pirate attacks or engine failures.
Analysis of social media andmobile applications. The advent of social
networks, blogs, mobile services and applications provides large
volumes of data that can be seen as ‘‘sensors’’ of people moods,
interests, relations, etc. Semantic analysis of social media [22,23]
extends traditional analysis based on graphs enriching the con-
nections between people and concepts with semantic annotations.

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 27
One of the goals of the analysis of social media is to capture hid-
den relations between people and concepts. In this scenario, it
is interesting to detect not only the current situation or context,
but also the historical evolution of relations over time. This prob-
lem calls for mechanisms and techniques that can reason over
time-changing relations, and can compare the current information
with historical data. Finally, extracting knowledge from social me-
dia and mobile applications presents additional complexity due to
noise, possible inconsistencies and ambiguous representation of
the data.

Some experiments on the use of socialmedia analysis have been
reported in [24],where the authors focus on the processing of posts
to Twitter to extract new information (e.g., how the mood changes
during the day, which are the trending topics) during some large-
scale events (London Olympic Games 2012 and Milano Design
Week 2013).

2.2. Requirements of the use cases

From the analysis of the previous scenarios, we can extract
some common aspects, which can be translated into requirements
demanded to stream reasoning tools. In this section, we describe
them and highlight the main challenges that they introduce.
Table 1 summarizes the requirements and shows their connection
with the application scenarios.
Integration. In all the scenarios we analyzed, the integration of in-
formation that comes from multiple sources represents a key re-
quirement. This motivates the usage of data models like RDF that
allow semantic integration. Data integration poses both conceptual
and technical challenges. The firsts are related with issues such as
data provenance and trust, while the seconds with other aspects
such as the management and combination of multiple data format
in a single system. Moreover, all the scenarios might require the
integration of the data coming from the stream with some back-
ground knowledge that describes the application domain. For ex-
ample, the remote health monitoring use case requires that the
streaming data collected from the patients is combined with other
background knowledge about symptoms and diseases. This inte-
gration is challenging, since retrieving and analyzing large volumes
of background data during stream processing can be particularly
expensive with current technologies.
Time management. Time plays a central role in almost all the sce-
narios that we considered. This demands for a suitable data model
where data items can be annotated with their time of occurrence
and validity, and where it is possible to express data changes.
Moreover, the management of time often requires a novel process-
ing model, where the time relations between data items become
first class objects. For instance, in the smart cities scenario, it is nec-
essary to look at the time series of vehicles positions to predict and
prevent traffic jams. Similarly, in the context of social media anal-
ysis, new knowledge can be derived from the dynamic evolution
of people relations. Introducing processing abstractions for time-
annotated and dynamic data does not only represent a theoretical
challenge, but also introduces engineering issues that are related
to an efficient implementation of such abstractions.
Distribution. Many of the previous scenarios acquire the input data
from sources that are geographically distributed. This introduces
significant challenges in terms of synchronization, out-of-order ar-
rival of information, and communication loss. These issues become
even more relevant in presence of a processing model where time
and timing relations represent key concepts.Moreover, in presence
of large volumes of data or resource-constrained devices, commu-
nication can easily become a performance bottleneck. To alleviate
this problem, distributed processing may become necessary. For ex-
ample, filtering irrelevant information at its sourcemay reduce the
communication overhead in sensor networks.
Big data management. All scenarios require processing of large
amounts of data. On the one hand, this is due to the integration
of multiple sources, and from the analysis of rich background data.
On the other hand, inmost scenarios, new information is produced
at high rate. Consider for example the Smart Cities scenario, where
reasoning may take into account the position of cars, their speed,
information coming from fixed sensors on the road, data from traf-
fic applications, etc., which are continuously changing over time.
This introduces significant challenges in terms of data processing,
communication, storage and retrieval, but also selection, filtering
of irrelevant information, and veracity.
Efficiency. The requirement for processing efficiency is strictly
related with the big data management. On the one hand, most of
the scenarios demand for a high processing throughput, to cope
with the large amount of data that is being produced. Furthermore,
some scenarios also demand for low latency processing, to timely
generate new results. For example, in the case of Semantic Cities,
car accidents or traffic anomalies need to be promptly detected and
communicated, enabling counter actions.
Expressivity. All scenarios target at deriving high level knowledge
from large volumes of low level information. Defining a suitable
processing model is probably one of the main challenges that the
research on stream reasoning needs to face.

In Section 6 we describe this issue in more detail. Here, we rec-
ognize three main requirements for a suitable processing model.
First of all, all scenarios involve some form of reasoning, which
must be supported by the processing model. Secondly, since most
scenarios need to capture the dynamicity of the data over time, it
is required that the processingmodel offers abstractions and oper-
ators for dealing with time-changing data.

Finally, extracting high level knowledge often requires opera-
tors for data computation and transformation, which must be sup-
ported by the processing model. For example, the aggregation of
readings from multiple sources is often used in sensor networks
to compute the average temperature in a certain monitored area,
while computation of users statistics could be relevant in social
media and mobile applications analysis.

In Section 6we describe this issue inmore details. Here, we rec-
ognize three main requirements for a suitable processing model.
First of all, all scenarios involve some form of reasoning. Sec-
ond, since most scenarios need to capture the dynamicity of the
data over time, it is required that the processing model offers
abstractions and operators for dealing with time-changing data.
Third, extracting high level knowledge often requires operators for
data computation and transformation. For example, aggregation of
readings from multiple sources is often used in sensor networks,
e.g., to compute the average temperature in a certain monitored
area, while computation of users statistics could be relevant in so-
cial media and mobile applications analysis.
Uncertaintymanagement. A key requirement identified inmany ap-
plication scenarios is the management of the uncertainty associ-
ated to data. Uncertainty can appear at different levels: datamaybe
imprecise or missing (e.g., imprecise measurements or data loss in
sensor networks), contradictory (e.g., in the scenario of nanopubli-
cations, where different papers can introduce contradictory state-
ments), noisy or unstructured (e.g., in social media analysis data
is extracted from the content of users publications). This demands
for a suitable model that takes into account the different sources
of uncertainty, and considers them during the computation.
Historical data management. Beside processing streaming data,
most applications need to manage historical data, i.e., time-
annotated information about previous states of the environment
under analysis (for example, the history of temperature readings
from a certain area). In particular, they need to store historical data
and make it available for query and retrieval. This can be used, for

28 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
Ta
bl
e
1

An
al
ys
is
of

re
qu

ir
em

en
ts

fo
ra

pp
lic

at
io
n
sc
en

ar
io
s.

Sc
en

ar
io

In
te
gr
at
io
n

Ti
m
e
m
an

ag
.

D
is
tr
ib
ut
io
n

Bi
g
da

ta
m
an

ag
.

Ef
fic

ie
nc

y
Ex

pr
es
si
vi
ty

U
nc

er
ta
in
ty

m
an

ag
.

H
is
to
ri
ca
l

D
at
a

Q
ua

lit
y
of

se
rv
ic
e

D
iff
er
en

t
so

ur
ce

s
St
re
am

in
g/
ba

ck
gr
ou

nd
da

ta
D
at
a

m
od

el
Pr
oc

es
si
ng

m
od

el
D
is
tr
ib
.

so
ur

ce
s

D
is
tr
ib
.

pr
oc

es
si
ng

H
ig
h

th
ro
ug

hp
ut

Lo
w

la
te
nc

y
Re

as
on

in
g

Te
m
po

ra
l

op
er
at
or
s

D
at
a

tr
an

sf
or
m
at
io
n

Se
m
an

tic
se
ns

or
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Sm
ar
tc

iti
es

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

Se
m
an

tic
gr
id
s

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

H
ea

lth
m
on

ito
ri
ng

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

N
an

op
ub

lic
at
io
ns

✓
✓

✓
✓

✓
✓

✓

D
ru

g
di
sc
ov

er
y

✓
✓

✓
✓

✓
✓

✓
✓

✓

Sh
ip

tr
aj
ec

to
ri
es

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

So
ci
al

m
ed

ia
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 29
example, to identify trends, to extract statistics, or to compare pre-
vious and current information to detect anomalies. The latter is
particularly challenging, since it requires to access and analyze po-
tentially large amounts of historical data on-line, during the pro-
cessing of the streaming data.
Quality of service. Despite the commonalities identified above, ev-
ery application scenario presents its own requirements. Stream
reasoning systems need to provide enough flexibility to satisfy het-
erogeneous needs through explicit Quality of Service policies. As
an example, dropping some information to reduce the computa-
tion and hence returns results with lower delay may be accept-
able in some scenarios, and perhaps even desirable, while in other
scenarios incomplete information may be inadmissible. Different
application fields demand for different ontologies and reasoning
complexity and processing tools should provide flexible mecha-
nisms to easily adapt their behavior to different requirements.

2.3. Analysis of requirements

The scenarios proposed in Section 2.1 are rather heterogeneous.
Because of this, the requirements identified in Section 2.2 are
not equally relevant for all of them. For example, efficiency is of
primary importance in sensor applications, which demand for on-
the-fly evaluation of the input. Conversely, nanopublications and
social media analysis do not impose strict real-time requirements.

We observed that all the application fields demand for some
form of reasoning. However, the complexity of the reasoning
task may vary significantly from application to application. It
remains an open question to identify the reasoning capabilities and
expressiveness required in each scenario.

Similar arguments hold for data management: different appli-
cations deal with different volumes and different update rates and
stream reasoning technologies are called to be applied in this large
space of problems and scenarios. Because of the trade-offs dis-
cussed above, it is unknown whether it is possible (or beneficial)
to develop a single solution to satisfy all of them, or if different de-
signmodels, algorithms, and implementations are needed to target
specific parts of this space. We will come back to this issue in Sec-
tion 6, after presenting current solutions in the area and discussing
future research directions.

3. Survey: background

This section introduces the research areas strictly related to
stream reasoning, presenting state of the art systems for stream
processing (Section 3.1), reasoning (Section 3.2), and other related
work (Section 3.3).

3.1. Stream processing

To present stream processing systems, we refer to established
models from the literature [25,26,1]. Fig. 1 shows the general archi-
tecture of stream processing systems. They are designed to process
streams of data, generated by a number of sources to timely pro-
duce new results for the interested consumers. The computation is
defined in terms of a set of rules, or queries, which are defined by
the user and deployed into the system.

Streamprocessing systems reverse the interactionmodel of tra-
ditional DBMSs. DBMSs store data and allow consumers to submit
one-time queries to retrieve it. Conversely, stream processing sys-
tems allow consumers to submit rules that are continuously evalu-
ated to produce new results as new input data is received. The data
items present in the streamare usually annotatedwith timestamps
that indicate timing or ordering relations. In some systems, these
annotations are used to identify time patterns, like sequences or
repetitions of specific elements.
Fig. 1. Abstract model of stream processing systems.

As shown in Fig. 1, stream processing systems organize the
computation into a graph of primitive operators. Depending on the
actual implementation, these operators can be physically deployed
on a single node, or on multiple connected nodes. The main focus
of stream processing system is to support large volumes of input
data produced at high rate, and to offer fast response time to the
consumers.

Existing stream processing systems differ from each other on
a wide range of aspects, including the data model used to specify
the input, the language used to define processing rules, and the
processing techniques adopted. In this section, we adopt the same
classification criterion used in [1], and divide these systems into
two classes: Data Stream Management Systems (DSMSs), which
have been developed by the database community and Complex
Event Processing (CEP) systems, which have been developed by the
community working on event based systems.

3.1.1. Data Stream Management Systems
Data Stream Management Systems [2] inherit their data and

query model from traditional DBMSs. Indeed, despite several sys-
temshave beenproposed [27–30], almost all of them follow the de-
sign line of the pioneer Stream system [31]. In these system, data is
represented using the relational model, and queries are expressed
with declarative languages that are derived from SQL. Such lan-
guages includewindows to isolate portions of the (unbound) input
streams and to convert them into relational tables. For example,
windows are commonly used to select only the most recent ele-
ments in a stream, based on their number (count-based windows),
or on their associated timestamp (time-based windows). After win-
dowing, the input data is processed using relational operators, and
the output is converted again into a stream using specific opera-
tors called relation-to-stream operators. Consumers can decide to
stream the complete results of the last evaluation (snapshot seman-
tics) or only the differences with respect to the previous evaluation
(incremental semantics).

As an example, consider the query below, expressed in the
CQL [32] language adopted by the Stream [31] system.
Select IStream(*)
From S1 [Rows 5], S2 [Range 10 sec]
Where S1.A = S2.A

This query considers two streams S1 and S2. First, it uses win-
dows operators to isolate the portions of the stream to be evalu-
ated during processing. It considers a count-based window for S1,
which always includes the last 5 items, and a time-based window
for S2, which includes all the information items received in the last
10 s. Then, the query uses the relational operator join to join to-
gether all the items in S1 and S2 that share the same value of A.
Finally, the IStream operator outputs new results generated dur-
ing the last evaluation (incremental semantics) into a new stream.

The main advantage of DSMSs consists in the usage of the well
known and widely adopted relational model for representing and
processing the data. However, this comes at a cost: processing is
only allowed inside the portions of input streams identified by
windows. This makes it difficult to express and capture complex
temporal patterns over the input streams.

30 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
3.1.2. Complex Event Processing systems
Complex Event Processing (CEP) systems take a different ap-

proach than DSMSs. Input data items represent timestamped
notifications of event occurrences, often encoded as records of
key–value pairs. For example, an event notification may represent
a temperature reading from a sensor at a specific instant of time,
and it can include values like the actual temperature, the position
of the sensor, or the status of its battery. Events observed from the
external environment are called primitive events. Processing rules
define the occurrence of higher level composite events as (tempo-
ral) patterns of primitive ones. In other words, processing rules de-
fine rewriting policies that translate patterns of input events into
one or more output events.

As an example, consider the rule below, expressed in the
TESLA [33] language, used by the T-Rex [34] CEP system.
define Fire(area: string, measuredTemp: double)
from Smoke(area=$a) and

last Temp(area=$a and value>45)
within 5 min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

This rule defines the composite event Fire. More in particu-
lar, the rule defines a pattern including a sequence of two primi-
tive events: Temp and then Smoke. It also includes constraints on
the content of primitive events (they have to come from the same
area, as expressed by the parameter $a and Tempmust include an
attribute value which is greater than 45), and on the occurrence
time of events (Temp and Smoke must occur within 5 min from
each other).

If we compare DSMSs with CEP systems, we notice that the for-
mer, as evolution of traditional DBMSs, are designed to reorganize
and retrieve data. Their main processing building blocks are the
relational operators, which enable rules to transform (select, filter,
join, etc.) static and streaming input it into newoutput. Conversely,
CEP systems were designed to deal with the specific problem of
defining new (higher level) events or situations starting from the
primitive events (raw data) observed. For this reason, CEP lan-
guages rely on explicit operators for the definition of (temporal)
patterns, like conjunction, disjunction, sequences, and repetitions
of event notifications. The aim of a CEP system is to detect occur-
rences of composite events starting from the definitions provided
in rules.

Several CEP systems have been developed in the last few
years [35,36,34,37–41]. One of the main goals of these systems is
to execute the rules efficiently; accordingly, most of them trade
expressiveness for response time.

3.2. Reasoning

The SemanticWeb is a recent research area that studies howwe
can inject ‘‘meaning’’ (or better semantics) in the data that is avail-
able on the Web, so that machines can process it more efficiently.
For example, machines could process semantically-enriched data
to infer new implicit information, or detect inconsistencies that are
not immediately visible in the input. To this end, theW3Corganiza-
tion has released a number of specifications to define data models
or ontology languages to represent the data. Themost notables are
RDF [42], and OWL [5], which are nowadays the common denom-
inator for most of the research in the area.

A combined usage of RDF and OWL (or others like RDFS [43]
or the Horst fragment [44]) enables the representation of seman-
tically enriched data that can be used by applications to infer im-
plicit knowledge. This inference process is commonly referred to
as reasoning. Reasoning can be performed for several purposes. For
example, it can be used to execute automatic consistency checking
when integratingmultiple sources of knowledge, or to classify new
information, or enrich query answers with new knowledge.
Fig. 2. Abstract model of reasoning systems.

If compared to the processing performed by stream processing
systems, reasoning ismore computationally expensive. Depending
from the complexity of the ontology language adopted, reasoning
can even become undecidable. To alleviate these problems, the
W3C has defined several profiles [45] of OWL that reduce the
complexity of reasoning making it more tractable and scalable to
large amount of input information.

Severalworks have tried to scale the reasoningprocess on larger
inputs using a variety of computer architectures, like clusters [46],
supercomputers [47], GPUs [48], or using state of the art database
engines [49,50]. Despite these efforts, reasoning remains a com-
plex task. Because of this, it has been applied to static data that is
assumed not to change, or to change very infrequently over time.
Fig. 2 shows the abstract architecture of a reasoning system: rea-
soning is applied to a static knowledge base, to derive implicit in-
formation. Consumers can interact with such knowledge base by
issuing one-timequeries, usually expressed in the SPARQL [51] lan-
guage.

3.3. Related work

While stream reasoning mainly inherits concepts and tech-
niques from the two aforementioned fields of stream processing
and reasoning, there are other related research areas that can con-
tribute to its development. We briefly describe them below.
Active database systems. Traditional DBMSs are completely passive.
They return data only when explicitly queried by the consumers.
Active database systems [52] overcome this limitation by imple-
menting reactive mechanisms. In particular, they enable the con-
sumers to install Event Condition Action (ECA) rules, which specify
actions to be performedwhenever an event is observed and certain
conditions aremet. Usually, such reactivemechanisms are adopted
to perform consistency check on the internal state of the database.
For example, they are used to express actions to be performed in
case some consistency constraints are violated. Interestingly, some
works in the area of active DBMSs proposed more expressive for-
malisms than ECA rules, which can support the detection of com-
plex (temporal) patterns [53].
Temporal database systems. Temporal database systems [54] have
been proposed to store and query data that involves time. In
particular, data items have usually an associated validity time,
which specify the period of time inwhich they are valid. This allows
the update of the information stored in the database over time and
to store historical data.
Rule-based systems. Rule-based systems [55] target atmanipulating
information based on derivation rules. They are strictly connected
with reasoning and event processing systems. Indeed, rule-based
processing is the underlying mechanism adopted in many reason-
ing tools.Moreover, a few languages based onderivation rules have
been proposed in the domain of CEP [56,57].
Deductive database systems. Deductive database systems [58]
combine logic, rule-based programming with relational database
making it possible to derive implicit knowledge from explicit in-
formation stored in the database. In deductive databases, rules are
usually expressed in Datalog [59], a subset of Prolog that targets at
enabling efficient evaluation over large databases.

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 31
Table 2
Classification of existing solutions.

System Continuous
queries

Background
data

Time model Reasoning Temporal
operators

Data
transfor.

Uncertainty
manag.

Historical
data

Quality
of
service

Parallel/distributed
processing

C-SPARQL [60,61] ✓(periodic) ✓ Single
TS/occurrence

Not
implemented

✓

IMaRS [62,63] ✓(periodic) ✓ Single
TS/occurrence

Transitive
property

✓

TrOWL [64,65] ✓ ✓ Single
TS/occurrence

OWL2 DL—synt.
approx.

Inductive stream
reasoning [66]

✓ ✓ Single
TS/occurrence

RDFS/OWL2 RL
(discussed, not
implemented)

✓

C-SPARQL on
S4 [67]

✓ Single
TS/occurrence

RDFS subset ✓ ✓

CQELS [68] ✓ ✓ Single
TS/occurrence

✓ ✓

Streaming-
SPARQL [69]

✓ ✓ Single
TS/occurrence

Streaming
Knowledge
Bases [70]

✓ ✓ Single
TS/occurrence

RDFS/OWL2
subset

Sparkwave [71] ✓ ✓ Single
TS/occurrence

RDFS subset

EP-SPARQL [72] ✓ ✓ Interval/occurrence RDFS subset ✓ ✓ ✓

Answer set
programming [73]

✓ ✓ Single
TS/occurrence

ASP reasoning ✓ ✓

TA-SPARQL [74] ✓ Single
TS/occurrence

✓ ✓

Time RDF [75] ✓ Various/occurrence ✓ ✓
4. Survey: systems review

This section reviews existing contributions in the area of stream
reasoning. First, we present in Section 4.1 the classification criteria
that we adopted. Then, we analyze in Section 4.2 each system in
detail.

4.1. Classification criteria

While analyzing existing work, we mainly focused on the key
properties thatwederived from the analysis of application require-
ments in Section 2.

• Continuous queries. This criterion defines whether the system
supports continuous queries, i.e., queries that are registered and
produce new or updated results as new input data becomes
available. We distinguish between systems that enable query
evaluation to be synchronized with the arrival of new infor-
mation and systems that only enable periodic evaluation of
queries with a predefined frequency. This property is funda-
mental to support streaming information and on-line process-
ing, thus satisfying the requirement for integration of streaming
and background data.

• Background data. Defines whether the system can consider
background data during processing, i.e., non time-annotated in-
formation about the domain of analysis. Like the previous prop-
erty, also this one is necessary to satisfy the requirement for
integration of streaming and background data.

• Time model. Defines how the system annotates the data with
temporal information (e.g., using a single timestamp, defining
a point in time, or multiple timestamps, defining intervals of
time) and which is the semantics of this information (e.g., time
of occurrence, time of validity). This property maps to the re-
quirement for time management.

• Reasoning. Defines whether the system can perform reasoning
over both streaming information and background data. When-
ever possible,we specify the kind of reasoning that is supported.
This property maps to the requirement for expressivity.
• Temporal operators. Defines whether the system offers explicit
operators for capturing the dynamicity and evolution of infor-
mation over time, e.g., for detecting time series or sequences.
This propertymaps to the requirements for expressivity and time
management.

• Data transformation. Defines whether the system offers pro-
cessing abstractions for manipulating the input information,
e.g., operators for aggregation. This property maps to the re-
quirement for expressivity.

• Uncertainty management. Defines whether the system supports
modeling, evaluation, and propagation of uncertainty.

• Historical data. Defines whether the system supports storage
and retrieval of time-annotated historical data.

• Quality of service. Defines whether the system enables con-
sumers to define QoS policies for processing.

• Parallel/distributed processing. Defines whether the system of-
fers support for parallel and distributed processing to improve
scalability or response time. This property maps to the require-
ments for big data management, distribution, and efficiency.

Notice that Table 2 does not include any indication of the level
of performance and scalability of the systems under analysis. In-
deed, as recognized in the literature [76–79], a precise evaluation
and comparison of existing systems is extremely complex. Never-
theless, whenever possible, we will present and discuss existing
case studies, applications, and assessments of the performance of
the systems.

4.2. Analysis of existing systems

Table 2 summarizes our analysis of existing systems and shows
their relations with the aforementioned classification criteria. We
organize our presentation into three main classes.

First, we consider semantic stream processing systems: we in-
clude in this class all the systems that inherit the processingmodel
of DSMSs, but consider semantically annotated input, namely RDF
triples, and define continuous queries by extending SPARQL.

Then, we consider semantic event processing systems: these are
systems that pose their roots in a processing paradigm that ismore

32 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
similar to that of CEP systems, and offer operators for (temporal)
pattern detection as the main building blocks for computation.

Third, we consider systems for time-aware reasoning. They pro-
vide abstractions for reasoning on time annotated data, but still
lack stream processing capabilities.

Finally, we also include an additional section for existing sur-
veys and vision papers on stream reasoning and connected topics.

4.2.1. Semantic stream processing

C-SPARQL. C-SPARQL (Continuous SPARQL) [60,61,80] is among the
first contributions in the area of stream reasoning and is often
cited as a reference in the field. It is a new language for continuous
queries over streams of RDF datawith the declared goal of bridging
the gap between the world of stream processing systems, and in
particular DSMSs, and SPARQL.

The distinguishing features of C-SPARQL are (i) the support for
timestamped RDF triples, (ii) the support for continuous queries
over streams, and (iii) the definition of ad-hoc, explicit operators
for performing data aggregation, which is seen as a feature of
primary importance for streaming applications.3 The results of C-
SPARQL queries are continuously updated as new (streaming) data
enters the system.

When evaluating a query, C-SPARQL can process (and combine
together) both background data stores and streams. It borrows the
concept of windows from DSMSs to capture the portions of each
stream that are relevant for processing. In C-SPARQL, a window al-
ways selects themost recent items froma stream, and can be either
count-based (selecting a fixed number of elements) or time-based
(selecting a variable number of elements which occur during a
given time interval). Consumers can specify additional policies for
the advancement of windows: they can be sliding (i.e., they move
every time a new element is received from the stream) or tum-
bling (i.e., they always include new information elements, ensuring
that every element is considered at most once during processing).
Query evaluation is performed as in traditional SPARQL, but con-
sidering only the data that is present in the current windows. It
is worth noting that in C-SPARQL each query has a pre-defined
and fixed evaluation frequency, which can specified by the con-
sumers. As a consequence, query evaluations are decoupled from
the arrival of new data from the stream. This decoupling has been
identified as a significant limitation of the processing model of
C-SPARQL [77]. Since its evaluationmodel is directly inherited from
DSMSs, C-SPARQL does not include any explicit operator to cap-
ture temporal patterns over input elements. Although C-SPARQL
allows to define queries that consider time by directly accessing
the timestamp of each information item, this is possible only in-
side the boundaries of windows.

An execution engine for C-SPARQL has been implemented as a
framework that combines existing RDF repositories (e.g., Sesame
[81]) and DSMSs (e.g., Stream [31]). Although the proposed pro-
cessing model enables reasoning on streaming data, this is cur-
rently not supported in the execution engine. As observed in the
literature [68], the lack of deep integration reduces the possibili-
ties for optimization and for parallelization and distribution.

The authors present C-SPARQL through a Urban Computing use
case, which exploits information coming from sensors and from
mobile phone applications to extract and present new knowledge.
In [82], they reference a comprehensive list of requirements for
information processing in Urban Computing.

The evaluation of the existing execution engine is currently
provided for a limited number of queries and addresses relatively

3 Ad-hoc aggregates were abandoned after the introduction of SPARQL 1.1
aggregates.
small scale scenarios, with up to 100,000 triples in static stores and
windows, showing processing times that are in the order of tens
of milliseconds. These results are controversial. A recent analysis
on the performance of existing stream reasoning systems [77]
emphasizes some limitations of the C-SPARQL execution engine,
measuring low execution throughput (often below one execution
per second) and scalability, both in terms of input size and in terms
of number of queries.
IMaRS. The authors of C-SPARQL provided another contribution
to the area of stream processing in [62,63], by presenting an
algorithm formaintaining thematerialization of ontological entail-
ment in the presence of streaming information, IMaRS (Incremen-
tal Materialization for RDF Streams). While incremental reasoning
was already explored in the literature [83,84], IMaRS represents a
novelty. It relies on the streaming nature of the input and on the
specific data and processing models of C-SPARQL to compute the
expiration time of streaming RDF triples based on the windows of
deployed queries.

By annotating each RDF triple with its expiration time, IMaRS
reduces the amount of computation that needs to be performed to
update the results of reasoning. The algorithm selectively identifies
and drops expired statements, and computes newmaterializations
in an incremental way, exploiting the previous results that are still
valid.

Although very interesting, IMaRS relies on the strong assump-
tion that the expiration time of each triple can be pre-computed,
which limits its applicability. For example, this assumption is not
longer valid in presence of count-based windows, where the expi-
ration time of triples depends on the frequency of arrival of new
triples.

The proposed approach was presented through a Urban
Computing use case. An empirical evaluation was conducted using
the transitive property on a small dataset (the precise size was
not specified, but all the information could fit into 2 GB of main
memory). Under this setting, IMaRS brings significant advantages
when the percentage of the background knowledge that changes is
relatively small, while its costs overcome the benefits when more
than 13% of the background knowledge changes. This is due to the
overhead of computing the expiration times of incoming triples
and annotating them.
TrOWL. TrOWL [64,65] is another tool for incremental reasoning.
Compared to IMaRS, TrOWL presents two main distinctive fea-
tures: (i) it offers support to more complex ontology languages,
covering the expressive power of OWL2-DL; (ii) it does not rely
on fixed time windows to predict the expiration time of streaming
information. The main idea behind TrOWL is the use of syntactic
approximation to reduce reasoning complexity. Syntactic approxi-
mation ensures that all derived knowledge is correct, i.e., it ensures
soundness, but not completeness of reasoning.

To simplify retraction of information, TrOWL keeps traceability
relations between deriving facts and derived facts. The authors
provide experimental evidence of the benefits of their approach
while modifying increasing portions of the knowledge base. They
use the Lehigh University Benchmark (LUBM) ontology [85], which
provides automatic generation of ontologies about universities.
In particular, it enables to control the size of the ontology by
manipulating some parameters, e.g., the number of universities
and the number of departments they include. The authors perform
their experiments in a small scenario, considering one university
with 15 departments (about 100,000 triples).

Unfortunately, it is hard to compare the results of TrOWL with
IMaRS. The authors of TrOWL consider updates from 20% to 80% of
the ontology and measure a processing time that varies from 20%
to 70% with respect to the naive approach of recomputing all the
derivations. On the other hand, IMaRS focuses on smaller updates
(up to 20% of the ontology), presenting large advantages when less

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 33
than 10% of the ontology is changed, but becoming slower than the
naive approach soon after.
Inductive stream reasoning. An additional and noteworthy exten-
sion to the C-SPARQLmodel is presented in [66], where the authors
focus on inductive stream reasoning, which consists in mining of
large portions of data, and applying statistical and machine learn-
ing techniques to extract new knowledge.

The authors propose to combine inductive with deductive rea-
soning to increase accuracy. The technique has been applied and
validated on a real scenario deriving from social media analy-
sis [86], showing the accuracy of the reasoning algorithm in this
context. The authors also present someperformance results, show-
ing that the proposed approach exhibits low processing delays
(constantly below 10 ms) which outperforms traditional SPARQL
query engines. The experiments are conducted on a small scale sce-
nario, where evaluation windows include at most 2500 triples.
C-SPARQL on S4. In [67], the authors implement partial RDFS rea-
soning and part of the C-SPARQL query language on the S4 stream-
ing platform, which enables to split the processing load over
multiple machines to increase the overall system throughput.

More in particular, the authors implement operators for triple
selection, filtering, join, projection, and aggregation. To improve
the parallelization, the authors only consider time-basedwindows,
while they do not implement count-based windows. Indeed, for a
time-based window w, it is possible to evaluate whether a triple is
included in w in a distributed way, without collecting all the input
triples in a single processing node.

The solution has been tested on up to 32 nodes, using the Berlin
SPARQL Benchmark (BSBM) [87]. Some preliminary results are pre-
sented, exploiting four queries with different level of complexity,
ranging from a simple passthrough query (selecting every triple in
input) to more complex queries requiring multiple joins. In this
setting, the authors measure an input throughput of more than
150,000 triples per second when no reasoning is considered, and
of more than 60,000 triples per second with RDFS reasoning. Most
significantly, the performance scales linearly when moving from
one to eight processing nodes, but the advantages decrease with
more nodes.
CQELS. In [68], the authors propose a new language, CQELS, and an
accompanying query engine for combining static and streaming
linked data [88,89]. Similar to C-SPARQL, CQELS adopts the pro-
cessing model of DSMSs, providing windowing and relational op-
erators togetherwith ad-hoc operators for generating new streams
from the computed results. Differently from C-SPARQL, CQELS of-
fers a processing model in which query evaluation is not periodic,
but triggered by the arrival of new triples.

The distinctive difference of this solution with respect to C-
SPARQL is in the processing engine, which strictly integrates the
evaluation of background and streaming data, without delegating
them to external components. Thismakes it possible to apply query
rewriting techniques and optimizations well studied in the field of
relational databases.

The authors present a detailed experimental evaluation, where
they compare the engine of CQELS against C-SPARQL and EP-
SPARQL (see below). In particular, they use simulated DBLP
datasets created with the SP2Bench [90] and test the scalability
on the input size (number of triples) and on the size of the win-
dow under analysis. The measured results show the benefits of in-
tegration and query optimization, with CQELS providing execution
times that are up tomore than 1000 times lower than the other ap-
proaches. All the examples and results discussed in the paper, how-
ever, only describe query answering and do not take into account
reasoning over streaming data. Additional results have been pub-
lished in [77], with a more detailed comparison of the processing
models and performance of existing stream processing systems,
showing even larger advantages of CQELS over C-SPARQL, espe-
cially in terms of scalability. However, these results are controver-
sial, since recent publications [78,79] highlights some differences
in the semantics of CQELS and C-SPARQL. According to the authors,
such differences make the performance results incomparable.

The number of studies devoted to comparing existing solutions,
together with the heterogeneous conclusions they derive, is a clear
indication of the difficulties in assessing the performance of stream
reasoning systems. We will discuss the problem in more details as
part of our research agenda in Section 6.

Recently, the authors of CQELS introduced a new implementa-
tion explicitly designed for cloud environments [91], called CQELS
cloud. CQELS cloud translates the set of continuous queries de-
ployed in the system into a network of operators. A central coordi-
nator maps operators to nodes, trying tominimize network traffic:
for instance, operators that consume the same input data are de-
ployed on the same node, if it provides enough processing re-
sources. The implementation includes algorithms for incremental
processing of complex operations, like aggregates and joins. Fur-
thermore, CQELS cloud also supports elasticity, allowing nodes to
join or leave, and re-assigning operators to nodes accordingly. The
authors evaluate CQELS cloud using different workloads and show
how the throughput of the system scales linearly with the number
of processing nodes. However, they only consider matching, join,
and aggregate operators and do not include any reasoning task.
Streaming-SPARQL. Streaming-SPARQL is another extension of
SPARQL designed for processing streams of RDF data which is pre-
sented in [69]. The main contributions of this work are theoreti-
cal. In particular, the authors mainly focus on the specification of
the semantics of Streaming-SPARQL using temporal relational al-
gebra andprovide an algorithm to automatically transformSPARQL
queries into this new extended algebra.

Unfortunately, no experimental evaluation of the approach is
provided. Although promising, the approach currently supports
only the transitive property, and has been tested on a small sce-
nario that fits in a singlemachinewith only 2 GB ofmainmemory.4

Streaming Knowledge Bases. Streaming Knowledge Bases [70] is
built on top of the TelegraphCQ [92] DSMS and provides reason-
ing using a subset of RDFS and OWL reasoning over streaming
RDF triples. The key aspect of this proposal is its ability to pre-
compute and store some inference to reduce the computational
effort, and consequently the delay, during the evaluation of the
queries. The current implementation has been tested on relatively
small datasets,with up to 60,000 resource entries. The authors plan
to handle more complex reasoning in the future.
Sparkwave. Sparkwave [71] is a system designed for high perfor-
mance on-the-fly reasoning over RDF data streams. It trades com-
plexity for performance: in particular, Sparkwave poses severe
limitations to the size of the background knowledge, which must
fit into the main memory of a single machine; moreover, it oper-
ates over a pre-loaded RDF schema and provides limited reason-
ing functionalities. Sparkwave implements a variant of the RETE
algorithm [93], in which a pre-processing phase is used to mate-
rialize derived information before performing pattern matching.
The portions of data considered during the processing are isolated
through traditional windowing mechanisms, similar to those used
by DSMSs and C-SPARQL.

The authors offer a preliminary evaluation of the approach us-
ing the Berlin SPARQL Benchmark (BSBM) [87]. They consider up
to 100,000 triples in the background knowledge and consider four
queries of increasing complexity (requiring from simple selection

4 The source code, used in a case study in a sensor network scenario, is available
online at http://code.google.com/p/semanticstreams/wiki/SPARQLStream.

http://code.google.com/p/semanticstreams/wiki/SPARQLStream

34 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
to multiple joins). In this setting, Sparkwave provides a higher
throughput than C-SPARQL and CQELS (up to more than 100,000
triples per second), consuming less memory (at most 1 GB, less
than a half with respect to C-SPARQL). However, as already men-
tioned, the current version of Sparkwave introduces several lim-
itations with respect to expressiveness: it only supports graph
pattern detection and does not include neither logical operators
(disjunctions and negations), nor arithmetic operators, nor tempo-
ral operators.

4.2.2. Semantic event processing
EP-SPARQL. EP-SPARQL [72] is a unified language for event process-
ing and reasoning. To the best of our knowledge, it is currently the
only solution that inherits the language constructs and processing
model of CEP systems. Similarly to C-SPARQL, EP-SPARQL pro-
vides windowing operators (both count and time-based) for iso-
lating portions of the input streams which will be processed by
the system. However, differently from C-SPARQL the main build-
ing blocks of the EP-SPARQL language are represented by a set of
logical and temporal (sequence) operators that can be combined to
express complex patterns of information items. Another notable
difference of EP-SPARQL with respect to C-SPARQL is in the data
model and consists in the way time is associated to RDF triples.
While C-SPARQL associates one timestamp to each triple, repre-
senting a single point in time—point semantics, EP-SPARQL adopts
two timestamps, which represent the lower and upper bound of
the occurring interval—interval semantics. This reflects on output
triples, whose occurrence intervals are computed from the input
elements that contributed to their generation.

The idea is promising and makes it easy to write complex
patterns involving content and time constraints on the input RDF
triples. However, the current approach used for writing patterns
has some limitations: for example, when a pattern (e.g., a sequence
of elements with some specific characteristics) is satisfied by
different sets of elements in the input stream, consumers do not
have any operator for deciding which ones to select. This is a well
known issue in the community working on CEP, known as the lack
of customizable selection policies [1,94].

As far as implementation is concerned, EP-SPARQL queries are
translated in logic expressions in the ETALIS Language for Events
(ELE) [95] and computed at run-time using the event-based back-
ward chaining algorithmof the ETALIS [96] engine. ETALIS converts
queries to Prolog rules and evaluates them in a single thread of ex-
ecution; parallel and distributed evaluation is currently not sup-
ported.

The current evaluation of the approach is based on synthetic
workloads of relatively small scale (up to 50,000 triples). The query
processing engine evaluates both background and streaming data
in a single component, which also supports stream reasoning. In
their experiments, the authors show the benefits of their imple-
mentation by comparing it with Esper, which is awell known com-
mercial CEP engine [97]. If we look at the results, then the cost
of reasoning becomes immediately evident: even when consider-
ing a simple workload (subclass inference), reasoning introduces
a high processing latency, in the order of seconds. Additional ex-
periments, including a comparison with C-SPARQL and CQELS, are
described in [77]. According to this work, EP-SPARQL exhibits bet-
ter processing time and scalability than C-SPARQL in various situ-
ations (with speedups of up to three order of magnitude), while it
cannot achieve the same level of performance of CQELS.

As a final comment, it is worth mentioning that the authors of
EP-SPARQL explored the integration of streaming information and
historical data by implementing in ETALIS the capability to store
and retrieve time-annotated data [98].
Answer set programming. Another proposal for using logic pro-
gramming, and in particular Answer Set Programming (ASP), is
described in [73]. The authors propose an extension to Answer
Set Programming to deal with dynamic data. Although the authors
mention an implementation based on a ASP solver, no evaluation
is currently described for the proposed approach.

A similar approach is proposed in [99], where the authors
present the StreamRule framework, which combines an engine for
stream processing and filtering (implemented using CQELS) and a
non-monotonic rule engine for ASP. Despite some preliminary in-
vestigations, no detailed evaluation is currently available to assess
the performance of the StreamRule framework.

4.2.3. Time-aware reasoning
TA-SPARQL. TA-SPARQL (TimeAnnotated SPARQL) [74] is presented
as a semantic streammanager system explicitly conceived to store
and query time-annotated RDF data coming from sensors. The
authors first introduce an extended version of RDF, similar to the
one adopted by C-SPARQL, where resources are annotated with
timestamps. Then, they introduce the TA-SPARQL query language,
which extends SPARQL to support queries that refer to the past.
Currently, the proposed model only allows one-time queries.
Although the authors recognize the importance of continuous
queries in streaming scenarios, they do not currently support them
in their language. Themodel has been implemented in a prototype
system running on top of the Tupelo semantic content manager, as
part of a project that aims at storing and processing data coming
from NEXRAD radars [100]. Currently, no experimental evaluation
of the performance of the system is publicly available.
Temporal RDF. A similar approach is presented in [75], where the
author present an extension to RDF to capture the notion of time,
enabling reasoning over time enriched RDF data. The authors pro-
vide a semantics for temporal RDF graphs and showhow reasoning
over temporal RDF does not add extra asymptotic complexity with
respect to non-temporal RDF.

Similar approaches for including time into RDF, as well as pro-
posals for time and context-aware query languages, have been
explored in [101–107]. All these solutions lack the support for con-
tinuous queries.

4.2.4. Surveys and visions
The need for more complex forms of stream reasoning has been

identified in several papers [108,6,7]. These papers also highlight
some of the main challenges that still need to be addressed to
enable stream reasoning: provide a good model that combines
evolving data representation and real-time evaluation, including
pattern detection; extend existing reasoning algorithms to support
continuous processing, possibly through incremental evaluation;
exploit parallel and distributed computation to enable reasoning to
scale to larger amounts of data. From a theoretical viewpoint, a few
work focused on defining new logics for reasoning with streaming
time-annotated data. An extensive review and comparison of these
proposals can be found in [109].

As already mentioned while describing the systems, some re-
search efforts were devoted to investigate the methodologies for
measuring and comparing the performance of stream reasoning
systems. This includes theoretical work [76], as well as concrete
proposals for benchmarks [110,77–79] with concrete measure-
ments of existing solutions.

Finally, an interesting contribution comes from [111], a vision
paper in which the authors study stream reasoning by focusing
on the relations between the reasoning task and the existence of
ordering among information items. In particular, they investigate
how the processing algorithms are influenced by the presence of a
natural order (e.g., order of arrival, or timestamp order) and by the
request for some application-specific order (e.g., top-k reasoning).
The authors study how existing technologies support or exploit
ordering properties. In doing this, they highlight open challenges
and present possible research directions.

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 35
5. Survey: discussion

In the previous two sections, we surveyed existing research ef-
forts in the area of stream reasoning and in related fields. Starting
from our analysis, and in comparison with the requirements iden-
tified in Section 2, we canmake a few important considerations on
the current state of the field.
Backgroundwork. First of all,wenotice that the solutions developed
in the areas of reasoning and stream processing cannot fully satisfy
all the requirements identified in Section 3.

Stream processing systems introduce a new interaction model,
based on continuous queries, which are installed in the system
and get repeatedly evaluated as new data is received. This enables
on-the-fly processing of streaming information. However, in most
cases, traditional stream processing engines focus on a reduced
number of operators [39,41,36] and trade expressiveness for effi-
ciency. This badly matches with the requirements for integration
and expressivity identified in Section 2.

Additionally, only some stream processing systems, mainly in
the domain of DSMSs, enable the interactionwith background data
stores, and only a few solutions offer operators to store and retrieve
historical data coming from the stream. Both the integration of
streaming and background data and the management of historical
data were identified as key requirements in Section 2.

Finally, only some systems, typically in the domain of CEP,
provide explicit operators for capturing temporal patterns over
streaming information [1,33]. Even though DSMSs allow the access
the timestamp of data items, they limit the scope of processing to
the current evaluation window [31], and this reduces the possibil-
ities for effectively managing time during processing, which was
identified as a key requirement.

At the other side of the spectrum there are reasoning systems
developed in the context of Semantic Web. The usage of semantic
annotations and ontologies favors the integration of multiple data
sources, while reasoning allows the derivation of implicit knowl-
edge from explicit information.

However, traditional reasoning systems consider information
as a set of statements, which describe the domain of interest
and do not change (or rarely change) over time. Because of this,
they cannot satisfy the requirement for integration of streaming
(dynamic) data, as identified in ourmotivating scenarios. Similarly,
they do not offer support for time management in their data and
processing model, and they do not consider historical data.
Stream reasoning. Stream reasoning systems have been developed
to combine the benefits of stream processing and reasoning.
We can extract some interesting observation starting from the
description in Section 4 and from the classification in Table 2.

First of all, almost all the systems developed in the area of
stream reasoning inherit the processing and interaction model of
DSMSs, which is based on continuous queries. In this processing
model, the streaming data is partitioned using windows and each
query evaluation is performedwithin the boundaries of the current
window.We classified themas semantic streamprocessing systems.
The only exceptions are represented by EP-SPARQL and Answer
Set Programming (classified as semantic event processing system),
in which pattern detection is used as the primary processing
mechanism. As a consequence, these are also the only proposals
to include explicit temporal operators.

This processing model makes it easy to integrate background
data about the domain of analysis. In fact, almost all the system that
we analyzed enable integration of stream and background data
during processing.

All the considered systems extend RDF with temporal anno-
tations. In most of them, time is encoded as a single timestamp,
but there are also a few cases in which time intervals have been
adopted.
Since the reasoning process is computationally expensive, ex-
isting solutions implement only reduced reasoning capabilities, if
any. Some of them focus on single properties, while other consider
subsets of RDFS or OWL2 RL and incremental reasoning is applied
only under some restrictive assumptions on the adopted data and
processing models.

Despite some promising investigation (e.g., EP-SPARQL), cur-
rently no solution fully integrates both stream processing ca-
pabilities and historical data management. Some systems offer
on-the-fly processing using continuous queries. Other systems are
designed to store time-annotated data and provide operators for
querying and retrieving it. None of them, however, offer a unifying
approach for both kinds of processing.

As we observed in our analysis, existing stream processing sys-
tems have been tested and evaluated on relatively small scenar-
ios. However, the capability of managing large volumes of data
is a key requirement in many application scenarios, as identified
in Section 2. The recent research on reasoning for Semantic Web
[112,113,46] has demonstrated that some problems appear only
when increasing the scale of the problem under analysis. Accord-
ingly, validating an algorithm over small scenarios may not be suf-
ficient to demonstrate its general applicability and scalability.

Along the same line, only two systems currently implement
parallel and distributed processing. This aspect is of primary
importance, since the resources of a singlemachine are limited and
may easily become insufficient as the scale grows.

More in general, as observed in recent papers [76–79], assessing
and comparing the processing models and performance of stream
reasoning solutions is a problemper-se,which still requires further
investigations.

Interestingly, no existing system addresses the problem of
uncertainty. As previously discussed, uncertainty management
represents an important issue in streaming applications. Similarly,
no existing system currently includes customizable QoS policies.

Finally, in Section 2 we identified the management of dis-
tributed scenarios as a key requirement for stream reasoning, and
we highlighted the challenges that it introduces. These challenges,
however, have not been considered so far in existing systems. In
the following section, we start from the present analysis of open
challenges in the field to propose a research agenda for addressing
them.

6. Next steps: a research agenda

In the previous sections, we started from the analysis of
requirements for stream reasoning systems (Section 2) and from
the survey of existing systems (Sections 3 and 4), to identify the
open challenges in the area of stream reasoning (Section 5).

This section starts from these premises and presents a research
agenda with a concrete description of some steps required to drive
the design and implementation of future stream reasoning sys-
tems. We believe that future research should target both the theo-
retical foundations, algorithms, techniques, and implementation of
stream reasoning that could enable building efficient and scalable
tools. Because of this, we organize our discussion as follows. First,
we focus on system models for representing data and operations on
data (Section 6.1). Second, we consider aspects related to the sys-
tem implementation (Section 6.2). Finally, we discuss the problems
that derive from the application and evaluation of the solutions and
systems in the area of stream reasoning (Section 6.3).

In our analysis, we start from the main challenges and open
issues and we present research directions and possible solutions
proposed in related fields. Fig. 3 summarizes our research agenda,
while Table 3 showshow the topics covered by the research agenda
map to the requirements of our use-cases.

36 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
Ta
bl
e
3

Re
la
tio

n
be

tw
ee

n
re
qu

ir
em

en
ts

an
d
re
se
ar
ch

ag
en

da
.

Sc
en

ar
io

In
te
gr
at
io
n

Ti
m
e
m
an

ag
.

D
is
tr
ib
ut
io
n

Bi
g
da

ta
m
an

ag
.

Ef
fic

ie
nc

y
Ex

pr
es
si
vi
ty

U
nc

er
ta
in
ty

m
an

ag
.

H
is
to
ri
ca
l

da
ta

Q
ua

lit
y
of

se
rv
ic
e

D
iff
er
en

t
so

ur
ce

s
St
re
am

in
g/
ba

ck
gr
ou

nd
da

ta
D
at
a

m
od

el
Pr
oc

es
si
ng

m
od

el
D
is
tr
ib
.

so
ur

ce
s

D
is
tr
ib
.

pr
oc

es
si
ng

H
ig
h

th
ro
ug

hp
ut

Lo
w

la
te
nc

y
Re

as
on

in
g

Te
m
po

ra
l

op
er
at
or
s

D
at
a

tr
an

sf
or
m
at
io
n

Ti
m
e
m
od

el
✓

✓
✓

✓
✓

✓
✓

✓

H
is
to
ri
ca
ld

at
a

m
od

el
✓

U
nc

er
ta
in
ty

m
od

el
✓

✓

A
m
od

el
fo
rQ

&
R

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

U
nc

er
ta
in
ty

pr
op

.
m
od

el
✓

In
fo
rm

at
io
n

m
an

ag
em

en
t

✓
✓

✓
✓

✓
✓

Re
as
on

in
g
on

bi
g

da
ta

✓
✓

✓
✓

✓

In
cr
em

en
ta
l

re
as
on

in
g

✓
✓

✓
✓

Ap
pr

ox
im

at
e

re
as
on

in
g

✓
✓

✓
✓

✓

Ef
fic

ie
nt

qu
er
y

ev
al
ua

tio
n

✓
✓

✓
✓

M
an

ag
em

en
to

f
bu

rs
ts

✓
✓

✓
✓

✓

O
pe

ra
to
r

pl
ac
em

en
t

✓
✓

✓
✓

✓

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 37
Fig. 3. A research agenda for stream reasoning.
6.1. System models

This section focuses on themodels for representing, processing,
and retrieving information in stream reasoning systems. As men-
tioned in Section 5, the definition of suchmodels vastly remains an
open research issue.

6.1.1. Modeling data
RDF has been widely accepted as the data model for represent-

ing semantically annotated information. While it is well suited for
static knowledge, it needs to be extended to consider data that
changes over time.5 The research challenges in this context involve
the definition of a model for time and for time-changing data. Ad-
ditionally, in many application scenarios for stream reasoning, in-
formation comes with some degree of uncertainty. Understanding
and modeling such uncertainty is critical for an efficient and cor-
rect management of dynamic knowledge.
Time model. Given the importance of dynamic and time-changing
data in streaming applications, we see the definition of a suitable
model for time as one of the first andmost critical aspects for build-
ing a solid theoretical foundation for stream reasoning. Aswe show
in Table 3, a proper choice of the timemodel is necessary to satisfy
the requirements connected with the management and process-
ing of dynamic data, including the integration of streaming and
background data, themanagement of historical data, and the capa-
bility to perform reasoning on time-changing data. Moreover, the
semantics of time determines how we can approach the synchro-
nization issues that traditionally arise in distributed settings.

In the past, several models have been proposed for annotating
information with time. Most stream processing systems extend
the data model by adding a single timestamp to each data item.
As shown in Section 4, this approach is also adopted by most of
the existing proposals in the area of stream reasoning. Intuitively,
the single timestamp model is appropriate for expressing the
occurrence of events. However, when considering facts, or states in
the domain of analysis, other representations of timemay bemore
suitable. As shown in Section 4, some systems exploit an interval
based representation, where two timestamps are used, indicating
the lower and upper bounds of the interval in which a piece of
information is considered as valid.

5 An additional challenge, beyond the scope of this paper, involves the integration
with existing (static and dynamic) non-RDF data.
The introduction of interval representations dates back to tem-
poral databases [54] and was adopted in stream processing so-
lutions both in the DSMSs domain [114] and in the CEP domain
[41,36]. The use of time intervals enables the definition of a rich set
of temporal relations. For example, an interval I1 can follow and in-
terval I2, start, or finish together with I2, overlap, or include I2. An
extensive study of the relations between time intervals is present
in the pioneering work of Allen [115]. As discussed in [116], dif-
ferent semantics can be provided to define the temporal relations
between time intervals (e.g., to define the immediate successor of
an item), each of them satisfying different properties (e.g., associa-
tivity).

Finally, as mentioned in Section 2, the use of an ontology for
time [9] has been proposed as part of the Semantic Sensor Web
project. This ontology defines the main concepts related with time
(e.g., time instant, interval, duration) and the main relations be-
tween these concepts (e.g., equality, overlapping, ordering). From
a theoretical viewpoint, the ontology provides the samemodel and
level of expressiveness as the interval representation described
above. However, it provides flexibility and simplifies the integra-
tion among different time notations by introducing a precise vo-
cabulary that includes dates, timezones, and temporal unit types.

Beside introducing a representation of time, the time model
needs to specify its semantics. In particular, there are two common
ways in which timestamps may be assigned to data items [117,1]:
based on the timewhen they enter the processing system, or based
on some application time (e.g., the time when they are generated).
In the former case, it is easy to evaluate time relationships, since
the processing system is guaranteed to receive items in timestamp
order. The latter case presents more difficulties, since the infor-
mation items can be received out of order due to unsynchronized
application clocks at sources [118], network latencies, non-order-
preserving or lossy communication channels. A detailed study, and
a proposal to cope with out-of-order using heartbeats is presented
in [117].

As we have seen in our analysis in Section 4, all existing
proposals in the area of stream reasoning consider an application
time in which the timestamp represents the time when a data
item is generated at its source and it is assumed that the data
enters in the processing system in timestamp order. Finding the
best timemodel for stream reasoning is an open research question.
We identify here three quality metrics that can guide the choice.
(i) Expressiveness: the timemodel should enable expressing all the
timing and ordering relations among information items required
by applications. (ii) Simplicity: the temporal model should provide

38 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
an intuitive semantics, making it easy to express and understand
temporal relations. (iii) Efficiency: evaluating temporal relations
should not introduce unacceptable overheads.

The importance of defining a data and time model for stream
reasoning has been recognized by various research communities.
Recently, a newW3C Community Group on RDF Stream Processing
(W3C RSP) [119] has started with the declared goal of defining
a common model for producing, transmitting, and continuously
querying RDF streams.
Historical data model. In Section 2, we identified the capability of
providing access to historical data as a requirement for stream
reasoning tools. This demands for data and storage models that
keep track of information changes and offer suitable mechanisms
for querying and retrieving older data.

Defining these models implies answering several research
questions that are strictly related to the representation of time-
annotated data: how should the validity time of information be
represented?What is the semantics of new information items? Do
they complement previous knowledge or update/invalidate (part
of) it? Is it possible to store only partial (aggregated) information
about the past? Who defines which information needs to be
preserved and how?

As discussed in Section 4, several approaches have been pro-
posed in the field of time-aware reasoning that provide answers to
some of the questions above, introducing theoretical models for
representing time changing information and reasoning about it.
Moreover, solutions for integrating stream processing with histor-
ical data have been designed in the past by the database commu-
nity, and implemented in some existing DSMSs [120,121]. Finally,
models and techniques for compressing historical data with mini-
mal information loss have been also investigated in [122].

As observed in Section 4, no existing solutions in the area of
stream reasoning integrates both management of streaming data
and flexible management of historical data. Future research in this
area should target (i) the definition of a unified model for time-
annotated data that spans both streaming and historical data, and
(ii) the specification of operators and abstractions for storing and
retrieving (portions of) the streaming data.
Uncertainty model. In Section 2, we identified the ability to deal
with uncertainty as a requirement of many application scenar-
ios. We distinguish between the uncertainty associated to input
data and the uncertainty associated to the processing step [123].
More in particular, input data can be: (i) imprecise, (ii) incomplete,
(iii) incorrect or inconsistent. For instance, in sensor networks, im-
precision may derive from the limited resolution of sensors, while
incompleteness may be caused by data loss for temporary lack of
communication or battery issues. Incorrectness or inconsistencies
are frequent in application that involve Web data. Moreover, the
processing can introduce some degree of approximation. Addition-
ally, an incomplete or inaccurate modeling of the domain of anal-
ysis can lead to produce incorrect or imprecise outputs [123].

Several ways for modeling uncertainty have been studied in
the past [124]. They include probability theory, Bayesian networks,
fuzzy logics, andmany other formalisms. The recent literature also
presents proposals in the area of streamprocessing [125–128,123].

Most of these solutions rely on an explicit encoding and rep-
resentation of uncertainty inside data items. For instance, [123]
adopts random variables to represent received information, thus
making it possible to encodemeasurements errors in sensor appli-
cations. We believe that these approaches can be complemented
with techniques developed in the area of Semantic Web and
reasoning for detecting and solving data inconsistencies [129],
thus contributing in satisfying the requirement for integration, as
shown in Table 3.

There are various metrics for evaluating a model for uncer-
tainty: beside expressiveness, flexibility, and precision, simplicity
is also very relevant. End consumers may be interested in receiv-
ing some precise indication about the level of certainty associated
to the results they get. However, this should not negatively impact
the compactness and readability of information.

6.1.2. Modeling operations
After analyzing the models for data representation, we now fo-

cus on the models for representing operations on data. In partic-
ular, we focus on the models for reasoning and querying dynamic
data andpresent thesemodels together since, aswewill bettermo-
tivate in the following, we consider them as strictly integrated. Be-
cause of that, we claim that both querying and reasoning can be
combined into a single unifying processing model for stream rea-
soning.
Amodel for querying and reasoning. The query and reasoningmodels
determine the expressive power of the system and the amount
of computation it needs to perform. The query model represents
the interface for gathering information from the system, while
reasoning can be used to enrich query results.

In the domain of stream processing, DSMSs inherit their query
model from relational databases, with additional windowing con-
structs for selecting the portions of input data to consider. They
do not derive new information, but rather transform (e.g., select,
join, aggregate) input data to present it as required by the con-
sumers and they do not include any form of reasoning. As shown in
Section 4, most of the existing proposals for stream reasoning in-
herit the query model of DSMSs. Most importantly, they preserve
the traditional model of reasoning for static data, which ignores
time information associated to data. As already observed in pre-
vious work [6], this model introduces some issues related to the
semantics of processing: since a stream is observed only through
a window of a finite (and often pre-determined) size, it is possible
that the processing does not consider the entire input and there-
fore is incomplete.

On the other hand, CEP systems target at defining new, implicit,
knowledge (in the form of composite events) starting from time-
based patterns of primitive events that can be directly observed
from the external environment. Because of this, we see a signifi-
cant common ground between reasoning tools and CEP systems.
Although they move from different perspectives and adopt differ-
ent formalisms, both of themaimat extracting andpresenting new,
implicit knowledge. Reasoning tools consider static data and (po-
tentially) complex forms of reasoning that do not involve time re-
lations between facts. CEP systems consider relatively simple form
of processing (typically patternmatching) over dynamic data. Time
is treated as a first-class citizen and the time relationships between
data elements are widely considered.

For this reason, we claim that future research could investigate
the feasibility andbenefits of a unifying querymodel and semantics
that captures both worlds. Some preliminary work already goes in
the same direction [72]. Interesting areas of investigation include
the use of temporal logics, which have been proposed in the past
for reasoning over time annotated knowledge [130–133]. Tempo-
ral logics have also been used by some CEP systems to formally de-
fine the semantics of their operators [33]. A unifiedmodel based on
logicwould enable a precise definition of soundness and complete-
ness, overcoming the issues deriving from the usage of windowing
mechanisms.

Finally, as we have seen in Section 4, some proposals have
started investigating the use of inductive and/or statistical reason-
ing [66]. Introducing processing abstractions for statistical reason-
ing could enable the inference of new rules from the observed data
and potentially improve the results provided to the consumers,
and attempts to unify logical and statistical reasoning have already
been discussed in the literature [134].

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 39
As we show in Table 3, the choice of a suitable processing
model affects almost all the features required by our use-cases.
Most importantly, it balances between the expressiveness offered
to consumers and the processing performance, efficiency, and
scalability.
Uncertainty propagation model. In Section 6.1.1, we discussed the
importance of identifying suitable models for representing uncer-
tainty. After such models have been defined, the system needs to
take into account uncertainty during the processing. This makes
the end consumers aware of the degree of certainty associated
to the results they obtain. Depending on the adopted models and
techniques, the evaluation and propagation of uncertaintymay im-
pact the performance. For instance, taking into account potential
measurement errors and incorporating them into the processing
may require using expensive statistical computation.

Efficiency in presence of uncertainty has been amain concern in
streamprocessing systems and led to the design of promising tech-
niques [125–128,123]. Finding a good balance between the advan-
tages of a model in terms of accuracy, and simplicity, and the costs
required for managing it constitutes a major area of investigation
for future research.

6.2. System implementation

Our analysis of application scenarios highlighted some key
scalability requirements for stream reasoning tools. An effective
solution for stream reasoning should be able to consider big data
(Section 6.2.1), which is dynamic and potentially updated at high
frequency (Section 6.2.2), and generated from a large number of
(geographically distributed) sources of information (Section 6.2.3).
In the following, we focus on these three aspects. For each of them,
we present a number of implementation and engineering issues
and describe mechanisms, techniques, and solutions for them that
were developed in related fields.

6.2.1. Big data
We consider two main challenges related to big data: informa-

tion management and information processing (in particular, rea-
soning in presence of big data).
Information management. This section presents the challenges re-
lated to informationmanagement, query, and retrieval in presence
of big data.

Since stream reasoning systems may need to access large vol-
umes of data during processing, it is crucial to enable fast mecha-
nisms for information retrieval to reduce the response time of the
system. To this purpose indexed data structures, as well as caching
techniques, can be properly exploited. Several optimization tech-
niques for database systems have been introduced in the literature
(e.g., size of different tables [135]) that adapt to the properties of
stored data. Furthermore, ad-hoc algorithms could analyze the pat-
terns of access to information to determinewhich data is more rel-
evant for consumers and consequently optimize its retrieval.

Other challenges arise in presence of data distributed overmul-
tiple nodes. In this situation, it becomes important to consider the
physical location of information to minimize the delay for data
retrieval. This demands for communication protocols that define
where the data is stored and how it is routed to interested recip-
ients. The research in this area may benefit from previous results
from distributed information retrieval [136], content delivery net-
works [137], and protocol for content-based communication [138].
Further investigations on the issue of processing distributed data
are reported later on, in Section 6.2.3.
Reasoning on big data. Reasoning over large volumes of data consti-
tutes a challenging task. Currently, several parallel and distributed
have been proposed in literature [112,113,46,139,47,50,140–144].
Some of these techniques have shown RDFS and OWL entailment
over billions of RDF triples with a few hours of processing on clus-
ters with few dozens of machines. These works constitute a valu-
able starting point for future research, not only for their technical
merits, but also because they highlight some key issues that ap-
pear at large scale, and propose solutions or general principles for
overcoming them. For example, they investigate how to split data
overmultiplemachines, or processing cores, which data structures
to adopt, and how to better exploit the limited size of the main
memory, how to reduce the expensive communication between
processing nodes.

Future work should be able to extend these solutions and
enable reasoning over data that changes frequently. Some prelim-
inary investigations in this direction already exist [67]; they com-
plement the techniques designed for reasoning over dynamic data
presented in the following section.

6.2.2. Dynamic data
From the perspective of reasoning, dynamic data requires a con-

stant re-evaluation of inferred information. Due to the complex-
ity of such operation, techniques for incremental and approximate
reasoning have been proposed. At the same time, the presence of
continuous updates requires low delay evaluation of continuous
queries, even in presence of information bursts.
Incremental reasoning. Performing RDFS reasoning to compute the
full materialization of relatively small datasets (a few millions of
triples) may require several minutes on large clusters [112]. In
presence of frequently changing data and time constraints, it is
not possible to repeatedly apply traditional reasoning algorithms
over the entire knowledge base and this demands for incremental
techniques that only consider data that is influenced by changes.

Research in this area is of primary importance, since it aims at
reducing the gap between the frequency of changes that character-
izes many application domains and the amount of time demanded
by complex reasoning techniques. As Table 3 shows, this impacts
both expressiveness and efficiency.

The problem of updating derived information upon changes
in the knowledge base has been widely studied by the database
community in the context of view maintenance and deductive
databases. More in particular, the idea of incrementally updating
derived information has been studied since the beginning of the
1980s [145], leading to two main algorithms: DRed (Delete and
Rederive) [146], and PF (Propagate Filter) [147]. These works have
demonstrated how one of the most crucial aspects related to in-
cremental reasoning is the identification and removal of deriva-
tions that are no longer valid when information changes. Indeed,
this might require to keep track of some or all the dependencies
between explicit and derived knowledge. To this respect, both al-
gorithms share the same idea: when some information is removed,
they first compute an overestimation of the derived knowledge
that needs to be deleted, and then re-derive the information that
is still valid. Extensions to these approaches have been proposed
in the last few years [83]. A parallel and distributed implemen-
tation based on these algorithms has been recently proposed and
evaluated on a subset of the RDFS entailment [148], even though
it does not consider time annotated data. Furthermore, there exist
solutions based on very specific languages and restricting assump-
tions. This is the case for the technique developed for C-SPARQL
queries [62]: it targets the reasoning performed to enrich query
results and exploits some intrinsic properties of (a subset of)
C-SPARQL to simplify the processing.

A precise analysis of the features and operators used for rea-
soning could help understanding their complexity, thus making
it easier to decide what type of reasoning is compatible with the
processing of streams. One possible way to reduce the cost of rea-
soning over streams is to limit amount of knowledge that is being

40 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
materialized. While in static scenarios a complete materialization
of all possible derivations can be desirable, different approaches
may be better suited for streaming applications. We identify the
analysis of the best balance between pre-computation (and main-
tenance) of the derived information, and on-demand computation
as another key topic that should drive the research in the area.
Approximate reasoning. Evenwith efficient incremental algorithms,
reasoning may still be too expensive to be performed on-the-fly
on streaming data but it may be acceptable in some contexts to
trade completeness or precision of reasoning for response time. As
shown in Table 3, this targets the requirement for a user-defined
quality of service.

Solutions for approximate reasoning have been proposed in the
literature [149], and also adapted to streaming scenarios [64,65].
Nevertheless, approximate reasoning vastly remains an open prob-
lem. In this context, we foresee two research directions: (i) perfor-
mance improvement of existing solutions, and (ii) cost prediction,
to model the computational costs connected to a certain reasoning
task, to decide whether approximate methods should be applied.
Efficient query evaluation. Stream reasoning systemsneed to update
the answers to continuous queries as new information is received.
Dealing with high frequency streams of data is challenging, since
it introduces some hard constraints on the processing time. More
in particular, we identified in Section 2 two requirements for ef-
ficiency: high throughput and low response latency. On the one
hand, high throughput enables the system to scale on the amount
of input data that it can handle in a given period of time. On the
other hand, low response latency enables the generation of results
in a timely way, which may be critical in some application scenar-
ios (e.g., emergency management).

Both metrics require efficient evaluation of input information.
This has been widely investigated in stream processing systems
[37,34,41,36], proposing techniques for rewriting the deployed
queries to optimize their execution. These solutions focused on
re-defining the structure of single queries, but also on sharing op-
erators betweenmultiple queries, as proposed in the field ofmulti-
query optimization [150].

Other works investigated the benefits of parallel processing to
reduce response time using not only multi-core CPUs, but also
co-processors like GPUs [151] or FPGAs [152,153]. Investigating
how these processing technologies could be adopted in the domain
of stream reasoning certainly represents an important research
direction.

Future research also needs to consider how query evaluation
can be combined with the reasoning process. Some traditional
knowledge bases pre-materialize all the (implicit) knowledge that
can be inferred from (explicitly) stored information to speed up
query answering. In streaming systems, the set of deployed queries
can limit the scope of reasoning for extracting only required infor-
mation.
Management of bursts. Strictly connected with on-the-fly process-
ing of data streams produced at high rate is the management of
bursts.

In the area of stream processing, the problem has been studied
primarily by the community working on DSMSs, which developed
several load shedding techniques [154–159]. Load shedding aims
at cutting out parts of the input streams when they saturate the
computational capacity of the system. Existing proposals try to
identifywhich data items have less probability to participate in the
final results, such that removing them has only a marginal impact
on the computation of output.

Another approach for managing bursts is represented by elastic
stream processing [160–162], which dynamically adjust the num-
ber of computational resources adopted based on the current load
of the system. This approach is particularly suitable for deploy-
ments on computational cluster or clouds.
6.2.3. Distributed data
Settings that require distributed information management are

common. This incurs additional problems which are well re-
searched in distributed information systems. Data locality is a gen-
eral principle to improve the performance if the computational
resources are placed at different locations. As an example, pro-
cessing of financial information for algorithmic trading often takes
place close to the location when data is generated, to reduce the
overall latency [163]. Data and processing can be clustered to limit
as much as possible expensive inter-node communication.
Operator placement. The problem of how to distribute the compu-
tation is well known in the context of stream processing and of-
ten referred to as the operator placement problem. Solutions for
this problem aim at finding the best allocation of processing tasks
over the computational resources, while possibly taking into ac-
count the characteristics of resources (e.g., computational, mem-
ory, storage or communication capabilities, availability of specific
hardware, etc.) and additional domain specific constraints. Exist-
ing approaches are designed for continuous queries over streams of
data: they break each query into its basic constituent operators and
then decide where to deploy them. This enables for both concur-
rent evaluation of different queries at different nodes, aswell as for
incremental evaluation of a single query over multiple machines.
Incremental evaluation is particularly important since it enables
significant optimizations, like pushing the operators that filter data
as close as possible to the sources of information.

Several solutions have been presented for operator placement,
each one targeting a different scenario (e.g., large scale distributed
systems vs. local area network or clusters) and focusing on differ-
ent goals (e.g., load balancing vs. minimization of delay or band-
width usage) [164–167,35,28,168–174]. In the context of stream
reasoning, these works present one significant limitation that
needs to be addressed in future research: they only focus on
streaming data and do not consider the presence of stored data or
background knowledge.

Beside the problem of operator placement, some previous work
has defined and analyzed communication protocols between pro-
cessing nodes that further optimize the way information is trans-
ferred. In this case, some solutions propose to create temporary
buffers at intermediate nodes and to store information there in-
stead of transmitting it to the final recipients. Information can be
pulled from these buffers onlywhen (and if) it becomes relevant for
processing [175], thus reducing the overall network traffic. Some
solutions push this idea to its limits by storing some information
directly at the sources [176]. These proposals are valuable in the
context of stream reasoning, since they can suggest effective ways
for combining streaming and stored data.

6.3. Stream reasoning in action

The application scenarios for stream reasoning are heteroge-
neous and stress different requirements. For example, certain sce-
narios deal with frequently changing data and target low response
times, but do not demand for expressive reasoning. Others can sac-
rifice the response time and the processing efficiency to increase
the expressiveness of the computation.

This drives to a critical research question. Is it possible to
provide a single solution that is suitable for all applications? If
not, which are the best models, abstractions, and implementation
mechanisms to address specific parts of the problem space?

On the one hand, answering this question demands for a more
precise analysis of the application requirements. Some existing
works have been tested in real or realistic scenarios. However, it
is still not clear if different models for data representation and
processing, or more complex forms of reasoning can provide ad-
ditional benefits to the applications and, if so, to what extent. On

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 41
the other hand, most of the proposed solutions are still in the form
of research prototypes, and often introduce significant assump-
tions and limitations. For example, most of them have been tested
on relatively small scenarios, often assuming that the knowledge
base can fit into the main memory. Similarly, key techniques for
dynamic data management, like incremental reasoning, have not
been tested on real scenarios. In this context, it becomes difficult to
quantify the impact of eachdesign choice. For instance, it is difficult
to measure how the volume of data impacts on the response time
of the system, or which rate of information update is supported
with a given reasoning model and complexity.

Next to the problem of understanding the best abstractions and
design choices for some specific scenarios, it is critical to assess
and compare concrete systems, to measure their benefits and lim-
itations. Initial work in the area has demonstrated the complexity
of this task, even when considering systems with similar features
[78,77,79]. As recognized in some initial work [76], future research
in this area should target at (i) identifying the critical Key Perfor-
mance Indicators (KPIs) of the systems, (ii) understand which are
the parameters that mostly influence them, and (iii) devise stress
tests for controlling these parameters and tomeasure their impact.

7. Conclusions

In this paper, we provided a detailed analysis of stream reason-
ing, a new and vastly unexplored research area. We first looked at
some concrete application scenarios to extract the requirements
for stream reasoning. Then, we analyzed existing proposals in the
area, discussed their properties, and highlighted their advantages
and limitations. Starting from this analysis, we isolated some key
challenges that need to be addressed to offer full fledged tools for
stream reasoning.

We moved from the current state of the stream reasoning to
propose a research agenda to further advance in this field. We be-
lieve that future research should look both at defining the theoret-
ical foundations for stream reasoning and at designing algorithms
and tools for a scalable and efficient processing.

From a theoretical point of view, suitable models for data rep-
resentation and processing are still missing. To satisfy the require-
ments of current dynamic scenarios, time plays a central role in the
definition of suchmodels. Therefore, theymust enable seamless in-
tegration of streaming, background and historical data, define and
identify complex temporal patterns, and reason over information
that changes over time.

From an implementation perspective, there is the need for
strongmethods and tools that support the theoretical abstractions.
The complexity of the problem demands for advanced algorithms
for data processing, efficient communication protocols, and solid
implementations that best exploit available resources.

To conclude, even though stream reasoning is not yet a mature
field of research, this survey illustrates how the research commu-
nity is currently addressing this set of problems with new princi-
ples, algorithms, and solutions to advance the state of the art in this
new and challenging research domain.

Acknowledgment

This research has been funded by the Dutch national program
COMMIT.

References

[1] G. Cugola, A. Margara, Processing flows of information: from data stream to
complex event processing, ACM Comput. Surv. 44 (3) (2012) 15:1–15:62.

[2] B. Babcock, S. Babu,M. Datar, R.Motwani, J.Widom,Models and issues in data
stream systems, in: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’02, ACM, New
York, NY, USA, 2002, pp. 1–16.
[3] D.C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[4] O. Etzion, P. Niblett, Event Processing in Action, first ed., Manning
Publications Co., Greenwich, CT, USA, 2010.

[5] OWL Working Group, OWL 2 web ontology language document overview,
2009. URL: http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[6] E. Della Valle, S. Ceri, F. van Harmelen, D. Fensel, It’s a streaming world!
reasoning upon rapidly changing information, IEEE Intell. Syst. 24 (6) (2009)
83–89.

[7] E. Della Valle, S. Ceri, D. Barbieri, D. Braga, A. Campi, A first step towards
stream reasoning, in: J. Domingue, D. Fensel, P. Traverso (Eds.), Future
Internet—FIS 2008, in: Lecture Notes in Computer Science, vol. 5468,
Springer, Berlin, Heidelberg, 2009, pp. 72–81.

[8] A. Sheth, C. Henson, S. Sahoo, Semantic sensor web, IEEE Internet Comput. 12
(4) (2008) 78–83.

[9] Time ontology in OWL, Time ontology in OWL, 2012. URL http://www.w3.
org/TR/owl-time/.

[10] M. Compton, P.M. Barnaghi, L. Bermudez, R. Garcia-Castro, Ó Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C.A. Henson, A. Herzog, V.A. Huang, K. Janowicz,
W.D. Kelsey, D.L. Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K.R.
Page, A. Passant, A.P. Sheth, K. Taylor, The ssn ontology of the W3C semantic
sensor network incubator group, J. Web Semant. 17 (2012) 25–32.

[11] L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput. Netw.
54 (15) (2010) 2787–2805.

[12] F. Lecue, S. Kotoulas, P.M. Aonghusa, Capturing the pulse of cities:
opportunity and research challenges for robust stream data reasoning, in:
AAAI Workshops, 2012.

[13] S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lécué, A. Corradi, Real-
time Urban monitoring in dublin using semantic and stream technologies,
in: H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J. Parreira, L. Aroyo,
N. Noy, C.Welty, K. Janowicz (Eds.), The SemanticWeb ISWC2013, in: Lecture
Notes in Computer Science, vol. 8219, Springer, Berlin, Heidelberg, 2013,
pp. 178–194. URL: http://dx.doi.org/10.1007/978-3-642-41338-4_12.

[14] A.Wagner, S. Speiser, A. Harth, Semanticweb technologies for a smart energy
grid: Requirements and challenges, in: Proceedings of 9th International
Semantic Web Conference, ISWC2010, 2010, pp. 33–37.

[15] R. Shojanoori, R. Juric, Semantic remote patient monitoring system, in:
Telemedicine and e-Health, 2013.

[16] F. Paganelli, D. Giuli, An ontology-based contextmodel for home healthmon-
itoring and alerting in chronic patient care networks, in: 21st International
Conference on Advanced Information Networking and Applications Work-
shops, 2007, AINAW ’07, vol. 2. 2007, pp. 838–845.

[17] P. Groth, A. Gibson, J. Velterop, The anatomy of a nanopublication, Inf. Serv.
Use 30 (1–2) (2010) 51–56.

[18] B. Mons, J. Velterop, Nano-Publication in the e-Science Era, 2009.
[19] A.J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E.L. Willighagen,

C.T. Evelo, N. Blomberg, G. Ecker, C. Goble, B. Mons, Open phacts: semantic
interoperability for drug discovery, Drug Discovery Today 17 (2122)
(2012) 1188–1198. URL: http://www.sciencedirect.com/science/article/pii/
S1359644612001936.

[20] A.J. Gray, P. Groth, A. Loizou, S. Askjaer, C. Brenninkmeijer, K. Burger,
C. Chichester, C.T. Evelo, C. Goble, L. Harland, et al. Applying linked data
approaches to pharmacology: architectural decisions and implementation,
Semantic Web, 2012.

[21] W. van Hage, V. Malais, G. de Vries, G. Schreiber, M. van Someren, Abstracting
and reasoning over ship trajectories and web data with the simple event
model (sem), Multimedia Tools Appl. 57 (2012) 175–197.

[22] P. Mika, Flink: semantic web technology for the extraction and analysis
of social networks, Web Semant. Sci. Serv. Agents World Wide Web 3
(23) (2005) 211–223. URL: http://www.sciencedirect.com/science/article/
pii/S1570826805000089.

[23] G. Erétéo, M. Buffa, F. Gandon, O. Corby, Analysis of a real online social
network using semantic web frameworks, in: The SemanticWeb-ISWC 2009,
Springer, 2009, pp. 180–195.

[24] M. Balduini, E. Della Valle, D. DellAglio, M. Tsytsarau, T. Palpanas,
C. Confalonieri, Social listening of city scale events using the streaming linked
data framework, in: H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann,
J. Parreira, L. Aroyo, N. Noy, C. Welty, K. Janowicz (Eds.), The Semantic
Web ISWC 2013, in: Lecture Notes in Computer Science, vol. 8219,
Springer, Berlin, Heidelberg, 2013, pp. 1–16. URL: http://dx.doi.org/10.1007/
978-3-642-41338-4_1.

[25] R. Stephens, A survey of stream processing, Acta Inf. 34 (7) (1997) 491–541.
[26] M. Stonebraker, U. Çetintemel, S.B. Zdonik, The 8 requirements of real-time

stream processing, SIGMOD Rec. 34 (4) (2005) 42–47.
[27] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, S. Zdonik, Aurora: a data stream management
system, in: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, ACM, New York, NY, USA, 2003, p. 666.

[28] D.J. Abadi, Y. Ahmad,M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A.S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S.B. Zdonik,
The design of the borealis stream processing engine, in: Second Biennial
Conference on Innovative Data Systems Research, CIDR 2005, ACM, Asilomar,
CA, USA, 2005, pp. 277–289.

http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref1
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref2
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref3
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref4
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref6
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref7
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref8
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-time/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref10
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref11
http://dx.doi.org/10.1007/978-3-642-41338-4_12
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref17
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://www.sciencedirect.com/science/article/pii/S1359644612001936
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref21
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://www.sciencedirect.com/science/article/pii/S1570826805000089
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref23
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://dx.doi.org/10.1007/978-3-642-41338-4_1
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref25
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref26
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref27
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref28

42 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
[29] Y. Bai, H. Thakkar, H. Wang, C. Luo, C. Zaniolo, A data stream language
and system designed for power and extensibility, in: CIKM ’06: Proceedings
of the 15th ACM International Conference on Information and Knowledge
Management, ACM, New York, NY, USA, 2006, pp. 337–346.

[30] C. Cranor, T. Johnson, O. Spataschek, V. Shkapenyuk, Gigascope: a stream
database for network applications, in: SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, ACM, New
York, NY, USA, 2003, pp. 647–651.

[31] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, J. Widom, Stream: the stanford stream data manager, IEEE
Data Eng. Bull. 26 (2003).

[32] A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic
foundations and query execution, VLDB J. 15 (2) (2006) 121–142.

[33] G. Cugola, A. Margara, Tesla: a formally defined event specification language,
in: Proceedings of the Fourth ACM International Conference on Distributed
Event-Based Systems, DEBS ’10, ACM, New York, NY, USA, 2010, pp. 50–61.

[34] G. Cugola, A. Margara, Complex event processing with T-Rex, J. Syst. Softw.
85 (8) (2012) 1709–1728.

[35] G. Li, H.-A. Jacobsen, Composite subscriptions in content-based pub-
lish/subscribe systems, in: Middleware ’05: Proceedings of the 6th
ACM/IFIP/USENIX International Conference on Middleware, Springer-Verlag
New York, Inc., 2005, pp. 249–269.

[36] N.P. Schultz-Møller, M. Migliavacca, P. Pietzuch, Distributed complex
event processing with query rewriting, in: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, DEBS ’09,
ACM, New York, NY, USA, 2009, pp. 4:1–4:12.

[37] A. Adi, O. Etzion, Amit—the situationmanager, VLDB J. 13 (2) (2004) 177–203.
[38] D.C. Luckham, J. Vera, An event-based architecture definition language, IEEE

Trans. Softw. Eng. 21 (1995) 717–734.
[39] E. Wu, Y. Diao, S. Rizvi, High-performance complex event processing over

streams, in: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06, ACM, New York, NY, USA, 2006,
pp. 407–418.

[40] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman, Efficient pattern matching
over event streams, in: SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ACM, New York, NY, USA,
2008, pp. 147–160.

[41] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald,
M. Thatte, W. White, Cayuga: a high-performance event processing engine,
in: SIGMOD, ACM, New York, NY, USA, 2007, pp. 1100–1102.

[42] RDF, W3c recommendation: Rdf primer, 2012. URL: http://www.w3.org/TR/
rdf-primer/.

[43] P. Hayes (Ed.) RDF Semantics. W3C Recommendation, 2004.
[44] H.J. ter Horst, Completeness, decidability and complexity of entailment for

RDF schema and a semantic extension involving the OWL vocabulary 3, (2–3)
2005, pp. 79–115.

[45] OWL Working Group, OWL 2 web ontology language profiles, 2009. URL:
http://www.w3.org/TR/2009/PR-owl2-profiles-20090922/.

[46] J. Urbani, S. Kotoulas, J. Maassen, F.V. Harmelen, H. Bal, Webpie: a web-scale
parallel inference engine usingmapreduce,Web Sem. Sci. Serv. AgentsWorld
Wide Web 10 (0) (2012) 59–75.

[47] J. Weaver, J. Hendler, Parallel materialization of the finite RDFS closure
for hundreds of millions of triples, in: A. Bernstein, D. Karger, T. Heath,
L. Feigenbaum, D. Maynard, E. Motta, K. Thirunarayan (Eds.), The Semantic
Web—ISWC 2009, in: Lecture Notes in Computer Science, vol. 5823, Springer,
Berlin, Heidelberg, 2009, pp. 682–697.

[48] N. Heino, J.Z. Pan, Rdfs reasoning on massively parallel hardware, in:
International Semantic Web Conference, vol. 1, 2012, pp. 133–148.

[49] S. Das, E.I. Chong, Z. Wu, M. Annamalai, J. Srinivasan, A scalable scheme for
bulk loading large RDF graphs into oracle, in: ICDE, 2008, pp. 1297–1306.

[50] V. Kolovski, Z.Wu, G. Eadon, Optimizing enterprise-scale OWL 2 RL reasoning
in a relational database system, in: P. Patel-Schneider, Y. Pan, P. Hitzler,
P. Mika, L. Zhang, J. Pan, I. Horrocks, B. Glimm (Eds.), The Semantic Web
ISWC2010, in: LectureNotes in Computer Science, vol. 6496, Springer, Berlin,
Heidelberg, 2010, pp. 436–452.

[51] SPARQL, W3c recommendation: SPARQL query language for RDF, 2012. URL
http://www.w3.org/TR/rdf-sparql-query/.

[52] J. Widom, S. Ceri, Active Database Systems: Tiggers and Rules for Advanced
Database Processing, Morgan Kaufmann Pub, 1996.

[53] I. Motakis, C. Zaniolo, Composite temporal events in active database rules:
a logic-oriented approach, in: Deductive and Object-Oriented Databases,
Springer, 1995, pp. 19–37.

[54] R. Snodgrass, I. Ahn, Temporal databases, Computer 19 (9) (1986) 35–42.
[55] G. Lausen, B. Ludäscher, W. May, On active deductive databases: the statelog

approach, in: Transactions and Change in Logic Databases, Springer, 1998,
pp. 69–106.

[56] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, R. Studer, A
rule-based language for complex event processing and reasoning, in: Web
Reasoning and Rule Systems, Springer, 2010, pp. 42–57.

[57] F. Bry, M. Eckert, Rule-based composite event queries: the language
xchangeeq and its semantics, in:Web Reasoning and Rule Systems, Springer,
2007, pp. 16–30.

[58] R. Ramakrishnan, J.D. Ullman, A survey of deductive database systems, J. Log.
Program. 23 (2) (1995) 125–149.

[59] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley,
1995, Available online at http://webdam.inria.fr/Alice/.
[60] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, C-SPARQL:
SPARQL for continuous querying, in: Proceedings of the 18th International
Conference onWorld WideWeb, WWW ’09, ACM, New York, NY, USA, 2009,
pp. 1061–1062.

[61] D.F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execution environment
for C-SPARQL queries, in: Proceedings of the 13th International Conference
on ExtendingDatabase Technology, EDBT ’10, ACM, NewYork, NY, USA, 2010,
pp. 441–452.

[62] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, Incremental
reasoning on streams and rich background knowledge, in: L. Aroyo,
G. Antoniou, E. Hyvnen, A. ten Teije, H. Stuckenschmidt, L. Cabral,
T. Tudorache (Eds.), The Semantic Web: Research and Applications,
in: LectureNotes in Computer Science, vol. 6088, Springer, Berlin, Heidelberg,
2010, pp. 1–15.

[63] D. Dell’Aglio, E. Della Valle, Ch. Incremental reasoning on linked data streams,
in: Linked Data Management, in: Emerging Directions in Database Systems
and Applications, CRC Press, 2014.

[64] Y. Ren, J. Pan, Y. Zhao, Towards scalable reasoning on ontology streams via
syntactic approximation, in: Proc. of IWOD, 2010.

[65] Y. Ren, J.Z. Pan, Optimising ontology stream reasoning with truth mainte-
nance system, in: Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, ACM, New York, NY, USA, 2011,
pp. 831–836.

[66] D. Barbieri, D. Braga, S. Ceri, E.D. Valle, Y. Huang, V. Tresp, A. Rettinger,
H. Wermser, Deductive and inductive stream reasoning for semantic social
media analytics, IEEE Intell. Syst. 25 (6) (2010) 32–41.

[67] J. Hoeksema, S. Kotoulas, High-performance distributed stream reasoning
using s4, in: Ordring Workshop at ISWC, 2011.

[68] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira, M. Hauswirth, A native and
adaptive approach for unified processing of linked streams and linked data,
in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy,
E. Blomqvist (Eds.), The Semantic Web—ISWC 2011, in: Lecture Notes in
Computer Science, vol. 7031, Springer, Berlin, Heidelberg, 2011, pp. 370–388.

[69] A. Bolles, M. Grawunder, J. Jacobi, Streaming SPARQL—extending SPARQL
to process data streams, in: S. Bechhofer, M. Hauswirth, J. Hoffmann,
M. Koubarakis (Eds.), The Semantic Web: Research and Applications,
in: LectureNotes in Computer Science, vol. 5021, Springer, Berlin, Heidelberg,
2008, pp. 448–462.

[70] O. Walavalkar, A. Joshi, T. Finin, Y. Yesha, Streaming knowledge bases, in: In
InternationalWorkshop on Scalable SemanticWebKnowledge Base Systems,
2008.

[71] S. Komazec, D. Cerri, D. Fensel, Sparkwave: continuous schema-enhanced
pattern matching over RDF data streams, in: Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems, DEBS ’12,
ACM, New York, NY, USA, 2012, pp. 58–68.

[72] D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, EP-SPARQL: a unified language
for event processing and stream reasoning, in: Proceedings of the 20th
International Conference on World Wide Web, ACM, New York, NY, USA,
2011, pp. 635–644.

[73] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, T. Schaub, Stream
reasoningwith answer set programming: preliminary report, in: Proceedings
of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning, KR 2012, AAAI Press, 2012.

[74] A. Rodrıguez, R. McGrath, Y. Liu, J. Myers, I. Urbana-Champaign, Semantic
management of streaming data, Proc. Semant. Sensor Netw. 80 (2009).

[75] C. Gutierrez, C.A. Hurtado, A. Vaisman, Introducing time into RDF, IEEE Trans.
Knowl. Data Eng. 19 (2) (2007) 207–218.

[76] T. Scharrenbach, J. Urbani, A. Margara, E. Valle, A. Bernstein, Seven
commandments for benchmarking semantic flow processing systems,
in: P. Cimiano, O. Corcho, V. Presutti, L. Hollink, S. Rudolph (Eds.), The
Semantic Web: Semantics and Big Data, in: Lecture Notes in Computer
Science, vol. 7882, Springer, Berlin, Heidelberg, 2013, pp. 305–319.
URL: http://dx.doi.org/10.1007/978-3-642-38288-8_21.

[77] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, M. Fink, Linked
stream data processing engines: facts and figures, in: The Semantic Web—
ISWC 2012, Springer, 2012, pp. 300–312.

[78] D. Dell’Aglio, M. Balduini, E. Della Valle, On the need to include functional
testing in RDF stream engine benchmarks, in: 1st International Workhop On
Benchmarking RDF Systems, BeRSys 2013, 2013.

[79] D. DellAglio, J.-P. Calbimonte, M. Balduini, O. Corcho, E. Della Valle, On
correctness in RDF stream processor benchmarking, in: H. Alani, L. Kagal,
A. Fokoue, P. Groth, C. Biemann, J. Parreira, L. Aroyo, N. Noy, C. Welty,
K. Janowicz (Eds.), The Semantic Web ISWC 2013, in: Lecture Notes in
Computer Science, vol. 8219, Springer, Berlin, Heidelberg, 2013, pp. 326–342.
URL: http://dx.doi.org/10.1007/978-3-642-41338-4_21.

[80] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, C-SPARQL: a
continuous query language for RDF data streams, Int. J. Semant. Comput. 04
(01) (2010) 3–25.

[81] J. Broekstra, A. Kampman, F. vanHarmelen, Sesame: a generic architecture for
storing and querying RDF and RDF schema, in: I. Horrocks, J. Hendler (Eds.),
The Semantic Web—ISWC 2002, in: Lecture Notes in Computer Science, vol.
2342, Springer, Berlin, Heidelberg, 2002, pp. 54–68.

[82] E. Della Valle, I. Celino, D. Dell’Aglio, K. Kim, Z. Huang, V. Tresp,
W. Hauptmann, Y. Huang, R. Grothmann, Urban Computing: a challenging
problem for semantic technologies, in:Workshop onNew forms of Reasoning
for the Semantic Web: Scalable, Tolerant and Dynamic, NeFoRS 2008, vol. 12
2008.

http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref29
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref30
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref31
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref32
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref33
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref34
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref35
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref36
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref37
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref38
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref39
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref40
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref41
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2009/PR-owl2-profiles-20090922/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref46
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref47
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref50
http://www.w3.org/TR/rdf-sparql-query/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref52
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref53
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref54
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref55
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref56
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref57
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref58
http://webdam.inria.fr/Alice/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref60
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref61
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref62
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref63
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref65
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref66
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref68
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref69
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref71
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref72
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref73
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref74
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref75
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://dx.doi.org/10.1007/978-3-642-38288-8_21
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref77
http://dx.doi.org/10.1007/978-3-642-41338-4_21
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref80
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref81

A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44 43
[83] R. Volz, S. Staab, B. Motik, Incrementally maintaining materializations of
ontologies stored in logic databases, in: S. Spaccapietra, E. Bertino, S. Jajodia,
R. King, D.i. McLeod, M. Orlowska, L. Strous (Eds.), Journal on Data Semantics
II, in: Lecture Notes in Computer Science, vol. 3360, Springer, Berlin,
Heidelberg, 2005, pp. 1–34.

[84] B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, History matters: incre-
mental ontology reasoning using modules, in: K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, P. Cudr-Mauroux (Eds.), The SemanticWeb, in: Lecture Notes in
Computer Science, vol. 4825, Springer, Berlin, Heidelberg, 2007, pp. 183–196.
URL: http://dx.doi.org/10.1007/978-3-540-76298-0_14.

[85] LehighUniversity Benchmark (LUBM), LehighUniversity benchmark (LUBM),
2012. URL: http://swat.cse.lehigh.edu/projects/lubm/.

[86] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, Continuous
queries and real-time analysis of social semantic data with C-SPARQL,
in: Proceedings of Social Data on theWebWorkshop at the 8th International
Semantic Web Conference, vol. 10, 2009.

[87] C. Bizer, A. Schultz, The Berlin SPARQL benchmark, Int. J. Semant. Web Inf.
Syst. (IJSWIS) 5 (2) (2009) 1–24.

[88] C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so far, Int. J. Semant.
Web Inf. Syst. (IJSWIS) 5 (3) (2009) 1–22.

[89] J. Sequeda, O. Corcho, Linked Stream Data: A Position Paper, 2009.
[90] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, Sp2bench: a SPARQL

performance benchmark, in: IEEE 25th International Conference on Data
Engineering, ICDE’09, IEEE, 2009, pp. 222–233.

[91] D. Le-Phuoc, H. Nguyen Mau Quoc, C. Le Van, M. Hauswirth, Elastic and
scalable processing of linked stream data in the cloud, in: H. Alani, L. Kagal,
A. Fokoue, P. Groth, C. Biemann, J. Parreira, L. Aroyo, N. Noy, C. Welty,
K. Janowicz (Eds.), The Semantic Web ISWC 2013, in: Lecture Notes in
Computer Science, vol. 8218, Springer, Berlin, Heidelberg, 2013, pp. 280–297.
URL: http://dx.doi.org/10.1007/978-3-642-41335-3_18.

[92] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,
W. Hong, S. Krishnamurthy, S.R. Madden, F. Reiss, M.A. Shah, Telegraphcq:
continuous dataflow processing, in: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, ACM, New
York, NY, USA, 2003, p. 668.

[93] C.L. Forgy, Rete: a fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19 (1) (1982) 17–37.

[94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim, Composite events for
active databases: semantics, contexts and detection, in: Proceedings of the
20th International Conference on Very Large Data Bases, VLDB ’94, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1994, pp. 606–617.

[95] D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic, Real-time complex event
recognition and reasoning—a logic programming approach, Appl. Artif. Intell.
26 (1–2) (2012) 6–57.

[96] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, R. Studer, Etalis:
rule-based reasoning in event processing, in: S. Helmer, A. Poulovassilis,
F. Xhafa (Eds.), Reasoning in Event-Based Distributed Systems, in: Studies
in Computational Intelligence, vol. 347, Springer, Berlin, Heidelberg, 2011,
pp. 99–124.

[97] Esper, 2013. http://esper.codehaus.org.
[98] Alert, Alert project, 2012. URL http://www.alert-project.eu/.
[99] A. Mileo, A. Abdelrahman, S. Policarpio, M. Hauswirth, Streamrule: a

nonmonotonic stream reasoning system for the semantic web, in: Web
Reasoning and Rule Systems, Springer, 2013, pp. 247–252.

[100] NEXRAD Radar, Nexrad radar, 2013. URL: http://en.wikipedia.org/wiki/
NEXRAD.

[101] B. Motik, Representing and querying validity time in RDF and OWL: a logic-
based approach, J. Web Sem. 12 (2012) 3–21.

[102] M. Perry, P. Jain, A.P. Sheth, Sparql-st: extending SPARQL to support
spatiotemporal queries, in: N. Ashish, A.P. Sheth (Eds.), Geospatial Semantics
and the Semantic Web, in: Semantic Web and Beyond, vol. 12, Springer, US,
2011, pp. 61–86.

[103] F. Grandi, T-SPARQL: a TSQL2-like temporal query language for RDF, in:
International Workshop on on Querying Graph Structured Data, 2010,
pp. 21–30.

[104] M. Koubarakis, K. Kyzirakos, Modeling and querying metadata in the
semantic sensor web: the model STRDF and the query language STSPARQL,
in: L. Aroyo, G. Antoniou, E. Hyvnen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, T. Tudorache (Eds.), The Semantic Web: Research and Applications,
in: LectureNotes in Computer Science, vol. 6088, Springer, Berlin, Heidelberg,
2010, pp. 425–439.

[105] J. Tappolet, A. Bernstein, Applied temporal RDF: efficient temporal querying
of RDF data with SPARQL, in: L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano,
T. Heath, E. Hyvnen, R. Mizoguchi, E. Oren, M. Sabou, E. Simperl (Eds.), The
Semantic Web: Research and Applications, in: Lecture Notes in Computer
Science, vol. 5554, Springer, Berlin, Heidelberg, 2009, pp. 308–322.

[106] C. Hurtado, A. Vaisman, Reasoning with temporal constraints in RDF,
in: J. Alferes, J. Bailey, W. May, U. Schwertel (Eds.), Principles and Practice of
Semantic Web Reasoning, in: Lecture Notes in Computer Science, vol. 4187,
Springer, Berlin, Heidelberg, 2006, pp. 164–178.

[107] J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum, Yago2: a spatially and
temporally enhanced knowledge base from wikipedia, Artif. Intell. (2012).

[108] H. Stuckenschmidt, S. Ceri, E.D. Valle, F. van Harmelen, Towards expressive
stream reasoning, in: K. Aberer, A. Gal, M. Hauswirth, K.-U. Sattler, A.P. Sheth
(Eds.), Semantic Challenges in Sensor Networks, in: Dagstuhl Seminar
Proceedings, vol. 10042, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, Dagstuhl, Germany, 2010.
[109] G. Unel, D. Roman, Stream reasoning: a survey and further research
directions, in: T. Andreasen, R. Yager, H. Bulskov, H. Christiansen, H. Larsen
(Eds.), Flexible Query Answering Systems, in: Lecture Notes in Computer
Science, vol. 5822, Springer, Berlin, Heidelberg, 2009, pp. 653–662.

[110] Y. Zhang, P.M. Duc, O. Corcho, J.-P. Calbimonte, Srbench: a streaming
RDF/SPARQL benchmark, in: The SemanticWeb—ISWC 2012, Springer, 2012,
pp. 641–657.

[111] E. Della Valle, S. Schlobach, M. Krötzsch, A. Bozzon, S. Ceri, I. Horrocks, Order
matters! Harnessing a world of orderings for reasoning over massive data,
Semant. Web J. 4 (2) (2012) 219–231.

[112] J. Urbani, S. Kotoulas, E. Oren, F. vanHarmelen, Scalable distributed reasoning
using mapreduce, in: A. Bernstein, D. Karger, T. Heath, L. Feigenbaum,
D.Maynard, E.Motta, K. Thirunarayan (Eds.), The SemanticWeb—ISWC 2009,
in: LectureNotes in Computer Science, vol. 5823, Springer, Berlin, Heidelberg,
2009, pp. 634–649.

[113] J. Urbani, S. Kotoulas, J. Maassen, F. vanHarmelen, H. Bal, OWL reasoningwith
webpie: calculating the closure of 100 billion triples, in: L. Aroyo, G. Antoniou,
E. Hyvnen, A. ten Teije, H. Stuckenschmidt, L. Cabral, T. Tudorache (Eds.), The
Semantic Web: Research and Applications, in: Lecture Notes in Computer
Science, vol. 6088, Springer, Berlin, Heidelberg, 2010, pp. 213–227.

[114] M. Ali, An introduction tomicrosoft SQL server streaminsight, in: Proceedings
of the 1st International Conference and Exhibition on Computing for
Geospatial Research & Application, ACM, 2010, p. 66.

[115] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM
26 (11) (1983) 832–843.

[116] W. White, M. Riedewald, J. Gehrke, A. Demers, What is ‘‘next’’ in event
processing? in: PODS, ACM, New York, NY, USA, 2007, pp. 263–272.

[117] U. Srivastava, J. Widom, Flexible time management in data stream
systems, in: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, ACM, 2004, pp. 263–274.

[118] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[119] W3C RSP, W3c RDF stream processing (RSP) community group, 2013. URL:
http://www.w3.org/community/rsp/.

[120] N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, N. Tatbul, Dejavu: declarative
pattern matching over live and archived streams of events, in: Proceedings
of the 2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’09, ACM, New York, NY, USA, 2009, pp. 1023–1026.

[121] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, J.M. Hellerstein, Enabling real-
time querying of live and historical stream data, in: Proceedings of the 19th
International Conference on Scientific and Statistical Database Management,
IEEE Computer Society, Washington, DC, USA, 2007, p. 28.

[122] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Compressing historical
information in sensor networks, in: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, ACM, New
York, NY, USA, 2004, pp. 527–538.

[123] G. Cugola, A. Margara, M. Matteucci, G. Tamburrelli, Introducing uncertainty
in complex event processing: model, implementation, and validation,
Comput. J. (2012) submitted for publication.

[124] T.J. Green, V. Tannen, Models for incomplete and probabilistic information,
IEEE Data Eng. Bull. 29 (2006).

[125] S. Wasserkrug, A. Gal, O. Etzion, Y. Turchin, Efficient processing of uncertain
events in rule-based systems, IEEE Trans. Knowl. Data Eng. 24 (1) (2012)
45–58.

[126] C. Ré, J. Letchner, M. Balazinksa, D. Suciu, Event queries on correlated
probabilistic streams, in: Proceedings of the 2008ACMSIGMOD International
Conference on Management of Data, SIGMOD ’08, ACM, New York, NY, USA,
2008, pp. 715–728.

[127] S. Wasserkrug, A. Gal, O. Etzion, Y. Turchin, Complex event processing over
uncertain data, in: Proceedings of the Second International Conference on
Distributed Event-Based Systems, DEBS ’08, ACM, New York, NY, USA, 2008,
pp. 253–264.

[128] Y. Diao, B. Li, A. Liu, L. Peng, C. Sutton, T.T.L. Tran, M. Zink, Capturing
data uncertainty in high-volume stream processing, in: CIDR 2009, Fourth
Biennial Conference on InnovativeData SystemsResearch, Asilomar, CA, USA,
January 4–7, 2009, Online Proceedings.

[129] A. Nikolov, V. Uren, E. Motta, A. Roeck, Integration of semantically annotated
data by the knofuss architecture, in: A. Gangemi, J. Euzenat (Eds.), Knowledge
Engineering: Practice and Patterns, in: Lecture Notes in Computer Science,
vol. 5268, Springer, Berlin, Heidelberg, 2008, pp. 265–274. URL: http://dx.doi.
org/10.1007/978-3-540-87696-0_24.

[130] M. Mendler, S. Scheele, Towards constructive DL for abstraction and
refinement, J. Automat. Reason. 44 (2010) 207–243.

[131] P. Doherty, J. Gustafsson, L. Karlsson, J. Kvarnström, Tal: temporal action
logics language specification and tutorial, Comput. Inf. Sci. 3 (015) (1998).

[132] J.J. Elgot-Drapkin, Step-logic: reasoning situated in time, Ph.D. thesis, College
Park, MD, USA, aAI8912283, 1988.

[133] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, D. Perlis, Active Logics: A
Unified Formal Approach to Episodic Reasoning, 1999.

[134] R. Haenni, Unifying logical and probabilistic reasoning, in: Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, Springer, 2005,
pp. 788–799.

[135] Y.E. Ioannidis, Query optimization, ACM Comput. Surv. 28 (1) (1996)
121–123.

[136] J. Callan, Distributed information retrieval, in: W. Croft (Ed.), Advances in
Information Retrieval, in: The Information Retrieval Series, vol. 7, Springer,
US, 2002, pp. 127–150.

[137] R. Buyya, M. Pathan, A. Vakali, Content Delivery Networks, Vol. 9, Springer,
2008.

http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref83
http://dx.doi.org/10.1007/978-3-540-76298-0_14
http://swat.cse.lehigh.edu/projects/lubm/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref86
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref87
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref88
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref90
http://dx.doi.org/10.1007/978-3-642-41335-3_18
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref92
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref93
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref94
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref95
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref96
http://esper.codehaus.org
http://www.alert-project.eu/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref99
http://en.wikipedia.org/wiki/NEXRAD
http://en.wikipedia.org/wiki/NEXRAD
http://en.wikipedia.org/wiki/NEXRAD
http://en.wikipedia.org/wiki/NEXRAD
http://en.wikipedia.org/wiki/NEXRAD
http://en.wikipedia.org/wiki/NEXRAD
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref101
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref102
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref104
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref105
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref106
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref107
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref108
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref109
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref110
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref111
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref112
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref113
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref114
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref115
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref116
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref117
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref118
http://www.w3.org/community/rsp/
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref120
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref121
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref122
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref123
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref124
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref125
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref126
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref127
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://dx.doi.org/10.1007/978-3-540-87696-0_24
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref130
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref131
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref134
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref135
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref136
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref137

44 A. Margara et al. / Web Semantics: Science, Services and Agents on the World Wide Web 25 (2014) 24–44
[138] A. Carzaniga, A. Wolf, Content-based networking: a new communication
infrastructure, in: Developing an Infrastructure for Mobile and Wireless
Systems, 2002, pp. 59–68.

[139] A. Hogan, A. Harth, A. Polleres, Saor: authoritative reasoning for the web,
in: Proceedings of the 3rd Asian Semantic Web Conference on the Semantic
Web, ASWC ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 76–90.

[140] Y. Ren, J.Z. Pan, K. Lee, Parallel ABox reasoning of EL ontologies, in: Proc. of the
First Joint International Conference of Semantic Technology, JIST 2011, 2011.

[141] M. Salvadores, G. Correndo, S. Harris, N. Gibbins, N. Shadbolt, The design
and implementation of minimal RDFS backward reasoning in 4store,
in: G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De
Leenheer, J. Pan (Eds.), The Semanic Web: Research and Applications,
in: LectureNotes in Computer Science, vol. 6644, Springer, Berlin, Heidelberg,
2011, pp. 139–153.

[142] S. Kotoulas, E. Oren, F. van Harmelen, Mind the data skew: distributed
inferencing by speeddating in elastic regions, in: Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, ACM, New York,
NY, USA, 2010, pp. 531–540.

[143] R. Soma, V.K. Prasanna, Parallel inferencing for OWL knowledge bases,
in: Proceedings of the 2008 37th International Conference on Parallel
Processing, ICPP ’08, IEEE Computer Society, Washington, DC, USA, 2008,
pp. 75–82.

[144] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M. Hellerstein, R.C. Sears,
Boom: data-centric programming in the datacenter, EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2009-113, 2009.

[145] A. Gupta, I.S. Mumick, Maintenance of materialized views: problems,
techniques, and applications, Data Eng. Bull. 18 (2) (1995) 3–18.

[146] A. Gupta, I.S. Mumick, V.S. Subrahmanian, Maintaining views incrementally,
in: ACM SIGMOD Record, vol. 22, ACM, 1993, pp. 157–166.

[147] J.V. Harrison, S. Dietrich, Maintenance of materialized views in a deductive
database: an update propagation approach, in: Workshop on Deductive
Databases, JICSLP, 1992, pp. 56–65.

[148] J. Urbani, A. Margara, C. Jacobs, F. van Harmelen, H. Bal, DynamiTE: parallel
materialization of dynamic RDF data, in: The Semantic Web—ISWC 2013,
2013.

[149] P. Hitzler, D. Vrandei, Resolution-based approximate reasoning for OWL DL,
in: Y. Gil, E. Motta, V. Benjamins, M. Musen (Eds.), The Semantic Web ISWC
2005, in: Lecture Notes in Computer Science, vol. 3729, Springer, Berlin,
Heidelberg, 2005, pp. 383–397.

[150] T.K. Sellis, Multiple-query optimization, ACM Trans. Database Syst. 13 (1)
(1988) 23–52.

[151] G. Cugola, A. Margara, Low latency complex event processing on parallel
hardware, J. Parallel Distrib. Comput. 72 (2) (2012) 205–218.

[152] L. Woods, J. Teubner, G. Alonso, Complex event detection at wire speed with
FPGAs, Proc. VLDB Endow. 3 (1–2) (2010) 660–669.

[153] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, H.-A. Jacobsen, Efficient event
processing through reconfigurable hardware for algorithmic trading, Proc.
VLDB Endow. 3 (1–2) (2010) 1525–1528.

[154] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, Load
shedding in a data stream manager, in: VLDB ’2003: Proceedings of the 29th
International Conference on Very Large Data Bases, VLDB Endowment, 2003,
pp. 309–320.

[155] B. Babcock, M. Datar, R. Motwani, Load shedding for aggregation queries over
data streams, in: ICDE ’04: Proceedings of the 20th International Conference
on Data Engineering, IEEE Computer Society, Washington, DC, USA, 2004,
p. 350.

[156] U. Srivastava, J. Widom, Memory-limited execution of windowed stream
joins, in: VLDB ’04: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, VLDB Endowment, 2004, pp. 324–335.

[157] S. Chandrasekaran, M. Franklin, Remembrance of streams past: overload-
sensitive management of archived streams, in: VLDB ’04: Proceedings of
the Thirtieth International Conference on Very Large Data Bases, VLDB
Endowment, 2004, pp. 348–359.
[158] N. Tatbul, S. Zdonik, Window-aware load shedding for aggregation queries
over data streams, in: VLDB ’06: Proceedings of the 32nd International
Conference on Very Large Data Bases, VLDB Endowment, 2006, pp. 799–810.

[159] Y. Chi, H. Wang, P.S. Yu, Loadstar: load shedding in data stream mining,
in: VLDB ’05: Proceedings of the 31st International Conference on Very Large
Data Bases, VLDB Endowment, 2005, pp. 1302–1305.

[160] S. Schneider, H. Andrade, B. Gedik, A. Biem, K.-L. Wu, Elastic scaling of data
parallel operators in stream processing, in: IEEE International Symposium on
Parallel & Distributed Processing, IPDPS 2009, IEEE, 2009, pp. 1–12.

[161] B. Satzger, W. Hummer, P. Leitner, S. Dustdar, Esc: towards an elastic stream
computing platform for the cloud, in: 2011 IEEE International Conference on
Cloud Computing (CLOUD), IEEE, 2011, pp. 348–355.

[162] A. Ishii, T. Suzumura, Elastic stream computing with clouds, in: 2011
IEEE International Conference on Cloud Computing (CLOUD), IEEE, 2011,
pp. 195–202.

[163] D. Schneider, The microsecond market, IEEE Spectr. 49 (6) (2012) 66–81.
[164] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel,

Y. Xing, S.B. Zdonik, Scalable distributed stream processing, in: CIDR, 2003.
[165] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, M. Seltzer,

Network-aware operator placement for stream-processing systems, in: Pro-
ceedings of the 22nd International Conference on Data Engineering, ICDE ’06,
IEEE Computer Society, Washington, DC, USA, 2006, p. 49.

[166] M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load
management in federated distributed systems, in: NSDI’04: Proceedings
of the 1st Conference on Symposium on Networked Systems Design and
Implementation, USENIX Association, Berkeley, CA, USA, 2004, p. 15.

[167] Y. Ahmad, U. Çetintemel, Network-aware query processing for stream-
based applications, in: VLDB ’04: Proceedings of the Thirtieth International
Conference on Very Large Data Bases, VLDB Endowment, 2004, pp. 456–467.

[168] V. Kumar, B.F. Cooper, Z. Cai, G. Eisenhauer, K. Schwan, Resource-aware
distributed stream management using dynamic overlays, in: ICDCS ’05:
Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, IEEE Computer Society, Washington, DC, USA, 2005,
pp. 783–792.

[169] Y. Zhou, B.C. Ooi, K.-L. Tan, J. Wu, Efficient dynamic operator placement in a
locally distributed continuous query system, in: OTM Conferences (1), 2006,
pp. 54–71.

[170] L. Amini, N. Jain, A. Sehgal, J. Silber, O. Verscheure, Adaptive control of
extreme-scale stream processing systems, in: ICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systems, IEEE
Computer Society, Washington, DC, USA, 2006, p. 71.

[171] T. Repantis, X. Gu, V. Kalogeraki, Synergy: sharing-aware component
composition for distributed stream processing systems, in: Middleware
’06: Proceedings of the ACM/IFIP/USENIX 2006 International Conference
on Middleware, Springer-Verlag New York, Inc., New York, NY, USA, 2006,
pp. 322–341.

[172] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-L. Wu,
L. Fleischer, Soda: an optimizing scheduler for large-scale stream-based
distributed computer systems, in: Middleware ’08: Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, Springer-Verlag
New York, Inc., New York, NY, USA, 2008, pp. 306–325.

[173] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu, H. Andrade,
B. Gedik, Cola: optimizing stream processing applications via graph
partitioning, in: Middleware ’09: Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Springer-Verlag New York, Inc.,
New York, NY, USA, 2009, pp. 1–20.

[174] G. Cugola, A. Margara, Raced: an adaptive middleware for complex event
detection, in: ARM ’09: Proceedings of the 8th International Workshop on
Adaptive and ReflectiveMiddleware, ACM, NewYork, NY, USA, 2009, pp. 1–6.

[175] G. Cugola, A. Margara, Deployment strategies for distributed complex event
processing, Computing (2012) 1–28.

[176] M. Akdere, U. Çetintemel, N. Tatbul, Plan-based complex event detection
across distributed sources, Proc. VLDB Endow. 1 (1) (2008) 66–77.

http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref138
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref139
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref141
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref142
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref143
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref144
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref145
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref146
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref149
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref150
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref151
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref152
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref153
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref154
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref155
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref156
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref157
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref158
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref159
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref160
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref161
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref162
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref163
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref165
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref166
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref167
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref168
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref170
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref171
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref172
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref173
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref174
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref175
http://refhub.elsevier.com/S1570-8268(14)00006-7/sbref176

	Streaming the Web: Reasoning over dynamic data
	Introduction
	Motivations for stream reasoning
	Motivating scenarios
	Requirements of the use cases
	Analysis of requirements

	Survey: background
	Stream processing
	Data Stream Management Systems
	Complex Event Processing systems

	Reasoning
	Related work

	Survey: systems review
	Classification criteria
	Analysis of existing systems
	Semantic stream processing
	Semantic event processing
	Time-aware reasoning
	Surveys and visions

	Survey: discussion
	Next steps: a research agenda
	System models
	Modeling data
	Modeling operations

	System implementation
	Big data
	Dynamic data
	Distributed data

	Stream reasoning in action

	Conclusions
	Acknowledgment
	References

