Clinical reasoning in unimodal interventions in patients with non-specific neck pain in daily physiotherapy practice, a Delphi study

Francois Maissana,b,c,*, Jan Poola, Eric Stutterheima, Harriet Wittinka, Raymond Ostelob,c,d

a Research Group Lifestyle and Health, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
b Department of Health Sciences, VU University, Amsterdam, The Netherlands
c Amsterdam Movement Sciences, The Netherlands
d Department of Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands

1. Introduction

Neck pain is the fourth major cause of disability worldwide (Vos et al., 2012). The prevalence for neck pain in the world was 4.9% in 2010. The total disability burden from musculoskeletal disorders (MSK) measured as Years Lived with Disability (YLDs), was 21.3% of which 20.1% as a result of neck pain (March et al., 2014). Moreover, from 1990 to 2010, the disability burden attributable to MSK disorders increased by 46%. It is further expected that this burden will increase in the coming years (March et al., 2014). Therefore, effective treatment methods are necessary. There is no conclusive evidence regarding specific pathology in the majority of cases of acute or chronic neck pain, therefore, most cases are labeled as nonspecific neck pain or neck pain of unknown origin, without further subdivision into subgroups (Bogduk, 2000).

The most frequently used interventions for the treatment of neck pain are exercises, manipulative therapies, mobilization, massage, and multidisciplinary biopsychosocial rehabilitation (Pool et al., 2010). The evidence regarding the effectiveness of physiotherapy for neck pain is emerging (Bertozzi et al., 2013; Cheng and Huang, 2014; Gross et al., 2015; Monticone et al., 2015). However, sufficient evidence for application of a specific physiotherapy modality or therapy aiming at a specific patient subgroup is not available (Damgaard et al., 2013). The main recommendation in a review of physiotherapy interventions for patients with chronic neck pain was to identify relevant subgroups with matching treatments among patients with non-specific neck pain (Damgaard et al., 2013).

This matches the need in clinical practice for forms of "targeted treatment", or personalized treatment (Godman et al., 2013). Personalized treatment is tailoring therapy to specific subgroups in order to optimize effectiveness (Bates, 2010). There are indications in patients with non-specific lower back pain that subgrouping is effective and cost-effective medicine.
effective (Hill et al., 2011). There is a need to do the same for patients with non-specific neck pain.

In clinical practice, physiotherapists first determine if physiotherapy is indicated for a patient. If so, they then, as a part of the clinical reasoning process, subgroup their patients aiming to match their treatment to the signs and symptoms and results of the diagnostic tests. Another important part of the clinical reasoning process is the use of measurement instruments. Measurement instruments, such as Patient Reported Outcome Measures (PROMs) and physical tests are used to support and objectify the clinical reasoning process. Which measurement instruments are most appropriate when they are used and how they support the clinical reasoning process in patients with non-specific neck pain is unclear.

The Hypothesis-Oriented Algorithm for Clinicians II (HOAC II) (Rothstein et al., 2003) provides an algorithm to describe the clinical reasoning process, and it combines the diagnostic process (the ‘why’) with the therapeutic process (the ‘what’). This helps the physical therapist to decide “why” to do “what” as the “why” describes the specific diagnosed group within a population of patients with non-specific neck pain and the “what” describes the matched treatment. In addition, the HOAC II recommends matching outcome measures to the goals of treatment in order to evaluate the effectiveness of treatment. This way this linear clinical reasoning process consists of three sequential phases: the diagnostic, the therapeutic and, the evaluative phase. Following the HOAC II, sequential linear clinical reasoning in the present study is defined as the transition from signs and symptoms to diagnostic tests, from diagnostic tests to an intervention with matching treatment goal and evaluation based on outcome measurements related to the matched goals.

A recent review of the literature on the clinical reasoning process in research on patients with non-specific neck pain showed a lack of a complete clinical reasoning process with matching outcome measures. Only 11 (9%) out of 122 randomized controlled trials (RCT) described a complete clinical reasoning process whereby the diagnostic process (“the why”), i.e. other signs or symptoms or diagnostic tests in their inclusion criteria, could be linked to the therapeutic process (“the what”) (Maissan et al., 2018). A remarkable outcome was that 46% of the 122 included RCT’s described no impairment or activity limitation at all, with inclusion criteria limited to age and (duration of) pain. It can be questioned whether subjects having pain without any other signs/symptoms or positive diagnostic tests have an indication for physiotherapy treatment.

In conclusion, there is insufficient scientific evidence to form subgroups with matching, uni- or multimodal, interventions within patients with non-specific neck pain. Campbell et al. (Campbell et al., 2000) indicated that we first must understand working mechanisms of unimodal interventions before combining them into multimodal interventions. Therefore, it is sensible to first reach consensus on the various aspects of the clinical reasoning process when using unimodal interventions in patients with non-specific neck pain.

In this study we aimed to 1. describe expert opinion on the indication for physiotherapy when a patient’s only problem is pain without other signs or symptoms or positive diagnostic tests. We asked: “Suppose you have a patient with non-specific neck pain. Other than pain, there are no other signs or symptoms and no positive diagnostic test(s). There are no contra-indications for physiotherapy. Do you think there is an indication for physiotherapy?” Secondly, we wanted information on the type of measurement instruments being used for diagnostic and/or evaluative purposes. For this purpose, we offered a list with the most frequently used measurement instruments in patients with non-specific neck pain selected from the 122 RCTs included in the review of Maissan et al. (2018) We asked the experts which measurement instruments they use and whether they use additional measurement instruments. We also gathered information about the timing of the evaluative tests; i.e. only by start and finish of the treatment or also during the treatment. We made a distinction between patients with acute/sub-acute and chronic neck pain. In this way, we assessed whether the duration of the presence of pain influences the timing of measurements. Regarding the diagnostic process we assessed the extent to which physical impairments were pragmatically diagnosed (i.e. a test developed in their own practice without evidence of the psychometric properties) or with valid tests (with known psychometric properties). If a valid test was used, we asked them to specify the test.

The Delphi method is appropriate to reach consensus in a field where a lack of agreement or incomplete knowledge is evident (Giannarou and Zervas, 2014). The Delphi technique is a widely used and accepted method for achieving convergence of opinion concerning real-world knowledge solicited from experts within certain areas of interest (Hsu and Sandford, 2007). Therefore, the Delphi method creates the opportunity to gather information from a group of international experts in treating patients with non-specific neck pain, without the need of a meeting (Murphy et al., 1998). In this method, experts independently and anonymously answer a range of questions. During several rounds these experts get insight into group opinions and have the possibility to reconsider their own opinion as the results of the earlier rounds are returned until they achieve consensus (Hasson et al., 2000). The Delphi study consisted of three rounds as described by Hsu et al. (Hsu and Sandford, 2007).

For the Delphi study “Formdesk” software was used and invitations to participate were sent by email.

3. Preparation phase

For this exploratory Delphi study a convenience sample of twenty-four experts from the expert network of the second author were invited to participate. The expert group consisted of teachers and researchers in the field of Orthopedic Manipulative Therapy (Table 1) and, were all experts in treatment of patients with non-specific neck pain. Most experts were members of the standard committee of wherein the second author (JP) also participated. Table 1 shows their current main job and other characteristics. Although it was not part of the inclusion, all participants also met the four criteria set by Jensen et al. for being an expert in physiotherapy. These criteria are: knowledge, clinical reasoning skills, examination and evaluation skills of movement and positive diagnostic tests, we asked: “Suppose you have a patient with non-specific neck pain. Other than pain, there are no other signs or symptoms and no positive diagnostic test(s). There are no contra-indications for physiotherapy. Do you think there is an indication for physiotherapy?” Secondly, we wanted information on the type of measurement instruments being used for diagnostic and/or evaluative purposes. For this purpose, we offered a list with the most frequently used measurement instruments in patients with non-specific neck pain selected from the 122 RCTs included in the review of Maissan et al. (2018) We asked the experts which measurement instruments they use and whether they use additional measurement instruments. We also gathered information about the timing of the evaluative tests; i.e. only by start and finish of the treatment or also during the treatment. We made a distinction between patients with acute/sub-acute and chronic neck pain. In this way, we assessed whether the duration of the presence of pain influences the timing of measurements. Regarding the diagnostic process we assessed the extent to which physical impairments were pragmatically diagnosed (i.e. a test developed in their own practice without evidence of the psychometric properties) or with valid tests (with known psychometric properties). If a valid test was used, we asked them to specify the test.

The Delphi method is appropriate to reach consensus in a field where a lack of agreement or incomplete knowledge is evident (Giannarou and Zervas, 2014). The Delphi technique is a widely used and accepted method for achieving convergence of opinion concerning real-world knowledge solicited from experts within certain areas of interest (Hsu and Sandford, 2007). Therefore, the Delphi method creates the opportunity to gather information from a group of international experts in treating patients with non-specific neck pain, without the need of a meeting (Murphy et al., 1998). In this method, experts independently and anonymously answer a range of questions. During several rounds these experts get insight into group opinions and have the possibility to reconsider their own opinion as the results of the earlier rounds are returned until they achieve consensus (Hasson et al., 2000). The Delphi study consisted of three rounds as described by Hsu et al. (Hsu and Sandford, 2007).

For the Delphi study “Formdesk” software was used and invitations to participate were sent by email.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Participant characteristics (n = 15).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>9 female</td>
</tr>
<tr>
<td>Age; mean (range)</td>
<td>49.9 (39–65)</td>
</tr>
<tr>
<td>Nationality</td>
<td>Canada 3, Australia 3, New Zealand 2, USA 1, the Netherlands 1, Belgium 1, Portugal 1, South Africa 1, Denmark 1, Spain 1</td>
</tr>
<tr>
<td>Highest level of education</td>
<td>Phd 10, Msc 5</td>
</tr>
<tr>
<td>Current main job functions</td>
<td>Private practice 6, education 10, research 11, consultant 1</td>
</tr>
<tr>
<td>Years of experience in physiotherapy practice; mean (range)</td>
<td>20.3 (6–40)</td>
</tr>
<tr>
<td>Present-day work time as a physical therapist in ours a week; mean (range)</td>
<td>9.9 (1–35)</td>
</tr>
</tbody>
</table>
virtues (Jensen et al., 2000). We chose experts because we assumed that they were most likely to reach consensus based on their knowledge from scientific research and the ability to translate this knowledge into practice.

By completing the questionnaire of round 1, the participants confirmed their participation in this study.

4. Procedure

The workgroup of this Delphi study consisted of the first two authors (FM, JP) who designed the three rounds and summarized the returned data. We considered more than 50% consensus in responses as the consensus cut-off point (Giannarou and Zervas, 2014).

4.1. First round Delphi

The first round addressed a linear clinical reasoning in physical therapy based on the HOAC II. It consisted of open-ended questions starting with questions about the use of measurement instruments. As a starting point, the most frequently used measurement instruments in patients with non-specific neck pain were presented to the experts. We asked the experts for which signs and/or symptoms they would use a specific diagnostic test to determine the hypothesized cause of the patient experienced problem. Then we asked about the relationship between the diagnostic test (cause) and a chosen intervention. In other words, which diagnostic tests lead to which specific intervention. Finally, we wanted to determine which outcome measures the experts use to evaluate the effect of a specific intervention. In this way, we aimed to get an overview of the match between history taking (signs and symptoms), physical examination (diagnostic test), intervention, and the use of evaluative outcome measures. According to HOAC II this sequence describes the entire linear clinical reasoning process of the physical therapist (Rothstein et al., 2003). In addition to the clinical reasoning process, we inventoried which interventions the experts use regularly. Interventions used by 3 or less experts were not considered “regular treatment” in patients with non-specific neck pain.

4.2. Second round Delphi

In the second round each expert was asked to review and reflect on the items summarized by the investigators based on the information provided in round one (Hsu and Sandford, 2007). The experts were asked to rate the importance of the signs and symptoms in relation to the given diagnostic test, to rate the importance of the diagnostic test in relation to the given intervention and finally, rate the importance of the outcome measurement instruments in relation to the given intervention. The rating scale ranged from 1 (very important) to 5 (not important). This way preliminary priorities among items were established. In the second round the experts were also asked which physical or mental function or activity of the patient they wanted to improve (goal of the intervention) in relation to the chosen interventions.

4.3. Third round Delphi

The third round consisted of the summarized items and ratings of the importance of the previous round. In this final round, the complete sequence of a linear clinical reasoning process was presented in a table for each intervention. Each line in Table 5 represents such a sequence. For each included diagnostic test a different sequence of linear clinical reasoning was added to the questionnaire. The reason for this approach was that multiple diagnostic tests could lead to the same intervention, however, with possible different goals and evaluative measurement instruments. The signs and symptoms with more than 50% consensus on the score “very important” or “important” were combined because multiple signs and symptoms could lead to one diagnostic test. When there was no consensus after round two on “signs and symptoms” and “direct goal of intervention” and “evaluation test”, summarized results of round two were offered as final choice options in round three per sequence of linear clinical reasoning.

5. Results

Round 1 of the Delphi study began with 15 participants. There were 4 drop outs in round 2. The drop outs in round 2 were due to technical problems logging in the system. Data of these four experts were only
partly restored. In round 3 fourteen experts participated. There was only one drop out. Upon inquiry no reason could be determined.

Table 1 describes the characteristics of the participants. All experts considered physiotherapy treatment not indicated in patients with non-specific neck pain without any positive signs and/or symptoms or diagnostic tests. However, six out of fourteen (43%) experts named one possible treatment, namely pain education.

Tables 2 and 3 show which measurement instruments the experts use in daily practice. Table 2 shows which PROMs the experts use in their daily practice and when the experts use the PROMs in their clinical reasoning process. The use is explicitly expressed as either diagnostic or evaluative use or both. Table 3 shows the use of measurement instruments to measure physical constructs (physical tests). The timing “regular during treatment” of the use of these physical tests, to guide the intervention, was higher (81%) than the use of PROMs (39%) for patients with acute/sub-acute non-specific neck pain than in the group of patients with chronic non-specific neck pain namely, 73% and 30%.

The PROMs were mainly used at the beginning and end of the treatment, except for pain measurements and the Neck Disability Index (NDI), which were also considered to be able to guide an intervention.

Table 4 shows whether a construct was measured in a pragmatic or valid manner. Multiple valid measurement instruments were named, however, most experts measured physical constructs pragmatically.

The interventions used by less than 3 experts were: transcutaneous electrical nerve stimulation, electro thermal therapy, low level laser, Ultra Sound and taping. These interventions were excluded in this study. Table 5 describes the degree of consensus among the participating experts concerning the remaining interventions. The sequential linear clinical reasoning process is divided into 5 steps: signs and/or symptoms, - diagnostic test, - intervention, - direct goal of the intervention and, - evaluation test. For example: “movement dysfunction/presence of stiffness” as sign and/or symptom leads to the diagnostic test for “range of movement” (ROM), which leads to the intervention “mobilization” which leads to the direct goal of “improve quality of movement”, which leads to the evaluation test “ROM”. The last column represents the degree of consensus of that specific sequential line of linear clinical reasoning. Only 6 out of 18 lines of sequential linear clinical reasoning reached more than 50% consensus. In addition to the consensus sequence as shown in Table 5, an overview of all other additional information given by the experts in round 3 is shown in appendix 1.

Table 3
Use of measurement instruments to measure physical constructs (n = 15).

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Total use (n)</th>
<th>Diagnostic use (n)</th>
<th>Evaluative use (n)</th>
<th>Acute-sub acute neck pain</th>
<th>Chronic neck pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start and finish (n)</td>
<td>Start and finish (n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>during treatment</td>
<td>during treatment</td>
</tr>
<tr>
<td>Range of motion</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Muscle force</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pressure pain threshold</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Electromyography</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pinch force</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Joint play</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Joint mobility</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Endurance</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Co ordination</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Active stability</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Passive instability</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Upper cervical instability</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Reflexes</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sensibility</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Neurodynamics</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4
Measurement instruments to measure physical constructs (n = 15).

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Pragmatic test (n)</th>
<th>Valid test (n)</th>
<th>Do not use (n)</th>
<th>Name of valid test or measurement instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of motion</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>Cervical range of motion (CROM) device, Goniometer, Inclinometer</td>
</tr>
<tr>
<td>Muscle force</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>Dynamometer; Medical Research Council (MRC) Scale for Muscle Strength</td>
</tr>
<tr>
<td>Pressure pain threshold</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>(digital) Pressure algometer</td>
</tr>
<tr>
<td>Pinch force</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>Jamar pinch force device</td>
</tr>
<tr>
<td>Joint play</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint mobility</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>Cervical range of motion (CROM) device</td>
</tr>
<tr>
<td>Endurance</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>Cranio-cervical flexion test (CCFT), Neck extensor test</td>
</tr>
<tr>
<td>Co ordination</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>Joint position sense (JPS)</td>
</tr>
<tr>
<td>Active stability</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Passive stability</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>UC stability tests, sharp purser</td>
</tr>
<tr>
<td>Upper cervical instability</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>ULTT, SLUMP, SLR</td>
</tr>
<tr>
<td>Neurodynamics</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>Quantitative sensory testing (QST)</td>
</tr>
<tr>
<td>Tenderness</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Postural control</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>Joint position sense (JPS)</td>
</tr>
<tr>
<td>Proprioception</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>Cranio-cervical flexion test (CCFT)/stabilizer, the Fly</td>
</tr>
<tr>
<td>Motor control</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Movement pattern</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Muscle spasm</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Muscle length</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Muscle tension</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
6. Discussion

The experts state that pain alone is not an indication for physiotherapy, and that there must be other signs/symptoms present and/or at least one or more positive diagnostic test to substantiate the indication for physiotherapy. However, the review of Maissan et al. (2018) reported that only 16% of the 122 randomized controlled trials (RCTs) had a diagnosed cause, i.e. at least one diagnostic test was used as an inclusion criterion. Therefore, one could argue that RCTs, to examine the effect of a physiotherapy intervention, were regularly conducted without first determining whether or not there was an indication for physiotherapy; and if this was done, then this was not explicitly described in those RCTs. This discrepancy between what experts deemed to be important and the absence, or lack of a clear description, of an indication for physiotherapy underlines the need to apply recognisable clinical reasoning within the methodology of RCTs to enhance transferability to daily practice, especially the translation of the diagnostic process into the in/exclusion criteria for subject recruitment.

Our Delphi illustrates that experts used a wide range of measurement instruments. The most used PROMs were pain questionnaires (Visual Analogue Scale pain and Numeric Pain Rating Scale) and a questionnaire for physical functioning (NDI). Also PROMs regarding psychosocial topics, like catastrophizing or illness perceptions, were used. This indicates that the experts measure physical functions as well as mental functions. However, it is notable how rarely questionnaires about mental functioning are used for diagnostic purposes. For example, the Tampa scale of Kinesiophobia is used by 4 experts, Fear avoidance beliefs questionnaire by 3 and Impact of event scale (IES) by 2. On the other hand, the Visual analogue pain scale is used by 6 experts and the NDI by 5. This finding corresponds with other scientific research (Emilson et al., 2016; Synnott et al., 2015). Indeed, for diagnostic purposes the experts use measurement instruments for constructs representing physical functioning 4 times more than PROMs.

We acknowledge that physiotherapists use multiple interventions within one treatment session i.e. complex or multimodal interventions (Campbell et al., 2000). And focusing on unimodal interventions is a simplification of clinical practice. To illustrate, one expert commented: “clinical practice is fluid and an intervention is not delivered in isolation” thereby underlining the fact that daily practice is more complex. However, this study shows that achieving consensus on unimodal clinical reasoning proved to be difficult enough. Despite the lenient boundary of consensus at > 50%, only 6 out of 18 linear lines of clinical reasoning reached consensus of > 50%. After round 1 the most frequently used interventions were further explored. After round two and three inconsistency was mainly on the items “Direct goal of the intervention” and “Evaluation test”. In hindsight, this was to be expected as interventions can pursue different goals with different evaluative outcome measures. An explanation for the inconsistency among expert regarding the item “Evaluation test” could be that different experts may have different preferences for certain outcome measures.

In addition to the aforementioned items “Direct goal of the intervention” and “Evaluation test”, there was also inconsistency on the other two items “sign and/or symptom” and “diagnostic test”. A last explanation for overall inconsistency could be the lack of translatable results of the concepts of diagnostic tools for treatment (Maher et al., 2004). We hypothesized that if scientific research includes a clear clinical reasoning process, it should be easier to translate this reasoning into daily practice, especially by experts. In our study we found that in interventions to improve motor control or endurance consensus was reached. This can be explained when we look in more detail at a review of Maissan et al. (2018). This review showed that 4 RCTs to improve motor control (Beinert and Taube, 2013; G. Jull, et al., 2007) or endurance (Beer et al., 2013; G. Jull, et al., 2007) had a diagnosed cause, i.e. at least one diagnostic test was used.

Table 5

<table>
<thead>
<tr>
<th>sign and/or symptom</th>
<th>diagnostic test</th>
<th>intervention</th>
<th>Direct goal of intervention</th>
<th>Evaluation test</th>
<th>Consensus % (J/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle weakness in history</td>
<td>Strength test</td>
<td>Strength exercises</td>
<td>increase strength</td>
<td>Endurance test</td>
<td>50% (N)</td>
</tr>
<tr>
<td>Reduction of movement</td>
<td>ROM</td>
<td>Stretching</td>
<td>increase ROM</td>
<td>ROM</td>
<td>64% (J)</td>
</tr>
<tr>
<td>Pain, reduced ROM, presence of stiffness</td>
<td>Joint mobility assessment</td>
<td>Traction</td>
<td>reduce pain</td>
<td>Pain VAS/NPRS</td>
<td>29% (N)</td>
</tr>
<tr>
<td>Pain</td>
<td>Pain VAS/NPRS</td>
<td>Massage</td>
<td>reduce muscle tension</td>
<td>Palpation of tenderness</td>
<td>36% (N)</td>
</tr>
<tr>
<td>Muscle tension</td>
<td>Muscle tension/spasm test</td>
<td>Massage</td>
<td>Improve muscle tissue mobility</td>
<td>Palpation of tenderness</td>
<td>43% (N)</td>
</tr>
<tr>
<td>Pain</td>
<td>TP palpation</td>
<td>Dry needling</td>
<td>reduce pain</td>
<td>TP palpation</td>
<td>42% (N)</td>
</tr>
<tr>
<td>Fear of movement</td>
<td>FABQ</td>
<td>Relaxation therapy</td>
<td>reduce anxiety</td>
<td>Pain VAS/NPRS</td>
<td>50% (N)</td>
</tr>
<tr>
<td>Fear of movement</td>
<td>Coping test</td>
<td>Relaxation therapy</td>
<td>reduce anxiety</td>
<td>Pain VAS/NPRS</td>
<td>57% (J)</td>
</tr>
<tr>
<td>Fear of movement</td>
<td>Stress test</td>
<td>Relaxation therapy</td>
<td>reduce anxiety</td>
<td>Pain VAS/NPRS</td>
<td>43% (N)</td>
</tr>
<tr>
<td>Decrease maladaptive cognitions and behaviors</td>
<td>Central sensitization test</td>
<td>Pain education</td>
<td>decrease maladaptive cognitions and behaviors index</td>
<td>NDI (neck disability index)</td>
<td>62% (J)</td>
</tr>
<tr>
<td>Movement dysfunction, reduced ROM, presence of stiffness</td>
<td>ROM</td>
<td>Mobilization</td>
<td>improve quality of movement</td>
<td>ROM</td>
<td>36% (N)</td>
</tr>
<tr>
<td>Movement dysfunction, reduced ROM, presence of stiffness</td>
<td>Joint mobility assessment</td>
<td>Mobilization</td>
<td>improve quality of movement</td>
<td>Joint mobility assessment</td>
<td>43% (N)</td>
</tr>
<tr>
<td>Movement dysfunction, reduced ROM, presence of stiffness</td>
<td>End Feel</td>
<td>Mobilization</td>
<td>improve quality of movement</td>
<td>Joint mobility assessment</td>
<td>43% (N)</td>
</tr>
<tr>
<td>Reduced control/ endurance, symptoms of motor control impairment</td>
<td>Motor control test</td>
<td>Endurance exercises</td>
<td>increase endurance</td>
<td>Neck endurance test</td>
<td>79% (J)</td>
</tr>
<tr>
<td>Postural dysfunction, symptoms of imbalance</td>
<td>Postural control test</td>
<td>Endurance exercises</td>
<td>increase postural control</td>
<td>Neck endurance test</td>
<td>50% (N)</td>
</tr>
<tr>
<td>Weakness, postural dysfunction, coordination difficulties</td>
<td>Active stability test</td>
<td>Stabilization exercises</td>
<td>Improve movement control</td>
<td>Active stability tests</td>
<td>36% (N)</td>
</tr>
<tr>
<td>Weakness, postural dysfunction, coordination difficulties</td>
<td>Proprionoception test/ CCFT</td>
<td>Coordination exercises</td>
<td>- Improve motor control</td>
<td>Proprioceptive tests/ CCFT</td>
<td>79% (J)</td>
</tr>
<tr>
<td>Dizziness, Unsteadiness, coordination difficulties, symptoms of motor control impairment</td>
<td>Movement pattern assessment</td>
<td>Coordination exercises</td>
<td>improve motor control</td>
<td>Movement pattern assessment</td>
<td>79% (J)</td>
</tr>
</tbody>
</table>
et al., 2012; G. A. Jull, et al., 2009) were part of the 11 out of 122 RCTs with a complete clinical reasoning process. In other words, these RCTs included a diagnostic criterion like potential impairments, limitations in activities or restrictions in participation, to get a sub-group that matched with the unimodal intervention. Hence, it looks as if these research findings were easy to translate to clinical practice. Therefore, this seems to confirm the need to perform future research with a more clinically relevant focus.

A limitation of the study was the technical problems in round two; because of this technical problem some data have been missed. However, because in round three all the experts of round one had the opportunity to participate and the opportunity for additional suggestions, the loss of information was minimal. A second possible limitation is the relatively small number of experts. However, they were consistent in their answers. Still, this was an exploratory study and further research is needed to confirm our findings.

A strength of our study was the diversity of nationalities (Table 1) which ensured that the results of clinical reasoning are transboundary and not biased by habits of a single country. We also consider a strength the use of a transparent framework for clinical reasoning, namely the HOAC.

We already stated that future research must organize itself in a more clinically relevant manner, thus include a diagnostic process prior to or part of inclusion in a RCT. Per intervention, experts appointed signs/symptoms and diagnostic tests (Table 5) which can be the basis of a diagnostic process leading to a matching intervention which then can be incorporated into daily practice or into clinical trials. We do want to emphasize the importance of evaluating the direct effect of the intervention in addition to patient experienced effects in order to determine if there is a (causal) relation between them, both in scientific research and in daily practice. To do so, measurement instruments to “diagnose” physical or mental constructs should also be used in the evaluative process to determine if the physical or mental construct under treatment has improved. However, appendix 1 shows, in addition to a wide variety of measurement instruments or diagnostic tests, also an inconsistency in the use of the same measurement instruments before and after the intervention. Only by using the same measurement instrument before and after the intervention more clarity can be obtained if the perceived effect by the patient is due because, or in spite of the intervention.

In conclusion: Pain alone, without other signs/symptoms present and/or at least one or more positive diagnostic test does not substantiate the indication for physiotherapy. Insight has been obtained into which measurement instruments are used and when they are used. Consensus about sequential linear lines of clinical reasoning was poor.

Appendix 1. Additional information besides the highest consensus in clinical reasoning (in bold letters)

<table>
<thead>
<tr>
<th>sign and/or symptom</th>
<th>diagnostic test</th>
<th>intervention</th>
<th>Direct goal of intervention</th>
<th>Evaluation test</th>
<th>Consensus % (J/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle weakness in history - Chronic pain</td>
<td>Strength test - Plus a functional test - Muscle control test</td>
<td>Strength exercises - Muscle control task</td>
<td>increase strength - Control pain</td>
<td>Endurance test 10x - Functional test that integrates strength - Reassess test movement, in combination with subjective findings and activity levels of patient - Strength test - Strength test or endurance test depending on patient</td>
<td>50% (N)</td>
</tr>
<tr>
<td>Reduction of movement - Reduction in movement means what? Quality of ROM; Pain at end of range ...</td>
<td>ROM</td>
<td>Stretching - Combined intervention: muscle length, pain inhibition, specific joint motion, willingness to move - Mobilization with Movement; PNF</td>
<td>increase ROM - Reduce pain - Increase muscle length - Achieve meaningful functional task</td>
<td>ROM - Meaningful immediate task if applicable followed by meaningful larger functional task - Main parameter out of physical and subjective examinations</td>
<td>64% (J)</td>
</tr>
<tr>
<td>Pain, reduced ROM, presence of stiffness - Extremity Symptoms Centralized with Traction - Neuropathic pain, paresthesia or numbness</td>
<td>Joint mobility assessment - Plus meaningful functional task - Test Item Cluster for Cervical Radiculopathy - NPRS</td>
<td>Traction - Mobilization/ manipulation</td>
<td>reduce pain - Reduce neuropathic pain - Increase strength - Is pain dominant or not? If dominant: first short term goal will be pain reduction</td>
<td>Pain VAS/NPRS</td>
<td>29% (N)</td>
</tr>
</tbody>
</table>
Pain
- Pain on palpation
- Pain VAS/NPRS
- Movement quality with pain
- NPRS-surrogate measure in absence of reliable measure of tension
- Pain provoking movement

Massage
- reduce muscle tension
- Movement quality with pain
- Initiation of movement
- Pain relief

Palpation of tenderness
- 36% (N)

Muscle tension
- Pain
- Limited ROM
- Pale skin
- Loss of specific functional movement

Massage
- Muscle tension/spasm test
- Improve muscle tissue mobility
- Initialization of movement
- Pain relief

Palpation of tenderness
- 43% (N)

Fear of movement
- Poor symptom management
- Muscle tension
- Anxious, inability to relax
- Poor symptom management
- Anxiety
- Inability to relax

Relaxation therapy
- Graded exercises
- Why relaxation therapy if someone is afraid to move? Graded exposure ...

Reduce anxiety
- Reduce pain
- Reduce muscle tone
- Reduce fear of re-injury
- Improve self-efficacy

Relaxation therapy
- 50% (N)

Fear of movement
- Anxious, inability to relax
- Poor symptom management

Relaxation therapy
- Coping test
- NPRS
- Depends on combination of symptoms

Reduce anxiety
- Reduce pain
- Reduce muscle tone
- Self management of symptoms

Relaxation therapy
- 57% (J)

Fear of movement
- Anxiety
- Inability to relax

Relaxation therapy
- Stress test
- Coping test
- DASS
- Functional movement test

Reduce anxiety
- Reduce pain
- Reduce muscle tone
- Response to stress via movement

Relaxation therapy
- 43% (N)

Stress test
- Coping test
- DASS
- Functional movement test

Relaxation therapy
- Plus movement retraining
- Relaxation-Interdisciplinary care with psychologist

Reduce anxiety
- Self-evaluation of identification of environmental stressors
- DASS-monitored by psychologist
- Coping test, ability to relax
- FABQ
- Functional movement tests

Relaxation therapy
- 43% (N)

Stress test
- Coping test
- DASS
- Functional movement test

Relaxation therapy
- Plus movement retraining
- Relaxation-Interdisciplinary care with psychologist

Reduce anxiety
- Self-evaluation of identification of environmental stressors
- DASS-monitored by psychologist
- Coping test, ability to relax
- FABQ
- Functional movement tests

Relaxation therapy
- 43% (N)
Decrease maladaptive cognitions and behaviors
- Decrease fear avoidance and wrong beliefs
- Decreased self-efficacy

Central sensitization test
- Central sensitization inventory
- Not always formally tested. Depends entirely on the construct

Pain education
- Plus graded exposure

Decrease maladaptive cognitions and behaviors
- Decrease fear avoidance and wrong beliefs
- Decreased self-efficacy
- Frame belief or behavior into something positive

NDI (neck disability index)
- Questionnaires on knowledge and beliefs
- CSI
- FABQ
- Pain catastrophizing test

Movement dysfunction, reduced ROM, presence of stiffness
- ROM

Mobilization
- Improve quality of movement
 - Increase ROM
 - Relaxation
 - Reduce pain

Joint mobility assessment
- NPRS

Improve quality of movement
 - Increase ROM
 - Reduce pain
 - Relaxation

End feel

Mobilization
- Improve quality of movement
 - Increase ROM
 - Reduce pain
 - Relaxation

Reduced control/endurance, symptoms of motor control impairment

Motor control test
- Endurance test

Endurance exercises
- Increase endurance
 - Increase postural control

Postural dysfunction, symptoms of imbalance
- Imbalance in posture, muscular imbalance
- Pain with sustained activities

Postural control test
- NPRS

Endurance exercises
- Increase postural control
 - Increase endurance
 - Control pain

Weakness, postural dysfunction, coordination difficulties

Active stability test

Stabilization exercises
- Improve movement control
 - Improve active stability
 - Reduce pain
 - Decrease the incidence of recurrence

Proprioception test/CCFT

Coordination exercises
- Improve motor control
 - Reduce pain

Proprioceptive tests/CCFT
- 79% (J)

Dizziness, Unsteadiness, coordination difficulties, symptoms of motor control impairment
- Reasons for dizziness, unsteadiness?
- Cervical, general proprioceptive, vascular?
- Neurological weakness

Movement pattern assessment
- Tests of motor control, movement coordination
- Dizziness Handicap Inventory or Balance Test

Improvement motor control
- Reduce pain

Movement pattern assessment
- Dizziness Handicap Inventory or Balance Test

62% (J)

36% (N)

43% (N)

43% (N)

79% (J)

50% (N)

36% (N)
References

