Equivalence after extension and Schur coupling do not coincide on essentially incomparable Banach spaces
Horst, S. ter; Messerschmidt, M.; Ran, A. C.M.; Roelands, M.

published in
Bulletin of the London Mathematical Society
2019

DOI (link to publisher)
10.1112/blms.12292

document version
Publisher's PDF, also known as Version of record
document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021
Equivalence after extension and Schur coupling do not coincide on essentially incomparable Banach spaces

S. ter Horst, M. Messerschmidt, A. C. M. Ran and M. Roelands

Abstract

In 1994, H. Bart and V. É. Tsekanovskii posed the question whether the Banach space operator relations matricial coupling (MC), equivalence after extension (EAE) and Schur coupling (SC) coincide, leaving only the implication EAE/MC ⇒ SC open. Despite several affirmative results, in this paper we show that the answer in general is no. This follows from a complete description of EAE and SC for the case that the operators act on essentially incomparable Banach spaces, which also leads to a new characterisation of the notion of essential incomparability. Concretely, the forward shift operators U on ℓ^p and V on ℓ^q, for $1 < p, q < \infty$, $p \neq q$, are EAE but not SC. As a corollary, SC is not transitive. Under mild assumptions, given U and V that are Atkinson or generalised invertible and EAE, we give a concrete operator W that is SC to both U and V, even if U and V are not SC themselves. Some further affirmative results for the case where the Banach spaces are isomorphic are also obtained.

1. Introduction

Throughout this paper, let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ be two (complex) Banach space operators. Here $\mathcal{B}(\mathcal{V}, \mathcal{W})$ stands for the Banach space of bounded linear operators from the Banach space \mathcal{V} into the Banach space \mathcal{W}, abbreviated to $\mathcal{B}(\mathcal{V})$ if $\mathcal{V} = \mathcal{W}$. The term operator will always mean bounded linear operator, and invertibility of an operator will imply that the inverse is bounded as well. Further definitions will be explained in the last three paragraphs of this introduction.

The operator relations equivalent after extension (EAE), matricial coupling (MC) and Schur coupling (SC) for Banach space operators U and V were first used to solve certain integral equations [3], and have found many applications since; for some recent applications, see [10, 21] (on diffraction theory), [8, 9] (on truncated Toeplitz operators), [11] (on unbounded operator functions) and [14] (on Wiener–Hopf factorisation). The main feature in these applications is that the relations EAE, MC and SC coincide, and that one can transfer from one to another in a constructive way. This raised the question, posed in [7], whether EAE, MC and SC may coincide at the level of Banach space operators. In fact, by that time it was known that EAE and MC coincide (see [3, 5]) and that they are implied by SC (see [6, 7]), in short, SC ⇒ EAE ⇔ MC. Hence, only the implication EAE/MC ⇒ SC remained open. Some confirmative results were obtained in the early 1990s, for matrices [7], for Hilbert space Fredholm operators [5] and for Banach space Fredholm operators with index 0 [5]. However, the main breakthroughs came in the last five years, most notably, for Hilbert space operators in [22], initially for the separable case in [19]. For Banach space operators confirmative answers were obtained for operators that can be approximated by invertible operators [19] and inessential (including compact and strictly singular) operators [18].

The importance of the Banach space geometries of \mathcal{X} and \mathcal{Y} was first observed in [17]. If U on \mathcal{X} and V on \mathcal{Y} are EAE and compact, then for several Banach space properties, \mathcal{X} has
this property if \(Y \) does, and vice versa; see [17, Proposition 5.6, Corollary 5.7]. Furthermore, it was shown that if \(X \) and \(Y \) are essentially incomparable and \(U \) or \(V \) compact, then EAE of \(U \) and \(V \) cannot occur. In fact, much more is true. If \(X \) and \(Y \) are essentially incomparable, then \(U \) and \(V \) are EAE precisely when they are Fredholm with \(\dim \ker U = \dim \ker V \) and \(\dim \coker U = \dim \coker V \). For SC, \(U \) and \(V \) are also required to have index 0. These claims are part of our main result, Theorem 2.1 below, and lead to the observation that EAE and SC do no coincide.

It was shown in [4] that EAE and SC coincide precisely when SC is transitive, which makes SC into an equivalence relation. Thus, our main result shows that SC is not transitive. In Section 4 for \(X \) and \(Y \) compact and \(U \) and \(V \) generalised invertible, or \(X \) and \(Y \) from a larger class of Banach spaces we call stable under finite-dimensional quotients (see Section 3) and \(U \) and \(V \) Atkinson, we show that \(U \) and \(V \) are both SC to \(W = U \oplus I_Y \) (and to \(W = I_X \oplus V \)), even if \(U \) and \(V \) are not SC, which shows concretely that SC is not transitive. Some of the methods from Section 4 are employed in the final section to obtain two more cases where EAE and SC do coincide.

We now make precise, and discuss, some of the concepts used above, as well as a few that appear later in the paper. The operators \(U \in \mathcal{B}(X) \) and \(V \in \mathcal{B}(Y) \) are called equivalent after extension (EAE) when there exist Banach spaces \(X_0 \) and \(Y_0 \) such that \(U \oplus I_{X_0} \) and \(V \oplus I_{Y_0} \) are equivalent, that is, when there exist invertible operators \(E \in \mathcal{B}(Y \oplus Y_0, X \oplus X_0) \) and \(F \in \mathcal{B}(X \oplus X_0, Y \oplus Y_0) \) such that

\[
\begin{bmatrix}
U & 0 \\
0 & I_{X_0}
\end{bmatrix} = E
\begin{bmatrix}
V & 0 \\
0 & I_{Y_0}
\end{bmatrix} F.
\]

(1.1)

In case \(U \) and \(V \) are EAE with \(X_0 = \{0\} \) or \(Y_0 = \{0\} \), we say that \(U \) and \(V \) are equivalent after one-sided extension (EAOE). That \(U \) and \(V \) are EAE coincides with \(U \) and \(V \) being matricially coupled (MC), which means that there exists an invertible operator \(\tilde{U} \in \mathcal{B}(X \oplus Y) \) with

\[
\tilde{U} = \begin{bmatrix}
U & * \\
* & *
\end{bmatrix} \quad \text{and} \quad \tilde{U}^{-1} = \begin{bmatrix}
* & * \\
V & *
\end{bmatrix}.
\]

(1.2)

Moreover, \(U \) and \(V \) are called Schur coupled (SC) if there exists a \(2 \times 2 \) block operator \(M = [A, B; C, D] \in \mathcal{B}(\mathcal{X} \oplus \mathcal{Y}, \mathcal{X} \oplus \mathcal{Y}) \) with \(A \) and \(D \) invertible and

\[
U = A - BD^{-1}C \quad \text{and} \quad V = D - CA^{-1}B.
\]

(1.3)

Hence, \(U \) and \(V \) are the Schur complements of the block operator matrix \(M \) with respect to \(D \) and \(A \), respectively. As remarked above, SC \(\iff \) EAE \(\iff \) MC. On the other hand, EAOE implies SC [4], but the converse does not hold in general [17] (see also Theorem 2.1 below).

Recall that a Banach space operator \(S \in \mathcal{B}(\mathcal{V}, \mathcal{W}) \) is called inessential in case \(I_{\mathcal{V}} - TS \) is Fredholm for all \(T \in \mathcal{B}(\mathcal{W}, \mathcal{V}) \), or equivalently, \(I_{\mathcal{W}} - ST \) is Fredholm for all \(T \in \mathcal{B}(\mathcal{W}, \mathcal{V}) \). We write \(\mathcal{I}(\mathcal{V}, \mathcal{W}) \) for the set of inessential operators in \(\mathcal{B}(\mathcal{V}, \mathcal{W}) \), abbreviated to \(\mathcal{I}(\mathcal{V}) \) in case \(\mathcal{V} = \mathcal{W} \). Note that for \(S \in \mathcal{B}(\mathcal{V}, \mathcal{W}) \) and \(T \in \mathcal{I}(\mathcal{W}, \mathcal{V}) \), the operators \(I - TS \) and \(I - ST \) are not only Fredholm, they also have index 0; see the proof of [18, Lemma 3.1] for details. Clearly, all compact operators are inessential. However, also strictly singular and strictly co-singular operators are inessential. While these classes of operators coincide in the Hilbert space case, this is not true for Banach space operators; see [1, Sections 6.1, 6.2] for examples and further details. The class \(\mathcal{I}(\mathcal{V}) \) is a closed ideal in \(\mathcal{B}(\mathcal{V}) \) and all its elements have either finite spectrum or a spectrum that has only 0 as accumulation point. In fact, Kleinecke, in [20], introduced the class of inessential operators because they form the largest closed ideal in \(\mathcal{B}(\mathcal{V}) \) for which the Fredholm operators correspond to the invertible operators in the Calkin algebra \(\mathcal{B}(\mathcal{V})/\mathcal{I}(\mathcal{V}) \).

In Banach algebra language, \(\mathcal{I}(\mathcal{V}) \) is the Riesz ideal of \(\mathcal{B}(\mathcal{V}) \), that is, the (equivalence classes of the) operators in \(\mathcal{I}(\mathcal{V}) \) form the radical of \(\mathcal{B}(\mathcal{V})/\mathcal{soc}(\mathcal{V}) \), where \(\mathcal{soc}(\mathcal{V}) \) denotes the socle of the Banach algebra \(\mathcal{B}(\mathcal{V}) \); cf., [1, Section 5.5]. For \(\mathcal{V} \neq \mathcal{W} \), the inessential operators are still
closed under left and right multiplication, in the sense that \(I(\mathcal{V}, \mathcal{W}) \cdot \mathcal{B}(\mathcal{W}, \mathcal{Z}) \subset I(\mathcal{V}, \mathcal{Z}) \) and \(\mathcal{B}(\mathcal{Z}, \mathcal{V}) \cdot I(\mathcal{V}, \mathcal{W}) \subset I(\mathcal{Z}, \mathcal{W}) \), for any Banach space \(\mathcal{Z} \).

The Banach spaces \(\mathcal{V} \) and \(\mathcal{W} \) are called essentially incomparable in case \(I(\mathcal{V}, \mathcal{W}) = \mathcal{B}(\mathcal{V}, \mathcal{W}) \). See [1, Chapter 7] for further details, examples and references. We just mention here that \(c_0, \ell^p = \ell^p(\mathbb{N}) \) and \(\ell^q = \ell^q(\mathbb{N}) \), for \(1 \leq p, q \leq \infty \), \(p \neq q \), are pairwise essentially incomparable by the Pitt–Rosenthal Theorem, and, by the recent Pitt–Rosenthal like theorem of [16], certain discrete Morrey spaces introduced in [15] are essentially incomparable to \(\ell^p \) as well. See [12] for a comparison with other notions of incomparability of Banach spaces.

A Banach space operator \(T \in \mathcal{B}(\mathcal{V}, \mathcal{W}) \) is called generalised invertible in case \(T \) has a complemented range and a complemented kernel. Here and in the sequel, complemented refers to a topological complement, so that all complemented subspaces are closed with a closed complement. Note that \(T \) is generalised invertible if and only if \(T \) admits a decomposition of the form

\[
T = \begin{bmatrix} T' & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{V}_1 \\ \mathcal{V}_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{W}_2 \end{bmatrix} \text{ with } T' \text{ invertible.}
\]

Thus, \(\mathcal{V}_2 = \ker T \), and, with some abuse of terminology, we will usually refer to \(\mathcal{W}_2 \) as ‘the’ cokernel of \(T \) (Coker \(T \)). Note that \(T \) now indeed admits a generalised inverse, namely \(\begin{bmatrix} T' & 0 \\ 0 & 0 \end{bmatrix} \) mapping \(\mathcal{W} = \mathcal{W}_1 \oplus \mathcal{W}_2 \) into \(\mathcal{V} = \mathcal{V}_1 \oplus \mathcal{V}_2 \). Now \(T \) is Fredholm in case \(T \) is generalised invertible and \(\ker T \) and Coker \(T \) are finite dimensional and Atkinson in case it is only required that one of \(\ker T \) and Coker \(T \) is finite dimensional. Alternatively, \(T \) is Atkinson if there exists an operator \(S \in \mathcal{B}(\mathcal{W}, \mathcal{V}) \) so that \(I - TS \) is compact or \(I - ST \) is compact, and \(T \) is Fredholm in case there exists an \(S \in \mathcal{B}(\mathcal{W}, \mathcal{V}) \) so that both \(I - TS \) and \(I - ST \) are compact. Hence, in case \(\mathcal{W} = \mathcal{V} \), in the Calkin algebra of the compact operators on \(\mathcal{V} \), the (equivalence classes of the) Fredholm operators correspond to the invertible elements and the (equivalence classes of the) Atkinson operators correspond to the left and right invertible elements. Note that all Atkinson operators are semi-Fredholm, but the converse need not be true as semi-Fredholm operators need not be generalised invertible; indeed semi-Fredholm operators have either a finite-dimensional (and hence complemented) kernel or cokernel, but it need not be the case that both the kernel and range are complemented, see [1, Theorem 7.3].

2. **SC and EAE do not coincide on essentially incomparable Banach spaces**

In this section, we prove the main result of the present paper, which is the following theorem, and give an alternative characterisation of essential incomparability in Proposition 2.4.

Theorem 2.1. Let \(U \in \mathcal{B}(\mathcal{X}) \) and \(Y \in \mathcal{B}(\mathcal{Y}) \) with \(\mathcal{X} \) and \(\mathcal{Y} \) essentially incomparable Banach spaces. Then

1. \(U \) and \(V \) are never EAOE;
2. \(U \) and \(V \) are SC if and only if \(U \) and \(V \) are Fredholm with index 0 and \(\dim \ker U = \dim \ker V \) (and thus \(\dim \text{coker } U = \dim \text{coker } V \));
3. \(U \) and \(V \) are EAE if and only if \(U \) and \(V \) are Fredholm with \(\dim \ker U = \dim \ker V \) and \(\dim \text{coker } U = \dim \text{coker } V \).

In particular, SC and EAE do not coincide.

Proof. Item (1) was proven in [17] for \(\mathcal{X} = \ell^p \) and \(\mathcal{Y} = \ell^q \), \(1 \leq p \neq q < \infty \), but the proof is easily adapted to the case of essentially incomparable Banach spaces, as indicated in [18, Remark 1.3]. The ‘if’ claims in (2) and (3) follow from [6, Theorems 3 and 4], respectively,
and are true without the essential incomparability of X and Y. Thus, it remains to prove the ‘only if’ claims in (2) and (3), and the final claim.

Starting with (2), assume U and V are SC, say U and V are as in (1.3) with $[A \ B] \in \mathcal{B}(X \oplus Y)$ with A and D invertible. Then $U = A(I - A^{-1}BD^{-1}C)$ and the operators $A^{-1}B : Y \to X$ and $D^{-1}C : X \to Y$ are inessential, since X and Y are essentially incomparable. Therefore, $I - A^{-1}BD^{-1}C$ is Fredholm with index 0, and hence U is Fredholm with index 0. Similarly, one obtains that V must be Fredholm with index 0.

For the remaining implication in (3), assume that U and V are EAE, hence MC. Thus, there exists an invertible operator $\hat{U} \in \mathcal{B}(X \oplus Y)$ with

$$\hat{U} = \begin{bmatrix} U & U_{12} \\ U_{21} & U_{22} \end{bmatrix} : [X', Y] \to [X', Y], \quad \hat{U}^{-1} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V \end{bmatrix} : [X', Y] \to [X', Y].$$

In particular, \hat{U} and \hat{U}^{-1} are Fredholm with index 0. Since X and Y are essentially incomparable, U_{12} and U_{21} are inessential. Then $[U_{21}, U_{12}]$ is also inessential, and hence

$$\begin{bmatrix} U & 0 \\ 0 & U_{22} \end{bmatrix} = \hat{U} - \begin{bmatrix} 0 & U_{12} \\ U_{21} & 0 \end{bmatrix}$$

is Fredholm with index 0 as well. This in turn implies that U and U_{22} are Fredholm and $\text{Ind}(U) + \text{Ind}(U_{22}) = 0$. Similarly, it follows that V is Fredholm.

A slight addition to the previous observations gives an alternative proof of the ‘only if’ part of item (2). Indeed, as shown in [6], see also [19], SC of U and V coincides with strong MC of U and V, which means that one can find \hat{U} as above with U_{22} and V_{11} invertible. However, if $\text{Ind}(U) \neq 0$, then $\text{Ind}(U_{11}) = -\text{Ind}(U) \neq 0$, and thus V_{11} cannot be invertible. We conclude that in case $\text{Ind}(U) \neq 0$, strong MC, and hence SC, cannot occur.

To see that EAE and SC do not coincide, it suffices to find an example of essentially incomparable Banach spaces on which Fredholm operators of the same non-zero index exist. This is done in the following example.

Example 2.2. Take for both U and V the forward shift operator, but U acting on ℓ^p and V acting on ℓ^q for $1 \leq p, q \leq \infty$, $p \neq q$. Then U and V are injective and Fredholm with index 1, hence EAE, but not SC, by Theorem 2.1. We define a concrete \hat{U} as in (1.2) that establishes the MC between U and V, so that EAE of U and V follows since MC \leftrightarrow EAE. For this purpose, take $U_{12} = \text{diag}(1, 0, 0, \ldots) : \ell^p \to \ell^p$ and let U_{22} be the backward shift on ℓ^q. Also, let V_{11} be the backward shift on ℓ^p and $V_{21} = \text{diag}(1, 0, 0, \ldots) : \ell^p \to \ell^q$. Then

$$\tilde{U} = \begin{bmatrix} U & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

is invertible with inverse $\tilde{U}^{-1} = \begin{bmatrix} V_{11} & 0 \\ V_{21} & V \end{bmatrix}$.

Note that for our choice of \hat{U}, we have $\text{Ind}(U_{22}) = -1 = -\text{Ind}(U)$. This happens for each choice of \hat{U} that established the MC of U and V, because ℓ^p and ℓ^q are essentially incomparable, and as a result U_{22} cannot be invertible, and U and V cannot be strongly MC, and hence not SC, as observed in the above proof.

Remark 2.3. More generally, by [19, Theorem 3.3], any two generalised invertible operators U and V such that the kernels and cokernels are pairwise isomorphic are SC. However, if such operators U and V are not Fredholm and acting on essentially incomparable Banach spaces, then this situation cannot occur, since it would lead to two infinite-dimensional complemented (and hence closed) subspaces of essentially incomparable Banach spaces that are isomorphic, hence to a closed range operator of infinite rank, a contradiction.
That on essentially incomparable Banach spaces only Fredholm (with index 0) operators can be EAE (SC) in fact gives a new characterisation of essential incomparability.

Proposition 2.4. For Banach spaces X and Y the following are equivalent.

1. X and Y are essentially incomparable.
2. All SC operators U on X and V on Y are Fredholm (with index 0).
3. All EAE operators U on X and V on Y are Fredholm.

The parenthesised phrase can be removed without losing the validity of the statement.

Proof. The implications (1) \Rightarrow (2, including parenthesised phrase) and (1) \Rightarrow (3) follow from Theorem 2.1. We prove (3) \Rightarrow (2, without parenthesised phrase) and (2, without parenthesised phrase) \Rightarrow (1), which completes the proof.

Assume (3) and let U and V be SC. Then U and V are EAE, hence Fredholm by (3).

Now assume (2). Also assume X and Y are not essentially incomparable. Then there exist operators $B \in B(Y, X)$ and $C \in B(X, Y)$ such that $I_X - CB$ is not Fredholm. Now take $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with $A = I_X$ and $D = I_Y$. Then the Schur complement $U := I_X - CB$ of M is not Fredholm, and so is the other Schur complement $V := I_Y - BC$. Hence, U and V are SC, but not Fredholm, in contradiction with (2). Therefore, X and Y are essentially incomparable. □

3. Stability under finite-dimensional quotients

Recall that a Banach space Z is called prime if Z is isomorphic to all its infinite-dimensional complemented subspaces, and primary if $Z \cong Z_1 \oplus Z_2$ implies $Z \cong Z_1$ or $Z \cong Z_2$. All prime Banach spaces are primary, ℓ^p, $1 \leq p \leq \infty$ and c_0 are prime, and hence primary, L^p, $1 \leq p < \infty$ and $C[0,1]$ are primary; cf., [2]. In this section, we study the following class of Banach spaces, which includes all primary Banach spaces.

Definition 3.1. A Banach space Z is said to be stable under finite-dimensional quotients if Z is isomorphic to any subspace with a finite-dimensional complement.

Not all Banach spaces are stable under finite-dimensional quotients, an example of one that is not is given in [13]. On the other hand, there are Banach spaces that are stable under finite-dimensional quotients, but not primary. Concretely, ℓ^p and ℓ^q are prime, but $\ell^p \oplus \ell^q$ is not primary in case $p \neq q$. That $\ell^p \oplus \ell^q$ is stable under finite-dimensional quotients follows from the next proposition.

Proposition 3.2. Assume that Z_1 and Z_2 are stable under finite-dimensional quotients. Then so is $Z_1 \oplus Z_2$.

Before proving the proposition, we derive a few elementary lemmas.

Lemma 3.3. Let Z be stable under finite-dimensional quotients and F finite dimensional. Then $Z \cong Z \oplus F$.

Proof. Clearly, Z must be infinite dimensional. Let F_0 be a finite-dimensional subspace of Z, with complement Z_0, that is isomorphic to F. Then $Z \cong Z_0$, because F_0 is is finite dimensional, and hence

$$Z \cong Z_0 \oplus F_0 \cong Z \oplus F.$$
The following lemma may be well known, but we did not find it in the literature. Note that the conclusion does not hold without the finite dimensionality of Z, just take $Z = \ell^2$ and V and W finite dimensional of different dimensions.

Lemma 3.4. Let V, W, Z be Banach spaces with $Z \oplus V \cong Z \oplus W$ and $\dim Z < \infty$. Then $V \cong W$.

Proof. Decompose an isomorphism T from $Z \oplus V$ to $Z \oplus W$ in block operator form

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} : \begin{bmatrix} Z \\ V \end{bmatrix} \to \begin{bmatrix} Z \\ W \end{bmatrix}.$$

Then T is Fredholm of index 0. Thus, so is the finite rank perturbation

$$\begin{bmatrix} 0 & 0 \\ 0 & T_{22} \end{bmatrix} = T - \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & 0 \end{bmatrix}.$$

Hence, $T_{22} \in B(V, W)$ is a Fredholm operator of index 0. Adding a finite rank operator that maps the kernel of T_{22} onto its cokernel, we obtain an isomorphism between V and W. □

Proof of Proposition 3.2. Assume $Z_1 \oplus Z_2 = V \oplus F$ with F finite dimensional. For $j = 1, 2$ let $F_j = P_{Z_j} F$, where P_{Z_j} is the projection on Z_j in $Z_1 \oplus Z_2$. Then $\dim F_j < \infty$, hence F_j has a complement V_j in Z_j. Since Z_j is stable under finite-dimensional quotients, we have $Z_j \cong V_j$. Furthermore, $F \subset F_1 \oplus F_2$ with all three spaces finite dimensional. Hence, $F_1 \oplus F_2 = F \oplus G$ for some G. Therefore, we have

$$F \oplus V = Z_1 \oplus Z_2 = F_1 \oplus V_1 + F_2 \oplus V_2 \cong F_1 \oplus F_2 \oplus V_1 \oplus V_2 = F \oplus G \oplus V_1 \oplus V_2 = F \oplus G \oplus Z_1 \oplus Z_2,$$

where we used Lemma 3.3 in the last step. Since F is finite dimensional, by Lemma 3.4, we have $Z_1 \oplus Z_2 \cong V$. Hence, $Z_1 \oplus Z_2$ is stable under finite-dimensional quotients. □

4. **SC is not transitive**

By [4, p. 215] SC is transitive, and with that an equivalence relation, if and only if it coincides with EAE, which is an equivalence relation. Hence, Theorem 2.1 yields the following corollary.

Corollary 4.1. SC is not transitive, hence not an equivalence relation.

However, the proof in [4] provides no insight into the lack of transitivity of SC. The following proposition gives two cases where EAE operators U and V are both SC to a third operator W, even if U and V are not SC themselves. In particular, for the operators U and V of Example 2.2, which are not SC, we obtain an operator W that is SC to both U and V, giving a concrete example that shows SC is not transitive.

Proposition 4.2. Let U on \mathcal{X} and V on \mathcal{Y} be EAE. Then there exists an operator W on $\mathcal{X} \oplus \mathcal{Y}$ such that both U and V are SC with W, concretely, for W one can take either one of $U \oplus I_{\mathcal{Y}}$ or $I_{\mathcal{X}} \oplus V$, in the following two cases.

(1) U and V Atkinson and \mathcal{X} and \mathcal{Y} stable under finite-dimensional quotients.

(2) U and V generalised invertible and \mathcal{X} and \mathcal{Y} primary.
Proof. Take $W = U \oplus I_Y$, the case where $W = I_X \oplus V$ is proved analogously. Clearly, U and W are EAOE, hence SC. In both case (1) and case (2), it remains to show V and W are SC. In both cases, U and V are generalised invertible, and admit decompositions of the form

$$U = \begin{bmatrix} U' & 0 \\ 0 & 0 \end{bmatrix} : [X'_1] \rightarrow [X'_2], \quad V = \begin{bmatrix} V' & 0 \\ 0 & 0 \end{bmatrix} : [Y'_1] \rightarrow [Y'_2],$$

with U' and V' invertible. Then U being Atkinson means that X_2 or X'_2 is finite dimensional, and similarly for V. Since U and V are EAE, we have isomorphisms

$$T_2 : X_2 \rightarrow Y_2 \quad \text{and} \quad T'_2 : X'_2 \rightarrow Y'_2 \quad \text{(see [19, Proposition 3.2]).} \quad (4.1)$$

Note that

$$U' : X_1 \rightarrow X'_1 \quad \text{and} \quad V' : Y_1 \rightarrow Y'_1$$

are also isomorphisms. In both cases (1) and (2), one of the following two situations always occurs:

$$(a) Y_2 \cong X_2 \cong X'_2 \cong Y'_2 \quad \text{or} \quad (b) X'_1 \cong X \cong X'_1 \quad \text{and} \quad Y'_1 \cong Y \cong Y'_1. \quad (4.2)$$

Indeed, if U is Atkinson and X stable under finite-dimensional quotients, then the kernel X_2 or cokernel X'_2 of U is finite dimensional, leading to $X \cong X_1$ or $X \cong X'_1$, and we already have $X'_1 \cong X'_2$ via U'. Likewise we obtain $Y'_1 \cong Y_1 \cong Y$ in case V is Atkinson and Y stable under finite-dimensional quotients.

Now assume that we are in case (2). Since X is primary, X is isomorphic to X_1 or X_2 and X is isomorphic to X'_1 or X'_2. If $X \cong X_1$ or $X \cong X'_1$, then we have $X'_1 \cong X \cong X$, as explained above. Thus, we have the first set of isomorphisms in (b) or $X_2 \cong X \cong X'_2$. However, we already have $X_2 \cong Y_2$ and $X'_2 \cong Y'_2$ via the isomorphisms T_2 and T'_2 in (4.1), hence we have either (a) or the first set of isomorphisms in (b). Reasoning in a similar fashion, using that Y is primary, we note that we have either (a) or the second set of isomorphisms in (b). Thus, we are always in one of the situations (a) or (b).

We now show that in both cases (a) and (b) V and $W = U \oplus I_Y$ are SC. In case (a), U and V are not only EAE, but are also SC, by [19, Theorem 3.3]. Hence, (1.3) holds for some block operator $M = [A, B, C, D] \in \mathcal{B}(X \oplus Y)$ with A and D invertible. Now simply extend M to

$$\tilde{M} = \begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I_Y \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & D \end{bmatrix} : \begin{bmatrix} X \\ Y \end{bmatrix} \rightarrow \begin{bmatrix} X' \\ Y' \end{bmatrix}.$$

Clearly, \tilde{A} and \tilde{D} are invertible, and we have

$$V = D - CA^{-1}B = \tilde{D} - \tilde{C}\tilde{A}^{-1}\tilde{B},$$

$$W = \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & I_Y \end{bmatrix} = \tilde{A} - \tilde{B}\tilde{D}^{-1}\tilde{C}.$$

Hence, V and W are SC.

Finally, assume that we are in case (b). Then there exist isomorphisms

$$S : X \rightarrow X_1 \quad \text{and} \quad R : Y \rightarrow Y_1. \quad (4.3)$$

Consequently, U' and I_X are equivalent and V' and I_Y are equivalent, by the following identities

$$I_X = (S^{-1}U'^{-1})US \quad \text{and} \quad V' = (V'R)I_YR^{-1}. $$
Using the isomorphisms T_2 and T'_2 from 4.1, we obtain
\[
\begin{bmatrix}
V & 0 \\
0 & I_X
\end{bmatrix} = \begin{bmatrix}
V' & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & I_X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & S \\
0 & T'_2 & 0 \\
S^{-1}U'U^{-1} & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & S \\
0 & T'_2 & 0 \\
S^{-1}U'U^{-1} & 0 & 0
\end{bmatrix} W \begin{bmatrix}
0 & 0 & S \\
0 & T'_2 & 0 \\
R^{-1} & 0 & 0
\end{bmatrix}
\]
with the left and right factors on the right-hand side invertible. This shows that V and W are EAOE, which implies V and W are SC.
\[\square\]

The next corollary follows immediately from Theorem 2.1 and Proposition 4.2.

Corollary 4.3. Let the Banach spaces \mathcal{X} and \mathcal{Y} be essentially incomparable and stable under finite-dimensional quotients. Then all operators $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ that are EAE are both SC with $U \oplus I_\mathcal{Y}$, as well as with $I_\mathcal{X} \oplus V$.

5. Some cases where SC and EAE do coincide

Using similar arguments as in the previous section, we can prove two new cases where SC and EAE do coincide.

Proposition 5.1. Let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ with $\mathcal{X} \simeq \mathcal{Y}$. Assume either (1) or (2) in Proposition 4.2 holds, in particular, U and V are generalised invertible. Then the following are equivalent.

1. U and V are SC.
2. U and V are EAE.
3. $\ker U \simeq \ker V$ and $\coker U \simeq \coker V$.

Proof. Since U and V are generalised invertible, the equivalence of (2) and (3) follows from [19, Proposition 3.2]. The implication (1) \Rightarrow (2) holds without additional assumptions on U and V. Thus, it remains to prove (2) \Rightarrow (1). As observed in the proof of Proposition 4.2, we are either in case (a) or in case (b) of (4.2), and in case (a) U and V are SC, even without $\mathcal{X} \simeq \mathcal{Y}$. Hence, we may assume that (b) in (4.2) holds. Besides, the isomorphisms S and R in (4.3) and T_2 and T'_2 in (4.1), since U and V are EAE, we now also have an isomorphism $Q : \mathcal{X} \to \mathcal{Y}$. Then
\[
\begin{bmatrix}
0 & 0 & S \\
0 & T'_2 & 0 \\
S^{-1}U'U^{-1} & 0 & 0
\end{bmatrix} W \begin{bmatrix}
0 & 0 & S \\
0 & T'_2 & 0 \\
R^{-1} & 0 & 0
\end{bmatrix}
\]
Thus, $U = EVF$ holds with $E = \begin{bmatrix}U' & 0 & 0 \\
0 & SQ^{-1}R^{-1} & 0 \\
0 & T'_2 & 0
\end{bmatrix}$ and $F = \begin{bmatrix}0 & 0 & S \\
0 & 0 & 0 \\
0 & 0 & T'_2
\end{bmatrix}$, which are invertible. In other words, U and V are equivalent, hence EAOE, and thus SC.
\[\square\]

There are other cases with $\mathcal{X} \simeq \mathcal{Y}$ where EAE and SC coincide, but we intend to return to this topic in a separate paper.
Acknowledgements. This work is based on research supported in part by the National Research Foundation of South Africa (NRF) and the DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS). Any opinion, finding or conclusion or recommendation expressed in this material is that of the authors and the NRF and CoE-MaSS do not accept any liability in this regard.

References
