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a b s t r a c t 

This paper expands previous work on stock-dependent demand for a retailer with a two- 

warehouse (OW/RW) situation to the case of deteriorating items and where the retailer 

seeks to obtain the integrated optimal distribution policy from collaboration with a sup- 

plier. Motivated by practical applications and recent literature, a policy is considered 

whereby products in good order from the retailer’s back-room (RW) are frequently trans- 

ferred to its capacitated main store OW. Because the demand depends on the stock of 

good products in the OW, the aim is to keep this stock at its full capacity with products 

in good condition, and this can be done for as long as the RW stock of good products 

is positive. A firm’s objective function is the Net Present Value (NPV) of the firm’s future 

cash-flows. The profit functions are developed for both this continuous resupply policy and 

the commonly used policy in the OW/RW literature. Numerical examples are included and 

have been solved with grid search methods. The examples illustrate the benefits of adopt- 

ing the continuous resupply policy, and also collaboration between the retailer and the 

wholesaler. Moreover, it is shown how these benefits can be shared by small adjustments 

to the product’s unit price between the firms. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the grocery retail industry, a major part of the product portfolio consists of deteriorating items; products that have a

limited shelf life and lose quality over time. The quality of these items highly depends on the keeping and handling condi-

tions at different stages of the supply chain. These conditions include factors such as temperature, pressure, and humidity.

All the actors in the chain would then need to utilise appropriate infrastructure that well respects the keeping condition

requirements of such items. However, this is hard to achieve since in real-life cases, actors in the chain are usually quite

diverse in terms of facility and equipment [1] . This highlights the importance of employing logistics models that not only

incorporate the deterioration property, but also consider the keeping conditions of different stages of the chain. 

A grocery retailer meets the demand for numerous deteriorating items on a daily basis. To this end, the retailer stores

some quantity of those items at a temperature-controlled back-room and uses this inventory to replenish the refrigerators

(shelves) in the front room. Customers frequently visit these fridges to pick the products of their choice which results in
∗ Corresponding author. 
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a loss of energy and exposes the remaining items to a fluctuating temperature. The quantities stored in the back-room,

however, do not undergo such conditions. This negative impact of keeping items on shelves is also observed for another

group of items that do not necessarily have strict temperature requirements, such as fruits. For such items, the deterioration

rate increases when unpacked and displayed on shelves compared to the situation where these are packed (and inaccessible

by customers) in the back-room. 

Although it is relatively more expensive to display the items on shelves (e.g., due to a higher deterioration rate and

energy losses), it is crucial for fulfilling the demand. Having full shelves becomes more important for items with stock-

dependent demand. Dealing with such setting requires making decisions on quantity and frequency of the replenishment.

These decisions are part of almost every retailer’s day to day business and yet not sufficiently investigated by the research

community. The subset of the deteriorating item inventory management literature that is devoted to such applications is

known as “two-warehouse” models. 

In a two-warehouse setting, a retailer has a limited capacity at the own warehouse (OW) and therefore it may be nec-

essary to rent some extra warehouse capacity (RW) to be able to fulfill the demand. Based on the assumptions made in the

literature, not all the OW/RW models are applicable to the setting introduced in this paper. In some cases the RW repre-

sents a warehouse that belongs to an independent firm, whereas, in others the RW could be interpreted as the backroom

of the same retailer. The continuous resupply policy studied in this paper might improve its relevance for the latter case.

Nevertheless, the logic mostly adopted in the OW/RW literature does have its own important areas of applications. 

In practice, adopting the continuous resupply policy would result in a higher cost for the system, e.g., more frequent

replenishment would require a larger number of personnel. The implication of this policy would be higher values for holding

cost parameters compared to systems that adopt the conventional resupply policy; in a supermarket setting, a manager

should assign more personnel to frequently resupply/replenish the shelves. 

In the main stream of the two-warehouse models, the researchers assume that since the holding cost is higher at the

RW, the retailer starts fulfilling the demand from the RW until its inventory level reaches zero. The retailer then uses the

inventory stored at the OW to meet the demand. Since in such models both warehouses are directly used to fulfill the end

customers’ demand, the implicit assumption is that, from customers’ point of view, the OW and RW are located in the same

place or sufficiently close. Moreover, the researchers assume that items are not moved between the two warehouses while

the demand is met using the inventory stored at the RW. This implies that during the time that inventory level at the RW is

positive, the inventory level at the OW goes down only due to deterioration. This means that for the case of stock-dependent

demand 

1 , the retailer loses some potential demand while it could have been avoided by constantly transferring items from

the RW to the OW. This assumption is not unrealistic since the two warehouses are located in the same place. 

The contribution of this paper is threefold; (1) we introduce a new resupply policy between the two warehouses, (2)

we include the supplier (wholesaler) and evaluate the performance of the two-echelon model with the net present value

(NPV) approach, and (3) we compare the continuous resupply policy with the conventional policy introduced in the lit-

erature to see which policy performs better for the two-echelon supply chain defined in this paper. The paper is further

organised as follows. In Section 2 , we present an overview of the two-warehouse inventory literature. Section 3 presents the

notations, the modelling assumptions, the inventory activities, and the cash-flow structures of the retailer and the whole-

saler. In Section 4 , the NPV functions for the retailer and the wholesaler under the continuous resupply policy are derived.

Section 5 presents these functions under the common resupply policy. Numerical examples are presented in Section 6 to

demonstrate the value of collaboration under the continuous resupply policy. Finally, Section 7 summarises the findings of

this study and suggests future research possibilities. 

2. Literature review 

The literature of deteriorating inventory expands across several decades now. For an overview of the literature, see Nah-

mias [2] , Raafat [3] , Goyal and Giri [4] , and Li et al. [5] . First applications of deteriorating item inventory models were

inspired by blood bank systems and later were expanded to embrace examples such as fruits, vegetables, and flowers. In

terms of deterioration pattern, perishable items are quite diverse, however, we can generally identify two main categories;

(1) instantaneous deteriorating items, the quality of this group stays unchanged for a specific period of time, i.e., expiry date,

after which the items immediately lose the whole value, hence should be discarded, examples of such items include blood

units and dairy products, (2) non-instantaneous deteriorating items, this group is highly sensitive to the keeping conditions

and part of the on-hand inventory loses its quality and therefore seems less attractive to the end customer. Similar to the

first category, this group of items may also have expiry date, however, since they are highly sensitive to keeping condition,

they may start gradually losing their fresh appearance before the expiry date. Retailers have different policies towards these

deteriorating items when quality degradation occurs, for instance they may sell the items with a markdown. Fresh salad, cut

flowers, and loose fruits are in this category of deteriorating items. In this paper, we focus on the subset of the literature

that studies the latter category. 

In the literature of inventory management, most researchers assume an unlimited warehouse capacity, see, e.g., Ghiami

and Williams [6] and Tai et al. [7] . This assumption, however, is not practical for some cases. A retailer that is located on a
1 In the literature when the demand is assumed to be stock-dependent, it is a function of the inventory level at the OW which is visible by the end 

customer, i.e. shelves. 
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high street, for instance, needs to be very precise about replenishment policies due to the warehouse capacity constraints.

Sarma [8] was first to assume a limited capacity for an inventory model and suggested the use of an external warehouse.

Thereafter, different streams of literature evolved around the OW/RW setting for various applications for deteriorating items.

A group of researchers study applications in which a retailer can have permissible delays in payment. This agreement

would be helpful especially when the retailer has limited cash to instantaneously settle the account with the suppliers. Liang

and Zhou [9] study an inventory model with a constant demand rate that does not allow for shortages. In their model, they

assume that the deterioration rate at the OW is higher than the RW. Jaggi et al. [10] consider a two-warehouse inventory

model with price-sensitive demand and study the effect of trade credit period on the retailer’s performance. Tiwari et al.

[11] extend the model introduced by Liang and Zhou [9] by allowing for shortages and study the effects of inflation on the

inventory policies. Chakraborty et al. [12] analyse a system with permissible delay in payment in which there is a ramp type

demand and items are subject to Weibull distribution deterioration. 

A stream of research on two-warehouse models focuses on different inventory policies that the retailer may adopt.

Pakkala and Achary [13] study a production-inventory model with Last-In-First-out (LIFO) policy in which the manufac-

turer first stores produced items at the OW and if there is any production surplus, they are stored at the RW. To fulfill the

demand, however, the manufacturer uses the inventory stored at the RW first. Lee [14] builds upon the model developed by

Pakkala and Achary [13] and compare LIFO with First-In-First-out (FIFO) policy over a finite horizon. Jaggi et al. [10] study a

special case of these production-inventory models where production rate is infinite, i.e., inventory model, and compare dif-

ferent dispatching policies, including the effects of permissible delays in payments. Assuming a finite planning horizon, Xu

et al. [15] extend the model developed by Jaggi et al. [10] modifying those policies for the problem under study. In another

study, Alamri and Syntetos [16] develop a two-warehouse system in which a percentage of every replenishment quantity is

defective and therefore there is a need for a screening operation. The authors investigate the effect of applying a policy that

simultaneously uses the items stored at the OW and RW. 

A subset of the literature on the OW/RW models investigates the effect of time-value of money on inventory and

production-inventory settings. Yang [17] studies a model with two warehouses in which shortages are allowed. He com-

pares two different scenarios, (1) having the stock-out period at the start of the inventory cycle, and (2) the common style

in the literature where the shortage period occurs at the end of each cycle. Dey et al. [18] study an OW/RW setting with

finite horizon in which shortages are allowed and the aggregated inventory level of the two warehouses is considered for

the analysis. Yang and Chang [19] investigate a two-warehouse model in which the retailer has the option of permissible

delay in settling the account with the supplier. Bhunia et al. [20] extend the model developed by Yang [17] assuming a

time-dependent demand function. Tiwari et al. [21] investigate a similar system assuming that shortages are allowed and

partially backlogged. Considering complete backlogging, Jonas [22] develops a two-echelon production-inventory model in

which a manufacturer and a supplier jointly optimise their policies and the manufacturer has a credit period for paying the

supplier. 

In the literature of OW/RW models, stock-dependent demand has not received much attention. Zhou and Yang [23] may

be the first to consider this demand pattern. The stock-dependent demand has then been used in several papers, see, e.g.,

Tiwari et al. [11] and [21] . It is interesting and insightful to see how the application of the continuous resupply policy may

boost the sale since it keeps the OW (shelves) full. An interesting paper that further motivates our paper is Panda et al.

[24] , in which the value of having full shelf space in the store is discussed and in which the trade-off between a larger

capacity in an OW/RW situation versus more extensive use of a RW is analysed (the capacity of the OW being the shelf

space allocated to the product). The expansion to the case of item deterioration, as undertaken in this paper, implies that

choosing a continuous resupply policy as well would be a natural choice. 

While many articles in the deteriorating inventory literature develop NPV functions based on costs only, it is important

to develop an objective function that also takes into account the revenues (Ghiami and Beullens [25] ). There are two main

reasons for this. First, demand increases with the inventory level of good products at the OW. Because, in general, it cannot

be guaranteed that this level will equal the capacity of the OW at all times, one must account for demand and hence

revenue fluctuations for the retailer over time. Second, a model only based on cost will also prove difficult for accurately

deriving the NPV function of the supplier since part of the costs of the retailer will translate into revenues for the supplier,

and hence the need for considering the revenue stream for the supplier, too. See also Beullens [26] for a discussion on the

impact that a lack of recognition of revenues shifting over time has had on inventory research. 

To our knowledge, no study has analysed the effect of continuous resupply policy when the demand is stock-dependent.

This would be interesting to study since the continuous resupply policy tends to keep the inventory level at the OW as high

as possible, hence, introduces a totally different dynamics into the inventory system. Moreover, including the supplier in the

model would provide the managers with insights into the buyer-supplier relation and the implications of such collaborations

for each of the players in this supply chain. In the OW/RW literature, Ghiami et al. [27] and Jonas [22] have presented

a multi-echelon model and item deterioration with respectively stock-dependent and constant demand rates. In a single-

echelon setting, Dey et al. [18] study a two-warehouse model applying a continuous resupply policy with time-dependent

demand. 

In situations where the RW is not in the vicinity of the OW, a continuous resupply policy might be too expensive. Such

models assume a transport costs from RW to OW. Zhou and Yang [23] study a two-warehouse model in which the demand

is met using the inventory stored in the OW, and the RW is used to replenish the OW in bulks. This two-echelon system is

to deliver a non-deteriorating items for which shortages are not allowed. 
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Table 1 

Parameters used for modelling the inventory system. 

Notation Description Notation Description 

D ( t ) demand rate which is y + zI o (t) d W unit disposal cost at the wholesaler 

y constant component of the demand rate θ o deterioration rate at the OW 

z coefficient that relates the demand θ r deterioration rate at the RW 

to the inventory level θ deterioration rate at the wholesaler 

s R fixed ordering cost at the retailer f o unit holding cost per unit of time at the OW 

s W fixed ordering cost at the wholesaler f r unit holding cost per unit of time at the RW 

p sales price f unit holding cost per unit of time at the wholesaler 

p R retailer purchasing price g deposit paid by customer in the case of shortage 

p W wholesaler purchasing price r reduction in price for backordered items 

α discounting rate b unit shortage cost per unit of time 

β backlogging rate π unit lost sale cost 

d R unit disposal cost at the retailer W capacity at the OW 

Fig. 1. Inventory level at the retailer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Modelling assumptions and parameters 

3.1. Notation 

Table 1 lists the notations that we use in this paper. 

3.2. The activity 

In this study, we consider an integrated system that includes a retailer and a wholesaler. The retailer cooperates with the

wholesaler to deliver a deteriorating product. Fig. 1 illustrates how the stock position changes over time at the retailer. The

demand at the retailer is defined as D (t) = y + zI o (t) , where y and z are constants and I o ( t ) represents the inventory level

at the OW at time t. Similar demand pattern has been used in the literature by, e.g., Min et al. [28] , Chung and Cárdenas-

Barrón. [29] , and Zanoni and Jaber [30] . The retailer places an order to the supplier and instantaneously receives the batch at

t = 0 . The retailer then stores W units of the received quantity in the OW and uses the RW for storing the excess inventory.

During the time interval between t = 0 and t = t r , the demand realises at the rate D (t) = y + zW as the OW is full. As long

as the inventory level at the RW is positive, the retailer continuously replenishes the OW using the items stored at the RW.

We assume that the retailer follows a FIFO policy for replenishing the OW, e.g., putting the newly replenished quantity at

the back of the shelf. 

At time t = t r , the RW inventory level reaches zero, therefore the retailer starts using the OW to meet the demand.

During the time interval between t = t r and t = t o , the inventory level at the OW decreases with the varying demand rate of

D (t) = y + zI o (t) . At t = t o the OW runs out of inventory, hence the demand rate drops to y and stays at this level until the

next replenishment ( t = T R ). During this shortage period, only a percentage of the demand ( β) is backlogged while the rest is

lost. On the arrival of the next batch, the backlogged demand is met immediately. The described inventory position between

0 and T R at the retailer takes place over intervals of length T R (decision variable) at infinitum. Fig. 1 graphically illustrates

the inventory level during one inventory cycle. In Section 4 , we show how T R consists of two independent components, i.e.,

t r and t s , for which the model should find the optimal values. 

Each inventory cycle at the wholesaler is to cover k inventory cycles of the retailer ( T W 

= kT R ). This is another decision

variable of the model. At the start of each inventory cycle of the wholesaler, a quantity of Q is received from the upstream
W 



Y. Ghiami and P. Beullens / Applied Mathematical Modelling 82 (2020) 271–292 275 

Fig. 2. Inventory level at the wholesaler. 

Fig. 3. Cash-flow structure at the retailer. 
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manufacturer/supplier. The wholesaler then immediately dispatches a quantity of Q R to the retailer. This results in drops of

size Q R in the wholesaler inventory level in T R intervals. Between each two deliveries to the retailer, the inventory level at

the wholesaler decreases due to a constant rate of deterioration ( θ ). This pattern continues until the inventory level reaches

zero at t = (k − 1) T R . At time t = kT R the wholesaler replenishes the inventory and immediately sends the next batch ( Q R )

to the retailer. At this point, the inventory position is exactly as it was at t = 0 . This logistics pattern starts at t = ikT R
(i = 0 , 1 , 2 , . . . ) and lasts for kT R units of time, see Fig. 2 . It should be noted that since there is no backlogged demand at

 = 0 , the quantity sent to the retailer for the first period is Q R − βyt s . 

3.3. The cash-flows 

The objective of this integrated supply chain is to maximise the NPV of all future cash-flows, see Ghiami and Beullens

[25] . With this regard, the payment structure of the whole supply chain is considered. The transfer prices between the two

members of this two-echelon model do not have any impact on the optimal solution of the integrated system as payment

symmetry and equal opportunity cost are assumed, see Beullens and Janssens [31] . For comparison purposes, however, it

is useful to explicitly include the transfer prices as this will allow the comparison of an integrated approach to the one

in which the firms act independently. The payment structures of the retailer and the wholesaler are illustrated in Figs. 3

and 4 . 
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Fig. 4. Cash-flow structure at the wholesaler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is assumed that when the demand arises and the retailer’s stock position is strictly positive, the relevant revenue is

immediately received by the retailer. Since the inventory level at the OW is at maximum during the period associated with

t r , the annuity stream of the revenue over this period is p(y + zW ) . During the time interval between t r and t o , the revenue

at the retailer is a continuous function of the inventory level, p(y + zI o (t)) . Shortage period starts at t = t o after which the

retailer receives a deposit g ≥ 0 for each unit of the demand which is backlogged. This creates an annuity steam revenue

of g βy between t o and T R . During this shortage period, the retailer incurs a unit backorder cost of b per unit of time. The

retailer also has to pay a penalty of π for each unit of lost sale which creates an annuity stream cost of π(1 − β) y during

the stock-out period. At the end of an inventory period, when the retailer replenishes the inventory level, the backlogged

demand is met immediately and the retailer gives a price reduction of r ≥ 0 per unit of backordered item which creates a

revenue of βyt s (p − g − r) . 

The retailer incurs a set-up cost of s R at the beginning of each inventory period when placing an order to the wholesaler.

At the same time, the retailer should pay the purchasing price of p R Q R to the wholesaler, except for the first inventory

period where it is p R (Q R − βyt s ) . The retailer pays an out-of-pocket holding cost of f o and f r per unit of time per unit of

item stored at the OW and the RW, respectively. Each deteriorated item at the OW and the RW creates an instantaneous

out-of-pocket cost of d R which is paid to a recycling company to dispose of. 

The wholesaler receives lump sum revenues of p R Q R in T R intervals, except for the first revenue at t = 0 where it is

p R (Q R − βyt s ) . At the start of each inventory period, i.e., at t = iT W 

(i = 0 , 1 , 2 , . . . ) , the wholesaler incurs a fixed set-up

cost of s W 

to place an order to the upstream manufacturer/supplier. The wholesaler also pays the purchasing cost to the

upstream manufacturer/supplier at t = iT W 

(i = 0 , 1 , 2 , . . . ) proportional to the order quantity Q W 

. There is an out-of-pocket

holding cost of f for inventory at the wholesaler which should be paid per item per unit of time. During the in-stock period,

each deteriorated item creates a disposal cost of d W 

for the wholesaler that should be paid to a recycling company. 

4. Model under the continuous resupply policy 

4.1. Inventory and shortage levels at the retailer 

In this research, it is assumed that the demand is a function of the on-hand inventory in the OW. The following shows

the demand function 

D (t) = y + zI o (t) . (1) 

Under the continuous resupply policy, the retailer aims at keeping the inventory level of the OW at maximum. To this

end, the retailer replaces both deteriorated and sold items at the OW with fresh ones from the RW. At the same time, the

inventory level at the RW further decreases due to deterioration. The inventory level finally reaches zero at t = t r , therefore

I r (t r ) = 0 , which is used as a boundary condition to find the inventory level at the RW. The following differential equation

represents the change of inventory level at the RW: 

dI r (t) 

dt 
= −(zW + y ) − θr I r (t) − θo W, 0 ≤ t ≤ t r . (2) 

By solving the differential equation presented in (2) , the inventory level of the RW during this interval is obtained: 

I r (t) = 

(z + θo ) W + y 

θr 
( e θr (t r −t) − 1) , 0 ≤ t ≤ t r . (3) 

The inventory level at the OW remains unchanged between t = 0 and t = t r ( d I o (t) /d t = 0 ) with the initial inventory level

of W , therefore 

I o (t) = W, 0 ≤ t ≤ t r . (4) 
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The retailer starts using the items stored at the OW at t = t r when the inventory at the RW is totally depleted. The following

differential equation shows how the inventory level at the RW changes due to demand and deterioration until it reaches

zero at t = t o : 

dI o (t) 

dt 
= −zI o (t) − y − θo I o (t) , t r ≤ t ≤ t o , (5)

which results in the following inventory level for the OW: 

I o (t) = 

y 

z + θo 
(e (z+ θo )(t o −t) − 1) , t r ≤ t ≤ t o . (6)

The shortage period starts at t = t o when the retailer runs out of inventory at the OW and lasts until the end of the

cycle, i.e., t = T R . During this shortage period only a percentage, β , of the demand is backordered. The shortage level is then

presented by the following differential equation: 

dB (t) 

dt 
= βy, t o ≤ t ≤ T R . (7)

Considering the relevant boundary condition, B (t o ) = 0 , the shortage level is 

B (t) = βy (t − t o ) , t o ≤ t ≤ T R . (8)

To formalise the interdependency between the decision variables, one should note that (4) and (6) give the same value

for I o ( t ) at t = t r , therefore 

t o = t r + 

1 

z + θo 
ln 

(
1 + 

z + θo 

y 
W 

)
. (9)

The inventory period at the retailer is then obtained as follows 

T R = t r + 

1 

z + θo 
ln 

(
1 + 

z + θo 

y 
W 

)
+ t s . (10)

The retailer’s batch size for the second period onward is the sum of the backordered items and the initial inventory level: 

Q R = I r (0) + I o (0) + B (T R ) 

= 

(z + θo ) W + y 

θr 
(e θr t r − 1) + W + βyt s . (11)

4.2. Inventory level at the wholesaler 

The wholesaler covers k inventory cycles of the retailer during each inventory period, T W 

. This divides the inventory cycle

at the wholesaler into k intervals of length T R . The stock level at the wholesaler drops by Q R at the beginning of each of

these intervals when a batch is sent to the retailer. During each interval, the inventory level at the wholesaler goes down

due to deterioration. Based on intuition, in any inventory cycle, it is optimal for the wholesaler to have exactly Q R units in

stock at the time of sending the k th replenishment quantity to the retailer. This means that after dispatching this quantity,

the wholesaler will be out of stock until the next order from the upstream manufacturer/supplier is received. The following

differential equation illustrates the change in the stock level over the i th time interval: 

dI i W 

(t) 

dt 
= − θ I i W 

(t) , i = 1 , 2 , . . . k − 1 . (12)

The inventory level during this interval is then (see Appendix A ) 

I i W 

(t) = Q R e 
θ (iT R −t) e 

θ (k −i ) T R − 1 

e θT R − 1 

, (i − 1) T R ≤ t ≤ iT R , i = 1 , 2 , . . . , k − 1 . (13)

Using (13) , we obtain the inventory level at the wholesaler at t = 0 , just after sending the first batch to the retailer: 

I 1 W 

(0) = Q R 
e kθT R − e θT R 

e θT R − 1 

. (14)

The wholesaler order quantity is then given by I 1 
W 

(0) + Q R , therefore 

Q W 

= Q R 
e kθT R − 1 

e θT R − 1 

. (15)

The first order quantity of the wholesaler ( t = 0 ) is Q W 

− βyt s , since there is no backlogged demand at the retailer. In the

following sections, the relevant revenue and cost functions of the parties involved in this supply chain are analysed. 
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4.3. Revenues and costs at the retailer 

In this research work, in order to aggregate all the costs and revenues of the supply chain as a whole, we normalise

all the cash-flows taking place between this two-echelon system and external parties. To this end, the equivalent annuity

stream of all these cash-flows are obtained and added to the total profit function. For detailed explanation and mathematical

analysis of annuity stream functions see Grubbström [32] . To see a detailed explanation on how to calculate the annuity

stream of costs and revenues for deteriorating item inventory models see, e.g., Ghiami [33] and Ghiami and Beullens [25] . 

In each inventory cycle, the retailer earns a revenue of p(y + zW ) over the time interval between t = 0 and t = t r . The

equivalent annuity stream of such revenues over an infinite horizon is 

ASR R 1 = p(y + zW ) 
1 − e −αt r 

1 − e −αT R 
. (16) 

The revenue function of the retailer changes to p(y + zI o (t)) between t r and t o . The equivalent annuity stream of these

revenues over an infinite horizon is hence given by 

ASR R 2 = 

α

1 − e −αT R 

∫ t o 

t r 

p(y + zI o (t)) e −αt dt 

= pye −αt o 
e α(t o −t r ) − 1 

1 − e −αT R 
+ 

αp yze −αt o 

(z + θo )(1 − e −αT R ) 

[ 
1 

α + z + θo 
(e (α+ z+ θo )(t o −t r ) − 1) − 1 

α
( e α(t o −t r ) − 1) 

] 
. (17) 

Over the shortage period (between t = t o and t = T R ) in each inventory cycle, the retailer receives a deposit of g for each

backordered item which creates an annuity revenue of g βy in that cycle. The equivalent annuity stream of revenues obtained

from the deposits over an infinite horizon is 

ASR R 3 = gβy 
e −αt o − e −αT R 

1 − e −αT R 
. (18) 

Immediately after each replenishment at the retailer, the backordered demand is met, creating a lump sum revenue of

(p − g − r) βyt s . The equivalent annuity stream of all these revenues over an infinite horizon is as follows: 

ASR R 4 = (p − g − r) βyt s 
αe −αT R 

1 − e −αT R 
. (19) 

The annuity stream of all revenues at the retailer over an infinite horizon is then given by 

ASR R = ASR R 1 + ASR R 2 + ASR R 3 + ASR R 4 . (20) 

At the start of each inventory cycle, the retailer incurs a set-up cost of s R . The annuity stream of all set-up costs over an

infinite horizon is given by 

SC R = s R 
α

1 − e −αT R 
. (21) 

The retailer pays the purchasing price at the beginning of each inventory cycle when placing an order. It should be noted

that the order quantity of the first inventory cycle is smaller as there is not backordered demand. The annuity stream of all

purchasing costs over an infinite horizon is then 

P C R = p R Q R 
α

1 − e −αT R 
− αp R βyt s . (22) 

The equivalent annuity stream of all out-of-pocket holding costs at the OW and RW over an infinite horizon are respectively

given by 

HC OW 

= 

α

1 − e −αT R 

[
f o 

∫ t o 

0 

I o (t ) e −αt dt 

]

= f o W 

1 − e −αt r 

1 − e −αT R 
+ 

f o y 

z + θo 

[
α

z + θo + α

(
e (z+ θo )(t o −t r ) −αt r − e −αt o 

1 − e −αT R 

)
− e −αt r − e −αt o 

1 − e −αT R 

]
, (23) 

and 

HC RW 

= 

α

1 − e −αT R 

[
f r 

∫ t r 

0 

I r (t ) e −αt dt 

]

= 

f r ( (z + θo ) W + y ) 

θr 

[
α

α + θr 

(
e θr t r − 1 

1 − e −αT R 

)
− θr 

α + θr 

(
1 − e −αt r 

1 − e −αT R 

)]
. (24) 

The annuity stream of the overall holding cost at the retailer is then 

H C R = H C OW 

+ H C RW 

. (25) 



Y. Ghiami and P. Beullens / Applied Mathematical Modelling 82 (2020) 271–292 279 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

Since we need the terms 
∫ t o 

0 I o (t ) e −αt dt and 

∫ t r 
0 I r (t ) e −αt dt for also deterioration cost calculations, we have included the

detailed mathematical workout of these two terms in Appendix B . 

The retailer pays a cost of d R per unit of deteriorated item to a recycling company to dump/recycle the item. This cost is

incurred immediately after an item deteriorates. The annuity stream of the deterioration cost of all inventory cycles at the

OW and RW over an infinite horizon are respectively given by 

DC OW 

= d R θo W 

1 − e −αt r 

1 − e −αT R 
+ 

d R θo y 

z + θo 

[
α

z + θo + α

(
e (z+ θo )(t o −t r ) −αt r − e −αt o 

1 − e −αT R 

)
− e −αt r − e −αt o 

1 − e −αT R 

]
, (26)

and 

DC RW 

= d R ( (z + θo ) W + y ) 

[
α

α + θr 

(
e θr t r − 1 

1 − e −αT R 

)
− θr 

α + θr 

(
1 − e −αt r 

1 − e −αT R 

)]
. (27)

Using these two cost components, the overall deterioration cost at the retailer is obtained as follows 

DC R = DC OW 

+ DC RW 

. (28)

During the stock-out period, each backordered item creates a penalty cost of b per unit of time. The present value of this

shortage cost in the first period is 

BC = 

∫ T R 

t o 

bβy (t − t o ) e 
−αt dt 

= 

bβy 

α

[
e −αt o 

α
(1 − e −αt s ) − t s e 

−αT R 

]
. (29)

The equivalent annuity stream of all shortage costs over an infinite horizon is then given by 

BC R = 

α

1 − e −αT R 
BC 

= bβy 

[
e −αt o 

α

(
1 − e −αt s 

1 − e −αT R 

)
− t s 

e −αT R 

1 − e −αT R 

]
. (30)

A penalty of π per unit of lost sale is paid by the retailer which creates a cost of πy (1 − β) over the time interval between

 = t o and t = T R . The equivalent annuity stream of all lost sale costs over an infinite horizon is 

LC R = 

α

1 − e −αT R 
πy (1 − β) 

∫ T R 

t o 

e −αt dt 

= πy (1 − β) 

(
e −αt o − e −αT R 

1 − e −αT R 

)
. (31)

Considering the annuity streams of revenue in (16) –(19) and annuity streams of cost in (21) –(27), (30) , and (31) , the

annuity stream profit function at the retailer is given by 

ASP R = ASR R − (SC R + P C R + HC R + BC R + LC R + DC R ) . (32)

4.4. Revenues and costs at the wholesaler 

The wholesaler receives revenues of p R Q R at t = iT R ( i = 1 , 2 , . . . ) associated with the batches sent to the retailer. The

revenues at t = 0 , however, is less as there is no backordered demand at the retailer yet. The equivalent annuity stream of

all the revenues over an infinite horizon is given by 

ASR W 

= αp R (Q R − βyt s ) + αp R Q R e 
−αT R (1 + e −αT R + e −2 αT R + . . . ) 

= p R Q R 
α

1 − e −αT R 
− αp R βyt s . (33)

The set-up cost of purchasing for the wholesaler, s W 

, is incurred at the beginning of each inventory cycle. The equivalent

annuity stream of all set-up costs paid over an infinite horizon is then 

SC W 

= s W 

α

1 − e −αkT R 
. (34)

The wholesaler purchases the item in batches of size Q W 

at the unit price of p W 

. These costs are incurred at the beginning

of the wholesaler’s inventory cycles. The corresponding annuity stream of all purchasing costs at the wholesaler is then as

follows 

P C W 

= p W 

Q W 

α

1 − e −αkT R 
− αp W 

βyt s . (35)
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Fig. 5. The inventory level at the RW and the OW based on the existing literature (Ghiami et al. [27] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the next step, we obtain the annuity stream of all holding costs at the wholesaler over an infinite horizon as presented

below, see Appendix C for the detailed mathematical analysis. 

HC W 

= 

α f Q R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1)(1 − e −αkT R ) 

[
e θkT R 

e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 
− e −αT R − e −αkT R 

1 − e −αT R 

]
. (36) 

The deterioration cost at the wholesaler is incurred exactly at the same time as the out-of-pocket holding cost, and occurs

at a rate of d W 

θ . The annuity stream of this cost over an infinite horizon is given by 

DC W 

= 

αd W 

θQ R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1)(1 − e −αkT R ) 

[ 
e θkT R 

e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 
− e −αT R − e −αkT R 

1 − e −αT R 

] 
. (37) 

Using the revenues and costs presented in (33) –(37) , the annuity stream of the profit at the wholesaler is then 

ASP W 

= ASR W 

− (SC W 

+ P C W 

+ HC W 

+ DC W 

) . (38)

Considering the same capital rate for both firms, the annuity stream profit function of the supply chain is 

ASP SC = ASP R + ASP W 

= ASR R − (SC R + HC R + BC R + LC R + DC R + SC W 

+ P C W 

+ HC W 

+ DC W 

) . (39) 

5. Model under the common OW/RW policy 

As discussed in Section 1 , in the literature, two-warehouse systems are typically modelled in a different way in terms of

the stock movements between the OW and the RW. In this research work, we argue that although the conventional two-

warehouse models from the literature can be useful in many applications, in a retailer context with demand dependent on

observable stock at the OW and with item deterioration, it may not perform as well as the continuous resupply policy. In

order to quantify how the two policies may deviate from each other in terms of optimal policies, in this paper, we model

a two-warehouse setting using the common OW/RW logic introduced in the literature. In its logistical set-up, this model is

very similar to Ghiami et al. [27] in which this common OW/RW method was also used. However the objective function in

that paper was not based on the NPV. Fig. 5 graphically illustrates how the inventory levels at the OW and the RW change

under this policy in the case of item deterioration. 

The following differential equation represents the change in the inventory level at the RW 

dI ′ r (t) 

dt 
= −θr I 

′ 
r (t) − (y + zI ′ o (t)) , 0 ≤ t ≤ t ′ r . (40) 

Considering the boundary condition, I ′ r (t r ) = 0 , for the differential equation presented in (40) , the inventory level of this

time interval is obtained as follows 

I ′ r (t) = 

y 

θr 
(e θr (t ′ r −t) − 1) + 

zW e −θo t 

θr − θo 
(e (θr −θo )(t ′ r −t) − 1) , 0 ≤ t ≤ t ′ r . (41) 

In the literature, it is assumed that during the time that the RW is in use, the inventory level at the OW goes down due to

deterioration, therefore 

dI ′ o (t) = −θo I 
′ 
o (t ) , 0 ≤ t ≤ t ′ r . (42) 
dt 
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Using the boundary condition, I ′ o (0) = W, the inventory level of the OW during this time period is obtained: 

I ′ o (t) = W e −θo t , 0 ≤ t ≤ t ′ r . (43)

The change in the inventory level of the OW between t = t ′ r and t = t ′ o is as shown in the following differential equation 

dI ′ o (t) 

dt 
= −zI ′ o (t) − y − θo I 

′ 
o (t ) , t ′ r ≤ t ≤ t ′ o , (44)

and therefore 

I ′ o (t) = 

y 

z + θo 
(e (z+ θo )(t ′ o −t) − 1) , t ′ r ≤ t ≤ t ′ o . (45)

Considering the unique value for I ′ o (t) at t = t ′ r obtained from both (43) and (45) , the value of t ′ o is obtained as a function

of t ′ r : 

t ′ o = t ′ r + 

1 

z + θo 
ln 

(
1 + 

z + θo 

y 
W e −θo t 

′ 
r 

)
, (46)

and since T R = t o + t s , therefore 

T ′ R = t ′ r + 

1 

z + θo 
ln 

(
1 + 

z + θo 

y 
W e −θo t 

′ 
r 

)
+ t ′ s . (47)

The retailer’s batch size for the second period onwards is then 

Q 

′ 
R = 

y 

θr 
(e θr t 

′ 
r − 1) + 

zW 

θr − θo 
(e (θr −θo ) t ′ r − 1) + W + βyt ′ s . (48)

The revenue received by the retailer between t = 0 and t = t ′ r is p(y + zI ′ o (t)) . The annuity stream of all such revenues

over an infinite horizon is hence given by 

ASR 

′ 
R 1 = py 

1 − e −αt ′ r 

1 − e −αT ′ 
R 

+ 

αp zW 

θo + α

(
1 − e −(θo + α) t ′ r 

1 − e −αT ′ 
R 

)
. (49)

The other revenue terms for the retailer are as presented in (17) –(19) , however, since they are functions of t ′ o , t ′ r , and T ′
R

(and not t o , t r , and T R ), we respectively use ASP ′ 
R 2 

, ASP ′ 
R 3 

, and ASP ′ 
R 4 

to denote them. The annuity stream of revenues at the

retailer is then 

ASR 

′ 
R = ASR 

′ 
R 1 + ASR 

′ 
R 2 + ASR 

′ 
R 3 + ASR 

′ 
R 4 . (50)

Under the common policy, the retailer’s setup and purchasing costs are parametrically the same as (21) and (22) . In this

section, we respectively use SC ′ R and P C ′ R to denote these two cost functions. Taking the same approach as in Section 4.3 , the

present value of holding cost at the OW and the RW only for the first period are 

HC ′ o = f o 

∫ t ′ o 

0 

I ′ o (t ) e −αt dt , (51)

and 

HC ′ r = f r 

∫ t ′ r 

0 

I ′ r (t ) e −αt dt , (52)

respectively. The annuity stream of holding cost at the retailer over an infinite horizon is hence given by 

H C ′ R = H C ′ OW 

+ H C ′ RW 

, (53)

where 

HC ′ OW 

= 

α

1 − e −αT ′ 
R 

HC ′ o 

= 

α f o W 

α + θo 

(
1 − e −(α+ θo ) t ′ r 

1 − e −αT ′ 
R 

)
+ 

f o y 

z + θo 

[
α

α + z + θo 

(
e (z+ θo )(t ′ o −t ′ r ) −αt ′ r − e −αt ′ o 

1 − e −αT ′ 
R 

)
− e −αt ′ r − e −αt ′ o 

1 − e −αT ′ 
R 

]
, (54)

and 

HC ′ RW 

= 

α

1 − e −αT ′ 
R 

HC ′ r 

= 

α f r (e θr t 
′ 
r − e −αt ′ r ) 

(α + θr )(1 − e −αT ′ 
R ) 

(
y 

θr 
+ 

zW e −θo t 
′ 
r 

θr − θo 

)
− f r y 

θr 

(
1 − e −αt ′ r 

1 − e −αT ′ 
R 

)
− α f r zW 

(α + θo )(θr − θo ) 

(
1 − e −(α+ θo ) t 

′ 
r 

1 − e −αT ′ 
R 

)
. (55)

The present value of deterioration cost at the OW and the RW for the first period are respectively 

DC ′ o = d R 

∫ t ′ o 
θo I 

′ 
o (t ) e −αt dt , (56)
0 
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Table 2 

Cases studied in this research. 

θ o < θ r θ o ≥ θ r 

f o < f r Case 1 Case 2 

f o ≥ f r Case 3 Case 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 

DC ′ r = d R 

∫ t ′ r 

0 

θr I 
′ 
r (t ) e −αt dt . (57) 

Therefore, the annuity stream of deteriorating cost at the retailer over an infinite horizon is 

DC ′ R = DC ′ OW 

+ DC ′ RW 

, (58) 

where 

DC ′ OW 

= 

α

1 − e −αT ′ 
R 

DC ′ o 

= 

αd R θo W 

α + θo 

(
1 − e −(α+ θo ) t ′ r 

1 − e −αT ′ 
R 

)
+ 

d R θo y 

z + θo 

[
α

α + z + θo 

(
e (z+ θo )(t ′ o −t ′ r ) −αt ′ r − e −αt ′ o 

1 − e −αT ′ 
R 

)
− e −αt ′ r − e −αt ′ o 

1 − e −αT ′ 
R 

]
, (59) 

and 

DC ′ RW 

= 

α

1 − e −αT ′ 
R 

DC ′ r 

= 

αd R θr (e θr t 
′ 
r − e −αt ′ r ) 

(α + θr )(1 − e −αT ′ 
R ) 

(
y 

θr 
+ 

zW e −θo t 
′ 
r 

θr − θo 

)
− d R θr y 

θr 

(
1 − e −αt ′ r 

1 − e −αT ′ 
R 

)
− αd R θr zW 

(α + θo )(θr − θo ) 

(
1 − e −(α+ θo ) t 

′ 
r 

1 − e −αT ′ 
R 

)
. (60) 

The annuity stream of backorder cost and lost sale cost at the retailer are obtained as in (30) and (31) : 

BC ′ R = bβy 

(
e −αt ′ o 

α

(
1 − e −αt ′ s 

1 − e −αT ′ 
R 

)
− t ′ s 

e −αT ′ R 

1 − e −αT ′ 
R 

)
, (61) 

and 

LC ′ R = πy (1 − β) 

(
e −αt ′ o − e −αT ′ R 

1 − e −αT ′ 
R 

)
. (62) 

Therefore, the annuity stream of the profit function at the retailer is 

ASP ′ R = ASR 

′ 
R − (SC ′ R + P C ′ R + HC ′ R + DC ′ R + BC ′ R + LC ′ R ) . (63)

At the wholesaler, the annuity stream of revenue and costs are parametrically the same as (33) –(37) , however, they are

functions of t ′ o , t ′ r , and T ′ R . We, therefore, denote them by ASR ′ W 

, SC ′ W 

, P C ′ W 

, HC ′ W 

, and DC ′ W 

, respectively. The annuity stream

profit function of the supply chain is then given by 

ASP ′ SC = ASR 

′ 
R − (SC ′ R + HC ′ R + BC ′ R + LC ′ R + DC ′ R + SC ′ W 

+ P C ′ W 

+ HC ′ W 

+ DC ′ W 

) . (64)

In the next section, the difference between the two models presented in Sections 4 and 5 is analysed in more detail. 

6. Numerical examples 

In this section, we investigate the effect of integration and continuous resupply on four cases. These cases are different

in terms of deterioration and holding cost rates at the OW and the RW, and each could represent a real-case situation, see

Table 2 . For instance, Case 1 could be a small retailer on a high street with limited warehouse capacity that rents a nearby

warehouse at a higher cost and since the warehouse is not well-specialised in handling that specific deteriorating item,

the resulting deterioration rate is higher. Case 4 could be a grocery retailer and what happens between the front-room and

back-room; the items that are placed in the refrigerators and are accessible by the customers will have higher inventory cost

since customers keep opening the refrigerators. This results in a higher cost, compared to the situation at the back-room.

This situation would also result in a higher deterioration, due to fluctuations in the temperature and possible damages. 

In order to solve the model, we perform an exhaustive search. To this end, we define three nested loops, enumerating

t r , t s , and k . More specifically for t r and t s , we assign values between 0 and 30 with incremental steps of 0.01. The integer

values assigned to k are between 1 and 15. 
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Table 3 

Numerical results for integrated and sequential approach. 

Case Approach t r t o t s T R Q R ASP R k T W Q W ASP W ASP SC 

1 Sequential 0.71 1.60 0.38 1.98 437 580.73 3 5.94 1392 355.89 936.62 

Integrated 1.59 2.48 0.00 2.48 628 487.14 2 4.96 1304 553.66 1040.79 

δimp (%) 11.12 

2 Sequential 0.76 1.64 0.47 2.11 466 551.06 2 4.22 962 359.56 910.62 

Integrated 1.68 2.56 0.00 2.56 652 462.74 2 5.12 1356 569.83 1032.57 

δimp (%) 13.39 

3 Sequential 0.78 1.67 0.48 2.15 470 548.59 2 4.30 970 354.95 903.54 

Integrated 3.33 4.22 0.78 5.00 1280 235.10 1 5.00 1280 824.86 1059.96 

δimp (%) 17.32 

4 Sequential 0.85 1.73 0.57 2.30 504 521.52 2 4.60 1044 379.27 900.79 

Integrated 3.78 4.66 0.69 5.35 1371 225.49 1 5.35 1370 565.90 1091.39 

δimp (%) 21.16 

Table 4 

The retailer’s and the wholesaler’s profit when p R changes, integrated approach. 

p R T R Q R ASP R k T W Q W ASP W ASP SC 

4 2.48 628 1562.01 2 4.96 1304 -521.22 1040.79 

6 2.48 628 1024.57 2 4.96 1304 16.22 1040.79 

8 2.48 628 487.14 2 4.96 1304 553.66 1040.79 

10 2.48 628 -50.30 2 4.96 1304 1091.09 1040.79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Impact of integration 

This section illustrates the differences between the integrated model and the non-integrated one where the retailer fol-

lows the continuous resupply policy. In the integrated model, the inventory policies at the supplier and the retailer are

determined simultaneously to maximise the integrated supply chain profit function, ASP SC . In the non-integrated supply

chain, the retailer first sets the inventory policy to maximise the profit function. The wholesaler then sets the inventory

policy aiming at profit maximisation. The sum of the two profit functions gives the total profit of the supply chain, ASP Seq .

We quantify the improvement obtained as a result of integration ( δimp ) by measuring the relative change observed in the

profit of the supply chain: 

δimp = 100 ×
ASP ∗SC − ASP ∗Seq 

ASP ∗
Seq 

. (65)

To numerically study the effect of integration, the following data set is used: W = 200 , y = 200 , z = 0 . 2 , θ = 0 . 03 , β =
0 . 7 , p = 13 , p R = 8 , p W 

= 3 . 5 , α = 0 . 05 , g = 0 , r = 0 , s R = 500 , s W 

= 2000 , f = 0 . 3 , b = 2 , π = 0 , d R = 0 , and d W 

= 0 . The

values of deterioration rates and holding cost parameters are as follows: 

• Case 1: θo = 0 . 05 , θr = 0 . 09 , f o = 0 . 4 , and f r = 0 . 8 , 
• Case 2: θo = 0 . 09 , θr = 0 . 05 , f o = 0 . 4 , and f r = 0 . 8 , 
• Case 3: θo = 0 . 05 , θr = 0 . 09 , f o = 0 . 8 , and f r = 0 . 4 , 
• Case 4: θo = 0 . 09 , θr = 0 . 05 , f o = 0 . 8 , and f r = 0 . 4 . 

As Table 3 illustrates, the integrated approach results in a better performance for the whole supply chain in all cases. For

the data set introduced in this paper, the increase in the supply chain profit, as a result of integration, can be as significant

as 20%. The results of this experiment show that this shift is experienced by the two players differently; the integration

results in a loss of profit for the retailer, while the wholesaler gains some profit. The success of the integration, therefore,

depends on how these two players distribute the value generated by adopting the integrated policy amongst themselves.

This gaining can be divided between the retailer and the wholesaler by reaching an agreement on the transfer price ( p R ).

In the current setting, the purchasing cost paid by the retailer is immediately received by the wholesaler as a revenue. This

indicates that in the integrated approach, these two values cancel out and therefore do not have any influence on the supply

chain’s optimal solution. Both players, however, see their profit functions sensitive to p R . Table 4 shows how the profits gained

by the retailer and the wholesaler in Case 1 change when different values are assigned to p R . 

In this numerical example, the integration results in some improvement in the profit function for all the cases. To see the

impact of integration when the profit margin of the item changes, a range of values is assigned to p . In order to capture only

the effect of margins, we proportionately change the values of p R and p W 

, e.g., when p changes from 13 to 9, then p R = 5 . 54

and p W 

= 2 . 42 . Fig. 6 illustrates that how integration results in an improvement in the profit function of the cases under

study. As the figure shows, for tighter margins, e.g., the case of a more competitive market, the improvement gained by

integration is greater, while with higher margins the increase in the total profit of the supply chain gained after integration

tends to be smaller. 
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Fig. 6. Improvement (%) in the ASP after integration for different margins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the experiment also show that the performance of the two approaches could be significantly different

in terms of fill rate ( f l = 1 − t s 
T R 

). We numerically investigate the effect of integration on the fill rate for the cases. To this

end, we change the sales prices as specified earlier in this numerical example and measure the fill rate offered by the two

approaches. Fig. 7 depicts how integration could increase the fill rate at the retailer level for all the cases. The jump that

is seen in Case 2 is due to the integrality constraint on k . In this specific case, when increasing the sales price, the optimal

value of k changes from 1 to 2, which results in a jump in the fill rate. 

Experiments performed in this paper show that the effect of integration is more significant when the deterioration rate is

higher. To study the combined effect of integration and deterioration, in each case, we measure the relative improvement in

the profit function, obtained as a result of integration, for a range of values assigned to θ o , i.e., [0,0.25]. This range embraces

a large group of products from non-deteriorating to highly perishable items. In this experiment, we proportionately change

the value of θ and θ r . As Fig. 8 shows, in this numerical experiment, the effect of integration is more significant for cases

3 and 4 in which f o > f r . The figure also confirms that in all cases, the gaining obtained from integration increases when

deterioration rate goes up. 

6.2. Impact of continuous resupply policy 

6.2.1. Supply chain perspective 

In this section, we investigate the differences between the continuous resupply policy (Model 1) and the common resup-

ply policy (Model 2) in an integrated supply chain. For this purpose, the models developed in Sections 4 and 5 are solved

using the following data set: W = 200 , y = 50 , z = 0 . 7 , θ = 0 . 03 , β = 0 . 7 , p = 7 . 5 , p R = 5 , p W 

= 3 , α = 0 . 05 , g = 3 , r = 1 ,

s R = 300 , s W 

= 1200 , f = 0 . 1 , b = 2 , π = 0 , d R = 0 , and d W 

= 0 . We define 4 cases that are different in terms of holding

cost and deterioration rate parameters: 

• Case 1: θo = 0 . 08 , θr = 0 . 09 , f o = 0 . 4 , and f r = 0 . 5 , 
• Case 2: θo = 0 . 09 , θr = 0 . 08 , f o = 0 . 4 , and f r = 0 . 5 , 
• Case 3: θo = 0 . 08 , θr = 0 . 09 , f o = 0 . 5 , and f r = 0 . 4 , 
• Case 4: θo = 0 . 09 , θr = 0 . 08 , f o = 0 . 5 , and f r = 0 . 4 . 

Table 5 presents the results of this numerical analysis including δ which captures the difference in the profit functions

of the two models, i.e., the improvement in the profit if the retailer changes from the common policy to the continuous

resupply policy: 

δ = 100 × ASP ∗SC (Model 1) − ASP ∗SC (Model 2) 

ASP ∗
SC 

(Model 2) 
. (66) 

As discussed in Section 1 , the implications of adopting the continuous resupply policy would be higher holding costs for

the retailer. To incorporate this effect, we optimise the model with continuous resupply policy for a range of values for f o .

Table 5 shows that, for the data set presented in this study, the continuous resupply policy seems to be a superior option in

Cases 1 and 2. This policy would also be the better option in Cases 3 and 4 unless it results in an increase of at least 20% in

the holding cost parameter. One should note that f o accounts for the keeping and handling costs that incurred by common

resources, e.g., human resources and utilities. Therefore, adopting the continuous resupply policy would not greatly increase

the holding cost parameter of one specific item. 

In order to see how the profit margin of the item makes an impact on δ, these two models are solved across a range of

values assigned to p . As discussed in Section 6.1 , the transfer price does not have any influences on the optimal solution,
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Fig. 7. Resulting fill rate (%) for different margins. 
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Fig. 8. Improvement (%) in the ASP after integration for different deterioration rates. 

Table 5 

Numerical results of the comparison between Models 1 and 2. 

Case Policy f o t r t o t s T R Q R k T W Q W ASP SC δ(%) 

1 Common 0.4 1.59 3.28 0.00 3.28 510 2 6.57 1073 48.94 

Continuous 0.4 1.54 3.36 0.00 3.36 541 2 6.72 1138 61.18 25.01 

resupply 0.4 + 5% 1.54 3.36 0.00 3.36 541 2 6.72 1138 58.44 19.41 

0.4 + 10% 1.54 3.36 0.00 3.36 541 2 6.72 1138 55.70 13.81 

0.4 + 20% 1.53 3.35 0.00 3.35 538 2 6.70 1133 50.24 2.66 

2 Common 0.4 1.62 3.29 0.00 3.29 512 2 6.58 1076 44.67 

Continuous 0.4 1.57 3.37 0.00 3.37 548 2 6.74 1155 58.29 30.49 

resupply 0.4 + 5% 1.56 3.36 0.00 3.36 546 2 6.72 1150 55.54 24.33 

0.4 + 10% 1.56 3.36 0.00 3.36 546 2 6.72 1150 52.79 18.18 

0.4 + 20% 1.55 3.35 0.00 3.35 544 2 6.70 1145 47.30 5.89 

3 Common 0.5 1.66 3.35 0.00 3.35 524 2 6.70 1104 43.80 

Continuous 0.5 1.61 3.42 0.00 3.42 557 2 6.84 1175 55.79 27.37 

resupply 0.5 + 5% 1.6 3.41 0.00 3.41 555 2 6.82 1169 52.33 19.48 

0.5 + 10% 1.6 3.41 0.00 3.41 555 2 6.82 1169 48.88 11.60 

0.5 + 20% 1.59 3.40 0.00 3.40 553 2 6.80 1164 41.99 -4.13 

4 Common 0.5 1.7 3.36 0.00 3.36 527 2 6.72 1110 39.79 

Continuous 0.5 1.63 3.43 0.00 3.43 563 2 6.86 1186 53.12 33.50 

resupply 0.5 + 5% 1.63 3.43 0.00 3.43 563 2 6.86 1186 49.65 24.78 

0.5 + 10% 2.92 4.72 1.08 5.80 922 1 5.80 922 46.26 16.26 

0.5 + 20% 2.90 4.70 1.17 5.87 920 1 5.87 920 39.76 -0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

therefore here the profit margin of the supply chain ( p − p W 

) and the relevant effects on the optimal solution are studied.

For this purpose, p W 

is first set equal to 3 while p is given a range of values, the two models are then solved and the values

for δ are obtained. In this experiment, we assume an increase of 10% in f o as a result of adopting the continuous resupply

policy. The result of this analysis is illustrated in Fig. 9 . The figure shows that, for all cases, the difference between the two

policies is significant when the margins are low. Moreover, it shows that for high margin items the effect of adopting the

continuous resupply policy is almost the same for all four cases discussed in this example. The experiment also points out

that for lower margins the common policy may not be able to find a feasible region while the continuous resupply policy

obtains an optimal solution, for instance in Case 2 if p = 6 . 7 , the profit obtained by the common and continuous policy are

respectively −6 . 24 and 0.23. This indicates that the two replenishment policies discussed in this paper could give different

perceptions of the same inventory system. It then depends on the planner of such settings which policy to adopt considering

the features of the system. 

6.2.2. Single-echelon setting 

In Section 6.1 , we investigate the effect of integration when the continuous resupply policy is adopted. Integration in a

supply chain, however, is not an easy goal to achieve (Fawcett et al. [34] ) and many retailers manage their operations in

a non-integrated setting. Therefore, it is worthwhile to study the effects of the continuous resupply policy on the perfor-

mance of such retailers. In this section, we exclude the supplier from the model developed in Section 4 and analyse the

performance of this single-echelon model using the data presented in Section 6.2.1 . The result of this analysis is presented

in Table 6 . 
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Fig. 9. The difference between the two policies when p changes. 

Table 6 

Numerical results of the comparison between Models 1 and 2, single-echelon setting. 

Case Policy f o t r t o t s T R Q R ASP R δ(%) 

1 Common 0.4 0.79 2.54 0.04 2.58 353 49.48 

Continuous 0.4 0.77 2.59 0.00 2.59 364 52.26 5.62 

resupply 0.4 + 5% 0.77 2.59 0.04 2.63 366 49.94 0.95 

0.4 + 10% 0.76 2.58 0.07 2.66 364 47.67 -3.66 

0.4 + 20% 0.75 2.57 0.14 2.71 365 43.20 -12.69 

2 Common 0.4 0.80 2.54 0.12 2.66 357 44.11 

Continuous 0.4 0.78 2.58 0.08 2.66 371 47.02 6.60 

resupply 0.4 + 5% 0.77 2.57 0.11 2.68 369 44.76 1.48 

0.4 + 10% 0.77 2.57 0.15 2.72 370 42.54 -3.57 

0.4 + 20% 0.75 2.55 0.21 2.76 368 38.17 -13.46 

3 Common 0.5 0.81 2.56 0.17 2.73 362 40.95 

Continuous 0.5 0.79 2.61 0.13 2.74 373 43.41 5.99 

resupply 0.5 + 5% 0.79 2.61 0.18 2.79 375 40.63 -0.78 

0.5 + 10% 0.78 2.60 0.22 2.82 374 37.91 -7.43 

0.5 + 20% 0.76 2.58 0.30 2.88 373 32.58 -20.43 

4 Common 0.5 0.83 2.56 0.25 2.81 367 35.88 

Continuous 0.5 0.80 2.60 0.21 2.81 379 38.44 7.13 

resupply 0.5 + 5% 0.80 2.60 0.25 2.85 381 35.73 -0.43 

0.5 + 10% 0.79 2.59 0.29 2.88 380 33.06 -7.87 

0.5 + 20% 0.76 2.56 0.37 2.93 376 27.84 -22.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our study shows that, in all four cases studied, if a retailer adopts the continuous resupply policy and this change results

in an increase of less than 5% in the holding cost parameter, the retailer will experience an increase in the profit. Contrarily

to the integrated setting discussed in Section 6.2.1 , the relative difference between the two policies in the single-echelon

setting increases for items with higher margins, see Fig. 10 . 

6.3. Sensitivity analysis 

In this section, we conduct a sensitivity analysis on the parameters of the model developed in Section 4 . In order to

avoid a lengthy report, we focus on Case 4 that represents the setting in a typical grocery retail store. To this end, we

change the value of each parameter by steps of ± 10% and ± 20%, when applicable, and study the effects of the changes

on the decision variables and profit function. We use the same data sets introduced in Sections 6.1 and 6.2 . We assign

values of 10% p and 20% p to parameters g, r , and π when the initial value is zero. In order to perform sensitivity analysis

on the deterioration cost parameters ( d R , d W 

), we set them equal to 10% and 20% of the purchasing price of that echelon;

d R = 0 . 1 p R & 0 . 2 p R and d W 

= 0 . 1 p W 

& 0 . 2 p W 

. Tables 7 and 8 illustrate the results of the analyses. Since the transfer price

( p R ) has no effect on the result, we do not present it in these tables (see Table 4 ). 

In general, the model shows much higher sensitivity in the cases with lower margins; compare the columns under δ in

Tables 7 and 8 . The model shows the highest sensitivity to p and p W 

. This is intuitive since these two parameters directly

make an impact on the profit of the supply chain. Changes in the demand parameters, y and z , also make an impact on

the solution. The significance of this impact, however, depends on their relative values, for instance, in the first example in
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Fig. 10. The difference between the two policies when p changes, single-echelon setting. 

Table 7 

The results of sensitivity analysis on the data set from Section 6.1 . 

Par. T R Q R T W Q W ASP SC δ Par. T R Q R T W Q W ASP SC δ

y 160 5.99 1264 5.99 1264 799.68 -26.73 z 0.16 5.50 1357 5.50 1357 1041.93 -4.53 

180 5.64 1318 5.64 1318 944.45 -13.47 0.18 5.43 1364 5.43 1364 1066.51 -2.28 

220 5.09 1419 5.09 1419 1240.25 13.64 0.22 5.27 1377 5.27 1377 1116.58 2.31 

240 4.86 1465 4.86 1465 1390.83 27.44 0.24 5.18 1383 5.18 1383 1142.11 4.65 

s R 400 5.22 1340 5.22 1340 1112.93 1.97 s W 1600 4.79 1241 4.79 1241 1180.69 8.18 

450 5.29 1357 5.29 1357 1102.10 0.98 1800 5.08 1309 5.08 1309 1134.96 3.99 

550 5.42 1387 5.42 1387 1080.79 -0.97 2200 5.61 1431 5.61 1431 1049.64 -3.82 

600 5.48 1401 5.48 1401 1070.30 -1.93 2400 5.86 1489 5.86 1489 1009.48 -7.51 

p 10.4 5.80 1396 5.80 1396 519.15 -52.43 p W 2.80 5.30 1410 5.30 1410 1296.95 18.83 

11.7 5.60 1390 5.60 1390 802.01 -26.51 3.15 5.33 1392 5.33 1392 1193.02 9.31 

14.3 5.08 1345 5.08 1345 1387.56 27.14 3.85 5.37 1351 5.37 1351 991.95 -9.11 

15.6 4.78 1310 4.78 1310 1691.01 54.94 4.20 5.39 1332 5.39 1332 894.64 -18.03 

α 0.040 5.42 1406 5.42 1406 1126.90 3.25 β 0.56 4.73 1296 4.73 1296 1076.03 -1.41 

0.045 5.39 1390 5.39 1390 1109.05 1.62 0.63 5.08 1336 5.08 1336 1080.12 -1.03 

0.055 5.32 1354 5.32 1354 1073.91 -1.60 0.77 5.52 1395 5.52 1395 1107.20 1.45 

0.060 5.28 1337 5.28 1337 1056.60 -3.19 0.84 5.64 1417 5.64 1417 1126.17 3.19 

θ o 0.072 5.34 1361 5.34 1361 1106.73 1.41 θ r 0.040 5.46 1391 5.46 1391 1109.54 1.66 

0.081 5.35 1366 5.35 1366 1099.03 0.70 0.045 5.40 1380 5.40 1380 1100.35 0.82 

0.099 5.34 1375 5.34 1375 1083.78 -0.70 0.055 5.30 1362 5.30 1362 1082.64 -0.80 

0.108 5.35 1382 5.35 1382 1076.22 -1.39 0.060 5.26 1354 5.26 1354 1074.10 -1.58 

θ 0.024 5.35 1370 5.35 1370 1091.39 0.00 f o 0.64 5.30 1369 5.30 1369 1117.40 2.38 

0.027 5.35 1370 5.35 1370 1091.39 0.00 0.72 5.33 1371 5.33 1371 1104.35 1.19 

0.033 5.35 1370 5.35 1370 1091.39 0.00 0.88 5.38 1373 5.38 1373 1078.51 -1.18 

0.036 5.35 1370 5.35 1370 1091.39 0.00 0.96 5.39 1371 5.39 1371 1065.72 -2.35 

f r 0.32 5.50 1435 5.50 1435 1124.61 3.04 f 0.24 5.35 1370 5.35 1370 1091.39 0.00 

0.36 5.42 1401 5.42 1401 1107.58 1.48 0.27 5.35 1370 5.35 1370 1091.39 0.00 

0.44 5.28 1342 5.28 1342 1076.00 -1.41 0.33 5.35 1370 5.35 1370 1091.39 0.00 

0.48 5.22 1315 5.22 1315 1061.34 -2.75 0.36 5.35 1370 5.35 1370 1091.39 0.00 

W 160 5.45 1347 5.45 1347 1062.37 -2.66 b 1.6 5.46 1384 5.46 1384 1093.94 0.23 

180 5.40 1359 5.40 1359 1076.90 -1.33 1.8 5.41 1379 5.41 1379 1092.57 0.11 

220 5.30 1384 5.30 1384 1105.83 1.32 2.2 5.31 1367 5.31 1367 1090.36 -0.09 

240 5.25 1392 5.25 1392 1120.23 2.64 2.4 5.27 1361 5.27 1361 1089.47 -0.18 

d R 0.8 5.31 1344 5.31 1344 1064.56 -2.46 d W 0.35 5.35 1370 5.35 1370 1091.39 0.00 

1.6 5.26 1317 5.26 1317 1038.83 -4.82 0.70 5.35 1370 5.35 1370 1091.39 0.00 

g 1.3 5.37 1373 5.37 1373 1091.75 0.03 r 1.3 4.93 1322 4.93 1322 1077.41 -1.28 

2.6 5.38 1375 5.38 1375 1092.13 0.07 2.6 4.73 1296 4.73 1296 1076.03 -1.41 

π 1.3 5.19 1355 5.19 1355 1083.67 -0.71 

2.6 5.00 1332 5.00 1332 1078.49 -1.18 
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Table 8 

The results of sensitivity analysis on the data set from Section 6.2 . 

Par. T R Q R T W Q W ASP SC δ Par. T R Q R T W Q W ASP SC δ

y 40 6.20 896 6.20 896 28.79 -45.79 z 0.56 6.59 527 6.76 1110 24.28 -96.75 

45 5.95 910 5.95 910 40.68 -23.42 0.63 6.16 553 6.64 1164 53.54 -50.09 

55 3.34 571 6.68 1202 68.24 28.47 0.77 3.37 607 6.42 1275 113.87 55.08 

60 3.26 580 6.52 1219 83.42 57.05 0.84 3.32 632 6.32 1325 144.85 111.25 

s R 240 3.39 551 6.76 1160 72.25 36.03 s W 960 4.79 846 4.79 846 104.80 97.30 

270 3.41 558 6.82 1175 62.65 17.95 1080 5.27 886 5.27 886 77.84 46.54 

330 5.82 930 5.82 930 46.89 -11.73 1320 3.48 574 6.96 1212 32.62 38.59 

360 5.93 941 5.93 941 41.00 -22.82 1440 3.53 586 7.06 1238 12.37 76.72 

p 6.00 7.23 868 7.23 868 -133.66 -351.64 p W 2.4 3.69 625 7.38 1322 178.51 236.08 

6.75 6.56 904 6.56 904 -45.99 -186.59 2.7 3.56 594 7.12 1254 115.05 116.60 

8.25 4.87 924 4.87 924 166.99 214.39 3.3 6.14 896 6.14 896 0.44 -99.18 

9.00 4.97 951 4.97 951 287.92 442.04 3.6 6.49 866 6.49 866 -47.33 -189.10 

α 0.04 3.54 589 7.08 1243 79.18 49.08 β 0.56 3.43 563 6.86 1186 53.12 0.00 

0.045 3.48 574 6.96 1212 66.09 24.43 0.63 3.43 563 6.86 1186 53.12 0.00 

0.055 5.77 910 5.77 910 44.41 -16.40 0.77 5.76 927 5.76 927 54.23 2.09 

0.06 5.84 901 5.84 901 36.12 -32.01 0.84 5.79 930 5.79 930 55.61 4.69 

θ o 0.072 3.48 563 6.96 1188 64.44 21.31 θ r 0.064 5.72 945 5.72 945 64.78 21.96 

0.081 3.45 562 6.90 1184 58.77 10.64 0.072 5.72 934 5.72 934 58.68 10.47 

0.099 3.41 563 6.82 1187 47.48 -10.62 0.088 3.40 558 6.80 1175 50.23 -5.44 

0.108 5.81 928 5.81 928 42.07 -20.80 0.096 3.37 553 6.74 1164 47.41 -10.74 

θ 0.024 3.47 572 6.94 1193 60.09 13.14 f o 0.40 3.45 567 6.90 1196 67.02 26.17 

0.027 3.45 567 6.90 1190 56.61 6.57 0.45 3.44 565 6.88 1191 60.06 13.08 

0.033 5.71 921 5.71 921 52.87 -0.46 0.55 5.80 922 5.80 922 46.26 -12.90 

0.036 5.71 921 5.71 921 52.87 -0.46 0.60 5.87 920 5.87 920 39.76 -25.15 

f r 0.32 5.70 969 5.70 969 68.82 29.57 f 0.08 3.46 570 6.92 1201 59.61 12.22 

0.36 5.70 944 5.70 944 60.56 14.02 0.09 3.45 567 6.90 1196 56.35 6.09 

0.44 3.40 555 6.80 1170 49.60 -6.61 0.10 5.71 921 5.71 921 52.87 -0.46 

0.48 3.36 546 6.72 1150 46.21 -13.00 0.11 5.71 921 5.71 921 52.87 -0.46 

W 160 3.41 506 6.82 1066 10.78 -79.71 b 1.6 5.93 929 5.93 929 54.12 1.88 

180 3.42 535 6.84 1127 32.37 -39.07 1.8 5.81 925 5.81 925 53.44 0.60 

220 5.39 957 5.39 957 76.40 43.83 2.2 3.43 563 6.86 1186 53.12 0.00 

240 5.05 991 5.05 991 100.88 89.93 2.4 3.43 563 6.86 1186 53.12 0.00 

d R 0.5 3.39 553 6.78 1165 43.39 -18.32 d W 0.3 5.71 921 5.71 921 52.87 -0.47 

1.0 3.35 544 6.70 1144 33.86 -36.26 0.6 5.71 921 5.71 921 52.87 -0.47 

g 2.4 3.43 563 6.86 1186 53.12 0.00 r 0.8 5.79 924 5.79 924 53.94 1.56 

2.7 3.43 563 6.86 1186 53.12 0.00 0.9 5.75 923 5.75 923 53.40 0.53 

3.3 3.43 563 6.86 1186 53.12 0.00 1.1 3.43 563 6.86 1186 53.12 0.00 

3.6 3.43 563 6.86 1186 53.12 0.00 1.2 3.43 563 6.86 1186 53.12 0.00 

π 0.75 3.43 563 6.86 1186 53.12 0.00 

1.50 3.43 563 6.86 1186 53.12 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which y = 200 and z = 0 . 2 , the model is more sensitive to y , while in the second example where y = 50 and z = 0 . 7 the

model shows much higher sensitivity to z . 

In both examples, the model shows a high sensitivity to changes in s W 

. In the second example, for higher values of s W 

,

the model tends to choose longer replenishment cycles at the wholesaler, however, in order to avoid larger quantities at the

retailer, the model sets k = 2 compared to smaller values of s W 

, see Table 8 . 

In the second example where margins are tight, the model is very sensitive to the interest rate parameter, α. We consider

a conventional payment structure for this model; fixed ordering costs and purchasing costs are incurred at the time of

replenishment and revenues are obtained while the demand is fulfilled. This means lower interest rates would be beneficial,

since they lower the negative impact of such delayed revenues. In the second example, the model shows high sensitivity

also to the warehouse capacity, W . This should be looked at together with the high value of z ; a demand function with

y = 50 and z = 0 . 7 makes W the main driver of the demand for the product. 

7. Conclusions 

In this paper, a two-warehouse supply chain for a deteriorating product is considered that consists of a retailer and a

wholesaler. The retailer has a limited capacity for this product at the main store (OW). There is, however, an opportunity of

keeping extra stock in the back-room (RW) which may have a different rate of deterioration and holding cost. Demand for

the product is dependent on the stock level of good products at the OW. A linear function of the inventory level is used to

specify the demand rate. We introduce and analyse the continuous resupply policy that aims at keeping the stock of good

products at the OW at full capacity for as long as there is stock of good products available at the RW. When the stock at the
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RW runs out, the model considers the possibility of letting the stock at the OW drop to zero or even to negative values, and

allows for partial backorders. During each inventory cycle, the wholesaler covers an integer number of the retailer’s order

size. The profits of the firms are based on the cash-flow functions that are associated with the logistical activities in the

system and found as their Laplace transform. This produces the annuity stream profit functions for each of the firms, and

their integrated supply chain. 

In the inventory management literature, it is known that collaboration arguably results in financial improvement. In this

research work, we illustrate how this financial benefit could be more significant for items with higher deterioration rates.

Moreover, we numerically investigate the effect of margins on the gaining in the supply chain. Our study shows that the

supply chain can significantly gain profit from integration when the margins are small. This increase in profit would be less

for items with high margins. 

Our experiments illustrate that the retailer’s profit shrinks as a result of adopting the integrated optimal solution. Since

the optimal profits of the wholesaler and the supply chain increase after integration, it then seems logical to seek for a so-

lution that makes the integration feasible and interesting also for the retailer. In this paper, we show how small adjustments

of the transfer price can provide a means to redistribute the profits between the firms and could therefore be an instrument

by which the benefits of collaboration is shared in any relative degree. 

In this paper, we conduct a comparison between the continuous resupply policy and the common policy from the lit-

erature. The numerical experiment shows that if the retailer shifts from the common policy to the continuous resupply,

the integrated supply chain could experience a significant increase in the profit, for instance, in the settings studied in this

paper, the gaining can be as high as 30%. Moreover, we show how this increase would change as a function of the product

margin. The difference between the two policies also shows a high sensitivity to the deterioration rate. This shows that,

when both policies are logical to adopt, the retailer should carefully choose which one to go for depending on the charac-

teristics of the item at hand, e.g., margin or deterioration rate. We also study the effects of the continuous resupply policy

for the case of a single-echelon supply chain, where there is no close collaboration between the retailer and the supplier.

Our analyses on four different data sets show that as long as the adoption of the continuous resupply policy does not greatly

increase the holding cost parameters, it could be a better option. 

For the integrated supply chain, the continuous resupply policy presents a significantly better performance than the

common policy for the cases investigated in this study. It is observed that the latter policy might not even produce a feasible

result (i.e., the supply chain cannot generate a positive NPV), while under the continuous resupply policy an optimal solution

with positive profits for the same data is found. 

Further research could extend the model with, e.g., the costs of transferring stock from the RW to the OW, which would

reduce the benefit of frequent resupply. Another extension for the case of deteriorating items could consider that out-of-

pocket holding costs may depend on the time that products need to be stored in the RW, as in Alfares [35] . The model

could also be extended to consider specific cases of deteriorating items where the situation at the RW and OW, in terms of

holding cost and deterioration rate, are defined based on real data. 

Appendix A. Inventory level at the wholesaler 

The inventory level at the wholesaler at t = (k − 1) T R , just before sending the last batch to the retailer, is Q R . Considering

this boundary condition the inventory level at the wholesaler between (k − 2) T R and (k − 1) T R is given by 

I k −1 
W 

(t) = Q R e 
θ [ (k −1) T R −t ] , (k − 2) T R ≤ t ≤ (k − 1) T R . (67)

According to (67) , the inventory level at the wholesaler at t = (k − 2) T R , just before sending a batch to the retailer is

Q R (e θT R + 1) . Using this inventory level as a boundary condition, the inventory level of (k − 2) th interval is obtained as

I k −2 
W 

(t) = Q R (e θT R + 1) e θ [ (k −2) T R −t ] , (k − 3) T R ≤ t ≤ (k − 2) T R . (68)

The inventory level at the wholesaler during i th interval is hence given by 

I i W 

(t) = Q R e 
θ (iT R −t) 

k −i −1 ∑ 

m =0 

e mθT R 

= Q R e 
θ (iT R −t) e 

θ (k −i ) T R − 1 

e θT R − 1 

, (i − 1) T R ≤ t ≤ iT R , i = 1 , 2 , . . . , k − 1 . (69) 

Appendix B. Calculation of 
∫ t o 

0 I o (t ) e −αt dt and 

∫ t r 
0 I r (t ) e −αt dt 

∫ t o 

0 

I o (t) e −αt dt = 

∫ t r 

0 

I o (t) e −αt dt + 

∫ t o 

t r 

I o (t) e −αt dt 

= 

∫ t r 

0 

W e −αt dt + 

∫ t o 

t 

y 

z + θo 
(e (z+ θo )(t o −t) − 1) e −αt d t 
r 
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= 

W 

−α

[
e −αt 

]
t r 
0 

+ 

y 

z + θo 

∫ t o 

t r 

(
e (z+ θo ) t o e −(α+ z+ θo ) t − e −αt 

)
dt 

= 

W 

α

[
1 − e −αt r 

]
+ 

y 

z + θo 

[
e (z+ θo ) t o 

−(α + z + θo ) 

[
e −(α+ z+ θo ) t 

]
to 
t r 

+ 

1 

α

[
e −αt 

]
t o 
t r 

]

= 

W 

α

[
1 − e −αt r 

]
+ 

y 

z + θo 

[ 
1 

α + z + θo 

[
e (z+ θo )(t o −t r ) −αt r − e −αt o 

]
+ 

1 

α

[
e −αt o − e −αt r 

]] 
(70)

∫ t r 

0 

I r (t) e −αt dt = 

∫ t r 

0 

(z + θo ) W + y 

θr 

(
e θr (t r −t) − 1 

)
e −αt dt 

= 

(z + θo ) W + y 

θr 

∫ t r 

0 

(
e θr t r e −(α+ θr ) t − e −αt 

)

= 

(z + θo ) W + y 

θr 

[
e θr t r 

−(α + θr ) 

[
e −(α+ θr ) t 

]
t r 
0 

+ 

1 

α

[ 
e −αt 

] 
t r 
0 

]

= 

(z + θo ) W + y 

θr 

[
e θr t r 

−(α + θr ) 

[
e −(α+ θr ) t r − 1 

]
+ 

1 

α

[
e −αt r − 1 

]]

= 

(z + θo ) W + y 

θr 

[ 
1 

α + θr 

[
e θr t r − e −αt r 

]
− 1 

α

[
1 − e −αt r 

]] 

= 

(z + θo ) W + y 

θr 

[
1 

α + θr 

[
e θr t r − 1 

]
+ 

1 

α + θr 
− e −αt r 

α + θr 
− 1 

α

[ 
1 − e −αt r 

] ]

= 

(z + θo ) W + y 

θr 

[
1 

α + θr 

[
e θr t r − 1 

]
− θr 

α(α + θr ) 

[
1 − e −αt r 

]]
(71)

Appendix C. Annuity stream of holding and deterioration costs at the wholesaler 

Considering the inventory level of the i th time interval presented in (13) , the present value of holding and deterioration

costs at the wholesaler for the first inventory cycle are 

HC W 1 = f 

k −1 ∑ 

i =1 

∫ iT R 

(i −1) T R 

I i W 

(t) e −αt dt (72)

and 

DC W 1 = d W 

θ
k −1 ∑ 

i =1 

∫ iT R 

(i −1) T R 

I i W 

(t ) e −αt dt , (73)

respectively. To obtain the holding and deterioration costs, we need to first mathematically simplify the exponential sum as

follows 

A ret = 

k −1 ∑ 

i =1 

∫ iT R 

(i −1) T R 

I i W 

(t) e −αt dt 

= 

k −1 ∑ 

i =1 

∫ iT R 

(i −1) T R 

Q R e 
θ (iT R −t) e 

θ (k −i ) T R − 1 

e θT R − 1 

e −αt dt 

= 

k −1 ∑ 

i =1 

Q R 
e θkT R − e θ iT R 

e θT R − 1 

∫ iT R 

(i −1) T R 

e −(θ+ α) t dt 

= 

k −1 ∑ 

i =1 

Q R 
e θkT R − e θ iT R 

e θT R − 1 

[ 
1 

θ + α

(
e −(θ+ α)(i −1) T R − e −(θ+ α) iT R 

)] 

= 

k −1 ∑ 

i =1 

Q R 
e θkT R − e θ iT R 

e θT R − 1 

[
e −(θ+ α) iT R 

θ + α

(
e (θ+ α) T R − 1 

)]

= 

Q R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1) 

k −1 ∑ 

i =1 

(
e θkT R e −(θ+ α) iT R − e αiT R 

)

= 

Q R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1) 

[
e θkT R 

(
e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 

)
−

(
e −αT R − e −αkT R 

1 − e αT R 

)]
, (74)
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therefore 

HC W 1 = 

f Q R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1) 

[
e θkT R 

(
e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 

)
−

(
e −αT R − e −αkT R 

1 − e αT R 

)]
. (75) 

The annuity stream of all holding costs at the wholesaler over an infinite horizon is then 

HC W 

= HC W 1 
α

1 − e −αkT R 

= 

α f Q R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1)(1 − e −αkT R ) 

[
e θkT R 

e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 
− e −αT R − e −αkT R 

1 − e −αT R 

]
. (76) 

In a similar way, the annuity stream of deterioration cost at the wholesaler over an infinite horizon is 

DC W 

= 

αd W 

θQ R (e (θ+ α) T R − 1) 

(θ + α)(e θT R − 1)(1 − e −αkT R ) 

[
e θkT R 

e −(θ+ α) T R − e −(θ+ α) kT R 

1 − e −(θ+ α) T R 
− e −αT R − e −αkT R 

1 − e −αT R 

]
. (77) 
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