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Connectionism, Systematicity, and the Frame
Problem

W.F.G. HASELAGER and J.F.H. VAN RAPPARD
Dr. W.F.G. Haselager & Prof. Dr. J.F.H. van Rappard Theoretical Psychology Department,
Amsterdam / Vrije Universiteit, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands ?

Abstract. This paper investigates connectionism’s potential to solve the frame problem. The frame
problem arises in the context of modelling the human ability to see the relevant consequences
of events in a situation. It has been claimed to be unsolvable for classical cognitive science, but
easily manageable for connectionism. We will focus on a representational approach to the frame
problem which advocates the use of intrinsic representations. We argue that although connectionism’s
distributed representations may look promising from this perspective, doubts can be raised about the
potential of distributed representations to allow large amounts of complexly structured information
to be adequately encoded and processed. It is questionable whether connectionist models that are
claimed to effectively represent structured information can be scaled up to a realistic extent. We
conclude that the frame problem provides a difficulty to connectionism that is no less serious than
the obstacle it constitutes for classical cognitive science.

‘It appeared that Newell and Simon were well on their way to fulfilling the prediction they had
made in 1958 that ‘in a visible future. . . the range of problems (computers) can handle will be
coextensive with the range to which the human mind has been applied.’ (. . .) Simon’s claims
fell into place as just another example of the phenomenon which Y. BarHillel had called the
fallacy of the successful first step.’ In a talk I gave at RAND, I compared AI to alchemy to make
the point. Like the alchemists trying to turn lead into gold, I said, AI had fancy equipment, a
few flashy demos, and desperately eager patrons, but they simply had not discovered the right
approach to the problem’

Hubert Dreyfus describing his evaluation (originally published in 1965) of Newell and Simon’s
early work in classical AI (Dreyfus and Dreyfits, 1986, pp.6–7).
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1. Introduction

The frame problem has played a prominent role in debates within cognitive science.
It has been claimed to be unsolvable for classical cognitive science (a.o. Dreyfus and
Dreyfus, 1987; Horgan and Tienson, 1996) but easily solved by its main competitor
connectionism (Churchland, 1989; Meyering, 1993). The frame problem arises
when one attempts to model the human ability to keep track of relevant changes
in the environment. In general, human beings easily grasp what is going on in
their surroundings, as is evident from their capacity to rapidly predict, react or
adjust to the important consequences of a certain event. Although many different
interpretations of the frame problem exist (Fetzer 1991; Haselager 19971; Hayes
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162 W.F.G. HASELAGER AND J.F.H. VAN RAPPARD

1991; Pylyshyn 1987), the fundamental difficulty, in our view, is that everything we
know is potentially relevant for our interpretation of what is happening around us.
Since we know a great deal, the knowledge we possess must be stored and utilized
in such a way that the relevant parts of it are immediately brought to bear on
the formation of our beliefs. This imposes heavy demands on both the structuring
and the processing of represented information. In this paper we will investigate
the potential of connectionism to solve the frame problem. More specifically, we
will first of all suggest that the frame problem can be regarded as raising questions
concerning the adequacy of the classical, symbolic, representational format. We will
indicate why from this, what we will call, ‘representational’ perspective distributed
representations may be regarded as promising with respect to the frame problem.

Secondly, we will claim that since the frame problem arises in contexts where a
potentially large amount of often complex knowledge is involved, connectionism
has to prove that its models can represent and use well-structured information.
Since this matter has been extensively discussed in relation to the issue of sys-
tematicity, we will, thirdly, examine some proposed connectionist solutions to the
problem of systematicity that are generally regarded as promising. We will argue
that such models are as of yet unsatisfactory and moreover unlikely to be scaled
up successfully to more realistic, complex tasks. In all, we argue that although
the difficulties encountered by connectionism when addressing the frame problem
may be of a different kind compared to those of classical cognitive science, they
are no less serious.

2. Connectionism and the Representational Approach to the Frame Problem

Among the many problems cognitive science encounters an interesting and hotly
debated one is the so-called ‘frame problem’. In the history of AI, the frame
problem was first encountered (and named) by McCarthy and Hayes (1969) in
their attempt to create a general intelligence on the basis of a strictly deductive
inference mechanism. Their model decided what to do by deductively inferring that
a certain sequence of actions or events would lead to a desired goal. An unfortunate
consequenceof this strategy, however, was that the model would need not only rules
specifying what would change because of an event but also rules indicating what
would remain the same. Otherwise the model would not be able to deduce the new
situation. Because of the overwhelming amount of rules specifying non-changes
the system would simply get lost in performing irrelevant deductions. As such the
frame problem has played an important role in many developments in logic (c.f.
Shanahan 1997). Since the article by McCarthy and Hayes, the frame problem has
also become known as a more general difficulty for cognitive science. This has led
to sometimes chaotic discussions, as there seems to be little agreement on what
exactly the frame problem is, what the main reasons of its emergence are, how it
should be solved, and what would count as a solution2 (c.f. Haselager, 1997). In
the context of this paper, we will not enter this debate, but simply focus on the
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CONNECTIONISM, SYSTEMATICITY, AND THE FRAME PROBLEM 163

frame problem in the more general sense as an obstacle encountered when trying to
understand the psychological mechanisms involved in common-sense reasoning,
instead of as an issue in logic.

Psychologically speaking, people have an amazing ability to quickly see the
relevant consequences of certain changes in a situation. They understand what is
going on and are able to draw the right conclusions quickly, even if this means
retracting earlier beliefs and adopting new ones. The problem is how to model this
ability computationally. What are the computational mechanisms that enable people
to make common-sense inferences? Especially, how can a computational model
be prevented from fruitlessly engaging in time-consuming, irrelevant inferences?
A rather straightforward suggestion is that seeing the relevant consequences of
an event is made possible by an understanding of the situation. One reaches an
understanding of the situation by using what one knows. Yet, human beings posses
an enormous amount of information. The real difficulty underlying the frame
problem is how the relevant pieces of knowledge are found and how they influence
one’s understanding of the situation. Regarding this issue, it seems to us that two
general strategies can be discerned.

First of all, one can see the frame problem as the problem of how, on the basis of
what one knows and perceives, one can quickly generate a plausible interpretation
or hypothesis to explain what is going on. This leads to an examination of the
problems concerning non-demonstrative inference (i.e. induction, abduction, and
inference to the best explanation). This inferential approach focuses on the rea-
soning process itself and investigates how more global characteristics of what one
knows can guide the search for plausible inferences (c.f. Haselager, 1997). Second-
ly, one can see the frame problem as something to be solved by the development
of a good representational format. This representational approach is characterized
by a strong interest in questions of what kind of information should be regarded
as primary and what kind of representation is most suited for representing this
information in such a way that the appropriate inferences will ensue almost auto-
matically. In the following, we will concentrate on the representational approach
to the frame problem and its relation to connectionism.

Janlert (1987) does not make a distinction between an inferential and a repre-
sentational approach to the frame problem but, in our view, he provides a good
illustration of the representationalist perspective. The main issue here is how to
adequately represent a changing world in a computationally efficient manner (Jan-
lert, 1987, p.7–8). A decision on what has to be represented has to be supplemented
by a decision on how to represent and process it. Janlert (1987, pp.2, 37–38) sug-
gests that information might have to be represented intrinsically in the system. The
concept ‘intrinsicness’ should be understood as stressing that any approach to the
frame problem needs to refrain from completely describing everything there is to
know about the world: it should avoid having to ‘spell it all out’. Janlert refers to
Palmer (1978) according to whom a representation is intrinsic if a representation
of a relation has the same inherent constraints as the relation itself (Palmer, 1978,
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164 W.F.G. HASELAGER AND J.F.H. VAN RAPPARD

pp.271–272). That is, the constraints are not arbitrary and not imposed from outside
(i.e. do not have to be stated explicitly) but follow from the inherent structure of
the representation. Haugeland (1987) gives the example of a scale model that has
a structure similar to the domain it models (the main difference being, of course,
the scale). Therefore, every consequence of an event in the actual world will be
precisely matched by the consequences of the small-scale event in the small-scale
representational world. The result is, as Haugeland (1987, p.86) puts it, that rep-
resentations of side effects of events are just side effects of the representations of
those events.

Perceiving the issue in this way, the main source of the problem for classical
cognitive science is that propositions and their symbolic counterparts do not repre-
sent properties and relations intrinsically (e.g. Palmer, 1978, p.296). According to
Haugeland (1987), the propositional symbolic representational scheme harbors a
distinction between what is explicitly and implicitly represented. Explicit represen-
tations being directly usable, whereas implicit information first has to be explicitly
inferred (i.e. logically derived and symbolically represented) before it can be used
(Haugeland 1987, p.90; 1991, pp.74–75). Therefore, in a symbolic representational
system, all the objects, constraints and relations found to obtain in the world have
to be specified explicitly. This is problematic for if everything is explicitly repre-
sented there will be great problems in quickly locating a particular represented item
(Janlert, 1987, p.36). The use of a representational system that enforces an explicit
representation of all information before it can be used by the system may therefore
be considered as the source of the frame problem. A better approach might be to
use intrinsic representations for which a distinction between what is explicit and
what is implicit cannot even be made (Haugeland, 1987, pp. 88–91).

From the representational perspective, then, the frame problem demonstrates the
need to find an intrinsic way of representing information. An important point proved
to be the fact that no distinction between explicitly and implicitly represented
information should be allowed. On the basis of this analysis of the frame problem,
we suggest that connectionist models using distributed representations are valuable
candidates for further inspection.

3. Distributed Representations and Prototype Activation

In the following we assume that the basic architecture and standard interpretation
of connectionist models is familiar (c.f. Bechtel and Abrahamsen, 1991; Church-
land and Sejnowski, 1992; Churchland 1995). Cognition is understood in terms of
the transformation of patterns of activation. Weights attached to the connections
between the units of the network collectively determine the nature of the activation
pattern transformation (Churchland, 1989, pp. 201–202). Weights represent the
enduring knowledge of the network and determine how the network will react to
incoming stimuli. A specific set of weights, as embodied by a trained network, is a
prime example of distributed representation. The notion of distributed representa-
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CONNECTIONISM, SYSTEMATICITY, AND THE FRAME PROBLEM 165

tion is a fundamental one in connectionism, yet its precise meaning long remained
obscure3. Van Gelder (1991b) has written a survey of the concept of ‘distribution’
as it occurs in the literature. He concludes that the notion of super(im)position
of representings4 over a portion of representational resources is the most com-
mon theme in discussions on the nature of distributed representations (Van Gelder
1991b, p.42). A representation is distributed if it is representing many items while
using exactly the same resources (Van Gelder 1992, p.176). Importantly, there
is no direct relation between a single weight and a single represented item, but
instead all weights partake in representing all information the network possesses.
The representation of distinct items is superimposed on the same set of represen-
tational resources (Van Gelder 1991b, p.43). No part of the representation should
by itself be able to represent a distinct content. No matter how the representational
resources are sliced, each content item must be represented over the same extent
of the resources as the others (Van Gelder 1992, p.178). To put things differently;
the representings of distinct items are superposed if they occupy the same set of
representational resources (Van Gelder 1991b, p.43). The greater the total content
that is represented by the same amount of representational resources, the more
superposed the representing is (Van Gelder 1991b, p.44), and the more distributed
the representation. Distributed representations, then, are essentially characterized
by the superposition of representings.

Van Gelder (1991b, p.55) notes that distributed representation (as characterized
above) is deeply affiliated with the connectionist approach in that neural networks
provide a natural medium for implementing them. Furthermore, distributed rep-
resentations are theoretically significant because they are radically different from
the classic symbolic representational approaches where specific representations
correlate with specific represented elements (Van Gelder 1991a, p.373).

Semantically, the configuration of connection weights embodies the knowledge
the network possesses, yet it cannot in any straightforward propositional sense be
semantically interpreted. In fact, since a specific configuration of weights deter-
mines every reaction to every input the network is capable of, its meaning would
be the total of all the potential reactions to incoming stimuli which the network is
capable of, i.e. the sum of all interpretations of all possible activation pattern trans-
formations taken together. Van Gelder (1991b, p.54, see also pp.34, 45 and p. 55),
therefore, rightly speaks of a ‘fundamental gulf in kinds of representation’. This
fundamental difference between distributed and symbolic representations reflects
a basic disagreement about the nature of the states that are taken to encode the
information an organism possesses, and the way this information can be utilized in
the production of behavior.

From a connectionist perspective, an individual’s knowledge of his or her sur-
roundings consists of a set of weights, or alternatively, a point in weight space. The
function of the weights can be thought of as a partitioning of the activation space
of the hidden units. During the learning phase, the weights of a network are set
in a way that results in a useful partitioning of the activation space of the hidden
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units. The clearest cases learned (‘prototypes’) will occupy a specific region inside
a partitioning (a so-called ‘hot spot’), the least clear cases will occupy places near
the border between partitionings. A prototype can be thought of as a point or small
volume in the hidden unit activation space (a ‘hot spot’), representing a family
of relevant features that are characteristic for stimuli belonging to a specific kind
(Churchland, 1989, p.206). Different input vectors can result in the activation of
this prototype vector by the hidden units: the network has learned that these diverse
inputs are similar with respect to the task it has learned. Previously unencountered
input patterns that result in hidden unit activation patterns close to the prototypical
region will evoke the prototypical reaction of the network. Activation patterns that
occupy a place at a considerable distance from the prototypical region in the acti-
vation space indicate that the system is dealing with a murky case. The network
will react most unambiguously to prototype cases. The knowledge possessed by
an organism consists mainly of a substantial set of prototypes:

‘The picture I am trying to evoke, of the cognitive lives of simple creatures, ascribes to them
an organized ‘library’ of internal representations of various prototypical perceptual situations,
situations to which prototypical behaviors are the computed output of the well trained network.’
(Churchland, 1989, p.207; see also 1995, p.83).

Churchland (1989, pp.212–218; 1995, pp.97–143) suggests that the model applies
to a wide range of prototypes (a.o. categorical, temporal, social and motivational)
and thereby provides a unified account of much of our explanatory understanding.

According to Churchland, it is on the basis of this connectionist model that we
can understand how human beings can see the relevant consequences of events
or actions in their environment so quickly. Explanatory understanding consists
in the activation of a prototype vector (Churchland 1989, p.210, see also p.208).
The network generates an explanatory hypothesis, which effectively says: ‘this
incoming information is of such and such a type’. The generation process itself,
though fast, can be quite complex. Since a network may have many layers of
hidden units, there is ample possibility for quite complex processing. Furthermore,
a network can receive input from other areas of the brain and, through recurrent
connections, transmit the results of previous processing back into its earlier layers
(Churchland 1989, pp.208; 1995, pp.99–108). Churchland also indicates that the
prototype activation model does not instantiate a ‘mere’ process of classification but
adds information to the incoming activation pattern. The activation of a prototype
models explanatory understanding as a kind of ampliative recognition. An organism
ends up understanding far more about the situation than was originally present in
its input since the prototype is the result of the previous complex processing of
many examples during its learning stage (Churchland 1989, p.212).

We think that the essence of a connectionist solution to the frame problem is
clear. Cognitive systems can quickly see what the relevant consequences of a change
in the environment are because the information they receive results in an almost
instantaneous activation of an adequate prototype that constitutes an explanatory
understanding of the situation. As all weights influence the emergence of the
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activation vector, everything the network knows is brought to bear upon its response
to incoming information. Churchland (1989, p.178) argues that because the relevant
knowledge is activated automatically, the frame problem does not even arise. He is
supported in this optimistic attitude by several others. Meyering (1993, p.31), for
instance, has expressed great confidence: ‘the infamous frame problem is solved in
the blink of an eye’ (our translation). It bears emphasis that this proposed solution to
the frame problem is made possible precisely because connectionism forswears the
symbolic representational format. The use of symbolic representations as utilized
in classical cognitive science allows for a close mirroring of the structure of
knowledge as propositionally described. The relationships between concepts as
expressed in a proposition are explicitly represented by links between symbolic
structures in a hierarchy or through the use of rules. To capture the potential
relevance of everything to everything, every possible relation between two concepts
which might at a certain point in time and in a certain context become important
needs to be represented explicitly through a hierarchical link or a rule. Even if
this were feasible, finding the relevant information in the midst of a myriad of
symbolic structures and their interconnections quickly becomes computationally
overwhelmingly complex.

Modeling information processing on the basis of distributed representations and
activation pattern transformation seems to skip these problems because no attempt
is made to match closely a propositional specification of information. Instead,
a distributed representation represents information in holistic fashion, without
its decomposition into constituent concepts and their interrelationships. As the
knowledge of a system lies embodied in its weights, it directly and automatically
constrains the processing of incoming information. There is no need to search for
the relevant pieces of information before they can be applied. Moreover, changing
the knowledge of a system after an event has occurred need no longer take the form
of an explicit reconsideration of all symbolic structures and their interconnections.
Changing the setting of one weight automatically influences all the information
processing the network is capable of.

In the terminology of the representational approach to the frame problem,
distributed representations may be said to represent their information intrinsically.
In our view, distributed representations do not allow a distinction between explicitly
and implicitly represented information. Claiming that distributed representations
represent their informational content explicitly seems rather awkward for, because
of the superposing of representings, it cannot even be clearly stated what they would
explicitly represent (other than: everything the network knows). They also do not
represent implicitly because nothing has to be derived before it can be used for
processing. Instead, the weights directly and immediately influence the processing
of information. It is interesting to note that the difficulty of applying these notions to
connectionist ways of representing information has led to a reconsideration of the
nature of the explicit-implicit distinction (Clark 1992; Hadley 1995; Kirsh 1990).
Rather than drawing the conclusion that these notions are inapplicable, however,
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attempts have been made to redefine them in various ways. This has led to rather
counterintuitive results (e.g. Kirsh’s claim that symbolic representations need not
be explicit) and contradictory conclusions about distributed representations being
explicit (Clark) or implicit (Hadley). Like Elman (1991, pp.218–219) we doubt
the usefulness of the distinction with respect to distributed representations and we
agree with his claim that it makes no sense to view networks ‘through traditional
lenses’. In our view, then, distributed representations conform to the requirements
of the representational approach. They do not allow a clear distinction between
explicitly and implicitly represented information but represent their informational
content intrinsically. So far, it seems clear that distributed representations can be
regarded as most promising with respect to the frame problem. However, to see
whether the frame problem really is that easily solved, we propose to look at an
issue that lies beneath the surface of the suggestion of distributed representations.

4. The Representational Capacities of Distributed Representations

Connectionist research normally focuses on relatively small networks attempting
to solve restricted tasks. But one of the characteristics of the frame problem (as
classical cognitive science belatedly discovered) is that it shows up especially in
more realistically complex situations. The question therefore is whether the basic
suggestions examined above can be easily ‘scaled up’. How can connectionist
models handle large amounts of knowledge? Are distributed representations really
adequate when it comes to the representation of complex information involved in
reasoning and understanding? Or is the gain in automatic and direct retrieval or
resonation of relevant knowledge overshadowed by a substantial loss in the capacity
to represent the structure of information? Serious doubts have been ventured in
this respect (e.g. Fodor and Pylyshyn 1988; Holyoak, 1991, pp.315–316; Thagard
1992, pp.242–243).

As is well known, the classical solution to the problem of representing struc-
ture invokes the use of a representational format with a concatenative constituent
structure, resulting from the part/whole relationship between simple and complex
representations. The simple elements out of which complex representations are
construed are literally present in the complex representation. In a symbolic repre-
sentational system, the concatenative constituent structure of complex representa-
tions is utilized to match the structure of the information represented. The relations
between elementary representations explicitly represent the relations between parts
of the information (e.g. that in ‘John loves Mary’ it is Mary being loved, not John).
Fodor (1975; Fodor and Pylyshyn 1988) has argued that in order to explain certain
characteristics of cognition that are referred to by the terms ‘productivity5’ and
‘systematicity6’ it is necessary for the representational system to be compositional,
meaning that representations have a combinatorial syntax and semantics, which
is made possible by their concatenative constituent structure. Although the exact
nature and pervasiveness of productivity and systematicity are open to discussion,
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it is generally agreed that a system must be able to represent complex structured
information in order to exhibit interesting cognitive functions. Any representation-
al scheme that is of interest to cognitive science must, at least to a considerable
extent, be compositional (Chalmers 1993, p.306; Hinton 1990, pp.2–3; Pollack
1990, p.78; Smolensky, 1991, p.288; Van Gelder, 1990, pp.355-356).

Van Gelder (1990; 1991a) and, more recently, Horgan and Tienson (1996) have
pointed out that the part/whole relation between complex representations and their
constituents is not the only formal relation available for the encoding of causally
effective constituent structure. Horgan and Tienson state, correctly in our view,
that

‘the question is not whether constituents can play a causal role. The question is whether the fact
that a representation has a particular constituent can play a causal role. And that fact can play
a causal role if the representation carries the information that it has that constituent.’ (p.79, see
also p.74).

In other words, the constituent need not be physically present as long as the
information it carries is effectively manifested in the encompassing representation
(p.80). Syntax does not entail a part/whole relationship, but merely the systematic
and productive encoding of semantic relationships (p.71, 73).

Horgan and Tienson claim that there are examples of a rudimentary kind of
structure-sensitive processing of non-classically structured representations. They
are, furthermore, quite optimistic with respect to the potential of connectionist mod-
els, regarded as a dynamical systems, to preserve structure in the representations.
Indeed, they assert that relations between strategically positioned representational
points in a properly molded activation landscape can embody structural relations
as rich as and even richer than the classical symbols-rules representational scheme:

‘The structural resources are certainly there, much more so than in classicism: high-dimensional
dynamical systems can have structure far richer than the intrinsic structure of computing
machines, and positional relations among points in a dynamical system can exhibit structure
far richer than the intrinsic structure of classicist representations.’(p.163, see also p.154).

They refer to work by a.o. Pollack and Chalmers as examples of the kind of non-
classical syntax they endorse. However, in our opinion it is far from clear whether
the models proposed actually succeed in displaying systematicity. Furthermore,
we will indicate reasons to doubt that the mechanisms used allow a scaling up to
realistically complex contexts.
As Van Gelder has put it, the challenge to connectionism is

‘to devise models in which structure-sensitive processes operate on the compound representations
themselves without first stopping to extract the basic constituents. These processes must capitalize
directly on the inherent and systematic similarities among the nonconcatenative representations,
(Van Gelder 1990, p.381; see also Chalmers 1993, p.312; and Fodor and McLaughlin 1990,
p.202, no. 14).

David Chalmers (1990; 1993) has attempted to meet this challenge. Chalmers
presents a connectionist network utilizing distributed representations that models
the transformation of sentences in the active to the passive mode. He uses syntactic
transformation as an example of structure-sensitive operations (Chalmers 1993,
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p.313). For instance, the sentence ‘John loves Michael’ should be transformed by
the network into ‘Michael is loved by John’. Note that the information present in
the structure of the sentence is that John is the one that loves Michael, and not
vice versa. On Fodor’s account, a network is incapable of distinguishing between
‘John loves Michael’ and ‘Michael loves John’ since it is ‘structurally blind’ and
merely associates ‘John’ ‘loves’ and ‘Michael’. Providing a transformation into
the correct passive mode, then, indicates that the network is able to recognize and
use the structure in the information represented.

First, syntactically structured sentences (represented by trees) are transformed
into distributed representations. This is accomplished by Pollack’s (1990) RAAM
network7. The resulting distributed representations are used by the actual trans-
formation network (a basic, three layer feedforward network, learning through
back-propagation) that performs the passivisation directly on the distributed rep-
resentations without using a decomposition process first. The resulting output is
of course again a distributed representation which is then fed into the RAAM,
translating it back to its syntactic structure. The question, of course, is whether
Chalmers’ network is able to use the structure that is implicitly contained in the
activation patterns provided by the RAAM network.

After training, the transformation net was tested with new sentences. Chalmers
(1990, p.60) reports a 65% generalization rate, which, high in itself, went up to
100% after correction of RAAM errors. Chalmers concludes:

‘Not only is compositional structure encoded implicitly in a pattern of activation, but this implicit
structure can be utilized by the familiar connectionist devices of feed-forward/backpropagation
in a meaningful way’. (Chalmers 1990, p.60; see also Chalmers 1993 p.314).

So, Chalmers claims, his results contradict Fodor’s thesis that concatenative con-
stituent structure has to be present in representations in order to be of use to
information processing mechanisms. There is no need for an explicit tokening of
the simple parts of the representation in the complex one. Distributed represen-
tations can have enough formal structure to be functionally compositional and of
direct use to the system’s processing.

5. Lawfulness versus Coincidence

Importantly, Horgan and Tienson (1996, p.80) claim that the existence and use-
ability of nonclassical representations that carry constituency information can be
read off of systems like Chalmers’ that perform constituent-sensitive operations.
That is, it is the performance of the models on which their claim of non-classical
effective syntax is based:

‘It is quite clear that tensor-product representations and RAAM representations do carry con-
stituency information within or relative to a system, and that this information is available to the
system. It is clear because the systems perform constituent-sensitive operations. That the repre-
sentations carry this information is shown by the whole system of dispositions of the successful
system’. (p.80).
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They stress that it is the capacity of the system to ‘perform properly on inputs not
among the training corpus.’ (p.75) that substantiates claims for a rudimentary form
of effective syntax.

Yet, precisely with respect to the network’s capacity to generalize to novel input
serious criticisms can been raised. For instance, Hadley (1994a, p.261) notes that
the novel corpus of sentences that Chalmers used to test his network contained
no new words (i.e no words not already encountered during training) nor words
occupying new syntactic positions (i.e the network had encountered all words in
all syntactically possible places during training). In other words, the novelty of
Chalmers’ corpus of test sentences is rather moderate8. As Hadley says (1994a,
p.262), if a completely new word were introduced in an otherwise familiar sentence,
this might result in such disruption of the network that it would not even recognize
the familiar lexical items.

Hadley concludes that Chalmers’ model does not succeed in capturing the kind
of systematicity argued by Fodor as being characteristic of human cognition. Con-
cerning this problem, we think that Hadley’s proposed criterion of generalization
ability, i.e the network’s capacity to deal with genuinely novel sentences, is ade-
quate. Hadley (1994a, p.271) notes that in the light of this criterion the work of
Chalmers and several other connectionist attempts (including the work of Pollack,
Smolensky and others) to answer Fodor’s challenge do not succeed in displaying
the strong degree of systematicity characteristic of humans.

Hadley’s criticism raises the important and more general point that one has to be
very careful that the structure sensitive behavior of a network is not simply the result
of prearranged statistically large similarities between the training data to which
the network has become tuned and the test data. This hampers a straightforward
assessment of the force of connectionist examples of structure sensitive processing.

The matter of distinguishing real systematicity from prearranged statistical coin-
cidence also comes to the fore in the discussion about Fodor’s repeated claim that
merely providing counterexamples is far from sufficient to show that connection-
ism can deal with compositionality in a completely satisfactory way. As he says,
it is a law that cognitive capacities are systematic (Fodor and McLaughlin, 1990,
pp.202–203; Fodor and Pylyshyn 1988, p.48). That is, it is easy to ‘wire up’ a
non-systematic connectionist network, but it is impossible to create an unsystem-
atic classical system. The point of the law-requirement, as Butler (1993, p.323)
notes, is that merely showing that systematicity is possible on the basis of a con-
nectionist architecture is not enough; it must be indicated why systematicity is
necessary given the architecture. Likewise, Butler continues, a theory of planetary
motion that merely allowed for the possibility of elliptical orbits of planets would
be considered as insufficient. To really count as an explanation, it would have to
show that the nature of such orbits necessarily followed from the theory. Similarly,
connectionists have to demonstrate that systematicity necessarily follows from the
architecture9.
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6. The Plausibility of Learning Conditions

Now, one can, as does Chalmers (1993, p. 316), quite rightly point out that the fact
that ‘differently wired’ networks could easily be insufficient at best shows that not
all possible connectionist architectures are satisfactory. To be acceptable, Chalmers
says, the class of rightly wired networks would have to be compositional and
display systematicity under many different learning conditions. We think Chalmers
is right in this, but it only helps to underscore the fact that merely demonstrating
that a rightly wired connectionist network with distributed representations can be
compositional is not sufficient, since this might be an artificial result of the specific
characteristics of the training and testing data. Fodor’s requirement that systems
must be compositional can, we suggest, most beneficially be seen as an attempt to
provide a safeguard against too readily taking ‘accidental’ signs of systematicity for
the real thing. We propose, then, to take the requirement of displaying systematicity
under many different (or at least psychologically realistic) learning conditions as a
second constraint, in addition to the generalization requirement discussed above.

The importance of this second constraint becomes clear if one considers con-
nectionist attempts to deal with Hadley’s generalization criterion. For instance,
Christiansen and Chater (1994) present two simulations, one in which the network
failed to exhibit strong generalization (in a genitive context) and one in which it
succeeded (in the context of noun phrase conjunctions). e.g., when presented with
the sentence ‘Mary’s girls run’ (where ‘girls’ had never occurred in a genitive
context in the training set), the network failed to behave similarly to ‘Mary’s cats
run’ (‘cats’ having occurred in the genitive context in the training set). However,
when presented with ’Mary says that John and boy from town eat’ (‘boy’ not
occurring in a noun phrase conjunction in the training set), the network correctly
predicted a plural verb, thereby making the strong generalization that a noun phrase
conjunction (even an unfamiliar one) requires a plural verb.

Although Christiansen and Chater (1994, p.285) conclude on the basis of their
work that future progress is possible, in our view these mixed results underline
the importance of Fodor’s law requirement. Why did the network succeed in the
context of noun phrase conjunctions but fail in the genitive context? Christiansen
and Chater do not present a principled explanation of these results. In our view,
this considerably detracts from the value of their models. After all, one would like
an explanation of systematicity, not just a mere demonstration (see also Niklasson
and Van Gelder, 1994, p.297). Furthermore, Christiansen and Chater suggest that
the network might be able to succeed ‘if a different kind of representation is used
or the details of the training are altered’ (1994, p.282). But it is exactly this kind
of ‘fetching’ that Fodor’s law-requirement is aimed at preventing.

A second point of concern involves the enormous amount of training that is
necessary before the network can be said to have learned its task. Christiansen
and Chater (1994, p.280) report a total of 32 epochs, each one presenting the
network with the full training corpus of 10.000 sentences for a relatively simple
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phrase structure grammar (6 rules) and a small vocabulary (34 items10). It seems
unavoidable that the amount of training needed will become unmanageable in
the case of a grammar and vocabulary of a realistically large size. Finally one
has to notice the complexity of the training setup, with many carefully arranged
details (including, for instance, the periodic resetting of context units11). Given
the constraint, presented above, that systematicity has to be demonstrated under a
variety of learning conditions, this provides a further reason to regard the results
as unconvincing.

A second connectionist attempt to answer Hadley’s generalization constraint,
by Niklasson and Van Gelder (1994), concentrates on the case where test sentences
contain at least one atomic constituent that did not appear anywhere in the training
set. Using the same kind of architecture as Chalmers, they introduce a novel
symbol (‘s’) to the network that has been trained to transform formulas according
to the following inference rule: p ! q ,, :p _ q. The network succeeds in
handling formulae containing the new symbol after a huge amount of training
(4000 passes through the training set of 600 formulae (p. 294–295; they speak of
an ‘exhaustive exposure to a training set’, p.299). Niklasson and Van Gelder (1994,
p.298) conclude that points in an activation space can function as representations
in a way that allows spatial structure to preserve syntactic structure useable for
further processing. However, we want to emphasize that a proper localization
of representational points within the spatial structure has been prearranged by
Niklasson and Van Gelder by means of a seperate RAAM network, called the
‘representation generator12. As they say:

‘The design and training regime of the representation generator results in representations that
are systematically positioned in the space so that the representation for ‘s’ occupies the space in
between the ‘known’ constituents’ (Niklasson and Van Gelder, 1994 pp.297–298; our emphasis;
see also Hadley, 1994b, pp.437–438).

As in the case of Christiansen and Chater, we conclude that the results are largely
dependent on a meticulously designed architecture and training regime, thus vio-
lating the constraint that systematicity has to be demonstrated under a variety of
learning circumstances.

In all, we conclude that connectionist models as presented by Chalmers, Chris-
tiansen and Chater and Niklasson and Van Gelder depend for their limited successes
on very strict, carefully arranged and psychologically unrealistic learning circum-
stances (i.e. the amount and details of training). Hence, we do not think there are
good reasons to expect that models of this kind will succeed when confronted
with more realistically complex tasks. Yet, it is precisely under these more realistic
circumstances that the frame problem arises, so we fail to see how connectionism
would be able to deal with that problem successfully. Before drawing our final
conclusions, we will point briefly to a further difficulty, in addition to the problems
of generalization and the specificity of learning conditions, that may make the idea
of functional compositionality seem even less promising.
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7. Interacting Distributed Representations

Granting for the moment that structured information might be adequately repre-
sented by distributed means under a variety of learning conditions, there is the
further issue of how representations of this kind can interact. This is of especial
relevance to the domain of commonsense reasoning, the area in which the frame
problem looms large. In this respect, it is remarkable that connectionist attempts to
model common-sense reasoning ultimately refrain from using fully distributed rep-
resentations and instead use a hybrid (if not completely classical) representational
format, as (each to a different extent) in the case of Derthick (1990); Miikkulainen
and Dyer (1991); Shastri & Ajjanagadde (1993) and Sun (1994).

For instance, a recent and ingenious connectionist model of common-sense
reasoning is outlined by Shastri and Ajjanagadde (1993). The representational the-
ory that they implement in a connectionist architecture is a rather classical one
of (complex) facts, rules and conceptual hierarchies. Moreover, they explicitly
reject the use of distributed representations as being unsuited for representing large
amounts of structured knowledge, because it ‘cannot have the necessary combina-
tion of expressiveness, inferential adequacy and scalability’ (p.485). The problem
is that when distributed representations are combined into more complex (and
still distributed) representations, a loss of binding information (e.g. as to which
objects are bound to which predicates) seems unavoidable. Hummel and Holyoak
(1993) similarly point out that distributed representations of, for instance, pred-
icates and objects cannot be combined into larger distributed structures, without
losing information about which objects are bound to which predicates. For instance,
a distributed representation of ‘Ted gave Mary flowers’ is difficult to combine with
a distributed representation of ‘Jane knows that p’ into a distributed representa-
tion of ‘Jane knows that Ted gave Mary flowers’ without losing information as
to who knows what or who gave what to whom. That is, there is an ‘inherent
tradeoff between distributed representations and systematic bindings among units
of knowledge’ (p. 464) that becomes clear as soon as several distributed represen-
tations have to be combined. We want to emphasize that the difference with the
task RAAM is fulfilling is that in the case of RAAM non-distributedly represented
constituents or complexes are added to a distributed representation, whereas in the
case discussed by Hummel and Holyoak distributed representations are added to
distributed representations.

So, even if one assumes that proposals a la Chalmers, Christiansen and Chater or
Niklasson and Van Gelder ultimately might satisfy the constraints of generalizing
under a variety of learning conditions, the problem is not completely solved. Even if
one may accomplish structure sensitive processing of distributed representations of
chunks of information separately, the applicability of such a proposal to realistically
complex cases, where distributed representations of structured information have to
interact in various ways, remains blocked.
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8. Conclusion

The frame problem is generally regarded as a serious, sometimes even unsolv-
able, difficulty for classical cognitive science. According to the representational
approach, the fact that the symbolic representational format allows for a distinction
between what is explicitly and implicitly represented is the underlying cause of the
problem. Distributed representations can be seen as promising precisely because
of their intrinsic nature. However, although we consider the potential of distributed
representations to be most interesting, we do not think that an easy victory awaits
connectionism. Since the frame problem involves the use of a substantial amount
of interrelated knowledge, representing the structure of information is an essential
precondition for making progress. We have analyzed connectionist attempts to
represent and utilize structure in relation to the issue of systematicity. Although
the results are generally presented and regarded as favorable to connectionism, we
have indicated three reasons for a more negative appraisal. Genuine doubts may
be raised about whether the performance achieved indicates the true capabilities
of distributed representations or whether they largely depend on the specifics of
the training and testing data. The capacity to generalize is small, and has not been
demonstrated under a variety of learning circumstances. Moreover, the capacity
of distributed representations to preserve the structure of the information while
interacting with other distributed representations seems severely limited. The con-
clusion must be that connectionism has no principled and satisfactory way of
effectively representing structured information in a distributed way. Even if dis-
tributed representations could be shown to be successful on small-scale problems
(of the kind investigated by Chalmers and others), it is hard to see how their range
of application could be extended to a more serious level of complexity. This, in
turn, implies that connectionism still has to prove that its models are able to deal
with realistically complex situations and events, as classical cognitive science is
still trying to do. The connectionist approach to the frame problem may have, in
comparison with the classical approach, different problems to cope with, but these
present no less significant obstacles to overcome. Like classical cognitive science,
connectionism too will have to overcome the fallacy of the successful first step.

Notes

1. This paper uses some material taken from Haselager (1997). Permission by the publisher is
gratefully acknowledged.

2. To indicate this, it should suffice to say that the question has been raised whether or not the
frame problem can correctly be interpreted as (being related to), in alphabetical order: the
bookkeeping problem, the extended prediction problem, the inertia problem, the problem of
the metaphysical adequacy of representations, the problem of non-demonstrative inference, the
problem of ordinariness, the problem of persistence, the prediction problem, the qualification
problem, the ramification problem, the truth-maintenance problem, and the updating problem.

3. Feldman says about the notion of ‘distributed representation’:
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‘The problem is that people have been using this term to denote everything from a fully
holographic model to one where two units help code a concept; thus, the term has lost its
usefulness.’

(Feldman 1989, p.72; see also Van Gelder, 1991b, p.35).
4. Van Gelder refrains from speaking of superposed representations, and prefers the phrase super-

posed representings’ to stress that there is only one single representational item representing all
content (Van Gelder 1991b, p.43).

5. Productivity refers to the thesis that, in principle, a cognitive system can entertain an infinite
number of thoughts. This indicates that the representational capacities of a cognitive system are,
in principle, unbounded. The only way to achieve this by finite means, Fodor argues, is through
a representational system that has a combinatorial syntax and semantics (Fodor 1975, p.31–32;
1987, p.137, pp.147–148; Fodor and Pylyshyn, 1988, pp.33–37).

6. The term ‘systematicity’ refers to the fact that the ability to understand and/or produce certain
thoughts is intrinsically related to the ability to think other thoughts. If a person is capable of
entertaining a thought like ‘John loves the girl’, he or she is bound to be able to have the thought
‘The girl loves John’ as well. This can be explained by means of the compositionality principle
in the following way. The elementary mental representations (atoms) that together represent the
content of the thought have a structured relationship (e.g. subject – predicate – object) to one
another. The structural relations are the same in both thoughts, only certain atoms have changed
place. Understanding or entertaining the first thought means that both the atoms and the structural
relations are understood, hence the other thought must be understood as well.

7. RAAM is an acronym for ‘recursive auto-associative memory’. Basically, it is capable of rep-
resenting the information inherent in symbolic tree structures of arbitrary depth as distributed
activation patterns. It can compress the representations of the terminal nodes into one activa-
tion pattern which represents their parent, and then, recursively, compress all parents one layer
up into another single pattern, compress these patterns yet again, etc., thus working from the
leaves to the root. Similarly it can reconstruct the children from the distributed representation
of the root reconstructing them recursively until the leaves are reached (Pollack 1990, p.84).
The RAAM-architecture is general (it applies to tree structures of arbitrary depth), effective
(the (de)composing processes are performed mechanically) and reliable (after sufficient training)
(Chalmers 1990, pp. 55–56).

8. According to Hadley (1994a, pp. 250–251), a network exhibits weak systematicity if it can handle
test sentences that contain words that occur only at syntactic positions already occupied by these
words in the training set. The training set is then fully representative of the test set. A system
exhibits strong systematicity if it can exhibit weak systematicity and moreover can process novel
simple and novel embedded sentences containing familiar words in new syntactic positions.
Hadley (pp. 252–254) points to much empirical evidence that children exhibit systematicity in
this strong sense.

9. Of course, one may question whether it is really a law of nature that you can’t think aRb if you
can’t think bRa’ as Fodor claims (Fodor and McLaughlin, 1990, p.203). The ‘lawfulness’ of
systematicity has indeed been doubted by several writers (Dennett 1991, p.27; McNamara 1993,
p.114; Wilks 1990, p.331). However, though there may be room for discussion about the exact
extent of systematicity, it is quite clear that children and adults display systematicity in a strong
sense (Hadley, 1994a, pp.252–254, p.270).

10. Christiansen and Chater (1994, p.279) specify that the vocabulary consists of 2 proper nouns,
3 singular nouns, 5 plural nouns, 8 verbs in plural and singular form, a singular and a plural
genitive marker, 3 prepositions and 3 nouns indicating locations

11. The point we are making is not that no constraints on the training setup are allowable. Rather,
the details of training should be reasonably general and justifiable on psychological grounds. For
instance, the periodic resetting of context units as used by Christiansen and Chater might not
be completely devoid of psychological plausibility. Elman (1993) and Clark and Thornton (in
press) argue that a periodic resetting of context-units provides for a kind of limited memory that
allows the system to learn the most basic distinctions first. In later phases, the window can be
enlarged (by resetting the context units after longer intervals), so the network can learn the finer
distinctions, necessary to fulfil its task. They refer to psychological evidence that developmental
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limitations of this kind exist and are beneficial. This aspect of the model would therefore satisfy
the second constraint. Our point is that most details of the training regimes lack such justification.

12. The representation generator creates distributed representations for atomic constituents, by encod-
ing the tree structures containing type information about the constituents, e.g. whether they are
connectives, propositions or symbols (Niklasson & Van Gelder 1994, pp.296–297).
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