Mathematical and theoretical biology for systems biology, and then ... vice versa
Westerhoff, H.V.

published in
Journal of Mathematical Biology
2007

DOI (link to publisher)
10.1007/s00285-006-0043-9

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 17. Sep. 2023
Mathematical and theoretical biology for systems biology, and then . . . *vice versa*

Hans V. Westerhoff

Published online: 18 October 2006
© Springer-Verlag 2006

Systems Biology has two roots (1). The better known resides in Molecular Biology, grew to functional genomics and then became top-down, genome-wide Systems Biology. The less-publicized root resides in theoretical and Mathematical Biology, with topics such as non-equilibrium thermodynamics, self-organization, kinetic modelling, metabolic control analysis, flux analysis and biochemical systems theory, culminating in genome-wide versions thereof. It is anticipated that from these roots a Biology of unprecedented strength and quality will emerge, which ends the deadlocks of functional genomics drowning in its oceans of data and of Mathematical Biology escaping reality.

Much of the growth in Systems Biology has bypassed Mathematical and Theoretical Biology. Only at the 2005 ESMTB meeting in Dresden did the surge in Systems Biology activity seen in molecular cell biology, begin to be mirrored by a similar surge in Mathematical Biology. Until then, the more theoretical activities in Systems Biology involved engineers much more than mathematicians. Why has this been the case?

Systems Biology is well-defined and broad at the same time, not unlike Mathematical Biology. It is the science that studies how functional biological properties arise in the interactions of components (2, http://www.systembiology.net). As such it may link molecules with cells, but also elephants to ecosystems. The new properties can only arise if the interactions are nonlinear, in spatial, temporal or chemical dimensions and therewith Systems Biology is a nonlinear science. It is also a molecular or, at least, concrete science however,
as it addresses the \textit{actual} mechanisms by which true function arises, rather than virtual mechanisms. This is reinforced by the wealth of experimental data and possibilities offered by functional genomics.

\textit{Systems Biology: what did it accomplish?}

The success stories of adult Molecular Biology would include the explanation of much of genetics on the basis of the base-pairing of the structure of DNA, the triplet code, the ability to clone and amplify genes using restriction enzymes and the polynucleotide chain reaction and the ability to determine the abundances of the all mRNAs through array-based hybridization. The success stories of juvenile Systems Biology are fewer and perhaps not yet as impressive (2). They include insight into how an organism lives in terms of \textit{all} the fluxes through its entire metabolic network, understanding how the individual reactions of a key metabolic pathway communicate directly and indirectly so as to produce the robust steady flux necessary for the provision of its free energy, identification of all the regulatory topologies that organisms use to manage their function and robustness, appreciation of the relative importance of chemistry and translocation in signal transduction, the discovery of new drug targets (and of new guidelines for such discoveries), the engineering of metabolic fluxes in industrially important organisms, and the understanding of the relative importance of kinases and phosphatases in signal transduction. The grapevine includes the complete modelling of the dynamic functioning of cells and organisms, a revolution in the understanding of that functioning through the analysis of those models, the possibility to treat multifactorial diseases such as type-2 diabetes and obesity with individual cocktails of drugs and nutrients, and the mollification of ageing.

\textit{Mathematical Biology to descend from the Olympus?}

Stereo-typical mathematicians do not like biology, nor do they like chemistry. They have learned to accept physics, and indeed the real-world side topic in their studies has always been physics, never biology. This has been because physics was reductionist, reducing problems to simpler ones that could actually be solved mathematically. Biology was considered impure, a large number of special cases, where no analytical solution would be possible because it was too complex, too nonlinear.

Mathematical biologist included mathematicians that went one step further: they did venture into biology. Yet, many of them kept searching for general mathematical principles in highly idealised or simplified caricature models, thereby foregoing the essence of Systems Biology. They did not wish to descend to the details of Molecular Biology and to its nonlinearities. Attention focussed on developing general theories such as those connected to evolution, avoiding the issue of what is ‘Life’ here and now.
Mathematics in cell biology, be it enzyme kinetics, metabolic control analysis, or protein dynamics, therefore came almost exclusively from non mathematicians. Likewise, mathematical Systems Biology with its emphasis on understanding real systems in terms of real molecular or component properties, may be left to the more applied scientists, such as biochemists and engineers.

This would be bad both for Systems Biology and for mathematical and theoretical biology. Systems Biology would suffer because the mathematics would not be quite as good and efficient as possible. Mathematical Biology would suffer because it would miss a tremendous number of highly interesting problems, a possibility to develop a new branch of itself, and the accompanying possibility to grow into a mainstream Life Science, with associated funding. For the sake of both Systems Biology and Mathematical Biology, the latter should descend from the Olympus.

Future of Mathematical and System Biology

Our Society for Mathematical Biology may wish to help Mathematical Biology descend to the reality of Systems Biology. Yes, there are details, 120,000 of them perhaps, but this in itself is a mathematical challenge. It is a challenge also because it is not just 120,000, but it is the 120,000 that enable Life. It is a challenge to discover what Life is in this sense, and for this we need mathematics. One may need to accept that one often has to deal with the mathematics of many special cases, in which generality is to be discovered. After all, these 120,000 sample the space that spans Life.

With Systems Biology, Mathematical Biology has a brilliant future, if it does the above. In the same way that physics stimulated the creation of mathematical physics, Systems Biology may now get mathematical Systems Biology on the go. Mathematical biologists should accept that biologists driven by strong motivation and inspiration have often already accomplished part of what needs to be achieved theoretically. However, the way in which this was done may not have been formally rigorous. Mathematical biologists should now engage in improving and re-formalizing the existing work, with the expectation of thereby making new discoveries, through generalizations or even through specializations. Subsequently, the Mathematical Biologists will find their own ways to then lead Systems Biology to new discoveries.

Mathematical Biology and the silicon cell

An extreme case of detail laden biology is the silicon cell program, where the idea is that computer replicas be made of intracellular pathways and, ultimately, whole living organisms (www.siliconcell.net). There is a remarkable importance of detail and special case here. Each enzyme is a special case with specific parameter values which have to be encoded in the computer program. Sophisticated mathematics should help in solving and analyzing the resulting systems which are simultaneously stiff in the dimensions of space, time and chemistry. Making
a precise computer replica of a living cell, and subsequently of the human being itself, is one of the greatest scientific and humanistic challenges. The mathematical difficulties are enormous, especially when one realizes that the replica needs to be made understandable by formalization and by the subsequent discovery of understandable principles and rules. Likewise, the mathematical remunerations are enormous: once we have a mathematical replica of Life, Life itself is open to all the mathematical and indeed philosophical/theoretical examinations one would wish to engage in. Computational Biology will be more realistic than computational physics and will provide an interesting challenge for the development of new mathematics.

Conclusion

There is a bonanza of new Mathematical Biology to be discovered in Systems Biology. I hope that as many bright mathematical and theoretical biologists as possible will engage in this challenge.

Hans V. Westerhoff
Vice-president of the European Society for Mathematical and Theoretical Biology
AstraZeneca Chair of Systems Biology at the University of Manchester
Chairs of Molecular Cell Physiology and Mathematical Biochemistry at the BioCentre Amsterdam

References