Characterising the development of diabetic retinopathy in the Diabetes Care System West-Friesland, The Netherlands

Zavrelova, H.; Hoekstra, T.; Alssema, M.J.; Welschen, L.M.C.; Nijpels, G.; Moll, A.C.; Polak, B.C.P.; Dekker, J.M.

published in
Diabetologia
2010

DOI (link to publisher)
10.1007/s00125-010-1872-z

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. Oct. 2023
MINUTES OF THE 45th GENERAL ASSEMBLY OF THE EUROPEAN ASSOCIATION FOR THE STUDY OF DIABETES

held in Messe Wien, Vienna, Austria on 1 October 2009

Present:
Dr. U. Smith (President)
Dr. G. Spinhas (Honorary Treasurer)
Dr. M. Stumvoll (Honorary Secretary)
Dr. E. Gale (Editor-in-Chief, Diabetologia)
Dr. J. Nolan (Chair, PGESC)
Dr. V. Jörgens (Executive Director)
Dr. M. Grüsser (Vice Director)
and 51 members

c) Honorary Auditors

The President asked the Honorary Auditors, Drs. Pater-son and Tack, to formally discharge the accounts. Dr. Tack confirmed that the accounts had been checked carefully and were in perfect order. Dr. Smith asked for the vote to accept the accounts.

The accounts were unanimously discharged (four abstentions).

d) Honorary Secretary

Dr. Stumvoll reported that more than 50% of those questioned in Rome scored the Meeting above average or outstanding. There had been a minor improvement in the ratings of the oral presentations.

For the Vienna Meeting, 2062 abstracts had been submitted and 1367 had been accepted. The highest number of submissions came from USA, UK and Germany. Regarding Travel Grants,146 had been awarded for the amount of €74,100.

Regarding the Stockholm Meeting, the Programme Committee had been put together and had had its first meeting. There are 16 in the Programme Committee, with one from USA. Dr. Stumvoll said he had received roughly 80 suggestions for symposia in Stockholm.

Dr. Stumvoll closed his report by thanking all members of the EASD staff, in particular Ms. H. Goliberzuch and
Mrs. M. Toledo, for their outstanding help and support with the organisation of the EASD Annual Meetings.

Dr. Smith thanked Dr. Stumvoll for his diligence and asked if there were any questions. There were none.

e) Editor-in-Chief, Diabetologia

Dr. Gale reported that the impact factor had improved, reaching the highest ever for Diabetologia, and the gap was closing on Diabetes Care. In 2008, 1694 articles had been submitted to Diabetologia; 51% went through full peer-review. The acceptance rate of 20.2% had increased slightly over 2007.

He expressed his thanks to the referees and associates and said their work was much appreciated. He also thanked his team in Bristol.

Dr. Smith thanked Dr. Gale for the excellent work he had done.

f) Chair, Postgraduate Education Sub-committee

Dr. Nolan reported that the postgraduate course in Kiev in April 2009 had been very successful and it was planned to return to the Ukraine in 2010. He thanked Dr. Boulton for the organisation of the extra-European courses in Vietnam, India and China.

Dr. Nolan reported that the web-based educational lectures were developing well and CME accreditation had been granted for these. He thanked Mr. Carey for his assistance.

Dr. Nolan thanked Dr. Czupryniak for his support as Secretary of the PGESC and the team in Düsseldorf, especially Mrs. Hata and Ms. Sommer, for their friendly assistance.

Dr. Smith thanked Dr. Nolan for his valuable work. There were no questions.

3. ELECTIONS

a) Vice President 2009-2012

The Council’s election of Dr. F. Bosch was unanimously approved with one abstention.

b) Editor-in-Chief 2010-2013

The election of Dr. J. Zierath was unanimously approved with one abstention.

c) Honorary Treasurer Extension 2009-2010

The General Assembly unanimously approved Dr. Spinas’ extension until 2010, with 1 abstention.

d) Chair PGESC, Extension 2009-2010

The General Assembly unanimously approved Dr. Nolan’s extension until 2010, with 1 abstention.

e) Council Members 2010-2013

The following Council Members were elected by the General Assembly:

- Dr. Beguinot, F. (I) - unanimously;
- Dr. Dekker, J. (NL) - 1 abstention;
- Dr. Karpe, F. (UK) – unanimously;
- Dr. Urbanavicius, V. (Li) - 1 abstention;

4. STUDY GROUPS

It was reported that two Study Groups had been disbanded:

Hypertension in Diabetes Study Group (HID)
Diabetes Optimization through Information Technology Study Group (DOIT)

5. HONORARY MEMBERSHIP

Drs. O. Crofford, J. Nerup and W. Waldhäusl were unanimously elected by the General Assembly.

6. ANY OTHER BUSINESS

There was no other business.

Dr. Smith thanked the out-going Vice President, Dr. C. Boitard, for his dedication and expressed his thanks for the confidence that Dr. Boitard had shown him as President.

Dr. Smith thanked the industry for their support. He also expressed his sincere gratitude to the Local Organising Committee for their outstanding contribution to the organisation of the 45th EASD Annual Meeting. He again thanked Dr. Stumvoll and the members of the Programme Committee for their hard work with regard to the scientific programme. The President warmly thanked the EASD team in Düsseldorf for their kind and efficient help.

Dr. Smith brought the General Assembly to a close at 19:00.
Agenda for the 46th General Assembly of the European Association for the Study of Diabetes

to be held in the Sutherland Hall at the Stockholmsmässan 18:00 on Thursday 23 September 2010

1. Minutes of the 45th General Assembly, Vienna, Austria 2009

2. Reports

a) President
b) Honorary Treasurer
c) Honorary Auditors
d) Honorary Secretary
e) Editor-in-Chief, Diabetologia
f) Chair, Postgraduate Education Subcommittee
g) Chair, Extra-European Postgraduate Activities

Dr. U. Smith
Dr. G. Spinas
Dr. K. Paterson
Dr. C. Tack
Dr. M. Stumvoll
Dr. E. Gale
Dr. J. Nolan

Dr. A. J. M. Boulton

3. Elections

a) Extension, Honorary Treasurer (2010 - 2011)
b) Honorary Secretary (2010 – 2013)
c) Chair, PGESC (2010 – 2013)
d) Council Members (2011 - 2014)
e) Honorary Auditor (2010 - 2013)

G. Spinas
in place of M. Stumvoll
in place of J. Nolan
in place of
T. Battel
D. Matthews
J. Philippe
J. Zierath
in place of C. Tack

4. Study Groups

5. Honorary Membership

6. Any other business
46th EASD Annual Meeting of the European Association for the Study of Diabetes

Stockholm, Sweden, 20 – 24 September 2010

Abstracts

Index of Oral Presentations

OP 1 Novel formulations and delivery of insulin
OP 2 Screening and prevention of gestational diabetes
OP 3 Cardiovascular disease in type 1 diabetes
OP 4 Gastrointestinal factors and insulin secretion
OP 5 Somatic and autonomic neuropathy
OP 6 Ethnic and psychosocial disparities in diabetes
OP 7 The effects of insulin beyond glycaemia
OP 8 Continuous glucose monitoring - a promise of improvement?
OP 9 GWAS and their follow-up: analytical, technological and experimental developments
OP 10 Lipids in and out of context
OP 11 Cardiovascular complications - experimental
OP 12 Metabolic control of beta cells
OP 13 Incretin based therapies: new developments
OP 14 Biomarkers and coronary heart disease risk
OP 15 Manipulating the gut to treat metabolism
OP 16 Mechanisms of insulin secretion
OP 17 Role of mitochondria in muscle insulin action
OP 18 Diabetic nephropathy - experimental
OP 19 Large studies - new data
OP 20 Diabetic foot - mechanisms and treatment
OP 21 Intertissue crosstalk in metabolism
OP 22 Making and replacing islet beta cells
OP 23 Genes and islets
OP 24 Childhood diabetes: What is new?
OP 25 Diabetes morbidity and mortality
OP 26 Hypertension and retinopathy
OP 27 Incretins: mechanistic studies
OP 28 Targeting of beta cell genes in vivo
OP 29 Type 1 diabetes mellitus genetics: expression, interaction and function
OP 30 Insulin action and glucose uptake in vitro
OP 31 Prevention of type 2 diabetes mellitus
OP 32 Hypertension and heart failure
OP 33 HbA1c for diabetes mellitus diagnosis: need for reassessment?
OP 34 Inflammation in insulin resistance
OP 35 Novel aspects of beta cell function
OP 36 Adipose tissue biology and inflammation
OP 37 Type 1 diabetes mellitus: incidence, natural history, morbidity and mortality
OP 38 Diabetic nephropathy - clinical trials
OP 39 CNS, appetite control and cognition
OP 40 The diabetic patient in the hospital
OP 41 Deregulation of fatty acid handling, obesity and diabetes
OP 42 Inflammation and metabolism
OP 43 New oral agents
OP 44 Impact of education on glycaemic outcome
OP 45 Brain effects on weight regulation and metabolism
OP 46 Prediction of type 2 diabetes: Can we do better than the usual suspects?
OP 47 Proteomics in diabetes
OP 48 Biomarkers of type 1 diabetes

Index of Poster Sessions

PS 1 Monogenic forms of diabetes
PS 2 Genetics of type 1 diabetes
PS 3 Genome-wide association studies and their follow-up
PS 4 Genes and islets
PS 5 Candidate genes in type 2 diabetes
PS 6 Gene and environment: interaction, pharmacogenetics
PS 7 Genetics of diabetic complications, related metabolic traits
PS 8 Epidemiology and genetics of adiposity
PS 9 Epidemiology of type 1 diabetes mellitus: incidence and mortality
PS 10 Environmental factors and type 1 diabetes mellitus
PS 11 Ethnic differences in metabolic traits
PS 12 Environmental factors and type 2 diabetes mellitus
PS 13 Screening and prediction of type 2 diabetes mellitus
PS 14 HbA1c as a diagnostic test
PS 15 Anthropometric and clinical predictors of type 2 diabetes mellitus
PS 16 Novel biomarkers in diabetes prediction
PS 17 Epidemiology of type 2 diabetes mellitus and its complications
PS 18 Diabetes comorbidities: hospitalisation and cancer
PS 19 Early mechanisms in autoimmune diabetes - animal models
PS 20 Intervention in animal models of type 1 diabetes
PS 21 Islet autoantibodies in type 1 diabetes
PS 22 T regulatory cells and Th17 immunity in type 1 diabetes
PS 23 Inflammatory mediator responses and markers in type 1 diabetes
PS 24 Clinical intervention in type 1 diabetes
PS 25 Differentiation and expansion of beta cells
PS 26 Islet imaging
PS 27 Modulating islets for transplantation
PS 28 Mitochondria in beta cells
PS 29 Glucose and mitochondrial metabolism
PS 30 Cytokines and beta cell survival
PS 31 Apoptosis of beta cells
PS 32 Beta cells under stress
PS 33 Micro RNAs methylation and beta cell transcription
PS 34 Beta cell signal transduction I
PS 35 Beta cell signal transduction II
PS 36 Receptors, secretagogues and modelling in islets
PS 37 Exocytosis and ion channels
PS 38 Ca2+ and cAMP in beta cells
PS 39 Incretins and beta cell mass in rodents
PS 40 Hypoglycaemia in type 2 diabetes
PS 41 Mechanisms in hypoglycaemia
PS 42 Hypoglycaemia - screening and management
PS 43 Metabolic effects of drugs - pilot studies
PS 44 Tolerate to correlate
PS 45 Cardiometabolic risk assessment
PS 46 At home with HOMA?
PS 47 Liver metabolism
PS 48 Clinical insulin resistance - effect of interventions
PS 49 GLP-1 effects in animal models and cells
PS 50 Incretins in vivo
PS 51 Clinical insulin secretion - methods and associations
PS 52 ER stress
PS 53 Metabolic surgery
PS 54 Carbohydrate metabolism
PS 55 Exercise and insulin resistance
PS 56 Exercise: intervention
PS 57 Glucose response in vivo and in vitro
PS 58 Skeletal muscle, insulin action and metabolism
PS 59 Insulin action and metabolism in adipose cells
PS 60 Glucose and lipid metabolism in animal models
PS 61 Animal models insulin resistance
PS 62 Brain and cognitive function
PS 63 Novel targets in insulin resistance
PS 64 Other hormones and endogenous factors
PS 65 Herbology in diabetesology
PS 66 Liver, hepatic steatosis and metabolism
PS 67 Obesity, diabetes and cancer
PS 68 Obesity: mechanisms and therapies I
PS 69 Obesity: mechanisms and therapies II
PS 70 Adipocyte biology: new kids on the block
PS 71 Adipose tissue inflammation
PS 72 Animal models of obesity and/or insulin resistance
PS 73 DPP 4 inhibitors
PS 74 GLP-1 analogues: clinical benefits
PS 75 Long acting GLP-1 agonists
PS 76 Incretin based therapies: metabolic effects
PS 77 GLP-1 analogues: safety and monitoring
PS 78 Incretins and insulin studies
PS 79 SGLT-2 inhibitors
PS 80 Type 2 diabetes mellitus: new therapies
PS 81 Therapeutic alternative approaches to type 2 diabetes mellitus
PS 82 Conventional oral agents
PS 83 Natural history of type 2 diabetes mellitus management
PS 84 “Metabolic syndrome”: definition and management
PS 85 Diabetes in childhood
PS 86 Nutrition and diet
PS 87 Nutritional interventions: mechanisms
PS 88 Initiating and intensifying insulin therapy
PS 89 Short-acting insulins
PS 90 Long-acting insulin analogues
PS 91 Body and soul: the psychological aspects of diabetes
PS 92 The heterogeneity of diabetes
PS 93 Tools for diagnosing and monitoring of diabetes
PS 94 Insulin pumps: a promise of improvement in metabolic control
PS 95 Mapping and improving diabetes control and complications
PS 96 Monitoring and delivering: practicalities for everyday practice
PS 97 Education: in the right hands - an effective therapy for diabetes
PS 98 Tools for improving diabetes control
PS 99 Self-monitoring of blood glucose
PS 100 Continuous glucose monitoring systems: devices, practice and outcomes
PS 101 Optimising resource utilisation
PS 102 Pregnancy - outcomes I
PS 103 Pregnancy - outcomes II
PS 104 Pregnancy - treatment
PS 105 Biomarkers in pregnancy
PS 106 Pregnancy - pathophysiology
PS 107 Neuropathy - diagnostic tools
PS 108 Somatic neuropathy - clinical observations
PS 109 Neuropathy - experimental
PS 110 Autonomic neuropathy - clinical observations
PS 111 Autonomic neuropathy - blood pressure and heart
PS 112 Diabetic foot - clinical observations
PS 113 Diabetic foot - biomarkers and mechanisms
PS 114 Diabetic foot - treatment
PS 115 Retinopathy - prevalence and mechanisms
PS 116 Retinopathy - new screening tools
PS 117 Treatment
PS 118 Diabetic nephropathy: clinical observations
PS 119 Nephropathy - role of renal function
PS 120 Nephropathy - biomarkers
PS 121 Nephropathy - treatment
PS 122 Cardiovascular risk and assessment
PS 123 Biomarkers and cardiovascular disease
PS 124 Cardiac complications
PS 125 Cardiovascular effects of interventions
PS 126 Peripheral and cerebral arteries
PS 127 Complications in type 1 diabetes
PS 128 Hypertension
PS 129 Dyslipidaemia and lipoproteins
PS 130 Endothelial function
PS 131 Endothelium and vasculature
PS 132 Thrombosis and haemostasis
PS 133 Cardiovascular biochemistry
PS 134 Liver, lungs and bone
PS 135 Steatohepatitis
OP 1 Novel formulations and delivery of insulin

1

Gene therapy for diabetic hyperglycaemia by expressing insulin and glucokinase in skeletal muscle: pre-clinical studies in diabetic dogs

D. Callejas1,2, C.J. Mann1, J. Montane1, E. Ayuso1,2, X. Leon1,2, A. Andaluz1, F. Mingozi1, K.A. High1, F. Bosch1,2,*
1 CIBERT of Diabetes and Associated Metabolic Disorders, Barcelona, Spain, 2 Department of Medicine and Animal Surgery, School of Veterinary Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain, 3 Proff Institute for Clinical Research, Chula Vista, California, USA.

Background and aims: We previously demonstrated the feasibility of a potential gene therapy strategy for type 1 diabetes based upon engineering mouse skeletal muscle to co-express human insulin (hIns) and glucokinase (Gck). Both genes act synergistically such that local production of hIns improves glucose uptake, whereas Gck acts as a glucose sensor in a concentration-dependent manner to facilitate glucose disposal. We wished to perform a pre-clinical study in diabetic dogs to demonstrate the feasibility, efficiency, duration of effects as well as any biochemical and safety issues.

Materials and methods: Five dogs were made diabetic with streptozotocin and alloxan. Dog 1 was treated subsequently after diabetes induction with 2.5E12 vg/kg of AAV1-CMV-hIns. Dog 2 was given AAV1-CMV-hIns (1.0E12 vg/kg) only, whereas dogs 3 and 4 received AAV1-CMV-hIns and AAV1-CMV-Gck simultaneously (1.0E12 vg/kg each vector). In addition, Dog 5 was left as an untreated diabetic control for 8 months before receiving the same treatment as Dog 3.

Results: In Dog 1 human C-peptide was successfully detected in serum and associated with improved glucose disposal after oral glucose tolerance test (GTT) and a reduced fasting glycaemia in the absence of any negative response to the vector. Dog 1 was sacrificed at 3 weeks after the treatment and insulin expression was confirmed by qPCR and Northern Blot in skeletal muscle, but not in other tissues. In the other four additional dogs that were treated with lower doses we wanted to find the minimum effective dose of AAV1-CMV-hIns able to produce normoglycaemia in fasting conditions. Circulating levels of human C-peptide were detected for >3 years after injection in Dogs 2, 3 and 4 and for >2 years in Dog 4. Dog 2 showed a nearly normalized fasting glycaemia whereas Dog 3, 4 and 5 achieved completely normalized fasting glycaemia and a vastly improved ability to dispose of glucose compared to Dog 2 or Dog 4 when diabetic, by GTT, suggesting the concerted action of hIns and Gck. Dog 3 demonstrated a continuous deterioration in weight and biochemical parameters (AST and ALT) while diabetic which was immediately rectified upon treatment.

Conclusion: Taken together, these results suggest that engineering skeletal muscle to produce insulin and glucokinase may be a potential therapy for the treatment of type 1 diabetes, because it shows long term efficacy and safety. Supported by: SAF 2008-00962 and the EC (FP6 CLINIGENE)

2

Improved glycaemic variability in type 1 diabetes mellitus and type 2 diabetes mellitus patients by co-injection of prandial insulin analogue with human hyaluronidase

M. Hompesch1, D. Muchmore2, L. Morrow3, E. Ludington1, D. Vaughn4
1 Proff Institute for Clinical Research, Chula Vista, 2 Halozyme Therapeutics, Inc., San Diego, USA.

Background and aims: Studies in T1DM and T2DM patients to compare the postprandial glucose (PPG) response to a liquid meal for insulin lispro injected ± human hyaluronidase (PH20).

Materials and methods: Two standardized liquid meal studies were conducted; one in 22 T1DM patients (15 male, 9 female; mean age 40.7 ±10.7; mean BMI 24.2 (± 2.9) and the other in 23 T2DM patients (14 male, 9 female; mean age 52 (37-69); mean BMI 33.5 kg/m2 (23.7-45.0)) on high insulin doses, mean daily dose 105U (60-230). Patients fasted (10h) and refrained from SC insulin (>9h) before dosing. 2h before a liquid meal (60g CHO for T1DM or 80g CHO for T2DM), patients were titrated to 110±20mg/dL glucose target with IV glucose and/or IV insulin followed by a 30min intervention-free period. For the T1DM study, an optimum dose was found for lispro+PH20 during up to 3 dose-finding visits (targeting a postprandial range of 60-160 mg/dL) and the same dose was studied for lispro alone, while for the T2DM study the optimum dose (targeting a postprandial range of 70-140mg/dL) was separately optimized for lispro+PH20 (from 3 dose-escalating test meal visits each). Lispro+PH20 was injected SC immediately pre-meal, and plasma insulin and glucose concentrations were monitored for 8h.

Results: PH20 coinjection reduced hyperglycemic excursions in both studies with the same (T1DM) or reduced (T2DM) hypoglycemic risk. In the T1DM study, peak PPG was reduced from 174 to 148 mg/dL (p=0.002) and the total hyperglycemic excursions (AUC > 140 mg/dL) were reduced 79%, allowing more patients to reach PPG goal (91% ±PH20 v. 55% for lispro alone met the ADA goal of ≤180mg/dL). In the T2DM study, peak PPG was reduced from 178 to 165 mg/dL (p=0.095) and the total hyperglycemic excursions (AUC > 140 mg/dL) were reduced 44%, allowing more patients to reach PPG goal (71% ±PH20 v. 48% for lispro alone met the ADA goal of ≤180mg/dL). Hypoglycemic risk was similar in the T1DM study with equal lispro doses, and reduced in the T2DM study where the optimum dose was reduced by 8% for lispro+PH20. All injections were well tolerated.

Conclusion: Lispro+PH20 provided superior control of postprandial blood glucose compared to lispro alone in patients with both T1DM and T2DM in these test meal settings.
30 month post trial follow up of HbA1c, with continuous intraperitoneal insulin infusion in type 1 diabetes

Background and aims: Results from our randomized controlled trial (RCT) showed that with continuous intraperitoneal (IP) insulin infusion with an implantable pump (see Figure 1) it is possible to achieve better glycemic control and quality of life compared to subcutaneous insulin administration in patients with type 1 diabetes (T1DM). The aim of this analysis was to investigate patients therapy choice and glycemic control 30 months after the end of the trial.

Materials and methods: The 23 patients that ended the RCT in 2007/2008 all continued to use the IP pump. Last known HbA1c values were collected in the first quarter of 2010. Status regarding therapy mode were extracted from hospital records. Paired t-tests were used to compare HbA1c at the end of the IP study phase with mean HbA1c at follow up.

Results: In March 2010, 22 (12 female, 10 male) patients were still treated with CIPII, 1 patient (female) was back on subcutaneous insulin due to neuropathic pains, for which the patient blamed the IP pump. Mean age at follow up was 46.6 (12.0) years; mean diabetes duration at the start of the study was 22.6 (10.6) years; mean baseline HbA1c 8.6 (1.1) %; HbA1c >7.5% in 20 up was 46.6 (12.0) years; mean diabetes duration at the start of the study with CIPII, 1 patient (female) was back on subcutaneous insulin due to neuropathic pains, for which the patient blamed the IP pump. Mean age at follow up was 46.6 (12.0) years; mean diabetes duration at the start of the study was 22.6 (10.6) years; mean baseline HbA1c 8.6 (1.1) %; HbA1c >7.5% in 29 subjects: hypoglycemic events 25/week in 14 subjects. HbA1c was collected after 2.3 (0.6) years after the end of the study. Mean HbA1c was 7.7% (1.1). Compared to prestudy HbA1c values, this is a significant reduction of 0.83% (CI: -1.3, -0.4). Compared to the end of the IP phase of the trial, the results are comparable (0.2% (CI: -0.3, 0.7).

Conclusion: Our analysis shows that with CIPII it is possible not only to improve glycemic control in the short term, but also to achieve sustained improvement in glycemic control in patients with T1DM who were insufficiently controlled previously despite intensified subcutaneous insulin regimens. Furthermore, there is a low drop out rate with CIPII (1 out of 23 of patients).

Figure 1: Schematic representation of the position of the insulin pump and catheter in situ.

Supported by: Medtronic

4

Insulin degludec, a new generation ultra-long acting insulin, used once daily or 3-times weekly in people with type 2 diabetes: comparison to insulin glargine

C. Mathieu, G. Fulcher, P.V. Rao, N. Thomas, L. Endahl, T. Johannsen, A.J. Lewin, J. Rosenstock, M. Pinget, B. Zinman; 1 UZ Gasthuisberg K.U.Leuven, Belgium, 2 Royal North Shore Hospital, University of Sydney, Australia, 3 Nizam's Institute of Medical Sciences, Hyderabad, India, 4 Christian Medical College, Vellore, India, 5 Novo Nordisk A/S, Soeborg, Denmark, 6 National Research Institute, Los Angeles, 7 Dallas Diabetes and Endocrine Center at Medical City, Dallas, USA, 8 University Hospital Strasbourg, France, 9 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Canada.

Background and aims: Insulin degludec (IDeg) is a novel insulin analog that forms soluble multi-hexamer assemblies after s.c. injection, resulting in ultra-long duration of action. The aim of this phase 2 trial was to investigate the efficacy and safety of IDeg formulations administered once daily (OD) or 3-times weekly (3TW) in insulin-naïve people with type 2 diabetes inadequately controlled on OADs.

Materials and methods: This was a 16-week, open-label, randomized, 4-arm, parallel-group, treat-to-target trial. Participants (mean: 54.2 years, HbA1c 8.7%, fasting plasma glucose (FPG) 10.2 mmol/l; BMI 29.5 kg/m²) received an OD formulation of IDeg (IDeg OD; n=60), a 3TW formulation of IDeg (IDeg 3TW; n=62), an alternative IDeg OD formulation (development discontinued, results not shown, n=61) and insulin glargine OD (IGlar; n=62), all in combination with metformin. All insulin were injected s. c. in the evening and titrated to achieve FPG 4.0-6.0 mmol/l. www.clinicaltrials.gov ID: NCT00611884.

Results: HbA1c after 16 weeks of treatment was similar across treatment arms with regard to mean reduction from baseline (IDeg OD: -1.3%; IDeg 3TW: -1.5%; IGlar: -1.5%; p=NS for all pairwise comparisons) and final mean value (IDeg OD: 7.4%; IDeg 3TW: 7.3%; IGlar: 7.2%). Treatments were also comparable with respect to final mean FPG (IDeg OD: 6.3 mmol/l; IDeg 3TW: 6.5 mmol/l; IGlar: 6.4 mmol/l) and mean reductions from baseline (IDeg OD: -3.6 mmol/l; IDeg 3TW: -4.2 mmol/l; IGlar: -3.4 mmol/l). At end-of-trial, mean weekly insulin dose was similar for IDeg OD (3.1 U/kg/week=0.45 U/kg/day), IDeg 3TW (3.4 U/kg/week=0.49 U/kg/day) and IGlar (3.3 U/kg/week=0.48 U/kg/day). Body weight remained stable throughout the trial in all treatment arms. Rates of confirmed hypoglycemia (PG <3.1 mmol/l or requiring assistance) were low and only one severe event was reported (for IDeg 3TW). The rate of confirmed hypoglycemia appeared lower for IDeg OD than IDeg 3TW and IGlar (0.6, 2.3, 1.1 events/patient/year, respectively; p=NS for both comparisons). The proportion of subjects with adverse events (AEs) was similar across treatment arms (IDeg OD: 47%; IDeg 3TW: 50%; IGlar: 66%) with no specific patterns or clustering. The majority of AEs were mild or moderate in severity.

Conclusion: This proof-of-concept trial demonstrated that IDeg used 3-times weekly or once daily was safe, well tolerated and provided similar glycemic control to IGlar.

Supported by: Novo Nordisk

5

Glycosylated hemoglobin and hypoglycaemia in patients with type 2 diabetes mellitus: Technosphere insulin and usual antihyperglycaemic regimen versus usual antihyperglycaemic regimen

A.H. Boss, P. Raskin, M. Phillips, A. Rossiter, P.C. Richardson; 1 MannKind Corporation, Valencia, 2 University of Texas Southwestern Medical Center at Dallas, USA.

Background and aims: Technosphere Insulin (TI) is an ultra-rapid-acting inhaled insulin with a pharmacokinetic profile well suited for earlier control of postprandial plasma glucose. One objective of this trial was to compare the efficacy and safety of prandial TI with usual diabetes care (UC) in patients with type 2 diabetes mellitus (T2DM) with inadequate glycemic control (glycosylated hemoglobin [A1C] >6.6%. <12.0%).

Materials and methods: Patients either incorporated TI into their usual antihyperglycaemic regimen, which could include insulin, oral hypoglycemic drugs, and/or diet and exercise (UC group; n=678) over 2 years.

Results: Mean baseline characteristics were similar between groups. The average TI daily dose was 141.7±62.9 U. At 2 years, there was comparable reduction between groups in A1C (0.7% [TI]; 0.59% [UC]; p=0.30; see Figure). Total hypoglycemic event rates were 0.15 per patient-month in the TI group compared with 0.24 per patient-month for UC patients on insulin (p=0.03); mild/moderate (M/M), 0.15 per patient-month in the TI group compared with 0.24 per patient-month for UC patients on insulin (p=0.04); and severe, 0.53 per 100 patient-months in the TI group compared with 1.17 per 100 patient-months for UC patients on insulin (p=0.08). Weight gain in the TI group was +1.56 kg compared with 1.75 kg in the UC group (p=0.67).

Conclusion: In patients with T2DM, antihyperglycaemic regimens containing prandial TI resulted in comparable A1C reductions, significant reductions in overall and M/M events, and a numerical reduction in severe hypoglycemic event rates.
A novel pH-neutral formulation of the monomeric insulin VIAject has a faster onset of action than insulin lispro

Background and aims: VIAject is a monomeric insulin with a very fast onset of action. Previous studies used a formulation of VIAject with a concentration of 25 U/ml and a pH of about 4 (VJ25). In this double-blind, cross-over glucose clamp study we compared the pharmacodynamic (PD) and pharmacokinetic (PK) properties of a novel formulation of VIAject with a concentration of 100 U/ml and a neutral pH (VJ7) with those of VJ25 and insulin lispro (LIS).

Materials and methods: Forty-three people with type 1 diabetes (21 female, age 43 (21-65) years, BMI 24.1 (20-28) kg/m², HbA1c 7.5 (5.7-9.5)% received 12 U of either insulin under euglycemic glucose clamp conditions (Biostator-clamp, duration 8h postdose).

Results: VJ7 was bioequivalent to VJ25 (90% confidence interval of the ratios for total insulin (INS) AUCs and INSpeak within 0.80-1.25). Compared with LIS, VJ7 showed a significantly faster absorption (t-INSpeak 23 vs. 60 min, difference -30 [90% Confidence Interval (CI) -35; -23] min; t-INS50%late 8 vs. 22 min, difference -16 [CI -17; -14] min; p<0.05 respectively) and faster onset of action (time to early half-maximal glucose infusion rate (GIR) 25 vs. 44 min, difference -18 [CI -26; -10] min, p<0.05), a higher GIR-AUC in the first 60 min (503 vs. 370, ratio 1.36 [CI 1.27; 1.47] mg/kg, p<0.05) and a slightly higher value for AUC-GIR 0.86 vs. 1.01 [mg/kg/min] as was t-INSpeak (136 vs. 129, difference 7 [CI -15; 27] min) whereas the duration of action was longer with VJ7 (t-INSpeak 274 vs. 228, difference 50 [CI 25; 73] min; p<0.05).

Conclusion: The novel, pH-neutral formulation of VIAject is bioequivalent to the previously used formulation and has a significantly faster absorption and onset of action than insulin lispro.

Supported by: MannKind Corporation

OP 2 Screening and prevention of gestational diabetes

7

Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study: Frequency of gestational diabetes mellitus (GDM) at collaborating centers based on IADPSG consensus panel recommended criteria

D.R. Hadden, B.E. Metzger, L.P. Lowe, A.R. Dyer, D.R. Coustan, M. Hod, J.J.N. Oats, B. Persson, E.R. Trimble; HAPO Study Cooperative Research Group; 1Endocrinology, Royal Victoria Hospital, Belfast, United Kingdom; 2Medicine, Northwestern University, Chicago, 3Preventive Medicine, Northwestern University, Chicago, 4Obstetrics & Gynecology, Women and Infants Hospital, Providence, USA, 5Obstetrics & Gynecology, Helen Schneider Hospital for Women, Rabin Medical Center, Tel Aviv, Israel, 6Obstetrics & Gynecology, Royal Women’s Hospital, Melbourne, Australia, 7Pediatrics, Karolinska Institute, Stockholm, Sweden, 8Endocrinology, Queen’s University Belfast, United Kingdom.

Background and aims: New criteria for GDM were recommended by the International Association of Diabetes in Pregnancy Study Groups (IADPSG). The aim is to apply the criteria to determine frequency of GDM at HAPO Study field centers.

Materials and methods: The IADPSG thresholds are one or more OGTT plasma glucose values ≥ 5.1, 10.0, 8.5 mmol/l for fasting, 1-hr and 2-hr glucose respectively. These were applied to the blinded participants at the 15 field centers that collaborated in the HAPO Study.

Results: GDM was diagnosed in 16.1% of the blinded study population. An additional 1.7% was unblinded with an OGTT glucose value above predefined levels bringing the overall figure to 17.8%. However, there was considerable center-to-center variation of the study participants in maternal age, body mass index, frequencies of family history of diabetes and hypertension. Adjusting for these variables and for field center reduced, but did not eliminate center-center differences which in all likelihood reflect racial/ethnic group differences in the potential risk of disorders of glucose metabolism in these populations.

Conclusion: Using the diagnostic thresholds recommended by the IADPSG Consensus Panel, the frequencies of GDM show substantial variability between and within regions of the world. These variations may influence the future development of optimal, cost-effective strategies for detection and treatment of GDM.

Unadjusted Frequency of GDM at HAPO Field Centers

<table>
<thead>
<tr>
<th>Field Center</th>
<th>Frequency (%)</th>
<th>Field Center</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellflower, USA</td>
<td>22.9</td>
<td>Petah Tiqva, Israel</td>
<td>9.2</td>
</tr>
<tr>
<td>Chicago, USA</td>
<td>16.5</td>
<td>Beerseha, Israel</td>
<td>8.7</td>
</tr>
<tr>
<td>Providence, USA</td>
<td>14.2</td>
<td>Bangkok, Thailand</td>
<td>21.2</td>
</tr>
<tr>
<td>Cleveland, USA</td>
<td>23.7</td>
<td>Brisbane, Australia</td>
<td>12.1</td>
</tr>
<tr>
<td>Toronto, Canada</td>
<td>14.6</td>
<td>Newcastle, Australia</td>
<td>13.6</td>
</tr>
<tr>
<td>Belfast, UK</td>
<td>15.5</td>
<td>Singapore, Singapore</td>
<td>22.4</td>
</tr>
<tr>
<td>Manchester, UK</td>
<td>21.0</td>
<td>Hong Kong, China</td>
<td>13.4</td>
</tr>
<tr>
<td>Barbados, West Indies</td>
<td>9.9</td>
<td>HAPO Overall</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Supported by: NIH, ADA

8

Analysis of pregnancies after new IADPSG recommendation

A. Lapolla, M. Dalfra, E. Ragazzi, A. De CATA, M. Masin, B. Bonsembiante, D. Fedele; 1Medical and Surgical Sciences, 2Pharmacology and Anaesthesiology, University of Padova, Italy.

Background and aims: The IADPSG Consensus Panel recently has suggested new diagnostic criteria for gestational diabetes (GDM) diagnosis. Aim of our study was to evaluate clinical and metabolic characteristics and pregnancy outcome in women prior classified normal by Carpenter and Coustan criteria and now GDM according to the new recommendations.

Supported by: Biodel Inc.

New criteria for the diagnosis of gestational diabetes mellitus in comparison to former diagnostic criteria concerning maternal postpartum glucose levels and neonatal complications

T. Prikoszovich1, D. Ranchar-Todesca2, R. Weitgasser3, H. Steiner4, G. Scherthaner5, B. Schneider6, C. Marth7, M. Lechleitner8, A. Kautky-Willer9
1Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 2Obstetrics and Gynecology, Medical University of Vienna, 3First Department of Medicine, Paracelsus Private Medical University Salzburg, 4Obstetrics and Gynecology, Paracelsus Private Medical University Salzburg, 5Department of Internal Medicine I, Rudolfstiftung Vienna, 6Department of Medical Statistics, Medical University of Vienna, 7Obstetrics and Gynecology, Medical University of Innsbruck, 8Department of Internal Medicine, Medical University of Innsbruck, 9Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria.

Background and aims: New criteria for the diagnosis of gestational diabetes mellitus (GDM) were recently proposed by the Consensus Panel of the International Association of Diabetes and Pregnancy Study Groups (ICP). We aimed to examine whether these new criteria (GDM-ICP) select women and children at risk better than criteria of the Forth International Workshop Conference of GDM (GDM-WC4). We compared maternal and neonatal outcomes of women diagnosed with GDM-WC4/1 and GDM-ICP.

Results: Forty-nine percent of all women were diagnosed according to GDM-WC4 whereas forty-six percent according to GDM-WC4/1. GDM-ICP identified a higher rate of obstetrical complications. We found 6.1 % more large for gestational age neonates (p<0.0001), 3.26% more cesarean section (p<0.0001) and 4.5% more neonates with birth weight >4000g (p=0.0047) than with the former criteria. The rate of women with risk factors (history of GDM or pre-diabetes, intrauterine fetal death, birth weight over 4000g, malformation, previous recurrent abortus, ethnic group at risk, adiposity, hypertension, dyslipidemia, preterm delivery, age, family history for DM2, glucosuria and macrosomia) detected by the GDM-ICP was increased by 2.6% (p=0.0001). However concerning impaired postpartum glucose tolerance we found no differences.

Conclusion: These results support the use of the new, more stringent criteria proposed by ICP for the diagnosis of GDM (GDM-ICP), because they can detect more obstetrical complications than the former diagnostic criteria (GDM-WC4/1). We assessed the impact of different parameters, such as mother's socio-economic status, on the risk of developing GDM and IGT during pregnancy.

Supported by: HRB

10

ATLANTIC DIP: Prevalence and implications of abnormal glucose tolerance in pregnancy in Ireland

E.P. O’Sullivan1, G. Avalos2, M.W. O’Reilly3, C. Dennedy4, E. Dunne5
1Diabetes, Galway University Hospital, 2Medicine, National University of Ireland Galway, Ireland.

Background and aims: While many authorities now recommend universal screening for gestational diabetes mellitus (GDM), this is not available in the Irish Health Service. Consequently, the true prevalence of abnormal glucose tolerance (and its implications) in pregnancy is unknown.

Materials and methods: ATLANTIC DIP (Diabetes In Pregnancy) is a multicentre study on the west coast of Ireland which offers universal screening for gestational diabetes mellitus (GDM) using a 75g oral glucose tolerance test at 24-28 weeks. Normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and GDM were defined according to standard WHO criteria. Maternal and neonatal outcomes were recorded. Statistical analysis was performed using SPSS, and all results were adjusted for maternal age and body mass index (BMI).

Results: Between 2006 and 2008, 5,670 women (mean age 1.5±5.4yrs, mean BMI 26.9±5.1kg/m2, 93.4% Caucasian) were screened. 5,100 (89.9%) women had a NGT, 431 (7.6%) had IGT, and 139 (2.5%) had GDM. The table below shows the Odds ratios [95% confidence intervals] of adverse maternal and foetal outcomes for IGT and GDM compared to NGT.

Conclusion: One in ten women screened had IGT or GDM. Given this prevalence and the associated significant adverse maternal and foetal outcomes, consideration should be given to universal screening for GDM throughout Ireland.

Adverse maternal and foetal outcomes

<table>
<thead>
<tr>
<th></th>
<th>IGT</th>
<th>GDM</th>
<th>IGT/GDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertensive disorder of pregnancy</td>
<td>1.4[0.9-2.1]</td>
<td>1.9[1.0-3.6]</td>
<td>1.5[1.0-2.2]</td>
</tr>
<tr>
<td>Polyhydramnios</td>
<td>3.9[1.4-10.6]</td>
<td>2.9[0.4-2.29]</td>
<td>3.7[1.4-9.5]</td>
</tr>
<tr>
<td>Instrumental delivery/ Caesarean Section(CS)</td>
<td>0.8[0.6-1.1]</td>
<td>3.0[1.6-5.6]</td>
<td>1.1[0.8-1.4]</td>
</tr>
<tr>
<td>CS</td>
<td>0.8[0.6-1.2]</td>
<td>3.8[2.1-6.9]</td>
<td>1.2[0.9-1.6]</td>
</tr>
<tr>
<td>Emergency CS</td>
<td>0.6[0.4-1.0]</td>
<td>4.5[2.3-8.6]</td>
<td>1.2[0.8-1.7]</td>
</tr>
<tr>
<td>Elective CS</td>
<td>1.1[0.7-1.6]</td>
<td>3.1[1.5-6.5]</td>
<td>1.5[1.1-2.1]</td>
</tr>
<tr>
<td>Congenital Malformations</td>
<td>2.4[1.0-5.6]</td>
<td>1.1[0.1-8.5]</td>
<td>2.1[0.4-7.7]</td>
</tr>
<tr>
<td>Neonatal ICU admission</td>
<td>3.4[2.4-4.9]</td>
<td>9.5[3.3-16.9]</td>
<td>4.3[3.2-6.0]</td>
</tr>
</tbody>
</table>

Supported by: HRB
Advanced glycation endproducts (AGEs) may contribute to increased pregnancy complications or increased birth weight. The present study does not support that metformin prevents the development of gestational diabetes mellitus in women with polycystic ovarian syndrome. In conclusion, the observation that birth weight was not increased in offspring of PCOS women, without difference among the three groups, suggests to prevent pregnancy complications in women with polycystic ovarian syndrome,

Material and methods: We prospectively followed 169 individuals with diabetic nephropathy and 170 individuals with persistent normoalbuminuria (205 men, mean age at baseline of 41±10 yrs) who were free of CVD at study entry and in whom levels of AGEs (expressed as the average of the z-scores of Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine and pentosidine) and other biomarkers were measured at baseline. The median follow-up duration was 12.3 (inter-quartile range: 7.6-12.5) years. Data were analysed with Cox regression analyses.

Results: During the course of follow-up, 82 individuals (24.2%) died; 85 (25.1%) suffered a fatal (n=48) and/or non-fatal (n=37) CVD event. The incidence of cardiovascular morbidity and mortality (Fig. 1A) and of all-cause mortality (Fig. 1B) increased with higher baseline levels of AGEs independently of traditional CVD risk factors (as detailed in footnote to figure): hazard ratio (HR)=1.30 (95%CI=1.02 to 1.65) and HR=1.29 (1.01 to 1.65) per 1 SD increase in AGEs score, respectively. Adjustment for estimated glomerular filtration rate (eGFR), but not for markers of endothelial dysfunction, low-grade inflammation and arterial stiffness, attenuated these associations to HR=1.16 (95%CI=1.04 to 1.30) and HR=1.19 (1.01 to 1.42) per 1 SD increase in AGEs score, respectively. Prepregnancy BMI and old age remain the best predictors of abnormal glucose tolerance during pregnancy. Obese and older women, independently of their education levels, have to be addressed to programs for preventing the development of glucose abnormalities during pregnancy.

Conclusion: We failed to find any relationship between abnormal OGTT and maternal education levels. Probably in our population, differently than others, low education level is not a condition of deprivation and low health knowledge. Prepregnancy BMI and old age remain the best predictors of abnormal glucose tolerance during pregnancy. Obese and older women, independently of their education levels, have to be addressed to programs for preventing the development of glucose abnormalities during pregnancy.

Results: We studied 1012 Caucasian pregnant women (mean age 33.8±4.4 yrs) at 27.4±4 W of gestation. PCOS was present in 29% (n=297). Women were younger (33.4±6.2 vs 33.2 ± 4.3 and 33.4±6.7 yrs, p<0.0002) heavier (BMI 25.7±5.6 vs 24.2±5 and 23±3.9 kg/m², p<0.0001) with a higher rate of obesity (22.4% vs 12% and 6.9%, p<0.0001) and an higher weight gain during pregnancy (10.9±4.9 vs 10.4±5.8 and 9.7±5.6 kg, p<0.01) while H women were older than others (33.4±6.1 and 33.2±4.3 vs 34.9±3.7, p>0.002).

Conclusion: We failed to find any relationship between abnormal OGTT and maternal education levels. Probably in our population, differently than others, low education level is not a condition of deprivation and low health knowledge. Prepregnancy BMI and old age remain the best predictors of abnormal glucose tolerance during pregnancy. Obese and older women, independently of their education levels, have to be addressed to programs for preventing the development of glucose abnormalities during pregnancy.

Background: It is held that gestational diabetes mellitus (GDM) increases pregnancy complications and adverse pregnancy outcome. Metformin is also suggested to prevent pregnancy complications in women with polycystic ovary syndrome (PCOS). And some propose that metformin should be used to treat GDM.

Material and methods: In the first trimester of pregnancy, 273 PCOS women were randomized to metformin or placebo. At inclusion, gestational week 19 and 32, an OGTT were performed and pregnancy complications were recorded.

Results: At inclusion, 13 women in the placebo group and 10 in the metformin group had GDM. During the rest of the pregnancy 21/125 (16.9%) in the placebo group and 22/125 (17.6%) in the metformin group developed GDM (p=0.87). Insulin was required in four patients in the placebo group and none in the metformin group. We found no differences in mean birth weight (3524 ± 559 vs 3543 ± 601, p=0.82), in the incidence of preterm delivery (0.8% vs 0.0%, p<0.01), in the incidence of preterm delivery (0.8% vs 0.0%, p<0.01), in the incidence of preterm delivery (0.8% vs 0.0%, p<0.01), in the incidence of preeclampsia and preterm delivery. If our observations are confirmed by future studies, other endocrine or metabolic aberrations associated with decreased glucose sensitivity must be responsible for the increased incidence of preeclampsia and preterm delivery seen in women with GDM. The observation that birth weight was not increased in offspring of PCOS women with GDM compared to those with normal glucose homeostasis is surprising. Our observations indicate that future studies on GDM should differentiate between PCOS women and non-PCOS women. In conclusion the present study does not support that metformin prevents the development of GDM in PCOS pregnancies. GDM in PCOS women is not associated with increased pregnancy complications or increased birth weight.

Supported by: Wejja AS

OP 3 Cardiovascular disease in type 1 diabetes

13 Higher plasma advanced glycation endproducts levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study

Materials and methods: We prospectively followed 169 individuals with diabetic nephropathy and 170 individuals with persistent normoalbuminuria (205 men, mean age at baseline of 41±10 yrs) who were free of CVD at study entry and in whom levels of AGEs (expressed as the average of the z-scores of Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine and pentosidine) and other biomarkers were measured at baseline. The median follow-up duration was 12.3 (inter-quartile range: 7.6-12.5) years. Data were analysed with Cox regression analyses.

Results: During the course of follow-up, 82 individuals (24.2%) died; 85 (25.1%) suffered a fatal (n=48) and/or non-fatal (n=37) CVD event. The incidence of cardiovascular morbidity and mortality (Fig. 1A) and of all-cause mortality (Fig. 1B) increased with higher baseline levels of AGEs independently of traditional CVD risk factors (as detailed in footnote to figure): hazard ratio (HR)=1.30 (95%CI=1.02 to 1.65) and HR=1.29 (1.01 to 1.65) per 1 SD increase in AGEs score, respectively. Adjustment for estimated glomerular filtration rate (eGFR), but not for markers of endothelial dysfunction, low-grade inflammation and arterial stiffness, attenuated these associations to HR=1.16 (0.89 to 1.51) and HR=1.19 (0.90 to 1.57), respectively. Higher levels of AGEs were inversely associated with baseline eGFR: standardised regression coefficient=-0.29 (-0.38 to -0.20).

Conclusion: Higher levels of AGEs are associated with incident cardiovascular morbidity and mortality as well as all-cause mortality in individuals with type 1 diabetes. AGEs-associated renal dysfunction may partially explain these associations.
Type 1 Diabetes (T1D) is associated with an increased age-adjusted relative risk for atherosclerosis even though many of the classical cardiovascular risk factors (CVRF) are absent. While intensive insulin therapy reduces the risk of complications, it is associated with an increase in hypoglycaemia. Hypoglycaemia acutely provokes intense changes in haemodynamics and several haemorrhological parameters. However, its role in preclinical atherosclerosis is still far from proven.

Repeated episodes of hypoglycaemia aggravate preclinical atherosclerosis in a group of young adult subjects with type 1 diabetes

M. Giménez 1,2, R. Gilabert 1, J. Montecuadó 1, A. Alonso 1, R. Casamitjana 1, C. Pardà 1, I. Congel 1,2
1Endocrinology and Diabetes Unit, CIBERDEM, 2Radiology Unit, 3Haemostasis Unit, 4Hormonal Unit, 5Echocardiology Unit, Hospital Clinic, Barcelona, Spain.

Background and aims: Type 1 Diabetes (T1D) is associated with an increased age-adjusted relative risk for atherosclerosis even though many of the classical cardiovascular risk factors (CVRF) are absent. While intensive insulin therapy reduces the risk of complications, it is associated with an increase in hypoglycaemia. Hypoglycaemia acutely provokes intense changes in haemodynamics and several haemorrhological parameters. However, its role when chronically repeated as an accelerating factor for CV disease in diabetes is still far from proven.

Aims: To evaluate whether repeated episodes of hypoglycaemia represent an aggravating factor for vascular disease in subjects with T1D.

Materials and methods: Twenty-five T1D patients (34.6±7.8 years, 14 women, T1D duration 16.1±6.3 years, HbA1c 6.6±1.0) with ≥4 non-severe hypoglycaemia (NSH)/week, no previous SH and without additional CVRF, micro/macrovacular complications (including normal stress echocardiography) and no autonomic dysfunction were selected (H-Group). In addition, 20 T1D subjects were selected as an age-sex matched control group presenting ≤2 NSH/week, no previous SH and without micro/macrowacular complications (C-Group). Previous to the CV evaluation, an acute induction of hypoglycaemia was performed to assess hypoglycaemia awareness. Inflammation/endothelial markers including interleukines, Von Willebrand factor (VW), fibrinogen and ICAM-1 were also measured. B-mode-ultrasound was used to evaluate flow-mediated-dilatation in brachial artery (FMD) and intima-media-thickness (IMT) at both carotid/femoral sites. A 72-h blinded CGMS was recorded.

Results: As expected, H-Group subjects had significantly higher number of NSH/week and SH than C-Group (NSH/week 5.2±1.9 vs. 0.3±0.5; p<0.01). In addition, they displayed hypoglycaemia unawareness by Clarke’s test and by symptomatic response to hypoglycaemia (Edinburgh’s scale). Unsurprisingly, higher percentage of values and AUC <70 mg/dL were observed in H-Group (14.2±8.9 vs. 6.3±7.1%; p<0.02 and 2.4±1.8 vs. 0.6±1.0 AUC; p<0.01). The percentage of maximal FMD was lower in H-Group than in C-Group (6.52±2.92 vs. 8.62±3.13%; p<0.05). A significantly higher IMT was observed at both carotid/femoral sites in H-Group in comparison to C-Group (carotid, 0.53±0.09 vs. 0.47±0.08 mm; p<0.05 and femoral, 0.51±0.17 vs. 0.39±0.09 mm; p<0.05). While in 10/25 subjects from the H-Group atherosclerotic plaques were detected this was not the case in any of the subjects from C-Group. Inflammation/endothelial dysfunction markers were higher in H-Group (leukocytes 7.0±1.8 vs. 5.6±1.4 x 10^9/ul; VW 119±29 vs. 93±26 %; fibrinogen 2.82±0.64 vs. 2.29±0.44 g/L; ICAM-1 408±224 vs. 296±95 ng/ml; p<0.05 for all).

Conclusion: In addition to the induction of hypoglycaemia unawareness and an increased risk for severe hypoglycaemia, repeated hypoglycaemia in T1D is associated with a worse prognosis in terms of preclinical atherosclerosis profile. The precise mechanisms explaining this association remains to be clarified.

Supported by: FIS 06250, Ajut “Josep Font” 2006-2009

15 Pulse pressure predicts all - cause and cardiovascular mortality but not deterioration in kidney function in type 1 diabetic patients

S. Theilade 1, M. Lajer 1, A. Jorsal 1, L. Tarnow 1, H.-H. Parving 1, P. Rossing 1
1Steno Diabetes Center, Gentofte, 2Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, 3Faculty of Health Science, Aarhus University, Denmark.

Background and aims: Patients with type 1 diabetes have an elevated risk of early death due to cardiovascular disease (CVD) and development of end stage renal disease (ESRD). The aim of this analysis is to evaluate if pulse pressure (PP) (as an estimate of arterial stiffness) based on office arterial blood pressure predicts mortality, cardiovascular events and progression of diabetic nephropathy in patients with type 1 diabetes.

Materials and methods: A prospective observational follow-up study. The patients were followed for a median (range) of 8.2 (0.0-12.9) years. The cohort consisted of 898 type 1 diabetic patients. Of these, 456 patients had overt diabetic nephropathy (277 men; age (mean ± SD) 42.1 ± 10.5 years, duration of diabetes (mean ± SD) 28.3 ± 8.8 years, glomerular filtration rate (GFR) 76 ± 34 ml/min/1.73 m² and were followed with yearly measurement of GFR. The remaining 442 patients had longstanding type 1 diabetes and persistent normoalbuminuria (234 men; age 45.4 ± 11.5 years, duration of diabetes 27.8 ± 10.1 years).

Results: During follow-up 178 (19.8 %) patients died; 109 (12.1%) patients died from CVD causes and 99 (11.0%) patients developed ESRD. Individuals with elevated PP had significantly higher all-cause mortality (hazard ratio per 10 mmHg increase, HR [95% CI] 1.18 (1.07 to 1.30); p=0.001, adjusted for sex, age, duration of diabetes, smoking, diastolic blood pressure, HbA1c, eGFR, cholesterol, and history of CVD). For patients with diabetic nephropathy the adjusted HR for all-cause mortality was 1.16 (1.04 to 1.30) p=0.001. Elevated PP also predicted CVD mortality (adjusted HR 1.27 (1.13 to 1.43) p<0.001), and non fatal CVD events (adjusted HR 1.12 (1.01 to 1.23) p=0.04). For fatal and non-fatal CVD combined, the adjusted HR was 1.13 (1.04 to 1.24) p=0.005. In patients with diabetic nephropathy, elevated PP was associated with higher risk of progression to ESRD (HR (per 10 mmHg increase) 1.27 (1.12 to 1.43) p<0.001) but this was not significant after adjustment (HR 1.03 (0.89 to 1.203) and elevated PP was not related to decline in GFR in patients with diabetic nephropathy.

Conclusion: Elevated office pulse pressure (arterial stiffness), predicts all-cause and CV mortality in type 1 diabetic patients. In contrast, office pulse pressure was not associated with progression of diabetic nephropathy.

16 Decreased endothelial progenitor cells associated with poor glycaemic control predict both morphological microvascular and macrovascular impairment in type 1 diabetic children within three years

K. Nagi 1, T. Hoertenhuber 1, M. Fritsch 1, E. Schöber 2, O. Schlager 1, M. Geschwindtner 1, A. Wollfort-Ehringer 1, C. Margera 1, R. Koppensteiner 1, G. Schernthaner 1, B. Rami 1, G.-H. Schernthaner 1
1Angiology, Medical University of Vienna, 2Pediatrics, Medical University of Vienna, 3Aniology, Rudolfstiftung, Vienna, Austria.

Background and aims: The risk of cardiovascular death before the age of 40 is 20-fold increased in patients with type 1 diabetes mellitus (T1DM) com-
pared to those without. Vascular damage, which might be responsible for the increased risk, can be estimated by bone marrow-derived endothelial Progenitor Cells (EPC). EPC predict cardiovascular morbidity and mortality in patients without diabetes. Recently we have demonstrated that improvement or worsening of glycemic control resulted in indirect proportional changes in EPC in Type 1 diabetic children within one year. So, we asked whether a longer follow-up of these T1DM children would result in morphological changes of the macro- and microvasculature.

Materials and methods: We present data of 74 T1DM children: Gender: 51.4% female; Age: 12.7±2.03 years; Body Mass Index: 20.8±0.4; Glycated Haemoglobin A1c (HbA1c): 7.0-9.1 (range); diabetes duration 4.8±0.4 years (all at time of inclusion). Study visits were included, after 1.0±0.1 and 2.7±0.2 years. EPC (flow cytometry) were measured at all visits. For estimation of micro- and macrovascular damage two techniques were applied. For macrovascular damage - driven by plaque formation - Carotid Intima Media Thickness (IMT) was assessed by the average of 24 measurements of the vessel walls via high-resolution B-mode ultrasound. For microvascular damage - driven by vessel reactivity - tissue perfusion was investigated by Laser Doppler perfusion imaging (LDPI) and a post-occlusive reactive hyperemia provocation test. For statistical analysis a p-value < 0.05 was considered significant. Results are given in mean±STD or median (25;75 percentile).

Results: EPC at inclusion: 3410/100VBC (2515;4237), EPC at one year: 3334/100VBC (2929;3898). LDPI parameters after 2.7 years: time to absolute peak 9.5± (6.0±21.3), time to baseline: 80.5± (63.0±108.3), Total Time (LDPI-TT): 95.5± (78.0±118.3), Perfusion at absolute peak 1.435 (1.020±0.050), Perfusion at baseline: 0.390 (0.258±0.598), Difference of perfusion at peak and baseline: 1.055 (0.611±1.513). IMT at latest follow-up was 0.285 (0.258±0.330). EPC at earlier time points were significantly higher for LDPI-TT (R= 0.259; p=0.042) and IMT (R= 0.346; p=0.003). Cross-sectional the following parameters were associated with LDPI-TT: HbA1c (R= 0.255; p=0.045); mean-blood-glucose (R= 0.331; p=0.013) and aspartate aminotransferase (ASAT) (R= 0.315; p=0.015). Associations with IMT were systolic blood pressure (R=0.246; p=0.035); ASAT (R= -0.332; p=0.005); alanine aminotransferase (R= 0.238; p=0.019); duration of diabetes (R= 0.0355; p=0.026).

Conclusion: This is the first study demonstrating an association of EPC with disturbed micro- and macrovascular function in children with Type 1 Diabetes mellitus after a short observation period. Thus, it is most likely that glucose fluctuation with high HbA1c lead from depression of bone-marrow derived EPC to microvascular changes (LDPI), to plaque formation (IMT) and finally to premature cardiovascular disease and death.

17 Early signs of atherosclerosis in diabetic children on intensive insulin treatment: a population based study

H.D. Margeirsdottir1,2,4, H.E. Stensæth1, J.R. Larsen1, C. Brunborg1, K. Dahl-Jørgensen2,4
1Pediatric department Ullevaal, Oslo University Hospital, Oslo, 2Faculty of Medicine, University of Oslo, 3Radiology Department Ullevaal, Oslo University Hospital, 4Oslo Diabetes Research centre, Centre for Clinical Research Ullevaal, Oslo University Hospital, Norway.

Objective: Young adults with type 1 diabetes are at increased risk of early asymptomatic atherosclerosis and cardiovascular morbidity and mortality are substantially increased in this group of patients. The aim of this study was to evaluate early stages of atherosclerosis and predisposing factors in childhood diabetes compared to age- and sex matched healthy control subjects.

Research design and methods: All children and adolescents with type 1 diabetes, aged 8-18 years in Health Region South-East in Norway were invited to participate in the study (n=800). 40% (n=314) agreed to participate and were compared to 118 age-matched healthy controls. Carotid artery Intima Media Thickness (cIMT) and elasticity was measured using standardized methods.

Results: Mean age of the diabetic patients was 13.7 years, diabetes duration 5.5 years and HbA1c 8.4%. 97% were using intensive insulin treatment, 60% insulin pumps. Diabetic patients had more frequently elevated cIMT than healthy controls: 19.5% were above 90-centile of normal healthy controls and 13.1% above 95-centile (p<0.001). Mean cIMT was higher in diabetic boys compared to healthy controls (0.46mm/SD 0.06mm vs. 0.44mm/SD 0.05mm, p=0.04) but not significantly so in girls. There was no significant difference between the groups regarding carotid distensibility, compliance and wall stress. None of the subjects had atherosclerotic plaque formation. Although within the normal range the mean values of systolic blood pressure (SBP), total cholesterol, LDL-cholesterol and ApoB were significantly higher in the diabetic patients than in healthy controls.

Conclusion: Despite short disease duration, intensive insulin treatment, fair glycemic control and no signs of microvascular complications, children and adolescents with type 1 diabetes had slightly increased cIMT compared to healthy controls, the differences being more prominent in the boys.

S13

18 Colesevelam effects on LDL-C, HbA1c, and GLP-1 in type 1 diabetes mellitus (T1DM)

S.K. Garg, P.J. Ritchie, E.G. Moser, R.S. Gutin, L.B. Crew, J.K. Snell-Bergeon; Barbara Davis Center, University of Colorado Denver, Aurora, USA.

Background and aims: Colesevelam is indicated to lower LDL-C in hyperlipidemia and improve glycemic control in type 2 diabetes (T2DM). The clinical effects in subjects with T1DM have not previously been evaluated.

Materials and methods: This was a double-blind, randomized, investigator-initiated, single center, 12-week pilot study that evaluated 40 adults (36.4±9.4 yr) with T1DM and hyperlipidemia. The study was powered to demonstrate a treatment difference of >10% LDL-C reduction from screening. Subjects were randomized to receive either 3.75 g/day colesevelam (n=20) or placebo (n=20) for 12 weeks. LDL-C and A1c levels were assessed at screening (week 0), baseline (week 0) and every 4 weeks for the duration of the study. All subjects had a 4-hour Boost Plus meal-challenge test (MCT) at baseline (week 0) and at the end of study (week 12). Study drug was administered at time 0 of the MCT. Incretin levels and GLP-1 were assessed during the MCT at the following time points (0, 30, 60, 120, 180 and 240 min). Screening demographics were similar in both treatment groups. Thirty-six subjects (n=18 in each group) completed the study. Compliance for both treatment groups was >88%.

Results: All data presented are from the intent-to-treat population with last observation carried forward. Colesevelam treatment resulted in a significant difference in the least squared mean percent change in LDL-C at 4 weeks (1.7% vs. -12.1%, difference between means 13.84% [95%CI: 2.2, 25.5], p=0.02), and this difference was marginally significant at 8 (p=0.05) and 12 weeks (p=0.08) (Figure 1a). Treatment also resulted in a statistically significant change in A1c from screening at week 4 (-0.19, p=0.04), however this did not remain significant for the study duration (Figure 1b).

Colesevelam resulted in significant median increases in GLP-1 levels during the first 2 hours of the baseline MCT compared to placebo following the first dose of study drug. There was no difference in GLP-1 levels between groups at the week 12 MCT. The GIP levels were similar between the two groups at baseline and 12 week MCTs.

There were no significant differences between or within groups for fasting glucagon, fasting and postprandial glucose, insulin dose, weight or BMI.

Conclusion: Results from this small pilot study suggest that Colesevelam treatment lowers LDL-C in patients with T1DM. While improvements in A1c were observed at week 4, significance was not maintained for the study duration. This effect might be explained by sample size, study duration, and/or chance. The treatment group showed an increase in GLP-1 levels at baseline, which may explain their improvements in A1c at week 4 of this study. However, the effect of Colesevelam on glycemic control in subjects with T1DM requires further clinical study involving a larger number of subjects over a longer duration.
OP 4 Gastrointestinal factors and insulin secretion

19

Obestatin and ghrelin bind to human pancreatic islet endothelial cells and inhibit apoptosis in high glucose condition

E. Favaro, I. Miceli, F. Settanni, A. Baragli, R. Granata, G. Carnassi, E. Ghigo, P. Cavallo Perin, M.M. Zanone; Department of Internal Medicine, University of Turin, Italy.

Background and aims: Pancreatic islet microendothelium exhibits unique structural and functional features, in an interdependent physical and functional relationship with the beta cells. Glucose toxicity is not solely restricted to beta cells, but affects also survival of pancreatic islet endothelial cells, thus contributing to beta cell function impairment and cell loss. Studies indicate that gastrointestinal products of the ghrelin gene, obestatin (Ob), acylated ghrelin (AG) and its major circulating form, unacylated ghrelin (UAG) stimulate proliferation and prevent apoptosis of pancreatic β cells and human islets. We aimed to investigate whether these peptides would display survival effects also in human pancreatic islet microendothelial cells (MECs) cultured in high glucose conditions.

Materials and methods: Islet MECs were cultured in 28 mmol/L glucose concentration and, in parallel cultures, stimulated with AG, UAG or Ob (10 nM). Apoptosis was assessed by photometric enzyme immunoassay measuring mono- and oligonucleosomes as an index of DNA fragmentation, by Hoechst staining of apoptotic cells, and by Caspase 3 activity. Western-blot analyses for P-Akt/Akt, P-ERK/ERK pathways and for Bcl-2 (anti-apoptotic gene) and Bax (pro-apoptotic gene) were performed. Blockade of PI3K/adenylyl cyclase/cAMP/protein kinase A signalling was also performed.

Results: Islet MECs express the AG receptor (GRLN-receptor), assessed by RT-PCR analysis, and bind Ob, as assessed by immunofluorescence. In high glucose condition, AG, UAG and Ob inhibited islet MEC apoptosis, activating PI3K/Akt and ERK1/2 phosphorylation and upregulating intracellular cAMP. Further, Bcl-2 expression increased and Bax expression decreased. Blockade experiments counteracted the anti-apoptotic effects.

Conclusions: These data provide evidence that the ghrelin gene-derived peptides bind to, and promote survival of, islet microendothelial cells. The anti-apoptotic effects involve the PI3K/Akt, ERK1/2 and cAMP/PKA pathways. These peptides could therefore represent a potential tool to improve islet vascularization and, indirectly, islet function.

Supported by: Ricerca Sanitaria Finalizzata Regione Piemonte

20

Improved glucose-lowering, insulin-releasing and anorexigenic actions of a novel chemically modified analogue of oxyntomodulin, (D-Ser²)Oxm[mPEG-PAL]

V.A. Gault, B.D. Kerr, P.R. Flatt; School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom.

Background and aims: Oxyntomodulin (Oxm) is a 37 amino acid peptide hormone released from intestinal L-cells in response to feeding. Oxm has been shown to exhibit a range of potentially beneficial actions for the alleviation of obesity-diabetes. However, possible exploitation of Oxm-based therapies has been severely restricted due to proteolytic degradation of the peptide by the ubiquitous enzyme dipeptidylpeptidase-IV (DPP-IV). Therefore, the aim of this study was to assess the glucose-lowering, insulin-releasing and anorexigenic actions of novel chemically modified, enzyme resistant analogues of Oxm.

Materials and methods: Oxm, (D-Ser²)Oxm and (D-Ser²)Oxm[mPEG-PAL] (all >97% purity) were incubated (0, 2, 4, 8 and 24 h) with DPP-IV (5 mU; n=3) to assess enzyme stability and with clonal pancreatic BRIN-BD11 cells to evaluate acute (20 min; n=8) insulin secretion. Cyclic AMP production (n=4) was examined using GLP-1 and glucagon receptor transfected cells. In vivo effect of Oxm analogues on glucose homeostasis, insulin secretion, food intake and body weight were examined in obese diabetic (db/db) mice.

Results: (D-Ser²)Oxm[mPEG-PAL] displayed enhanced DPP-IV resistance compared to (D-Ser²)Oxm and Oxm (13.4 and 1.6-fold, respectively; P<0.001). Oxm, (D-Ser²)Oxm and (D-Ser²)Oxm[mPEG-PAL] stimulated cyclic AMP production in a concentration-dependent manner with similar potency in BRIN-BD11 cells with E_C50 values of 1.84 ± 0.09 nmol/l, 1.81 ± 0.37 nmol/l and 1.97 ± 1.21 nmol/l, respectively. This was associated with
Synaptotagmin-7 is a positive regulator of glucose-induced GLP-1 secretion

N. Gustavsson, Y. Wang, Y. Kang, W. Han;
Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore.

Background and aims: Glucagon-like peptide 1 (GLP-1) is produced by highly specialized gut endocrine L-cells. Despite the demonstrated medical benefits of targeting GLP-1 in the treatment of diabetes, very little is known about the molecular control of GLP-1 secretion. Similar to other endocrine cells, such as islet β-cells, L-cells are electrically excitable, and express ATP-sensitive K-channels and calcium channels. Furthermore, GLP-1 is stored in secretory granules, and GLP-1 granule exocytosis is triggered by increased intracellular calcium levels resulting from stimulation by nutrient, neural and paracrine factors. Although the calcium dependence of GLP-1 granule exocytosis is well established, the identities of calcium-sensing proteins in GLP-1 exocytosis remain elusive. Several members of the synaptotagmin family have been identified as calcium sensors in neurotransmitter and hormone secretion. In particular, synaptotagmin-7 regulates insulin and glucagon secretion in pancreatic islets, and catecholamine secretion in chromaffin cells. Considering the functional importance of synaptotagmin-7 in endocrine and neuroendocrine cells, we tested the involvement of synaptotagmin-7 in the regulation of GLP-1 secretion.

Materials and methods: Synaptotagmin-7 expression in intestinal L-cells was tested by immunohistostaining of frozen mouse intestinal sections for synaptotagmin-7 and GLP-1. GLP-1 levels were measured in synaptotagmin-7 knockout mice challenged by glucose ingestion. Glucose-stimulated GLP-1 release was also tested in lentiviral-mediated synaptotagmin-7 knockdown GLUTag cells using cell secretion assay and membrane capacitance measurements. Data are presented as mean ± SEM.

Results: Synaptotagmin-7 was present in L-cells, as demonstrated by its co-localization with GLP-1. Synaptotagmin-7 deletion in vivo resulted in a reduction of GLP-1 secretion (68% ± 48 and 36% ± 40 pmol/l/h, control and synaptotagmin-7 knockout, respectively; P < 0.001). Synaptotagmin-7 knockdown GLUTag cells showed a ~50% decrease in glucose-stimulated GLP-1 secretion as determined by cell secretion assay and by membrane capacitance measurements (24 ± 4 and 12 ± 3 F s⁻¹, control and synaptotagmin-7 KD, respectively; P < 0.005). Synaptotagmin-7 knockdown cells exhibited normal calcium responses, indicating the secretion defects occurred at or downstream of the calcium sensing step.

Conclusion: Taken together, our results demonstrate the importance of synaptotagmin-7 in the regulation of GLP-1 secretion, consistent with its proposed role as a calcium sensor in endocrine and neuroendocrine secretion.

Supported by: B.R.C. of A*STAR

Assessment of the metabolic effects of the gut peptide xenin on insulin secretion, glycaemic control and satiety

N. Irwin, A.I. Taylor, P.R. Flatt, V.A. Gault;
School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom.

Background and aims: Recently significant focus has been directed towards the role of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the aetiology and treatment of type 2 diabetes. However, peptides co-secreted from the same enteroendocrine cells are less well studied. The present study examines the in vitro and in vivo metabolic effects of xenin, a peptide co-secreted with GIP from intestinal K-cells.

Materials and methods: Cyclic-AMP production (n=4) and insulin releasing activity (n=8) of xenin was measured in acute (20 min) studies with clonal pancreatic BRIN-BD11 cells. Effects of xenin on membrane potential and intracellular Ca²⁺ were also examined in BRIN-BD11 cells. The glucagon-secreting alpha cell-line, αTC1.9 was used to assess glucagon releasing activity of xenin (n=8). Effects of xenin on plasma glucose and insulin concentrations were examined in overnight fasted normal mice (n=8; 16-20 weeks of age) following subcutaneous (s.c.) injection (25 nmol/kg bodyweight) in combination with glucose (18 nmol/kg bodyweight). To assess duration of biological action, groups of mice were injected with xenin (25 nmol/kg) 30 or 60 min prior to glucose load. For food intake studies, mice were fasted for 12 hours prior to s.c. injection of 50, 100 or 500 nmol/kg xenin. Mice were then allowed free access to normal chow and cumulative food intake monitored.

Results: In clonal BRIN-BD11 cells xenin (10⁻¹⁰ M) promoted insulin secretion at 5.6 (P<0.05) and 16.7 (P<0.01) nmol/l glucose levels compared to respective controls. Xenin also exerted an additive effect (P<0.05 to P<0.01) on GIP and GLP-1 mediated insulin secretion. Xenin did not stimulate cellular cyclic AMP production, alter membrane potential or elevate intracellular Ca²⁺ concentrations. Similarly, in vitro glucagon release was not affected by xenin. In normal mice, administration of xenin together with glucose significantly (P<0.05 to P<0.001) reduced individual glucose levels compared to glucose control. Moreover, the area under the curve (AUC) for glucose was significantly lower after administration of xenin compared with glucose administered alone (1.3-fold; P<0.01). This was associated with a significantly enhanced overall glucose-mediated insulin secretory response for xenin compared to glucose alone (1.4-fold; P<0.05). Administration of xenin 30 min previously significantly (P<0.05) decreased individual glucose levels 60 minutes post s.c. glucose injection in normal mice. This was associated with substantially enhanced (2.1-fold; P<0.05) overall insulin release compared to respective controls. Administration 60 min prior to glucose challenge annulled the glucose lowering and insulin releasing effects of xenin. Assessment of effects of xenin on feeding revealed that xenin did not induce a significant change in cumulative food intake in overnight fasted mice when administered at a dose of 50 or 100 nmol/kg. However, when mice received a dose of 500 nmol/kg, xenin induced a 60% decrease (P<0.01) in food intake 30 minutes post injection.

Conclusion: These data indicate that xenin is a short acting peptide with potentially important metabolic effects on blood glucose control. Generation of specific xenin antagonists or longer acting xenin mimetics may be useful in assessing the overall biological consequence of xenin-mediated actions.

The effects of brain glucagon-like peptide-1 on peripheral glucose homeostasis

L. Jensen, T.M. Greer, M.E. Iacono, K.S. Ellis, B.M. Paxton, D.A. Sandovoal, R.I. Secely, D.A. D’Alessio;
Department of Medicine, University of Cincinnati, USA.

Background and aims: Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes glucose homeostasis through regulation of islet-cell hormone secretion, gastric emptying, and hepatic function. GLP-1 is also synthesized in the brain, and recent findings indicate that central GLP-1 plays a role in the regulation of peripheral glucose homeostasis through effects on insulin secretion, hepatic glucose production, and insulin sensitivity. To gain further insights into these processes, we investigated the effects of central GLP-1 receptor (GLP-1R) activation and antagonism on insulin and glucagon release before and during experimental hyperglycemia in rats (study I). In addition, we studied the effects of central GLP-1R antagonism on glucose tolerance after meal ingestion in rats (study II).

Methods and materials: In study I, 30 male Long Evans rats were equipped with third cerebral ventricular (i.c.v.) cannulae and catheters in the carotid artery and jugular vein. After an overnight fast freely-moving animals had continuous i.c.v. infusion with GLP-1 (18 µg/hr), the GLP-1r antagonist Ex-endin 9-39 (Ex-9) (100 µg/hr), or saline for 125 min; all rats received 8 µl of infrasate. After 60 min after the start of i.c.v. infusion, blood glucose was raised to 230 mg/dl with a primed i.v. infusion of 25% glucose. For 65 min the glucose infusion rate was varied to maintain hyperglycaemia (230 mg/dl). Arterial blood was sampled during the infusion period every 5-15 min for measurements of blood glucose and plasma levels of insulin, glucagon, and corticosterone. In study II, 22 overnight fasted and freely-moving rats with i.c.v. cannulae and i.a. catheters were infused i.c.v. with Ex-9 (100 µg/hr), or saline for 150 min. Thirty min after the start of i.c.v. infusion bottles of Ensure liquid diet (5.5 ml) were made available for 10 min. Because the rats were trained to eat Ensure, they voluntarily consumed the meal within 5 min. After meal ingestion, arterial blood was sampled every 15 min up to 120 min for measurements of blood glucose.

Results: In study I, infusion of i.c.v. GLP-1 increased fasting blood glucose levels (105.5 ± 3.8 vs 91.5 ± 2.9 mg/dl), reduced the average glucose infusion rate required to maintain the glucose clamp (40.0 ± 1.5 vs 54.3 ± 2.8 mg/kg/min), and significantly reduced plasma insulin levels (AUC 14667 ± 1210 vs 20168 ± 1883 µM∙min) compared to the saline group (p < 0.05 for each). GLP-1-treated rats also had significantly higher glucagon and corticosterone levels (p < 0.05 for each) than Ex-9- and saline-treated rats. Surprisingly, there were trends for i.c.v. Ex-9 to reduce insulin levels (p=0.0641) and raise plasma glucagon (p = 0.1009). In study II, i.c.v. Ex-9 increased blood glucose levels after meal ingestion relative to the saline group, and the area under the curves (4844 ± 233 vs 4150 ± 188 (mg/dl)∙min) were significantly higher (p < 0.05) in the Ex-9-treated rats compared to the saline group.

Conclusion: These results show that central GLP-1r activation has multiple effects on glucose homeostasis in rats. In the doses used in this study GLP-1 activated the stress response, likely via autonomic-induced suppression and stimulation of insulin and glucagon secretion, respectively. Central GLP-1r blockade using Ex-9 was associated with lower insulin secretion, higher glucagon levels, and higher glucose levels after meal ingestion, supporting a role for brain GLP-1 in the regulation of islet function and peripheral glucose homeostasis.

Supported by: NIHDK

24

TGR5-mediated GLP-1 secretion

H.E. Parker, A. Habib, F. Reimann, E.M. Gribble; Clinical Biochemistry, Cambridge Institute of Medical Research, United Kingdom.

Background and aims: The incretin hormone, GLP-1, is secreted from intestinal L-cells in response to food ingestion, however little is known about how L-cells detect luminal nutrients. Bile acids are also released into the gut lumen in response to nutrients and have been associated with glucose homeostasis and GLP-1 secretion. The aim of this study was to investigate the expression of the bile acid sensitive G-protein coupled TGR5 receptor in primary L-cells and its role in GLP-1 secretion.

Materials and methods: mRNA expression was analyzed by qRT-PCR in L-cells purified from transgenic mice with fluorescently labeled proglucagon-expressing cells. GLP-1 secretion was assayed in primary colonic cultures and GLUTag cells. FRET based [cAMP], and ratiometric [Ca++] imaging experiments were performed on GLUTag cells.

Results: TGR5 mRNA expression is highly enriched in L-cells compared to control intestinal epithelial cells. The bile acids deoxycholic acid, lithocholic acid and taurocholic acid (TCA) and a TGR5 agonist increased GLP-1 secretion and enhanced the glucose-triggered response. The GLP-1 response to TCA and the TGR5 agonist from GLUTag cells was attenuated with TGR5 siRNA treatment. Consistent with signaling via G coupled pathways, the TGR5 agonist and TCA elevated [cAMP] in GLUTag cells. The TGR5 agonist triggered [Ca++] and enhanced glucose-triggered [Ca++] responses, consistent with previously observed responses of GLUTag cells to elevated cAMP.

Conclusion: Primary L-cells express the bile acid sensitive TGR5 receptor, which may contribute to the incretin response via the elevation of [cAMP], and [Ca++] . The synergistic stimulation of GLP-1 release may be possible by combined activation of GPCRs and glucose-sensing pathways.

Supported by: MRC, WT

25

Near-normoglycaemia prevents the development of polyneuropathy, a 24-year prospective study from the diagnosis of type 1 diabetes

D. Ziegler1, M. Roden2;

1Institute for Clinical Diabetology, German Diabetes Center, 2Department of Metabolic Diseases, University Hospital, Düsseldorf, Germany.

Background and aims: Whether near-normoglycaemia instituted from the diagnosis of type 1 diabetes onward may completely or partially prevent the development of polyneuropathy and autonomic neuropathy has not been previously determined. To address this issue we conducted a long-term prospective study.

Materials and methods: We examined 32 newly diagnosed Type 1 diabetic patients (21 male, 11 female) aged 12-36 (mean±SEM: 20.5±1.0) years who were followed over 24 years. Motor and sensory nerve conduction velocity (MNCV, SNCV), vibration perception threshold (VPT), thermal detection thresholds (TDT), coefficient of R-R interval variation at rest (CV), and clinical assessment were performed at the time of diagnosis, after 3 and 12 months, and thereafter biennially for up to 24 years.

Results: During the 24-year period, 11 patients had mean Hba1c levels <7.0% according to the current guidelines (6.5±0.1%; Group 1), whereas 21 patients had mean Hba1c levels ≥7.0% (8.3±0.2%; Group 2). Within the first 4 years, reduced sensory NCV and cardiac autonomic function, rather than elevated VPT and TDT were observed as markers indicating initial nerve dysfunction in Group 2 as compared with Group 1. After 24 years, MNCV was significantly faster in Group 1 than in Group 2 in the median (55.5±2.1 vs 48.9±1.6 m/s), ulnar (56.5±1.5 vs 49.3±1.7 m/s), and peroneal nerve (44.7±1.6 vs 36.8±2.5 m/s) and SNCV was faster in the median (53.6±1.6 vs 45.5±2.8 m/s), ulnar (54.7±1.8 vs 43.0±2.9 m/s), and sural nerve (44.5±1.8 vs 35.5±2.6 m/s) (all p<0.05). In Group 1 the decline in peroneal MNCV and sural SNCV was <0.1 and -0.2 m/s/year, respectively, comparable to a non-diabetic control group (n=15). In contrast, Group 2 showed corresponding losses of -0.4 and -0.5 m/s/year, respectively. Impairment in VPT, TDT, and CV also developed at a significantly faster rate in Group 2 than in Group 1 (all p<0.05). After 24 years, none of the patients in Group 1, but 12 (57%) of those in Group 2 developed clinical polyneuropathy confirmed by NCV. Two patients in Group 2 died during the period studied.

Conclusion: Near-normoglycaemia maintained from the diagnosis of type 1 diabetes over the next 24 years effectively prevented the development of clinical polyneuropathy, a 3-fold faster annual hyperglycaemia-induced decline in NCV, and deterioration in sensory and cardiac autonomic function, whereas poor glycemic control constituted the paramount permissive factor contributing to the evolution and progression of neuropathy in the majority of type 1 diabetic subjects.

26

A double-blind randomised study comparing the effects of pregabalin, duloxetine and amitryptiline on aspects of neuropathic pain, mood and sleep in diabetic subjects with painful neuropathy

L. Gribble1, R. Goun2, M. Eriksson3, J. Boyle4, D. Kerr5, D. Coppini5; 1Clinical Research Center, Surrey University, Guildford; 2Royal Bournemouth Hospital; 3Poole Hospital NHS Trust, United Kingdom.

Background and aims: The mechanisms of painful diabetic neuropathy are poorly understood and drug treatment if often unpredictable, with both an overall disappointing response rate, and generally poor patient tolerance to prolonged use. The main aim of the study was to try and identify which commonly used agent may have most beneficial effect on both pain and quality of life.

Materials and methods: Subjects with neuropathic pain (Leeds Assessment of Neuropathic Symptoms and Signs (LANSS)>12) were recruited from 2 hospital diabetes clinics. Subjects were required to have a score >25 on the Mini Mental State Exam (MMSE). The 36 day study (placebo day 1-8) had a double blind, parallel groups design with three treatment arms consisting of either amitryptiline (300mg followed by 75mg), pregabalin (300mg followed by 600mg) or duloxetine (60mg followed by 120mg). Subjects previously on any of neuropathic medications had an appropriate wash out period prior
to study entry, and all other analgesic medications were withdrawn where possible. Subjects were studied on days 6–8, 20–22, and 34–36. 65 of 83 (78%) randomised subjects (mean age 65 (38–83) years, 69% male), completed the study. Subjects completed daily diaries for pain (brief pain inventory (BPI)) and the Short-form McGill visual analogue scale (VAS).

Results: In all three groups there was a significant decrease (p < 0.05) in pain severity (BPI severity and VAS) over time but there was no difference between the three treatments in reducing pain severity. Decrease in pain severity was significant in all treatment arms from placebo to low dose (p < 0.05 for pregabalin and amitriptyline, p < 0.01 for duloxetine), but no significant additional treatment benefit was seen in any group with increased drug dosage. Patients on duloxetine showed a significant decrease in pain interference over time, both from placebo to low dose, and from low dose to high dose (p < 0.05), and an improvement in BPI mood (p < 0.05). All three study drugs doses improved pain interference on sleep as assessed by the BPI (p < 0.05) with no significant difference between any of the treatments.

Conclusion: Deciding on the ideal treatment drug for painful diabetic neuropathy is key, and we hope this study will contribute to this decision process by demonstrating that conventional drugs are not efficacious. Duloxetine, amitriptyline and pregabalin all improved subjective pain as assessed by the BPI and VAS and pain interference on sleep with no significant difference between any of the treatments. Duloxetine was also evident in a reduction in pain interference and mood.

Supported by: Pfizer

<table>
<thead>
<tr>
<th></th>
<th>OSA+</th>
<th>OSA-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61 (54–66)</td>
<td>54 (44–61)</td>
</tr>
<tr>
<td>p value</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>12.5 (6.0–17.0)</td>
<td>10.5 (6.0–16.0)</td>
</tr>
<tr>
<td>p value</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>33.4 (30.9–37.2)</td>
<td>30.3 (27.4–35.8)</td>
</tr>
<tr>
<td>p value</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>112.8 (106.8–123.0)</td>
<td>106.0 (94.8–117.4)</td>
</tr>
<tr>
<td>p value</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Neck circumference (cm)</td>
<td>42.3 (39.0–45.1)</td>
<td>38.5 (36.8–41.8)</td>
</tr>
<tr>
<td>p value</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.8 (6.8–9.5)</td>
<td>7.8 (6.9–8.8)</td>
</tr>
<tr>
<td>p value</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>3.7 (3.2–4.2)</td>
<td>3.7 (3.4–4.5)</td>
</tr>
<tr>
<td>p value</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.8 (1.2–2.5)</td>
<td>1.6 (1.1–2.8)</td>
</tr>
<tr>
<td>p value</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>BP-systolic (mmHg)</td>
<td>130 (124–137)</td>
<td>126 (114–137)</td>
</tr>
<tr>
<td>p value</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>BP-diastolic (mmHg)</td>
<td>78 (71–84)</td>
<td>79 (71–83)</td>
</tr>
<tr>
<td>p value</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>68.5</td>
<td>50.7</td>
</tr>
<tr>
<td>p value</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Smoker (%)</td>
<td>5.5</td>
<td>19.7</td>
</tr>
<tr>
<td>p value</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>30.1</td>
<td>9.9</td>
</tr>
<tr>
<td>p value</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Insulin (%)</td>
<td>59.7</td>
<td>43.7</td>
</tr>
<tr>
<td>p value</td>
<td>0.066</td>
<td></td>
</tr>
<tr>
<td>GLP-1 analogue (%)</td>
<td>14%</td>
<td>7%</td>
</tr>
<tr>
<td>p value</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Statins (%)</td>
<td>87.5</td>
<td>85.9</td>
</tr>
<tr>
<td>p value</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Fibrates (%)</td>
<td>2.7%</td>
<td>5.6%</td>
</tr>
<tr>
<td>p value</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors (%)</td>
<td>47.2</td>
<td>43.7</td>
</tr>
<tr>
<td>p value</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Diuretics (%)</td>
<td>43.1</td>
<td>22.5</td>
</tr>
<tr>
<td>p value</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Anti-platelet (%)</td>
<td>79.2</td>
<td>63.4</td>
</tr>
<tr>
<td>p value</td>
<td>0.043</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Greater brain activation foot vs. thigh right medial prefrontal cortex (a) and thigh vs. foot left posterior insular cortex (b).

Supported by: JDRF

28

Obstructive sleep apnoea is independently associated with peripheral neuropathy in patients with type 2 diabetes

A.A. Tahrani1, A. Ali2, S. Begum1, K. Dubb2, S. Mughal2, B. Jose1, M. Pyia1, D. Banerjee1, A.H. Barnett1, M.J. Stevens1, S. Taheri1,2

1University of Birmingham, 2The Biomedical Unit, United Kingdom.

Background: Obstructive sleep apnoea (OSA) is prevalent in patients with type 2 diabetes (T2D). Since OSA and diabetes complications share common oxidative stress and inflammatory mechanisms, we hypothesized that there is a relationship between OSA and diabetic peripheral neuropathy (DPN).

Methods: T2D patients were recruited randomly from the outpatients of a tertiary diabetes centre in the UK. Patients with known respiratory disorder (including OSA) were excluded. DPN was diagnosed using the Michigan Neuropathy Screening Instrument (MNSI) (a score ≥7 on the questionnaire (MNSIq) or > 3 on the examination (MNSIe) was considered consistent with DPN. OSA was assessed using home-based portable multi-channel respiratory monitoring (Alice PDX, Philips Respirronics, USA). An apnoea-hypopnea index (AHI) ≥ 5 events/hour was diagnostic of OSA (OSA+). Data are presented as median (IQR).

Table 1: Participants' characteristics in relation to OSA status. P value calculated using the Mann-Whitney U in scale variables and the Chi-square test.

Support for Preventing and Managing Diabetic Peripheral Neuropathy: New Insights into Central Pain Processing in Painful Diabetic Neuropathy.
Results: 143 patients were included; 50% had OA and 46% had DPN. Participants’ characteristics in relation to OSA status are summarised in Table 1. The prevalence of DPN was significantly higher in OSA+ (compared to OSA-) patients (58% vs. 32%, p=0.003). In logistic regression model (goodness of fit test χ²=0.002, R²=0.34-0.46), OSA+ remained a significant predictor of DPN (OR: 3.08, 95% CI 1.01-9.38, p=0.048) after adjusting for BP, HbA1c, total cholesterol, triglycerides, diabetes duration, smoking status, alcohol intake, gender, renal function, BMI, age and the use of GLP-1 analogues, insulin, oral anti-diabetes therapy, lipid lowering therapy, anti-hypertensives and anti-platelets. Other significant predictors in the model included age (OR: 1.08, 95% CI 1.004-1.15, p=0.030), BMI (OR: 1.15, 95% CI 1.05-1.26, p=0.003), not taking a statin (OR:4.71, 95% CI 1.12-19.86, p=0.035) and total cholesterol (OR: 2.43, 95% CI 1.25-4.71, p=0.009). Log (AHI) correlated significantly with the MNSI score (r=0.22, p=0.012). This remained the case (r=0.23, p=0.015) after adjusting for age, diabetes duration, BP, HbA1c, triglycerides, total cholesterol and renal function.

Conclusion: We describe a novel association between OSA and DPN in patients with T2D. The severity of OSA correlated significantly with the severity of DPN. Planned studies aim to confirm our findings and overcome the limitations of the current study.

Supported by: NIHR

29

Effects of genetic versus environmental factors on cardiovascular autonomic function and baroreflex sensitivity: a twin study

J. Oszutovits1, T. Horváth1, R. Steinbach1, Á. Jermendy2, L. Littvak3, Á. Tárnoki1, D. Tárnoki1, J. Métnéki1, M. Kollar1, G. Jermendy2
13rd. Department of Internal Medicine, Bajcsy Zsilinszky Teaching Hospital, 2Institute of Human of Human Physiology and Clinical Experimental Research, Semmelweis University, 3Semmelweis University, Central European University, 4National Centre for Healthcare Audit and Inspection, Budapest, Hungary.

Background and aims: Cardiovascular autonomic neuropathy (CAN) and impaired baroreflex sensitivity (BRS) can often be detected in patients with diabetes mellitus. CAN and BRS are independent predictors of cardiovascular morbidity and mortality. The heritability of cardiovascular autonomic function is not fully understood. The aim of the current study was to determine the effects of genetic and environmental factors on cardiovascular autonomic function and BRS.

Material and methods: Healthy adult twin pairs (n=101; 63 monozygotic (MZ) vs. 38 dizygotic (DZ) pairs; 72.5% women, 27.5% men; age: 43±15.5 years) were investigated. Anthropometric variables (height, weight, waist circumference) were registered, body mass index (BMI) was calculated, serum metabolic markers were measured; furthermore lifestyle and environmental background characteristics were evaluated by using questionnaires. Linear and spectral indices of heart rate variability (HRV) and BRS were determined by non-invasive methods. In resting supine position, RR interval was derived from ECG recordings, and continuous radial artery pressure was monitored simultaneously by applanation tonometry for 10 minutes. All parameters were adjusted for age and gender. Pearson correlation coefficients were calculated per zygosity (intraclasse correlations) in order to determine the extent to which MZ twin pairs are more similar than DZ pairs. In addition, heritability model analyses were used for characterizing additive genetic, shared (common) and unshared (individual) environmental influences.

Results: There was no difference between BMI and waist circumference in MZ versus DZ pairs (25.9±4.9 vs. 25.8±5.9 kg/m², p=0.642; and 88.2±14.6 vs. 88.4±16.0 cm, p=0.986, respectively). The intraclasse coefficients of correlation (r values) were low for HRV and BRS indices, in both MZ and DZ twins (LF [HRV power in low frequency range] MZ=0.140 vs. DZ=0.401; HF [HRV power in high frequency range]: MZ=0.299 vs. DZ=0.225) and the heritability model analysis showed high percents of unshared environmental contribution (LF: 0.816; HF: 0.701). The intraclasse coefficients of correlation (r values) for BRS were low in both MZ and DZ twins (BRSseq+ index: MZ=0.281 vs. DZ=0.272; BRSseq- index: MZ=0.436 vs. DZ=0.064) and the heritability model analysis showed high percents of unshared environmental contribution (BRSseq+ index: 0.719; BRSseq- index: 0.554). No significant changes were found after adjusting parameters for BMI values.

Conclusion: Unshared (individual) environmental but not inheritable factors have substantial influence on cardiovascular autonomic function and BRS. Accordingly, all modifiable environmental factors should appropriately be treated in order to prevent or decrease cardiovascular autonomic dysfunction and impaired BRS in patients with diabetes mellitus.

Supported by: Hungarian Diabetes Association, sanofi-aventis

30

Role of depressed cardiac autonomic activity in the impairment of heart rate recovery after exercise in diabetic patients

M. Vivier1, M. Nguyen, P. Weinzmann, E. Cosson, P. Valensi
1Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, Bondy, France.

Background and aims: The heart rate (HR) profile during exercise and recovery is a powerful predictor of sudden death in coronary patients and in subjects without clinically detectable cardiovascular disease. A defect of HR recovery after the termination of an exercise has been suggested to result from an impairment of the ability to increase vagal and sympathetic activity rapidly. Alterations of vago-sympathetic activity might contribute to impair HR profile during exercise and recovery in diabetic patients. The aim of this study was to examine the role of depressed cardiac autonomic activity in the impairment of HR profile during exercise and recovery in diabetic patients.

Materials and methods: We included 165 type 2 diabetic patients. 98 men and 67 women, mean age 58 yrs and diabetes duration 12.5 yrs. All of them had at least one additional risk factor (including 132 patients with hypertension) and were prospectively screened for silent myocardial ischemia (SMI), defined as an abnormal stress myocardial scintigraphy. The stress exercise test was performed on a cycle ergometer, and HR was measured at rest, at exercise peak (HRmax) and after 2 minutes of recovery. Cardiac autonomic neuropathy (CAN) was assessed using standard tests (deep-breathing, lying-to-standing andValsalva) and was defined by at least one abnormal test.

Results: SMI, peripheral vascular disease, peripheral neuropathy and CAN were detected in 28%, 5%, 33% and 77% of the patients, respectively. HR at rest, HRmax and HR at recovery did not differ significantly in patients with or without CAN, peripheral neuropathy or vascular disease or SMI. In the total population HR decrease at recovery (% decrease from HRmax) correlated significantly with HR acceleration (% increase from rest) (r=0.532, p=0.0001). HR acceleration correlated significantly with age and HR at rest (p<0.001), and there was a trend to lower values in patients with peripheral neuropathy but HR acceleration did not differ significantly in patients with or without hypertension, peripheral vascular disease, SMI or CAN. In multivariate analysis HR acceleration was significantly associated (p=0.03) with peripheral neuropathy independently of age and HR at rest. HR decrease at recovery was slightly higher in women than in men (32±9% vs 29±10%, p=0.08), and slightly lower in patients with than in patients without CAN (30±11 vs 34±8%, p=0.143) and in those with 2 or 3 abnormal CAN function tests than in those with no or one abnormal test (29±11 vs 32±10%, p=0.148) but did not differ significantly in patients with or without hypertension, peripheral vascular disease, SMI or CAN. In multivariate analysis the association of HR decrease at recovery with CAN was significant (p=0.001), independently of age, gender and HR at rest. In the patients free of SMI for whom exercise was not stopped prematurely, HR decrease at recovery was significantly lower in those with CAN (p=0.02), in particular in those with 2 or 3 abnormal CAN function tests (p=0.02).

Conclusion: In high-risk but asymptomatic type 2 diabetic patients, peripheral neuropathy and CAN are major determinants of HR acceleration during exercise and HR recovery, respectively.

Supported by: Hungarian Diabetes Association, sanofi-aventis
OP 6 Ethnic and psychosocial disparities in diabetes

31
Glycaemia management of minority participants in ACCORD
J. Calles-Escandón1, L. Light1, L. Lovato1, A. Getaneh2, D. Simmons3, J. Kirk2, D. Bonds4, M.A. Banerji5, J.B. Green5, L. Menon6, A. Moogali7, R.M. Bergenstal8
1Wake Forest Univ, Winston-Salem, 2Columbia Univ, New York City, 3Univ of Arkansas, Little Rock, 4NHLLI, Washington, 5State Univ, New York, Brooklyn, 6Duke Univ, Durham, 7ADA, Alexandria, USA.

Background: Epidemiologically, African Americans (AA) and Hispanic-Americans (H) with type 2 diabetes (T2DM) have higher A1C levels than Whites (W). This difference might be due to socioeconomic factors, differences in health care access, and/or biological differences. Clinical trials may reduce the influence of some of these factors by provision of free medical care, education and medications. ACCORD trial tested the hypothesis that a therapeutic strategy targeting an A1C <6% (INT) compared to one targeting 7 to 7.9% (STD) would reduce cardiovascular events in patients with T2DM. In this post-hoc analysis of ACCORD we use A1C values to evaluate if equalization of access to health care reduces the variation in A1C across W, AA and H.

Methods: Baseline characteristics for each intervention arm were compared using ANOVA (continuous variables) and Chi-square (dichotomous variables). The proportion of participants who ever reached A1C <6.5%, for the INT and ≤7.9% for STD, and among those reaching these levels, the proportion whose A1C increased to >6.5% / >7.9% at any subsequent visit, was calculated by race/ethnicity. Since most of the change in A1C in ACCORD was achieved during the first year, repeated measures models were created for A1C levels at 4-, 8-, and 12-month visits, stratified by glycaemia intervention arm. A sequential modelling approach tested the significance of effect of race/ethnicity on A1C in these models.

Results: Of 10,251 participants, 6,393 were W, 1953 AA, and 737 H. Baseline A1C was higher for H (8.4% INT, 8.6% STD) and AA (8.5% both arms) compared with W (8.2% both arms, P <0.001 for both arms.). In the INT arm 81% of W achieved A1C <6.5% compared with 68% AA and 70% H. In the STD arm 96% W compared with 91% AA and 90% H achieved A1C <7.9%. W in INT were less likely to reach A1C once target was achieved (63%) than AA(74%) or H (76%); rates were similar in the STD (W 71%, AA 73%, H 67%). Mean A1C was higher at the 12 month visit in AA and AA vs. W (7.8%, 7.8%, and 7.6% respectively for STD; 6.8%, 6.7%, and 6.5% respectively for INT). However, mean insulin use (units/day or units/kg/day), as well as the mean number of oral hypoglycemic agents (OHA), was similar for all groups in both arms. When baseline characteristics were accounted for in regression models, race/ethnicity remained as a significant predictor of differences in A1C for both INT (P <0.001) and STD (P =<0.001).

Discussion: With similar access to diabetes care and equal use of insulin and OHA, a large percent of AA and H achieved similar A1C compared with W. However, mean A1C remained different. In regression models baseline differences in A1C, BMI, duration of diabetes, and socio-demographic differences did not alter the observation nor did on-study insulin quantity or OHA. The major strengths of the study are the large number of H and AA participants with T2DM with equal access to diabetes care as W. Weaknesses of this study include the “secondary” nature of this analysis and the lack of pre-specified culturally sensitive patient education and management. It remains to be determined whether the remaining mild differences in A1C between these ethnic groups are due to cultural or biological factors or both.

Supported by: NIH

32
Screening for type 2 diabetes mellitus identifies a major burden of modifiable cardiovascular risk
B. Thilagajaran Srinivasan1, D.R. Webb1, M.J. Davies1, S.G. Griffin1, B.J. Echouffo-Tcheugui2, N.J. Wareham3, S. Campbell4, L.G. Gray4, K. Khunti3
1Cardiovascular Sciences, University of Leicester, 2MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, 3Department of Health Sciences, University of Leicester, United Kingdom.

Background and aims: Population screening for Type 2 Diabetes (T2D) enables diagnosis earlier in the disease trajectory than existing approaches. If followed by sustained multifactorial intervention, vascular outcomes should theoretically improve. It is largely unknown whether population-based screening for T2D identifies cases at increased yet modifiable cardiovascular disease (CVD) risk. We aimed to compare baseline characteristics, modelled 10 year risk and estimated CVD risk reduction of two newly diagnosed T2D populations: one-screen-detected and the other clinically diagnosed.

Materials and methods: The screen detected cohort (LEADER) is an amalgamation of two population-based programmes of screening for T2D by OGTT (n=309): (i) STAR which used targeted screening of those with at least one risk factor for T2D, (ii) ADDITION-Leicester a universal screening study and RCT of CVD risk intervention in screen-detected T2D. The clinically diagnosed group, representative of T2D cases in UK clinical practice was derived from an RCT of structured education (DESMOND) (n=824). In those without prior CVD, an ethnicity adjusted Framingham equation (Ethrisk) was used to estimate 10-year CVD risk. The absolute risk reduction achievable and its plausible range were predicted using relative risk reductions for individual therapies from published trials and sensitivity analysis.

Results: Screen-detected people had statistically significant higher levels of systolic and diastolic blood pressure and total cholesterol with lower levels of BMI and Hba1c compared to those who were clinically diagnosed. Medication use was significantly higher in those who were conventionally diagnosed: anti-hypertensives 66% vs. 44%, lipid lowering 41% vs. 21%, aspirin 27% vs. 16%, all p<0.001. Mean 10 year CVD risk was significantly higher in the screen detected group (21.1% vs. 16.8%, p=0.0001). By commencing multifactorial therapy in this high risk screen-detected group the absolute risk reductions (ARR) achievable range from 4% to 10% (related to numbers needed to treat (NNT) of 10 to 25), with higher risk reductions being seen in those from a white European background compared to South Asians.

Conclusion: T2D cases identified through population screening are at high risk of CVD. At detection, this adverse CVD risk profile is often untreated, but appears potentially modifiable with existing preventative treatments. Lower estimated CVD risk reduction in south Asians suggests alternative factors may be important in determining risk within this group.

Estimation of absolute CVD risk reduction in screen detected T2D using Ethrisk

<table>
<thead>
<tr>
<th>ARR (Range)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No added effect treatment (Lipid Lowering therapy)</td>
<td>4.0 (2.7-5.2)</td>
</tr>
<tr>
<td>Additive effect: glucose, lipid and bp lowering therapies</td>
<td>8.5 (7.3-9.5)</td>
</tr>
<tr>
<td>Additive effect: glucose, lipid bp lowering therapies and aspirin</td>
<td>10 (9.3-11)</td>
</tr>
<tr>
<td>White Europeans</td>
<td>n=154</td>
</tr>
<tr>
<td>No additive effect</td>
<td>4.6 (3.1-6.1)</td>
</tr>
<tr>
<td>Additive effect</td>
<td>9.7 (8.4-11)</td>
</tr>
<tr>
<td>Additive effect and aspirin</td>
<td>11.6 (11-12)</td>
</tr>
<tr>
<td>South Asians</td>
<td>n=95</td>
</tr>
<tr>
<td>No additive effect</td>
<td>3.3 (2.2-4.3)</td>
</tr>
<tr>
<td>Additive effect</td>
<td>6.9 (6.0-7.7)</td>
</tr>
<tr>
<td>Additive effect and aspirin</td>
<td>8.2 (7.6-8.8)</td>
</tr>
</tbody>
</table>

Supported by: Diabetes UK & NHS

33
Dispelling myths about social disparities in diabetes-related complications and mortality: Diabetes Study of Northern California (DISTANCE)
A.J. Karter1, D. Schillinger1, A.S. Adams1, H.H. Moffet2, J. Liu3, N. Adler4
1Division of Research, Kaiser Permanente, Bainbridge Island, 2School of Medicine, University of California, San Francisco, 3Department of Psychiatry, University of California, San Francisco, USA.

Background and aims: In contrast to studies of health disparities in the UK and Europe which focus primarily on social class, US studies have focused much more attention on disparities associated with race/ethnicity and “vulnerable minorities”. Few studies have considered how race/ethnicity and social class each relate to specific health problems. In diabetes, educational disparities in related outcomes (complications and mortality) are under-studied.
We evaluated the size and direction of educational and race/ethnic disparities in diabetes-related complications and mortality.

Material and methods: We followed a cohort of 64,419 fully-insured, patients with diabetes (19 years or older) with uniform access to integrated care (Kaiser Permanente) for 10 years (1996-2005; ~463,800 person-years). Hazard ratios (HR) were estimated from age and sex-adjusted Cox proportional hazard models (time to incident event), specified separately for all-cause mortality (MORF) and incident nonfatal and fatal complications (myocardial infarction (MI), congestive heart failure (CHF), stroke, end stage renal disease (ESRD), lower extremity amputation (AMP), after excluding those with prevalent history for each complication model.

Results: There was a significant, stepwise relationship between education and diabetes endpoints, with a 20-60% greater comorbidity and mortality (e.g., HRs for amputation: 1.6, 1.4, 1.3, 1.0 and HR for mortality: 1.3, 1.2, 1.1, 1.0 for less than high school (HS), HS graduate, some college and college grad respectively) burden for those with less than a high school education compared to college graduates. Asians had markedly lower rates of amputation (HR: 0.4 relative to Whites) than the other groups and together with Latinos, had the lowest overall morbidity and mortality rates. African Americans had the highest CHF, stroke, ESRD and amputation rates, although not significantly different than whites. Whites had the highest incidence of MI and mortality, but the lowest incidence of ESRD. Estimates were essentially unaltered after further adjustment for type of diabetes, duration of diabetes, diabetes medications, hypertension, dyslipidemia, CKD category based on GFR, albuminuria, hemoglobin A1c, prevalent MI, stroke, CHF, ESRD, and amputation.

Conclusion: Contrary to convention wisdom, there are no race/ethnic groups that are consistently at highest (or lowest) risk for diabetes complications. In contrast, low educational attainment was consistently associated with poorer health across all outcomes, independent of race/ethnicity, and may be explained by risk factors held in common for all complications (e.g., smoking, inadequate health literacy, poor medication adherence and cost barriers), thus suggesting potential candidates for interventions that could reduce disparities for combined endpoints. Future efforts to reduce social disparities among patients with diabetes should pay greater attention to socio-economic/social class disparities, while maintaining existing attention to ethnic disparities.

Supported by: NIH (NIDDK and NICHD)

Socio-economic impact on the quality of diabetes mellitus type 2 care: can we improve the outcomes?

M. Bernas, J. Tatorín, Z. Szczeklik-Kumala;
Department of Internal Diseases and Diabetology, Medical University of Warsaw, Poland.

Background and aims: According to the European Commission, the executive body of the European Union, “social and economic deprivation involves persons, families or populations whose economic, cultural and social conditions are limited to a level below the minimal life standard accepted in their country of domicile.” This definition embraces large populations with diabetes mellitus type 2. In order to counteract the impact of deprivation and poverty on treatment of diabetes mellitus in those populations, the specific patterns and mechanisms of poor socio-economic status existing in the real world of diabetes mellitus care should be objectively delineated. Therefore, the study presented below was conducted.

Materials and methods: Using standardized socio-medical and economic questionnaires, the study was conducted on a cohort of 1,050 persons with diabetes mellitus type 2 hospitalized in 2005-2008 in the public diabetological centre (Department of Diabetology, Bródnicki Hospital, Warsaw). Their socio-economical and health status characteristics were diagnosed in a standardized way using appropriate questionnaires and a grading system containing four categories: 1, economic; 2, psychological and social; 3, educational, and 4, medical.

Results: In the cohort of 1,050 hospitalized diabetic type 2 persons under study, 282, or 29%, were found to have social, economical or psychological and educational deprivation and poverty not meeting local minimal life standards as defined by the Central State Statistical Office. The specific components of the deprivation and poverty standards that were analyzed were: 1, character of family and social support; 2, profession and employment; 3, level of formal education; 4, monthly income, help of social organizations; 5, fear and depression; 6, practice of self-control, and 7, frequency of planned medical outpatient visits. Using these parameters, the existence or non-existence of deprivation and poverty was diagnosed and produced two groups of patients: 1, those afflicted by deprivation and poverty (282 out of 1,050 cases, or 27.9%), and 2, those not afflicted (768 out of 1,050 cases, or 72.1%). The medical diagnoses in both subgroups are presented below.

Conclusion: The social, economical, psychological and educational deprivation and poverty acts as a separate risk factor for the level of diabetes.

mellitus type 2 control. It is reflected by the differences in morbidity, due to the chronic complications of diabetes mellitus, and also by the existence of additional chronic diseases associated with diabetes mellitus. The definition and diagnosis of the deprivation and poverty in diabetes type 2 based on four components of this life status: social, economic, psychological and educational is very practical for counteraction plans. Each component may have individual expression and may require a separate counteractive plan, both clinical and administrative.

<table>
<thead>
<tr>
<th>Medical parameters, percentage in both groups</th>
<th>Deprivation/ Poverty present</th>
<th>Deprivation/ Poverty not present</th>
<th>p<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of HbA1c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X (SD)</td>
<td>10.6 (2.8)</td>
<td>8.2 (1.6)</td>
<td>*</td>
</tr>
<tr>
<td>Lack of self-control practice</td>
<td>86</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>Retinopathy - all stages</td>
<td>52</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>Nephropathy - all stages</td>
<td>26</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>Ischemic diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>72</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Brain</td>
<td>62</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>Lower extremities</td>
<td>54</td>
<td>38</td>
<td>*</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>60</td>
<td>36</td>
<td>*</td>
</tr>
<tr>
<td>Existence of additional chronic disease</td>
<td>89</td>
<td>72</td>
<td>*</td>
</tr>
<tr>
<td>Emotional disorders, depression</td>
<td>40</td>
<td>39</td>
<td>-</td>
</tr>
</tbody>
</table>

36

Ethnic differences in the prevalence and recognition of depression in a primary care population with and without type 2 diabetes

S. Ali1, N.A. Taub2, M.A. Stone2, M.J. Davies1, T.C. Skinner4, K. Khunti2;
1Health Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, 2Department of Health Sciences, University of Leicester, 3Department of Cardiovascular Sciences, University of Leicester, United Kingdom, 4Combined Universities Centre for Rural Health, The University of Western Australia, Geraldton, Australia.

Background and aims: Results from meta-analyses suggest that the prevalence of depression is higher in people with type 2 diabetes compared to those without. However a number of methodological limitations in the literature remain including the use of inadequate control groups and a failure to control for potentially confounding factors. The present study aimed to determine the prevalence of screen detected and prevalent (currently managed) depression in a multiethnic primary care population with and without type 2 diabetes in the UK. In addition the study aimed to examine ethnic differences in the prevalence of depression between South Asian (SA) and White European (WE) people with type 2 diabetes and to assess the recognition of depression in primary care.

Materials and methods: Consecutive primary care attendees were screened for depression using the depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) during routine appointments in primary care. Demographic and medical data were also extracted from participants’ primary care records.

Results: Complete data were available for 860 adults with type 2 diabetes (560 SA and 300 WE) and 643 without diabetes. No significant differences in the prevalence of depressive symptoms were observed between people with and without type 2 diabetes (HADS-D score ≥8% vs.28%, P<0.05; HADS-D score ≥11% vs. 17%, P<0.05). Higher rates of probable and/ or major depression were observed in SA people with type 2 diabetes compared to WE: 32% vs. 22%, P=0.006 (HADS-D score ≥8% and 13% vs. 10%, P=0.166 (HADS-D ≥11%). Using a cut-off of ≥8 on the HADS-D, the ethnic difference also persisted when controlling for age, gender, deprivation and the presence of one or more co-morbidity or diabetes-related complication. In those scoring ≥11 on the HADS-D, rates of unrecognised depression were higher in those with diabetes compared to those without (83% vs. 70%, P=0.004), and were significantly higher in SA in comparison to WE both in those with type 2 diabetes (90% vs. 63% P=0.018) and those without (77% vs. 50%, P=0.002).

Conclusion: In contrast to previous research, the findings showed no significant difference in risk for depression in those with diabetes compared to those without, suggesting that the association between depression and diabetes may be less robust than previously acknowledged. However in people with type 2 diabetes, higher rates of depression were observed in SAs in comparison to WEs. Furthermore our results also indicate that depression is seriously under-diagnosed in people with type 2 diabetes, most acutely in SAs, suggesting a need to improve methods of identifying depression in these patients.
OP 7 The effects of insulin beyond glycaemia

37

Insulin in patients with acute myocardial infarction and diabetes - friend or foe? A report from the DIGAMI 2 study
L.G. Melbin1, K. Malmberg, A. Norhammar2, H. Wedel1, L. Rydén1; 1Department of Cardiology, Karolinska Institutet, Stockholm, 2Nordic School of Public Health, Göteborg, Sweden.

Background and aims: The aim of the present report, a substudy to DIGAMI 2, is to analyze long-term mortality and morbidity in relation to different glucose lowering agents in patients with myocardial infarction and type 2 diabetes.

Materials and methods: In DIGAMI 2 patients with type 2 diabetes and suspected myocardial infarction were randomised to Group 1) insulin based treatment; Group 2) insulin in-hospital followed by conventional glucose control; Group 3) conventional treatment. They were treated according to the protocol for 2.1 years and in an extended part of the trial followed up to 8.3 years (median =4.1). Long-term follow-up data was available in 1145 patients, 91.3% of the original DIGAMI 2 cohort.

Results: The total mortality was 34%, (72% cardiovascular). Cox regression analysis did not show any difference in long- or cardiovascular mortality between treatment groups. The total number of fatal malignancies was 37 with the highest risk in group 1. Hazard Ratio compared with group 2: 1.83 (95%CI 0.90-3.71; p=0.096) and to group 3: 3.57 (95%CI 1.22-10.39; p=0.02). Patients on insulin treatment had a higher risk of non-fatal events (OR 1.90 (95%CI 1.38-2.6) for IGF-1R:IR binding for IDet and neutral protamine Hagedorn insulin. This analysis of insulin receptor (IR) and IGF-1R binding was undertaken to evaluate the mitogenic characteristics of basal insulin analogues.

Materials and methods: Three insulin analogues were compared with human insulin: IDet, insulin glargine (IGlar) and an experimental insulin, X10. Two experiments were performed: first mitogenic potency relative to human insulin was established through proliferation of two different cell lines - human mammary epithelial cells (HMEC), and L6 myoblasts modified to over-express human insulin receptors (L6-hIR). Then, receptor binding for IDet and X10 was measured using both cell membranes and solubilised receptors, with binding curves generated to calculate the ratio of IGF-1R:IR binding profile relative to human insulin. Both analogues showed a similar balance of low potency. For X10, a consistently high potency in both cell lines was observed. When the ratio of IGF-1R:IR binding was calculated for IDet, both IR isoforms, and both techniques showed a similar ratio relative to human insulin: 0.7 (IR-A) and 1.3 (IR-B) for membrane experiments and 0.4 (both IR-A and B) for solubilised receptors. For IGlar, ratios were increased relative to human insulin: 16.2 (IR-A) and 20.5 (IR-B) for membrane preparations, and 10.7 (both IR-A and B) for solubilised receptors.

Conclusion: Compared with human insulin, IDet has a lower mitogenic potency, although further parameters of molecular safety (for example, sustained signalling from the receptor might also increase cellular proliferation. Preclinical analysis has demonstrated a comparable mitogenic profile between insulin detemir (IDet) and neutral protamine Hagedorn insulin.

Results: The mitogenic potency of IDet relative to human insulin was comparatively low for both cell lines (see Table). Data for IGlar were varied, with the HMEC cell line showing a high potency, and the L6-hIR line a relatively low potency. For X10, a consistently high potency in both cell lines was observed. When the ratio of IGF-1R:IR binding was calculated for IDet, both IR isoforms, and both techniques showed a similar ratio relative to human insulin: 0.7 (IR-A) and 1.3 (IR-B) for membrane experiments and 0.4 (both IR-A and B) for solubilised receptors. For IGlar, ratios were increased relative to human insulin: 16.2 (IR-A) and 20.5 (IR-B) for membrane preparations, and 10.7 (both IR-A and B) for solubilised receptors.

Conclusion: Compared with human insulin, IDet has a lower mitogenic potency, although further parameters of molecular safety (for example, sustained signalling from the receptor might also increase cellular proliferation. Preclinical analysis has demonstrated a comparable mitogenic profile between insulin detemir (IDet) and neutral protamine Hagedorn insulin. This analysis of insulin receptor (IR) and IGF-1R binding was undertaken to evaluate the mitogenic characteristics of basal insulin analogues.

Materials and methods: Three insulin analogues were compared with human insulin: IDet, insulin glargine (IGlar) and an experimental insulin, X10. Two experiments were performed: first mitogenic potency relative to human insulin was established through proliferation of two different cell lines - human mammary epithelial cells (HMEC), and L6 myoblasts modified to over-express human insulin receptors (L6-hIR). Then, receptor binding for IDet and IGlar was measured using both cell membranes and solubilised receptors, with binding curves generated to calculate the ratio of IGF-1R:IR binding profile relative to human insulin. Both analogues showed a similar balance of low potency. For X10, a consistently high potency in both cell lines was observed. When the ratio of IGF-1R:IR binding was calculated for IDet, both IR isoforms, and both techniques showed a similar ratio relative to human insulin: 0.7 (IR-A) and 1.3 (IR-B) for membrane experiments and 0.4 (both IR-A and B) for solubilised receptors. For IGlar, ratios were increased relative to human insulin: 16.2 (IR-A) and 20.5 (IR-B) for membrane preparations, and 10.7 (both IR-A and B) for solubilised receptors.

Conclusion: Compared with human insulin, IDet has a lower mitogenic potency, although further parameters of molecular safety (for example, sustained signalling from the receptor might also increase cellular proliferation. Preclinical analysis has demonstrated a comparable mitogenic profile between insulin detemir (IDet) and neutral protamine Hagedorn insulin.

Materials and methods: Three insulin analogues were compared with human insulin: IDet, insulin glargine (IGlar) and an experimental insulin, X10. Two experiments were performed: first mitogenic potency relative to human insulin was established through proliferation of two different cell lines - human mammary epithelial cells (HMEC), and L6 myoblasts modified to over-express human insulin receptors (L6-hIR). Then, receptor binding for IDet and IGlar was measured using both cell membranes and solubilised receptors, with binding curves generated to calculate the ratio of IGF-1R:IR binding profile relative to human insulin. Both analogues showed a similar balance of low potency. For X10, a consistently high potency in both cell lines was observed. When the ratio of IGF-1R:IR binding was calculated for IDet, both IR isoforms, and both techniques showed a similar ratio relative to human insulin: 0.7 (IR-A) and 1.3 (IR-B) for membrane experiments and 0.4 (both IR-A and B) for solubilised receptors. For IGlar, ratios were increased relative to human insulin: 16.2 (IR-A) and 20.5 (IR-B) for membrane preparations, and 10.7 (both IR-A and B) for solubilised receptors.

Conclusion: Compared with human insulin, IDet has a lower mitogenic potency, although further parameters of molecular safety (for example, sustained signalling from the receptor might also increase cellular proliferation. Preclinical analysis has demonstrated a comparable mitogenic profile between insulin detemir (IDet) and neutral protamine Hagedorn insulin.
Body weight increase during the first year of insulin treatment in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of different insulin regimens

L. Miele1,2, A.E. Pontiroli2, A. Morabito2; 1Ospedale San Paolo, 2Medicina, Chirurgia e Odontoiatria, Università degli studi di Milano, Italy.

Background and aims: Insulin treatment increases body weight in type 2 diabetes mellitus. Aim of this study was to define body weight increases during the first year of insulin treatment as a function of treatment modalities.

Materials and methods: We considered 51 randomized, parallel group studies with 15202 patients, lasting 12 - 52 weeks, published as full papers during years 1991 - 2009. Of each study we analyzed number of patients, duration of treatment, co-treatment with oral agents, insulin regimen (basal, prandial), glycemic target, daily insulin doses, HbA1c and its changes, proportion of patients with hypoglycemia, body weight and its changes. Pooled-random effects of estimates of insulin regimen on body weight increase, compared with other regimens, were calculated using the Der Simonian and Laird models.

Results: Body weight increased 2.1±0.16 kg (range -0.85 - +7.5 kg, 95% C.I. 1.812-2.468), with no influence of basal body weight, lower with basal than with bis in die regimen (OR 0.42, 95% C.I. 0.25-0.59), and with no difference basal vs prandial, nor bis in die vs prandial regimen. Body weight increase was directly related (weighted regressions) to duration of treatment (r = .54,p = 0.0001), insulin dose (r = .313, p = 0.0012), HbA1c (r = .331, p = 0.0005), HbA1c change (r = .402, p = 0.0001), glycemic target (r = .203, p = 0.0462), hypoglycemia (r = .453, p = 0.0001), and nocturnal hypoglycemia (r = .281, p = 0.0434). At stepwise regression analysis (model 1: r = .783, F = 36.865; model 2: r = .735, F = 41.597), independent variables duration of treatment, HbA1c (or HbA1c change), and frequency of hypoglycemia, were = 36.865; model 2: r = .735, F = 41.597), independent variables duration of treatment, HbA1c (or HbA1c change), and frequency of hypoglycemia, were

Conclusion: These data indicate a slight and progressive increase of body weight in patients with type 2 diabetes during the first year of insulin treatment, related to insulin regimen, basal HbA1c, its changes, and to frequency of hypoglycemia.

41

Effects of insulin detemir and NPH insulin on renal handling of sodium, fluid retention and weight in type 2 diabetic patients

K.V. Hendriksen1, T.J. Jensen2, B. Feldt-Rasmussen2, P. Ouari4; 1Endocrinology and Nephrology, 2Endocrinology, 3Nephrology, 4Clinical Physiology, Rigshospitalet, Copenhagen, Denmark.

Background and aim: In insulin treated type 2 diabetic patients, insulin Detemir (DET) seems to induce less weight gain compared to NPH insulin (NPH). The mechanism behind this weight-reducing effect of DET is unknown, but it has been proposed that the cause is reduced fat accumulation or reduced sodium/water retention. Due to the albumin binding and reduced glomerular filtration, and thereby reduced tubular action of DET, we tested the hypothesis that type 2 diabetic patients should increase their urinary sodium excretion (UNaE) and thereby reduce extracellular volume (ECV) and body weight (weight) when insulin treatment was changed from NPH to DET.

Materials and methods: In a randomised, open-labelled, two-way cross-over study, 24 patients with type 2 diabetes and normal urinary albumin excretion (mean age: 62 yr, mean diabetes duration: 15 yr, gender 177/ (M/F), mean HbA1c: 7.6%) were included. They were first treated with either NPH or DET for 8 weeks. In the second period, they were changed to the other insulin for 8 weeks. In a third 1-week period, they were changed back to the first insulin. At the end of each 8-week period ECV, weight and body composition (DEXA scan) was measured. In the last week of each 8 week period and on day 1, 3, and 5 in the first week after therapy change UNaE was determined. Weight was measured after 1 week. Twenty-four hour blood pressure was measured 6 times in the course of the study.

Results: At the end of 8 weeks weight was reduced by 0.8(±0.2 kg)(mean±SEM) after DET treatment compared with NPH (paired t-test: p<0.01) A non significant reduction in ECV of 0.8(±0.5 L/1.73m²)(paired t-test: p= 0.14) was found. The weight loss occurred already after 1 week 0.8(±0.2kg)(paired t-test: p<0.001) and simultaneously a transient increase in UNaE was observed (Kruskal-Wallis test: p= 0.07). HbA1c increased by 0.6%(±0.1) after 8 weeks of treatment with DET (paired t-test: p<0.001) in spite of a slightly increased insulin dose, but average blood glucose measured during the first week was similar during the two treatments. In addition, 24 h blood pressure and body composition remained similar during the two treatment periods.

Conclusion: DET induces a significant and sustained weight loss, first observed within the first week after changing therapy from NPH. It was simultaneous with a trend towards a transient increase in UNaE and a reduction in ECV. The weight loss thus seems to be related to changes in fluid volume and may reflect changed insulin action in the kidneys.
mg/dl) and 6.1 mmol/l (110 mg/dl) as soon as possible after enrollment. At baseline, at cross-over (3 months) and at study end (6 months), we measured HbA1c, EPC levels (as an indicator of endothelial regenerative capacity) and serum concentrations of VCAM-1, ICAM-1 and E-selectin (as indicators of endothelial damage). EPCs were defined as CD34+KDR+ or CD133+KDR+ or CD34+CD133+KDR+ cells and measured by flow cytometry. We also recorded body weight and hypoglycemic episodes.

Results: Forty-two patients completed the study: 21 followed the glargine-detemir (GD) schedule and 21 the detemir-glargine (DG) schedule. Patients were on average 66.1±1.2 years old and 74% were males. Baseline data did not differ between the two groups in terms of demographic and anthropometric parameters, HbA1c, complications and concomitant treatment. At cross-over, patients in the GD schedule had a lower HbA1c as compared to patients in the DG schedule (p=0.040). Even if this difference in HbA1c was lost at study end, the overall HbA1c effect was in favor of glargine (p=0.016). Incidence of hypoglycemia (mild and severe together) and weight gain were lower during detemir than during glargine therapy. ICAM-1, VCAM-1 and E-selectin were all significantly reduced at crossover as compared to baseline and further decreased at study end, irrespective of the treatment schedule. At cross-over, the levels of all EPC phenotypes did not change as compared to baseline, while CD133+KDR+ and CD34+CD133+KDR+ cells significantly increased (by 68% and 139%, respectively) at study end in both groups.

Conclusion: Basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with cardiovascular disease. Glargine and detemir do not differ in their endothelial effects, but detemir yielded a similar endothelial protection with lower weight gain and hypoglycemic episodes, albeit at the expenses of a slightly higher HbA1c. These results might have implications for therapy of aging type 2 diabetic patients with cardiovascular disease.

Supported by: LIBRA project, Novo Nordisk.

Table. Mean Sensor Glucose, Hyperglycemia, and Hypoglycemia, SAP and MDI Treatment Groups

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>6 Months</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean sensor glucose (SD), mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>179.9</td>
<td>178.7</td>
<td>157.5*</td>
</tr>
<tr>
<td>(28.9)</td>
<td>(27.6)</td>
<td>(25.4)</td>
<td>(31.5)</td>
</tr>
<tr>
<td>MDI</td>
<td>181.8</td>
<td>181.5</td>
<td>158.6*</td>
</tr>
<tr>
<td>(25.7)</td>
<td>(31.7)</td>
<td>(25.7)</td>
<td>(31.7)</td>
</tr>
<tr>
<td>AUC>180 (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td>28.9</td>
<td>28.0</td>
<td>16.0*</td>
</tr>
<tr>
<td>(17.8)</td>
<td>(17.3)</td>
<td>(12.6)</td>
<td>(12.8)</td>
</tr>
<tr>
<td>MDI</td>
<td>29.6</td>
<td>28.7</td>
<td>16.1*</td>
</tr>
<tr>
<td>(18.5)</td>
<td>(19.3)</td>
<td>(18.5)</td>
<td>(20.3)</td>
</tr>
<tr>
<td>ΔAUC>180</td>
<td>NA</td>
<td>NA</td>
<td>-12.9</td>
</tr>
<tr>
<td>AUC<70 (SD)</td>
<td>0.3 (0.5)</td>
<td>0.3 (0.5)</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>SAP</td>
<td>0.4 (0.6)</td>
<td>0.3 (0.4)</td>
<td>0.3 (0.6)</td>
</tr>
<tr>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.6)</td>
</tr>
<tr>
<td>MDI</td>
<td>0.5 (0.7)</td>
<td>0.4 (0.7)</td>
<td>0.4 (0.7)</td>
</tr>
<tr>
<td>(0.7)</td>
<td>(0.7)</td>
<td>(0.7)</td>
<td>(0.7)</td>
</tr>
</tbody>
</table>

* p<0.01 compared to MDI group; SAP, sensor-augmented pump; MDI, multiple daily injection; AUC, area under the glucose concentration-time curve; Δ, change from baseline; NA, not applicable.

Supported by: Medtronic, Inc.
Effects of continuous glucose monitoring on glycaemic control in subjects with type 1 diabetes delivering insulin via pump or multiple daily injections: a prospective study

P.A. Gottlieb, L.B. Crew, E.G. Moser, M.K. Voelmi, C.R. Beaton, R.S. Gutin, S.K. Garg; Barbara Davis Center, University of Colorado Denver, Aurora, USA.

Background and aims: There are no long-term prospective data describing the differential effects (if any) of continuous glucose monitoring (CGM) when used by patients with type 1 diabetes (T1D) who deliver insulin via multiple daily injections (MDI) as compared to those on continuous subcutaneous insulin infusion (CSII) pump therapy. This study assesses the long-term effectiveness of CGM (DexCom SEVEN®PLUS) in subjects with T1D and compares the changes in glycemic control by CSII vs. MDI cohorts.

Materials and methods: Sixty adults with T1D were enrolled in this 6-month study; 30 subjects were on CSII, and 30 delivered insulin via MDI. For the first 4 weeks, all subjects were blinded from CGM values/trends/alarms; thereafter all subjects were unblinded for the remaining 20 weeks (real-time CGM data provided). A1C was measured during screening and at 4-week intervals throughout the study. Per the results of the JDRF CGM trials and the pre-specified analysis, population for this study included subjects who utilized CGM at least 6 days per week (86% of the time).

Results: Mean (±SD) age was 36 (±11) and 39 (±8) years; duration of diabetes was 22 (±11) and 23 (±10) years; and screening A1C was 7.61% (±0.76) and 7.63% (±0.68) for CSII and MDI groups, respectively (P>0.05). Seventeen patients (57%) in each group utilized CGM for at least 6 days each week. Both groups similarly improved A1C values (Figure 1a) and time spent in target range glycemia (Figure 1b). Both groups reduced time spent in hypoglycemia (180 mg/dL) was reduced by one and two hours per day in the MDI and CSII groups, respectively.

Conclusion: Similar improvements in glucose control can be achieved with real-time CGM in compliant T1D patients using either CSII or MDI.

![Figure 1a: A1c Results](image)

![Figure 1b: Change in Time Spent in Different Glucose Ranges: Blinded to Unblinded Periods](image)
continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion (CSI) using a purpose-built model predictive control (MPC) algorithm. We recently demonstrated that overnight CL in adults significantly increased time spent in euglycemia and reduced time in hypoglycemia. We have now examined the efficacy and safety of CL compared with standard CSI on overnight glycemic control, after evening alcohol intake accompanying a large dinner.

Materials and methods: Twelve adults with T1D treated by CSI (F 7, age 37.2±9.9yrs, BMI 26.8±4.2 kg/m², T1D duration 19.7±9.7yrs, duration on pump 1.9±2.5yrs, HbA1c 7.8±0.7%; mean±SD) were studied on 2 separate nights in random order, receiving either overnight CL (used from 2200 until 1200 the next day) or usual CSI therapy (using a similar Deltec Cozmo insulin pump on both nights). On CL nights, subcutaneous CGM values from the Freestyle Navigator were fed into an MPC algorithm every 15min, which calculated the infusion rate of Aspart (adjusted manually). On CSI nights, subjects used the Cozmo pump to deliver their usual insulin rates. On both occasions, between 2030 and 2200, a mixed meal (100g-carbohydrate) was ingested accompanied by 0.75g/kg ethanol as 13% white wine (mean volume consumed 564±133ml), with a pre-prandial insulin bolus using the subject's usual bolus calculator. Plasma glucose was measured every 15min to assess CL performance.

Results: As shown in the table, CL significantly increased the time spent in target glucose range and reduced glucose variability (plasma glucose SD). CL reduced the high blood glucose index, a composite measure of duration and severity of hyperglycaemia. One episode of severe hypoglycaemia occurred with CSI and none during CL. Notably, improved glycemic control with CL was achieved without a difference in the average insulin dose infused.

Conclusion: CL can provide significantly better overnight glycemic control than conventional CSI after alcohol and large meal consumption. CL has the potential to improve efficacy and safety of flexible insulin regimens.

Comparison of overnight plasma glucose control during CL and CSI

<table>
<thead>
<tr>
<th>Time in target 3.8-8.0mmol/l (% of total time)</th>
<th>CL</th>
<th>CSI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>72±15</td>
<td>50±23</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Time > 8.0mmol/l (% of total time)</td>
<td>23±16</td>
<td>37±26</td>
<td>0.042</td>
</tr>
<tr>
<td>Time < 3.9mmol/l (% of total time)</td>
<td>54±7</td>
<td>13±13</td>
<td>NS</td>
</tr>
<tr>
<td>Mean overnight glucose (mmol/l)</td>
<td>6.8±0.8</td>
<td>7.0±1.5</td>
<td>NS</td>
</tr>
<tr>
<td>SD overnight glucose (mmol/l)</td>
<td>1.8±0.5</td>
<td>2.3±0.7</td>
<td>0.031</td>
</tr>
<tr>
<td>High blood glucose index</td>
<td>1.8±1.6</td>
<td>3.2±2.6</td>
<td>0.016</td>
</tr>
<tr>
<td>Low blood glucose index</td>
<td>1.4±1.2</td>
<td>2.9±2.6</td>
<td>NS</td>
</tr>
<tr>
<td>Mean overnight insulin infusion (U/h)</td>
<td>0.9±0.4</td>
<td>0.9±0.4</td>
<td>NS</td>
</tr>
</tbody>
</table>

Supported by: Diabetes UK, NIHR, JDRF

47

Comparison of total annual direct costs among Swedish residents with poorly controlled type 1 diabetes: standard care versus real-time continuous glucose monitoring

C. Graham1, D.-C. Agardh1, P. Gerhardsson1, C.S. Hankin1;
1DexCom, Inc., San Diego, USA, 1Lund University, Malmö, Sweden, 1BioMedEcon, Moss Beach, USA.

Background and aims: Among the 40,000 Swedish residents diagnosed with type 1 diabetes (T1DM), 18% (7,200) have poorly-controlled disease (defined as HbA1c ≥9%) and are at high risk for developing diabetes-related complications. Randomized clinical trials (RCTs) have shown that real-time continuous glucose monitoring (RT-CGM) significantly improves HbA1c (A1c) levels among those with T1DM. We developed a decision-tree model to compare anticipated rates and costs of diabetes-related complications among a hypothetical group of 7,200 Swedish subjects with poorly-controlled T1DM who received RT-CGM or standard therapy (ST).

Materials and methods: T1DM prevalence was obtained from the National Board of Health and Welfare and A1c levels from the Swedish Diabetes Registry; A1c improvement among those with poorly-controlled T1DM who used RT-CGM was obtained from a RCT; rates of microvascular complications in Swedish subjects with T1DM were derived from the Stockholm Diabetes Intervention Study and the Diabetes Complications and Control Trial. Rates of severe hypoglycemia in T1DM were based on observational studies of Swedes and a RCT of RT-CGM. Annual direct medical costs of were obtained from published Swiss (serious retinopathy) and Swedish (nephropathy, severe hypoglycemia) economic analyses and reported as 2009 USD. Costs for 7-day, continuous, RT-CGM were provided by a manufacturer of RT-CGM devices.

Results: Among the 7,200 who received RT-CGM, 26% achieved a 2-point A1c reduction, 50% a 1-point reduction, and 24% no improvement at 1 year; among a comparable group of 7,200 Swedish subjects who received ST, A1c did not change from baseline. Among those who received RT-CGM versus ST, 3,949 and 5,832, respectively, experienced microvascular complications, and 720 and 1,440-2,520, respectively, severe hypoglycemia. The total annual reduced direct costs associated with diabetes-related complications for those who received RT-CGM versus ST ranged from $43.3 to $45.9 million. The model demonstrates that this technology is a cost-effective means of reducing diabetes-related complications among Swedish persons with poorly-controlled T1DM. Because not all direct costs for diabetes-related complications (e.g., macrovascular events) were included in the model, RT-CGM may be associated with even greater cost savings relative to ST.

Conclusion: We have now examined the efficacy and safety of CL compared with standard CSI on overnight glycemic control, after evening alcohol intake accompanying a large dinner.

48

Accuracy of a continuous glucose monitoring system (CGMS): still room for improvement

S. Heckermann, L. Nosek, E. Zijlstra, T. Heise;
Profil Institut fuer Stoffwechselforschung GmbH, Neuss, Germany.

Background and aims: Clinical trials have shown improvements in glycemic control through CGMS in people with type 1 diabetes (T1D), but systematic investigations of the accuracy of CGMS are scare. We studied the performance of the Guardian Real Time CGMS in 17 T1D (6 females, mean age 43 (26-61) years, HbA1c 8.3 (7.6-9.1)%, all on basal-bolus insulin therapy).

Materials and methods: During two in-house stays of 7 days each with standard meals (identical for both periods) patients were connected to CGMS (hypoalarm setting 70 mg/dl with a predictive alarm 10 min earlier). Reference measurements using a laboratory device (Super GL glucose analyzer, Hidato, Mohnese, Germany) were done at least every 4 hours and in case of hypoglycemic symptoms or a CGMS hypoglycemia, all reference measurements were used for CGMS calibration.

Results: In total, 2328 paired data points were obtained covering a glucose range of 40 - 400 mg/dl. Mean absolute deviation was 24.5±24.0 mg/dl, mean relative absolute deviation was 18.3±18.7%. Frequent calibration did not seem to improve accuracy, relative absolute deviations for values obtained within a time frame of 1h after calibration was 18.8±18.6%. A Clarke Error Grid analysis showed 93% of paired values to be in zones A (67.4%) and B (25.6%), but also 6.4% in zone D (figure). Reference measurements indicated 145 episodes of hypoglycemia.
Diabetes (blood glucose (BG) < 70 mg/dl) of which only 43 were detected with CGMS. Sixty additional CGMS hypoglycemic alarms were not confirmed, i.e. reference measurements showed BG values > 90 mg/dl. Thus, while CGMS had high specificity (97%) and good negative predictive value (95%) for hypoglycemia, positive predictive value (42%) and sensitivity (30%) were poor.

Conclusion: In conclusion, further improvements in the accuracy of CGMS measurements seem to be necessary in particular for a more reliable detection of hypoglycemic episodes.

OP 9 GWAS and their follow-up: analytical, technological and experimental developments

Genome-wide association analysis in over 187,000 individuals identifies 14 loci contributing to variation in fat-distribution

C.M. Lindgren, on behalf of the GIANT (Genetic Investigation of Anthropometric Traits) Consortium.; Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.

Background and aims: Obesity is an increasing public health issue, but not all forms of obesity carry the same risk. Individuals with high waist-to-hip ratio (WHR) have an increased risk of Type 2 Diabetes (T2D), hypertension, heart disease, stroke and certain cancers. WHR is one of the primary measures of fat distribution and has a substantial heritability (~50%), independent of overall adiposity. Hitherto, the genetic variants that contribute to variation in WHR have not been well characterized.

Materials and methods: To detect common variants, we performed a meta-analysis of 32 genome-wide association studies comprising >77,000 individuals of European ancestry as part of the GIANT consortium. We tested ~2.8 million imputed and genotyped SNPs for association with WHR using an additive model, adjusted for age and BMI and sex.

Results: Our discovery analysis identified 16 independent loci associated with WHR (with >110,000 individuals). In our analysis combining discovery and follow-up studies 14 loci reached genome-wide significance (p<5x10^-8). We confirmed the known locus near LYPLAL1 (1q41; p=4.9x10^-19) and identified 13 novel associations, including four loci that suggest an overlap with developmental processes and T2D risk: RSPO3 (6q22; p=1.8x10^-40), near VEGFA (6p12; p=5.9x10^-25), TBX15 (1p11; p=8.7x10^-25), and near ADAMTS9 (3p14; p=9.8x10^-14). RSPO3 may regulate embryonic angiogenesis via the Wnt signaling pathway. TBX15 is differentially expressed between subcutaneous and visceral fat and the expression is correlated with WHR. VEGFA is a growth factor that has been suggested to play a role in diabetic nephropathy and retinopathy. ADAMTS9 is significantly associated with T2D, possibly mediating an effect through decreased insulin sensitivity of peripheral tissues. We find a directionally consistent enrichment of associations (above what would be expected by chance) for each single trait (P nominal <0.05) with increased triglycerides, LDL-cholesterol, fasting insulin, and HOMA-IR. We also observed a marked gender difference in our results; 7 of the 14 loci showed a stronger association in women than in men.

Conclusion: Taken together, these results promise to enhance our knowledge of underlying biological pathways involved in fat distribution and propose a genetic overlap with metabolic risk and T2D. Hopefully these advancements will support functional and translational advances in the management of obesity through development of novel diagnostic and therapeutic options. Supported by: The Wellcome Trust

50

Genetic susceptibility for obesity increases the risk of type 2 diabetes and is modified by macronutrient intakes

G. Rukh, E. Sonestedt, V. Lyssenko, A. Sharma, O. Melander, M. Orho-Melander; Clinical Sciences in Malmö, Lund University, Malmö, Sweden.

Background and aims: Genome-wide association studies (GWAS) have identified at least 16 novel single nucleotide polymorphisms (SNPs) associated with BMI or obesity. The aims of this study were to examine whether these SNPs associate with obesity, type 2 diabetes or cardiovascular disease (CVD) in Swedish population and to investigate if dietary intake (relative intakes of fat, carbohydrate, protein and fiber) or physical activity level modify the genetic effect, measured as a genetic risk score (GRS), on BMI and body composition.

Materials and methods: In total 17037 individuals from the Malmö Preventive Project (MPP) were genotyped and a weighted GRS was created. Association between SNPs and GRS and BMI, obesity, type 2 diabetes and CVD were studied cross-sectionally and prospectively after a mean of 23 years follow-up. A total of 9623 non-diabetic subjects participated in the population-based Malmö Diet and Cancer Study (MDCS) with dietary data from a modified diet history method and with leisure time physical activity determined and
were included to GRS x diet interaction analyses. Bioelectric impedance analysis was used to estimate body composition.

Results: 14 SNPs associated with BMI or related traits and were included in GRS. A 13% (10-17%) increased risk of obesity for each increased quintile of GRS was observed (p=3x10^{-10}). Individuals in the highest vs. lowest GRS had a 29% (14-46%) increased risk of type 2 diabetes (p=5x10^{-10} and p=0.006 after adjustment for BMI). GRS was not significantly associated with CVD (p=0.22). The effect sizes of GRS quintiles on BMI were 2.2, 1.9 and 1.7 times higher comparing low carbohydrate-, low fiber and high fat intakes tertiles to high carbohydrate, high fiber and low fat intakes tertiles (p=0.016, p=0.022 and p=0.084 for interaction, respectively). Interactions were strongest on lean mass (p=0.002, p=0.001 and p=0.049). Effect sizes of GRS on BMI, fat mass or lean mass did not significantly differ between tertiles of leisure time physical activity (p=0.44, p=0.88 and p=0.26, respectively).

Conclusion: GRS of 14 BMI/obesity SNPs associates with obesity and type 2 diabetes. Diets low in carbohydrates and fiber and/or high in fat may accentuate genetic susceptibility for obesity, particularly accumulation of fat-free mass, whereas low fat may be protective. Gender differences in effect size on BMI by the so far identified BMI/obesity SNPs can partially be explained by the effect sizes being modified by dietary intakes.

Supported by: Swedish Medical Research Council, Pihlsson Foundation, an EFSCL Clinical Research Grant, LUDC.

51

A genome-wide association analysis of over 75,000 individuals identifies gender-specific effects for fasting glycaemic traits

R. Mägi1, J.J. Hottenga1, I. Prokopenko1,2, MAGIC Investigators; 1WTCHG, University of Oxford, United Kingdom, 2Department of Biological Psychology, VU University Amsterdam, Netherlands, 3OCDEM, University of Oxford, United Kingdom.

Background and aims: Meta-analyses of genome-wide association (GWA) studies for glycaemic traits up to date have described 16 loci influencing fasting glucose (FG) and two loci - fasting insulin (FI) levels. FG levels are tightly regulated, but may differ between genders. Gender differences in prevalence of IFG (impaired fasting glucose) and IGT (impaired glucose tolerance) are well known: IFG is more common in men and IGT in women but the mechanisms for these differences are unknown. Within the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) we aimed to investigate gender-specific differences in genetic regulation of FG/ FI levels, since such effort in a large enough sample was lacking.

Materials and methods: To identify gender-specific genetic effects we performed gender-stratified meta-analyses of 36 genome-wide association (GWA) studies informative for FG and FI within MAGIC in up to 32,993 and 27,870 non-diabetic men and 42,149 and 34,940 non-diabetic women, respectively. Age information was provided for ~69,600 individuals from 32 cohorts. Mean age in males was 53.3 (SD=10.2) and in females was 51.1 (SD=11.8) years.

Results: Among previously described loci DKG1/ TMEM195J demonstrated the largest gender-specific effect (heterogeneity Q=0.026, I^2=80%) stronger in men (β=0.031 [SE=0.004], P=9x10^{-10}) than in women (β=0.019 [SE=0.004], P=0.14). Gender-specific heterogeneity for MTNR1B was also high (Q=0.005, I^2=75%) with higher effect estimates for men (β=0.080 [SE=0.005], P=3x10^{-10}) than for women (β=0.067 [SE=0.004], P=3.3x10^{-10}). Effects estimates in women were higher for C2CD4B and GCKR, where the gender heterogeneity was close to high, but not significant (I^2=60%, Q=0.055). G6PC2 and ADCYS showed moderate and GCK, PROX1, SLC30A8 low between-gender heterogeneity for FG (I^2=50% and I^2=25%, respectively).

We couldn't detect gender-specific differences in the FG effect estimates for MADD, FADS1, CRY2, ADRA2A, GLIS3, SLCA2A TCFL7 and at GCKR for FI (heterogeneity I^2=0%). In FG meta-analysis we uncovered a novel locus showing strong heterogeneity (Q=0.055, I^2=73%) near PCSK1 with women showing β=0.023 [SE=0.003], (P=3x10^{-10}) and men β=0.012 [SE=0.004], (P=0.008); overall β=0.018 [SE=0.003], (P=0.9x10^{-10}). Meta-analysis of FI has revealed higher effect estimates in men (β=0.034 [SE=0.006], P=3.3x10^{-10}) compared to women (β=0.018 [SE=0.006], P=0.001) at rs860598 (overall β=0.024 [SE=0.004], P=3.6x10^{-10}, heterogeneity Q=0.042, I^2=76%) in IGF1 locus, showing a stronger association than the previously described variant rs5767 (overall β=4.7x10^{-10}, linkage disequilibrium r^2=0.77).

Conclusion: We showed that some genetic loci have greater contribution to the fasting glycaemic traits variability in men (DKGR, MTNR1B, IGF1) than in women and vice versa (PCS1) owing to differential gender-specific physiological mechanisms of regulation of glycaemic traits. We also unveiled a novel FG locus near PCSK1. This analysis showed the importance of deep investigations into differences in quantitative traits variability to type 2 diabetes. Well powered GWA analyses should investigate the gender contribution to the quantitative traits variability in a systematic manner.

Supported by: European Commission under the Marie Curie Intra-European Fellowship

52

Identification of additional type 2 diabetes susceptibility loci through large-scale replication using “Metabochip”: early result

I. Prokopenko1,2, A. Mahajan1, V. Lagou1,2, N. Robertson1,2, W. Rayner1,2, A. Kumar1, C.J. Groves1, D. Buck1, A. Donney1, C.N.A. Palmer1, A.D. Morris1, A.P. Morris1, C.M. Lindgren1,2, M.I. McCarthy1,2, for the DIAGRAM consortium;

1WTCHG, University of Oxford, 2OCDEM, University of Oxford, United Kingdom, 3Institute of Genomics and Integrative Biology, CSIR, Delhi, India, 4Department of Medicine & Therapeutics, Ninewells Hospital & Medical School, Dundee, United Kingdom, 5Biomedical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom.

Background and aims: Over 30 common variant signals influencing type 2 diabetes (T2D)-susceptibility have been identified so far. However, replication efforts to date have focused on limited numbers of the most strongly associated signals and have failed to exploit fully the information provided by the well-powered genome wide association (GWA) meta-analyses available for stage 1 discovery. The Metabochip - a custom iSELECT array containing ~195,000 SNPs - has been designed to support large-scale follow-up of putative associations for T2D and other metabolic and cardiovascular traits, and to enable the fine-mapping of known loci.

Materials and methods: This analysis is based on Metabochip data from 3,185 T2D cases and 3,569 controls (from the UK T2D Genetics Consortium sample recruited in Tayside, Scotland) that were successfully called (Gencall v1.1) and passed quality control (QC). Of 185,802 Metabochip SNPs passing QC, 4,821 were included in the analysis because they capture the top ~5,000 independent autosomal signals from the DIAGRAM (v3) GWA meta-analysis (12,057 T2D cases, 56,071 controls, all of European-descent). Association analysis was performed under an additive model with adjustment for 3 principal components to account for sample substructure.

Results: We observed directional consistency for all published T2D-loci (and for 11 novel autosomal loci derived from the most recent DIAGRAM+ consortium effort) including variants at TCFL7L2 (P<10^{-14}), SLC30A8, KCNQ1, FTO (P<10^{-10}); KCNJ11 and IRS1 (P=5x10^{-10}). We compared overall patterns of replication between the DIAGRAM stage 1 discovery data and the UK-T2DGC follow-up results for 4,333 independent SNPs represented in both samples. Of these, 2,468 SNPs showed directionally consistent effects (binomial p<10^{-20}) with 217 of the 2,468 also showing nominal replication (i.e. p<0.05, same effect direction). Only 79 of 4,333 SNPs had p<0.05 in the opposite direction (binomial p<10^{-15}). Despite the modest size of this first follow-up sample (compared to the discovery set), joint analysis of DIAGRAM+ Stage 1 and UKT2DGC Stage 2 data revealed several signals near to or exceeding genome-significance, including a locus near ARL15 (ADP-ribosylation factor-like 15) on chromosome 5p15 (UKT2DGC P=10^{-14}).

Conclusion: These preliminary data obtained from the Metabochip are consistent with a long tail of common variant association signals of modest effect contributing to T2D-susceptibility. Metabochip-genotyping is currently underway in over 30,000 T2D cases and 50,000 controls of European descent. Follow-up on this scale should add considerably to the tally of proven T2D-susceptibility loci. In this modestly scaled initial follow-up effort, we have identified one novel T2D-susceptibility signal mapping to chromosome 5p15.
Fine-scale mapping of type 2 diabetes susceptibility loci by imputation and conditional analysis

S. Wilshiriet al.

Background and aims: Up to 30 T2D susceptibility genes have been identified in the past few years from genome-wide association scans (GWAS). In this study, we focus on three regions implicated by GWAS in European populations - CDKAL1, CDKN2A/B, and FTO. To facilitate identification of the causative variants within these genes, we have undertaken fine-scale mapping at greater marker density, and explore the possibility of multiple causative signals in each gene.

Materials and methods: We used 1924 T2D cases and 2938 controls previously studied in a 500K GWAS by the Wellcome Trust Case Control Consortium (WTCCC). We used imputation (with IMPUTEv2) to estimate the genotypes of an additional 3157 SNPs (frequency>1%) across these regions. This method uses a simple, hierarchical approach to combine a primary reference set of 112 phased CEU chromosomes from the 1000 Genomes project (August 2009 release) with a secondary panel of an additional 298 phased CEU and Tuscan chromosomes from the HapMap Phase 3 project (release 2). We analysed each SNP under an additive genetic model using SNPTTEST v1.1.4. We performed conditional analyses, adjusting for the most significant SNP at each stage using a forward selection strategy.

Results: At CDKAL1, we identified a cluster of imputed SNPs (the best being rs10440833, risk-allele frequency (RAF)=0.32, allelic OR=1.38, P=7.3x10^-10), with stronger T2D association than the previously reported lead SNPs (r=9465871 and r=10946398) from the WTCCC GWAS. This cluster is focussed on a 27kb haplotype block flanked by rs9465871 and rs10946398. We found a second independent signal at imputed SNP rs9830283 (P=0.0003, RAF=0.30) 100kb 5' to the primary signal. In CDKN2A/B, the most significant signal from our imputed data was at rs7018475 (RAF=0.30, allelic OR=1.37, P=2x10^-9), at the 3' end of the 9kb haplotype block containing rs10811661, the previously reported lead SNP. Rs10811661 remains associated (P=0.004) after accounting for rs7018475, suggesting it represents a largely independent effect. At FTO, our imputed genotypes provide further evidence for association with BMI (in T2D cases, age & sex-adjusted) across the 50kb haplotype block implicated in the WTCCC GWAS. The best signal in our study comes from imputed SNP rs11646715 (P=3.5x10^-10). Conditioning the analysis on rs11646715 completely abolishes the evidence for association (P=0.2 at all SNPs) across the region. The strongest association with T2D from our imputed data in FTO comes from rs1421086 (allelic OR=1.27, P=1.8x10^-9), comparable with previously identified lead SNPs rs7193144, rs8050136 and rs9939609. Conditioning association analysis on imputed SNP rs1421086, or these three lead SNPs, largely ablates the evidence for T2D association across the 50kb haplotype, with the best residual signal being imputed SNP rs1861867 (P=0.001-0.005) in each case.

Conclusion: The evidence for association with BMI across the 50kb haplotype block implicates FTO in the fasting state. Increased glucose levels trigger GCK dissociation from GKR, nuclear GCK export, and GCK activation. Functional analysis suggests the P446L variant acts through decreasing F6P-mediated inhibition of GCK, increasing liver glucose uptake and disposal. The aim of this study was to identify and functionally characterise rare GCKR variants for cellular localization and GCK inhibition to provide insight into mutation severity and direct both clinical and genetic follow-up.

Materials and methods: Exonic GCKR sequencing was performed in 664 individuals from the multi-ethnic NIH ClinSeq project using standard methodology. Nonsynonymous variants (published and novel) were introduced into a YFP-tagged GKR expression plasmid. Wild-type (WT) and variant YFP-GKR were transiently transfected into HEK293A and cellular localisation assessed microscopically 24 hours post-transfection. CFP-tagged GCK was co-transfected with YFP-GKR to assess GCK interaction and nuclear sequestration. Recombinant human GCK and both WT and Q234P GKR were generated. Q234P-GKR and WT-GKR inhibition of GCK activity and regulation by F6P and F1P were determined spectrophotometrically using an NADP+-coupled assay.

Results: Twelve (nine novel) nonsynonymous variants were identified. Seven variants were observed in only one individual. Excluding P446L, variants had MAFs ranging from 0.2-1% in the ClinSeq cohort. Of novel variants, only one (Q234P) was identified in the 1000 Genomes project. WT YFP-GKR localised primarily to the nucleus and was necessary and sufficient to sequester CFP-GCK to the nucleus. Of 18 variants tested, 12 (including P446L) had increased cytoplasmic: nuclear fluorescence compared to WT. Of the 12 variants with increased cytoplasmic fluorescence, six (including Q234P) did not sequester CFP-GCK to the nucleus. Kinetic analysis showed no difference in inhibition of GCK activity by WT- or Q234P-GKR over a glucose concentration range of 0-100mM. However, response to 20-500µM F1P (n=38; 5x10^-9 cp<0.02) and 10-500µM F6P (n=41; 1x10^-10 cp<0.02) were both significantly diminished with Q234P-GKR.

Conclusion: A large proportion (67%) of nonsynonymous GCKR variants disrupt nuclear localization and/or interaction with GCK in a cellular context. Since there is no apparent variant clustering it suggests that many changes in GKR primary structure can affect global folding and three-dimensional structure. Prioritisation of variants for additional genetic analysis and targeted phenotyping may be aided not only by determining the MAF in appropriate ethnic groups but also by selecting variants such as Q234P that show both altered GCK sequestration and kinetic parameters. Supported by: NIH GPP, MRC.
Exercise-induced reduction in liver fat is accompanied by improvements in vascular function in non-alcoholic fatty liver disease

C.J. Pugh, H. Jones, V.S. Sprung, G.J. Kempf, A. Irwin, V.L. Adams, W.E. Binion, N.T. Cable, D.J. Green, P. Richardson, D.J. Cuthbertson; 2Research Institute for Sport and Exercise Science, Liverpool John Moores University, 3Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, 1Department of Diabetes and Endocrinology, University Hospital Aintree, Liverpool, 4Department of Haematology, Royal Liverpool University Hospital, United Kingdom.

Background and aims: Non-Alcoholic Fatty Liver Disease (NAFLD), the hepatic manifestation of the metabolic syndrome is characterised by the accumulation of triglycerides in the liver and is associated with liver-related morbidity and mortality as well as increased cardiovascular risk. Exercise training is recommended as a therapeutic technique to reduce hepatic fat in NAFLD patients, yet the efficacy of exercise training remains equivocal. Flow mediated dilatation (FMD), the increase in conduit artery diameter in response to increases in flow, provides information regarding endothelial cell health and is an early barometer of cardiovascular disease. Endothelial function has been shown to improve with exercise training in young healthy, older sedentary and obese individuals but has not been investigated in the NAFLD population. Therefore, the aim of this study was to examine the effect of regular exercise on intrahepatocellular lipid (IHCL) content and endothelial function in NAFLD patients.

Materials and methods: 6 sedentary NAFLD patients aged 56±9 yrs underwent a 16-week supervised exercise training program (30-45mins, 3-5 times per week). Whole body magnetic resonance imaging with proton magnetic resonance spectroscopy was used to determine IHCL levels prior to and following training (n=5). Fasting glucose, lipids, AST and ALT, brachial artery FMD, responses to glyceryl trinitrate (GTN) and cardiorespiratory fitness (VO²max) were also assessed before and after training. Differences between baseline and post-training data were analysed using paired t-tests. Data are described as mean±SD.

Results: IHCL significantly reduced by 28.7% following exercise training compared to baseline (21.4±13.7 vs 17.2±13.8%; P=0.01), this was accompanied by a significant improvement in FMD (7.3±3.8% vs 3.8±1.6%; P=0.02). Liver enzymes also significantly improved following exercise training: ALT was reduced to 28±6U/l from 39±9U/l at baseline (P=0.008). Fitness improved by 20.2% (23.5±2.6 vs 28.5±2.8±6U/l/min/kg; P=0.06) and body mass (79.6±10.9 vs 77.2±12.0kg; P=0.04) and AST (P=0.01) were significantly reduced following exercise training. No significant changes in GTN or lipid profiles were evident after exercise training.

Conclusion: This is the first study to demonstrate that both IHCL and endothelial function significantly improve following exercise training in NAFLD patients. This indicates that regular exercise has concomitant therapeutic effects on both excess hepatic fat and cardiovascular disease in these high risk patients. The exercise-mediated improvement in IHCL and FMD was accompanied by clinically significant reductions in liver enzymes and body mass. These data strongly support the efficacy of exercise training as a non-pharmacological management strategy in NAFLD and suggest as well as improving liver function, exercise may decrease the risk of heart disease and stroke in these patients.

Supported by: an EFSD Clinical Research Grant

Study of GPIHBP1 expression in human adipose tissue, correlation with lipid parameters and regulation by rosiglitazone

S. Charriere 1, A. Tchernof 1, C. Debard 1, M. Laville 1, P. Moulin 1, H. Vidal 1; 1INSERM unite 870, Ouilly, 2Fédération d’endocrinologie du pôle est, Hospices Civils de Lyon, France, 3Centre de recherche en endocrinologie moléculaire et oncologique, Québec, Canada, 4Centre de recherche en nutrition humaine, Lyon, France.

Background and aims: Glycolsy phosphatidyl inositol HDL binding 1 (GPIHBP1) gene encodes for a new endothelial surface binding site for lipoprotein lipase (LPL), the key enzyme for intravascular lipolysis of triglyceride-rich lipoproteins. Mice lacking GPIHBP1 manifest severe hyperchylomicronemia with lipolysis defect. Similarly to LPL, GPIHBP1 is expressed in adipose tis-
EFV and MTGC were positively correlated. Disturbances of microRNAs (miRs) expression or MTGC together, only VAT remained statistically associated with metabolic risk markers (triglycerides $r=0.59$, $p<0.0001$; $r=0.35$, $p=0.01$) even after VAT was accounted for ($p=0.005$), and were strongly correlated with age, BMI, waist circumference (WC), and VAT assessment. EVF was assessed volumetrically, and MTGC using H 31P-MRS, ISIS was used for localization to the left ventricle (TR = 3.6 s, n = 192).

Results: Plasma FA concentrations were increased three-fold during exercise and nine-fold during recovery in the fasted condition compared with the glucose condition ($p<0.01$). Fat oxidation was significantly higher in the fasted condition compared with the glucose-supplemented condition. MTGC was elevated at the end of the fasted test day (from 0.26 ± 0.04 to 0.44 ± 0.04 %, $p<0.01$), while it did not change when glucose supplementation was given (from 0.32 ± 0.03 % to 0.26 ± 0.03 %, $p=0.3$). There were no changes in ICCL directly after acute exercise. Furthermore, PCR/ATP was decreased by 32% in the high plasma FA condition compared with the low FA condition (n=6, $P=0.014$). However, in the high FA condition, the ejection fraction post-recovery was higher compared with the low FA condition (63 ± 2 % vs 59 ± 2 %, $p=0.018$).

Conclusion: The increase in ICCL in the fasted condition suggests that plasma FA concentrations play an important role in determining ICCL. Furthermore, increased ICCL was associated with a decreased cardiac energy status (lower PCR/ATP), which is in line with the “lipotoxic” action of cardiac lipids. However, ICCL does not seem to be the main determinant of cardiac function.

58 Ectopic lipid accumulation in the heart of severe obese patients: relationship to cardiac function and visceral fat

B. Gaborit, K. Clement, B. Gaborit, K. Clement, M. Bernard, A. Dutour

Department of Endocrinology, Metabolic Diseases, and Nutrition, CHU Nord, Marseille, INserm U626, Marseille, 13005, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS, Marseille, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS Marseille, Institut national de la santé et de la recherche médicale, Paris, France.

Background and aims: Epicardial fat is an ectopic fat depot which develops in association with coronaryaropathy. Its closed anatomic situation to the adjacent myocardium allows local paracrine interaction, suggesting that EF could have a functional role in obesity related cardiomyopathy. Myocardial lipid deposition is also a marker of ectopic fat accumulation, that could lead to impaired myocardial function, as suggested by preliminary results limited to mildly obese patients. In this study, we quantified with a 70 cm bore 3 Tesla MRI, EF volume (EVF) and myocardial triglyceride content (MTGC) in morbid obese patients, in order to determine whether these ectopic fat depots accumulate similarly, are linked to metabolic disorders or to myocardial function.

Materials and methods: 57 subjects with normal LV function and no coronary artery disease, (33 lean, and 24 obese patients (9 with type 2 diabetes) (BMI= 21.4 ± 2 and 42.3 ± 6 kg/m²)) were studied by MRI, and underwent anthropometric, biological and visceral abdominal fat (VAT) assessment. EVF was assessed volumetrically, and MTGC using H 31P spectroscopy.

Results and conclusions: EVF and MTGC were positively correlated ($r=0.47$, $p<0.0001$) even after VAT was accounted for ($p=0.005$), and were both strongly correlated with age, BMI, waist circumference (WC), and VAT. EVF was the only ectopic depot negatively correlated with high circunferen-

59 Role of pancreatic fat in beta cell dysfunction and diabetes

I. Lingvay, J.Y. Legendre, B. Adams-Huet, S. Zhang, L.S. Szczepaniak, E. Endocrinology, University of Texas Southwestern Medical Center, Dallas, D. Clinical Sciences, UT Southwestern, Dallas, C. Cardiology, Cedars-Sinai Medical Center, Los Angeles, USA.

Background and aims: Fat accumulation in the beta-cells is thought to contribute to the pathogenesis of beta-cell dysfunction and the development of diabetes, at least in animal models. We explored the relevance of this hypothesis in the pathogenesis of diabetes in humans by evaluating the relationship between total pancreatic fat content (panTG) and insulin secretion in vivo in human volunteers.

Materials and methods: We enrolled 91 volunteers, with and without diabetes, with an average age of 41.2 years, and body mass index (BMI) of 32.9 kg/m². PanTG and visceral fat area were measured in vivo by magnetic resonance spectroscopy and imaging, respectively; beta-cell function was measured using a frequently sampled glucose tolerance test. A acute insulin response (AIR) is a measure of first phase insulin secretion, while the disposition index (DI) is a measure of insulin secretion adjusted for the prevailing insulin sensitivity. DI is a good indicator of disease progression, as it decreases from normal (>1000) in patients with normal glycemia, to very low (<400) in those who have progressed to diabetes. Non-normally distributed variables were transformed. To compare panTG across DI groups while adjusting for age and BMI we used ANCOVA analysis. Multivariate regression analysis was performed for the dependent variable AIR, most representative models are shown in the figure.

Results: PanTG increased significantly across groups as DI worsened, even after adjusting for age and BMI ($p<0.01$). PanTG was highest in the group with the lowest DI, at 7.37 (+/-9.9) dU/min (panel A). PanTG, along with age, hip/waist ratio, and BMI were significant independent predictors of AIR (panel B - model 2). Visceral fat area was not a significant predictor of AIR when analyzed along with the same variables (panel B - model 3).

Conclusion: PanTG content is a significant contributor to beta-cell dysfunction, and ultimately development of diabetes, independent of visceral fat.
Diabetes mellitus (DM) can cause cardiac dysfunction induced (129S6) insulin resistance. Materials and methods: At five weeks, male mice of C57BL/6J, BALB/c and 129S6 were fed a normal carbohydrate diet (CHD) containing 5% fat, 19% protein, and 3.5% fibre or 40% HFD containing 32% lard oil and 8% corn oil ad libitum. At five months, liver and white adipose tissue were dissected (n=3-5), total RNA extracted and the expression of miR-125a, miR-27a, miR-222 and miR-29a were determined using ABI’s tagman microRNA assays.

Results: 1/ When fed CHD, the expression of the four miRs was significantly higher in adipose tissue than in liver in the three mouse strains. Only miR-29a showed lower expression (p<0.05) in adipose tissue than in liver in 129S6 mice. 2/ When fed CHD, expression of miRs were highly variable between the 3 strains in both liver and adipose tissue. 3/ In HFD-fed 129S6 mice, expression of both miR-125a and miR-27a was upregulated in both liver (x4.6, p<0.05 and x2.1) and adipose tissue (x2.5, p<0.01 and x1.3). Tissue-specific miR over-expression was observed in liver for MiR-222 (x3.4, p<0.05) and in adipose tissue for miR-29a (x1.5). 4/ In HFD-fed C57BL/6J mice, miR-125a expression was not altered neither in liver nor adipose tissue. In response to HFD, expression of miR-27a was increased in liver (x2.4) and decreased in adipose tissue (-2.3). MiR-222 was over-expressed in liver (x3.4, p<0.05) and not altered in adipose tissue. Expression of miR-29a was unaffected in liver and decreased in adipose tissue (-1.6). 5/ In HFD-fed BALB/c mice, expression of miR-125a and miR-222 was not altered neither in liver nor adipose tissue. Expression of miR-29a was unaffected in liver and decreased in adipose tissue (x1.4). Expression of miR-27a was unchanged in liver, but decreased in adipose tissue (-1.6).

Conclusion: Our results demonstrate the complex tissue- and strain-specific regulation of miRNA expression in experimentally induced insulin resistance, obesity and fatty liver disease. We observed a distinct correlation between miR altered expression and the metabolic status of HFD-fed mice. The 129S6 strain, very sensitive to HFD-induced glucose intolerance and obesity, exhibited miR over-expression in 75% of cases, whereas BALB/c, which is relatively resistant to HFD, showed miR altered expression in only 25% of cases. Our results provide strong evidence supporting a role of miR on impaired glucose homeostasis in models of spontaneous (GK) and experimentally induced (129S6) insulin resistance.

Supported by: Wellcome Trust and FGENTCARD

OP 11 Cardiovascular complications - experimental

61

Adeno-associated-mediated nerve growth factor gene transfer prevents the development of heart microangiopathy and cardiomyopathy in mice
C. Emanueli, A. Caporali, L. Zentilin, P. Madeeddu, M. Giacca, M. Meloni; Experimental Cardiovascular Medicine, University of Bristol, United Kingdom, Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.

Background and aims: Diabetes mellitus (DM) can cause cardiac dysfunction and heart failure independently of other risk factors like hypertension and myocardial infarction. The neurotrophin nerve growth factor (NGF) exerts cardioprotective effects but it is downregulated in the diabetic heart. The present study challenged the hypothesis that NGF gene transfer (GT) could prevent diabetes-induced cardiac dysfunction.

Materials and methods: Type-1 DM was induced in CD1 mice by streptozotocin injection (40 mg/Kg/day IP for five days). Two weeks later, GT with an adeno-associated vector serotype 2 carrying human NGF in the expression cassette (AAV-2-hNGF) or with an empty vector (AAV-2-βGal) was performed. Constructs were delivered into the left ventricle (LV) by 4 injections (total dose of 1x10^11 pfu). Age-matched normoglycemic mice injected with AAV-2-βGal were used as controls.

Results: X-Gal staining confirmed successful GT of LV. Moreover, hNGF transgene expression was detected in plasma by ELISA at 12 weeks. Echocardiography (Visual Sonics) at 12 weeks after GT showed a deterioration of systolic function in diabetic mice (LV ejection fraction: 64.6±3.8 vs 73±1.6±9% in healthy controls; LV fractional shortening: 35.3±2.8 vs 42.5±6.3%; P<0.05 for both comparisons). In contrast, AAV-2-hNGF improved both LVFE and LVFS (113% and 121% respectively) as compared to diabetic controls (P<0.05 for both comparisons; N.S. vs healthy). Moreover, AAV-2-hNGF improved LV systolic pressure (LVSP) and contractility (expressed as dP/dt_max and dP/dt_min) measured by Millar catheter (LVSP: 76±4 vs 61±5 mmHg in diabetic controls; dP/dt_max and dP/dt_min: 141% and 149% of diabetic controls, respectively; P<0.01 for all comparisons). In addition, AAV-2-hNGF prevented enlargement of end-diastolic LV chamber volume (74±11 vs 89±13 μl in diabetic controls; P<0.05) and maintained the end-diastolic LV internal diameter (4.1±0.3 vs 4.4±0.3 μl in diabetic controls; P<0.05). Analyses in histological heart sections at 12 weeks indicated that diabetes induced microvessel rarefaction in the myocardium. By contrast, AAV-2-hNGF preserved capillary (measured as isolecitin-B4 positive vessels) and small (diameter <50µm) arterioles (measured as isolecitin-B4 and a-smooth muscle actin double positive vessels) densities in the hearts of diabetic mice (4255±222 vs 3440±155 capillaries/mm^2 in diabetic controls; P=0.05; 50±15.8 vs 37±13.9 arterioles/mm^2 in diabetic controls; P=0.05). Finally, as measured by fluorescent microspheres, DM reduced LV blood flow (0.39±0.1 vs 0.59±0.1 mL/min/g of tissue in healthy controls; P=NS), which was prevented by AAV-2-hNGF (0.69±0.1 mL/min/g of tissue; P=0.05 vs diabetic controls).

Conclusion: These results provide evidence that prolonged NGF overexpression prevents LV dysfunction and heart failure in the mouse diabetic heart and it also preserves cardiac microvasculature in the settings of diabetic cardiomyopathy.

Supported by: an EFSD/IDRF/Novo Nordisk grant

62

VEGF and CD36 are potential players in the crosstalk between perivascular fat and human smooth muscle cells
R. Schlich, D. Lamers, H. Sell, J. Eckel; Institute of Clinical Biochemistry and Pathobiology, German Diabetes Center, Düsseldorf, Germany.

Background and aims: The increase of fat mass in obesity is an important risk factor for the development of atherosclerosis. Specifically, perivascular fat in connection with obesity and the metabolic syndrome might be an activator of inflammation and dysfunction of the vessel wall. In previous studies we could show that adipocyte-conditioned media (CM) induced proliferation and migration of human smooth muscle cells with a concomitant increase in ICAM-1 expression. The combination (CM) of CA and oleic acid (OA) enhanced the proliferation in a synergistic way. CMCA induced

Supported by: an EFSD/IDRF/Novo Nordisk grant
iNOS Expression, NO production and variable pro-inflammatory and pro-liferative signalling pathways. The aim of this study is to identify factors and mechanism, which are responsible for the effect of CM and the synergism with OA on the proliferation of smooth muscle cells.

Materials and methods: CM was generated from human in vitro differentiated human adipocytes and analysed for its content in adiponectin, IL-6 and VEGF. Proliferation of human coronary artery smooth muscle cells was measured via BrdU incorporation into DNA.

Results: The content of VEGF correlated significantly with the proliferative effect of CM (n=17, r=0.79, p=0.002) while adiponectin correlated negatively with CM-induced proliferation (n=22, r=-0.465, p=0.029). VEGF alone showed a 2.5-fold augmentation of proliferation and the combination of VEGF and OA (VEGF+OA) act additive (5-fold). Incubation with CM and OA inducted a 2-fold increase in VEGF concentration compared with CM or OA alone, indicating that smooth muscle cells significantly contribute to proliferation by releasing VEGF for an autocrine/paracrine stimulation. Blocking VEGF with a specific antibody reduced the proliferative impact of CM, VEGF, OA, and VEGF+OA significantly to control levels (CM-97 ± 5 %, VEGF=106 ± 5 %, OA=90±9 %, VEGF+OA= 125±12 %). In contrast, VEGF-blocking was not sufficient to reduce CMOA-induced proliferation to control levels (from 569±40 % to 262±30 %). As CM and VEGF both significantly increase the expression of CD36 and as CM-treatment predisposes for increased lipid accumulation after OA addition, we propose that CD36 might be an additional player in CMOA-induced proliferation in smooth muscle cells. CD36 belongs to the family of scavenger receptors and is also identified as a fatty acid transporter. Moreover it has been speculated, that CD36 might play a pro-atherogenic role as CD36 interacts with VEGF and its receptor. Silencing of CD36 reduced the proliferative effect of OA and VEGF to control levels (OA= 118±19 %, VEGF= 80±6 %) while CM- and CMOA-induced proliferation remained significantly higher compared to control (CM=164±18 %, CMOA=257±30 %). Combining the silencing of CD36 with VEGF blocking, CMOA-induced proliferation could be reduced to only 150±7 % of the control level.

Conclusion: In this study we identified VEGF as an important factor for the proliferative effect of CM. The increase of CD36 expression by treatment with CM and VEGF could represent a key mechanism, how CM and OA synergistically increase proliferation and inflammatory signalling in smooth muscle cells. Further work is intended to elaborate how increased CD36 and lipid accumulation in smooth muscle cells are involved in the crosstalk between perivascular adipose tissue and the vessel wall.

63

Increased expression of TIMP3 protects against diabetes and atherosclerosis

M. Federici1, V. Casagrande1, R. Menghini1, A. Marino1, M. Cavaler1, S. Menini1, G. Pugliese1, D. Lauro1, P. Srabcsia1, R. Lauro1; 1Dept. of Internal Medicine, University of Tor Vergata; 2University La Sapienza Rome, Italy.

Background and aims: Tissue inhibitor of Metalloproteinase 3 (TIMP3), an inhibitor of TNF-alpha Convertase (ADAM17) and other metalloproteinases is decreased in atherosclerotic plaque from patients with Type 2 diabetes and in tissues of humans and mice affected by obesity.

Materials and methods: Because obesity and atherosclerosis are associated with increased macrophage accumulation in different tissues, we used a transgenic approach under control of CD68 promoter to reconstitute TIMP3 levels to analyze the effects on metabolic and vascular homeostasis, using Diet Induced Obesity (DIO) to analyze the effect on insulin resistance and LDLR/- background combined with atherogenic diet to analyze the effect on atherosclerosis. Transgenic (Tg) mice were identified by RT-PCR and confirmed by Southern blot. In Tg mice, TIMP3 overexpression was confirmed by RT-PCR, Western blot and Reverse Zymography in spleen, liver, peripher al blood monocytes and bone marrow derived macrophages, treated or not with LPS.

Results: In the DIO model, after 20 weeks of High Fat Diet (HFD), we observed that Tg mice compared with WT littermates showed a significant improved glucose tolerance and insulin sensitivity, measured by IPGTT and IPITT (p<0.01 for all, n=8 per group); a study of Fluoro-Deoxy-Glucose (FDG) uptake in combination with insulin infusion through Positron Emission Tomography scan (FDG-PET scan) revealed increased insulin induced glucose uptake in forelimbs of Tg mice compared with WT littermates (p=0.05, n=6 per group). Insulin, leptin, AST and ALT were lower and adiponectin increased in Tg mice compared with WT littermates (p=0.01 for all, n=8 per group). CT scan revealed significant reduction of visceral adipose tissue in Tg compared with WT mice (p<0.03 per group). Histology of white adipose tissue (WAT), liver, kidney and aorta showed accumulation of lipids, intense fibrosis and increased inflammatory markers in WT compared with Tg mice. Tg revealed also significant reduction in adipose tissue vascularization (CD31 staining, p<0.05); however, mean adipocyte area was reduced in Tg compared with WT mice (p<0.01). Expression profiling for metabolic and inflammatory genes revealed that Tg compared with WT have significant higher levels for Adiponectin/CEBPalpha/PPARgamma/be taKLOTH/O/FABP4/SOD1 (p=0.01 for all) and lower levels for MCP1/F4/80/ SOCs3/Prell/GP47/GP67 in WAT. In the liver TG showed increased IL-10 with decreased G6Pase/Socs3/GP47/GP67/1B-6 in liver (p<0.01 for all, n=5). Next we analyzed the effect of Timp3 overexpression in the LDLR-Tg and LDLR knockout mice fed Western Diet for 12 weeks. Histology of aortic roots from LDLR-Tg mice revealed 60% reduction in plaque surface (p<0.001), reduced F4/80, CD3 and nitrotyrosine staining (p<0.01 for all), increased collagen content and no necrotic cores, when compared to LDLR littermates (p<0.01 per group). Gene expression analysis revealed significant reduction of oxidative stress and less activation of inflammatory pathways in LDLR-Tg compared to LDLR mice.

Conclusion: Our data indicate that macrophage specific overexpression of TIMP3 protects from metabolic inflammation and related metabolic disorders such as insulin resistance, glucose intolerance and atherosclerosis.

Supported by: Fondazione Roma, Telethon, IFRE FPT EU FLOBINALSH

64

Glucagon-like peptide-1 inhibits H2O2-dependent JNK phosphorylation and apoptosis in human cardiac progenitor cells

A. Leonardi1, L. Laviola, V. Galli, M. Melchiorre, M.R. Orlando, A. Natalichio, S. Perrini, F. Giorgino; Endocrinology & Metabolic Diseases, D.E.T.O., University of Bari, Italy.

Materials and aims: The heart possesses a compartment of multipotent cardiac progenitor cells (CPCs), which provides a constant tissue renewal. Increased CPC apoptosis has been proposed as a mechanism of myocardial dysfunction, leading to heart failure. Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. There is growing evidence suggesting that GLP-1 may regulate cardiac function and promote survival of cardiac cells in environmental stress conditions. The aim of this study was to investigate the protective effects of GLP-1 on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery.

Materials and methods: Biopsy-obtained cells showed typical features of mesenchymal multipotent cells, including the ability to proliferate up to the third passage, and the differentiation potential toward the cardiac and chondrogenic lineages. Analysis of CD105, c-kit, CD34, CD133, and adiponectin, IL-6 expression of CD105, c-kit, CD34, CD133, and adiponectin, IL-6 conditioned human adipocytes and analysed for its content in adiponectin, IL-6 and VEGF. Proliferation of human coronary artery smooth muscle cells was measured via BrdU incorporation into DNA.

Results: CM interacts with the vascular endothelium to promote its survival mechanism in myocardial progenitor cells, at least in part by interfering with the activation of JNK. A direct pro-apoptotic role of JNK in CPCs was also observed in this study. H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies was reduced (p<0.05 vs. H2O2-treated CPCs). GLP-1 incubation had no evident effect on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery. The aim of this study was to investigate the protective effects of GLP-1 on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery. The aim of this study was to investigate the protective effects of GLP-1 on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery. The aim of this study was to investigate the protective effects of GLP-1 on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery. The aim of this study was to investigate the protective effects of GLP-1 on H2O2-induced apoptosis in CPCs isolated from adult human heart biopsies, obtained from the auriicle in the course of open heart surgery.

Conclusion: Exposure of CPCs to 0.5 mM H2O2 for 20-120 min induced a 2-fold increase in cell apoptosis, measured by evaluation of cytosolic oligosomes (p<0.05) and cleaved caspase-3 (p<0.05). Exposure to H2O2 induced a 3-fold increase in the phosphorylation of Erk1/2 (p<0.05), a 1.5-fold increase in the phosphorylation of JNK1/2 (p<0.05) and a 6-fold increase in the phosphorylation of Akt (p<0.05). When JNK activation was inhibited using the specific inhibitor SP600125 (10 μM), H2O2-dependent JNK phosphorylation appeared to be prevented, and H2O2-induced apoptosis was decreased by 40% (p<0.05). SP600125 also inhibited the phosphorylation of the JNK substrate c-jun, but had no effects on the JNK upstream kinases MKK-4 and MKK-7. Treatment of CPCs with 10 μM GLP-1 for 6 h inhibited both H2O2-induced activation of JNK 1/2 (p<0.05 vs. H2O2-treated CPCs) and apoptosis (p<0.05 vs. H2O2-treated CPCs). GLP-1 incubation had no evident effect on Akt and Erk1/2 phosphorylation in response to H2O2. However, exposure of CPCs to GLP-1 (10-20 nM) was associated with a significant increase in the phosphorylation of the PKA-dependent transcription factor CREB.

Conclusion: Thus, GLP-1 prevents H2O2-mediated apoptosis in human CPCs, at least in part by interfering with the activation of JNK. A direct pro-survival mechanism in myocardial progenitor cells may contribute to the observed protective effects of GLP-1 on the heart.
Octyl-D-carnosine attenuates atherosclerosis and renal disease in ApoE null mice fed a western diet

Materials and methods: Adult female ApoE null mice, fed either a western, pro-atherogenic, high fat diet (HFD, 42% fat, 0.2% cholesterol) or a standard, normal fat diet (NFD), were treated with ODC (Flamma SpA, Chignolo d’Isola, BG, Italy; 60 mg/kg body weight in the drinking water) or vehicle for 12 weeks. Aortic and kidney lesions were evaluated, together with expression of inflammatory and disease progression markers.

Results: ODC-treated HFD-fed mice showed significantly reduced lesion area at the level of the aortic sinus (434.9±49.9 vs. 527.9±49.6 μm x 10^4, P<0.01) and, particularly of the brachiocephalic artery (22.3±4.4 vs. 43.3±6.5 % of laminar occlusion, P<0.01), as compared with untreated animals. Treatment also produced a more stable plaque phenotype, with less foam cell accumulation, inflammation and apoptosis and increased clearance of apoptotic bodies, resulting in reduced necrotic core formation (11.8±3.8 vs. 25.3±5.4%, P<0.001). Fibrosis was increased (42.6±5.8 vs. 28.7±7.8 % of lesion area, P<0.01) and disruption of vessel wall architecture was reduced, with less elastin degradation and pseudo-microaneurysm formation. Oil red O staining of en-face aorta preparations showed a significantly reduced lipid accumulation in ODC-treated vs. untreated HFD-fed ApoE null mice (13.2±2.5 vs. 19.2±2.0%, P<0.001). Increases of protein content of F4/80, and CXCR3 as well as of mRNA expression of F4/80, CXCR3, VCAM-1, MCP-1, TNF-α, IFN-γ, MPP-9, and CHOP were significantly lower (or even normalized) and those of anti-inflammatory IL-4 and IL-10 significantly increased in ODC-treated versus untreated HFD-fed mice. This was associated with reduced tissue content of HNE adducts, oxLDLs, and nitrotyrosine and mRNA expression of the ALE-receptors CD36, TLR-2 and 4, RAGE and galectin-3 in HFD-fed ODC-treated versus untreated ApoE null mice. Likewise, renal lesions were significantly attenuated in ODC-treated versus untreated HFD-fed mice on HFD, with lower foam cell accumulation, inflammation, apoptosis, glomerular and tubulo-interstitial fibrosis, content of HNE adducts, oxLDLs, and nitrotyrosine and expression of pro-inflammatory and pro-fibrotic mediators. Serum ALE, pentosidine, carbonylated proteins, and isoprostane-8-epi-PGF_2α levels were also lower in ODC-treated vs. untreated HFD-fed ApoE null mice.

Conclusion: These data support a central role for lipoxidation in atherosclerosis and renal disease and indicate that quenching of carbonyl adducts with a D-carnosine ester may represent a promising approach to the prevention and treatment of these disorders.
OP 12 Metabolic control of beta cells

67

Background and aims: Glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate. The glucose-6-phosphatase catalytic subunit (G6PC) gene family comprises three members, G6Pc, G6Pc2 and G6Pc3. G6Pc, also known as G6Pase, is predominantly expressed in liver and kidney where it catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. G6Pc2, previously known as the islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP), is selectively expressed in insulin producing beta cells. In vitro, G6Pc2 hydrolyzes G6P at a much lower rate than G6Pc raising the question as to whether G6Pc2 is a physiologically important substrate for this protein.

Materials and methods: To assess the physiological importance of G6Pc2, we have generated G6Pc2-null mice, backcrossed over to a C57Bl/6J background, and performed a phenotypic analysis focusing primarily on energy metabolism and pancreatic hormone secretion.

Results: 16 week old G6p2 KO mice on a chow fed diet exhibit no differences in body weight and no gross anatomical or behavioral changes. However, following a 6 hour fast, a decrease in blood glucose was observed in both male (WT: 130.7±3.6; KO: 109.2±3.5; p<0.001) and female (WT: 121.9±4.3; KO: 104.3±4.4; p<0.001) G6p2 KO mice relative to wild type (WT) littermates, while plasma insulin and glucagon concentrations were unchanged. Because glycolytic flux has been shown to determine the S0.5 of glucose-stimulated insulin secretion (GSIS) these observations are consistent with a model in which the glucose-6-phosphatase activity of G6Pc2 opposes the action of glucokinase and thereby modulates the S0.5 of GSIS. Deletion of the G6p2 gene is therefore predicted to abolish glucose cycling, increase glycolytic flux and lower the S0.5 of GSIS. Additional studies were performed to explore this concept. Pancreas perfusion experiments in which islets were challenged with variable glucose concentrations demonstrated that deletion of G6p2 results in a leftward shift in the S0.5 of GSIS. A similar shift was observed in islet perfusion experiments. In addition, following static incubation of islets in a sub-maximal 11 mM stimulatory glucose concentration, islets isolated from G6p2 KO mice displayed enhanced GSIS relative to islets isolated from WT mice (WT: 0.899 (%content/30 min)+/−0.142; KO: 2.116+/−0.204; p<0.01). Finally, intraperitoneal glucose tolerance tests, again using a submaximal stimulatory glucose concentration, demonstrate that G6p2 KO mice do not have enhanced glucose tolerance but rather lower blood glucose at all time points, a result that is again consistent with G6p2 regulating the S0.5 of GSIS.

Conclusion: The existing dogma in the islet field proposes that glucokinase is the beta cell glucose sensor. The significance of our observations is that they challenge this dogma and suggest that G6p2 is a fundamental inhibitor component of that sensor. Instead we propose that a glucokinase/G6Pc2 futile cycle acts as the beta cell glucose sensor determining glycolytic flux and hence the S0.5 of GSIS. This conclusion is consistent with genome-wide association studies that have recently shown that single nucleotide polymorphisms in the G6Pc2 gene are associated with variations in fasting plasma glucose levels in humans.

Supported by: NIH DK 78027

68

Identification of an intracellular metabolic signature impairing beta cell function N. Sauter1, J. Goehring2, G. Catchpole1, A. Assmann1, K. Suessbauer1, M. Moshki1, A.H. Pfeiffer1, J. Oberhofer1, L. Willmitzer1, J. Spranger1, K. Maedler2.
1University Hospital Zurich, Switzerland, 2Charite, Department of Endocrinology, Diabetes and Nutrition, Berlin, 'Max Planck Institute of Molecular Plant Physiology, Potsdam, ‘Centre for Biomolecular Interactions, University of Bremen, Germany, ‘University of Illinois, Chicago, USA.

Background and aims: Chronic hyperglycaemia promotes the progressive failure of pancreatic β-cells in patients with diabetes mellitus, a clinically highly relevant phenomenon known as glucotoxicity. Assuming that changes of the intracellular metabolism contribute to this progressive β-cell failure, an unbiased metabolite profiling analysis was carried out to identify the metabolic signature of β-cells during high glucose exposure.

Material and methods: Isolated human islets and INS-1E cells were cultured at 5.5 to 33.3 mM glucose from 1 to 96 h with or without 6-amino nicotinamide (6-AN), a potent inhibitor of 6-phosphogluconic acid dehydrogenase. After the glucose pre-treatment, islets underwent an additional glucose challenge at 5.5 and 22.2 mM glucose and of p-ERK, glucose stimulated insulin secretion (GSIS), insulin mRNA were analysed. Metabolites were analysed in islet lysates on a Leco Pegasus 3 time-of-flight mass spectrometer (Leco). PCA was performed with MATLAB 7.0 (Mathworks).

Results: To identify potential novel mediators of insulin gene suppression by chronic high glucose treatment, an unbiased time course analysis of metabolites was performed in the β-cells INS-1E and in human islets, during which 73 metabolites were uniquely identified. Principal component analysis (PCA) revealed that prolonged exposure to high glucose caused clear differentiation compared to early time points thus demonstrating the differential impact of acute and chronic glucose exposure on the β-cell. The most important metabolites driving the separation from acute to chronic glucose were glucosamine, glucosone-delta-lactone and 6-phosphogluconic acid from the pentose phosphate pathway. The addition of 6-AN at low glucose, promoted the accumulation of the pentose phosphate metabolites thus partially reflecting the metabolic state of the β-cells under high glucose. Analysis of insulin mRNA revealed that 6-AN and the accompanied rise in pentose phosphate metabolites lead to a 3.5-fold decrease of insulin gene expression compared to low glucose alone, similarly as exposure to chronic high glucose for 3 days (3.3-fold decrease). Glucose-dependent regulation of insulin transcription is dependent on extracellular signal-regulated protein kinases (ERK1/2). ERK1/2 kinase is activated by acute glucose exposure. In contracts, we show here that pre-incubation of elevated glucose completely abolished a further glucose mediated ERK induction, which correlated with the loss of GSIS, suggesting that ERK stimulation, is essential for GSIS. Accumulation of pentose phosphate pathway metabolites in islets by 6-AN at low glucose concentrations, was able to promote ERK1/2 phosphorylation to a similar extent as long-term high glucose treatment, but also failed to maintain GSIS.

Conclusions: Based on unbiased metabolite analyses, the here presented insights provide novel perspectives in the therapeutic goal to preserve and potentially improve beta-cell function in patients with diabetes mellitus.

69

miR-29a, miR-29b and miR-124 contribute to pancreatic beta cell specific silencing of monocarboxylate transporter 1 (Mct1/Slc16a1) G.A. Rutter, T.J. Pullen;

Background and aims: Glucose metabolism in pancreatic beta cells is specialised to efficiently couple glucose oxidation to ATP production, critical for stimulating insulin secretion. Alternative metabolic pathways that could interfere with glucose sensing are suppressed by specifically “disallowing” expression of certain genes in beta cells. For example, MCT1 (SLC16A1) encodes a plasma membrane monocarboxylate (pyruvate/lactate) transporter which is widely expressed in other tissues but not in beta cells. The effects of inappropriate expression of MCT1 are shown in the rare genetic disorder, Exercise Induced Hyperinsulinism, linked to mutations in the MCT1 promoter. During strenuous physical exercise, the presence of the transporter in affected individuals is presumed to allow circulating pyruvate to enter beta cells, resulting in inappropriate insulin release and consequent hypoglycaemia. We aimed here to identify the mechanisms by which expression of MCT1 is specifically disallowed in beta cells. The MCT1 promoter drives low but significant reporter gene expression in the MIN6 beta cell line suggesting that additional post-transcriptional mechanisms may be responsible for silencing this gene. We therefore investigated whether microRNAs (miRNA) expressed in beta cells contribute to the tissue specific silencing of this gene.

Materials and methods: Publicly available high throughput sequencing data from beta cells and thirteen other mouse tissues were interrogated to determine the abundance and specificity of microRNA expression. Potential miRNA binding sites within the MCT1 3’ UTR were identified using miRanda and PicTar algorithms. Hits were validated by luciferase assay on both human and mouse MCT1 3’ UTRs, and precise locations of binding sites confirmed by site-directed mutagenesis. Effects on endogenous Mct1 expression were determined by stable expression of miRNAs in the hepatocyte-derived mAH3-F cell line where Mct1 mRNA is abundant.

We established a transgenic mouse line in which cells lowering the yield of ATP from glucose metabolism hence reducing in 0.48 mmol/l, n=5; p=0.003). This is consistent with loss of pyruvate from beta cells. Thus, insulin secretion from beta cells appears to become sen-

Conclusion: Expression of MCT1 in beta cells is sufficient to replicate the key feature of EHII, as pyruvate challenge lowers blood glucose relative to controls. The demonstration that DT mice are also glucose intolerant reveals the importance of suppressed MCT1 expression in beta cells for normal glucose stimulated insulin secretion. Activating mutations in the MCT1 gene might also, therefore, increase susceptibility to type 2 diabetes.

Supported by: Wellcome Trust

71

Regulation of pyruvate dehydrogenase by phosphorylation in the pancreatic beta cell

D.A. Akhmedov, C.B. Wolffheim, A.C. Wiederküch;
Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.

Background and aims: In the pancreatic beta-cell, glycolysis-derived pyruvate is taken up into the mitochondria where it is oxidized by pyruvate dehydrogenase (PDH; oxidative pathway) or carboxylated by pyruvate carboxylase, providing carbons to the TCA cycle (anaplerotic pathway). Recent studies suggest an important role of the anaplerotic pathway in glucose-stimulated insulin secretion. The relative flux through the two pathways in beta-cells may in part be determined by the PDH activity, which is regulated by phosphorylation/dephosphorylation of the E1 alpha subunit. Phosphorylation by PDH kinase (PDK) leads to inactivation of PDH, while removal of phosphate by the calcium activated PDH-phosphatases (PDP) stimulates PDH activity. Here we have studied regulation of PDH by phosphorylation during glucose stimulation of the pancreatic beta-cell.

Materials and methods: INS-1E cells and rat islets were exposed to glucose or alternative secretagogues in the presence or absence of calcium signals. PDH phosphorylation was followed by Western-blotting, using an antibody specifically recognizing the phosphorylated (Serine-293) PDH E1 alpha subunit. The blots were then re-probed with an antibody for detection of total PDH E1 alpha protein. Expression of PDH isozymes (PDH1, PDH2, PDH3 and PDH4) in INS-1E cells was analyzed by RT-qPCR.

Results: Glucose stimulation leads to increase in mitochondrial calcium and thus would be expected to stimulate PDP resulting in dephosphorylation of PDH. Surprisingly, high glucose (16.7mM) or leucine (20mM) caused PDH E1 alpha phosphorylation in INS-1E cells and rat islets. A significant increase in phosphorylation was observed only after 5 minutes of glucose stimulation. This effect was also seen under conditions of blocked insulin secretion, ruling out the possibility that increase in PDH E1 alpha phosphorylation is a consequence of insulin receptor signaling. Preventing calcium signals during glucose stimulation further increased PDH E1 alpha phosphorylation while raising calcium by KC1 (30mM) decreased phosphorylation. These findings are consistent with the known regulation of PDH activity by calcium. Under resting glucose (2.5mM) augmenting or depleting calcium did not affect PDH E1 alpha phosphorylation. This shows that nutrient stimulation and not calcium per se is the principal signal for PDH phosphorylation. We hypothesized that during glucose stimulation total PDH activity is more activated than the PDP activity leading to an enhanced PDH phosphorylation despite the glu-

Conclusion: PDH is rapidly phosphorylated following glucose stimulation in INS-1E cells and rat islets. Nutrient secretagogues regulate PDH phosphorylation and thereby determine to what extent the oxidative and anaplerotic pathways are utilized. Inactivation of PDH by phosphorylation should favor anaplerotic, which is required for the export of mitochondrial metabolites and may thereby affect the formation of mitochondria-derived coupling factors.

Supported by: Swiss National Science Foundation

72

Glucose induces oscillations of the ATP/ADP ratio in individual beta cells

J. Li, E. Gyfle, A. Tengholm;
Department of Medical Cell Biology, Uppsala University, Sweden.

Background and aims: The ATP/ADP ratio has a central messenger function in β-cells, linking changes in glucose metabolism to electrical activity,
Ca\(^{2+}\) signaling and insulin secretion. Biochemical and electrophysiological analyses as well as single-cell and sIERT recordings of e.g. oxygen consumption, NAD(P)H fluorescence and mitochondrial membrane potential have provided evidence for metabolic oscillations in β-cells, but it has been difficult to directly demonstrate fluctuations of the ATP/ADP ratio. Application of the firefly luciferase bioluminescence assay in single β-cells is very challenging and has provided limited information about ATP rather than the ATP/ADP ratio. Using a novel fluorescence protein-based ATP/ADP ratio sensor, the aim of the present study was to monitor changes in ATP/ADP ratio in single glucose-stimulated β-cells.

Materials and methods: Circularly permuted fluorescent protein cpmVenus inserted into the T-loop of the ATP-binding bacterial protein GlkK1 (Perceval) was used as a cytoplasmic biosensor for ATP/ADP ratio in individual MIN6 β-cells. In some experiments the red fluorescent protein tdimer2 was used as a reference. Changes of cytoplasmic fluorescence were recorded with confocal microscopy.

Results: MIN6 β-cells expressed Perceval with essentially even distribution in the cytoplasm. The ATP-sensitivity of the probe was investigated after permeabilization of the plasma membrane with α-toxin. Changes of the medium concentration of ATP from 0 to 1, 3 and 10 mM resulted in concentration-dependent increase of Perceval fluorescence with half-maximal effect at about 3 mM ATP (n=9). Most intact cells showed stable fluorescence in the presence of 3 mM glucose. Application of 5 μM of the mitochondrial uncoupler FCCP dramatically diminished the Perceval fluorescence. Elevation of the glucose concentration from 3 to 20 mM induced oscillations of Perceval fluorescence with a frequency of 0.24±0.01 min\(^{-1}\) in >95% of the cells (n=107). In most cells (71%) the oscillations originated from an elevated level and the amplitude averaged 15±1% of the fluorescence in 3 mM glucose. The increase in ATP/ADP ratio was counteracted by rise of cytoplasmic Ca\(^{2+}\), since hyperpolarization with the K\(_{ATP}\) channel activator diazoxide (250 μM) increased the Perceval fluorescence with maintenance of the glucose-induced oscillations (50%) or stable elevation. Moreover, membrane depolarization with 30 mM K\(^{+}\) in the presence of 3 mM glucose caused pronounced decrease in Perceval fluorescence.

Conclusions: Glucose stimulation of MIN6 β-cells triggers oscillations of the cytoplasmic ATP/ADP ratio. Cytoplasmic Ca\(^{2+}\) negatively regulates the ATP/ADP ratio, but metabolic oscillations are maintained by the simulated entry of Ca\(^{2+}\).

OP 13 Incretin based therapies: new developments

73 Exenatide added to insulin glargine-treated patients with type 2 diabetes provided excellent fasting and postprandial control with weight loss and no increased risk of hypoglycaemia

R.M. Bergenstal\(^1\), J.B. Buse\(^1\), L.C. Glass\(^1\), C.R. Heilmann\(^1\), M.S. Lewis\(^1\), A.Y.M. Kwan\(^1\), B.J. Hoogwerf\(^1\), J. Rosenstock\(^1\),

\(^1\)International Diabetes Center, Minneapolis, \(^2\)UNC School of Medicine, Chapel Hill, \(^3\)Eli Lilly and Company, Indianapolis, \(^4\) Lilly USA, LLC, Indianapolis, \(^5\)Dallas Diabetes and Endocrine Center, USA.

Background and aims: This is the first double-blind, placebo-controlled study adding exenatide (EXE) treatment in patients with type 2 diabetes suboptimally controlled (A1C ≥7.1 ± 10.5%) with basal insulin glargine therapy ± oral agents. The primary efficacy variable was change in A1C from baseline to 30 weeks. Pmandal glycemic control measures included 7-point self-monitored blood glucose (SMBG) values, continuous glucose monitoring (CGM) data, and 1,5-anhydroglucitol (1,5-AG), a marker that is inversely proportional to average glycaemia with greater sensitivity to postprandial (PP) excursions.

Materials and methods: A total of 259 patients (mean age 59 years, weight 94.4 kg, A1C 8.41%, diabetes duration 12.3 years, and insulin dose 48 U [0.51 U/kg]) were randomized to either exenatide (10μg BID, n=137) or placebo (n=122) to insulin glargine therapy. Groups were generally comparable at baseline. At randomization, insulin dose was maintained (A1C ≥8.0%) or decreased by 20% (A1C ≤8.0%) for 5 weeks and then titrated to achieve a target fasting glucose of ≤5.6 mmol/L.

Results: At 30 weeks, A1C decreased by -1.71% to 6.70% with EXE treatment, and by -1.00% to 7.41% with placebo (PBO [p<0.001]). Endpoint fasting glucose values were not different between treatment groups (EXE 6.5±0.1, PBO 6.6±0.1 mmol/L, p=0.633). All non-fasting SMBG values were significantly lower for EXE (Figure). The 24-hour average glucose measurement from CGM (n=23) decreased in EXE by -3.2 to 6.6±0.4 mmol/L, and in PBO by -1.9 to 8.0±0.4 mmol/L (p=0.039). While baseline values of 1,5-AG were comparable between EXE and PBO (7.0±0.42 and 5.8±0.44 mmol/L, p=0.056), endpoint values were significantly higher for EXE than for PBO (12.7±0.5 vs 10.6±0.6 mmol/L, p=0.003). Weight decreased in EXE (-1.8±0.3kg, p<0.001) and increased in PBO (+1.0±0.3kg, p=0.011). Insulin dose increased more in PBO (20±2 U, p<0.001) than in EXE (13±2 U, p<0.001), (p=0.026 between groups). Minor hypoglycaemia was similar for EXE and PBO (rate: 1.43±0.31 and 1.24±0.30 episodes/patient/year, p=0.666); major hypoglycaemia (nocturnal) occurred twice in one PBO-treated patient. Adverse events were significantly greater for EXE vs PBO: nausea (41 vs 8%), diarrhea (18 vs 8%), vomiting (18 vs 4%), headache (14 vs 4%), and constipation (10 vs 2%).

Conclusion: To our knowledge, this is the first report of a controlled trial using a GLP-1 receptor agonist with basal insulin. Addition of EXE therapy in patients treated with insulin glargine improved A1C by contributing a prandial effect with no increased risk of hypoglycaemia.

Supported by: Eli Lilly and Company and Amylin Pharmaceuticals

\(\text{© Springer}\)
Response at 3 months to insulin dose decisions made at exenatide initiation in the Association of British Clinical Diabetologists (ABCD) nationwide exenatide audit

K. Y. Thong1, R. E. J. Ryder2, B. Jose1, T. Sathyapalan2, W. Shaﬁq3, A. Ruby2, C. Walton4, ABCD Nationwide Exenatide Audit Contributors; 1City Hospital, Birmingham, 2Hall Royal Infirmary, United Kingdom.

Background and aims: To learn from experience of exenatide in real clinical use in the UK, ABCD began a nationwide audit in December 2008. Though exenatide is not licensed for use with insulin many contributors to the audit used the combination. There is uncertainty about what should be done with insulin dose when exenatide is added. We therefore studied the response at 3 months after exenatide initiation in relation to insulin dose decisions made when exenatide was started.

Materials and methods: Patients were analysed according to three groups at initiation: no-insulin users (Group 1), insulin users in whom insulin was stopped (Group 2), and insulin users with insulin continued (Group 3). Group 3 was divided further into groups who had insulin doses unchanged, reduced by 1-40% (mean dose reduction 25.3%), 41-60% (mean 49.7%) and 61-99% (mean 67.4%) for further analyses. HbA1c and weight changes were compared between and across groups at baseline and 3 months. Correlation between insulin dose reduction and HbA1c and weight changes were assessed. Differences in group characteristics were examined.

Results: Amongst 6717 patients in the audit, exact data on diabetes treatment at baseline and initiation as well as suitable HbA1c and weight data were available for 2575 and 2544 patients respectively. The distribution in each group (HbA1c data, weight data) was: Group 1 (1626, 1545), Group 2 (275, 271) and Group 3 (674, 638). Mean age (54.1, 54.8, 55.0yrs), BMI (40.0, 39.3, 40.3kg/m^2), and initial HbA1c (9.5, 9.7, 9.6%) were not statistically different between groups. Group 2 had lower baseline weight than Group 1 (110.8 v 114.6kg, p<0.009). Group 2 had longer diabetes duration than Group 3 (10.8 v 8.3yrs, p<0.001), but less duration (10.8 v 12.3yrs, p<0.001) and total insulin dose reduction of a quarter (p=0.018, and p=0.035 respectively). Analyses on HbA1c and weight changes were assessed. Differences in group characteristics were examined. Group 2 had lower baseline weight than Group 1 (110.8 v 114.6kg, p<0.009). Group 2 had longer diabetes duration than Group 3 (10.8 v 8.3yrs, p<0.001), but less duration (10.8 v 12.3yrs, p<0.001) and total insulin dose reduction of a quarter (p=0.018, and p=0.035 respectively). Analyses on HbA1c changes among different insulin dose reduction groups did not reveal any significant differences. No severe hypoglycaemia was recorded in Group 2. Across groups, Group 2 achieved no HbA1c benefit compared with Group 3 and 1 and 3 (both p<0.001) but the most weight benefit (both p<0.001). Group 3 had intermediate results showing less HbA1c reduction but more weight loss than Group 1 (p=0.001, p=0.007 respectively). Among Group 3, weight reduction, but not HbA1c change, correlated with total insulin dose reduction (p=0.003, p=0.158 respectively). Subgroup analyses revealed the group with average in-sulin dose reduction of around half, and two-thirds, achieved more weight loss than the group with no dose changes (p=0.010, and p=0.037) or average dose reduction of a quarter (p=0.018, and p=0.035 respectively). Analyses on HbA1c changes among different insulin dose reduction groups did not reveal any significant differences. No severe hypoglycaemia was recorded in Group 3. Conclusion: Our analysis shows that continuing insulin at exenatide initiation was safe and yielded HbA1c and weight reductions. Progressive insulin dose reductions yielded increasing weight loss but at the expense of HbA1c reduction, although there was no clear threshold when glycaemic reduction was negatively affected. When insulin was substituted, rather than combined with exenatide, almost half of patients had worsened glycaemic control. Independent audit supported by an unrestricted grant from Eli Lilly Ltd.

Materials and methods: In this multinational, open-label study, 1149 subjects were randomized (1:1:2) to subcutaneous Taspo 10 mg QW (Taspo10), Taspo 10 mg QW for 4 wks titrated to 20 mg QW (Taspo20), or Exe 5 mcg BID for 4 wks titrated to 10 mcg BID. Primary outcome was HbA1c change at wk 24, testing for non-inferiority (NI) vs Exe (using 2-sided 95% CI for HbA1c difference and noninferiority margin of 0.4%) in the intent-to-treat (ITT) population. If NI was demonstrated, then statistical superiority was tested under closed test procedure.

Results: Baseline characteristics (56 yrs, 6.5 yrs T2DM, HbA1c 8.1%, BMI 33 kg/m^2) were similar across groups. At 24 wks in the ITT population, reductions in HbA1c and FPG with Taspo10 and Taspo20 were superior to Exe (Table). More patients on Taspo10 or Taspo20 achieved target HbA1c ≤ 7% than Exe. 64.8% (95% confidence interval [CI], 59.8-69.6), 67.9% (95% CI, 63.0-72.5), and 51.5% (95% CI, 46.3-56.7); respectively. Dose-dependent weight loss was seen with Taspo and weight loss with Taspo20 was similar to Exe (Table). Gastrointestinal (GI) complaints were the most frequently reported adverse events across all arms. Although they occurred with a higher incidence in the Taspo groups, discontinuation rate due to GI events was similar in the 3 arms.

Conclusion: Once-weekly Taspo provided superior glycaemic control to Exe, with similar body weight reduction at the higher dose and comparable tolerability. (NCT00717457)

Supported by: Roche

Retrospective cohort studies of the risk of acute pancreatitis: initiators of exenatide compared to other antidiabetic drugs in two commercial US health insurance claims databases

G. Bloomgren1, M. Wenten2, D. Dore3, J. Seeger4, 1Amylin Pharmaceuticals, Inc., San Diego, 2i3 Drug Safety, Waltham, USA.

Background and aims: Cases of acute pancreatitis (AP) in patients treated with exenatide BID (Ex BID) have been reported.

Objective: To estimate the risk of AP in Ex BID initiators compared to initiators of other antidiabetic drugs (AD).

Materials and methods: Two retrospective studies were conducted to compare the rates of AP between patients without prior claims for pancreatic disease who initiated Ex BID or other AD (from 6/2005 to 12/2008) within 2 US commercial healthcare claims databases (Normative Health Information Database [NIH], Lifelink). The study protocols were similar to evaluate reproducibility of results. Both studies compared the rate of AP during periods of current, recent, or past exposure to Ex BID relative to other AD. AP cases were defined as patients with medical chart-confirmed acute pancreatitis (NIH) or claims for a hospitalisation associated with a primary diagnosis of AP (Lifelink). The NIH study used a multivariable Poisson regression model to estimate the AP propensity score adjusted rate ratios (RRs), and 95% confidence intervals (CIs) for current, recent, or past exposure. It included a blinded-medical-record adjudication of claims-identified AP cases and a nested case-control study (NCSS) that involved conditional logistic regression modeling to obtain odds ratios (ORs) and 95% CIs adjusted for differences in the prevalence of risk factors between patients who persisted or discontinued the study drugs. The Lifelink study
In both studies, Ex BID-treated patients were more likely to be female, obese, and had more evidence of diabetes complications than initiators of other AD. In the NHI database, there were 40 confirmed-AP cases in the Ex BID cohort (N=25,719), compared to 254 cases in the other AD cohort (N=234,536). In the LifeLink database, there were 46 AP cases in the Ex BID initiation cohort (N=24,437) and 802 AP cases in the other AD cohort (N=457,797). In both analyses, current and recent Ex use periods were not associated with an increased risk of AP (Figure). For the past Ex BID use group in the NHI study, an increased risk of AP was observed, which was attenuated following NCSS adjustments for cholelithiasis, past AP, and obesity identified from the medical record review. However, in the LifeLink study, past Ex BID use was not associated with an increased risk.

Conclusion: Two studies using distinct analytic methods and data sets found Ex use was not associated with an increased risk of AP.

![Figure: A1c Values](image)

Support: By: Merck & Co., Inc.

Effect of sitagliptin on glucose control in patients with type 1 diabetes - a pilot study

Background: Despite new therapies and technology, the average A1C in patients with type 1 diabetes (T1DM) remains well above ADA recommended targets. This investigator-initiated pilot study was designed to evaluate the effects of sitagliptin in poorly controlled (A1C 8.5-12%) patients with T1DM.

Methods: The study outcomes included area-under-the-curve for glucose excursions, A1c, and mean glucose values and other glycemic indices from CGM. Twenty patients were enrolled in this pilot randomized, double-blind, cross-over study to receive sitagliptin 100 mg daily or placebo for 1 month and then crossed over for 1 month. All patients used a blinded DexCom continuous glucose monitor (CGM) throughout the study period.

Results: There were no differences in baseline demographics between the two groups. Mean ± SD age and duration of diabetes were 32.5 ± 12.3 and 17.3 ± 7.5 years respectively. One patient was discontinued while on placebo for severe hypoglycemia. There was a significant reduction in insulin dose in subjects while on sitagliptin (p=0.02). Sitagliptin use reduced A1c values during both periods within groups. After controlling for period, treatment and insulin dose, there was a significant reduction in A1c in patients receiving sitagliptin (LSM = -0.27±0.11%; p=0.025; Figure). The CGM downloads showed a decrease in mean (± SE) blood glucose (-10.9 ± 3.8, p=0.012), J Index (-9.0 ± 3.1, p=0.010), High Blood Glucose Index (2.2 ± 0.7, p=0.007), M100 (-8.1 ± 2.7, p=0.009) and GRADE (-1.1 ± 0.4, p=0.023) when patients were receiving sitagliptin. Time spent in euglycemic range (80-140 mg/dl) was also significantly increased during sitagliptin use (0.46±0.20, p=0.046), while subjects trended to spending less time (hrs) in hyperglycemic range >240mg/dl (-0.55±0.38, p=0.17).

Conclusions: We conclude that sitagliptin reduced total daily insulin dose, A1c and mean blood glucose values in patients with T1DM.

Comparison of ITCA 650, continuous subcutaneous delivery of exenatide via DUROS device, vs. twice daily exenatide injections in metformin-treated type 2 diabetes

Background and aims: ITCA 650 provides for the continuous and consistent delivery of exenatide using the DUROS technology, a subcutaneous osmotic delivery system that can deliver exenatide for up to 12 months with a single administration. This provides the opportunity to escalate to optimal doses of exenatide with good tolerability and ensure 100% patient compliance.

Materials and methods: A phase 2 study to evaluate the efficacy, safety and tolerability of ITCA 650 treatment with an introductory treatment dose during the initial 12 weeks and subsequent dose escalation is being conducted in subjects with inadequately controlled, metformin-treated type 2 diabetes (T2DM). In this study, subjects (n=50/group) were initially randomized to receive either 20 or 40 mcg/day of exenatide delivered by ITCA 650 for 12 weeks or twice daily exenatide injections at 5 mcg BID for 4 weeks followed by 10 mcg BID for 8 weeks. Subsequently, subjects were randomized to receive ITCA 650 at 20, 40, 60 or 80 mcg/day for an additional 12 weeks.

Results: Treatment with ITCA 650 was well tolerated with less reported nausea at 20 mcg/day relative to exenatide injections. HbA1c was significantly lower after 12 weeks in all treatment groups (p<0.001 at week 12 relative to baseline). Weight was also reduced in all treatment groups. Dose escalation to ITCA 650 at the higher doses of 60-80 mcg/day resulted in further reductions in HbA1c at week 16 with a change of -1.3% (n=36) relative to baseline and continued weight loss.

Conclusion: ITCA 650 represents a novel and attractive treatment to deliver exenatide in a well-tolerated fashion that ensures 100% compliance for the long-term treatment of T2DM, resulting in substantial changes in HbA1c and weight without the need for repeated self injections. Escalation to higher doses leads to further reductions in HbA1c and weight in the long-term treatment of T2DM.
Recent studies demonstrated that variability of hemoglobin A1C (HbA1C) may be associated with the risk of diabetic micro- and macrovascular complications in patients with type 1 diabetes; however, whether the similar association may exist in patients with type 2 diabetes is unclear. We, therefore, conducted this cohort study to highlight the relationship between the fluctuation of HbA1C and incident cardiovascular disease (CVD) in patients with type 2 diabetes.

Materials and methods: We studied 689 Japanese type 2 diabetic patients with an estimated glomerular filtration rate (eGFR) ≥ 15 mL/min/1.73 m², including 295 women and 394 men (mean ± SD age: 65 ± 11 years). Patients were observed at least 12 months. Variability of HbA1C was defined as the interpersonal SD of serially measured HbA1C during the whole follow-up period. Patients were divided into quartiles of SD HbA1C. The primary endpoint was defined as incident CVD including cerebral infarction and hemorrhage, myocardial infarction, and angina pectoris requiring coronary revascularization. Cox proportional hazard model was used to calculate hazard ratio and 95% confidence interval (95% CI). In the multivariable Cox regression analysis, the following variables were incorporated and selected by the stepwise procedure; age, sex, duration of diabetes, presence of proliferative diabetic retinopathy, smoking status, use of renin-angiotensin system inhibitors, antithromplatelet agents and statins, hemoglobin, uric acid, eGFR, urinary albumin-to-creatinine ratio (ACR) at baseline, the mean of body mass index, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels during the follow-up period, and the mean, SD and number of measured HbA1C.

Results: During a median follow-up period of 3.3 years (range: 1.0 - 6.3 years, 2,279 patient-years), 26 ± 14 measurements of HbA1C were obtained per patient, and incident CVD episodes were observed in 61 patients (26.8 episodes per 1,000 patient-years). Patients with higher quartiles of SD HbA1C had a higher incidence of CVD; five-year cumulative incidence of CVD in patients with the first, second, third, and fourth quartile in order of increasing were 4.9, 8.7, 17.1, and 26.2%, respectively (p < 0.001 by the log-rank test). In the multivariate Cox analysis, the fourth quartile of SD HbA1C was associated with significantly higher incidence of CVD (hazard ratio 3.38, 95% CI 1.58 - 7.24, p = 0.004). Conclusion: Visit-to-visit variability of HbA1C may be a potent predictor of incident CVD, independent of mean HbA1C in Japanese patients with type 2 diabetes.

80

Significant association of TCF7L2 variant rs7903146 with angiographically characterised coronary artery disease in women

A. Muendlein1,2, C.H. Sady1, S. Geller-Rhomberg1, G. Sonderegger2, P. Rein1,2, T. Winder1,2, S. Beer1, A. Vonbank1, H. Drexel1,2

1Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria, 2Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.

Background and aims: Type 2 diabetes mellitus (T2DM) confers a particularly high risk of coronary artery disease (CAD) in women. Variations in the transcription factor 7-like 2 (TCF7L2) gene, particularly rs7903146, increase T2DM risk; their association with CAD is uncertain, no data are available for women. We therefore aimed at investigating potential links between TCF7L2 variant rs7903146 and CAD in women.
Materials and methods: We therefore investigated the association between rs7903146 and angiographically determined CAD in a cohort of 554 female Caucasian patients undergoing coronary angiography for the evaluation of established or suspected CAD. At angiography, significant CAD was diagnosed in the presence of significant coronary stenoses with lumen narrowing of ≥50%. The severity of CAD was calculated as the sum of all stenosis percentages of a given patient divided by the number of coronary stenoses in this patient and the extent as the sum of all significant coronary stenoses.

The association between rs7903146 and CAD was evaluated in an additive genetic model.

Results: Variant rs7903146 was significantly associated with angiographically characterized CAD (additive odds ratio (OR)=1.37 [1.07-1.76]; p = 0.011). Adjustment for age, smoking, BMI, total- and HDL-cholesterol did not significantly change this finding (OR=1.37 [1.06-1.78]; p = 0.016). Also, after further adjustment for T2DM, the association between rs7903146 and CAD remained significant (OR=1.31 [1.00-1.70]; p = 0.047). Further, the extent of CAD significantly increased from subjects who were homozygous for the C allele compared to subjects who carried the T allele (0.79±1.45, vs. 0.95±1.40 and 0.98±1.50, respectively; p = 0.022). A significant association between SNP rs7903146 and the severity of coronary lesions was observed (severity scores of 26.1±36.7, 35.7±39.9, and 36.7±39.4 for the CC, CT, and TT genotype, respectively; p<0.004).

Conclusion: We conclude that TCF7L2 variant rs7903146 is significantly associated with angiographically diagnosed CAD in women.

81 Trajectories of adiponectin before coronary heart disease (CHD): the Whitehall II prospective cohort study

M. Carstensen1, C. Herder2, M. Kivimäki3, M. Jokela4, M. Roden5,6, M.J. Shipley7, D.R. Witte8, E.J. Brunner9, A.G. Fabik10; 1German Diabetes Center, Düsseldorf, Germany, 2University College London, United Kingdom, 3University Hospital Düsseldorf, Germany, 4Steno Diabetes Center, Gentofte, Denmark, 5Semmelweis University, Budapest, Hungary.

Background and aims: Adiponectin, an adipocyte-specific cytokine, is associated with reduced risk of type 2 diabetes, and it has anti-inflammatory, anti-thrombotic and anti-atherogenic properties. Although coronary heart disease (CHD) is a major complication of type 2 diabetes, high adiponectin levels have not been consistently linked to reduced CHD risk. One hypothesis is that the association between adiponectin and CHD varies as a function of the disease process over time. Thus, we took advantage of data from repeated measurements of adiponectin (i) to examine how serum adiponectin concentrations change during years preceding the manifestation of CHD and (ii) to compare these trajectories with those from individuals who did not develop CHD.

Materials and methods: This is a case-cohort analysis within the Whitehall II cohort with a total of 2778 participants without CHD at baseline, 26.9% women, mean age at baseline 49.3 (SD 5.9) years and average BMI 25.2 (SD 3.5) kg/m2. There were 284 incident cases of CHD (myocardial infarction, angina) during follow-up and 2494 non-cases who remained CHD-free. Serum adiponectin was measured at up to three time points for each participant (phase 3, the baseline: 1991-94; phase 4: 1997-99; phase 7: 2003-04). Year 0 of the observation period was the year of CHD diagnosis for cases and a randomly selected time point during follow-up for non-cases to approximate the follow-up time distribution of cases. Adiponectin levels were traced backwards up to participants’ first adiponectin measurement. Multilevel models adjusted for age, sex and ethnicity were fitted to assess changes in adiponectin during the preceding 13 years based on 398 and 3871 serum samples in cases and non-cases, respectively.

Results: Serum adiponectin levels were 6% lower in cases [mean (95% CI), 8457 (8021; 8916) ng/ml] than in non-cases [8989 (8837; 9151) ng/ml] at study baseline. This difference remained constant during the follow-up in a model adjusted for age, sex and ethnicity (p = 0.03) which means that it was independent of time until CHD diagnosis. The addition of nonlinear time terms for CHD cases did not improve the fit of the multilevel models, nor did these terms reach statistical significance. After adjustment for BMI or waist circumference as time-varying covariates, the slope of the linear upward adiponectin trajectories remained similar both among cases and non-cases, however the difference between the two groups was no longer statistically significant.

Conclusion: Adiponectin is mildly, but significantly lower in individuals who develop CHD throughout the 13 years preceding disease onset compared to those who remained CHD-free. BMI or waist circumference accounted for a substantial part of this difference, suggesting that adiponectin does not predict CHD independently of obesity. We found no support for the hypothesis that the association between adiponectin and CHD varies as a function of the disease process.

Supported by: Medical Research Council (UK) New Investigator Award

82 Vitamin D levels and asymptomatic coronary artery disease in type 2 diabetic patients with elevated urinary albumin excretion rate

C. Joergensen1, H. Reinhard1, A. Schmedes2, P.R. Hansen3, N. Winberg4, C.L. Petersen5, K. Winther6, H.-H. Parving7, P.K. Jacobsen8, P. Rossing2, 1Steno Diabetes Center, Gentofte, 2Dept. of Clinical Biochemistry, Lillebaelt Hospital, Vejle, 3Dept. of Cardiology, Gentofte University Hospital, 4Dept. of Clinical Physiology and Nuclear Medicine, Frederiksberg University Hospital, 5Dept. of Clinical Biochemistry, Frederiksberg University Hospital, Gentofte, 6Dept. of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, 7Faculty of Health Science, Aarhus University, 8Copenhagen University Hospital, Rigshospitalet, Denmark.

Background and aims: Coronary artery disease (CAD) is the major cause of morbidity and mortality in type 2 diabetic patients. Severe vitamin D deficiency has been shown to predict cardiovascular mortality in type 2 diabetic patients. We investigated the association between severe vitamin D deficiency and asymptomatic CAD in type 2 diabetic patients with elevated urinary albumin excretion rate (UAER) > 30mg/24h. Furthermore, we evaluated the association between severe vitamin D deficiency and coronary calcium score (CCS).

Materials and methods: A cross sectional study including 200 type 2 diabetic patients without clinical signs of CAD. Plasma 25-hydroxy-vitamin D levels were determined by high performance liquid chromatography/tandem mass spectrometry. Severe vitamin D deficiency was defined as plasma 25-hydroxy-vitamin D < 12.5 nmol/l. Patients with plasma NT-proBNP > 45.2 ng/l, and/or CCS > 400 were arbitrarily stratified as high risk patients for CAD (n = 129). High risk patients were examined by myocardial perfusion imaging (MPI; n = 109), and/or CT-angiography (CTA; n = 20), and/or coronary angiography (CAG; n = 86).

Results: Patients received multifactorial treatment, yielding mean (SD) HbA1c 7.9 (1.3) %, plasma total cholesterol 3.9 (0.9) mmol/l and arterial blood pressure 130 (17)/75 (11) mmHg. Median (range) vitamin D level was 36.9 (3.8-118.6) nmol/l. Vitamin D was not associated with sex, blood pressure, HbA1c, and UAER but a weak positive association was found with age (R = 0.159, p = 0.025). The prevalence of severe vitamin D deficiency was 9.5% (19/200). In 70 (35%) patients significant CAD was demonstrated by MPI and/or CAG. In a logistic regression model, severe vitamin D deficiency was associated with asymptomatic CAD, unadjusted odds ratio (OR) 95% CI [2.24 [0.87-5.81]; p = 0.097]. After adjusting for additional risk factors (sex, age, plasma total cholesterol, plasma creatinine, distal systolic blood pressure at toe level, vibratory perception threshold, heart rate variability and plasma NT-proBNP), the OR was 5.00 [1.28-19.49]; p = 0.020. The prevalence of CCS > 400 was 34% (68/200). Severe vitamin D deficiency was significantly associated with CCS > 400 (unadjusted OR 4.32 [1.54-12.10]; p = 0.005). The association persisted after adjusting for all additional risk factors, (OR 3.98 [1.20-13.113]; p = 0.023). Moderate vitamin D deficiency, plasma 25-hydroxy-vitamin D: 12.5-25 nmol/l, and vitamin D insufficiency plasma 25-hydroxy-vitamin D: 25-50 nmol/l, were not significantly associated with increased presence of CAD or CCS > 400.

Conclusion: In high risk type 2 diabetes patients with elevated urinary albumin excretion rate, low levels of vitamin D are strongly and independently associated with asymptomatic coronary artery disease.

Supported by: an EFSD Clinical Research Grant
Prevalence and risk factors accounting for true silent myocardial ischaemia (clandestine ischaemia) in type 2 diabetic patients: a pilot case-control study

C. Hernández,1,2 J. Candell-Riera,2 A. Ciudin,1 S. Aguadé-Bruix,6 R. Simó1; Diabetes and Metabolism Research Unit, CIBERDEM and RECAVA, Institut de Recerca Hospital Universitari Vall d’Hebron, Cardiology Department and RECAVA, Hospital Universitari Vall d’Hebron, Diabetes and Metabolism Research Unit, Institut de Recerca Hospital Universitari Vall d’Hebron, Nuclear Medicine Department and RECAVA, Hospital Universitari Vall d’Hebron, Barcelona, Spain.

Background and aims: Given the elevated risk of cardiovascular events and the higher prevalence of silent coronary artery disease (CAD) in diabetic versus non-diabetic patients, the need to screen asymptomatic diabetic patients for CAD assumes increasing importance. The term of silent ischemia includes an entity named true silent myocardial ischemia or clandestine myocardial ischemia, which is characterized by myocardial perfusion defects in the absence of both angina and ST-segment depression > 1 mm during the exercise test. To the best of our knowledge there have been no studies addressed to determining its prevalence and the risk factors associated with its development. The aims of the study were to assess prospectively the prevalence and clinical predictors of true silent myocardial ischemia or clandestine ischemia in asymptomatic type 2 diabetic patients.

Material and methods: Stress myocardial perfusion gated-SPECT (Single Photon Emission Computed Tomography) was carried out in 41 type 2 diabetic patients without history of cardiovascular disease and 41 nondiabetic patients matched by age and gender. Left ventricular end-diastolic and end-systolic volumes, and ejection fraction were also measured in gated-SPECT. Exclusion criteria were: 1) history of cardiovascular disease (CVD); 2) electrocardiographic evidence of Q-wave myocardial infarction, ischemic ST depression, T-wave changes, or complete left bundle branch block; 3) flat or downsloping ST segment depression > 1 mm at 80 ms after the J-point during an exercise test on a bicycle ergometer.

Results: Apart from diabetes there were no significant differences between the two groups regarding either the classic CVD risk factors (age, gender, smoking habit, dyslipemia, hypertension, and family history of CAD) or left ventricular function. Clandestine ischemia was detected in 21.9% of type 2 diabetic patients but only in 2.4% of controls (p < 0.01). The presence of myocardial perfusion defects did not correlate with the number of risk factors but was independently associated with male gender and the presence of diabetic retinopathy (DR). The probability of having myocardial perfusion defects in an asymptomatic diabetic patient with DR was 11.7% [95%: 3.7-37].

Conclusion: We conclude that clandestine ischemia is frequent in asymptomatic type 2 diabetic patients. In addition, DR is a high risk condition for true silent myocardial ischemia in asymptomatic type 2 diabetic patients, and point to these patients as a target to be screened for cardiovascular disease. Further prospective studies evaluating the prognostic value of these findings and their impact in economical terms are warranted.

Supported by: grants from CIBERDEM and RECAVA (ISCIII).

Type 2 diabetes is not a coronary heart disease risk equivalent: results from an 8-year prospective cohort study on angiographically characterised coronary patients

T. Gansch,4 C.H. Saely2,3, A. Vonbank1,2, P. Rein1,2, S. Beer1,2, S. Greber1, H. Drexel1,2; Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.

Background and aims: Current guidelines consider diabetes as a coronary artery disease (CAD) risk equivalent, but cardiovascular risk in patients with diabetes may vary substantially depending on the presence of subclinical CAD at baseline. In the present study we therefore aimed at investigating the contribution of baseline coronary atherosclerosis to the risk of future vascular events in patients with diabetes.

Materials and methods: Vascular events were recorded over 8 years in 750 consecutive patients undergoing coronary angiography for the evaluation of established or suspected stable CAD.

Results: From our patients, 244 had neither type 2 diabetes (T2DM) nor significant CAD (i.e. coronary stenoses ≥50%) at the baseline angiography, 50 had T2DM but not significant CAD, 342 did not have T2DM but had significant CAD, and 114 had both T2DM and significant CAD. Non-diabetic subjects without significant CAD had an event rate of 20.5%. The event rate was similar in T2DM patients without significant CAD (22.0%; p = 0.811), but higher in non-diabetic patients with significant CAD (39.5%; p < 0.001). Patients with T2DM plus significant CAD had the highest event rate (53.3%; p < 0.001). Importantly, T2DM patients without significant CAD had a significantly lower event rate than non-diabetic patients with significant CAD (p = 0.017).

Conclusion: T2DM per se is not a CAD risk equivalent. Moderate risk diabetic patients without significant CAD and very high-risk diabetic patients with significant CAD add up to a grand total of high risk diabetic patients: this is why diabetes appears as a CAD risk equivalent in many epidemiological studies.
OP 15 Manipulating the gut to treat metabolism

85
Long-term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta-analysis of trials performed with gastric banding and gastric bypass
A. Morabito1, A.E. Pontiroli2,1
1Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli studi di Milano, 2Dipartimento di Medicina, Ospedale San Paolo, Milano, Italy.

Background: Bariatric surgery has been reported to reduce long-term mortality in comparison with non-operated subjects, but there are no studies comparing gastric banding and gastric by-pass.

Methods: We performed a systematic review and meta-analysis of clinical trials published as full papers dealing with all-cause mortality, cardiovascular mortality, and global mortality (sum of all-cause and cardiovascular mortality). Pooled-random effects of estimates of the risk of mortality in subjects undergoing surgery, compared with controls, were calculated using the Der Simonian and Laird models.

Results: Of 44,022 participants from eight trials, death occurred in 3,317 subjects (400 in surgery, 2,917 in controls); when the kind of death was specified, 321 cardiovascular deaths (118 in surgery, 203 in controls), and 523 all-cause deaths (218 in surgery, 305 in controls) occurred. Compared with controls, surgery was associated with a reduced risk of global mortality (OR = 0.27, 95% CI 0.16-0.45), of cardiovascular mortality (OR = 0.43, CI 0.24-0.77), and of all-cause mortality (OR = 0.60, CI 0.37-0.97). Data of all-cause mortality were not heterogeneous; heterogeneity of data of cardiovascular mortality and of global mortality disappeared when studies were grouped according to size (larger vs smaller studies). At meta-regression analysis, decrease of global mortality (Log OR) was significantly associated with increasing BMI (p = 0.036). The effect of gastric banding and gastric by-pass (3.797 vs 10.255 interventions) was not significantly different for the any kind of mortality.

Conclusion: This meta-analysis indicates that: 1) bariatric surgery reduces all-cause, cardiovascular, and global mortality; 2) there are no significant differences between gastric banding and gastric by-pass; 3) the effect is more evident for greater BMI.

86
Weight loss modulates DNA methylation of peroxisome proliferator-activated receptor gamma coactivator-1 and pyruvate dehydrogenase kinase, isozyme 4 promoters
J. Yan1, R. Barres2, A. Krook3, E. Naslund4, R. J. Zierath1
1Karolinska Institutet, 2Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Obesity is associated with reduced insulin sensitivity and extensive changes in skeletal muscle. When diet and drugs no longer work, many extremely obese individuals opt to undergo bariatric surgery as a means to reduce body mass. DNA methylation is believed to be modulated by the environment and can act as a reversible switch of gene expression that can lock genes in an active or repressed state. We determined whether DNA methylation of select proteins is altered in obesity and after weight loss.

Materials and methods: DNA methylation level of the Peroxisome Proliferator-Activated Receptor γ Coactivator-1 α (PGC-1α) and Pyruvate Dehydrogenase Kinase, isozyme 4 (PDK4) promoters was investigated in vastus lateralis skeletal muscle from eight non-diabetic obese people (41.8 ± 3.7 years) preoperatively and in 33 patients postoperatively. To calculate the first phase insulin secretion (1st phase), an intravenous glucose load was made at the beginning. In the 170 minutes remaining, glucose was kept 125 mg/dl above basal glucose, in order to calculate the second phase insulin secretion (2nd phase). Mean age was 55 years (range 34-69 years). Mean diabetes duration was 12.3 years (5-24 years). Mean follow-up was 20 months (range 8-38 months).

Results: Postoperatively, BMI decreased from 29.5 ± 5.2 Kg/m2 to 22.1 ± 2.4 Kg/m2. Mean plasma glucose was 259 mg/dl in preoperative and 239 mg/dl in postoperative period. Insulin sensitivity increased from 69.4 mmol.min-1.mol-1 to 95.5 mmol.min-1.mol-1. In the 1st phase, the acute C-peptide response was 2219 ± 2268 pmol.l-1.10min and increased to 2617 ± 2164 pmol.l-1.10min. The relation of incremental C-peptide area under the curve and incremental glucose area under the curve, increased from 30 ± 24 pmol.mol-1 to 46 ± 30 pmol.mol-1. The evaluation of the 2nd phase by the insulin incremental area and insulin sensitivity was 688 ± 10 pmol.mol-1 and increased to 811 ± 10 pmol.mol-1 postoperatively.

Conclusion: In non morbidly obese type 2 diabetic patients ileal interposition associated with sleeve gastrectomy showed an important improvement in insulin secretion after a mean follow-up of 20 months as demonstrated by the hyperglycemic clamp.

88
The role of apolipoprotein A5 in non-alcoholic fatty liver disease
1Endocrinology, Hospital de Especialidades, 2Metabolic Surgery, Hospital de Especialidades, Goiânia, Brazil.

Background and aims: Type 2 diabetes is a progressive disease. Beta cell failure is related to the reduction in insulin secretion and associated with some complications of the disease. Laparoscopic ileal interposition associated with sleeve gastrectomy (II-SG) had demonstrated a positive effect in insulin resistance. We used the hyperglycemic clamp, the gold standard method for measurement of insulin secretion to assess the impact of this operation on beta cell function.

Materials and methods: A 3-hour hyperglycemic clamp was performed in 35 patients preoperatively and in 33 patients postoperatively. To calculate the first phase insulin secretion (1st phase), an intravenous glucose load was made at the beginning. In the 170 minutes remaining, glucose was kept 125 mg/dl above basal glucose, in order to calculate the second phase insulin secretion (2nd phase). Mean age was 55 years (range 34-69 years). Mean diabetes duration was 12.3 years (5-24 years). Mean follow-up was 20 months (range 8-38 months).

Results: Postoperatively, BMI decreased from 29.5 ± 5.2 Kg/m2 to 22.1 ± 2.4 Kg/m2. Mean plasma glucose was 259 mg/dl in preoperative and 239 mg/dl in postoperative period. Insulin sensitivity increased from 69.4 mmol.min-1.mol-1 to 95.5 mmol.min-1.mol-1. In the 1st phase, the acute C-peptide response was 2219 ± 2268 pmol.l-1.10min and increased to 2617 ± 2164 pmol.l-1.10min. The relation of incremental C-peptide area under the curve and incremental glucose area under the curve, increased from 30 ± 24 pmol.mol-1 to 46 ± 30 pmol.mol-1. The evaluation of the 2nd phase by the insulin incremental area and insulin sensitivity was 688 ± 10 pmol.mol-1 and increased to 811 ± 10 pmol.mol-1 postoperatively.

Conclusion: In non morbidly obese type 2 diabetic patients ileal interposition associated with sleeve gastrectomy showed an important improvement in insulin secretion after a mean follow-up of 20 months as demonstrated by the hyperglycemic clamp.
of 83 % in apoA5 mRNA expression (p<0.001), as determined by fluores-
cence-based time-lapse PCR. Suppression of apoA5 in HepG2 cells resulted in a reduction of intracellular triglyceride content by 31 % (p<0.001), when compared to controls transfected with nonsilencing siRNA.

Conclusion: In summary, we found that pronounced weight loss in obese subjects with NAFLD results in a significant improvement of hepatic steatosis which is associated with a decline of hepatic apoA5 mRNA levels. Our in vit-
ro data suggest that weight loss induced reduction in hepatic apoA5 mRNA expression is not an epiphenomenon but has a causal role in improvement of NAFLD in morbid obesity.

Supported by: ODG

89

Can diabetes and obesity be treated through the rectum?

1Physiology, UAE University; 2Internal Medicine, UAE University,
3Community Medicine, UAE University, Al Ain, United Arab Emirates,
4Satiogen Pharmaceuticals Inc, San Diego, USA.

Background and aims: The enteroendocrine L cells produce glucagon gene products including GLP-1 and oxonotomodulin which are satiety factors and the former is an insulin secretagogue. The L-cells also produce PYY, the maj-
or molecular form of which is also a satiety factor. The number of L-cell and hormonal contents increase distally through the gut with highest con-
centrations in the rectum. We have previously shown that intracolonic infu-
sion of bile salts in humans causes secretion of L-cell hormones, triggered via TGR5 membrane receptors. The present study was designed to investigate the dose-responsive effects of intrarectal taurocholic acid (TA) on circulat-
ing concentrations of GLP-1, PYY, insulin, glucose and on food intake of a subsequent meal.

Materials and methods: Ten obese type 2 diabetic subjects were each studied on five separate occasions after an overnight fast and administration of 100 mg oral statinplatin10 hours before the study. They then received an intrarectal infusion of either one of four amounts of TA (0.66, 2, 6.66, or 20 mmoles) or vehicle placebo in a random blinded fashion. Bile salts were administered in 20 ml of a 1% carboxymethyl cellulose emulsion over 1 min. Hormone and glucose measurement was made in plasma samples were collected for one hour following the infusion. 75 mins after the infusion, the subjects were pre-
vented with an unlimited amount of a previously selected favorite meal and invited to eat until satisfied.

Results: TA caused a dose-responsive increase of GLP-1, PYY and insulin, with peak concentrations ~ 7-fold, 4-fold and 3-fold increased, respectively with 20 molas TA (all P<0.0001). There was a corresponding decrease in cir-
culating glucose concentrations (P< 0.0001), with a decrease in glucose of ~2.8 mmol/L with 20 molas TA. The TA infusions were also associated with a decrease in caloric consumption of the subsequent meal (P<0.0001), with a maximal inhibition of 45±6 % with 20 molas TA.

Conclusion: Intrarectal TA increased L cell secretion which markedly de-
creased food intake and, since the subjects had fasting hyperglycemia, this resulted in an incretin effect. These findings probably explain the glucose-
lowering effects of bile salt sequestrants. Intrarectal TGR5 agonists are likely to be valuable in the treatment of type 2 diabetes and obesity.

Supported by: Satiogen Pharmaceuticals

90

Metabolic effects of transplanting gut microbiota from lean donors to subjects with metabolic syndrome

A. Vrieze1, F. Holleman1, M.J. Serlie1, M.T. Ackermann1, G.M. Dallinga-
Thie1, A.K. Groen1, E. van Nood1, J.F.W. Bartelsman1, R. Oozere1, E. Zoetendal2, W.M. de Vos1, J.L. Hoekstra1, M. Nieuwdorp1;
1Department of Internal and Vascular Medicine, 2Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam,
3Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 4Department of Gastroenterology, Academic Medical Centre, Amsterdam, Netherlands, 5Danone Research Center, Paris, France,
6Laboratory of Microbiology, Wageningen University, Netherlands,
7Department of Veterinary Biosciences, University of Helsinki, Finland.

Background: Recent data in animal models revealed that obesity is associ-
ated with substantial changes in composition and metabolic function of gut microbiota. Moreover, colonization of germ-free mice with faeces harvested from obese mice resulted in a significantly greater increase in total body fat than colonization with a ‘lean microbiota’. However, data on the role of gut-
microbiota in human obesity are scarce. Thus, our aim was to examine the effect of faecal infusions derived from lean healthy donors on gut microbiota composition, glucose and lipids in metabolic syndrome.

Methods: This study was a double-blind, randomised controlled trial. A total of 18 male subjects with newly diagnosed metabolic syndrome (BMI≥30 kg/

m2, FPG≥5.6mmol/L, TG>1.6 mmol/L with no medication use) underwent jejunal biopsies and subsequent polyethylene-glycol bowel lavage through duodenal tube followed by random assignment to either allogenic (from lean male donors with BMI<23 kg/m2, n=9) or autologous faecal transplantation (reinfusion of own collected faeces, n=9). We studied changes in sigmoidal microbiota composition and fasting lipidprofiles at 0.5, 2, 6 and 12 weeks after faecal transplantation. Weight, jejunal gut microbiota (epithelial biopsy) and glucose metabolism (peripheral and hepatic insulin sensitivity as assessed by hyperinsulimex euglycemic clamp with stable isotopes) were studied before and 6 weeks after transplantation.

Results: Lean subjects were characterized by different sigmoidal gutmicrobiota compared to obese subjects (by HTChip phylogenetic microarray analy-
sis). Fasting levels of TG-rich lipoproteins (TG/ApoB ratio) were significantly reduced following donor faeces (1.43 ± 0.21 to 1.11 ± 0.18, p<0.01) with no effect after autologous faeces infusion. REE and basal endogenous glucose production (EGP) did not change in both groups after faecal infusion. Al-
though weight remained stable, an improvement in both peripheral (Rd) and hepatic insulin sensitivity (suppression of EGP) was found 6 weeks after al-
logenic faeces (median Rd: from 26.2 to 45.3 μmol/kg/min, p=0.02 and EGP suppression: from 51.5 to 61.6 %, p=0.08) while no significant changes were observed in the autologous treatment group (Rd: from 21.0 to 19.5 μmol/
kg.min and EGP suppression:from 53.8 to 52.4 %, ns). Changes in jejunal microbiota are currently analyzed.

Conclusion: Lean donor faecal infusion improves hepatic and peripheral insulin resistance as well as fasting lipid levels in obese individuals with the metabolic syndrome underscoring the potential role of gut microbiota in the disturbances of glucose and lipid metabolism in obesity. Our data could pro-
vide pathophysiological insight in the metabolic deviations in obese subjects and a rationale for therapeutic intervention.

Supported by: VENI grant (NWO ZonMW) to M. Nieuwdorp
OP 16 Mechanisms of insulin secretion

91
The role of wnt antagonists in impaired beta cell exocytosis
T. Hamed, A. Salehi, E. Renstrom, A.H. Rosengren;
Lund University Diabetes Centre, Malmo, Sweden.

Background and aims: We have recently found that genetically encoded
overexpression of ADRA2A (the alpha2A-adrenergic receptor) contributes
to impaired insulin secretion in type 2 diabetes (T2D). The aim here is to get
a more overall view of the adrenergic signaling system and linked molecular
pathways in defective insulin release. Network methods have proven valuable
for studying how cellular pathways cause disease and have been successfully
applied to e.g. obesity. However, in the case of T2D little is known about the
networks that drive the pathogenesis.

Materials and methods: We have used linear algebraic methods to analyze
the topological overlap in microarray data from human islets and performed
subsequent cluster analysis. Highly connected hub genes play an important
role in networks, and hub gene validation has been conducted by insulin se-
cretion assays and patch-clamp recordings of exocytosis.

Results: We have characterized the gene expression networks in human is-
lets and identified a subnetwork with 120 genes connected to ADRA2A. The
expression of this subnetwork was associated with reduced insulin secretion
(p=0.008), elevated HbA1c (p=0.0002) and T2D (p=0.00006) in the islet do-
nors. Of the top 100 genes for which the expression was correlated with T2D
in the microarray, as many as 53 belonged to the identified ADRA2A-related
network (enrichment p value is 8e-189). One of the most highly connected
hub genes of the ADRA2A subnetwork is a secreted frizzled-related protein
(sfrp), which is an extracellular antagonist of the wnt system. Interestingly,
TCF7L2, the strongest T2D gene known, is regulated by the wnt system. The
role of sfrp in T2D has not been studied previously. Our data show that activa-
tion of the wnt system by wnt7a in neuron studies, and the addition of
sfrp completely antagonized the stimulatory effect of wnt7a in islets (p<0.05).
These findings were paralleled on the single-cell level. Beta-cell exocytosis
increased from 12.5±2.2 fF/pF to 20.6±3.3 fF/pF (p=0.045) by pre-treatment
with 400 ng/ml wnt7a. The stimulatory effect of wnt7a was abolished by the
addition of 100 nM sfrp (10.2±4.1 fF/pF). Sfrp also had an inhibitory effect
with 400 ng/ml wnt7a. The stimulatory effect of wnt7a was abolished by the
increase of the wnt system by wnt7a stimulated insulin secretion both during
a 21 hour incubation at low glucose (5 mM) and when glucose thereafter
was elevated to 16.7 mM (see Figure). Interestingly, sfrp has previously been
shown to co-precipitate with wnt7a in neuron studies, and the addition of
sfrp, which is an extracellular antagonist of the wnt system. Interestingly,
TCF7L2, the strongest T2D gene known, is regulated by the wnt system. The
role of sfrp in T2D has not been studied previously. Our data show that activa-
tion of the wnt system by wnt7a in neuron studies, and the addition of
sfrp completely antagonized the stimulatory effect of wnt7a in islets (p<0.05).
These findings were paralleled on the single-cell level. Beta-cell exocytosis
increased from 12.5±2.2 fF/pF to 20.6±3.3 fF/pF (p=0.045) by pre-treatment
with 400 ng/ml wnt7a. The stimulatory effect of wnt7a was abolished by the
addition of 100 nM sfrp (10.2±4.1 fF/pF). Sfrp also had an inhibitory effect
on its own and reduced exocytosis to 5.9±1.4 fF/pF (p=0.013 vs. control, and
p=0.0002 vs. wnt7a).

Conclusion: We have characterized the gene expression networks in human
islets and identified an ADRA2A-related subnetwork that is associated with
T2D. One of the subnetwork hub genes, sfrp, reduced insulin secretion and
beta-cell exocytosis when applied alone or in combination with wnt activa-
tors. This validates the importance of the identified subnetwork in T2D and
illuminates an extracellular player that could affect insulin secretion through
the TCF7L2 pathway.

92
Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E cells
and human islets through SIRT1 dependent mechanism
L. Vetterli1, J. Rodgers2, D. Bosco1, P. Puigserver1, P. Maechler1;
1Department of Cell Physiology and Metabolism, University of Geneva, Geneva,
Switzerland, 2Department of Cancer Biology, Harvard Medical School,
Boston, USA, 3Department of Surgery, University of Geneva, Switzerland.

Background and aims: Sirtuins are energy sensors which mediate effects of
calorie restriction-induced lifespan extension. SIRT1, one of the mammalian
Sirtuin homologs, is a transcription factor that deacetylates specific substrates.
Previous studies have shown that SIRT1 is implicated in glucose metabolism
and beta-cell function. Here, we investigated the role of SIRT1 through the
activating action of resveratrol on insulin secretion. Resveratrol is a polyphe-
nol found in red grapes and wine that has been demonstrated to increase
lifespan and to protect mice against high-fat diet induced obesity and insulin
resistance.

Materials and methods: Chronic (24h) treatment with 25 µM resveratrol
was tested on insulinoma INS-1E cells and effects on insulin secretion, gene
expression (qRT-PCR), and metabolic parameters were measured (ATP pro-
duction, glucose oxidation and utilization, oxygen consumption). We then
tested resveratrol treatment in cells over-expressing SIRT1 or expressing in-
active mutant SIRT1 after adenoviral transduction, as well as pharmacologi-
cal SIRT1 inhibitor (1 µM EX-527). Chronic effects of resveratrol on insulin
secretion and gene expression were also studied in human islets.

Results: Chronic treatment of INS-1E cells with 25 µM resveratrol resulted in
marked potentiation of insulin secretion at 15 mM glucose (+114%, p=0.01). This
effect was associated with enhanced metabolism since glucose utiliza-
tion was increased by +32% (p<0.01), resulting in elevated glucose oxidation,
ATP generation, and mitochondrial oxygen consumption. Such changes were
correlated with up-regulation of key genes for beta-cell function and differen-
tiation, i.e. glucose transporter GLUT2 (+59%), glucokinase (+89%), Pdk-1
(+70%), and TFAM (+232%). In human islets, chronic resveratrol treatment
also significantly increased glucose-stimulated insulin secretion and induced
expression of the same set of genes. Over-expression of SIRT1 in INS-1E cells
potentiated resveratrol effects on insulin secretion. Conversely, inhibition of
SIRT1 achieved either by expression of a mutant that lacks deacetylase activ-
ity or alternatively by using the EX-527 inhibitor, both abolished resveratrol
effects on glucose-stimulated insulin secretion. Chronic treatment of INS-1E
cells with EX-527 also prevented up-regulation of GLUT2, glucokinase, Pdx-1,
and TFAM, normally induced by resveratrol.

Conclusion: Treatment of beta-cells with resveratrol markedly enhanced glu-
cose-induced insulin secretion in INS-1E cells and human islets, even after
removal of the compound from the medium. Data show that resveratrol ef-
fects were mediated by SIRT1 activation, defining a new role for SIRT1 in the
regulation of insulin secretion.

Supported by: Swiss National Science Foundation
Melatonin effects on insulin secretion and clock genes expression

J.A. Stamenkovic, C.L.E. Nagorny, C. Ling, A. Salehi, V.V. Sharoyko, H. Mulder; Clinical Sciences Malmö; Molecular Metabolism, Lund University, Malmö; Clinical Sciences Malmö; Diabetes and Endocrinology, Lund University, Malmö; Clinical Sciences Malmö; Islet Cell Physiology, Lund University, Malmö, Sweden.

Background and aims: Melatonin is rhythmically released by the pineal gland and thus represents an important regulator of seasonal and circadian rhythms. Both melatonin receptors MTNR1A and MTNR1B are expressed in INS-1 cells and in rat and human islets (primarily in alpha cells). Genome-wide association studies have identified a SNP, rs10830963, in MTNR1B that is associated with elevated fasting plasma glucose levels, impaired insulin secretion and T2D. Previously, peripheral circadian rhythms in heart, liver and pancreas have been shown and that these rhythms are independent from the central clock located in the suprachiasmatic nucleus (SCN). Given the association of MTNR1B with T2D and insulin secretion, we aimed to resolve whether the effects of melatonin on β-cells could be mediated by entrainment of circadian rhythm.

Materials and methods: Expression of mRNA for Clock genes in human islets and clonal β-cells (INS-1 832/13 cells) was determined by microarray (Affymetrix) or RT-PCR, respectively. To determine the effects of melatonin on insulin secretion, we incubated human islets and clonal β-cells at 2.8 and 16.7 mM glucose with or without 0.1 μM melatonin for 1 h. Released insulin was determined by radioimmunoassay.

Results: Microarray analysis of human islets showed that Clock, Per1-3, and Cry 1-2 were expressed. Moreover, while MTNR1A expression correlated positively with Per1 (rho=0.037; p=0.041), MTNR1B expression correlated negatively with Cry1 (rho=-0.41; p=0.02) in the human islets. RT-PCR confirmed mRNA expression of the melatonin receptors MTNR1A and MTNR1B in INS-1 832/13 cells. In addition, mRNA expression of the clock genes CLOCK and PER1 were detected in INS-1 832/13 cells. Insulin from 832/13 cells increased 6.9-fold in response to 16.7 mM glucose (69.65 ± 9.11 insulin ng/mg protein/h) compared to secretion at 2.8 mM glucose (10.07 ± 2.35 insulin ng/mg protein/h). The stimulation of the INS-1 832/13 cells with glucose + melatonin resulted in decreased GSIS (4.57 fold; p=0.02) at 16.7 mM glucose (36.54 ± 8.72 insulin ng/mg protein/h). Insulin from human islets, from 4 different donors, decreased 2-fold (p=0.06) in response to 16.7 mM glucose + melatonin (0.79 ± 0.17 insulin ng/islet/h) compared to secretion at 2.8 mM glucose (3.34 ± 0.18 insulin ng/islet/h).

Conclusion: Our data demonstrate the existence of components of the molecular clock in human islets and clonal β-cells. In addition, melatonin exerted an inhibitory effect on insulin secretion provoked by high glucose. Given that islets and β-cells express CLOCK genes and are sensitive to melatonin, there is a possibility that melatonin may entrain circadian rhythm. This agrees with previous suggestions that insulin displays a diurnal pattern.

Quantitative analysis of t-SNARE and Ca2+-channel clusters near secretory granules

S. Barg, N. Gandasi; Medical Cell Biology, Uppsala University, Sweden.

Background and aims: For insulin to be secreted from pancreatic β-cells, secretory granules must translocate to and then dock at the plasma membrane. Secretagogues can then trigger exocytosis of these granules, resulting in release of insulin. Only a limited number of granules can dock at any time, suggesting the existence of specialized docking sites where the exocytosis machinery is assembled. This is supported by the finding that the t-SNARE syntaxin 1a (syx), an integral plasma membrane protein which is required for docking and exocytosis, clusters in raft-like nanodomains near docked granules. The function of these clusters is unknown, but it seems likely that they contain other t-SNARE and regulatory proteins, which together act as acceptor complex for the docking granule. Moreover, there is indirect evidence suggesting that clusters of L-type Ca2+-channels (CaV1.2) are required near the granule for rapid exocytosis; ablation of the gene encoding Cav1.2 abolishes 1st phase insulin secretion and results in systemic glucose intolerance. The channel associates in biochemical assays with t-SNAREs. Here we have quantified the dynamic interaction of syx and CaV1.2 clusters with secretory granules during docking and exocytosis.

Materials and methods: Dual-color TIRF microscopy and novel quantitative imaging techniques was used to study the association of GFP-labeled syx and CaV1.2 with granules at the plasma membrane of live INS-1 and PC12 cells. Granules were labeled with NPY-cherry as spatial reference. Single molecule imaging and PALM super-resolution microscopy were done on the same instrument to measure protein diffusion and cluster size.

Results: Syx and CaV1.2 formed small clusters (~100 nm) in the plasma membrane that contained about 70 molecules of syntaxin and associated with a subset of the docked granules (30-50%). Granules near such a cluster were more likely to undergo exocytosis during stimulation. Clusters were stable on a minute scale and moved no faster than docked granules. In contrast, the number of syx molecules fluctuated on a second scale and individual molecules of both proteins diffused rapidly in the plasma membrane. When observed at the single molecule level, individual copies of syx and Cav1.2 were captured beneath docked granules, for a short time (<1s). Syx was recruited to the granule site during docking, and lost during undocking and exocytosis. A syx mutant lacking the N-terminal formed clusters that were excluded from granules, while a mutation in the SNARE domain had little effect.

Conclusion: In summary, the protein composition of individual granule-associated nanodomains is remarkably dynamic and correlates with the granules’ ability to exocytose. This organization is established during or just after granule docking, which suggests that granules approaching the plasma membrane might induce the formation of their own docking site. Dynamic association of exocytosis proteins with individual granules occurs on a timescale consistent with rapid cellular signaling, and may be important for the short-term regulation of insulin secretion.

Supported by: an ESFD/MSD grant, G Gustafssons, NovoNordisk, Zetterlings, Erfors

CART is upregulated in islets of type 2 diabetic patients, stimulates insulin secretion, inhibits glucagon secretion and protects against beta cell death

R. Sathanooori1, U. Voss2, M. Riva3, M.S. Winzell1, B. Ahren1, O. Korsgren1, N. Wierup2,1; Lund University Diabetes Centre, Lund University, 2Department of Clinical Immunology, Uppsala University, Sweden.

Background and aims: Cocaine- and amphetamine-regulated transcript (CART) is a regulatory peptide expressed in the islets of many laboratory animal species. CART KO mice exhibit impaired glucose tolerance due to islet dysfunction, and CART has been shown to regulate insulin secretion from rat islets and clonal beta cells. Furthermore, CART is upregulated in rodent models of type 2 diabetes (T2D). We examined CART expression in human islets from T2D patients and control subjects. Furthermore, we studied the effect of CART on beta cell survival, as well as the effect of CART on insulin and glucagon secretion in vivo and in vitro in mice. We have previously shown that CART exerts its effect on insulin secretion in part via increased CaN and PKA-dependent pathways. In this study we investigated potential effects of CART on Ca2+ signaling.

Materials and methods: CART expression was examined using immunocytochemistry, in situ hybridization, IVGTT with i.v. administration of CART was performed in anesthetized C57B16 mice. Insulin and glucagon secretion after 1h static incubations of isolated mouse islets was analyzed with RIA or ELISA. Ca2+ fluorescence and glucose toxicity was assessed in INS-1 (832/13) cells.

Results: CART mRNA and protein expression was evident in human alpha and beta cells as well as in intra-pancreatic nerve fibers innervating the islets. T2D islets displayed 3-fold higher CART mRNA levels than controls. In addition, the number of CART-expressing alpha and beta cells was 2.5-fold higher in type 2 diabetic patients, as compared to control subjects. Intravenous CART administration improved glucose-elimination and increased glucose stimulated insulin secretion (GISS) after an IVGTT in mice. CART increased insulin secretion from isolated mouse islets stimulated with glucose, GLP-1, and palmitate. On the other hand, CART had no effect on insulin secretion in the presence of KCl, alpha-KIC or carbachol. CART increased cytoplasmic Ca2+ concentration in INS-1 (832/13) cells in a dose-dependent fashion at both high and low glucose concentrations. The effect was still evident when Ca2+ was absent in the assay buffer, suggesting that Ca2+ is mobilized from internal stores. The effect of CART was sustained after prior exposure to perifusion toxin, suggesting that CART does not act via Gα3 coupled receptors and In addition, CART reduced secretion of glucagon from isolated mouse islets at both low and high glucose concentrations. Furthermore, addition of ex-
Ongenous CART resulted in a 50% decrease in glucose-induced cell death in INS1-832/13 cells.

Conclusion: We conclude that CART 1) is expressed in human islet cells and nerve fibers, 2) is upregulated in the islets of type 2 diabetic subjects, 3) improves glucose elimination and stimulates insulin secretion in vivo and in vitro. 4) inhibits glucagon secretion, 5) exerts a cytoprotective effect on beta cells. Together these data suggest that CART is upregulated in human T2D islets to protect the islets against glucotoxicity and to lower plasma glucose.

Supported by: Novo Nordisk Foundation, Swedish Medical Research Council

96

Dysfunctions of neuronal NO synthase in pancreatic beta cells from human islets issued from obese subjects

A. Chalançon, F. Castex, K. Messghenna, P. Petit, R. Gross, A.-D. Lajoix; Faculté de Pharmacie, CNRS UMR 5232, Montpellier, France.

Background and aims: We have previously shown that rat pancreatic β-cells express an isoform of neuronal NO synthase (nNOS), that controls insulin secretion through two catalytic activities: NO production and cytochrome c reduction. We also found functional and molecular abnormalities of nNOS, involved in pancreatic β-cell hyperactivity in an animal model of prediabetic state, the Zucker fa/fa rat. In the present study, we investigate whether, as observed in rats, nNOS dysfunctions could also occur in islets from obese subjects.

Materials and methods: Human islets from normal-weight or obese subjects were obtained from brain dead donors in the frame of a transplantation protocol of Gragil network. nNOS expression was studied by RT-PCR and Western Blot, its subcellular localization by confocal microscopy. Insulin secretion in response to glucose (2.8, 8.3, and 16.7 mM) was evaluated on pools of 10 islets during 90 minutes in the presence or not of a pharmacological inhibitor of nNOS, Nω-nitro-L-arginine methyl ester (L-NAME).

Results: We found that nNOS is expressed in human β-cells and, as previously observed in rats, co-locates with insulin secretory granules. Moreover, islets from obese subjects were found more sensitive to glucose, as previously observed in fa/fat rats: at 2.8 mM glucose, insulin secretion reached 19.4 ± 2.05 (n = 2), versus 10.09 ± 0.8 ng/ml/10 islets/90 min (p < 0.001) for islets from lean subjects (n = 3), 31.25 ± 2.8 versus 15.3 ± 1.3 ng/ml/10 islets/90 min (p < 0.001) at 8.3 mM glucose and 31.2 ± 3.2 versus 21.35 ± 1.9 ng/ml/10 islets/90 min (p < 0.01) at 16.7 mM glucose. Finally, in islets issued from lean subjects, pharmacological blockade of nNOS with 10 mM L-NAME stimulated insulin secretion from 15.3 ± 1.3 to 22.4 ± 2.4 ng/ml/10 islets/90 min (p < 0.01) at 8.3 mM glucose and from 21.35 ± 1.9 to 27.7 ± 2.8 ng/ml/10 islets/90 min (p < 0.03) at 16.7 mM glucose, confirming that nNOS exerts an inhibitory tone on insulin secretion. In contrast, islets from obese subjects were found insensitive to L-NAME, whatever the glucose concentration studied, suggesting a constitutive defect of nNOS.

Conclusion: Islets from obese subjects display molecular and functional abnormalities of nNOS that could be involved in early dysfunctions observed in these islets, as previously observed in an animal model of prediabetic state.

97

High oxidative capacity protects against lipid-induced insulin resistance

E. Phielix1, L.C.R. Meex, J. Hoeks, L. Sparks2, E. Moonen-Kornips1, A.M.C. Hesselink1, P. Schrauwen1

1Human Biology, 2Human Movement Sciences, Maastricht University Medical Centre, Netherlands.

Introduction: Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity, is associated with muscular insulin resistance. Endurance trained athletes, characterized by high oxidative capacity, have elevated amounts of intramyocellular lipid, yet are highly insulin sensitive. This suggests that a high oxidative capacity may prevent lipid-induced insulin resistance. We examined whether athletes are protected against lipid-induced insulin resistance. In addition, we examined whether ex vivo mitochondrial function deteriorates upon elevation of circulating fatty acids in healthy young men.

Methods: Nine endurance-trained athletes and 10 control subjects with a sedentary lifestyle were included and matched for age (23.4 ± 0.9 and 21.9 ± 0.9 y). Subjects underwent a 6h hyperinsulineemic-euglycemic clamp with simultaneous infusion of a triglyceride emulsion (intralipid) or glycerol. The rate of insulin-stimulated glucose disposal (Rd), oxidative (CHOox) and non-oxidative glucose (NOGD) disposal were computed as the difference between insulin stimulated conditions minus non-insulin stimulated conditions. Muscle biopsies from the vastus lateralis were taken before and after the clamp to measure ex vivo mitochondrial function in the addition of several substrate combinations. Mitochondrial function was determined as ADP-stimulated respiration, uncoupled respiration and maximal oxidative capacity, all expressed as pmol/(s*mg)/mitDNA copy number.

Results: Endurance trained subjects had higher VO2max values compared to control subjects (61.5 ± 12.2 vs 43.0 ± 1.1 ml kg-1 min-1, p<0.01). Interestingly, although mitochondrial content was higher in trained subjects, ex vivo mitochondrial function normalized to mitDNA copy number was similar between trained and control subjects. Rd was 63% lower after intralipid compared to glycerol in control subjects (from 35.7 ± 2.7 to 12.0 ± 3.1 μmol kg-1 min-1, p<0.01). Interestingly, although mitochondrial content was higher in trained subjects, ex vivo mitochondrial function normalized to mitDNA copy number was similar between trained and control subjects. Rd was 63% lower after intralipid compared to glycerol in control subjects (from 35.7 ± 2.7 to 12.0 ± 3.1 μmol kg-1 min-1, p<0.01). However, Rd reduced only 29% upon lipid in trained subject (from 45.9 ± 3.6 to 31.6 ± 3.9 μmol kg-1 min-1, p<0.05), which was different from untrained subjects (p<0.05). The stimulation of CHO-ox by in-sulin as seen in the glycerol condition was completely blunted after intralipid in both groups. Interestingly, in trained subjects insulin-stimulated NOGD was unaffected upon intralipid, but reduced by 52% in control subjects (from 29.1 ± 2.7 to 14.0 ± 3.4 μmol kg-1 min-1, p<0.01). Finally, in both groups respiration values upon intralipid were not different from after glycerol and were unaffected by training status.

Discussion: We show that lipid-induced insulin resistance is blunted in ath- letes. Interestingly, lipid infusion reduced the insulin-stimulated increase in carbohydrate oxidation rates to a similar extend in trained and untrained subjects, but the non-oxidative glucose disposal was completely unaffected in athletes. These results suggest that a high oxidative capacity prevents lipid-induced reduction of non-oxidative glucose storage and thereby blunts lipid-induced insulin resistance. Higher oxidative capacity in athletes was due to higher mitochondrial density and not intrinsic mitochondrial function suggesting that the latter may be of less importance in lipid-induced insulin resistance. Finally, mitochondrial function does not deteriorate upon the infusion of lipids.

Supported by: Dutch Diabetes Research Foundation

98

Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca2+ signalling and AMPK/SIRT1 like exercise

T. Yamauchi1, R.C.R. Meex, T. Kamiya, H. Oka1, Y. Aoki, T. Kadokawa1; Department of Metabolic Diseases, University of Tokyo, Japan.

Background and aims: Adiponectin is an anti-diabetic adipokine. Its receptors AdipoR1s possess a seven-transmembrane topology with the amino terminus located intracellularly, which is opposite to G-protein coupled receptors. Intracellular signal transduction mechanisms of Adipokins have yet to be well clarified. Insulin resistance has been reported to be associated with impaired skeletal muscle oxidation capacity and mitochondrial dysfunction. However,
We analyzed muscle-specific AdipoR1-knockout mice. Results: Adiponectin induces extracellular Ca^{2+} influx via AdipoR1, which was necessary for subsequent activation of Ca^{2+}/calmodulin-dependent protein kinase kinase β (CaMKKβ) and AMPK/SIRT1, increased expression and decreased acetylation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and increased mitochondria in myocytes. Next we showed that muscle-specific disruption of Adipor1 resulted in decreased elevation of the intracellular Ca^{2+} concentration and decreased activation of CaMKK/AMPK/SIRT1 by adiponectin as well as decreased expression and increased acetylation of PGC-1 alpha, decreased mitochondrial content and enzymes such as cytochrome c (CytC), decreased oxidative type I myofibers, decreased oxidative stress-detoxifying enzymes such as catalase and manganese superoxide dismutase (SOD2), and decreased molecules involved in fatty-acid oxidation such as medium-chain acyl-CoA dehydrogenase (MCAD), thereby leading to increased oxidative stress and increased tissue triglyceride content in skeletal muscle. Furthermore, muscle-specific AdipoR1 knockout mice exhibited increased phosphorylation of p70 S6 kinase and JNK and also increased serine phosphorylation of IRS-1 as well as decreased glucose transporter (GLUT4) expression and decreased Akt activation by insulin, which were associated with decreased rates of glucose disposal (Rd). Importantly, these alterations could result in insulin resistance and decreased exercise endurance. Moreover, AdipoR1 and AdipoR2 double knockout mice as well as obese diabetic db/db mice exhibited almost all the same phenotypes in skeletal muscle observed in muscle-specific AdipoR1 knockout mice. Interestingly, AMPK activator AICAR could only partially rescue the phenotypes of muscle-specific AdipoR1 knockout mice such as insulin resistance and decreased mitochondrial content and function, whereas exercise almost completely rescue their phenotypes.

Conclusion: AdipoR1 appears to 1) regulate mitochondrial function and oxidative stress in muscle as well as insulin sensitivity and exercise endurance, and 2) be required for adiponectin-induced PGC-1α expression and activation via extracellular Ca^{2+} influx and AMPK/SIRT1, respectively, and subsequent mitochondrial bioenergetics stimulated with adiponectin in muscle cells. Decreased levels of adiponectin/AdipoR1 in obesity may play causal roles in mitochondrial dysfunction and insulin resistance seen in diabetes. Agonism of AdipoR1 as well as strategies to increase AdipoR1 in muscle could be exercise-mimetics.

99 Acute overexpression of PGC-1β in rat skeletal muscle increases mitochondrial substrate oxidation and ameliorates lipid-induced insulin resistance

Background and aims: Lipid accumulation in skeletal muscle is strongly associated with the development of insulin resistance. In particular, reactive lipid species, such as diacylglycerols (DAG), ceramides, and long-chain acyl-CoAs (LCACoA) are thought to antagonize numerous intracellular pathways, which ultimately leads to reductions in insulin sensitivity. Recent data has also implicated oxidative stress as a key determinant in this process. Upregulation of mitochondrial capacity has been suggested as a potential approach to combat lipid overload and insulin resistance in skeletal muscle, however there is relatively little direct data to support this concept. In the current study we aimed to acutely overexpress PGC-1β in hindlimb skeletal muscle from chow and high-fat fed rats, and investigate the effect on mitochondrial function and insulin sensitivity.

Materials and methods: Rats were fed either a low-fat or high-fat diet for 4wk, and in vivo electropropulsion was used to overexpress PGC-1β in the tibia-lis cranialis and extensor digitorum longus muscles. Downstream effects of PGC-1β on markers of mitochondrial oxidative capacity and muscle lipid levels were characterized, and insulin action was examined ex vivo using intact muscle strips and en vivo via a hyperinsulinemic-euglycemic clamp.

Results: PGC-1β expression was increased >100% over basal levels. This upregulated the expression of many metabolic proteins, including those involved in mitochondrial function (ETC complexes 1 and II), lipid metabolism (CD36, CPT-1) and antioxidant mechanisms. Specifically, the activity of oxidative enzymes and substrate oxidation (pyruvate and palmitate) was increased in muscles overexpressing PGC-1β. LCACoA was increased 2.3 fold in control muscles of high-fat fed rats, but remained similar to chow levels in muscles overexpressing PGC-1β (p<0.05, n=7). Under hyperinsulinemic-euglycemic clamp conditions, insulin-stimulated glucose uptake was decreased in tibialis cranialis (20%, p<0.05) and extensor digitorum longus (EDL; 28%, p<0.01) muscles of high-fat fed rats, and was partially restored towards control levels with PGC-1β overexpression (p<0.01). Furthermore in isolated EDL strips, PGC-1β overexpression ameliorated the reduced insulin-stimulated glucose uptake observed with high-fat feeding (p<0.01). Finally, in PGC-1β overexpressing muscles we observed a significant decrease in two measures of oxidative stress; lipid peroxidation (-14% in chow fed, -19% in high-fat fed, p<0.05) and protein carbonylation (-15% in chow fed p<0.05).

Conclusion: These studies demonstrate that physiological overexpression of PGC-1β in skeletal muscle could be exercise-mimetics.
Deletion of the Rab-GAP protein TBC1D1 protects from lipid-induced insulin resistance in skeletal muscle

A. Chaudi1, F. Carlotti3, R.C. Hoeben1, H.-G. Joost1, H. Al-Hasani1, K. Eckardt, A. Schober, B. Platzbecker, J. Eckel; 1Pharmacology, German Institute of Human Nutrition, Nuthetal, Germany, 2Molecular Cell Biology, Leiden University Medical Center, Netherlands.

Background and aims: The Rab-GTPase-activating (GAP) protein TBC1D1 is highly expressed in skeletal muscle and was recently linked to severe human obesity. We previously described its role as susceptibility gene for high-fat diet-induced obesity and diabetes in mice. TBC1D1-deficient recombinant congenic mice displayed reduced adiposity and a lowered respiratory quotient (RQ), indicating enhanced whole body lipid use. Consequently, intact isolated skeletal muscles from these animals showed increased fatty acid (FA) oxidation with concomitant decrease of insulin-stimulated glucose uptake, indicating that TBC1D1 regulates substrate preference in skeletal muscle. An impaired adaptation of skeletal muscle fuel preference to the availability of glucose and FA as energy substrates has been associated with the development of insulin resistance and diabetes. We therefore sought to investigate the role of TBC1D1 in glucose and lipid metabolism and the mediation of lipid-induced insulin resistance in skeletal muscle.

Materials and methods: C2C12 myotubes were electroporated with siRNA oligonucleotides to achieve Tbc1d1 knockdown and subsequently exposed to different concentrations (0 - 750 μM) of palmitic acid for 16 h. In addition, intact skeletal muscles (EDL, and soleus) from TBC1D1-deficient mice and wildtype controls were isolated and preincubated with increasing concentrations of palmitate. Insulin-stimulated 2-deoxyglucose (DOG) uptake and palmitate oxidation was determined using radioactive tracer techniques. Expression analysis was performed by quantitative real-time PCR and Western Blot.

Results: In cultured C2C12 myotubes, siRNA-mediated knockdown of Tbc1d1 increased palmitate oxidation by approx. 30%. Likewise, isolated muscles from TBC1D1-deficient mice showed increased palmitate oxidation compared to muscles from wildtype littermates. In both cultured cells and isolated muscles, the enhanced FA combustion was accompanied by increased levels of mRNA for genes involved in lipid metabolism including Acdl, Cd36, Ppargc1 and Fabp3. Importantly, additional knockdown of Cd36 in Tbc1d1-depleted C2C12 myotubes completely abrogated the increase in palmitate uptake. Exposure of C2C12 myotubes and isolated skeletal muscles to palmitic acid led to a substantial and dose-dependent reduction in insulin-stimulated AKT phosphorylation, and expression of Ppargc1 mRNA, respectively. As a result, in the presence of 1 mM palmitate, the insulin-stimulated DOG uptake in isolated skeletal muscles was reduced by >50%. In contrast, depletion of TBC1D1 almost completely prevented the detrimental effect of palmitate on insulin-stimulated AKT phosphorylation, Ppargc1 expression and insulin-stimulated DOG uptake, and thus restored insulin sensitivity in muscle cells.

Conclusion: Our data demonstrate that TBC1D1 deficiency protects skeletal muscle from lipid-induced insulin resistance, presumably by enhancing FA oxidation. In cultured myotubes, the fatty acid translocase FAT/Cd36 is essential for TBC1D1-mediated FA uptake. Furthermore, we show that TBC1D1 exerts control on fuel selection and energy metabolism in skeletal muscle at least in part through the coordinated regulation of gene expression of key enzymes for lipid uptake and oxidation.

Supported by: DFG, an EFSID/Lilly grant, EUGENE2, SysProt

102

Electrical pulse stimulation of human skeletal muscle cells mimics exercise and prevents insulin resistance induced by adipocyte-conditioned medium

S. Lambernd, K. Eckardt, A. Schober, B. Platzbecker, J. Eckel; Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany.

Background and aims: Skeletal muscle is one of the major insulin sensitive tissues and is responsible for about 80% of the postprandial insulin-stimulated glucose uptake. Obesity is closely associated with muscle insulin resistance and a major risk factor for the pathogenesis of type II diabetes. Regular physical activity does not only prevent obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. Exercise leads to activation of AMPK, enhances insulin signalling and improves glucose uptake. The aim of our project is to establish and characterise an in vitro model of human skeletal muscle contraction to study signalling pathways and mechanisms, which are involved in beneficial effects of muscle activity.

Materials and methods: Differentiated primary human skeletal muscle cells (hSKM cells) were stimulated with a C-pace pulse generator for up to 24 h (1 Hz, 11.5 V, 2 ms pulse duration), and immunofluorescence staining of sacreronic alpha-actinin was used to visualise the cytoskeleton. To induce insulin resistance, hSKM cells were incubated with adipocyte-derived conditioned media (CM) for 8 h. Afterwards, the cells were stimulated with 100 nM insulin for 10 min and lysed. Protein expression and phosphorylation of Akt and AMPK were analysed by SDS-PAGE and western blotting.

Results: After 2-3 h few myotubes started to contract and after 24 h most of the myotubes showed noticeable contractile activity. While the protein expression level of sarcomeric alpha-actinin did not change, immunofluorescence staining showed de novo formation of sarcomeres with typical striated pattern. During contraction, AMPK phosphorylation increased over time and was significantly elevated after 8 h of contraction (5fold, n = 6). In addition, electric pulse stimulation of hSKM cells for 24 h led to increased secretion of IL-6 which was 26fold elevated compared to unstimulated controls (114 ± 40 pg/ml to 221 ± 68 pg/ml, n = 6). The incubation of hSKM cells with CM significantly reduced the insulin-stimulated phosphorylation of Akt (Ser473) by 35% compared to non-treated controls. However, when the cells were pulse-stimulated during the incubation with CM the effect of CM on insulin-stimulated Akt phosphorylation was abrogated.

Conclusion: Our data show that the effect of electric pulse stimulation on hSKM cells were similar to the effect of exercise on skeletal muscle in terms of enhanced AMPK activation and IL-6 secretion. Furthermore, we observed de novo formation of functional active sarcomeric structures. The CM-induced impairment of insulin signalling could be prevented by contractile activity of hSKM cells. This result provides a direct evidence for the beneficial effect of muscle contraction activity in order to improve insulin sensitivity in conditions of insulin resistance. In summary, our model provides a unique tool to investigate mechanisms and underlying signalling pathways which mediate the beneficial effects of muscle contraction, and will help to further clarify the potential of exercise to combat insulin resistance.
103
Effect of CB2 receptor activation in experimental diabetic nephropathy
F. Barutta, R. Gambino, S. Pinach, P. Cavallo Perin, G. Gruden; Department of Internal Medicine, University of Turin, Italy.

Objective: Diabetic nephropathy (DN) is characterised by increased glomerular permeability to proteins and excessive extracellular matrix accumulation in the mesangium, resulting eventually in glomerulosclerosis and progressive renal impairment. Endogenous cannabinoids (EC), anandamide and 2-arachidonoylglycerol, bind to two endocannabinoid receptors, named CB1 and CB2. We have recently reported that the CB1 receptor is overexpressed by podocytes in experimental diabetes and that CB1 blockade prevents podocyte protein downregulation and reduces albuminuria, indicating a deleterious effect of EC signalling through the CB1 receptor. Coexpression of both the CB1 and the CB2 receptors has been reported in several cell types. In addition, recent studies have shown that activation of the CB2 receptor has protective effects in experimental models of atherosclerosis, liver fibrosis, and cardiac ischemia/reperfusion injury through prevention of inflammatory and profibrotic processes. Therefore, our aim was to study if the CB2 receptor is expressed within the glomeruli and the effect of CB2 activation in experimental diabetic nephropathy.

Methods: Male C57Bl6 mice were made diabetic by intraperitoneal (IP) injection of streptozotocin at a dose of 55 mg/kg in citrate buffer delivered in 5 consecutive days. Control mice were injected with citrate buffer alone. After the onset of diabetes both control (ND n=13) and diabetic mice (DM n=21) were further randomised to receive treatment with either AM1241, a selective CB2-receptor agonist (3 mg/kg IP daily), or vehicle. 14 weeks after the induction of diabetes, mice were individually placed in metabolic cages for urine collections and blood samples taken for blood glucose and glycated haemoglobin measurements. Then, mice were sacrificed, kidneys removed, weighed, and analysed. Urinary albumin excretion was measured by enzyme-linked immunosorbent assay. CB2 receptor protein expression was studied by immunohistochemistry. Nephrin, synaptopodin, zonula occludens-1 (ZO-1) mRNA and protein expression were assessed by immunofluorescence and real-time PCR, respectively. Fibronectin, CTGF, and TGF-β1 mRNA levels were quantitated by real-time PCR on total renal cortex.

Results: The CB2 receptor was expressed within the glomeruli in a predominant podocyte distribution. Diabetes was associated with reduced body weight and elevations in both plasma glucose and glycated haemoglobin levels, but no differences were seen between treated and untreated mice. Albuminuria was significantly (p<0.001) increased in the diabetic animals [DM:296.86 (252.8-356.2) µg/18hrs, geometric mean (25th-75th percentile)] as compared to the controls [ND:78.87 (73.8-86.6)] and ameliorated by treatment with AM1241 [ND+AM1241:67.75 (59.9-77.3); DM+AM1241:183.59 (144.8-243.5); p<0.01 DM vs ND+AM1241]. In the diabetic mice the increase in albuminuria was paralleled a significant three-fold reduction in both nephrin and ZO-1 protein expression and this effect was completely prevented in mice treated with AM1241. Similarly, diabetes-induced downregulation of both nephrin and ZO-1 mRNA levels was abolished by AM1241. By contrast in diabetic mice AM1241 administration did not affect fibronecin, TGF-β1, and CTGF overexpression.

Conclusion: These findings demonstrate that the CB2 receptor is expressed within the glomeruli and that CB2 activation ameliorates the diabetic proteinuria, possibly via prevention of podocyte slit diaphragm protein loss.

Supported by: SID

104
Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease
H. Shevalye, Y. Maksimchyk, P. Watcho, I.G. Obrosova; Mechanisms of Diabetes Complications, Pennington Biomedical Research Center, Baton Rouge, USA.

Background and aims: Evidence for the important role of poly(ADP-ribose)polymerase-1 (PARP-1) in chronic diabetic complications is emerging. Several structurally unrelated PARP-1 inhibitors have been reported to prevent or alleviate diabetic nephropathy. This study evaluated further the role of PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse.

Materials and methods: PARP-1-/− and the wild-type (129S1/SvImJ) mice were made diabetic with streptozotocin, 40 mg kg−1 i.p., for, at least, 7 consecutive days, and were maintained for 12 weeks. PARP-1 and poly(ADP-ribose)-polymerase-1 protein levels were evaluated by Western blot analyses, and urinary albumin excretion and renal cortex nitrotyrosine and transforming growth factor-β (TGF-β) concentrations with ELISA. Glomerular collagen deposition and mesangial expansion (PAS-positive staining) were evaluated by histochimistry, followed by quantitation with the Threshold Colour plug-in of ImageJ 1.43q and ImageJ 1.43q programs, respectively. Podocyte nuclei were detected with an anti-WT1 antibody, by immunohistochemistry. Podocyte numbers were counted per glomerular section, and 20–25 glomeruli were examined for each animal.

Results: Final blood glucose concentrations were ~3.7-fold higher in both diabetic groups than in controls. PARP-1 and poly(ADP-ribose)-polymerase-1 protein levels in the renal cortex were similar in non-diabetic and diabetic wild-type mice (100% and 107%) whereas all knockouts were PARP-1-negative. Poly(ADP-ribose)-polymerase-1 proteins, however, have been identified in all groups, and their levels were increased by 18% and 14% in diabetic wild-type and diabetic PARP-1−/− mice, compared with the corresponding controls. Diabetes was associated with ~21-fold and ~13-fold increases in albuminuria in wild-type and PARP-1−/− mice, respectively. PARP-1 gene deficiency prevented diabetes-induced kidney hypertrophy and alleviated mesangial expansion and collagen deposition. Renal podocyte loss, and nitrotyrosine and transforming growth factor-β, accumulations were slightly lower in diabetic PARP-1−/− mice, but the differences with the diabetic wild-type group did not achieve statistical significance.

Conclusion: PARP-1−/− gene deficiency alleviates although does not completely reverse diabetic kidney disease. The lack of a complete prevention could be related to the presence of other PARPs responsible for poly(ADP-ribose)polymerase-1 in the renal cortex in PARP-1−/− deficient mice and its increase in diabetes, and/or streptozotocin nephrotoxicity in mice.

Supported by: NIH

105
TIMP3 deficiency accelerates diabetic nephropathy
M. Cavaleri, L. Fiorentino, M. Fabrizi, M. Mavilio, S. Menini, G. Pugliese, D. Lauro, A. Urbani, R. Lauro, M. Federici; 1Dept. of Internal Medicine, University of Tor Vergata, 2Dept. of Clinical Sciences, University La Sapienza, Rome, Italy.

Background and aims: Several experimental models of nephropathy have recently shown that activation of TACE/ADAM17 is a key step in the progression of glomerulopathy, even though the exact role of ADAM17 and its inhibitor TIMP3 in a hyperglycemic environment is still unclear. We tested if inhibition of TACE in the diabetic kidneys could be related to the presence of other PARPs responsible for poly(ADP-ribose)polymerase-1 in the renal cortex in PARP-1- deficient mice and its increase in diabetes, and/or streptozotocin nephrotoxicity in mice.

Materials and methods: To test this hypothesis we treated WT mice with streptozotocin to induce hyperglycemia, and then measured TACE activity in kidney; we found a significant activation of the enzyme in hyperglycemic (STZ, streptozotocin-treated) mice compared to untreated controls (p<0.001). Next, we analyzed STZ-WT and STZ-TIMP3-3 kidneys by IHC, real time PCR, and Western blot.

Results: STZ-TIMP3-3 mice showed significantly increased mean glomerular area and fractional mesangial area (p<0.05 and p<0.001, respectively). STZ-TIMP3-3 mice showed also a thicker glomerular basement membrane, due to an increased amount of type IV collagen deposition (p<0.01), that is one of the early feature of diabetic nephropathy. Moreover, they also showed increased macrophage infiltration, measured by F4/80 staining (p<0.01), resulting in inflammation. Oxidative stress markers staining revealed that STZ-TIMP3-3 mice are characterized by an increased expression of NOX4, RAGE and N-Carboxymethyl-lysine, a major product of oxidative modification of glycated proteins (p<0.01 for all). To further analyze the role of TIMP3 in diabetic nephropathy at a molecular level we performed real time PCR on RNA samples derived from kidneys of STZ-TIMP3-3 and WT mice. We found that the expression of MCP-1, a marker of inflammation, was significantly increased in STZ-TIMP3-3 mice, while the expression of nephrin and WT1, two markers of podocyte functions, is reduced in STZ-TIMP3-3 mice compared to the WT littermates (p<0.01 for all). We also performed gene profiling experiments on kidneys of the same animals, and we could observe up-regulation of different classes of genes involved in inflammation (Cxcr9, Ccr5, Mcp-1, Mcp-5, Alf-1, Cd64, Mgl-1, Mgl-2), renal cells proliferation and fibrosis (Fib3-d, Tgfb3, Tgf-β1), lipid metabolism (Fup5, Fasn, Ldha, Asada, Acaca), and transport (Slc13a1, Slc7a13, Slc7a6, Slc4a1, Slc2a3, Glut8) in STZ-TIMP3-3 mice compared to WT ones. We also found a significant reduction in the expression of genes connected to control of oxidative stress such...
as Foxo1 and Foxo5a in the kidney of STZ-Timp-3−/− mice. Finally, we used a proteomic approach to identify proteins differentially expressed in kidneys of STZ-Timp-3−/− and WT mice. Proteinomic analysis of total homogenates revealed the presence of the 78 kDa glucose-regulated protein (GRP78) and protein disulfide-isomerase A3 only in kidneys from STZ-treated Timp-3−/− mice, indicating an increased levels of endoplasmic reticulum stress in these mice compared to WT ones.

Conclusion: In conclusion, our preliminary results show that Timp3 plays a protective role in preventing inflammation and oxidative stress accumulation in kidney and, doing so, it can interfere with the development and progression of diabetic renal nephropathy.

Supported by: IJRF

106

D-carnosine prevents diabetic nephropathy in db/db mice

C. Iacoboni1, S. Menin1, C. Ricci1, A. Scipioni1, C. Blasetti-Fantauzzi1, A. Giaccar1, E. Salomone1, A. Lapolla1, M. Mori1, G. Aldini1, F. Pugliese1, G. Pugliese2; 1Department of Clinical Sciences, La Sapienza University, Rome, 2Department of Endocrinology, Catholic University, Rome, 3Department of Medical and Surgical Sciences, University of Padua, Padua, 4Institute of Pharmaceutical and Toxicological Chemistry, University of Milan, Italy.

Background and aims: The advanced glycation end products (AGEs) are believed to participate in the pathogenesis of diabetic nephropathy by causing both direct modification of enzymatic activity, ligand binding, half-life and immunogenicity of proteins and receptor-mediated pro-inflammatory and pro-fibrotic effects. The endogenous dipeptide L-carnosine was shown to act as a quencher of reactive carbonyl AGE precursors. However, in humans, it is rapidly inactivated by carnosinase. The carnosinase-resistant compound D-carnosine (DC) have shown high activity, selectivity and plasma stability. Preliminary studies from our group have demonstrated that DC is effective in attenuating high fat diet-induced atherosclerosis in ApoE null mice. This study was aimed at evaluating the efficacy of DC in preventing diabetic nephropathy in db/db mice.

Materials and methods: Adults (aged 6 weeks) male db/db mice and the corresponding db/m controls were treated with a DC derivative (60 mg/kg body weight in the drinking water; Flamma S.p.A.) or vehicle for 14 weeks. At the end of this period, urines were collected for assessment of proteinuria, then mice were killed and both kidneys were sampled. Glomerular sclerosis index (GSI) was assessed semiquantitatively, then mean glomerular area (% of glomerular area) were also significantly reduced (P<0.001) in DC-treated db/db mice, as compared with untreated animals. Glomerular staining for HNE adducts (5.6 ± 2.7 vs. 13.5 ± 2.8 % of glomerular area) as well as for the extracellular matrix proteins fibronectin (11.7 ± 2.6 vs. 19.7 ± 1.8 % of glomerular area) and collagen IV (13.2 ± 3.4 vs. 24.6 ± 3.1 % of glomerular area) were also significantly reduced (P<0.001) in DC-treated vs. untreated db/db mice. The mRNA expression levels of F4/80, CXCR3, MCP-1, TNF-α, CHOP, and the AGE receptors RAGE, galectin-3 and CD36 were also significantly lower in db/db mice treated with DC. Finally, serum AGE, pentosidine, PCOs, and isoprostane-8-epi-PGF2α were measured by ELISA, pentosidine by HPLC and total carbonylated proteins (PCOs) by slot blot immunosay.

Results: DC treatment induced a significant attenuation of renal disease in db/db mice, whereas it did not influence renal structure in db/m control animals. Proteinuria (%), GSI (%), mGA (3.22 ± 0.27 vs. 3.52 ± 0.21 µm x104), mGF (137.5 ± 10.1 vs. 157.2 ± 13.7 µm x104), mMA (428.0 ± 82.5 vs. 588.5 ± 48.7 µm2) and mMA (13.2 ± 1.8 vs. 16.8 ± 1.7%) decreased significantly (P<0.001) in DC-treated db/db mice, as compared with untreated animals. Glomerular staining for HNE adducts (5.6 ± 2.7 vs. 13.5 ± 2.8 % of glomerular area) as well as for the extracellular matrix proteins fibronectin (11.7 ± 2.6 vs. 19.7 ± 1.8 % of glomerular area) and collagen IV (13.2 ± 3.4 vs. 24.6 ± 3.1 % of glomerular area) were also significantly reduced (P<0.001) in DC-treated vs. untreated db/db mice. The mRNA expression levels of F4/80, CXCR3, MCP-1, TNF-α, CHOP, and the AGE receptors RAGE, galectin-3 and CD36 were also significantly lower in db/db mice treated with DC. Finally, serum AGE, pentosidine, PCOs, and isoprostane-8-epi-PGF2α levels were lower in DC-treated vs. untreated db/db mice.

Conclusion: These data show that DC is effective in reducing carbonyl reactive species and preventing renal injury in db/db mice, thus suggesting that carbonyl stress plays a major role in diabetic nephropathy and that DC derivatives might be useful for treatment of this complication.

107

Glucagon like peptide-1 agonist, exendin-4, exerts anti-inflammatory effect on macrophage and glomerular endothelial cell through inhibition of NF-κB

Background and aims: Glucagon like peptide-1 (GLP-1) is known to have various extrapancreatic effects in addition to enhancement of insulin secretion. We have recently shown the renoprotective effects of exendin-4 through anti-inflammatory effects. Exendin-4 suppressed macrophage infiltration, expression of ICAM-1 and type IV collagen and oxidative stress independent of blood glucose lowering actions in diabetic rats. In addition, we have demonstrated that GLP-1 receptor is expressed on glomerular endothelial cells and monocytes/macrophages. The aim of this study is to clarify the mechanism for the protective effects of exendin-4 against diabetic nephropathy.

Materials and methods: Five-week old male Sprague-Dawley rats were divided into four groups: non-diabetic; ND, non-diabetic rats treated with exendin-4; ND+EX, diabetic rats without treatment; DM, diabetic rats treated with exendin-4; DM+EX. Rats were administered intraperitoneally with exendin-4 (10µg/kg/day, ND+EX and DM+EX) or vehicle (ND and DM) every day for 8 weeks. To investigate the mechanisms of anti-inflammatory effects of exendin-4, we evaluated the nuclear factor-κB, p65DNA binding activity in the kidney, which is one of the most important transcription factors regulating both inflammation and oxidative stress. In addition, to direct effects, exendin-4 on macrophages and endothelial cells, we examined pro-inflammatory cytokine expressions (TNF-α and IL-1β mRNA) in THP-1 cells by 15mM high glucose for 72 hours and ICAM-1 mRNA expression in human glomerular endothelial cells by 100µg/ml TNF-α for six hours. Furthermore, to confirm whether the effects of GLP-1 directly acted on GLP-1 receptor, we used the GLP-1 receptor antagonist.

Results: The activation of NF-κB p65DNA binding activity in the renal cortex was significantly enhanced in DM group compared with non-diabetic groups. Exendin-4 treatment significantly inhibited the NF-κB p65 DNA binding activity. Stimulation with high glucose enhanced gene expression of TNF-α and IL-1β mRNA in THP-1 cells by 15mM high glucose for 72 hours and ICAM-1 mRNA expression in human glomerular endothelial cells by 100µg/ml TNF-α for six hours. Furthermore, to confirm whether the effects of exendin-4 directly acted on GLP-1 receptor, we used the GLP-1 receptor antagonist.

Conclusion: The current results indicate that exendin-4 suppresses the activation of NF-κB in diabetic kidney. Exendin-4 directly acts on GLP-1 receptors and down-regulates the expression of cytokines and ICAM-1 on macrophage and glomerular endothelial cell. Exendin-4 may exert protective effects against diabetic nephropathy by inhibition of the interaction between macrophages and glomerular endothelial cells which promotes inflammatory process.

Supported by: Scientific Research from the Ministry of Education, Science, Culture, Sport

108

Altered expression profiles of microRNA in the glomeruli of diabetic mice

T. Takatsuka, K. Shikata, R. Kodera, H. Kataoka, S. Miyamoto, D. Hirota, N. Kajitani, C. Sato, H. Makino; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Japan.

Background and aims: The postulated mechanism in the development of diabetic nephropathy involves several factors including protein kinase C activation, TNF-α, AGE, oxidative stress and microinflammation which were induced by long-term exposure to high glucose. However, the therapeutic strategy for diabetic nephropathy has not fully developed, thus, more detailed molecular mechanism in the pathogenesis of diabetic nephropathy and new treatment are still desired. The microRNAs, short non-coding RNAs of 21 to 23 nucleotides, have recently been shown to play an important role on biological process, including development, differentiation and proliferation, in various types of cells. We examined microRNA expression profile in renal glomeruli of diabetic mice to clarify the pathogenesis and find a novel therapeutically target of diabetic nephropathy.
Eight-week-old male C57BL/6J mice were used. Albuminuria and renal impairment are two main manifestations of renal disease which are not entirely linked in patients with type 2 diabetes (T2D). The aim of this cross-sectional study was to identify the prevalence of non-albuminuric renal impairment in type 2 diabetic patients and to examine the clinical characteristics associated with non-albuminuric renal impairment. The majority of type 2 diabetic patients with renal impairment have non-albuminuric renal disease - the Swedish National Diabetes register (NDR) background and aims: Reliable estimates of the quality of life impact of diabetes related complications are important for researchers conducting trial-based and model-based evaluations of the cost-effectiveness of interventions. Previous estimates based on a cross-sectional study of patients enrolled in the UKPDS have been widely used. Here we report updated results drawing on the UKPDS Post Trial Monitoring Study, which allows us to greatly extend follow-up, examine a larger number and wider range of complications, and compare cross-sectional results with those from repeated measures of quality of life over time.

Materials and methods: Quality of life was measured using the EuroQol EQ-5D instrument, which was administered in 1996/7 and again annually over the period 2002-8 to all remaining participants in the study. We estimated the immediate and long term impact on quality of life of myocardial infarction, ischaemic heart disease, stroke, heart failure, amputation, renal failure, blindness in one eye, retinal photocoagulation, cataract extraction and vitreous haemorrhage, controlling for age, sex and diabetes duration. We also compared different methods of estimating these effects.

Results: A total of 4267 UKPDS patients were administered one or more EQ-5D questionnaires. The average number of questionnaires completed was 3.4 and the maximum was 7. Approximately 49% of respondents only answered the questionnaire once. 1425 patients died between 1997 and 2008. The response rate of fully completed questionnaires varied from 68% to 74%. Compared with our original study, many more complications were available for analysis: for example, in our data set the total number of myocardial infarctions increased from 203 in the first questionnaire to 371 across all rounds, the number of amputations from 21 to 89, blindness to one eye from 93 to 197 and stroke from 60 to 171. Mean quality of life was seen to decline from 0.77 at the first questionnaire in 1996/7 to 0.64 in the last questionnaire in 2007/8. This was related to the increasing age of patients over time (62 at first questionnaire compared with 72 at final questionnaire), and an increasing proportion of patients with a history of complications (27% at first questionnaire compared with 55% at last questionnaire). For those without complications of any sort the average utility across questionnaires was 0.74, compared with 0.66 for those with a history of myocardial infarction, 0.46 with amputation, 0.60 with blindness in 1 eye and 0.53 with stroke.

Conclusion: This paper reports new results from the UKPDS on the quality of life impact of a range of diabetes related complications. These suggest that complications have substantial and long-lasting effects on patient quality of life. The results are based on well-validated patient history and adjudicated complications data from a landmark diabetes study, and should be useful in estimating more accurately the outcome of interventions that reduce these complications.

Supported by: UK MRC project grant on Disease Modelling

The majority of type 2 diabetic patients with renal impairment have non-albuminuric renal disease - the Swedish National Diabetes register (NDR)
minuric renal impairment in a large nation-wide population-based diabetes register.

Materials and methods: 62,661 patients with T2D aged 30-80 years with complete datasets on albumin excretion, renal function (serum creatinine) and clinical characteristics reported to the Swedish National Diabetes Register in 2008 were included. Albuminuria was defined as urinary albumin excretion rate > 20 µg/min and renal impairment as estimated glomerular filtration rate eGFR < 60 ml/min/1.73 m² according to MDRD. Logistic regression analyses for clinical and biochemical variables with renal impairment with or without albuminuria as dependent variable were performed. Adjusted odds ratios were calculated and continuous variables were increased per one standard deviation. 95% confidence intervals are given.

Results: 15% of all patients had renal impairment (n=9,308). Among patients with renal impairment 56% were non-albuminuric and 42% were albuminuric. In a multivariate analyses patients with non-albuminuric renal impairment had significantly and independently shorter diabetes duration (adj OR 0.73, 95% CI 0.70-0.76), higher total cholesterol (1.05; 1.01-1.10), lower levels of triglycerides (0.83; 0.80-0.87), lower systolic blood pressure (0.83; 0.78-0.84), better glyemic control (HbA1c%) (0.86; 0.82-0.91), lower BMI (0.88; 0.84-0.93) and were more often female and non-smoking as compared with patients with albuminuric renal impairment.

Conclusion: The majority of patients with type 2 diabetes and renal impairment have non-albuminuric renal disease. Distinct sets of risk factors were associated with the presence or absence of albuminuria, patients with non-albuminuric renal impairment exhibiting less features of the "metabolic syndrome". Non-albuminuric renal impairment could partly be explained by the use of renin angiotensin system inhibitors but our results also support the concept of different underlying pathophysiology mechanisms. Development of markers and methods for a more accurate estimation of renal function in T2D patients without albuminuria is important for screening, follow-up and treatment of these patients.

111

Risk of progression of nephropathy in a population-based sample with type 2 diabetes

1The Center for Health Research, Kaiser Permanente Georgia, Atlanta, GA; 2The Center for Health Research, Kaiser Permanente Northwest, Portland, OR; 3Evidence Based Medicine, Novartis Pharmaceuticals Inc., East Hanover, NJ, USA.

Background and aims: Progression through stages of nephropathy has not been well described in a large, well-characterized, population-based study. Estimates of the public health burden of nephropathy may be different in such a population. Our aims were to describe the progression of nephropathy and identify demographic and clinical characteristics associated with progression in a U.S. population-based sample.

Materials and methods: We identified 11,562 members of a managed care organization who had hypertension and type 2 diabetes, a urine albumin-to-creatinine ratio (UACR) measurement in 2001-2003, and at least 1 follow-up UACR. Baseline nephropathy stage was defined as normal albumin (UACR ≤3.4 mg/mmol), microalbuminuria (3.4-33.9 mg/mmol), and macroalbuminuria (≥33.9 mg/mmol). We searched records through 2008 for progression from baseline to a higher stage of nephropathy including ESRD.

Results: Mean age was 59.4±11.3 years; 49.8% were male, 17.5% African-American, and mean A1C was 8.1%. At baseline, 59% had normal albumin, 30% had microalbuminuria, and 11% had macroalbuminuria. The incidence of nephropathy progression (per 1000 person-yrs) was 59.4±11.3 years; 49.8% were male, 17.5% African-American, and mean A1C was 8.1%. At baseline, 59% had normal albumin, 30% had microalbuminuria, and 11% had macroalbuminuria. The incidence of nephropathy progression (per 1000 person-yrs) was 94.6, 44.1, and 6.7 for normal albumin, micro-, and macro- albuminuria, respectively. The high rates of progression of nephropathy among those with normal albumin demonstrated that 68% of all patients had developed micro- or macro- albuminuria by the end of follow-up. Most patients received antihypertensive therapy; ACEi/ARB use ranged from 61-67%, except among patients with macroalbuminuria at follow-up. Age, diabetes duration, and A1C were significant predictors of progression.

Conclusion: Our study, one of the first to examine the progression of nephropathy in a U.S. population-based sample, showed that among adults with diabetes and hypertension, the lifetime risk of nephropathy and its progression may be greater than previously reported. Further, the use of ACEi/ARBs to slow and/or prevent the progression of nephropathy may be underutilized.

Figure. Prevalence of Nephropathy and Progression to Subsequent Stages

Type 2 Diabetes Patients with Hypertension (n=1,1,562)

- **Prevalent Normal Albumin** (n=6,853)
- **Progressed to Microalbuminuria** (n=2,116)
- **Progressed to Macroalbuminuria** (n=1,217)

- **Prevalent Microalbuminuria** (n=2,492)
- **Progressed to Macroalbuminuria** (n=504)
- **Progressed to ESRD** (n=14)
- **Progressed to ESRD** (n=55)

Supported by: Novartis Pharmaceuticals Inc.

112

Prospective association of B-type natriuretic peptide with left ventricular systolic and diastolic function in individuals with and without type 2 diabetes - the Hoorn Study

M.H. Kroon', K. van den Hurk', M. Alsema', O. Kamp', C.D.A. Stehouwer', R.M.A. Henry', M. Diamant', F. Boomsma', G. Nijpels', W.I. Paulus', J.M. Dekker'; 1EMGO Institute for Health and Care research, VU Medical Center, Amsterdam, 2Department of Cardiology, VU Medical Center, Amsterdam, 3Department of Internal Medicine, AZM, Maastricht, 4Department of Endocrinology, Diabetes Center, VU Medical Center, Amsterdam, 5Department of Internal Medicine, Erasmus Medisch Center, Rotterdam, 6Department of Physiology, VU Medical Center, Amsterdam, Netherlands.

Background and aims: Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of developing heart failure (HF). Higher plasma B-type natriuretic peptide (BNP) in a non-heart failure range predicts HF and CVD mortality and is associated with T2DM. We aimed to investigate prospectively in a population based cohort the association of BNP levels in a non heart failure range with left ventricular (LV) mass, LV systolic function, and LV diastolic function in individuals with and without T2DM.

Materials and methods: In the Hoorn Study, a population-based prospective cohort study, plasma BNP (pmol/l) was determined at baseline. A 2D echocardiogram was made at baseline and after 8 years of follow-up to measure LV mass index (LVMI, g/m²), ejection fraction (EF %, systolic function) and left atrial volume index (LAVI, ml/m², diastolic function). Participants with atrial fibrillation, wall movement abnormalities and moderate or severe aortic or mitral valve disease were excluded. Linear regression analyses, adjusted for gender, age, baseline heart function, use of antihypertensive medication, BMI and heart rate were performed to investigate the association of BNP with LVMI, LV systolic and diastolic function. In case of significant effect modification (p<0.10), we reported the regression coefficients for individuals with and without T2DM separately.

Results: Of the 796 individuals of whom echocardiograms at baseline were present, 441 (55%) attended the follow-up examination (baseline age 66 years, 34% T2DM). Increase in LVMI was greater in those with higher baseline BNP (Table 1). The association was stronger in patients with T2DM, and in non-T2DM the association was explained by baseline LVMI, BMI and use of antihypertensives, in T2DM the association was independent. Regardless of T2DM, a 10 pmol/l higher baseline BNP was associated with a 2.7% lower EF and a 5.0 ml/m² higher LAVI at follow-up.

Conclusion: This study shows that BNP levels are prospectively associated with LV diastolic and systolic function and that there is a strong association between BNP levels in a non-heart failure range and LVMI for individuals with T2DM and not for those without.
Table 1: Coefficients (95% CI) per 10 pmol increase of baseline BNP for LVMI, EF and LAVI (follow-up)

<table>
<thead>
<tr>
<th>LVMI (g/m²)</th>
<th>non-T2DM (n = 161)</th>
<th>T2DM (n = 86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude model</td>
<td>5.7 (-0.03 - 11.5)</td>
<td>25.1 (11.0 - 39.3)*</td>
</tr>
<tr>
<td>adjusted for gender and age</td>
<td>6.5 (1.9 - 11.9)*</td>
<td>26.3 (11.4 - 41.2)*</td>
</tr>
<tr>
<td>+ adjusted for baseline LVMI, antihypertensives, BMI and heart rate</td>
<td>11.1 (-4.6 - 6.8)</td>
<td>29.1 (13.6 - 44.6)*</td>
</tr>
</tbody>
</table>

EF (%, LV systolic function) Total population (n = 235)

Crude model: -2.3 (-4.4 - - 0.1)*
adjusted for gender and age: -2.3 (-4.5 - - 0.1)*
+ adjusted for baseline EF, antihypertensives, BMI and heart rate: -2.7 (-4.9 - - 0.4)*

Supported by: The Dutch Diabetes Research Foundation and Novartis Pharma BV

113

Arterial stiffness is prospectively associated with left ventricular diastolic function in individuals with and without type 2 diabetes - The Hoorn Study

1Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam;
2Department of Cardiology, VU University Medical Center, Amsterdam;
3Department of Internal Medicine, Maastricht University Medical Centre, Maastricht;
4Department of Internal Medicine, VU University Medical Center, Amsterdam;
5Department of General Practice, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam;
6Department of Physiology, VU University Medical Center, Amsterdam, Amsterdam, Netherlands.

Background and aims: Left-sided heart failure (HF), especially with a normal ejection fraction, is common with type 2 diabetes (T2DM), but the underlying mechanisms remain controversial. Arterial stiffness is suggested as a potential cause of HF. We investigated whether arterial stiffness was prospectively associated with a higher left ventricular (LV) mass and worse LV diastolic function and whether this differed in individuals with or without T2DM.

Materials and methods: In the Hoorn Study, a population-based cohort study of diabetes, echocardiography and arterial ultrasonography was performed in 2000 and 2008. Linear regression analyses were performed to investigate associations of carotid, brachial and femoral artery distensibility coefficients (DC, arterial stiffness) with LV mass index (LVMI, g/m²) and left atrial volume index (LAVI, ml/m², LV diastolic function). Individuals with moderate or severe mitral or aortic valve disease, or tachycardia (heart rate ≥ 90 bpm) were excluded. Analyses were adjusted for age, sex, BMI, and baseline value of the outcome. Influence of T2DM or medication use was investigated by stratified analyses.

Results: Of the 796 individuals of whom echocardiograms at baseline were present, 441 (baseline age 66 years, 34% T2DM of whom 80% were newly diagnosed) attended the follow-up. Non-attendants were older, had lower DCs and higher LVMI and LAVI as compared to attendees. In crude analyses, femoral and carotid DC were significantly associated with LVMI, however this was explained by age and sex differences. Associations between DCs and LAVI were not different for individuals with or without T2DM (p for interaction >0.10). Individuals with T2DM had at baseline already lower DCs and higher LAVI compared to those without T2DM. In individuals who did not use lipid or glucose lowering medication, every 10⁻³ kPa⁻¹ lower baseline brachial and femoral DC was independently associated with a 0.41 (95% CI: 0.14 - 0.67) or 0.68 (0.12 - 1.23) ml/m² higher LAVI, respectively. Associations adjusted for mean arterial pressure were 0.36 (0.09 - 0.63) and 0.57 (-0.01 - 1.14, NS) ml/m² higher LAVI per 10⁻³ kPa⁻¹ lower DCs. The associations were absent in those who used glucose and/or lipid lowering medication. Further adjustments for HbA₁c, heart rate, LVMI, systolic BP or use of antihypertensive medication did not change our results.

Conclusion: Arterial stiffness was prospectively associated with a worse LV diastolic function, regardless of T2DM. These associations were only partly explained by mean arterial pressure. Because individuals with T2DM commonly have stiffer arteries than those without T2DM, our finding indicates that arterial stiffening might be one of the causes of a worse LV diastolic function in individuals with T2DM.

114

Natural course of glucose effectiveness in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study

C. Lorenzo1, L.E. Wagenknecht2, A.J. Karter3, A.J.G. Hanley4, J.M. Norris4, S.M. Haffner5, O. Kamp6; 1Medicine, University of Texas Health Science Center, San Antonio; 2Wake Forest University School of Medicine, Winston-Salem; 3Kaiser Permanente, Northern California Region, Oakland, USA; 4Nutritional Sciences and Medicine and Leadership Sinai Centre for Diabetes, Mt Sinai Hospital and University of Toronto, Canada; 5Department of Epidemiology, Colorado School of Public Health. University of Colorado Denver, Aurora; 6Medicine, Baylor College of Medicine, Houston, USA.

Background and aims: Disposition index (DI), the product of insulin sensitivity and secretion, decreases as glucose tolerance status deteriorates. Glucose effectiveness (Sₑ), the ability of glucose to enhance its own cellular uptake and to suppress endogenous glucose production, is also a risk factor for type 2 diabetes, but the natural course of Sₑ is not well characterized. Thus, we examined the natural course of Sₑ relative to that of DI in participants in the Insulin Resistance Atherosclerosis Study (IRAS).

Materials and methods: DI and Sₑ were measured in 923 IRAS participants aged 40 - 69 years (Hispanics, non-Hispanic whites, and African Americans) by the frequently sampled intravenous glucose tolerance test. DI and Sₑ were also measured using the same protocol at the 5-year follow-up examination. DI was expressed as the product of insulin sensitivity index and acute insulin response. Normal glucose tolerance (NGT), impaired glucose tolerance (IGT), impaired glucose tolerance (IGT), and diabetes were defined by the 1999 World Health Organization criteria. Individuals treated with glucose-lowering medications were excluded.

Results: At baseline, Sₑ was 1.97 ± 0.03 in individuals with NGT, 1.53 ± 0.05 in those with IGT, and 1.48 ± 0.03 in 10⁻³ min⁻¹ in diabetic participants (p<0.001). Corresponding values of DI were 103.6 ± 5.4, 27.8 ± 2.4, and 5.2 ± 0.6 x 10⁻³ min⁻¹. μU⁻¹·ml⁻¹ per μU/ml (p<0.001). Sₑ was directly related to DI (r = 0.40, p <0.001) by the Spearman’s rank test after controlling for age, sex, race/ethnicity, and center. During the follow-up period, DI decreased in all glucose tolerance categories except in individuals who had IGT at baseline and NGT at follow-up (Figure). In individuals with NGT at baseline, the decrease in DI (adjusted for baseline DI) was directly related to worsening of glucose tolerance status during the follow-up period (p<0.001). Similar results were observed in individuals with IGT at baseline (p<0.001). Sₑ also decreased with time in all categories but in participants with NGT who had no change of status and in those with IGT whose status improved. In individuals with NGT at baseline, the decrease of Sₑ (adjusted for baseline Sₑ) was directly related to worsening of glucose tolerance status during the follow-up period (p<0.001); however, results were not statistically significant in those with IGT at baseline (p=0.075).

Conclusion: Failure to maintain DI and Sₑ results in worsening of glucose tolerance status.
S5 and DI by baseline and follow-up glucose tolerance status

Supported by: HL-47887, HL-47889, HL-47890, HL-47892, HL-47902, M01 RR431, M01 RR01346

OP 20 Diabetic foot - mechanisms and treatment

115

RANKL/OPG signalling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy

A. Ndip1,2, Y.M. Alexander3, A. Williams1, E.B. Jude1,2, A.J.M. Boulton1,2,*
1Department of Medicine and Diabetes, Manchester Diabetes Centre, 2Cardiovascular Research Group, The University of Manchester, 3Diabetes Centre, Tameside General Hospital, Ashton-Under-Lyne, United Kingdom.

Background and aims: Patients with Charcot neuroarthropathy (CN), display a paradoxical coexistence of medial arterial calcification (MAC) and osteolysis, with the suggestion of a key role for RANKL/OPG signalling. We aimed to study the potential mechanisms of RANKL/OPG-mediated vascular calcification in CN.

Materials and methods: Serum was obtained from 12 patients with acute CN, 10 patients with diabetes and 5 non-diabetic controls. Arterial segments were obtained from patients undergoing lower limb amputation and were fixed, sectioned and stained with Alizarin red and primary human RANK-L antibody. Human vascular smooth muscle cells (VSMCs) were explanted from the same arterial segments for subsequent cell culture experiments.

Results: Using Bioplex multi-array technology and ELISA bioassays, we demonstrated: i), higher serum OPG (8.2±2.7 vs 7.7±3.3 vs 4.2±0.4 pM, p=0.031); ii), higher RANKL/OPG ratio (36.8±43.1 vs 5.2±4.9 vs 4.6±3.1 pM/pM, p=0.033); iii), higher inflammatory cytokines IL-8 (p<0.0001) and G-CSF (p=0.002); and iv), a trend towards higher RANKL (0.32±0.42 vs 0.04±0.05 vs 0.02±0.01 pM, p=0.054) in CN compared to diabetic and non-diabetic controls respectively. Cultured VSMCs displayed accelerated osteoblastic differentiation confirmed by Alkaline phosphatase activity (µM phosphate/mg protein/min) in the presence of serum from CN patients (49.9±7.3µM) compared to diabetic serum (29.8±3.7µM, p=0.012), control serum (17.6±10.1, p=0.011) or osteogenic medium (OM) controls (15.3±5.4µM, p=0.003). Cultured VSMCs also displayed increased mineralisation after Alizarin red staining and dye elution in Charcot serum (OD units, 0.16±0.01, p=0.0003); diabetes serum (0.15±0.01, p=0.0004); and marginally higher in 'Healthy' serum (0.14±0.03, p=0.04) compared to OM controls (0.09±0.003). Mineralisation and differentiation of VSMCs induced by Charcot serum were significantly attenuated (p=0.018 and p=0.004 respectively) when co-incubated with OPG, the decoy receptor for RANKL signalling. Immunohistochemical analysis of arterial sections showed positive RANKL expression within the vicinity of MAC compared to control non-calcified sections.

Conclusion: These data demonstrate that in humans, RANKL/OPG signalling is modulated and implicated in MAC and in CN, thus suggesting that anti-RANKL therapy may be therapeutic in acute CN or could have potential preventative value in recurrent CN.

116

Role of osteoprotegerin (OPG) in predicting development of foot ulcer and loss of foot pulse in type 1 diabetic patients with and without diabetic nephropathy

M. Lajer1, A. Jorsal1, L. Tarnow1, L.M. Rasmussen2, H.-H. Parving3, P. Rossing2,*
1Steno Diabetes Center, Gentofte, 2Dep. of Biochemistry, Pharmacology and Genetics, University Hospital of Odense, 3Dep. of Biochemical Endocrinology, Rigshospitalet, University Hospital of Copenhagen, *Faculty of Health Science, University of Aarhus, Denmark.

Background and aims: The bone-related peptide osteoprotegerin is produced by vascular cells and is involved in the process of vascular calcification previously shown to predict mortality and cardiovascular events. We investigated the predictive value of plasma OPG in relation to foot complications in patients with type 1 diabetes (T1DM) with and without diabetic nephropathy.

Materials and methods: Prospective observational follow-up study of 397 type 1 diabetic patients with overt diabetic nephropathy (243 men; age [mean ± SD] 42.1 ± 10.6 years, duration of diabetes 28.3 ± 9.9 years, GFR 67 ± 28 ml/min/1.73 m²) and a control group of 176 patients with longstanding type 1 diabetes and persistent normoalbuminuria (105 men; age 42.6 ± 9.7 years, duration of diabetes 27.6 ± 8.3 years). p-OPG was measured by ELISA.

Results: During the 12 (0-15) years (median [range]) of follow-up, 107 (40%) with OPG levels above the median vs. 76 (27%) below developed a foot ulcer,
117
The diabetic foot in Germany: analysis of quality in specialised diabetic foot care centres

R. Lohmann1, E. Müller1, C. Grüne2, J. Kersken;
1Endocrinology, Diabetes and Geriatrics, Stuttgart General Hospital and Medical School, 2General Practitioner and Diabetologist, Bernkastel-Kues, 3Mathias-Spital und Jakobi-Hospital, Rheine, Germany.

Background and aims: The German Working Group on the Diabetic Foot developed certification requirements for diabetic foot centres. These certification requirements established procedures by which specialised centres for the treatment of the diabetic foot syndrome could verify their management quality. In addition, this certification fulfills the demands of the 2006 IDF Global Guideline for Type 2 Diabetes. The aim was to establish comparable diabetic foot centers with clearly defined treatment structures.

Materials and methods: Conditions for the certification are quality parameters of the facility’s structure, treatment procedures and patient outcomes. Structural quality was based on the qualifications of staff, the facility’s spatial conditions and a minimum provision of equipment. Staff members of certified centres must visit each other. Also assessed are the application of available guidelines and documentation systems, the establishment of a multidisciplinary team approach between the facility’s staff and other experts involved. For the evaluation, each centre documented 30 consecutively seen individuals with diabetic foot lesions. An evaluation of the outcomes was performed 6 months after the initial presentation. All parameters are checked, presented and benchmarked in an open session of the working group.

Results: Data from 428 certified and re-certified centres are presented and a total of 12606 individuals were evaluated. At the 6-month follow-up assessment, more than half of the lesions were completely healed (58%). The results of the evaluation indicate a low level of major (above-ankle) amputations compared with the expected amputation rates in Germany (nearly 10-15%).

Data given in %

<table>
<thead>
<tr>
<th>Year</th>
<th>Major-Amputation</th>
<th>Minor-Amputation</th>
<th>Died</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3.9</td>
<td>19</td>
<td>4.6</td>
</tr>
<tr>
<td>2006</td>
<td>3.9</td>
<td>24</td>
<td>5.4</td>
</tr>
<tr>
<td>2007</td>
<td>3.6</td>
<td>20.1</td>
<td>5.1</td>
</tr>
<tr>
<td>2008</td>
<td>2.9</td>
<td>18.8</td>
<td>4.7</td>
</tr>
<tr>
<td>2009</td>
<td>2.7</td>
<td>16.7</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Conclusion: These data represent the first analyses of the treatment outcomes of diabetic foot lesions in specialised centres in Germany over a time period of 5 years. The data reflect a lower rate of major and minor amputations in specialist centres compared with the available epidemiological data for Germany as a whole. This analysis presents the first German data collected using defined standards that include amputation rate and mortality in the treatment of the diabetic foot in specialist centres. The established structures are appropriate to show consistent low rates of amputations over several years.

Supported by: the European Commission

118
Acute antimicrobial effect of maggot therapy on diabetic foot ulcer infection as a basis for identification of antimicrobial peptides from maggots

R. Ben1, A. Jirkovská1, V. Fejfarová1, M. Dubský1, J. Skibová1, V. Čeřovský1;
1Diabetes Centre, Institute for Clinical and Experimental Medicine, 2Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic.

Background and aims: The treatment of infected diabetic foot ulcers (DFU) is often complicated by emergence of antibiotic resistance; maggot debridement therapy (MDT) may be helpful in overcoming this problem. Antimicrobial effect of MDT and stimulation of immune response were proven in vitro. The aim of our study was to assess the antimicrobial effect of MDT on different strains of bacteria in a 5-year cohort of patients with infected DFU as a basis for identification of antimicrobial peptides from maggots.

Materials and methods: 91 patients with infected DFU treated in our diabetic foot clinic were enrolled in the present study between January 2005 and February 2010. Sterile free-range larvae of the green bottle fly Lucilia sericata were applied to the ulcers for 3-5 days (5-10 larvae per cm²). Swabs or tissue samples were taken from deep structures of the wound after debridement. Specimens for culture were obtained immediately before and after MDT; control specimens were taken 10-13 days after the end of MDT. The individual bacterial species in positive swabs were identified by standard microbiological methods and microorganisms were categorized by Gram staining. MDSA was identified according to positive test for mec gene. High-performance liquid chromatography, mass spectrometry and Edman degradation were used for identification and isolation of antimicrobial peptides.

Results: The mean duration of MDT was 3.6±0.4 days. There was a significant elimination of majority of bacteria immediately after MDT: MRA (21/91 vs. 5/91; p<0.001), Enterococcus sp. (36/91 vs. 15/91; p<0.001), Staphylococcus coagulase negative (21/91 vs. 7/91; p<0.001), Streptococcus sp. (6/91 vs. 0/91; p<0.001), Escherichia coli (13/91 vs. 5/91; p<0.02), Proteus sp. (13/91 vs. 5/91; p<0.01) and Klebsiella sp. (12/91 vs. 5/91; p<0.01). Antimicrobial effect persisted 10±3 days after cessation of MDT for all these strains of bacteria (all p<0.02). MDT was ineffective against Pseudomonas sp. (12/91 vs. 9/91; NS) and Acinetobacter sp. (6/91 vs. 4/91; NS). Antimicrobial peptide named lucifensin was identified from maggots after MDT of infected DFU and the primary sequence of this peptide was determined. In vitro, lucifensin was effective against Staphylococcus aureus PS 3A, PS 77, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Rhodococcus sp., but was ineffective against Escherichia coli and Pseudomonas aeruginosa. There was some correspondence between in vitro assessed antimicrobial effect of lucifensin and clinical effect of MDT.

Conclusion: Our study demonstrated that MDT acutely eliminated most of the Gram-positive including MRA and Gram-negative strains in patients with infected DFU, but was ineffective against Pseudomonas sp. and Acinetobacter sp. The insect defensin designated lucifensin was isolated from maggots as a promising antimicrobial peptide.

Supported by: MZC 00023001

119
A double blind randomised controlled trial of the efficacy of solubilised beta-1,3/1,6 glucan in the management of chronic foot ulcers in diabetes

W.J. Jeffcoat1, P.E. Price2, L. Mudge2, B. Olausen3, F.L. Gane4;
1Diabetes and Endocrinology, Nottingham University Hospitals Trust, 2School of Health Care Studies, Cardiff University, United Kingdom, 3Clinical Development, Biotec Pharmacon ASA, Tromso, Norway.

Background and aims: Beta-glucans from a variety of non-animal sources have been shown to have immuno-modulatory effects in animals and humans, partly by being recognised by the Dectin-1 receptor and partly by a specific interaction with complement receptor 3 - both of which are present on mammalian phagocytic cells, including neutrophils and macrophages. It is therefore possible that the administration of a beta-glucan such as solubilised beta-1,3/1,6-glucan (SBG) might improve the healing of chronic wounds in diabetes through such an action. Since an earlier small open label pilot study and a double blind phase II study of SBG had suggested benefit, this trial was designed as a Phase III study.

Materials and methods: Patients with diabetes and full-thickness foot ulcers present for >4 weeks but less than 2 years, and of area between 25mm² and 500 mm², were randomised 1:1 to have either 2% aqueous SBG applied or...
matching methyl cellulose placebo applied to their wounds on two or more occasions each week for 8 weeks. Those with active, infected wounds, without palpable foot pulses or with ABPI <0.7 were excluded. The primary outcome measure was healing within 8 weeks. Secondary outcomes included time to healing, breakdown of healed ulcers within 12 weeks, change in ulcer area, safety, patient well-being and satisfaction (EQ-5D, Cardiff Wound Impact Schedule).

Results: 122 patients (mean age 58.5y; 76.2% male) in 10 UK centres were randomised with 67 (54.9%) in the SBG group; the demographic and baseline characteristics of the two groups were comparable. Eight (3 SBG, 5 placebo) withdrew because of adverse event (5), death (1) or protocol violation (2). There was no difference in numbers healing within 8 weeks in the two groups (31.3% SBG versus 32.7% placebo;ITT p=0.87 CMH test). There was similarly no difference in time to healing in those that healed (ITT p=0.84, stratified log rank), or in change in ulcer area (ANCOVA p=0.45). There was no difference in change in local pain, or in EQ-5D and CWS scores. 17.9% ulcers recurred within 12 weeks of complete healing, but there was no difference between groups (p=0.062 CMH). The majority of adverse events were mild or moderate in severity and unrelated to treatment.

Conclusion: We were unable to confirm the superiority of SBG versus placebo in terms of both primary and secondary endpoints in this study.

120 Comparison of healing of ischaemic diabetic foot ulcers after stem cell therapy or percutaneous transluminal angioplasty

M. Dubský1, A. Jirkovská1, R. Rem1, L. Pagacova1, V. Fejfarová1, J. Skibova1, M. Varga1, E. Sykova1; 1Institute for Clinical and Experimental Medicine, 2Institute for Experimental Medicine, Prague, Czech Republic.

Background and aims: Critical limb ischaemia (CLI) is an important prognostic factor for ulcer healing in patients with diabetic foot ulcers (DFU) and often leads to amputations. Treatment of CLI in diabetic patients is generally difficult. Autologous stem cell therapy is a new therapeutic method for patients with CLI while the standard therapy remains percutaneous transluminal angioplasty (PTA) or peripheral vascular by-pass. The aim of our study was to compare healing of DFU in patients treated by stem cell therapy and PTA.

Materials and methods: Ten patients treated by stem cells at our foot clinic between January 2008 and October 2009 were included into the study (SCT group). All patients were diagnosed of CLI (defined by transcutaneous oxygen tension [TcPO2] < 30 mm Hg), ulcer size was between 0.5 and 7 cm2 with Texas classification 1C and 2C, and no signs of acute infection. Stem cell therapy was indicated in patients with persisting ischaemia after standard revascularization. Autologous stem cells were obtained from bone marrow or peripheral blood after stimulation by growth factor and applied into muscles of affected lower limb. Ten patients from our foot clinic with the same inclusion criteria treated by angioplasty (PTA group) during the same period were included into the control group. They did not significantly differ from SCT groups at the end of the study, while hypothalamic P-Akt was basal in LY but increased 2-fold in aCSF (P<0.05). Likewise, hepatic P-STAT3, reported to be correlated to brain insulin signaling can play a role in controlling hepatic glucose production (HGP). However, we previously found in the dog that blockade of insulin signaling in the brain did not impair the suppression of HGP during a physiological elevation of insulin throughout the body. Thus, brain insulin signaling may not regulate HGP in rodent species with lower basal HGP, or alternatively, the effect of hepatic hyperinsulinemia may mask the subtle effects of brain insulin action. To determine the degree to which insulin action in the brain might contribute to inhibition of HGP in the presence of basal insulin and glucagon levels in the dog, insulin was selectively elevated in the blood perfusing the brain.

Materials and methods: Dogs underwent head (carotid and vertebral artery; jugular vein) and liver (femoral artery; portal and hepatic vein) catheterization and a cannula was inserted into the 3rd vertebral (ICV). On the day of the study; at -130 min [3-3H]glucose and somatostatin (to inhibit pancreatic hormone secretion) were infused into a peripheral vein and glucagon and insulin were infused intraperitoneally at basal rates. Following a basal sampling period (-30 to 0 min), artificial cerebrospinal fluid (aCSF; n=7) or the PI3K inhibitor LY29004 (to block brain insulin action; LY; n=8) was infused ICV (0 to 300 min). From 60 to 300 min, the liver insulin level remained clamped at basal while plasma insulin was selectively increased (10-fold) in the head by infusion of the hormone into the carotid and vertebral arteries, coincident with a cessation of portal insulin infusion. Intralipid, heparin and glucose were infused as required to clamp NEFA and glucose at basal. In both groups head insulin (jugular) increased 10-fold, arterial insulin increased 2-fold, and insulin at the liver remained basal. Glucose, glucagon and NEFA remained at basal levels. The change in net hepatic glucose balance between basal and the last hour in the LY and aCSF groups, respectively, was -0.09±0.12 and -0.58±0.27 mg/kg/min (P=0.05). The change in endogenous glucose Ra was -0.17±0.12 and -0.35±0.12 mg/kg/min, respectively. Net hepatic glycochenolytic (NHEGLY) and gluconeogenic flux (GNG) were estimated using net liver balance. Delta NHEGLY was -0.15±0.07 and -0.63±0.23 mg/kg/min (P<0.05) in the two groups, respectively, while delta GNG was 0.06±0.11 and 0.00±0.08 mg/kg/min. Liver P-Akt was basal in both groups at the end of the study, while hypothalamic P-Akt was basal in LY but had increased 2-fold in aCSF (P<0.05). Likewise, hepatic P-STAT3, reported to be increased by brain insulin signaling, was basal in LY but had increased 40% in aCSF (P<0.05). Liver PEPCk gene expression was reduced by 50% when insulin was selectively elevated in the head.

Conclusion: In the absence of an increase in insulin’s direct hepatic effects, insulin signaling in the brain affected gene expression in the liver in a large animal model. HGP tended to be reduced although the effect was small, did not become significant until 2.5 h, and was due to inhibition of net hepatic glycochenolytic. It would appear that the rapid decrease in HGP which normally occurs in response to an increase in insulin secretion in vivo is unrelated to brain insulin signaling.

Supported by: DK18243

122 MCP-1 and chemerin are involved in the regulation of anadamide secretion by human skeletal muscle cells

K. Eckardt1, M. Lehtonen1, B. Platzecker1, A. Schober2, J. Eckel1; 1Inst. of Clin. Biochemistry and Pathochemistry, German Diabetes Center, Duesseldorf, Germany, 2Dep. of Pharm. Chemistry, University of Kuopio, Finland.

Background and aims: Obesity is one of the major components of the metabolic syndrome and associated with increased adipose tissue mass, which is characterised by an alteredsecretion profile. It has been shown that be-
Results: RNA was prepared after 8 h or 24 h incubation and used for qRT-PCR to study the expression of FAAH and the AEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD).

Results: In media obtained from 3 different SKM donors we were able to detect AEA and 2-AG as well as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA). The concentration in media from untreated cells was 1.7±0.08 pmol/l for AEA, 260.6±35.99 pmol/l for 2-AG, 6.38±2.58 pmol/l for PEA and 0.39±0.02 pmol/l for OEA. Stimulation of SKM with MCP-1 and chemerin for 24 h led to a significant increase of AEA, while for 2-AG, PEA, and OEA no significant changes were observed. MCP-1 treatment resulted in a 1.3-fold and chemerin treatment in a 1.8-fold increase of AEA concentration (n=3). The analysis of NAPE-PLD and FAAH expression showed that after treatment with MCP-1 the expression of NAPE-PLD was increased by ~15% and with chemerin by ~20%, while no change in FAAH expression was observed. However, after 24 h the expression of FAAH was downregulated by MCP-1 (~16%) and chemerin (~26%), while the expression of NAPE-PLD was at the level of untreated controls (n=3).

Conclusion: To the best of our knowledge, these results demonstrate for the first time the ability of human skeletal muscle cells to produce and secrete endocannabinoids such as AEA and 2-AG. In addition, we could prove that the proinflammatory cytokines MCP-1 and chemerin are involved in the regulation of AEA synthesis by causing an increase of AEA level. Part of this regulation includes changes of NAPE-PLD and FAAH expression. In summary, our data link MCP-1 and chemerin, which are known to induce skeletal muscle insulin resistance by themselves, to the endocannabinoid system and AEA, which also has been shown to play a role in the induction of skeletal muscle insulin resistance. In states of obesity, which are characterised by elevated levels of proinflammatory cytokines and AEA, the influence of MCP-1 and chemerin on AEA synthesis in muscle tissue may thus lead to further impairment of insulin sensitivity.

Secreted adipocyte fatty acid binding protein (FABP4) forms the molecular basis of the adipo-insular axis

123

Secreted adipocyte fatty acid binding protein (FABP4) forms the molecular basis of the adipo-insular axis

L.J. Wu, D.J. James, C. Cantley; Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, Australia.

Background and aims: Obesity is closely linked with increased insulin levels and β-cell mass. Obesity may be accompanied by adipose tissue hypoxia, which occurs when the rate of adipose tissue expansion exceeds the rate of required angiogenesis, leading to areas that are insufficiently vascularised and consequently hypoxic. We hypothesised the link between obesity and insulin levels to be a result of an inter-organ communication between hypoxic adipose tissue and the β cell, where there is a secretory component involved in communication.

Materials and methods: To assess the effects of adipocyte conditioned media on β-cell function, 3T3-L1 adipocytes were incubated in serum free culture media (RPMI1640) under atmospheric or 1% O2 conditions. Conditioned media was dialysed and concentrated against a 10 kDa filter to remove small non-protein molecules. Dialysed conditioned media was diluted with 10% foetal calf serum and used to treat islets isolated from mouse pancreas for 24 h. Glucose stimulated insulin secretion from islets was subsequently assayed. A stable isotope labelling of amino acids in cell culture (SILAC) was performed in order to identify hypoxia regulated adipocyte secretory proteins.

Results: Conditioned media from hypoxic, but not normoxic control 3T3-L1 adipocytes led to an increase in glucose stimulated insulin secretion of 70% (412.7 ± 83.0 vs. 753.5 ± 108.6 pg insulin / islet / hr, p<0.05). A quantitatative mass spectrometry screen led to identification of the adipocyte fatty acid binding protein FABP4 as a hypoxia responsive adipocyte secretory protein. Western blotting and ELISA data confirmed increased secretion of FABP4 from adipocytes into conditioned media during hypoxia (146.9 ± 16.64 vs. 1166 ± 61.18 ng / ml FABP4, p<0.0001). Serum concentrations of FABP4 were raised in high fat fed mice, along with circulating insulin concentrations (chow fed 259.9 ± 67.03 vs. high fat fed 804.8 ± 173.7 ng / ml serum FABP4, p<0.05; 1.397±0.470 vs. 2.205±0.549 ng / ml serum insulin, p<0.05).

In vitro treatment of islets with physiologically relevant concentrations of recombinant FABP4 pre-incubated with linoleate but not palmitate enhanced glucose stimulated insulin secretion to a degree similar to hypoxic adipocyte conditioned media (535.4 ± 32.23 vs. 947.0 ± 134.5 pg insulin / hr, p<0.05).

Hypoxia inhibits mitochondrial function, and treatment of adipocytes with the mitochondrial poisons DNP and oligomycin also stimulated FABP4 secretion. Treatment of adipocytes with insulin during hypoxia reduces FABP4 secretion. Removal of glucose from media and substitution with pyruvate reversed the inhibition of secretion during hypoxia by insulin, indicating that the insulin is involved in the role of FABP4 secretion is to alleviate energy crisis by increasing glucose uptake into fat through increased insulin secretion.

Conclusion: Taken together, these data are indicative of an adipo-insular axis mediated by FABP4, which functions to coordinate insulin secretion and glucose uptake in response to the prevailing needs of adipose tissue.

124

Interleukin-6 as a key mediator of metabolic adaptation to fasting

S. Wueest1,2, H. Ellingsgaard1, E.J. Schoenenle1, D. Konrad2; 1Endocrinology/Diabetology University Children’s Hospital Zurich, 2Zurich Center for Integrative Human Physiology, University of Zurich, 3Division of Endocrinology, Diabetes & Nutrition, University Hospital Zurich, Switzerland.

Background and aims: Fasting leads to increased production of ketone bodies from non-esterified fatty acids (NEFA) liberated from white adipose tissue. However, it is not known whether interleukin-6 (IL-6) contributes to this fasting-induced lipolysis. Thus, the aim of the present study was to analyze whether IL-6 contributes to the metabolic switch from carbohydrate to fat oxidation (metabolic flexibility) provoked by food deprivation (fasting) in lean mice, and if yes, whether this metabolic switch is maintained in obesity and insulin resistance.

Materials and methods: Experiments were performed in C57BL/6J mice fed regular chow or high fat diet (HFD) for 8 weeks and in IL-6 KO mice. Mice were fed ad libitum or fasted for 24 hours and blood was sampled after 0, 6, 12 and 24 hours. Body weight as well as blood glucose and ketone levels were determined. In addition, plasma IL-6, leptin, insulin and NEFA levels were measured and IL-6 mRNA levels were analysed.

Results: The transcription of IL-6 was significantly induced in skeletal muscle but not in white adipose tissue in chow-fed C57BL/6J mice after 6 hours of food withdrawal. Concomitantly, circulating IL-6 levels increased by 3-fold (p<0.05) without changes in plasma insulin levels. Moreover, increased circulating IL-6 levels upon 6 hours of fasting were accompanied by elevated ketone levels (0.50±0.04 mmol/l in fasted vs 0.25±0.04 mmol/l fed mice; p<0.01), an effect that was blunted in IL-6 KO mice (0.48±0.09 mmol/l in WT vs 0.24±0.01 mmol/l in IL-6 KO mice; p<0.05) and chow-fed mice injected with neutralizing IL-6 antibody (0.65±0.03 mmol/l in IgG vs 0.38±0.05 mmol/l in IL-6 nAB in fasted mice; p<0.001). In addition, HFD-fed mice showed increased circulating IL-6 levels upon fasting, paralleled by a blunted increase in ketone bodies in the first 6 hours of food withdrawal compared to chow-fed mice (0.37±0.04 mmol/l in chow-fed vs 0.15±0.04 mmol/l in HFD-fed mice; p<0.01).

Conclusion: IL-6 contributes to fasting-induced lipolysis and metabolic flexibility.

Supported by: Swiss National Science Foundation

125

New adipokines identified as downstream targets for adiponectin: lessons from adiponectin-overexpressing or deficient-mice

Q Ge, L. Bycken, L. Novl, S.M. Brichard; Unité d’Endocrinologie et Métabolisme, L’Université Catholique de Louvain, Brussels, Belgium.

Background and aims: Adiponectin play a central role in the pathogenesis of the metabolic syndrome. Adiponectin (ApN) is a master regulator of immune...
Kinins are proinflammatory peptides which are in
lowing persistent and moderate overexpression of ApN (ApN-Overex) specif-
cally in white adipose tissue (AT)(by using the ApN promoter). We took
advantage of this model to unravel the adipokine secretion profile triggered
by ApN in AT. We also examine whether a reverse profile occurred in ApN-
knockout (ApN-KO) mice.

Materials and methods: To investigate the early and specific effects of ApN,
mice were studied at 10 wks of age (before any changes in adiposity or in
circulating glucose/lipids). AT was fractionated into adipocytes and stromal-
cellular (SVC), which were cultured for 8 h. Medium was screened by
cytokine antibody arrays allowing the detection of 144 cytokines. Secretion
of relevant adipokines was quantified by ELISA and gene expression by RTQ-
PCR. NF-κB activity was measured by ELISA and Jun N-terminal kinase
(JNK) phosphorylation by western blot.

Results: Profiling of secretory products by antibody arrays showed that
~10 cytokines from each cellular fraction roughly differed between ApN-
Overex mice and wild type (WT) mice. These adipokines were quantified
by ELISA. When compared to WT mice, the secretion of 3 pro-inflamma-
tory factors (IL-17B, IL-21, TNF-α) and 3 hematopoietic growth factors
(Gf)(Thrombopoietin, TPO; Granulocyte-, GCSF and granulocyte macro-
phage-stimulating Gf; GMCSF) was reduced in adipocytes of ApN-Overex
mice. In SVC of these mice, besides the hematopoietic Gfs, the secretion of
another Gf (vascular endothelial Gf receptor 1, VEGFR1), 2 chemokines
(RANTES, ICAM-1) and 2 pro-inflammatory factors (IL-6, IL-12p70) was
reduced as well. Only one cytokine was oversecreted by SVC of ApN-Overex
mice: interleukin-1 receptor 4 (IL-1R4) that exhibits anti-inflammatory prop-
ers. Most of these changes in secretion were due to corresponding changes in
mRNAs. To investigate whether these changes were specifically induced
by ApN, we searched for a reverse profile of adipokine expression in mice
lacking ApN. TPO gene expression was increased in adipocytes of ApN-KO
mice, and the expression of VEGFR1, IL-12p70 and ICAM-1 was augmented
in SVC of these mice. Concomitantly, IL-1R4 expression was reduced in SVC
of ApN-KO mice. We next investigated the molecular pathways underlying
these inflammatory changes. NF-κB activity was remarkably reduced in AT
of ApN-Overex mice, while JNK phosphorylation was unaffected.

Conclusion: ApN regulates in vivo the secretion of downstream adipokines,
thereby inducing a shift of the immune balance in both adipocytes and SVC
toward a less inflammatory phenotype. These downstream adipokines may
be new therapeutic targets for the management of the metabolic syndrome.

126

Bradykinin 1 receptor inhibition improves glucose tolerance and reduces
adipose tissue inflammation in high-fat diet fed mice
M. Söärhe de Winzell, A. Ahnmarck, K. Lundmark, L. William-Olsson,
J. Oscarsson, M. Strömstedt, D. Lindén;
Diabetes & Obesity, AstraZeneca R&D, Mölndal, Sweden.

Background and aims: Kinins are proinflammatory peptides which are in-
volved in the control of blood pressure, inflammation and pain. Recently, it
was demonstrated that bradykinin 1 receptor (B1R) deficient mice had re-
duced fasting plasma glucose and insulin levels and were protected against
high-fat diet (HFD) induced obesity. It is however not shown whether phar-
macological inhibition of B1R affects glucose tolerance and insulin sensitiv-
ity. The aim of this study was to establish whether B1R antagonism could
improve glycaemia and glucose tolerance in obese, insulin resistant mice. Fur-
thermore, the effect of B1R antagonism on inflammatory markers in adipose
tissue was investigated.

Materials and methods: Female C57BL/6j mice were fed a HFD (60%fat)
for up to 20 weeks. Thereafter, the mice were administered subcutaneously,
twice daily for 12 days with a B1R antagonist (SSR240612, Sanofi-Avensis
R&D, 10mg/4g/day). Control mice received vehicle only (5% mannitol).
Body weight and food intake were registered every second day. After 7 days
treatment, glucose tolerance was estimated in an oral glucose tolerance test
(OGTT; 2 g/kg). At termination, adipose tissue samples were collected and
the expression of inflammatory markers was analyzed using real time PCR.

Results: After feeding the mice with HFD, basal glucose was elevated (9.1±0.1
vs. 7.8±0.1 mM, p<0.01) as well as insulin (1.8±0.3 vs. 0.37±0.06 ng/ml, p<
0.001) compared to lean, normal diet (ND) fed mice, demonstrating signifi-
cantly impaired insulin sensitivity in the HFD fed mice. One week treatment
of HFD fed mice with the B1R antagonist restored basal glucose levels to
7.9±0.2 mM (p<0.01) and reduced insulin levels to 0.91±0.1 ng/ml (p<0.001)
compared to HFD fed control mice, suggesting improved insulin sensitivity
in the B1R antagonist treated mice. Body weight was significantly reduced
during B1R antagonism (p<0.001), where treated mice lost 11% of their body
weight compared to HFD fed control mice during the 12 days treatment pe-
riod. Food intake was slightly reduced during the second week of treatment,
although the body weight loss was apparent earlier than any effects on food
intake was observed, suggesting other mechanisms than reduced food intake
to be responsible for the weight loss. The OGTT demonstrated improved
glucose tolerance with reduced glucose and insulin excursions after B1R
inhibition. In the HFD fed mice the expression levels of several markers of
inflammation were increased in perigaonadal adipose tissue compared to ND
fed mice. B1R antagonism resulted in reduced mRNA expression of MCP-1,
TNFa, IL-6 and IL-1β in adipose tissue.

Conclusion: B1R antagonism in obese, insulin resistant mice resulted in
improved glycemia, reduced basal insulin levels and improved glucose tol-
erance. These findings, in association with reduced expression of adipocy-
tokines, demonstrate that inhibition of B1R may be a novel treatment strategy
for type 2 diabetes.
OP 22 Making and replacing islet beta cells

127 Effective revascularisation and enhancement of islet engraftment by cotransplantation of islets with endothelial progenitor cells

Background and aims: Islet transplantation is an emerging therapeutic option for type 1 diabetic patients. However, it has many obstacles, one of which is impaired revascularization in transplanted islets leading to islet loss. In contrast to solid organ transplantation where the organ is nourished by large vessel anastomosis, avascular islets suffer from hypoxia and malnutrition for a long time as a consequence of absence of effective blood supply, which results in continuous islet loss and ultimately, only a short period of effective graft function. Endothelial progenitor cells (EPCs) are well known to induce neovascularization in diverse ischemic tissues. Here we aimed to increase islet engraftment by cotransplantation of islets with EPCs.

Materials and methods: Porcine islets were transplanted beneath the kidney capsule of athymic nude mice with or without human cord blood-derived EPCs (EPC group or islet only group, respectively). The transplanted ß-cells, EPCs, and blood vessels from islets or host mouse were evaluated by insulin, UEA-1 lectin, and BS-1 lectin immunostaining, respectively. The islet function was followed for 4 weeks post-transplantation with random blood sugar level.

Results: The EPC group mice reached euglycemia (random blood sugar<200mg/dL) at 17 days after transplantation, whereas islet only group mice did not even though they showed improvement of glycemic control compared to diabetic sham control mice. The EPC group showed significant increase of body weight compared to the islet only group mice, while sham control diabetic mice continuously lost their weight, which finally lead to death around 28 days post-transplantation. In addition, compared to sham control group, both the islet only and EPC group showed detectable porcine insulin level with the fact that EPC group showed higher level of insulin at both fasting and at glucose challenge compared to the islet only group. At 28 days after transplantation, the kidney bearing transplanted islets were removed to evaluate whether euglycemia induction was by transplanted porcine islets themselves or by regeneration of remnant pancreatic islets in the host. After 7 days of nephrectomy, blood glucose levels of the EPC group reached approximately 500 mg/dL, suggesting that the transplanted islets contributed mainly to glycemic control. Immunostaining of the transplant ed islets 5 weeks post-transplantation demonstrated that the islets from the EPC group were highly revascularized compared to those of the islet only group, which coincided with the higher ß-cell mass in the EPC group. We also tracked the vasculature of transplanted islets at 3, 14, and 35 days post-transplantation to see the time course of vessel ingrowth into the transplanted islets. Compared to the islet only group, the EPC group showed much more blood vessel organization and branching at 3 days and a significant increase in the number and length of vessel ingrowth at 14 days post-transplantation. Importantly, this was associated with a time-dependent increase of insulin(+) areas in the transplanted islets and also, proliferating, Ki-67-insulin double-positive, regenerating ß-cells, all of which were significantly increased in the EPC group than the islet only group.

Conclusion: Collectively, we concluded that cotransplantation of EPCs with islets induce better islet engraftment by enhancing graft revascularization and survival/regeneration of islets.

Supported by: IRICT

128 Pancreatic islets transplanted intraportally into the liver in mice have a substantially lower blood flow than native islets

J. Lau Börjesson1, J. Henriksnäs2, P.-O. Berggren2, M. Köhler3, P-O. Carlsson1, 1Department of Medical Cell Biology, Uppsala University, 2The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Pancreatic islets are in the clinical setting transplanted intraportally into the liver, but with low long-term success rate. Engraftment of pancreatic islets in the liver has been difficult to study, since the islets virtually disappear out of sight and imaging techniques have too poor resolution for their study. However, experimental studies have indicated a low revascularization of islets at the intraportal site, and that ingrowing blood vessels are derived solely from the hepatic artery and not the portal vein. The aim of the present study was to establish a model and quantify the blood perfusion of intraportally transplanted islets. Islet vascular density and the contribution of donor blood vessels in the islet revascularization process were also determined.

Materials and methods: Pancreatic islets were isolated from transgenic YC-3.0 mice, which express the yellow chameleon protein 3.0 under the regulation of the ß-actin and cytomegalovirus promoters. Islets from these mice have previously been shown to express enhanced yellow fluorescent protein, one part of the hybrid YC-3.0 protein, in all cells. The islets were transplanted intraportally selectively into the right liver lobe of recipient nude mice by temporary occlusion of the other tributaries of the portal vein at the time of islet infusion (200 islets). One month later, blood perfusion of the transplanted islets was determined by a fluorescent microsphere technique and the contribution to the blood perfusion of intrahepatically transplanted islets was decreased, and very few donor endothelial cells could be observed incorporated in the new islet vascular system.

Conclusion: The blood perfusion of intraportally transplanted islets is less than 10% of that in native islets when investigated one month post-transplantation. Low numbers of donor blood vessels contribute to the revascularization at the intraportal site, which may at least partially explain their insufficient vascular engraftment.

Supported by: IDRE SBC, SDE NNF and SSFM

129 Clinical and experimental pancreatic islet transplantation to striated muscle: Establishment of a vascular system similar to that in native islets

G. Christofferson1, J. Henriksnäs1, L. Johansson1, C. Rehn1, H. Ahlström2, J. Caballero-Corbalan3, R. Segersvard1, J. Pernet1, O. Korsgren1, P-O. Carlsson1, M. Phillipson2, 1Department of Medical Cell Biology, Uppsala University, 2Department of Oncology, Radiology and Clinical Immunology, Uppsala University, 3Department of Genetics and Pathology, Uppsala University. Supported by: Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Department of Medical Sciences, Uppsala University, Sweden.

Background and aims: Curing type 1 diabetes by transplanting pancreatic islets into the liver is associated with poor long-term outcome and graft failure at least partly due to inadequate graft revascularization. The aim of the current study was to evaluate striated muscle as a potential angiogenic site for islet transplantation.

Materials and methods: The current study presents a new experimental model which is found applicable to clinical islet transplantation. Islets were implanted into striated muscle where after intra-islet vascular density and blood flow were visualized with intravital and confocal microscopy in mice, and by magnetic resonance imaging in three auto-transplanted pancreat ectomized patients. Mice were rendered neutropenic by repeated injections of G-CSF, and antibody and diabetes was induced by alloxan treatment.

Results: Contrary to liver engrafted islets, islets transplanted to mouse muscle were revascularized with vessel densities and blood flow entirely comparable to islets within intact pancreas. Initiation of islet revascularization at the muscular site was dependent on neutrophils, and the function of islets transplanted to muscle was proven by curing diabetic mice. The experimental data were confirmed in auto-transplanted patients where higher plasma volumes were measured in islets engrafted in forearm muscle compared to adjacent muscle tissue through high-resolution magnetic resonance imaging.

Conclusion: This study presents a novel paradigm in islet transplantation whereby recruited neutrophils are crucial for the functionally restored intra-islet blood perfusion following transplantation to striated muscle under experimental and clinical situations.
130

Tracking mouse islet isografts and allografts using a novel magnetic resonance contrast agent, chitosan-coated superparamagnetic iron oxide nanoparticles

J.-H. Juang1, C.-R. Shen1, J.-J. Wang2, C.-H. Kuo1, Z.-T. Tsai1, T.-C. Yen1

1Division of Endocrinology and Metabolism, Chang Gung University and Memorial Hospital, 2Department and Graduate Institute of Medical Biotechnology and Laboratory Science, Chang Gung University, 3Department of Medical Imaging and Radiological Sciences, Chang Gung University, 4Department of Biological Science and Technology, National Chiao Tung University, 5Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Background and aims: Although only 10% of islet recipients maintain insulin independence, 80% of them are C-peptide positive at 5 years after transplantation. To better understand the fate of transplanted islets, a magnetic resonance (MR) imaging technique has been used to detect superparamagnetic iron oxide (SPIO)-labeled islet grafts. In this study, we utilized a novel MR contrast agent, chitosan-coated SPIO (CSPIO) nanoparticles, to monitor mouse islet isografts and allografts.

Materials and methods: Male C57BL/6 mice were used as donors and male inbred C57BL/6 (syngeneic) and Balb/c (allogeneic) mice were used as recipients of islet allografts. Mouse pancreas was digested by collagenase and islets were purified by density gradient. After being incubated with and without CSPIO (10 mg/ml), islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured by static incubation and perfusion studies. Cytotoxicity was evaluated by fluorescein diacetate and propidium iodide staining for live/dead cells and FCM, respectively. Three hundred islets were transplanted under the left kidney capsule of each mouse. After transplantation, 3, 7 and 30Tesla MR imaging of the recipients was performed. At the end of study, the islet graft was removed for insulin and Prussian blue staining and TEM studies.

Results: At 8 hours after incubation of isolated islets with CSPIO, TEM showed CSPIO particles located in endocytic vesicles of both α- and β-cells. The islets incubated overnight with and without CSPIO had comparable insulin responses to high glucose challenges. There was no increased death rates in NIT-1, FCM and CTC cells with increasing CSPIO iron concentrations up to 80 µg or incubation time up to 72 hours. At week 0, 1, 3, 5, 6, 8 after syngeneic transplantation, the grafts of CSPIO-labeled islets were visualized on MR scans as distinct hypointense spots homogeneously located at the upper pole of left kidney. Using the contralateral kidney as a reference, the MR signal intensity of CSPIO-labeled and control islet grafts was 81.9 ± 14.0% and 103.8 ± 15.4%, respectively (P=3.68297E-05). At 8 weeks after transplantation, the CSPIO-labeled islet graft was positive for insulin and iron staining. Under TEM, there were several electron dense clumps distributed in the cytoplasm of islets with intact ultrastructure. The electron energy-loss spectroscopy further demonstrated these clumps contained elemental iron. At day 3, 10, 17, 24, 31, 38 and 45 after allotransplantation, MR scans showed hypointense spots at the upper pole of left kidney gradually decreased in size. The histology of CSPIO-labeled islet grafts at day 10, 17, 24, 31, 38 and 45 showed insulin and iron staining co-localized in the same areas but the graft size decreased with time.

Conclusion: Our results indicate, after syngeneic and allo-transplantation, isolated mouse islets labeled with CSPIO nanoparticles can be effectively and safely imaged by using MR scanning.

Supported by: Chang Gung Memorial Hospital

131

Generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells

C. Giordano1, A. Criscimanna2, G. Zito1, A. Taddei1, P. Righi2, M. Pitrono1, D. Morselli1, G. Lodato1, G. Pizzolanti1, R. Citarella1, A. Galluzzo1

1Section of Endocrinology, DOSAC, Endocrinology, 2Diapartimento di Oculistica, Ophthalmology, Palermo, Italy.

Background and aims: Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus hosts epithelial stem cells - which sustain the continuous renewal of the cornea - and fibroblast-like stem cells (f-LSCs) - with apparent broader plasticity. The aim of this study was to isolate and characterize f-LSCs from human donors and to test their differentiation potential towards the pancreatic endocrine phenotype.

Materials and methods: f-LSCs were isolated from 14 limbal biopsies. f-LSCs were characterized by flow cytometry and qRT-PCR for the expression of pluripotent markers and self-renewal ability. We then developed a 4-step pancreatic differentiation protocol, lasting 14-16 days, by adding in a step-by-step way factors and supplements which are known to direct/support pancreatic differentiation, such as activin A, bFGF, B27, N2, nicotinamide and exendin-4, for the expression of endodermal, pancreatic, islet and β-cell markers was assessed during differentiation by immunofluorescence, flow cytometry and western blot analysis. Presence of secretory granules was assessed by confocal and electron microscopy. f-LSC-derived cells were also investigated for the ability to secrete C-peptide in response to multiple secretory stimuli.

Results: FACs analysis of freshly digested limbal specimens showed significant expression of the pluripotent stem cell marker SSEA4 (mean ± SD: 65.2 ± 7.6%). After 24-48 hrs, the single cell suspension formed floating spherical aggregates (limbospheres), which eventually attached to the plastic surface, giving rise to highly proliferating f-LSCs. Adherent epithelial cells were also observed but f-LSCs progressively prevailed. Positivity for SSEA4 was higher in cultures obtained by re-plating limbospheres, which were devoid of epithelial cells (mean ± SD: 90.8 ± 9.6%). SSEA4+ f-LSCs co-expressed Oct4, Sox2, c-Ki, TRA 1-60, TRA 1-81, ABCG2, Thy-1 and CD105. f-LSCs were negative for CD34, CD45, HLA-DR and for the limbal epithelial marker ΔNp63. Staining of CSFSE-labeled SSEA4+ f-LSCs showed that cells are characterized by asymmetrical division. f-LSCs treated with pancreatic differentiation protocol transitioned through a series of intermediates similar to those occurring during pancreatic development, as showed by sequential detection of endodermal, pancreatic, islet and β-cell markers (Sox17, FOXA2, Ngn3, PDX1, MafA, Isl-1, β2NeuroD, NKX6.1, Pax4, GLUT2 and glucokinase). From stage 3 cells transitioned in clusters resembling human islets. qRT-PCR, immunofluorescence and western blot analysis at the end of differentiation confirmed expression of islet hormones (c-peptide/proinsulin, insulin, glucagon, somatostatin, ghrelin and PP). Quantification of endocrine cells by flow cytometry showed 72.1 ± 5.3% positive cells for C-peptide/proinsulin, 10.6 ± 2.4% for glucagon and 8.2 ± 2.6% for somatostatin. Confocal and electron microscopy indicated presence of secretory granules. Differentiated cells also possessed the ability to secrete C-peptide in response to glucose, KCl and Tolbutamide.

Conclusion: f-LSCs might represent a novel source of autologous, transplantable, insulin-producing cells which could be tested for the reversal of diabetes.

132

Metabolic control in patients with type 1 diabetes after autologous peripheral stem cell transplantation (apbsct)

A. Milczarczyk1, E. Snarski1, W. Jędrezejczak1, E. Franek1,2

1CSK MSWiA, 2Medical University of Warsaw, Poland.

Background and aims: Type 1 diabetes mellitus is caused by autoimmunological process destroying pancreatic β cells. APBSCT leads to modulation of immunological system (in terms of elimination of aggression against β cells), which subse- quently leads to alleviation of autoimmune process and to insulin independence. Patients and methods: In 8 patients (4 female, 4 male, age 26.0±5.0) with newly diagnosed type 1 diabetes APBSCT was performed. Treatment consisted of 2-3 plasmaphereses, hematopoietic stem cell mobilization with cyclophosphamide (2g/m², on day -16) and G-CSF (10µg/kg/day from day -15), collection of at least 3 x 10⁷/kg CD34+ cells, conditioning with cyclophosphamide (50 mg/kg/day on days 3-4, 3.2 prior to transplant) and antithymocyte globulin (0.5mg/kg/day on day -3, 1.0mg/kg/day on days 4-7). After transplant, patients were treated with intensive insulin therapy which was initiated. In the control group CGM and IVGTT were not performed.

Results: Parameters of metabolic control were shown in table 1. All patients 6 months after APBSCT were insulin-free. HbA1c and FPG were comparable to the control group, but higher C-peptide values were noted. Insulin concentrations in IVGTT were as follows: 8.1; 9.2; 9.0; 8.7; 9.2; 9.1; 9.0; 8.9; 8.6. 7.6; 7.3 µU/l (basal 5.4 µU/l).

Conclusion: APBSCT seems to be a promising method of treatment of newly diagnosed type 1 diabetes.

Table 1

<table>
<thead>
<tr>
<th>Insulin dosage (IU/kg)</th>
<th>Fasting CP (nmol/l)</th>
<th>CP after mixed meal (%)</th>
<th>HbA1c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients after APBSCT n=8</td>
<td>0</td>
<td>111.8±23.9</td>
<td>1.25±0.57</td>
</tr>
<tr>
<td>Control group n=6</td>
<td>0.4±0.13</td>
<td>112±30.2</td>
<td>0.77±0.2</td>
</tr>
</tbody>
</table>

p <0.001 NS NS (0.06) NS (0.18) NS
OP 23 Genes and islets

133

Ctnnb1 gene expression is associated with impaired beta cell function of type 2 diabetic donors

V. D’Alto1, S. Del Guerra1, G. Guaitierotti1, F. Vistoli1, U. Boggi2, F. Filipponi2, P. Marchetti2, S. Del Prato2, R. Lupi3

1 Endocrinology and Metabolism, Medical Unit, University of Pisa, 2 Department of Oncology, Transplantation and Advanced Technologies in Medicine, University of Pisa, 3 Department of Liver Transplantation, Hepatology and Infectious Diseases, Azienda Ospedaliero-Universitaria Pisana, 4 Endocrinology and Kidney, Medical Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.

Background and aims: Common TCFC7L2 genetic variants are associated with increased risk for development of type 2 diabetes (T2DM). Beta-catenin/TCF7L2-dependent Wnt signaling is involved in pancreas development, islet function, and insulin production and secretion. Nonetheless, no study has yet assessed Wnt signaling in human islets of T2DM patients. We have, therefore, examined the expression of Wnt pathway component beta-catenin (Ctnnb1) in islets isolated from the pancreases of non-diabetic and T2DM individuals. Materials and methods: Islets were prepared from the pancreas of 9 non-diabetic (CTRL) (5M/4F; age 60.25±13.7yrs; 25.68±3.68kg/m2) and 6 T2DM (2M/4F; 64.45±7.2yrs; 27.20±2.65kg/m2) individuals. Glucose-stimulated insulin release (static incubation), mRNA expression of beta-catenin, CTF7L2, and insulin (Real-time RT-PCR) were determined. In order to establish a cause-effect relationship, CTNNB1 and TCFC7L2 gene expression were suppressed by siRNA in Ctrl and TCFC7L2 overexpressed by the plasmid DNA in Ctrl islets. Results: Glucose-stimulated insulin release was impaired in T2DM islets as compared to Ctrl (Stimulation Index: 1.34±0.32 vs. 3.59±1.72, p<0.05). Both CTNNB1 (0.53±0.01 vs. 0.99±0.03, p<0.001), and TCFC7L2 mRNA expression (0.42±0.41 vs. 7.35±3.40, p<0.001) were higher in T2DM than in Ctrl islets. The two gene expressions were positively correlated (R²=0.508; p=0.0028) (0.42±0.41 vs. 7.35±3.40, p<0.001) were higher in T2DM than in Ctrl islets. The two gene expressions were positively correlated (R²=0.508; p=0.0028) while they were negatively correlated with Stimulaton Index (CTNNB1: R²=0.334, p=0.022; CTF7L2: R²=0.331, p=0.021). CTNNB1 and CTF7L2 mRNA expression in islets transfected with a reporter construct, Ctnnb1 and CTF7L2 interference resulted in a significant reduction of respective gene expression (72.1±16.9% and -22.8±16.1%, respectively), whereas the Stimulaton Index increased (+43.7±14.1% and +37.2±17.7% for CTNNB1 and CTF7L2 silencing, respectively; both p<0.05 or less vs. Ctrl). Insulin gene expression was marked increased in siRNA CTNB1 transfected islets (+36.4±13.3%), compared to the controls (p<0.001). Finally, TCF7L2 overexpression in non-diabetic islets (+55.7±16.3%) was associated with a significant increase of CTNNB1 gene expression (+67.5±17.9%, p<0.001). Conclusion: CTNB1 and CTF7L2 gene expression are increased in islets from T2DM islet isolates, and the expression is negatively regulated with impaired glucose-mediated insulin response. Moreover, modulation of TCF7L2 expression is associated with simultaneous changes in CTNB1 expression and glucose-mediated insulin release. Our results support the hypothesis that 1) alterations of Wnt signaling occur in pancreatic islets of T2DM patients, and 2) TCF7L2 effects may be mediated via consensual changes in beta-catenin.

134

Risk genotypes, allele-specific expression and methylation status in human islets at the KCNK1 locus type 2 diabetes-susceptibility locus

M. E. Travers1, M. Dekker Niter1, D. J. G. Mackay2, D. J. G. Mackay3

1 OvCERN, University of Oxford, United Kingdom, 2 Lund University Diabetes Centre, Malmo, Sweden, 3 Southamptom University School of Medicine, *WITCH, University of Oxford, United Kingdom.

Background and aims: Though the number of Type 2 Diabetes (T2D) associated loci has increased rapidly, in relatively few cases have the mutational mechanisms through which they operate been enumerated. The KCNK1 locus harbours 2 independent clusters of variants associated with T2D risk and impaired insulin secretion, the SNPs with strongest association in European populations in each peak being rs231362 and rs163184. Whilst both signals are intronic, one maps directly over a non-coding RNA (KCNQ1OT1), whose transcription is regulated by parent-of-origin specific methylation, and which is known to regulate transcription of several local cell-cycle repressors, including CDKN1C, itself implicated in islet-specific growth phenotypes. Associated SNPs at both signals confer T2D risk only when maternally inherited, implicating aberrant regulation of imprinted expression as the probable...
Conclusion: In the present biological candidate gene study in whites we demon-
strate that GCK harbors rare variants, rs664447, rs7581952 and lcl158Va1 with
relatively higher impact on glucose metabolism, measures of obesity and T2D
prevalence, respectively, than the impact of most common variants shown
to influence metabolic traits identified through genome-wide association studies.
Supported by: The Danish Research Council

136 Influence of novel genetic loci affecting glucose and insulin levels during
OGTT on islet function in man
T.S. Ahuwalia1, C. Ladenwall1, A. Jonsson1, J. Kravic1, E. Laurila2, B. Isomaa2, T. Tuomil1, L. Groop1, V. Lyssenko2, S. Clinical Sciences; Diabetes and Endocrinology and Lund University Diabetes Centre, Malmö, Sweden, 2Folkhalsan Research Centre, Medicine, Helsinki University Central Hospital and Research Program of Molecular Medicine, Helsinki, Finland.

Background and aims: Type 2 diabetes (T2D) is characterized by chronically
elevated glucose levels. Impaired insulin secretion and action are hallmarks
of T2D. The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) identified 16 loci associated with fasting and postprandial glucose
levels involved in glucose-sensing, signaling, insulin processing and cell
proliferation. Only few of them, ADCY5, DGKB, PROX1, GCK and GCKR
seem to influence risk of T2D. We investigated whether these genetic variants
would also influence change in insulin secretion and/or action over time or
proinsulin, glucagon, GIP, and adiponectin concentrations.

Materials and methods: In the Botnia prospective study (BPS), 2,444 non-diabetic
bètès followed for a period of 8 years with OGTT and insulin measurement.
We genotyped for common variants in 16 loci (PROX1, GCK, GCKR, G6PC2, ADCY5, SLC2A2, DGKB, GLIS3, ADRA2A, CRY2, MAD2, FADS1, IGF1, VPS13C, C2CDM and GIPR). In the Botnia Prevalence and Prediction study (PPP) (N=5,200) in addition to glucose and insulin, fasting/
postprandial glucagon and GIP levels, and adiponectin were measured.

Results: We could replicate previously observed associations of variants in
MTNR1B (DIR, beta=0.237, P=6×10^-19), GIPR (CIR, beta=0.057,
P=0.008), FADS1 (CIR, beta=0.060, P=0.002), GCK (DI, beta=0.092,
P=0.003) influencing decreased insulin secretion and MTNR1B (IS, beta=0.066,
P=2×10^-10) insulin sensitivity. In longitudinal BPS, we observed CRY2 variant (CIR, beta=0.008, Fmean=0.01) associated with
increased insulin secretion and PROX1 (IS, beta=0.005, P=0.03) with decreased insulin sensitivity over time. The glucose raising allele of
MADD variant was associated with increased fasting and 2hr (beta=0.166, P=2×10^-10, beta=0.138, P=3×10^-10), and
MTNR1B with elevated 2hr (beta=0.062, P=0.0005) proinsulin levels, whereas FADS1 with decreased (beta=0.079,
P=0.0006, beta=0.031, P=0.002) fasting and 2 hr proinsulin levels. The 2hr
glucagon levels were increased in GLIS3 (beta=0.024, P=0.04), while de-
creased in DUSP9 (beta=0.049, P=0.01) variant carriers. Fasting GIP lev-
els were elevated in carriers of CRY2 (beta=0.078, P=0.03), and 2hr GIP in
PROMX1 (beta=0.041, P=0.03). On contrary, fasting GIP was decreased in GCK (beta=0.158, P=0.006), and (fasting and 2hr) in GIPR (beta=0.087, P=0.03
and beta=-0.091, P=2×10^-10) variant carriers. MTNR1B variant was associated
with lower (beta=-0.073, P=0.0002) adiponectin concentrations.

Conclusion: These results demonstrate that genetic variants influencing
glucose and/or insulin levels also show effects on other metabolic traits like,
proinsulin (MADD, FADS1), glucagon (GLIS3, DUSP9), GIP (GIPR, CRY2,
GCK), and adiponectin (MTNR1B). Low GIP levels in carriers of a loss-of-
function variant in the GIPR gene in islets suggest the importance of
non-receptor mediated mechanisms in determining GIP levels.

Supported by: Swedish Research Council Linne grant

137 Extending criteria for genetic testing increases diagnosis of maturity-
onset diabetes of the young
G. Thababalasingham1; A. Pal1, A. Farmer2, S. Ellard2, M.I. McCarthy3, K.R. Owen1; 1OCDEM, University of Oxford, 2Public Health, University of Oxford, Molecular Genetics, Peninsula College of Medicine & Dentistry, Exeter, United Kingdom.

Background and aims: Increasing diagnosis rate of monogenic diabetes is
easy to enable patients to benefit from optimal treatment and early di-
agnosis of family members. Current testing for Maturity Onset Diabetes of
the Young (MODY) is largely restricted to individuals whose clinical features
match the original descriptions of MODY families. This selection method
has good specificity (94%) but low sensitivity (58%) in our dataset. Extended
MODY testing criteria were defined to select subjects with atypical features of
clinically diagnosed type 1 (T1DM) or type 2 (T2DM) diabetes (recruited from primary and secondary care), who then underwent re-sequencing of the
Hepatocyte nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes.

Materials and methods: In those with apparent T1DM (n=247), HNF1A/4A re-
sequencing was performed in individuals with residual β-cell function
≥3y from diagnosis defined as random or glucagon-stimulated c-peptide
≥0.2nmol/l (n=20). In those with apparent T2DM (n=291), HNF1A/4A re-
sequencing was performed in those with diabetes diagnosed ≤30y (n=35) or
diabetes diagnosed ≤50y with absence of metabolic syndrome (M5, n=53).

Diagnosis rates were compared to those meeting standard diagnostic criteria
for MODY; diabetes diagnosed ≥25y with parental diabetes (n=14).

Results: In the T1DM group, 2 HNF1A mutations were found. Both individ-
uals had random c-peptide ≥0.2nmol/l and positive GAD antibody titres.
In those with apparent T2DM, 10 HNF1A and 2 HNF4A mutations were
identified. Mutations were found in 22% diagnosed ≤30y and 16% of MS.
Only 43% of the MODY cases found met current diagnostic testing guide-
lines. Family investigations have identified a further 11 mutation carriers in-
cluding 2 with previously undiagnosed diabetes. Overall 24% of subjects have
changed treatment following molecular testing.

Conclusion: We found a prevalence of transcription factor-MODY of 0.8%
in apparent T1DM and 4.1% in apparent T2DM. Widened genetic testing cri-
tera based on simple pathophysiologival features more than doubled MODY
diagnosis rates. Subjects with β-cell antibodies should not be excluded from
testing.

Supported by: NIHR Oxford Biomedical Research Centre

138 The influence of carbohydrate content of diet on glycaemia in GCK-
MODY patients T. Klupa; I. Solecka1, N. Nowak1, M. Szopa1, M. Borowiec2, W. Młynarski2, M.T. Malecki1; 1Department of Metabolic Diseases, Jagiellonian University, Krakow, 2Department of Pediatrics, Medical University of Lodz, Poland.

Background and aims: Heterozygous inactivating mutations in GCK gene
encoding glucokinase result in maturity-onset diabetes of the young (MODY). Nutritional intervention remains the treatment of choice for this
form of diabetes. An optimal diet formula for GCK-MODY patients remains,
however, to be established. This clinical experiment was designed to evaluate
the effect of diet carbohydrate (CH) quantity on glycaemia level in GCK-
MODY patients.

Materials and methods: We exposed 8 GCK mutation carriers (6 with dia-
abetes and 2 with impaired fasting glucose-IFG) to diet rich in CH (60% of daily
calorie intake) for two days, then patients were switched to low CH diet (25%
of daily calorie intake) for another two days. The caloric content was equal
throughout the whole 4-day period. All patients were supposed to avoid high
glycemic index products. Glucose levels were evaluated with continuous glu-
cose monitoring (CGMS, MiniMed, USA).

Results: In 6 GCK-MODY patients glucose levels were significantly higher
during exposure to diet rich in CH vs low CH diet: the mean glycaemia
was 8.5 mmol/l (range 8.2-8.9 mmol/l) vs 7.26 mmol/l (range 7.0-8.1 mmol/l),
the mean time spent above the target level of 140 mg/dL lasting for at least 15 min (on average 1.7 episodes/patient/day) when on high CH diet with no such episodes when
on low CH diet. Interestingly, the carbohydrate content of meals had no ma-
jor impact on glucose levels among GCK mutation carriers with IFG.

Conclusion: Postprandial glycaemia is observed on high CH diet in
GCK-MODY patients. Diet with modestly limited carbohydrate intake may
be effective in optimizing metabolic control in GCK-MODY. Carbohydrate
restriction seems to have no major impact on glycemies in GCK mutation
carriers not meeting formal criteria of diagnosis of diabetes.
Background and aims: The current diabetes classification distinguishes patients with immunologic type 1A and idiopathic type 1B-diabetes clinically relevant? A real-life study with 5 years of follow-up in 3302 paediatric patients with diabetes onset prior to age 12 R.W. Holl, S. Hofer, A. Thun, J. Rosenbauer, T. Kapellen, A. Icks, K. Warncke, B.O. Böhm, E. Schober, German; Austrian-DPV Initiative and German BMGF-Competence Network Diabetes; 1Epidemiology, University of Ulm, Germany; 2Pediatrics, University of Innsbruck, Austria; 3Pediatrics, Medical University Hannover; 4Epidemiology, University of Düsseldorf; 2Pediatrics, University of Leipzig; 5Pediatrics, Technical University of Munich; 6Internal Medicine, University of Ulm, Germany; 7Pediatrics, University of Vienna, Austria.

Materials and methods: The DPV register was started in 1995 on a nationwide basis: In order to monitor and improve the quality of care, relevant data are documented prospectively at 327 specialized diabetes centers in Germany / Austria. By March 2010, 200722 patients are included in the database (63578 patients type-1). 16921 patients had a pediatric onset of type-1 diabetes prior to age 12, in 4254 of them at least two B-cell-antibodies (ICA, IA2, GAD or IAA at diagnosis) were measured. In 3502 patients, a continuous follow-up from diagnosis for 5 years was available (age at onset: 7.1±3.1 years, 50.4% male). Data were analyzed using non-parametrical comparisons for unadjusted and a hierarchical mixed linear model for adjusted comparisons. Mean daily insulin doses per kg and DCCT-equivalent HbA1c were adjusted for age at onset, gender, BMI and insulin regimen using observed marginal frequencies.

Results: No B-cell-antibody was present in 263 patients, 1 antibody only in 790 (AB1+) and 2 or more positive ABs were present in 2249 patients (AB2+). These groups did not differ by gender, age at onset, initial BMI, rate of DKA or Hba1c at onset, while the reported duration of symptoms was slightly longer in AB- (2.84 weeks) compared to AB1+ (2.39) or AB2+ (2.17 weeks, p = 0.005). Concomitant thyroid autoimmunity was present in 24.1% of AB2+ patients compared to 17.6% in AB1+ and 16.7% in AB- patients (p =0.001, X²-test). Based on adjusted means, daily insulin requirement was slightly, but significantly higher in double-antibody-positive compared to antibody-negative patients during the first 3 years of diabetes, but not thereafter (1st year: AB-: 0.52 U/kg versus AB2+: 0.55 U/kg, p<0.05). After 5 years of diabetes, insulin requirement was 0.83 U/kg in AB-, 0.85 U/kg in AB1+ and 0.85 U/kg in AR2+ patients (n.s.). Throughout the 5-year period, adjusted Hba1c-values did not differ between the 3 groups: 5th year of diabetes: AB-: 7.6 %, AB1+: 7.5 %, AB2+: 7.3 % (n.s.).

Conclusion: In this large cohort of prospectively followed children with type-1 diabetes, the presence of B-cell-autoimmunity at onset had only a small, clinically irrelevant and transient effect on daily insulin requirement, and no effect on metabolic control achieved. Based on antibody assays currently available in routine care, the presence of B-cell-AB at diagnosis is not predictive for disease severity after 5 years.
after exercise (4/15 patients had had mild hypoglycemia), with a subsequent
glycemic increase during the night. The suspension of the pump has shown
good glycemic profiles, even if with a significant increase 90 minutes after ex-
ercise. The 'correction' bolus determined a significant lowering of glycemia
after 90 minutes from the beginning of exercise. The use of temporary basal
scheme showed the highest glycemic variability (table).

Conclusion: We conclude that keeping pump active during exercise seems
the best option to properly manage exercise in children with type 1 diabetes,
with the recommendation to reduce basal rate by 20% for the 2-4 h after ex-
ercise, in order to avoid late-onset hypoglycaemia. However, for those sports
that do not allow the use insulin pump, suspending the pump might be a good
option, if followed by a +20-30% temporal basal for 2-4 h after exercise.

Glycaemic values during and after exercise according to different insulin pump patterns

<table>
<thead>
<tr>
<th>Time</th>
<th>During</th>
<th>During</th>
<th>During</th>
<th>After</th>
<th>After</th>
<th>After</th>
<th>After</th>
<th>Night</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 0 min</td>
<td>117±51</td>
<td>139±64</td>
<td>134±79</td>
<td>130±98</td>
<td>121±75</td>
<td>126±45</td>
<td>98±44</td>
<td>175±101</td>
<td>182±84</td>
</tr>
<tr>
<td>T 60 min</td>
<td>141±83</td>
<td>130±73</td>
<td>133±74</td>
<td>132±70</td>
<td>156±73</td>
<td>164±77</td>
<td>131±69</td>
<td>165±115</td>
<td>169±82</td>
</tr>
<tr>
<td>T 120 min</td>
<td>192±131</td>
<td>133±71</td>
<td>100±39</td>
<td>108±43</td>
<td>152±69</td>
<td>185±74</td>
<td>144±103</td>
<td>189±106</td>
<td>156±86</td>
</tr>
<tr>
<td>T 180 min</td>
<td>152±69</td>
<td>134±72</td>
<td>251±101</td>
<td>256±117</td>
<td>157±100</td>
<td>155±108</td>
<td>184±149</td>
<td>200±113</td>
<td></td>
</tr>
</tbody>
</table>

142

How common is common hypoglycaemia? Frequency of hypoglycaemia in insulin treated children <7 years. A one year prospective study of self measured blood glucose

F. Sundberg, G. Forsander;
The Queen Silvia Childrens Hospital/ Sahlgrenska University Hospital, Gothenburg, Sweden.

Background and aims: Hypoglycaemia is often regarded as the limiting fac-
tor when striving for good glycemic control. ISPAD has defined the Hba1c
goal as <7.5 % in children. Preschool children with insulin treated T1DM are prone to have fluctuating p-glucose and frequent hypoglycaemias. The cogni-
tive consequences of hyper- and hypoglycaemia during early childhood are
under debate. Acute hypoglycaemia causes discomfort and interrupts playing
and other important activities of the child. Fear of hypoglycaemia might affect
the parents. The aim of this study was to describe the frequency of hypogly-
caemia in children <7 years of age with insulin treated T1DM and the number
of nights with hypoglycaemia during one year.

Materials and methods: Our hospital serves all patients with Diabetes Mel-
litus younger than 18 years living in the city of Gothenburg, Sweden and sur-
rounding area. All 36 patients who met the inclusion criteria (age<7 years,
T1DM with duration > 3 months, patient at our diabetes unit) were invited to
participate in a one year prospective multidimensional study ("DU7"). As a part of this study all SMBG was collected prospectively from autumn 2008 until autumn 2009. The parents of 17 children gave informed consent to par-
ticipate and 14 of them managed to upload >300 days of p-glucose values from
their child's glucometer. Data was collected with the software Diasend.
Hba1c was measured with DCA Vantage TM Analyzer, which was cali-
brated in accordance with Equalis standard, and the values were translated
into DCCT standard. Hba1c was measured at the study start and at least four
times during the year and the mean value of the year was used for every
child. Night was defined as 22-06. Hypoglycaemia was defined as p-glucose<
4mmol/l. Severe hypoglycaemia was defined as seizures or unconsciousness.
14 children (8 boys) aged 4.8 (1.8-6.9) years participated. 11 were on CSII and 3 on MDI when the study started, one shifted to CSII during the year.

Results: The average mean Hba1c was 7.8 (7.1-8.7) %; 7/14 (50%) had mean
Hba1c <7.5 %. The mean p-glucose testing frequency was 2849 (1157-5209)
per patient year with mean 7.8 (3.2-14.2) values per day. The mean frequency
of hypoglycaemia detected by SMBG was 241 (150-385) per patient year. The mean number of nights with detected hypoglycaemia was 21 (4-42) per pa-
tient year. The mean number of night time SMBG was 452 (73-906) values per patient year. One child reported two and one child reported one severe
hypoglycaemia (21 events per 100 patient years).

Conclusion: The mean frequency of hypoglycaemia was 0.66 events per day
(4.6 events per week). The children were hypoglycaemic 6 (1-12) % of the
nights. We need to identify age-specific strategies to improve insulin treat-
ment for preschool children. Further data on how to balance nutrition, in-
sulin and physical activity in order to achieve good glycemic control and
thereby preserve health and quality of life in the short and long perspective
are needed.

Supported by: Barndiabetesfonden

143

Suboptimal vitamin D status as a risk factor for CF-related diabetes in the Scandinavian Cystic Fibrosis Nutritional Study

T. Pinicikova1, E. Nilsson2, L. Moen3, G. Fluge1, A. Holländ1, P. Knudsen1, A. Lindblad1, L. Mared1, T. Pressler1, L. Hjelle1
1Stockholm CF Center, B 59, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden, 2National Center for Cystic Fibrosis, Oslo University Hospital Ul levei, 3Cystic Fibrosis Center, Department of Pediatrics, Haukeland University Hospital, Bergen, Norway, 4Uppsala Cystic Fibrosis Center, KBH, Uppsala University Hospital, 5The West Swedish CF Center, Sahlgrenska University Hospital, Gothenburg, 6Heart and Lung Center, Lund University Hospital, Sweden, 7Cystic Fibrosis Center, Department of Pediatrics, Copenhagen University Hospital, Denmark.

Background and aims: Cystic fibrosis (CF) is the most common life-short-
eining autosomal recessive disorder in Caucasians. The two main clinical
characteristics of CF are progressive pulmonary disease and pancreatic in-
sufficiency. CF-related diabetes (CFRD) is a major complication of CF. With
better medical care and longevity, prevalence of CFRD in adult CF popula-
tion is increasing and reaches up to 30%. CF patients worldwide are vitamin
D insufficient. Recent literature suggests that vitamin D might possess certain
antidiabetic properties. We aimed to assess the relationship between vitamin
D and CFRD, glucose tolerance and Hba1c using cross-sectional data gather-
ed in the Scandinavian CF Nutritional Study.

Materials and methods: 898 CF patients were included (0.25 - 65 years) from
7 centers in Denmark, Norway and Sweden. Serum 25-hydroxyvitamin D
(25(OH)D) and Hba1c were measured, oral glucose tolerance test (OGTT) was
conducted and vitamin D intake data were gathered using a seven-day
dietary food record. Multiple linear regression analyses were performed for
CFRD diagnosis, OGTT result and Hba1c as dependent variables, and se-
um 25(OH)D, vitamin D insufficiency degree, daily food and supplemented
vitamin D sources of intake as independent variables. The model was con-
trolled for country and centre, as well as for known CFRD risk factors: age,
gender, genoty, liver dysfunction, long-term oral corticosteroid treatment,
lung function and pancreatic insufficient vs. sufficient phenotype.

Results: In the group of all patients included in the study, CFRD diagnosis
was positively associated with serum 25(OH)D < 30 nmol/L (N=718; ad-
justed R²=10.7%; beta=0.06; p=0.031) and vitamin D insufficiency degree
(beta=0.025; p=0.033), and negatively associated with supplemented vitamin
D per kg bodyweight (beta=-0.035; p=0.045). Hba1c value was positively as-
associated with 25(OH)D < 30 nmol/L (N=698; adjusted R²=40.0%; beta=0.207;
Exenatide lowers postprandial glycaemia and increases satiety without side effects in Prader-Willi syndrome

A. Viardot1, L. See1, L. Purfell1, G. Loughran1, E. Smith1, H. Herzog1, K. Steinbeck1, L.V. Campbell2

1Investigative Medicine, Imperial College, London, United Kingdom
2Clinics for Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
3Diabetes & Obesity Research Program, Garvan Institute of Medical Research, Sydney
4Prader-Willi Syndrome Clinic, Metabolism & Obesity Services, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney
5Department of Cytogenetics, The Children's Hospital, Westmead Clinical School, Westmead

Background and aims: Prader-Willi syndrome (PWS) is associated with hyperphagia and obesity, the major burdens in management of this complex disease. Pharmacological interventions have been disappointing so far, and behavioural constraints are still the only effective option today. Exenatide has demonstrated to have beneficial effects on appetite suppression and weight loss, in addition to its glucose lowering effects, but it also has significant side effects. To our knowledge, exenatide has not been tested as a suitable intervention against hyperphagia and obesity in PWS. Therefore, we conducted a single dose pilot study to investigate the safety and effectiveness of exenatide on appetite regulation, glucose homeostasis and appetite hormones in PWS and obese control subjects.

Materials and methods: We recruited 8 subjects with PWS and 11 obese controls (OB) matched for age, sex and body fatness, assessed by DXA. Two standardised meal studies were performed, where subjects received either a single dose of 10 μg exenatide or normal saline injected sc 15 min before meal initiation in a single blinded cross-over design. Glucose, insulin, PYY, GLP-1 and ghrelin were measured for 4 hours postprandially. Appetite and satiety were assessed by visual analogue scale (VAS). Resting energy expenditure (REE) was assessed by indirect calorimetry.

Results: PWS and OB were well matched for central and total body fat mass. Fast-stated ghrelin and degree of insulin resistance (HOMA-IR) were similar in both groups. Exenatide was well tolerated in PWS with no side effects recorded, in contrast to marked side effects observed in OB (bloating 55%, nausea 45%, vomiting 18%). Exenatide significantly increased satiety 120 min after meal initiation (PWS, VAS 19±0.4 to 5.3±1.1, p<0.05; OB, VAS 3.5±0.7 to 5.4±0.8, p<0.05), but did not reduce appetite in both groups. Glucose and insulin levels were lowered similarly in both groups. Furthermore, GLP-1 and PYY levels were suppressed to a similar degree. However, ghrelin levels were not affected by exenatide in both groups. Fasting REE was not different between groups when corrected for lean body mass. However, the postprandial increase in REE was only observed in obese but not in PWS subjects (121±31 vs. 0±9 kcaI/kg, p=0.048).

Conclusion: This is the first report on the use of exenatide in PWS, demonstrating that it is particularly well tolerated and also similarly effective in increasing satiety and lowering glucose as in simple obesity. Our observation of suppressed insulin and unchanged ghrelin levels challenges previous hypotheses on the cause of hyperghrelinemia in PWS, and it also suggests that delayed gastric emptying might be an important mode of action of exenatide. Longer and larger prospective studies should follow to investigate whether chronic administration of exenatide will lead to decreased food intake and weight loss in PWS.

Supported by: Supporters and families with children with Prader-Willi syndrome, SNSF
of both all-cause (HR 0.57 (95% CI 0.47-0.70)) and cardiovascular (HR 0.57 (95% CI 0.44-0.74)) mortality, adjusted for sex, age and duration of diabetes. However, among insulin treated patients the lowest risk of death was for the second HbA1c quintile (HR for death from any cause was 0.58 (95% CI 0.42-0.81) and from cardiovascular disease - 0.59 (95% CI 0.38-0.90)), but not for the first quintile (corresponding HRs were 0.80 (95% CI 0.56-1.12) and 0.88 (95% CI 0.57-1.35)). Adding the frequency of blood glucose testing and education into the model, albeit both of them were inversely associated with mortality, did not affect the above mentioned relationship (Table). The observed associations did not change substantially after the deaths, which occurred within the first three years, were excluded from analysis: e.g., among insulin treated patients HR for death from any cause was 0.95 (95% CI 0.63-1.42) for the first quintile of HbA1c, and 0.55 (95% CI 0.36-0.83) for the second, but HR for death from cardiovascular disease was 0.99 (95% CI 0.59-1.66) for the first and 0.53 (95% CI 0.30-0.91) for the second quintile of HbA1c, compared to the highest quintile.

Conclusion: In insulin treated type 2 diabetes patients moderate (HbA1c between 6.76 and 7.73%), but not tight glycemic control (HbA1c <6.76%), was associated with better long-term survival. However, tight glycaemic control predicted better survival in patients not treated with insulin.

Association between baseline HbA1c and mortality in 3665 type 2 diabetes patients, 2000 to 2009

<table>
<thead>
<tr>
<th>HbA1c(%)</th>
<th>All-cause mortality (1429 cases)</th>
<th>Cardiovascular mortality (881 case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insulin therapy:</td>
<td>Insulin therapy:</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>HR* (95%CI)</td>
<td>HR* (95%CI)</td>
</tr>
<tr>
<td>Q1</td>
<td>0.84 (0.59-1.19)</td>
<td>0.58 (0.47-0.71)</td>
</tr>
<tr>
<td>Q2</td>
<td>0.64 (0.46-0.89)</td>
<td>0.64 (0.52-0.89)</td>
</tr>
<tr>
<td>Q3</td>
<td>0.73 (0.56-0.93)</td>
<td>0.61 (0.49-0.76)</td>
</tr>
<tr>
<td>Q4</td>
<td>0.72 (0.56-0.92)</td>
<td>0.80 (0.65-0.98)</td>
</tr>
<tr>
<td>Q5</td>
<td>1 (referent)</td>
<td>1 (referent)</td>
</tr>
</tbody>
</table>

* adjusted for age, sex, duration of diabetes, frequency of blood glucose testing and education

Supported by: EU PHARE-LIEN

147

Diabetes and insulin duration and cancer incidence: a register linkage study in Denmark

B. Carstensen1, D.R. Witte1, S. Friis2; 1Steno Diabetes Center, Gentofte, 2Department of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark.

Background and aims: Studies of cancer occurrence among diabetes patients in the past decades have shown elevated rates of cancer of the liver, kidney, female breast and corpus uteri in studies based on up to 8800 cancer cases or 30,000 deaths. Our aim was to extend these studies to assess the effect of diabetes duration and duration of insulin treatment on cancer incidence in the entire Danish population.

Material and methods: We linked the Danish National Diabetes Register and the Danish Cancer Register and followed diabetes patients for the occurrence of cancer and compared with the cancer occurrence in the non-diabetic part of the population. For those diagnosed with diabetes after 1995 we have reliable data on DM duration and the time since first insulin use. For these patients we modelled the effect of DM duration and duration of insulin use on the cancer occurrence rates. We used Poisson models for data in 1-year intervals by age and date of follow-up, date of birth, and in 6-month intervals by duration of disease and insulin treatment.

Results: We had 1.9 mio. years of follow-up, and observed a total of 30,000 cancer cases among the diabetes patients. We found a rate-ratio (RR) of 1.15 for all cancers combined. RRs over 1 were seen for cancers of the digestive tract, with a tendency of decreasing RR from oesophagus to rectum. The RR for liver cancer was elevated (M: 3.7; F:1.8) as well as for pancreas cancers (M and F: 3.0). Other cancer types with a substantially elevated RR were corpus uteri, kidney and lymphomas. Significant but small RRs were seen for lung cancer and female breast cancer. Testis cancer had a RR of 0.8, non-significant. For all cancer types combined, we found the effect of insulin use was highest just after start of treatment, starting at an RR of 2 and decreasing to a stable level of 1.5 after 3 to 4 years after first insulin prescription (based on analyses restricted to DM diagnoses after 1995: 1.1 mio. PY, 18,000 cancers). This pattern was also seen for duration of diabetes, with the risk being highest in the period just after diagnosis at RR 1.5 decreasing to 1 (no excess risk) after 3 years.

Conclusion: Besides the well known elevated cancer risk among diabetes patients, we found that patients on insulin carry an extra risk of cancer, in the order of magnitude of 50% relative to the general population. The effect of diabetes duration and insulin is highest immediately after disease/treatment onset, indicating that it may not be duration or insulin per se that carries the risk, but partly causes common to cancer and diabetes/insulin treatment, such as obesity. This study is the largest of diabetes and cancer incidence so far, and the only one to model the duration effects of both diabetes and insulin treatment. We have however no detailed phenotypic information on the entire Danish population allowing us to control for obesity and other known risk factors for diabetes.

The thick line shows the RR for patients not on insulin, and the thin lines the RR for patients starting insulin 0, 2 and 5 years after disease onset.

148

Diabetes and pancreatitis: A population based study to determine the prevalence and incidence of pancreatitis in people with and without diabetes

H. Mani1,2, B. Thakrar1, M.J. Davies1,3, K. Khunti2; 1Diabetes and Endocrinology, University Hospitals of Leicester, 2Cardiovascular Sciences, University of Leicester, United Kingdom, 3Roche AG, Bern, Switzerland.

Background and aims: Acute Pancreatitis is one of the most common gastrointestinal diseases. Incidence of acute pancreatitis has been increasing in the past 40 years. The most common causes of acute pancreatitis are gallstones and alcohol followed by idiopathic aetiology. There has been recent interest in concomitant increase of acute pancreatitis, type 2 diabetes (T2DM), and obesity with their associative risk factors for pancreatitis. The increasing use of incretin based therapies and their possible association with pancreatitis has also added to the debate. With limited published epidemiological data on pancreatitis in people with diabetes, we used the UK General Practice Research Database to investigate if there is an association between diabetes and pancreatitis.

Materials and methods: We identified all patients, ≥ 18 years, who were alive on 1st January 2004 and had at least one previous history in the database. From these patients a cohort with a diagnosis of T2DM prior to index date was identified. The remaining patients formed the comparator cohort. From both cohorts those with a diagnosis of pancreatitis prior to index date were excluded. The two cohorts were followed forward from index date until the patients’ last date to determine the incidence rate of pancreatitis. Relative risk of acute pancreatitis, comparing the two cohorts, was estimated after adjusting for gender and age using Poisson regression.

Results: Of 2.34 million patients aged 18 and over in the database, 75322 (3.2%) had a history of T2DM. Overall 574 people with diabetes (0.76%) had a previous history of pancreatitis (vs. 0.17% in those without diabetes). After
adjusting for age and gender, odds ratio for history of pancreatitis in people with diabetes compared to those without was 3.05 (95% CI: 2.79-3.35). In the incident cohort, we included 74,748 people with diabetes and 2,263,766 controls with a mean age of 66 and 48 respectively. The mean follow up was 3.1 years for people with T2DM and 3.2 years for control group. There were 134 incident cases of acute pancreatitis in the people with diabetes and 1975 in the controls. The crude incidence rate was 57.5 and 27.4 per 100,000 person years respectively, equal to a ratio of 2.09. After adjusting for age and gender, the relative risk of acute pancreatitis associated with diabetes was 1.47 (95%CI: 1.23-1.76). The relative incidence rate of pancreatitis in different age and sex groups are shown in table.

Conclusion: There is both an increased prevalence and incidence of pancreatitis in people with diabetes compared to those without diabetes. Incidence of pancreatitis in UK general population has increased compared to previous report of 10/100,000 per year. The increasing incidence of T2DM might be a contributory factor in increasing incidence of pancreatitis.

Table. Relative risk of acute pancreatitis associated with gender, age, and diabetes

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age in Years</th>
<th>People with T2 Diabetes (N=74810)</th>
<th>People without Diabetes (N=2,825,782)</th>
<th>Relative Incidence rate Diabetes/No Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N cases</td>
<td>Person years</td>
<td>Incidence rate</td>
<td>N cases</td>
</tr>
<tr>
<td>Females 18-39</td>
<td>1075</td>
<td>4</td>
<td>3431</td>
<td>116.6</td>
</tr>
<tr>
<td>40-49</td>
<td>2602</td>
<td>2</td>
<td>8668</td>
<td>23.1</td>
</tr>
<tr>
<td>50-59</td>
<td>5203</td>
<td>4</td>
<td>17062</td>
<td>23.4</td>
</tr>
<tr>
<td>60-69</td>
<td>8625</td>
<td>18</td>
<td>27990</td>
<td>64.5</td>
</tr>
<tr>
<td>70-79</td>
<td>10093</td>
<td>15</td>
<td>31997</td>
<td>47.5</td>
</tr>
<tr>
<td>80-</td>
<td>6522</td>
<td>16</td>
<td>17774</td>
<td>90.0</td>
</tr>
<tr>
<td>All ages</td>
<td>34123</td>
<td>59</td>
<td>106431</td>
<td>55.4</td>
</tr>
<tr>
<td>Males 18-39</td>
<td>1077</td>
<td>1</td>
<td>3332</td>
<td>30.1</td>
</tr>
<tr>
<td>40-49</td>
<td>3565</td>
<td>8</td>
<td>11578</td>
<td>69.1</td>
</tr>
<tr>
<td>50-59</td>
<td>8190</td>
<td>20</td>
<td>26681</td>
<td>75.0</td>
</tr>
<tr>
<td>60-69</td>
<td>11935</td>
<td>17</td>
<td>38336</td>
<td>44.3</td>
</tr>
<tr>
<td>70-79</td>
<td>11172</td>
<td>24</td>
<td>34222</td>
<td>69.7</td>
</tr>
<tr>
<td>80-</td>
<td>4686</td>
<td>5</td>
<td>12394</td>
<td>40.3</td>
</tr>
<tr>
<td>All ages</td>
<td>40625</td>
<td>75</td>
<td>126744</td>
<td>59.1</td>
</tr>
</tbody>
</table>

Females and Males

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age in Years</th>
<th>N cases</th>
<th>Person years</th>
<th>Incidence rate</th>
<th>N cases</th>
<th>Person years</th>
<th>Incidence rate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>74748</td>
<td>134</td>
<td>233175</td>
<td>57.5</td>
<td>2263766</td>
<td>1975</td>
<td>7195680</td>
<td>27.4</td>
</tr>
</tbody>
</table>

149

Risk prediction of cardiovascular disease in type 2 diabetes - a new risk equation from the Swedish NDR

Background and aims: Risk prediction models obtained in samples from the general population do not perform well in type 2 diabetes (T2DM) patients, and 5-year risk estimates are proposed more accurate than 10-year risk estimates. We assessed the association of risk factors with cardiovascular disease (CVD), in order to elaborate a model for the absolute 5-year risk of CVD in patients with T2DM from the Swedish National Diabetes Register (NDR).

Materials and methods: Investigational sample consisted of 20,571 female and male patients aged 18-70 years, 14% with a history of CVD before baseline in 2002-03, with 1,776 fatal/nonfatal CVD events when followed for 5 years from 2003 to 2007. A separate sample of 2,898 female and male patients aged 18-70 years, was used for application of the risk model, 14% with previous CVD, with 223 CVD events when followed for 4 years from 2004 to 2007.

Results: Adjusted hazard ratios at Cox regression for fatal/nonfatal CVD for a 1 standard deviation increase in continuous variables were: 1.55 for T2DM onset age; 1.53 for T2DM duration; 1.19 for Total/HDL-Cholesterol ratio; 1.13 for HbA1c; 1.12 for systolic BP; 1.07 for BMI; and dichotomous variables, 1.51 for male gender; 1.44 for smoking; 1.29 for microalbuminuria; 1.49 for macroalbuminuria (>200 μg/min); 1.67 for atrial fibrillation and 1.73 for previous CVD. All 12 variables were used to elaborate the risk equation for 5-year CVD risk. Calibration was excellent when assessed by calibration C statistic of 0.70 at logistic regression, and with sensitivity for predicted risk ≥5%; 95% CI and specificity for risk <10%; 63%. Application of the 4-year CVD risk estimated with use of the presented risk model in another 2,898 separate T2DM patients followed for 4 years still showed a good calibration when comparing predicted 4-year risk, mean 8.08±6.2%, and observed 4-year failure rate at survival analysis, 7.81 (95% CI 6.89-8.86) %, with a ratio of 1.13. Discrimination was sufficient, with a ROC-statistic of 0.73, and with sensitivity for predicted risk ≥5%; 96% and specificity for risk <10%; 72%.

Conclusion: This risk model for the 5-year CVD risk based on 12 predictors, elaborated in a large observational study from the normal population of T2DM, showed adequate calibration and discrimination, and should be useful for clinical practice. However, the risk model also needs to be tested in samples including patients with T2DM from other countries or regions.

![Figure 1](link)

Figure 1

Supported by: The Swedish Association of Local Authorities and Regions funds the NDR

150

A new risk model for cardiovascular disease in type 1 diabetes

K. Eeg-Olofsson, B. Zethelius, A.-M. Svensson, S. Gudbjörnsdottrí, B. Eliasson, J. Cederholm; 1Institute of Medicine, Göteborg, Sweden, 2Department of Public Health and Caring Sciences, Uppsala, Sweden, 3Center of Registers in Region Vastra Götaland, Göteborg, Sweden.

Background and aims: Risk prediction models are lacking in patients with type 1 diabetes. We assessed the association of risk factors with cardiovascu-
OP 26 Hypertension and retinopathy

151

Risk of hypertension in people with IGT: effect of postprandial glucose control

M. Hanefeld1, C. Köhler1, T. Westermeyer2, G. Saunders2, J.-L. Chiasson1, C. Köhler1, T. Westermeyer2, G. Saunders2, J.-L. Chiasson1
1Center for Clinical Studies, GWT-TUD GmbH, Dresden, 2Center for Clinical Studies, Bayer Vital GmbH, Leverkusen, Germany, 1Enterprises Inc., Drayton Valley, 2Center for Clinical Studies, Université de Montréal, Montreal, Canada.

Background and aims: Already prediabetes is associated with a high prevalence of hypertension. There exists now evidence from prospective clinical trials that people with impaired glucose tolerance (IGT) represent a high risk group for development of hypertension. So far, little is known on risk factors and impact of glucose control in the prediabetic stage on development of hypertension. This report analyses (1) risk factors for hypertension (2) effect of glucose control by acarbose on incidence of newly diagnosed hypertension in the data pool of the randomized placebo-controlled STOP-NIDDM trial.

Materials and methods: In this multinational trial 14,742 subjects (age 40-70 years, BMI 25-40 kg/m², > 95 % Caucasians) were screened with a 75 g OGGT. 1,429 eligible patients with IGT were randomised, 1,368 were valid for ITT analysis, mean follow-up time 3.3 years.

Results: At baseline 666 (48.7%) (341 placebo, 325 acarbose) patients were normotensive and 702 (51.3%) had a hypertension (BP>=140/90 mmHg and/or antihypertensive drugs), 96 (14.4%) developed hypertension, annual progression rate of 4.4%. In the intervention group 10.5% developed hypertension vs. 18.2% in the placebo arm. Patients with subsequent development of hypertension had significantly higher levels of blood pressure at baseline. In univariate analysis of time to development of hypertension large waist circumference, metabolic syndrome and treatment group were the only significant predictors. Multivariate analysis confirmed only treatment group as significant variable with a hazard ratio in favour of acarbose of 0.59 (CI 0.35-0.90).

Conclusion: In about any second subject IGT was associated with hypertension before glucose lowering treatment. At follow-up IGT was accompanied by a high incidence of hypertension (annual rate 4.4%). Control of postprandial hyperglycemia by acarbose reduced significantly rate of newly diagnosed hypertension.

152

Cardiorespiratory fitness and reduction in blood pressure and insulin resistance during lifestyle intervention

N. Stefan1, C. Totsikas1, J. Röhm1, K. Kantartzis1, C. Thamer2, K. Rittig2, J. Machann1, F. Schick1, J. Hanef1, A. Niess1, A. Fritsche2, H.-U. Häring1
1Department of Internal Medicine, Section of Experimental Radiology, University of Tübingen, Germany.

Background and aims: Lifestyle intervention, in general, is effective for improving arterial hypertension and other cardiovascular risk factors. However, there is a large variability in these responses. Because high cardiorespiratory fitness (CRF) protects from cardiovascular disease and mortality, we determined whether CRF at baseline predicts the improvement of blood pressure, insulin resistance and other cardiovascular risk factors during a lifestyle intervention.

Materials and methods: A total of 219 subjects at risk for type 2 diabetes, who underwent a 9 months lifestyle intervention with diet modification and increase in physical activity, and had measurement of CRF, were studied. Insulin sensitivity was estimated during a 75g oral glucose tolerance test. Total body-, visceral- and liver fat were measured by magnetic resonance (MR) tomography and 1H-MR spectroscopy. CRF was estimated during incremental cycle exercise (maximal aerobic capacity-VO2max) and motorized treadmill (individual anaerobic threshold-IAT) tests.

Results: During the intervention adiposity, glycemia, CRF and insulin sensitivity largely improved (all p<0.0003), however, blood pressure and serum lipids only moderately decreased (all p<0.06). High CRF at baseline predicted a larger decrease in systolic (p<0.0002) and diastolic (p<0.004) blood pressure, and a larger increase in insulin sensitivity (p<0.04), but not change in serum lipids (all p>0.06). While weight loss was similar among quartiles of CRF (p=0.17), systolic (p<0.0009) and diastolic (p=0.01) blood pressure only decreased in the higher two quartiles. For 1 SD increase in CRF at baseline
the odds ratio for resolution of hypertension or prehypertension was 2.26 (95% CI, 1.40-3.80) for IAT and 1.75 (95% CI, 1.08-2.89) for VO.

Conclusion: We provide novel data that measurement of CRF at baseline helps to predict the effectiveness of a lifestyle intervention in improving blood pressure and insulin sensitivity in humans.

Supported by: DFG (KFO 114) / DFG (Heisenberg Stipend to NS)

153

Static and dynamic retinal vessel analysis in normo- and hypertensive type 1 diabetic patients

A. Mandecka1, W. Vilsa, J. Dawczynski1, M. Schwefer1, M. Blum1, N. Müller2, C. Kloos3, G. Wolf4, U.A. Müller1;
1Internal Medicine III, Friedrich Schiller University, Jena, 1IMEDOS Systems UG, Jena, 2Department of Ophthalmology, Friedrich Schiller University, Jena, 3Department of Cardiology, Helios Clinic, Erfurt, 4Department of Ophthalmology, Helios Clinic, Erfurt, Germany.

Background and aims: There is evidence that retinal vessel dilation results in disturbed autoregulation of retinal microcirculation in diabetic retinopathy (DR). On the other hand, stimulation of the retina with flicker light increases retinal vessel diameters in humans. The reduction of flicker light-induced vasodilation is considered endothelial dysfunction. We investigated the static calibre of retinal vessels and retinal vasodilation after stimulation with flickering light in type 1 diabetic patients with and without hypertension.

Materials and methods: Participants consisted of 76 control participants, 58 normotensive type 1 diabetic patients and 57 hypertensive type 1 diabetic patients. DR was classified according to the Early Treatment Diabetic Retinopathy Study criteria (no DR, mild- moderate and severe nonproliferative NPDR). The arteriolar retinal calibre (CRAE, µm) and flicker light-induced retinal vasodilatation (percentage increase over baseline diameter) were measured using Dynamic Vessel Analyzer.

Results: In normotensive diabetic patients, after adjustment for age, sex and glycated hemoglobin, patients without retinopathy (209.7 µm) and with mild NPDR (217.6 µm) had significantly wider arteriolar caliber compared to controls (183.2 µm). Patients with severe NPDR (190.9 µm) had significantly reduced CRAE in comparison to patients without DR or with mild NPDR. After adjustment for age, sex, glycated hemoglobin and CRAE the flicker-induced arteriolar dilation decreased with increasing stages of retinopathy (p-trend <0.014). In diabetic patients with hypertension, after adjustment for age, sex and glycated hemoglobin, patients without retinopathy (202.4 µm) and with mild NPDR (198.6 µm) had significantly wider arteriolar caliber compared to controls. Patients with severe NPDR (181.0 µm) had significantly reduced CRAE in comparison to patients without DR. After adjustment for age, sex, glycated hemoglobin and diabetes duration, wider arteriolar caliber in comparison to hypertensive diabetic patients (p<0.007). Normotensive diabetic patients without retinopathy had wider arteriolar caliber compared to hypertensive patients (p<0.058).

Conclusion: In normotensive type 1 diabetic patients the initial stages of retinopathy are associated with wider arteriolar caliber in comparison to hypertensive patients. The arteriolar vasodilation results in disturbed autoregulation of retinal vessels. The distinct arteriolar vasodilatation in normotensive type 1 diabetic patients may contribute to increased vulnerability of retinal microcirculation. Additionally, the flicker-induced arteriolar vasodilatation decreased significantly with increasing stages of retinopathy independent of CRAE. The decreased flicker-induced dilation of retinal vessels of diabetic patients implies the reduced capacity to autoregulate the blood flow in diabetic retinopathy.

154

The role of the vascular endothelial growth factor A in the progression of diabetic retinopathy

Endocrinology Research Centre, Moscow, Russian Federation.

Background and aims: The diabetic retinopathy (DR) remains the main cause leading to the blindness among young people. There are many pathological mechanisms of DR progression. Vascular endothelial growth factor A (VEGF-A) is known to be a factor of the neovascularisation of the retina and development of the neovascular glaucoma (NG). The aim of this study was to investigate the level of VEGF-A in the aqueous humor (AH) in diabetic patients undergone to the cataract and glaucoma surgery, to estimate the grade of DR after the cataract operation and to analyze any correlations between the level of VEGF-A and DR stage.

Materials and methods: The study included 164 diabetic eyes (110 patients, among them 93 had type 2 diabetes mellitus (DM) and 17 - type 1 DM) and 24 nondiabetic eyes (20 patients) as a control group (CG). Glaucoma group consisted of 15 diabetic patients. All patients were operated due to the cataract or glaucoma; the phacoemulsification of the cataract, extracapsular cataract extraction or Ahmed glaucoma valve implantation were carried out. For assessment of VEGF-A the samples of AH were obtained during operation, were prepared by prompt centrifugation (15,000 g·min) and stored at -80°C. The VEGF-A value was analyzed by ELISA. The patient’s examination included standard ophthalmological endocrinological tests before and after operation. The grade of DR was measured using recommendation of WHO (1999). The grading of DR in diabetic patients was performed in 2 week after operation. The follow up period was from 1 till 24 month. Results of data were expressed as Mediana (95% CI). Relationship between the parameters was analyzed using nonparametric criteria.

Results: The VEGF-A value in patients without diabetes (CG) was 78.85 pg/ml (95% CI, 55.72-120.51). Among diabetic patients the DR grade estimated after cataract operation was the following: 10% eyes didn’t have sings of DR, 33% had nonproliferative DR, 39% had preproliferative DR and 18% had proliferative DR. The VEGF-A value in diabetic patients without DR signs was 18.3 pg/ml (95% CI, 10.05-57.65), in patients with nonproliferative DR was 51.12 pg/ml (95% CI, 41.6-88.21), in patients with preproliferative DR was 74.5 pg/ml (95% CI, 66.11-113.03), in patients with proliferative DR was 337.56 pg/ml (95% CI, 234.58-422.79), (p<0.05) (fig.1). The patients with the NG had the VEGF-A value of 1634.01 pg/ml (95% CI, 610.69-2657.33), that was 20 times more than in CG.

Conclusion: Our data confirm the possible role of VEGF-A in the progression of neovascularisation of the retina and development of the NG.

Figure 1: CG - control group; no DR - diabetic patients without DR; NP DR - patients with nonproliferative DR; PP DR - patients with preproliferative DR; PDR - patients with proliferative DR.
Background and aims: Previous studies have examined the associations of human leukocyte antigen (HLA) genes, islet autoantibodies and residual C-peptide with diabetic retinopathy (DR). In this study we examine the association of these factors, measured at the time of the clinical onset of type 1 diabetes mellitus (T1DM), with DR 15 years later using models to assess the independent effects each of these factors.

Materials and methods: The cohort was first identified in 1992 and 1993 by the Diabetes Incidence Study in Sweden (DISS) which attempts to enroll all incident cases of diabetes for patients between 15 and 34 years of age. Blood samples at diagnosis were analyzed for HLA genotype, islet autoantibodies and serum C-peptide. In 2008, copies of the most recent fundus photographs were obtained from existing patient records. Poisson regression was used to model the relative risk (RR) and 95% confidence interval (95% CI) of DR.

Results: Subjects with HLA DQ6 had a 70% reduced risk of any retinopathy 15 years after the clinical onset of diabetes compared to subjects without any DQ6, DQ8 or DQ2 haplotypes, RR = 0.29, (95% CI: 0.10 - 0.89). In addition, each unit increase in autoantibodies against the 65kD isomorph of glutamate dehydrogenase (GAD65, GADA) increased the risk of moderate or more severe DR by 45%, compared to subjects with mild or no DR, RR = 1.45 (95% CI: 1.01 - 2.07). C-peptide was not associated with DR.

Conclusion: We have shown that two immunologic factors capable of being determined at the clinical onset of T1DM may be useful to determine the risk of DR 15 years later. Not only does HLA DQ6 provide protection from developing DR, it may also protect subjects from developing DR. In addition, increased levels of GADA at the time of diabetes onset were associated with the presence of moderate or more severe levels of DR.

Supported by: NHLBI, NIH, KAWF, JF, FVI, LUSCC

Pericyte-endothelial cell interactions in co-culture models mimicking the physiological and diabetic retinal microenvironment, protective role of thiamine and benfotiamine

S. Tarallo, E. Beltramo, E. Berrone, M. Porta;
Dept Internal Medicine, University of Turin, Italy.

Background and aims: Pericytes regulate vascular tone and perfusion pressure in capillaries, and endothelial cell (EC) proliferation. Their selective loss in the early phases of diabetic retinopathy may cause angiogenesis, due to the failure of their control on endothelium proliferation. We standardized two human retinal pericyte (HRP)/EC co-culture models, to mimic the physiological and diabetic retinal microenvironment. Our aim in this work was to evaluate the interactions between co-cultured HRP/EC in terms of proliferation and apoptosis and the possible protective role of thiamine (T) and its lipophilic analogue benfotiamine (BT) against high glucose-induced damage.

Materials and methods: EC and HRP were co-cultured for 8 days in physiological glucose (NG, 5.6 mmol/l), stable high glucose (HG, 28 mmol/l) and intermittent HG (HGint, 48H HG/48H NG twice), with or without 50 μmol/l T or BT. No-contact model: EC were plated on the inner surface of a membrane suspended into the medium and HRP on the bottom of the same well, without physical cell-to-cell contact. Cell-to-cell contact model: EC and HRP were plated on the opposite sides of the same membrane, HRP being able to directly contact the abluminal surface of the EC through the pores of the membrane. In control experiments HRP and EC were plated on the relevant surfaces alone. Proliferation (cell counts and DNA synthesis, ELISA) and apoptosis (DNA fragmentation, ELISA) were measured.

Results: In the no-contact model, HG reduced proliferation of co-cultured EC (counts: -23.6%, DNA: -18.7%, p<0.005 vs NG), co-cultured HRP (counts: -24.6%, DNA: -12.9%, p<0.001 vs NG) and EC alone (counts: -22.5%, DNA: -26.0%, respectively, p<0.05; HRP: -29.6 and -38.7%, p<0.005) and DNA synthesis (EC: -22.5% and -26.0%, respectively, p<0.05; HRP: -25.7 and -26.2%, p<0.05), while increasing co-cultured HRP apoptosis (HRP: +75.7 and +130%, p<0.005). Stable HG had no effects on HRP in separate cultures. Both EC and HRP proliferated more in co-culture than when cultured alone (p<0.05). T and BT countered HG and HGint induced-damage in all cases.

Conclusion: Retinal pericytes may be sensitive to soluble factors, whose nature remains to be clarified, released by the endothelium, cultured in high glucose conditions. Thiamine and benfotiamine are able to counteract this damage, confirming once again their possible role in the prevention/treatment of diabetic microvascular complications.

Supported by: Compagnia di SanPaolo, Regione Piemonte (Torino, Italy)
OP 27 Incretins: mechanistic studies

157
Incretins directly suppress the development of macrophage-driven atherosclerosis in apolipoprotein E-null mice
T. Hirano1, M. Nagashima1, T. Watanabe1, K. Nohtomi1, M. Terasaki1, A. Miyazaki2,
1Diabetes, Metabolism, and Endocrinology, 2Biochemistry, Showa University School of Medicine, Tokyo, Japan.

Background and aims: Several lines of evidence suggest that the incretin-based therapies suppress the development of cardiovascular disease in type 2 diabetes. We investigated the possibility that glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) can prevent the development of atherosclerosis in apolipoprotein E-null (ApOE-/-) mice.

Materials and methods: GLP-1 (1.5 pmol/kg/min) or GIP (17 pmol/kg/min) was continuously infused for 4 weeks into 17-week-old ApOE-/- mice fed on an atherogenic diet. Alternatively, DPP-4 inhibitor (PKF275-055, Vildagliptin analogue, Novartis) was administrated as drinking water for 4 weeks. Aortic atherosclerosis, oxidized LDL-induced cholesterol ester accumulation (foam cell formation), and its related gene expression in excised peritoneal macrophages were determined.

Results: Administration of GLP-1, GIP, or DPP-4 inhibitor did not affect food intake, body weight, blood pressure, and plasma levels of lipids, glucose, and insulin. Remarkable atherosclerotic lesions in the aorta were observed in 21-week-old ApOE-/- mice. Administration of GLP-1, GIP, or DPP-4 inhibitor significantly reduced the surface areas of atherosclerotic lesions and suppressed atheromatous plaque size and macrophage accumulation in the aortic root as compared with vehicle controls. The suppressive effects of incretins and DPP-4 inhibitor on atherosclerosis were associated with significant decreases in foam cell formation and down-regulation of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) and CD36 in excised peritoneal macrophages. Incubation with active GLP-1 or GIP but not inactive forms for 4h resulted in significant suppression of foam cell formation in peritoneal macrophages obtained from non-treated ApOE-/- mice. The suppression of foam cell formation by incretins was totally cancelled by the pretreatment with the receptor antagonists, exendin-9-39 or (Pro3)GIP. Both GLP-1 and GIP receptors were detected in the peritoneal macrophages of ApOE-/- mice.

Conclusion: Our study provided the first evidence that both GLP-1 and GIP directly and vildagliptin analogue seems at physiological levels of incretins by DPP-4 inhibition suppress the development of macrophage-driven atherosclerotic lesions associated with down-regulation of essential molecules of foam cell formation such as ACAT-1 and CD36.

158
Liraglutide inhibits endothelial cell dysfunction and expression of vascular adhesion molecules in an ApoE mouse model of atherogenesis
A.E. Dear1, H. Liu1, T. Gaspar2, I. Welungoda2, R.E. Widdop1, L.B. Knudsen1, R.W. Simpson1,
1Medicine, Monash University, Melbourne, Australia, 2Research and Development, Novo Nordisk A/S, Bagsvaerd, Denmark.

Background and aims: Glucagon-like peptide-1 (GLP-1) is a hormone known to potentiate insulin and lower glucagon secretion. Recently, the once-daily GLP-1 analogue, liraglutide, has been approved as a new treatment for type 2 diabetes. Most importantly liraglutide improves glycemic control and lowers body weight. We have previously shown that liraglutide attenuates TNFα and markedly hyperglycemia (10mmol/l)-mediated induction of plasminogen activator inhibitor-1 (PAI-1) and vascular cell adhesion molecule expression in human vascular endothelial cells (hVECs). Endothelial cell dysfunction (ECD), an early abnormality in atherosclerosis and pre-diabetes, is associated with increased expression of vascular adhesion molecules. The aim of the current study was to determine whether liraglutide was vaso-protective in the non-diabetic Apoe-/- mouse model of ECD and atherosclerosis and establish the dependence of this effect on the GLP-1 receptor (GLP-1R).

Materials and methods: In vitro studies: ICAM-1 and VCAM-1 protein levels were determined in conditioned medium from C11-STH hVECs treated with TNFα (10ng/ml) alone or TNFα + liraglutide (100nM) or TNFα + liraglutide + exendin (9-39) (100nM) for 16hrs using ELISA kits. Semi-quantitative RT-PCR was used to determine mRNA expression of ICAM-1 and VCAM-1.

Results: In vivo TNFα induced ICAM-1 and VCAM-1 mRNA and protein expression in C11-STH hVECs at 16hrs. This effect was significantly inhibited by the addition of liraglutide. The inhibitory effect of liraglutide on TNFα induction of ICAM-1 and VCAM-1 was attenuated by concomitant addition of exendin (9-39). Following these experiments ex vivo organ bath studies using isolated aortic rings taken from Apoe-/- mice on a high fat diet treated with liraglutide for 4 weeks demonstrated a significant improvement in endothelial function with liraglutide compared with vehicle treated mice (max relaxation: liraglutide R\textsubscript{max} = 78.45±5.2% vs 55.36±6.89%; P<0.01; 2-way ANOVA). The improvement in endothelial function was completely abolished in mice co-treated with exendin (9-39) (R\textsubscript{max} = 53.95±5.6%).

Conclusion: These observations suggest liraglutide significantly inhibits TNFα induction of ICAM-1 and VCAM-1 protein and mRNA expression in vitro in a GLP-1R dependent manner. In vivo liraglutide treatment significantly inhibited ECD also in a GLP-1R dependent manner. Based on these observations liraglutide may have the potential to attenuate atherogenesis.

Supported by: Novo Nordisk

159
Liraglutide regulates key hypothalamic appetite-related signals in diet-induced obese rats
N. Vrang1, J. Jelsing1, K. Raun1, L. Bjerre Knudsen2,
1Gubra, Frederiksborg C, 2Novo Nordisk, Maløv, Denmark.

Background and aims: Glucagon-like Peptide-1 (GLP-1) analogues are emerging as an important drug class for the treatment of diabetes and possibly also obesity. While the physiological basis of the anti-diabetic properties of GLP-1 analogues is well understood, less is known about the mechanisms underlying the weight loss effect.

Materials and methods: In the current study we examined the effects of 28 days of daily administration with the GLP-1 analogue liraglutide (0.2 mg/kg) on food intake, body-weight and energy expenditure in male diet-induced obese (DIO) rats compared to vehicle and food-restricted rats (weight-matched to the liraglutide group). Liraglutide reduced food intake (vehicle 530±12 g, liraglutide 439±6.7 g; p<0.0001 vehicle vs liraglutide) and body-weight (vehicle 685±6.0 g, liraglutide 626±5.6 g; p<0.001 vehicle vs liraglutide).

Results: Interestingly, weight-matched animals consumed less food than the liraglutide group (weight-matched 321±10 g; p<0.0001 vehicle vs weight-matched). In line with these observations, 12-hour energy expenditure measurements at day 14 revealed a near significant increase in oxygen consumption in liraglutide-treated rats (ml/h/kg: vehicle 205±112, liraglutide 2535±242, weight-matched 2075±200; p=0.12 vehicle vs liraglutide, p=0.089 liraglutide vs weight-matched). Semi-quantitative in situ hybridisations (ISH) on hypothalamic brain sections from liraglutide-treated rats revealed a marked and significant increase in mean cocaine and amphetamine-regulated transcript (CART) mRNA levels in the arcuate (vehicle 100±15%; liraglutide 161±15%; weight-matched 109±11%; p<0.001 vehicle vs liraglutide) and paraventricular nuclei (vehicle 100±11%, liraglutide 190±30%, weight-matched 118±15%; p<0.01 vehicle vs liraglutide). Arcuate POMC mRNA levels were unchanged (vehicle 100±8.9%, liraglutide 91±9.1%, weight-matched 97±10%), whereas mean NPY (vehicle 100±10%; liraglutide 104±14%, weight-matched 141±10%; p=0.039 vehicle vs weight-matched) and AgRP (vehicle 100±10%, liraglutide 92±14%, weight-matched 174±17%; p<0.001 vehicle vs weight-matched) mRNA levels were significantly elevated in food-restricted rats only.

Conclusion: Our data demonstrate that the GLP-1 analogue liraglutide potently lowers food intake and body-weight possibly by: (1) an increase in arcuate CART mRNA; and (2) by blocking weight-loss-induced increases in arcuate NPY and AgRP mRNA levels.

Supported by: Novo Nordisk
Role of lysophosphatidylcholine in GIP secretion by primary K-cells
E. Diakogiannaki, F.M. Gribble, F. Reimann;
Clinical Biochemistry, University of Cambridge, United Kingdom.

Background and aims: Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by enteroendocrine K-cells found in highest density in duodenal and jejunal epithelium. Apart from being a critical regulator of insulin secretion, GIP modulates pancreatic beta-cell proliferation and survival, and controls dietary fat metabolism. GIP has also been postulated to link over nutrition to the development of obesity as pharmacological and genetic interference with GIP signaling proved protective in several rodent obesity models. Although it is known to be secreted in response to the presence of nutrients in the gut lumen, and particularly ingested lipids, the molecular mechanisms involved in the nutrient sensing by K-cells and subsequent secretion of GIP are still unclear. Therefore, understanding these pathways is necessary for the elucidation of the role of the hormone in the development of obesity and type 2 diabetes. The aim of this study was to investigate the effects of lipid micelles on GIP secretion by K-cells.

Materials and methods: GIP secretion was assayed in primary duodenal cultures and STC-1 cells. Ratiometric [Ca2+]i imaging experiments and FRET based [cAMP]i and were performed on STC-1 cells.

Results: Experiments were performed on primary cultures of murine duodenal epithelium and the enteroendocrine model cell line STC-1. To stimu- late the conditions epithelial cells experience after a lipid rich meal, “post-prandial micelles”, comprised of oleic acid (200µM), 2-monooeoyl glycerol (70µM), L-α-lysophosphatidylcholine (LPC) (70µM), cholesterol (17µM) and taurocholic acid (TC) (700µM), were applied. Both primary and STC-1 cells responded to lipid micelles by secreting enhanced amounts of GIP (9.2 fold and 3.1 fold stimulation, respectively compared to baseline, p<0.001 for both).

The stimulation of GIP secretion by lipid micelles was not attributable to cell lysis, as monitored by lactate dehydrogenase activity released into the super- natant. Fluorescence calcium imaging measurements in STC-1 cells, follow- ing loading with Fura-2AM, demonstrated elevations in intracellular calcium in response to lipid micelles (R_{380/340} increased 1.8 fold compared to baseline p<0.001 n=104). To investigate the relative importance of the different micellar lipids for the secretory response a series of experiments was performed omitting individual components. Exclusion of LPC significantly reduced secre- tory responses in both primary and STC-1 cells (46% in primary cells n=7 p<0.05; 22% in STC-1 n=12, compared to stimulation by micelles containing LPC). Replacement of LPC with phosphatidylcholine (PC) could not compen- sate (1.14-fold stimulation by micelles containing PC in primary cells; n=4).

LPC (in the presence of 700µM TC) promoted the release of GIP in a dose de- pendent manner over the range of concentrations between 1-100µM. Both in the presence and absence of TC, 70 µM LPC stimulated reversible rises in the cytosolic Ca²⁺ and [cAMP]i concentration monitored in STC-1 cells preloaded with Fura2 or transfected with a Epac2-based FRET-sensor respectively.

Conclusion: Lipid micelles stimulate GIP secretion from primary murine cultures and STC-1 cells. One of the components, LPC, enhanced intracel- lular concentrations of calcium and augmented levels of intracellular cAMP suggesting the involvement of Gس protein-mediated signaling.

Supported by: Wellcome Trust

161 Exendin-4 inhibits apoptosis of human pancreatic islet endothelial cells in high glucose condition: effects on the AKT/cAMP/PKA signalling pathways
I. Miceli, E. Favaro, F. Settanni, A. Baragli, R. Granata, G. Camussi, E. Ghigo, P. Cavalli Perin, M.M. Zanone;
Internal medicine, University of Turin, Italy.

Introduction: Increased understanding of the glucoregulatory action of incretin hormones has yielded greater insight into the pathophysiology of diabetes and has led to the development of new treatments for type 2 diabetes. Specifically, it has been demonstrated that the endogenous human incretin hormone glucagon-like peptide-1 (GLP-1), the major product from intestinal prod- uction and decreases glucose blood by several pathways and that the normal physiologic response to GLP-1 is impaired in type 2 diabetes. Not only does it stimulate beta cell proliferation, but also enhances the differentiation of new beta cells from progenitor cells in the pancreatic duct epithelium and inhibits beta cell apoptosis. The GLP-1 receptor agonists, exendin-4, exhibits actions similar to those of GLP-1, promoting beta-cell growth, survival, insu- lin secretion and enhancing proinsulin biosynthesis. However, it is established that glucose toxicity is not solely restricted to beta cells, but affects also sur- vival, proliferation and function of pancreatic islet endothelial cells, possibly contributing to beta cell function impairment and beta cell loss. We analyzed the effects of exendin-4 and the pathways involved on cultured human pancre- atic islet microendothelial cells (MECs) in hyperglycemic conditions.

Materials and methods: MECs were cultured in 28 mmol/l glucose concen- tration up to seven days and, in parallel, stimulated with exendin-4 (10 nM).

Apoptosis was evaluated by a photometric enzyme immunoassay measuring mono- and oligonucleosomes in the cytoplasmatic fraction of cell lysates as an index of DNA fragmentation, with Hoechst staining of apoptotic cells, and with assay of Caspase 3 activity. Western blot-analysis for P-Akt/Akt, P-Erk/ Erk, Bcl-2, Bax were also performed. To evaluate the role of the PI3K/Akt, adenyl cyclase and PKA pathways, treatments with the inhibitors wortman- nin and LY294002, MDL12330A and K7520 were also performed.

Results: In high glucose condition, proliferation of MECs progressively de- creased and apoptosis increased, accompanied by a reduced activation of the survival signaling pathway PI3K/Akt. Incubation with exendin-4 (10 nM) in- hibited apoptosis, increasing Akt and Erk phosphorylation and Bcl-2 expres- sion and decreasing Bax expression. The antiapoptotic effect of the peptides was blocked by inhibition of adenyl cyclase (AC)/cAMP/protein Kinase A (PKA) and PI3K/Akt signaling pathways.

Conclusion: These results suggest that exendin-4, in addition to its effects on endocrine cells, also promotes islet microendothelial survival. The sur- vival effect involves the PI3K/Akt and (AC)/cAMP/protein Kinase A (PKA) signaling pathway. Exendin-4 could therefore represent a potential tool to improve islet vascularization and, indirectly, islet function.

Supported by: Ricerca Sanitaria Finalizzata Regione Piemonte, I

162 Chronic treatment with taspoglutide, a once-weekly human GLP-1 analogue, prevents beta cell apoptosis, islet inflammation and fibrosis in ZDF rats
S. Uhles¹, J. Funk², M. Brecheisen¹, A. Benardeau¹, I. Tobalina³, C.B. Wollheim², S. Sewing⁴, C. Migliorini², E. Sebokova⁴;
¹Metabolic and Vascular Diseases, F. Hoffmann-La Roche AG, Basel; ²Pharma Research Non-Clinical Safety, F. Hoffmann-La Roche AG, Basel, Switzerland; ³Ipsen Pharma, San Filu de Llobregat, Spain; ⁴Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland.

Background and aims: Our previous data have demonstrated that taspoglu- tide, a novel once-weekly human glucagon-like peptide (GLP-1) analog, pre- serves islet integrity and β-cell function in ZDF rats, a rodent model of insu- lin resistance and Type 2 diabetes. To further explore the protective effect of taspoglutide on pancreatic islets, its effect on β-cell apoptosis, islet inflamma- tion and fibrosis in vivo was investigated in ZDF rats after chronic treatment. Materials and methods: Semi-quantitative immunohistochemistry analysis was performed to assess β-cell apoptosis, infiltration of inflammatory cells into the islet core and islet fibrosis on pancreatic sections of 9-week-old male ZDF rats 3 weeks after single application of taspoglutide (1 mg. s.c., formulat- ed to mimic human exposure) or vehicle to 6-week-old ZDF rats (ZDF 6w).

Results: Disease progression in ZDF rats lead to a pronounced decrease in β-cell survival. In particular, the proportion of apoptotic β-cells increased significantly in vehicle-treated rats at the age of 9 weeks when compared to ZDF 6w (p<0.001). Conversely, the number of apoptotic β-cells correlated significantly in vehicle-treated rats at the age of 9 weeks when compared to ZDF 6w (p<0.001). Concisely, the number of apoptotic β-cells correlated with the total number of β-cells per islet cross-section in the 9-week-old dia- betic animals. In addition, a significant higher number of apoptotic β-cells was present in the islets located in the pancreatic head (near the duodenum) than in islets located in the pancreatic tail (near the spleen). Taspoglutide- treatment improved β-cell survival as demonstrated by a significantly re- duced number of apoptotic β-cells per islet cross-section (taspoglutide: 0.06 vs vehicle: 0.19, p<0.001 and n.s. vs. ZDF 6w). The protective effect was even more pronounced in the pancreatic head. Taspoglutide prevented this inflammatory process as demonstrated by significantly less infiltration of inflammatory cells into the islet center and prevented islet fibrosis. In analogy with the apoptosis results, prevention of fibrosis was more effective in the pancreatic tail.

Conclusion: In summary, these results demonstrate for the first time new aspects of β-cell protective effects of incretins in vivo. In particular, in ZDF rats after chronic treatment protection effects of taspoglutide, a novel once- weekly human GLP-1 analogue, on 1) β-cell apoptosis 2) islet inflammation and 3) islet fibrosis were shown.

Supported by: Roche
OP 28 Targeting of beta cell genes in vivo

163

Beta cell proliferation is impaired in the absence of survivin in the pancreas of duct-ligated adult mouse

X. Wu, Q. Zhang, C. Liu, K. Xu, X. Mao, T. Yang, H. Okada, M. Woo

1Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, China, 2Division of Signaling Biology, Ontario Cancer Institute, Toronto, 3Institute of Medical Science, Ontario Cancer Institute, University of Toronto, Canada.

Background and aims: As type 1 and type 2 diabetes result from absolute or relative deficiencies in beta cell mass, respectively, understanding how beta cell mass is determined and can be manipulated may lead to new therapeutic options. We previously showed that transient perinatal expression of survivin, the inhibitor of apoptosis protein, is essential for pancreatic beta cell mass establishment by regulation of cell cycle progression. This study was designed to determine whether survivin was required for regeneration of beta cell mass in the pancreas of duct-ligated adult mouse.

Materials and methods: Using the Cre-loxP recombination system, we generated a rat insulin promoter (RIP)-driven survivin (also known as Birc5) knockout mouse with a specific deletion of survivin in pancreatic beta cells. Adult RIPCre+/-survivin+/+ mice and their control littermates (RIPCre+/-survivin-/-) were subjected to partial pancreatic duct ligation (PDL) or a sham operation, after which islet expression of survivin, beta cell function, beta cell mass, proliferation, beta cell size and apoptosis were analyzed.

Results: In control mice, PDL stimulated beta cell mass regeneration and beta cell proliferation and activated survivin reexpression in beta cells in the ligated tail of pancreas within 2-week. At day 7 post-PDL, control mice underwent significant regeneration of beta cell mass, increase of beta cell proliferation and beta cell numbers in the ligated tail of pancreas. However, targeted deletion of survivin in beta cells exhibited glucose intolerance at day 7 after PDL with specific impairments in beta cell mass regeneration, beta cell proliferation and pAkt expression, and with larger average beta cell size and nucleous size. Although the number of beta cell clusters was markedly decreased, the mutant mice specifically exhibited an increased proportion of small beta cell clusters (one to ten beta cells) within the ligated tail of pancre as. Additionally, islet architecture, beta cell development and apoptosis were not affected by absence of survivin after PDL.

Conclusion: Our results indicate that survivin reexpression in the pancreatic beta cells after PDL is essential for beta cell mass regeneration through beta cell proliferation. The preexisting beta cells seemingly exhibit a stronger requirement for survivin than new beta cells formed by neogenesis. This study highlights the importance of preexisting beta cell proliferation as a mechanism of beta cell mass regeneration. Beta cell neogenesis, without adequate proliferation, is not sufficient to regenerate a significant amount of beta cell mass after PDL.

Supported by: NSFC

164

Id1 may play an important role in beta cell dysfunction in type 2 diabetes

M.C. Åkerfeldt, D.R. Laybutt;

Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, Australia.

Background and aims: Pancreatic beta-cell dysfunction is central to the development of type 2 diabetes (T2D). Chronically elevated glucose and lipid levels may contribute to beta-cell dysfunction in T2D, although the molecular mechanisms remain unknown. In islets of diabetic db/db mice, we found that beta-cell dysfunction was associated with upregulation of a transcriptional regulator, inhibitor of differentiation 1 (Id1). Id1 proteins are negative regulators of helix-loop-helix (HLH) transcription factors. HLH proteins are critical for beta-cell development and function and therefore we investigated the role of Id1 in insulin secretion and glucose homeostasis in MIN6 cells and Id1 knockout mice.

Materials and methods: Id1 knockout (Id1-/-) and Wildtype (WT) mice were fed ad libitum for 6 or 18 weeks with standard chow (8% calories from fat) or high-fat diet (45% calories from fat [lard]) followed by intraperitoneal glucose tolerance test (ipGTT), insulin tolerance test (ipITT) or insulin secretion assay (batch incubations of isolated islets). To examine effects of increased Id1 expression on insulin secretion, Id1 was overexpressed in MIN6 cells followed by insulin secretion assay. Statistical analysis was performed by student’s t-test or two-way ANOVA.

Results: Id1-/- mice were completely protected from high-fat diet-induced glucose intolerance (p<0.001). This was not associated with altered food intake, body weight or epidymal fat pad weight, which were similar in fat-fed WT and Id1-/- mice. However, insulin levels during the ipGTT (P<0.01) and insulin release from isolated islets (P<0.001) were significantly increased in fat-fed Id1-/- mice compared to fat-fed WT mice. This protection from diet-induced glucose intolerance in association with augmented insulin secretion was observed at 6 and 18 weeks of high-fat feeding. No differences in insulin action were observed during ipITT of fat-fed WT and Id1-/- mice, suggesting that the protection from diet-induced glucose intolerance is due to improved beta-cell function rather than by changes in insulin sensitivity. No differences in glucose tolerance or insulin secretion were observed in chow-fed WT and Id1-/- mice, indicating that deletion of Id1 enhances insulin secretion only under conditions of fat over-supply and insulin resistance. In MIN6 cells, overexpression of Id1 led to reduced glucose-stimulated insulin secretion (P<0.05), indicating that increased expression of Id1 is sufficient to inhibit insulin secretion.

Conclusion: An important role of Id1 in beta-cell dysfunction is supported by evidence that deletion of Id1 in mice protects against diet-induced glucose intolerance and enhances insulin secretion under conditions of fat over-supply, and that increasing Id1 expression in beta-cells inhibits insulin secretion. Thus, Id1 expression may contribute to beta-cell dysfunction in T2D.

Supported by: JDRF and NHMRC of Australia

165

Sodium glucose co-transporter type 2 knockout reduces hyperglycaemia and preserves islet function in db/db mice

1Division of Signaling Biology, Ontario Cancer Institute, University of Toronto, Canada, 2Division of Endocrinology, Yale University School of Medicine, New Haven, 3Metabolic Diseases Biology, Bristol Meyers Squibb Research and Development, Princeton, USA.

Background and aims: Defective glucose-stimulated insulin secretion by pancreatic beta-cells due to glucose-toxicity has been implicated in the pathogenesis of type-2 diabetes. Therapies that reduce hyperglycemia could therefore not only prevent complications, but could potentially preserve beta-cell function. Inhibition of the sodium-glucose co-transporter type 2 (SGLT2) is a novel insulin-independent approach to lowering plasma glucose. SGLT2 is responsible for reabsorbing the majority of filtered glucose in the kidney. Thus, reducing SGLT2 activity leads to significant loss of glucose in the urine.

Materials and methods: To determine the effects of SGLT2 knockout on glucose homeostasis, insulin action and islet function against a background of extreme insulin resistance (db/db), we characterized wild type (db/db- SGLT2+/-), SGLT2 heterozygote (db/db-SGLT2+/-) and SGLT2 homozygote (db/db-SGLT2-/-) null mice by hyperinsulinemic euglycemic clamp studies as well as with hyperglycemic clamps. Isolated islets from the mice were perfused to assess insulin secretion.

Supported by: IDRF and NHMRC of Australia
Results: Fasting plasma glucose and insulin were reduced in db/db-SGLT2 mice relative to db/db-SGLT1 mice (P=0.001), while there was no difference in db/db-SGLT1 mice (glucose: 124 ± 8, 199 ± 15, 202 ± 20 μg/dl; insulin: 92 ± 6, 163 ± 22, 176 ± 22 μU/ml). There was no difference in body weight between genotypes, despite a 1.5-3 fold greater daily urine output and glucosuria in db/db-SGLT1 compared to db/db-SGLT2 mice. Nevertheless, adiposity was 5% less (P<0.01) in db/db-SGLT1 mice compared to db/db-SGLT2 mice. During hyperinsulenic-euglycemic clamp studies, the glucose infusion (GINF) required to maintain euglycemia in db/db-SGLT1 mice was 100% higher than db/db-SGLT2 and 170% higher than db/db-SGLT1 mice (P<0.001). There were no differences in muscle or fat glucose uptake suggesting that reduced hepatic glucose output and/or glucose loss in urine accounted for changes in GINF. Interestingly, in vivo insulin function as assessed by hyperglycemic clamp studies suggested that SGLT2 inhibition may preserve islet function: AUC insulin secretion was approximately 190% greater in db/db-SGLT1 mice compared to db/db-SGLT2 mice (P<0.05). Lastly, perfusion studies with isolated islets demonstrated no difference in glucose stimulated insulin (GSI) output between genotypes (P=0.43), indicating that islets in db/db-SGLT2 mice are still responsive to glucose. Together, these data suggest that SGLT2 inhibition is an attractive therapeutic target for type 2 diabetes.

Conclusion: SGLT2 knockout reduced adiposity and prevented hyperglycemia in db/db mice. Furthermore, reduced hyperglycemia appeared to preserve overall beta-cell function in vivo, resulting in greater insulin secretion during the hyperglycemic clamp. Taken together, these data suggest that SGLT2 inhibition is an attractive therapeutic target for type 2 diabetes.

166

Deletion of beta cell Raf-1 kinase results in glucose intolerance

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.

Background and aims: Regulation of glucose homeostasis by insulin depends on pancreatic beta-cell survival, growth, and function. Raf-1 kinase is a major downstream target of many growth factors that promote growth and survival of many cell types including the pancreatic beta-cells. We have previously reported that insulin protects beta-cells from apoptosis and promotes proliferation by activating Raf-1 signalling in dispersed primary mouse islets and in the mouse-insulinoma MIN6 cell line. As Raf-1 activity also regulates basal apoptosis and insulin secretion in vitro, we hypothesized that Raf-1 may play an important role in beta-cell function in vivo.

Materials and methods: To test this hypothesis, we utilized the Cre-loxP recombination system to obtain a pancreatic beta-cell specific ablation of Raf-1 kinase gene (RIPCre+/−; Raf-1fl/fl) and their littermate controls (RIPCre+/−; Raf-1+/+). IHC staining was performed on tissue sections from control and Raf-1−/− mice. Quantitative PCR was performed on isolated islet RNA from RIPCre+/−; Raf-1+/− and RIPCre+/−; Raf-1−/− mice using Taqman probes targeting Raf-1.

Results: Raf-1 is expressed in various cell types in the pancreas including insulin positive cells. Of the Raf isoforms, A-Raf message levels were the highest, followed by B-Raf and Raf-1 in control mice. Beta-cell specific deletion of Raf-1 did not alter the expression of A-Raf or B-Raf message levels in RIPCre+/−; Raf-1+/−, B-Raf and Erk1/2 protein expression were performed on RIPCre+/−; Raf-1+/−, B-Raf and Erk1/2 protein expression levels did not change in RIPCre+/−; Raf-1+/− mice compared to controls. RIPCre+/−; Raf-1+/− mice are viable, and no effects on weight gain were observed. RIPCre+/−; Raf-1+/−, B-Raf and Erk1/2 protein expression levels did not change in RIPCre+/−; Raf-1−/− mice compared to controls. RIPCre+/−; Raf-1−/− mice have increased fasting basal blood glucose levels, impaired glucose tolerance, but normal insulin tolerance compared to littermates control. Ilet perfusion studies demonstrated that islets isolated from RIPCre+/−; Raf-1−/− mice have impaired response to both glucose and KCl, consistent with the concept that Raf-1 plays an important role in beta-cell function. To ascertain if Raf-1 function regulates the expression of the exocytotic machinery, SNARE proteins were examined by western blot. In preliminary studies with MIN6 cells, Raf-1 inhibition was associated with an impairment of glucose-stimulated insulin secretion. Furthermore, phosphorylation of synapsin-1, which is required for liberating insulin granules from the actin cytoskeleton, was also completely abrogated.

Conclusion: Together with our previous work demonstrating that Raf-1 promotes survival and proliferation, these new results suggest that Raf-1 positively regulates beta-cell function in vivo.

Supported by: JDRF and NIH

167

Function of Insm1 in mature pancreatic beta cells

S. Jia, M. Poy, C. Birchmeier.
Developmental Biology / Signal Transduction, Max Delbrück Centrum Für Molekula, Berlin, Germany.

Background and aims: Insm1 was originally isolated from a human insulinoma subtraction library and was subsequently found to be expressed in a large numbers of tumors of neuroendocrine origin as well as in mouse developing nervous systems, many developing and adult endocrine cell types, among them adult pancreatic beta-cells. Mouse Insm1 is an intron less gene, which encodes a protein of 521 amino acids that contains three proline-rich regions, five C2H2 zinc finger motifs, a SNAG motif and a nuclear location signal (NSL). Insm1 is predicted to act as a transcription factor. Our previous work showed that Insm1 is essential for differentiation of pancreatic and intestinal endocrine cells. In the pancreas of Insm1 null mutant mice, endocrine precursors are formed, but only very few insulin-positive beta-cells are generated. Instead, endocrine precursor cells accumulate that express none of the pancreatic hormones. However, the function of Insm1 in mature pancreatic beta-cells is still unknown.

Materials and methods: To define Insm1 function in mature pancreatic beta-cells, we introduced a conditional mutation into the Insm1 gene in mature beta-cells. For this, we used a floxed Insm1 allele and a tamoxifen-inducible variant of cre, creER, which is expressed under the control of the insulin promoter (RIP-creER).

Results: Conditional mutation of Insm1 in mature pancreatic beta-cells blocks glucose-induced insulin secretion and causes hyperglycemia. However, Insm1 mutation did not ablate amino acid (e.g. Arginine) stimulated insulin secretion. Instead, Insm1-/- beta-cells are viable, and no effects on weight gain were observed. During hyperglycemic clamp studies, the glucose infusion (GINF) required to maintain euglycemia in db/db-Insm1−/− mice relative to db/db-Insm1−/−;Insm1fl/fl mice (P<0.001), while there was no difference in body weight between genotypes, despite a 1.5-3 fold greater daily urine output and glucosuria in db/db-Insm1fl/fl compared to db/db-Insm1−/− mice. Nevertheless, adiposity was 5% less (P<0.01) in db/db-Insm1fl/fl mice compared to db/db-Insm1−/− mice. During hyperinsulenic-euglycemic clamp studies, the glucose infusion (GINF) required to maintain euglycemia in db/db-Insm1fl/fl mice was 100% higher than db/db-Insm1−/− and 170% higher than db/db-Insm1−/− mice (P<0.001). There were no differences in muscle or fat glucose uptake suggesting that reduced hepatic glucose output and/or glucose loss in urine accounted for changes in GINF. Interestingly, in vivo insulin function as assessed by hyperglycemic clamp studies suggested that SGLT2 inhibition may preserve islet function: AUC insulin secretion was approximately 190% greater in db/db-Insm1fl/fl mice compared to db/db-Insm1−/− mice (P<0.05). Lastly, perfusion studies with isolated islets demonstrated no difference in glucose stimulated insulin (GSI) output between genotypes (P=0.43), indicating that islets in db/db-Insm1−/− mice are still responsive to glucose. Together, these data suggest that SGLT2 inhibition is an attractive therapeutic target for type 2 diabetes.

Conclusion: Insm1 is important for maintaining of mature pancreatic beta-cell function. Deletion of Insm1 in mature pancreatic beta-cells causes diabetic phenotype.

168

Deletion of the mitochondrial chaperone prohibitin-2 in beta cells results in beta cell apoptosis and promotes diabetes in transgenic Bet-Phb2−/− mice

S.M. Supale1, T. Brun1, I. Avril1, A. Gjinovci1, C. Merkwirth1, P.L. Herrera1, T. Langer1, P. Macsheier2
1Department of Cell Physiology and Metabolism, University of Geneva, Switzerland, 2Institute for Genetics, University of Cologne, Germany.

Background and aims: Prohibins are evolutionary well conserved and ubiquitously expressed proteins having two interdependent homologues, prohibitin-1 and -2 (PHB2). They are implicated in cell cycle regulation, ROS production, cancer, obesity, and inflammation. Prohibins form ring complexes in the inner mitochondrial membrane, thereby controlling mitochondrial dynamics, cristae remodeling and apoptosis. In pancreatic beta-cells, mitochondria are essential players in the control of metabolism-secretion coupling. Nevertheless, we lack information regarding importance of mitochondrial dynamics in general and putative role of prohibins in particular. Here, we generated beta-cell specific Phb2-2 knockout mice (Bet-Phb2−/−) to study prohibins and mitochondrial integrity in the regulation of glucose homeostasis, islet physiology, and beta-cell mass.

Materials and methods: Bet-Phb2−/− mice were generated by crossing mice with Phb2 allele flanked by lox-P sites (Phb2flo/O) with animals carrying the Cre recombinase driven by an insulin promoter (Rip-Cre). Mice thus generated (Bet-Phb2−/−) were assessed by genomic PCR and immunoblotting on isolated tissues. Glucose homeostasis was characterized by glucose tolerance tests and plasma insulin levels. In-situ pancreatic perfusions were carried out to study effects of Phb2 deletion on glucose-stimulated insulin secretion. Inlet morphology, beta-cell mass, proliferation and apoptosis were studied using immuno-histochemistry. The study has been carried out along the principles of laboratory animal care.

Results: Non-fasting blood glucose showed that Bet-Phb2−/− mice were normoglycemic up to the age of 4 weeks and then became hyperglycemic (14.6 mM, p<0.05) at 6 weeks, further developing diabetes with age and eventually causing death at the age 12-15 weeks. Bet-Phb2−/− mice grew normally until 6
weeks of age before progressive decline and weight loss. At 6 weeks, ipGTT revealed that Bet-Phb2−/− mice were glucose intolerant (AUC +133%, p<0.001) compared with littermate control (Phb2+/+) mice. Plasma insulin levels were lower by 66% (p<0.01) during fasting and 93% (p<0.001) after glucose injection in 6-week old Bet-Phb2−/− mice. In-situ pancreatic perfusions revealed that both first and second phases of glucose-stimulated insulin secretion were markedly reduced (-76%, p<0.001 and -78%, p<0.001, respectively) in 6-week old Bet-Phb2−/− mice. Up to the age of 4 weeks, beta-cell proliferation was 3 times higher in Bet-Phb2−/− versus controls. Bet-Phb2−/− islets were disorganized at the age of 4 weeks onwards and beta-cell mass progressively declined with age.

Conclusion: These results demonstrate that prohibitin-2 is essential for beta-cell function and survival. Loss of this mitochondrial chaperone protein led to beta-cell death and diabetes. Interestingly, beta-cell proliferation could compensate apoptosis and postponed diabetes during the first 4 weeks of life of the Bet-Phb2−/− mice.

Supported by: Swiss National Science Foundation

OP 29 Type 1 diabetes mellitus genetics: expression, interaction and function

169

Investigation of the expressional profiles in human pancreatic islets for candidate genes located in 40 type 1 diabetes associated regions

Background and aims: Today more than 40 non-HLA regions have been demonstrated to be robustly associated with the risk of type 1 diabetes (T1D). However, the causal variants have not yet been identified for any of the genes located within these regions. For most of the genes their function in relation to the disease pathogenesis is also unknown. One way of dissecting possible roles for these genes in the pathogenesis is to investigate their expression, under cytokine stimulation in human pancreatic islets, to mimic the inflammatory process that precedes the clinical onset of T1D. Genes that change their expression can be presumed to have a functional relevance and further investigations can then be focused on these.

Materials and methods: Candidate genes were chosen from the 40 risk loci that were identified in the genome wide association scan published by the Type 1 Diabetes Genetics Consortium (T1DGC). The genes that were located closest to the association signal within each associated region were chosen for evaluation. The gene expression of 47 candidates was evaluated using custom designed Low Density Arrays (Applied Biosystems). Expression levels were measured in eight individual human pancreatic islet preparations before and after cytokine stimulation (mix of TNF-α, IFN-γ and IL-1β). Gene expression levels were normalized against the geometric mean of three different housekeeping genes and compared using the paired t-test.

Results: We detected expression in human pancreatic islets for 30 of the 49 investigated genes, of which 13 were significantly and four borderline regulated by cytokine treatment. Already well known candidate genes, such as INS and IFIH1 were among the significantly regulated genes. Furthermore, among genes located in recently associated regions IL10 (1q32), IL7R (3p13), MMP19 (12q13) and TNFAIP3 (6q23) were up-regulated whereas CTSH (15q25), COBL (7p12), CTRRR2 (16q23) and SKAP2 (7p15) were down-regulated by cytokines.

Conclusion: Expression profiling of genes located in T1D associated regions has pinpointed genes that are affected by cytokine stimulation in human islets, thus guiding the investigation towards their functional implication in the pathogenesis. In addition, the results demonstrate that despite that many of the investigated genes have been classified as “immune genes” they are in fact also expressed in human islets, and moreover they are affected by cytokines. Future studies involve the investigation of risk genotype-specific effects on gene expression in human lymphocytes to find out how genetic variation associated with the risk genes can affect their function and lead to a pathogenic state.

Supported by: JDRF

170

Type 1 diabetes protein network analyses combined with gene expression profiling in human islets

R. Bergholdt1, C.A. Brorsson1, T. Floyd1, L.A. Berchtold1, A. Palleja2, L. Jensen2, J. Sterling1, F. Pociot1,2;

1Dept of Genome Biology, Hagedorn Research Institute, Gentofte,
2Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark, 1Institute for Clinical Science, University of Lund, Sweden.

Background: In type 1 diabetes (T1D) 40 non-HLA regions have been demonstrated to be robustly associated. For none of the regions the causal variant is known and most contain many genes. Even with the genetic contribution from these 40 regions and the HLA region we have still not explained the total genetic heritability for T1D. Novel approaches are needed to identify the causal T1D genes and to explain this missing heritability. We have identified all positional candidate genes in the 40 non-HLA T1D associated regions identified in genome wide association studies (GWAS) and used these as input for network-based data mining analyses. For all input genes and interaction partners we performed expression profiling in human pancreatic islets.
Clinical information was obtained with question
HIP T1D, and that HIP14 is needed for beta-cell survival and insulin secretion.

Conclusion: donor islet preparations.
cells. In human islets, cytokines decreased HIP14 expression in 6 out of 8
tory cytokines (IL-1 + IFN) known to contribute to beta-cell dysfunction and
apoptotic cell death suggesting that HIP14 is required for beta-cell survival.
RNA against HIP14 in purified primary rat beta-cells or INS-1 cells induced
line demonstrated that HIP14 is 2-fold higher expressed in beta-cells ver

candidate genes including two
candidate genes. Follow-up studies involved experiments to address the func
this “phenome-interactome analysis” to identify novel T1D

Identification of type 1 diabetes candidate genes by in silico phenome-
interaction analysis
J. Storling,1 L.A. Berchtold,1 Z.M. Stormling,1 F. Ortis,1 J. Hald,1 T. Galbo,1
K. Lage,2 C.B. Berthelsen,1 D.L. Eizirik,1 S. Brunak,1 F. Pociot;3 1Dept. of Diabetes Inflammation, Hagedorn Research Institute, Gentofte,
1Center for Biological Sequence Analysis, Lyngby, Denmark, 2Universite Libre de Bruxelles, Brussels, Belgium, 3Hagedorn Research Institute, Gentofte, Denmark.

Background: Type 1 diabetes (T1D) has a strong genetic background, but
except for a few, the specific genes that contribute to disease remain to be
discovered.

Methods: A systems biology/bioinformatics method for predicting genes in-
volved in disease was recently developed. The method is based on in silico
generation of protein networks and disease phenotype association. We used
this “phenome-interactome protein network analysis” to identify novel T1D
candidate genes. Follow-up studies involved experiments to address the func-
tional role of predicted genes in pancreatic beta-cells.

Results: Using T1D genome-wide linkage results as input data, we performed
a phenome-interactome protein network analysis. The analysis revealed 11
candidate genes including two HLA genes and the INS gene. A top-scoring
candidate gene was Huntingtin-interacting protein (HIP)-14. No previous
reports have linked HIP14 to T1D. To explore the potential functional role of
HIP14 in pancreatic beta-cells, we performed a series of experiments on
different beta-cell model systems. Immuno-histochemical staining and West-
ern blotting indicated that HIP14 is expressed in both primary and clonal
beta-cells. Comparison of HIP14 expression in a beta-cell line and an alfa-cell
line demonstrated that HIP14 is 2-fold higher expressed in beta-cells ver-
sus alfa-cells. Knock-down experiments with either siRNA or short-hairpin
RNA against HIP14 in purified primary rat beta-cells or INS-1 cells induced
apoptotic cell death suggesting that HIP14 is required for beta-cell survival.
Further, knock-down of HIP14 caused a reduction in beta-cell insulin re-
lease. Consistent with a pro-survival role of HIP14 in beta-cells, inflamma-
tory cytokines (IL-1 + IFN) known to contribute to beta-cell dysfunction and
apoptosis in T1D reduced the expression of HIP14 in rat islets and INS-1
cells. In human islets, cytokines decreased HIP14 expression in 6 out of 8
donor islet preparations.

Conclusion: Using a bioinformatics/systems biology approach to predict dis-
ease candidate genes, we, among several other genes, identified HIP14 as
a gene being involved in T1D. Functional studies demonstrated that expression
of HIP14 is suppressed under inflammatory conditions resembling those of
T1D, and that HIP14 is needed for beta-cell survival and insulin secretion.

Factors associated with early/childhood onset of the disease in
families with type 1 diabetes. Results from the type 1 diabetes genetics
consortium (T1DGC)
A.M. Wänger1,2, A. Santana3, J.C. Wiebe1, M. Hernández1, J. Nóvoa1,2, D. Mauricio1, T1DGC,
1Endocrinology, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas of Gran Canaria, 2Ciencias Médicas y Quirúrgicas, Universidad de Las Palmas de Gran Canaria, 3Matemáticas, Universidad de Las Palmas de Gran Canaria, 4Endocrinology, Hospital Universitari Arnau de Vilanova, Lleida, Spain.

Background and aims: Families with at least 2 affected siblings have been included by the T1DGC in order to find genes associated with risk/protection
for type 1 diabetes (T1D). The aim of our study was to find factors associated with early and childhood onset of the disease.

Materials and methods: Clinical information was obtained with question-
naires, serum anti-GAD and anti-IA2 antibodies were measured (RBA) in
the affected siblings and HLA was genotyped (PCR-based, sequence-spe-
cific oligonucleotide probe system). Early onset of the disease was defined as
onset in the lowest tertile (<6 years), whereas childhood-onset diabetes was
defined as that diagnosed before the age of 15. Differences between groups
were analysed with Wilcoxon-Mann-Whitney's test and chi-square. The first
two siblings per family diagnosed with T1D were included in the analysis.

To identify the factors independently associated with early and childhood
onset, multivariate regression analysis was performed, including time since
diagnosis, antibody positivity, presence of associated autoimmune diseases
(AAD) and number of risk and protective HLA haplotypes as independ-
ent variables. High-risk and protective haplotypes were defined as the 4 most
susceptible and protective, respectively, according to a previous report from
the T1DGC.

Results: Data including unequivocal HLA haplotypes was available from
2663 families (4817 participants). Median (range) age of onset of the disease
was 9 (0-49) years, time since diagnosis, 7 (0-57) years. 49.3% were female,
47.3% were positive for GADA and 47.2% for IA2A. Subjects with early onset of
T1D were less frequently GADA and IA2A positive, had longer disease
duration and had more high-risk HLA haplotypes. In the multiple regression
analysis, male gender (OR 1.15 (1.02-1.31), p=0.019), negativity to GADA
(OR 0.48 (0.42-0.54), p=2*10^-16 for positivity) and IA2A (OR 0.68 (0.60-
0.78), p=4.25*10^-9) and time since diagnosis (non-linear, p=2.45*10^-13) were
independently associated with early onset. Participants with childhood onset
T1D (84%) were more frequently male, had less frequent AAD, less GADA
and more IA2A positivity, less protective and more high-risk HLA haplotypes
and longer time since diagnosis than participants with adult-onset T1D. In
the multiple regression analysis, the following were independently associated
with childhood-onset disease: male gender (OR 1.49 (1.28-1.74), p=2.35*10-
7, AAD (OR 0.75 (0.60-0.92), p=0.007), GADA negativity (OR 0.35 (0.30-
0.41) for positivity, p=2*10^-16 and IA2A positivity (OR 1.30 (1.11-1.52),
p=0.001), number of protective HLA haplotypes (OR 0.27 (0.11-0.70) per
haplotype, p=0.007) and time since diagnosis (non-linear, p=0.001).

Conclusion: Early onset of T1D was independently associated with male pre-
dominance and antibody negativity at examination, whereas childhood onset
disease was associated with male predominance, IA2A positivity and GADA
negativity, less frequent AAD and fewer protective HLA haplotypes.

Supported by: NIDDK (DK-62418), JDRF, and EFSID/IDRF/Novo Nordisk
grant, ISCIII

HLA and insulin genes: Bayesian networks confirm interaction between
the two most important susceptibility genes in type 1 diabetes in a
French caucasian population
R. Porteais1, B.O. Böhm2, C. Julier1, P. Pozzilli;1
1University Campus Bio-Medico, Rome, Italy, 2University Hospital Ulm, Internal Medicine I, Ulm, Germany, 3Centre National de Genotypage, Evry, France.

Background and aims: Type 1 diabetes (T1D) is an autoimmune chronic
disease resulting from the interaction between more or less favouring en-
vironmental factors with multiple susceptibility genes. HLA, Insulin (INS),
CTLA4 and PTPN22 are considered the main T1D susceptibility genes. As
many epidemiological studies have demonstrated, T1D incidence is increas-
ing worldwide by 3.9% per year, particularly in Caucasian population of
Northern Europe. Unlike in single gene disorders, in multifactorial diseases, such as T1D, identifying the combination of causative genes is still difficult. Genetic profiles of individuals who are affected by T1D appear to change among different countries shifting from mainly high-risk genotypes towards higher percentages of median and low-risk genotypes. In a previous study we demonstrated the interaction between HLA and INS genes in an Italian population from Lazio region using the Bayesian Network approach. To confirm our previous findings, the aim of the present study was to investigate in T1D the dependency and interaction between HLA and INS genes by investigating another Caucasian population.

Materials and methods: We have analyzed a database of genetic data from a French Caucasian population, the case-control cohort consisted of 868 French T1D patients (M/F 1.13, 19.63 ±14.40 yrs mean age of T1D onset) and 93 French control subjects (M/F 0.7). Diagnosis of T1D was based on the ADA classification criteria. We divided HLA alleles in high, moderate and low risk for T1D, PTPN22 alleles in susceptibility/non susceptibility alleles and INS gene alleles in susceptibility/ protection. We created a Bayesian Network model trained on genetic variables and group status (T1D/control), Bayesian networks, also called belief networks, are probabilistic graphical models that represent a set of variables and their probabilistic dependencies. To gain insights into the dependency/interaction between susceptibility genes involved in T1D, we have assessed more than one gene at the time (namely HLA, INS and PTPN22 genes).

Results: We implemented a Bayesian Networks model learning the structure of the specified database, with a fixed level of significance equal to 0.05 to find out the interaction. The model showed that group status was directly influenced by HLA (p = 1.0*10^(-26)) and that there was a dependency of INS on HLA (p = 4*10^(-4)). In addition to our previous data, having separated the data group wise, the analysis of T1D patients group also highlighted the gene interaction between HLA and INS (p = 3.7*10^(-4)). No significant relation between HLA and PTPN22 (p = NS) and PTPN22 and "status group" (p = NS) was found.

Conclusion: The presence of interactions between susceptibility genes can explain why the study of a single susceptibility gene in a polygenic disease such as T1D offers limited information. Bayesian network type of analysis represents a step forward in understanding gene interactions and may offer novel clues for T1D pathogenesis. Further studies are needed to clarify the true nature of the biological interaction between HLA and INS gene alleles.

174

Functional genomics of the type 1 diabetes gene interferon-induced helicase 1-linked downstream signal mechanisms in humans

I. Szatmary1, A. Jermendy1, Z. Almassy2, R. Hermann3, and the HUNT1DGENES Study Group; 1CellScreen Applied Biomedical Research Center, Semmelweis University, Budapest, 2Heim Pal Childrens Hospital, Budapest, Hungary, 3ImmunoGenetics Laboratory, University of Turku, Finland.

Background and aims: In type 1 diabetes (T1D) beta cell injury develops as a consequence of interaction between a complex polygenic background and environment. More than 40 T1D loci have been identified to date, however, their functional characterization, and their assignment to specific disease endophenotypes is lacking. Recently, a non-synonymous SNP (rs1990760) in the gene encoding interferon induced helicase C containing domain 1 (IFIH1) showed an association with type 1 diabetes. IFIH1 is a cytosolic viral recognition receptor, and may provide a link between viral infections and T1D. In the present study we evaluated the variation in the gene expression profile of IFIH1, and related global gene expression profiles in response to type 1 interferon and a viral infection model.

Materials and methods: We compared downstream signal mechanisms in T1D children with the wild type AA and the T1D predisposing GG genotypes. Jurkat (T lymphocytic) and MonoMac (monocytic) cells were stimulated with interferon-β or/and polyinosinic acid-polyribidylic acid complex (polyIC), Global expression profiling was carried out using high density gene expression arrays. Bioinformatics analysis was performed using HT association pattern mining, FDR significance estimation, GO and KEGG pathway annotation.

Results: Treatment of both cell lines with interferon-β resulted in a biphasic induction of IFIH1. The maximum level of IFIH1 mRNA was apparent at 8 h in Jurkat cells and 4 h in MonoMac cells, then decreased before a subsequent increase observed at 24 h postinduction in both cell lines. The expression of IFIH1 mRNA increased in a interferon-β dose-dependent manner. The temporal kinetics of IFIH1 expression after polyIC induction differed in the two studied cell lines. In a 24 hour time frame, Jurkat cells presented a biphasic induction profile, in the monocytic cells IFIH1 mRNA levels presented a single peak. The combined treatment with IFNβ followed by polyIC had a distinct effect. Gene network analysis results will be presented on the event.

Conclusion: In the mononuclear cell lines Jurkat and MonoMac, as a result of interferon-β/polyIC treatment the IFIH1 mRNA level's temporal kinetic presented distinct characteristics in the first phase, but similar in long term effect. The results serve as take-off data for further studies carried out in human peripheral blood mononuclear cells, presenting basis for the analysis of the role of IFIH1 in T1D pathomechanism. The global expression profiling data, and their relation to disease pathways will be released during the presentation.

Supported by: an EFSD New Horizons grant, Academy of Finland
OP 30 Insulin action and glucose uptake in vitro

175

Insulin stimulates human brown adipose tissue glucose uptake effectively
K.A. Virtanen, J. Orava, V. Oikonen, T. Noponen, P. Nuutila 1,2,3
1Turku PET Centre, Department of Medicine, Turku University Hospital, Finland.

Background and aims: Brown adipose tissue (BAT) has been acknowledged to be noteworthy in adults but its role in metabolism is still poorly understood. The aim of this study was to investigate the effects of insulin on glucose uptake (GU) and perfusion in BAT depots confirmed by cold activation in healthy adults.

Materials and methods: We measured BAT, subcutaneous adipose tissue (WAT) and skeletal muscle perfusion and GU using 18O2-H2O- and 18F-FDG-PET/CT in 26 healthy normal-weighted subjects during cold exposure and either with or without insulin stimulation using euglycemic clamp in normal environment. Energy expenditure with indirect calorimetry was assessed during PET/CT studies.

Results: During cold exposure, 70% of the subjects showed BAT activation. In those cases, GU in BAT was 10-fold increased (9.1±5.1 vs. 0.9±0.4 umol/100g/min, P<0.001). Perfusion in BAT correlated with GU rates in cold (r=0.82, P<0.001) but was only doubled (from 7.5±3.7 to 15.9±4.9 ml/100g/min, P<0.001) and did not explain the activation. Insulin-stimulated GU in BAT was 5-fold higher than when measured at fast in normal room temperature (4.7±2.4 umol/100g/min, P<0.001). No association was found between insulin-stimulated BAT glucose uptake and skeletal muscle glycogen content. A decrease in cold BAT metabolic rate was close to that in skeletal muscle (6.0±2.5 umol/100g/min) while GU in WAT was increased only by 50% by insulin. Plasma norepinephrine concentrations were increased substantially during cold exposure and energy expenditure tended to be higher among the subjects with active BAT.

Conclusions: Glucose uptake in BAT is under hormonal control and can be activated by insulin close to the same extent as in skeletal muscle in healthy adult humans. This increment of metabolism is independent on perfusion. Whether dietary and hormonal activation is altered in obesity is under evaluation.

Supported by: Academy of Finland and The Diabetes Research Foundation

176

Effects of AMPK activation on glucose and energy homeostasis in leptin deficient ob/ob mice
Karolinska Institutet, Stockholm, Sweden.

Background and aim: AMPK is a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (β and γ), which acts as a metabolic sensor to regulate glucose and lipid metabolism. A point mutation in the γ3 subunit (R225Q) increases basal AMPK phosphorylation, while concomitantly reducing sensitivity to AMP AMPKγ3R225Q transgenic mice have increased glycogen content, enhanced mitochondrial biogenesis and are protected against dietary-induced triglyceride accumulation and insulin resistance in glycolytic skeletal muscle. We determined whether skeletal muscle glycogen content and insulin sensitivity were higher among the subjects with active BAT.

Materials and methods: We measured BAT, subcutaneous adipose tissue (WAT) and skeletal muscle perfusion and GU using 18O2-H2O- and 18F-FDG-PET/CT in 26 healthy normal-weighted subjects during cold exposure and either with or without insulin stimulation using euglycemic clamp in normal environment. Energy expenditure with indirect calorimetry was assessed during PET/CT studies.

Results: During cold exposure, 70% of the subjects showed BAT activation. In those cases, GU in BAT was 10-fold increased (9.1±5.1 vs. 0.9±0.4 umol/100g/min, P<0.001). Perfusion in BAT correlated with GU rates in cold (r=0.82, P<0.001) but was only doubled (from 7.5±3.7 to 15.9±4.9 ml/100g/min, P<0.001) and did not explain the activation. Insulin-stimulated GU in BAT was 5-fold higher than when measured at fast in normal room temperature (4.7±2.4 umol/100g/min, P<0.001). No association was found between insulin-stimulated BAT glucose uptake and skeletal muscle glycogen content. A decrease in cold BAT metabolic rate was close to that in skeletal muscle (6.0±2.5 umol/100g/min) while GU in WAT was increased only by 50% by insulin. Plasma norepinephrine concentrations were increased substantially during cold exposure and energy expenditure tended to be higher among the subjects with active BAT.

Conclusions: Glucose uptake in BAT is under hormonal control and can be activated by insulin close to the same extent as in skeletal muscle in healthy adult humans. This increment of metabolism is independent on perfusion. Whether dietary and hormonal activation is altered in obesity is under evaluation.

Supported by: Academy of Finland and The Diabetes Research Foundation
OP 30 Insulin action and glucose uptake in vitro

178
The effect of Astaxanthin, a strong antioxidant, on reactive oxygen species or insulin signaling in vitro

M. Ishiki, H. Ishibashi, I. Usui, M. Urakaze, K. Tobe; First Department of Internal Medicine, Toyama University, Toyama-shi, Japan.

Background and aims: Astaxanthin, a strong antioxidant, has been reported that it has a various effects on glucose or lipid metabolism, although precise mechanism(s) of its effect on signaling pathway in the cell remains to be elucidated. Here we examined its effects on reactive oxygen species (ROS) or insulin action in vitro.

Materials and methods: We stimulated L6 muscle cell or 3T3-L1 adipocyte with 50 μM/ml glucose oxidase (GO) or 7.5 mM Menedione, strong ROS generators widely used in research, or 10 nM insulin respectively, along with or without 30 μM Astaxanthin. The effect of Astaxanthin on signaling pathway in distinct conditions was conducted by western blotting, kinase assay or RT-PCR analysis.

Results: Astaxanthin enhances insulin-induced Akt phosphorylation but does not change IRS-1 phosphorylation. Intriguingly, it enhances GO or Menadione induced Akt phosphorylation as well although both generators do not phosphorylate IRS-1. We next explored which factor(s) involves in regulating further Akt phosphorylation by Astaxanthin. We found that PP2A activity, a serine/threonine-protein phosphatase, which dephosphorylates Akt, is subtly decreased by Astaxanthin itself and slightly decreased by insulin. On the other hand, Astaxanthin significantly lowered PP2A activity decreased by insulin. We speculate that Astaxanthin regulates Akt phosphorylation induced by insulin via regulation of PP2A activity and this effect requires insulin signal input. Similarly, we also observed that GO or Menadione decreased PP2A activity, again which is lowered by Astaxanthin. Although it has been reported that PP2A activity is regulated through src by insulin, src inhibitor does not have effect on enhanced Akt phosphorylation by Astaxanthin. These results suggest Astaxanthin regulates Akt phosphorylation induced by insulin or ROS generators through the same mechanism involving PP2A activity. Next, we explored the effect of Astaxanthin on cell apoptosis in various conditions. We found that Astaxanthin strongly decreased induction of iNOS mRNA level or JNK phosphorylation by GO or Menadione. Furthermore, Astaxanthin decreased insulin induced JNK phosphorylation. Of particular interests to other molecules involved by insulin, src phosphorylation is decreased with Astaxanthin. Finally we examined the effect of Astaxanthin on mitochondrial function since mitochondria plays an important role for oxidative stress response in the cell. We observed that Astaxanthin induced HO-1, PGC-1α or PPARα mRNA level significantly respectively.

Conclusion: These results in vitro suggest Astaxanthin appears to play a role as ‘insulin enhancer’ and prevent cell from apoptosis induced by ROS presumably by eliminating ROS with regulating of mitochondrial function. Regarding intriguing Astaxanthin’s impact on insulin signaling, it seems to promote only good effect of insulin since src phosphorylation leading to cell proliferation, which could cause some diabetic complication, induced by insulin is rather decreased by Astaxanthin. Similar results of the effect of Astaxanthin on insulin or ROS generators signaling pathway could be due to the ROS generation by insulin as reported. Astaxanthin would be a very effective tool which improves not only abnormal glucose metabolism or cell apoptosis caused by oxidative stress but also insulin sensitivity in vivo as well.

179
Endothelin-1 acutely affects glucose metabolism in human skeletal muscle

Background and aims: Endothelin (ET)-1 is a vasoconstrictor and pro-inflammatory peptide that may interfere with glucose uptake. The objective of the study was to investigate if exogenous ET-1 affects basal forearm glucose uptake in patients with insulin resistance (IR) and in cultured human skeletal muscle cells.

Materials and methods: Nine male subjects (age 61±3) with IR (total body glucose uptake <5.5 mg/kg/min at HOMA index ≥2) participated in a protocol using saline infusion followed by ET-1 infusion (20 pmol/min) for 2 h into the brachial artery. Forearm blood flow was assessed with venous-occlusion plethysmography. Endothelium-dependent (EDV) and -independent vasodilatation (EDV) were determined. Forearm glucose uptake (FGU) was calculated from the arterio-venous plasma glucose concentration difference and plasma flow. Molecular signaling and glucose metabolism were determined in cultured skeletal muscle cells by western blot in the absence and presence of ET-1. Localization of ET receptors was characterized in human skeletal muscle tissue and cultured cells.

Results: Thirty min saline infusion did not change FGU. Infusion of ET-1 decreased FGU by 39% (P<0.05) from 5.8±2.0 to 3.4±0.8 μmol/min x 1000ml after 2 hour infusion. ET-1 administration decreased basal forearm blood flow by 36% (28.3±2.5 at baseline vs. 18.0±3.2 ml/min x 1000ml at 2 h of ET-1 infusion; P<0.05) and impaired both EDV (P<0.01) and EIDV (P<0.05). Incubation of cultured human muscle with ET-1 for 1 h increased glucose uptake in cells from normal glucose tolerance (NGT), but impaired insulin-stimulated glucose uptake in cells from IR subjects. ET-1 decreased insulin-stimulated Akt phosphorylation by 73% in NGT cells. ET receptor expression was detected in Western blots of cell cultures and in regions corresponding to the skeletal muscle cell membrane of skeletal muscle biopsy.

Conclusion: The study demonstrates that ET-1, in addition to attenuating endothelium-dependent vasodilatation, acutely impairs forearm glucose uptake in subjects with IR, as well as in skeletal muscle cells from IR subjects via a mechanism that seems to involve reduced Akt phosphorylation. This finding suggests that ET-1 may contribute to the development of IR.

Supported by: HLF, NNF

180
Enhanced lipid -but not carbohydrate- supported mitochondrial respiration in PGC-1α overexpressing mice

J. Hoeks, Z. Arany, E. Phielix, M.K.C. Hesselink1, P. Schrauwen1,2; 1Human Biology, Maastricht University Medical Centre, Netherlands, 2Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, USA, 3Human Movement Sciences, Maastricht University Medical Centre, Netherlands.

Background and aims: A reduced functional capacity of skeletal muscle mitochondria has been associated with type 2 diabetes mellitus. Both reductions in mitochondrial density and lower intrinsic mitochondrial function - i.e. respiration per mitochondrion - have been reported in type 2 diabetic patients. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), a master regulator of mitochondrial metabolism, has also been shown to be reduced in type 2 diabetes and muscle-specific overexpression of PGC-1α results in pronounced increase in mitochondrial density. Whether PGC-1α overexpression also results in intrinsic mitochondrial adaptations is currently unknown and subject of the present study.

Material and methods: To this purpose, we isolated skeletal muscle mitochondria from 10 male, ±10 week-old muscle-specific PGC-1α overexpressing (PGC-1αTG) and 8 wild-type (WT) mice. Equal mitochondrial copy and UCP3 protein levels by western blotting. Additionally, we assessed mitochondrial ROS production in isolated mitochondria by electron spin resonance (ESR) spectroscopy and UCP3 protein levels by western blotting.

Results: As anticipated, the mitochondrial yield was ~4.6-fold higher in PGC-1αTG mice as compared to WT mice (40.8 ± 3.4 vs. 8.9 ± 1.6 mg/g muscle, respectively; p=0.001). ADP-stimulated respiration fuelled by pyruvate tended to be reduced in mitochondria from PGC-1αTG (229.8 ± 11.9 vs. 260.1 ± 9.9 nmol O2/min/mg mitochondrial protein in PGC-1αTG vs. WT, respectively; p=0.08). Maximal uncoupled respiration, reflecting the maximal capacity of the electron transport chain was similar in both genotypes (396.5 ± 18.7 vs. 382.4 ± 17.0 nmol O2/min/mg mitochondrial protein in PGC-1αTG vs. WT, respectively; p=0.60). PGC-1αTg mice displayed a pronounced augmentation of mitochondrial FAT oxidative capacity, evidenced by an increased ADP-stimulated respiration (136.9 ± 4.3 vs. 77.4 ± 2.6 nmol O2/min/mg mitochondrial protein in PGC-1αTG vs. WT, respectively; p=0.001). Maximal uncoupled respiration was significantly enhanced in PGC-1αTg upon palmitoyl-CoA plus carnitine (159.4 ± 6.2 vs. 103.4 ± 3.6 nmol O2/min/mg mitochondrial protein in PGC-1αTG vs. WT, respectively; p=0.001). Mitochondrial ROS production was similar in PGC1αTG and WT.
OP 31 Prevention of type 2 diabetes mellitus

181

Vitamin D is associated with progression from impaired glucose regulation to type 2 diabetes in a UK multiethnic population

D.R. Webb1, B.T. Srinivasan1, L.G. Gray1, S.A. Mostafa1, D. Talbot1, K. Khunti1, M.J. Davies1;
1Department of Cardiovascular Sciences, University of Leicester, 2Department of Health Sciences, University of Leicester, 3Unilever Corporation, Colworth, United Kingdom.

Background: Vitamin D is implicated in the aetiology of Type 2 Diabetes (T2D). Cross-sectional analyses have consistently associated plasma 25-hydroxyVitamin D concentration (VD) with measures of insulin resistance and beta-cell dysfunction but prospective data relating to progression in groups at risk of T2D are scarce. Mixed ethnicity populations with a significant south Asian representation are an excellent study group as their rates of VD deficiency and T2DM are particularly high. Our aim was to determine if Vitamin D independently predicts progression to T2D within a UK multiethnic population with Impaired Glucose Regulation (IGR).

Materials and methods: In a population based screening study (ADDI-ON-Leicester), people with IGR, defined as a composite of WHO categorised Impaired Fasting Glycaemia (IFG) and/or Impaired Glucose Tolerance (IGT) are offered an annual 75g-Oral Glucose Tolerance Test and cardiovascular risk assessment. Baseline and one year measurements include standard anthropometrics, fasting and 2-hour glucose estimates, VD (IDS 25(OH) D2/D3 enzyme immunoassay), together with self-reported ethnicity, physical activity (via IPAQ questionnaire) and medication use (including non-prescription preparations). Those taking vitamin D or calcium supplements were excluded from this analysis. Baseline VD was adjusted for age, sex, waist circumference, physical activity and ethnicity. Logistic regression adjusting for confounders was used to identify if VD was independently associated with progression to T2D.

Results: 1,080 people with IGR were diagnosed from a total screened population of 6,749 (16% prevalence). 624 randomly selected subjects (75.6% White European, 23.9% South Asian,) with IGR but not taking VD supplements had VD analysed at baseline, of which 583 (93.4%) attended for follow up (Median duration 425 days, inter quartile range: 393 - 462). There were no significant differences amongst attendees and non attendees in terms of age, body mass index, blood pressure or glycaemic markers. 39 (6.7%) progressed to T2D, 225 (38.6%) continued to have IGR and 519 (84.7%) reverted to normal (IGT) or Normalisation of glucose levels at one year. Progression to T2D was significantly associated with increased baseline VD concentration. 25(OH) D2/D3 (ODR: 0.98, 95%CI: 0.96-0.99, P=0.001). Significantly higher progression rates were seen in the lowest tertile of Vitamin D compared to higher levels (11.1% vs. 5.1% vs. 4.1% respectively, P=0.013), this difference remained statistically significant after adjustment for confounders.

Conclusion: Vitamin D may play an influential role in the progression of metabolic disease. Our preliminary data would support the need for a randomised intervention trial exploring the glucose lowering potential of VD replacement in multiethnic Northern latitude populations at risk of T2D.

Supported by: NovoNordisk Research Foundation

182

Long-term outcomes from the PREPARE (Pre-diabetes Risk Education and Physical Activity Recommendation and Encouragement) randomised controlled trial

T. Yates1, M.J. Davies1, J. Henson1, S. Sehmi2, K. Khunti1;
1Cardiovascular Sciences, University of Leicester, 2University Hospitals of Leicester, NHS Trust, 3Health Sciences, University of Leicester, United Kingdom.

Background and aims: The PREPARE programme, a theory-driven group-based structured education programme aimed at promoting increased am-
bulbar activity through pedometer use, has been shown to be effective at promoting physical activity and improving glucose regulation in people with impaired glucose regulation (IGT) at 12-months. The present study aims to assess whether the improvements in glucose regulation were sustained at 24 months.

Materials and methods: Overweight or obese individuals with IGT were recruited from population-based diabetes screening programmes, October 2006 to April 2007, Leicester, UK. Participants were randomized to receive either an advice leaflet, n = 34; a standard 3-hour group-based structured education programme aimed at promoting physical activity (E group), n = 31; or a 3-hour structured education programme that included enhanced self-regulation through personalized steps/day goals and pedometer use (EP group), n = 33. Both intervention conditions also received brief counselling at 3 and 6 months. The original study was designed to detect a 1 mmol/l difference in 2-h glucose; follow-up was conducted at 3, 6 and 12 months. As part of a local diabetes screening programme, participants were offered an additional appointment to assess their glycaemic status at 24 months. Outcomes included fasting and 2-hour glucose, progression to type 2 diabetes (WHO criteria) and body weight; all clinical measurements and blood assays were conducted blind to allocation using standardized criteria. Differences in change from baseline were analyzed using ANCOVA modelling.

Results: 24-month follow-up data was available for 74 (76%) participants; female = 38%, South Asian ethnicity = 20%. There was no difference in demographic or biochemical measures at baseline between those who did and did not attend. Those in the EP group maintained a significant reduction in 2-h glucose (baseline = 8.7 ± 2.3 mmol/l, follow-up = 7.3 ± 2.2 mmol/l; change compared to the control group adjusted for baseline value = -1.5 mmol/l; 95% CI = -2.8 to -0.3; p = 0.01). There was a trend towards a significant reduction in fasting glucose in the EP group (baseline value = 5.6 ± 0.6 mmol/l, follow-up = 5.4 ± 0.7 mmol/l, change compared to the control group adjusted for baseline value = -0.3 mmol/l; 95% CI = -0.7 to 0.0; p = 0.07). There was no difference between the control and E group in glucose levels. There was a trend towards a significant reduction in 2-h glucose; follow-up was conducted at 3, 6 and 12 months. The original study was designed to detect a 1 mmol/l difference compared to the control group adjusted for baseline value = -1.5 mmol/l; 95% CI = -2.8 to -0.3; p = 0.01. There was a trend towards a significant reduction compared to the control group adjusted for baseline value = -1.5 mmol/l; 95% CI = -2.8 to -0.3; p = 0.01). There was no difference between the control and E group in glucose levels. There was no difference in body weight in either intervention group compared to the control group. The accumulative incidence of type 2 diabetes over 24 months, diagnosed at any follow-up time-point, were: control = 18%, E = 16%, EP = 6%.

Conclusion: This study suggests that a 3-hour structured education programme aimed at promoting physical activity through personalized pedometer use leads to sustained improvements in glucose regulation in overweight or obese individuals with IGT, despite no change in body weight.

This study highlights the importance of promoting physical activity for its own sake rather than the end-point of weight loss. As the PREPARE programme is suitable for implementation within primary care, these findings are likely to have important implications for usual health care practice.

Supported by: Diabetes UK

1 C Supported by: Diabetes UK

Table 1. Mean baseline and follow-up values (SD) and group differences corrected for baseline (65% CI) of T2DM risk score and lifestyle behaviors

<table>
<thead>
<tr>
<th>Lifestyle behavior</th>
<th>Control group</th>
<th>Intervention group</th>
<th>Group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Follow-up 1 (6 months)</td>
<td>Follow-up 2 (12 months)</td>
</tr>
<tr>
<td>Risk score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>18.9 ± 6.5</td>
<td>18.0 ± 7.9</td>
<td>17.8 ± 8.2</td>
</tr>
<tr>
<td>Physical activity1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light activities</td>
<td>35.8 ± 17.3</td>
<td>34.9 ± 18.2</td>
<td>34.2 ± 18.3</td>
</tr>
<tr>
<td>Moderate activities</td>
<td>10.6 ± 12.6</td>
<td>10.5 ± 12.7</td>
<td>11.7 ± 15.4</td>
</tr>
<tr>
<td>Vigorous activities</td>
<td>0.9 ± 2.4</td>
<td>1.0 ± 2.2</td>
<td>1.0 ± 2.2</td>
</tr>
<tr>
<td>Dietary behaviors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit intake2</td>
<td>1.1 ± 0.9</td>
<td>1.3 ± 0.9</td>
<td>1.2 ± 0.8</td>
</tr>
<tr>
<td>Vegetable intake3</td>
<td>150 (70.6)</td>
<td>149 (72.6)</td>
<td>171 (86.4)</td>
</tr>
<tr>
<td>Smoking behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers (%)</td>
<td>55 (37.6)</td>
<td>48 (42.0)</td>
<td>43 (43.4)</td>
</tr>
</tbody>
</table>

1 ARIC: Atherosclerosis Risk in Communities formula based on: ethnicity (black/white), parental history of diabetes, systolic blood pressure, waist circumference and height
2 Data are based on responses to the Short questionnaire to assess health-enhancing physical activity (SCUAD)2:6. Values are MET-hours per week, representing the average amount of time engaged in specified physical activities multiplied by the metabolic equivalent of each activity. Light activities are rated as 2–4.0 to 6.5 METs, moderate activities are rated as 6.5 to 8.5 METs, vigorous activities are rated as ≥8.5 METs
3 Intakes of vegetables in grams per day

183

An individual lifestyle intervention program is not more effective in changing diabetes risk and lifestyle behaviors than providing health brochures: the Hoorn Prevention Study

J. Lakerveld1, S.D.M. Bot1, M.J.M. Chinapaw2, P.J. Kostense3, G. Nijpels1

1Department of General Practice, 2Department of Public and Occupational Health, Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, Amsterdam, Netherlands.

Background and aims: Diabetes mellitus type 2 (T2DM) is associated with lifestyle dependent risk factors. In this study we examined the effects of a lifestyle intervention targeting the lifestyle behaviors physical activity, diet and smoking in adults at high risk of T2DM, compared to providing written information only.

Materials and methods: Adults (n= 622) with an increased risk of developing T2DM based on the ARIC risk score were randomly assigned to the intervention or control group. The intervention group received a lifestyle intervention consisting of a cognitive behavioral program provided by trained practice nurses. In a maximum of six individual counseling sessions, followed by 3-monthly booster sessions by phone, motivational interviewing and problem solving treatment were used. The program focused in particular on intrinsic motivation to change and on self-management of problems. Primary outcome measure was the T2DM risk score with age standardized at 60 years. Secondary outcome measurements were physical activity, dietary behavior and smoking behavior. Results of the baseline and 6 and 12 months follow-up measurements are reported.

Results: 536 of the 622 participants (86.2%) completed the 6 months follow-up measurements and 504 completed the 12 months follow-up (81.0%). The mean age at baseline was 43.5 years (SD 5.3) and 363 participants were female (58.4%). The mean baseline risk score of the total sample was 18.9% (SD 8.2) on the ARIC risk formula. Participants in the intervention group received 2.5 counseling sessions on average. Regression analysis based on the intention to treat principle showed no significant differences in outcomes between the intervention and the control group at both follow-up measurements, adjusted for baseline (see Table 1).

Conclusion: The lifestyle intervention was not more effective at 6 and 12 months than providing written information, in improving T2DM risk score or lifestyle behaviors in an at risk population.

Supported by: the Netherlands Organization for Health Research and Development
Effect of a diabetes prevention programme (PREDIAS) on metabolic risk factors and quality of life: results of a randomised controlled trial

B. Kulzer, N. Hermanns, D. Gorges, P. Schwarz, T. Haak

Background and aims: The objective of this randomized, prospective trial was to evaluate the efficacy of a group program (PREDIAS) aiming at lifestyle changes and weight reduction for diabetes prevention with regard to weight reduction, glycemic parameters and quality of life.

Materials and methods: The PREDIAS program consisted of 12 lessons based on the Diabetes Prevention Program. All lessons were delivered in group sessions. Topics of PREDIAS were: assessment of own diabetes risk, motivation for weight loss, behavioural strategies for weight reduction, physical exercise and stress management. The control group (CG) received written information about diabetes prevention. Risk factors like weight, fasting glucose and lipids as well as quality of life were assessed at baseline and at a 12 month follow-up. Quality of life was measured by using the Health Survey (SF12) consisting of 12 items.

Results: A total of 182 participants were randomised (age 56.3 ±10.1 yrs; 43% female; education 13.2 ±1.1 years; BMI 31.5 ±5.3 kg/m²; fasting glucose 105.7 ±12.8 mg/dl). At follow-up 17 participants (9.3%) were lost to follow-up. At 12 month follow-up members of PREDIAS lost significant more weight than control group members (-3.8 ±5.2 vs. -1.4 ±4.0 p=.002). Fasting glucose decreased in PREDIAS by -4.3 ±11.3 mg/dl whereas it increased by 1.8 ±13.1 mg/dl in the control group (p=.001). There was no significant effect of this prevention program with regard to lipids (Cholesterol -10.3 ±35.9 vs. -2.0 ±35.1 mg/dl p=.14); Triglycerides -35.6 ±13.7 vs. -2.5 ±100.3 mg/dl p=.087; HDL -1.3 ±6.9 vs. -2.2 ±9.4 mg/dl p=.49) and blood pressure (systolic RR -4.6 ±19.1 vs. -1.0 ±16.7 mm Hg; diastolic RR -4.4 ±11.7 vs. 2.1 ±12.6 mm Hg). At baseline all study participants reported a similar quality of life score in the SF 12 than the general population (Mental Component Summary Score (MCS) 50.3 ±5.3 vs. 51.1 ±8.1 p=.13; Physical Component Summary Score (PCS) 48.2 ±6.6 vs. 47.9 ±9.7 p=.36). However at 12 month follow-up members of PREDIAS reported a significant higher MCS than the control group (51.5 ±3.9 vs. 49.9 ±5.4 p=.04). There was no significant effect of the prevention programme with regard to the PCS (50.7 ±5.6 vs. 48.3 ±5.7 p=.19).

Conclusion: The PREDIAS prevention program was able to reduce weight and fasting glucose significantly in a 12 month follow-up. The lifestyle change with regard to weight reduction was not achieved at the expense of quality of life aspects. Although other metabolic risk factors were considerable improved, the difference between members of PREDIAS and the control group failed to reach significance. The observed improvements with regard to metabolic risk factors after 12 month are comparable to meta-analytic findings about the efficacy of diabetes prevention programs. Since PREDIAS is a group intervention it can be expected that PREDIAS has the potential to provide lifestyle interventions effectively in a less expensive way than many hitherto evaluated diabetes prevention programs, which were mainly conducted in individual settings.

Supported by: Roche Diagnostics

Effect of pioglitazone on beta cell function and adipocyte insulin resistance in impaired glucose tolerance: results form ACTNOW

D. Tripathy, M.-A. Baneri, G. Bray, T. Buchanan, S. Clement, M. Nicolas, P. Reaven, D. Schwenke, F. Stenz, S. Mudalal, R.R. Henry, A. Kribhabhi, R. DeFronzo; Diabetes, Medicine, University of Texas Health Science Center, San Antonio, USA.

Background and aims: Individuals with impaired glucose tolerance (IGT) are maximally insulin resistant and have lost 70-80% of their beta cell function. Thiazolidinediones have been shown to delay/prevent onset of diabetes. ACT NOW is a randomized double-blind, placebo-controlled study to examine whether pioglitazone (PIO) can prevent/ delay development of type 2 diabetes mellitus (T2DM). The aim of this study was to examine whether pioglitazone prevents/delays onset of diabetes by improving beta cell function.

Materials and methods: 602 IGT subjects (FPG =105, 2-h PG [OGTT]=168 mg%) were randomized to PIO (45 mg/day) or placebo (PLC) and followed for 2.8 years. 427 subjects returned for final study visit. Indices of insulin secretion and insulin sensitivity were derived from the plasma glucose, insulin, and C-peptide concentrations during the OGTT. The acute insulin response (AIR, 15 min) and insulin sensitivity (S) also were measured with frequently sampled intravenous glucose tolerance test (SIVGTT) in a subset. Adipocyte insulin resistance was calculated as fasting plasma FFA x fasting plasma insulin.

Results: 50 PLAC-treated subjects developed diabetes versus 15 PIO-treated subjects (hazard ratio=0.30, 95% CI=0.11-0.54, p<0.0001). Pioglitazone therapy significantly reduced fasting and 2-h plasma glucose. Pioglitazone improved Matsuda insulin sensitivity index (MI) (4.3 ± 0.3 to 7.7 ± 0.3, p<0.0005). The insulin secretion insulin resistance index ΔMI/ΔMI MI and ΔMI/ΔMI MI were shown to be significantly better in PIO treated subjects. In contrast no significant changes in Matsuda Index (4.3 ± 0.3 to 5.2 ± 0.3, p=ns) or ΔMI/ΔMI MI (3.8 ± 0.3 vs 4.2 ± 0.2, p=ns) were observed in subjects treated with PLAC. Subjects treated with PIO also had significantly greater insulin secretion/insulin resistance index from SIVGTT (Si x AIR) than PLAC (1186 ± 113 vs 832 ± 57, p<0.005). Pioglitazone reduced basal adipocyte insulin resistance index (5.96 ± 0.4 to 3.49 ± 0.4 p<0.005) while no change was noted in IGT patients on PLAC (5.97 ± 0.4 to 5.57 ± 0.4, p=ns).

Conclusion: Pioglitazone (1) improved β-cell function, and insulin sensitivity in IGT subjects, and (2) improved adipocyte insulin resistance. The improvements in beta cell function and adipocyte insulin resistance were shown fundamental mechanisms by which pioglitazone reduces the conversion of IGT to T2DM.

Supported by: Takeda Pharmaceuticals

Lifetime health economic benefits of type 2 diabetes prevention in high risk subjects in an Australian setting; an updated analysis based on the results of the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study

A.J. Palmer, D.M.D. Tucker; Department of Health Economics, Menzies Research Institute, Hobart, Tasmania, Australia.

Background and aims: Metformin and intensive lifestyle interventions (ILI) were shown to reduce incidence of type 2 diabetes (T2D) versus standard care in overweight or obese subjects with impaired glucose tolerance (IGT) in the Diabetes Prevention Program (DPP) trial and Diabetes Prevention Program Outcomes Study (DPPOS), a total follow-up of 10 years. Our aim was to to project the lifetime clinical and health economic outcomes to be expected from T2D prevention in high-risk subjects managed with standard care, metformin or ILI, based on the latest published results from the DPP+DPPOS.

Materials and methods: A semi-Markov, 2nd order Monte Carlo computer simulation model was developed to project the 10-year clinical and resource utilization results of the DPP+DPPOS to patient lifetimes. Four health states were modelled: normoglycaemia (NG); IGT; T2D and dead. Subjects started in IGT and progressed to T2D or NG, at rates dependent on the treatment received. State-specific mortality rates for NG, IGT or T2D were used. We incorporated direct medical costs (from official Australian published sources and the reimbursement perspective) and Australian health utility and probability data. For each treatment arm, we calculated years free of T2D, cumulate incidences of T2D, non-discounted life expectancies, quality-adjusted life years (QALY), total lifetime costs and incremental costs per QALY gained versus standard care. Costs and QALYs were discounted at 5% annually. Univariate and probabilistic sensitivity analyses were performed.

Results: For standard care, metformin or ILI, mean (standard deviation) number of years free of T2D were 9.47 (0.08), 11.98 (0.09), 15.17 (0.11) years respectively; Cumulative incidences of T2D were 89.7% (0.2), 83.7% (0.2) and 73.4% (0.3%) for standard care, metformin or ILI respectively. Mean life expectancies from baseline age of 50 years were 27.64 (0.14), 27.95 (0.12), 28.33 (0.11) years for standard care, metformin or ILI respectively. Delayed onset of T2D led to QALY-gained of 0.12 (0.04) and 0.38 (0.05) years for metformin or ILI versus standard care, respectively. Total life time cost increases of $1,116 (0.23), $3,438 (0.44) per patient were projected for metformin versus standard care, and cost savings of $282 (4,222) for ILI versus standard care. ILI was therefore dominant to standard care, with both improvements in clinical outcomes and overall cost savings. Incremental costs per QALY gained for metformin versus standard care were $8,757. Probability of acceptance at a typical Australian willingness to pay threshold of $50,000 were 85% and 100% for metformin or ILI respectively. Results were most sensitive to probabilities of developing T2D, relative risks of mortality in each health state, and costs of implementing the interventions.

Conclusion: Based in the latest published data from the DPP+DPPOS, substantial improvements in lifetime clinical outcomes can be expected in high risk subjects treated with metformin or ILI to delay or prevent the onset of T2D. Prevention of T2D in this group of subjects is good value for money, and may even lead to long term cost savings in an Australian setting.
OP 32 Hypertension and heart failure

187

The effect of combining angiotensin receptor blocker and direct renin inhibitor on albuminuria in type 2 diabetic patients with nephropathy V.I. Pankiv1, N.V. Pasiechko1, I.V. Pankiv2; 1Preventive Endocrinology, Centre of Endocrinology, Kyiv, Ukraine

Background and aims: Angiotensin receptor blocker (ARB) and direct renin inhibitor (DRI) have been shown to reduce albuminuria and preserve renal function in patients with diabetic nephropathy. Both agents are thought to confer renal protection via blockade of renin-angiotensin-aldosterone system (RAS). Simultaneous blockade of RAS at different levels with ARB and DRI may have synergistic anti-albuminuric effect compared to monotherapy. The study aims to compare the effect of combining Losartan and Aliskiren with that of administering either drug alone on 24-h urine albumin excretion (UAE) in patients with type 2 diabetes mellitus (DM) with nephropathy.

Materials and methods: Forty-eight patients (mean age 58±9.2 years, 16 females) were prospectively studied. After a 4-week washout period, 23 patients received Losartan 100 mg once daily and 25 received Aliskiren 150 mg for 8 weeks. Following this, all 48 patients received a combination (DRI), Aliskiren 150 mg and Losartan 100 mg for 8 weeks, followed by a double dose of both drugs for another 8 weeks. Blood pressure (BP), glycosylated hemoglobin (HbA1c) and UAE were monitored.

Results: Baseline characteristics (age, BMI, duration of DM, HbA1c, BP, creatinine clearance and UAE) were similar in both groups. There was a significant reduction in mean (95% CI) UAE after 8 weeks of monotherapy [17.0% (4.2% to 31.8%) p=0.002]. The reduction in UAE was significant in patients treated with Losartan [23.8% (2.4% to 45.6%) p=0.01] but failed to reach statistical significance for patients treated with Aliskiren [11% (-7% to 29.1%) p=0.076]. Mean BP reduction was not significantly different between these two groups (p=0.66). After 16 weeks of combination therapy, there was further 11.4% reduction in UAE [=8% to 31%], p = 0.018 while mean BP and HbA1c were not statistically different at the beginning (week 8) and end (week 24) of the combination therapy.

Conclusion: The study showed superior effect of Losartan (100 mg) over Aliskiren (150 mg) in reducing albuminuria in patients with diabetic nephropathy. The combination of both drugs showed further benefit in albuminuria reduction independent of BP control.

188

Glycemic and blood pressure variability correlates with cardiovascular factors in type 2 diabetic patients

A. Di Flaviani1, F. Picconi1, I. Maldanucci1, I. Giordani1, P. Di Stefano2, P. Maggio3, F. Passarelli1, F. Farina1, G. Frajes1, S. Frontoni1; 1University of Rome Tor Vergata, 2Medtronic Italia spa, 3S. Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy

Background and aims: The correlation between Glycemic and Blood Pressure variability (GV and BPV) and cardiovascular risk has not been fully addressed.

Materials and methods: Therefore, the relationships between GV and BPV on one side and intima-media thickness (IMT), left ventricular mass index (LVMI), flow-mediated dilation (FMD) on the other side were evaluated in 26 DM2 patients (age 59±10 years; diabetes duration 53±58 months; HbA1c 6.7±1.3%) on diet and/or metformin, no hypotensive treatment or complications. All subjects underwent 24-h continuous glucose monitoring: GV was calculated following the Amplitude Glucose Excursion (MAGE), Coefficient of Variation (CV), CONGA-1 and 2. From 24-h BP monitoring, CV systolic and diastolic BP (CV SBP and DBP) and the delta between nocturnal and diurnal BP (>10%; Dippers (D); <10%; Non-Dippers (ND)) were also calculated.

Results: MAM and LVMI were significantly increased in ND vs. D (0.27±0.08 vs. 0.65±0.03; p= 0.04 and 62±23 vs. 50±19 p=0.047). All patients displayed a negative correlation between LVMI and delta SBP (r=-0.48 p=0.02); while a positive correlation was observed with CONGA-1 and 2 (r=0.54 p=0.005 and r=0.65 p=0.0005, respectively). A negative correlation was observed between MAM and delta SBP and DBP (r=-0.42 p=0.036 and r=-0.54 p=0.005, respectively) while such correlations was absent with CV indices. Finally a negative correlation was found between CONGA-1 and FMD (r=-0.42 p=0.032).

Conclusion: Our data show that glucose excursions and BP variability significantly impact on endothelial function and cardiovascular damage in patients with short duration of disease and optimal metabolic control.

189

Different impact of type 2 diabetes mellitus and essential hypertension on aortic, carotid and peripheral vascular stiffness

G.A. Daniele1, L. Pucci1, D. Lucchesi2, R.M. Bruno2, L. Ghiadoni1, E. Storti1, E. Russo1, C. Bianchi1, S. Taddei2, R. Miccoli3, S. Del Prato4, G. Penno5; 1Endocrinology and Metabolism, ‘Internal Medicine, University of Pisa and Azienda Universitaria Ospedaliera Pisana, Pisa, Italy

Background and aims: Diabetes and hypertension both accelerate vascular aging. Arterial stiffness is an emergent biomarker of cardiovascular disease, increases with age and in the presence of main cardiovascular disease risk factors, such as hypertension, diabetes and lipid disorders. Pathologic stiffening of large arteries with advancing age and risk factor exposure predominantly involves the elastic aorta and carotid arteries. Aim of this study was to evaluate the impact of type 2 diabetes, hypertension, and their combination on aortic, carotid and peripheral arteries stiffening.

Materials and methods: A total of 114 subjects were enrolled: 18 normotensive subjects (NT), 37 hypertensive individuals (HT), 20 diabetic normotensive (DMNT), and 39 diabetic hypertensive (DMHT). Applanation tonometry was used to measure aortic (carotid to femoral) and peripheral (carotid to radial) pulse wave velocity (aPWV and pPWV, respectively). Common carotid intima-media thickness (IMT) and carotid diameter were obtained by B-mode ultrasound image sequences, using the real-time computerized contour-tracking system “Carotid Studio”. Common carotid stiffness (CCS) was determined from stroke change in lumen area and local pulse pressure obtained by applanation tonometry.

Results: Hypertensive groups (HT and DMHT) have similar systolic and diastolic blood pressure values and lipid parameters; diabetic subjects (DMNT and DMHT) have similar HbA1c levels and lipid profile. Peripheral pulse wave velocity (pPWV) was superimposable in all groups. On the contrary, aPWV significantly increased from NT (7.2±1.0 m/s) to HT (8.1±1.4 m/s) and DMNT (8.2±2.0 m/s), reaching the highest values in the DMHT group (10.6±1.9 m/s; Kruskal-Wallis, p<0.001). Common carotid stiffness (CCS) behaved similarly (NT 6.0±0.7 m/s, DMNT 6.5±1.2 m/s, HT 6.6±1.2 m/s, DMHT 7.3±1.2 m/s; Kruskal-Wallis, p<0.01). The presence of hypertension carried a higher risk of having increased (above the median value) aPWV (OR: 6.9; 5-95% confidence interval: 1.9-24.8), common carotid stiffness (OR: 2.8; 5-95% CI: 1.1-7.4), and carotid diameter (OR: 3.9; 5-95%: 1.4-10.6), regardless of age and diabetes, while the differences were not significant for pPWV and IMT. The presence of diabetes carried a higher risk of having increased (above the median) pPWV (OR: 9.6; 5-95% CI: 3.3-27.2), and IMT (OR: 2.5; 5-95% CI: 1.1-6.6), regardless of age and hypertension, while the differences were not significant for pPWV, carotid diameter and common carotid stiffness.

Conclusion: Both type 2 diabetes and hypertension are associated with increased aortic PWV, and their combination induces an even greater aortic stiffening. Hypertension is characterized by vascular stiffening at both the aortic and carotid level. In contrast, type 2 diabetes is associated only with increased aortic PWV. The two conditions also differ for carotid remodeling characteristics, since hypertension determines carotid dilation while type 2 diabetes is associated with carotid wall thickening.

190

Risk factor control in patients with type 2 diabetes and coronary heart disease

A.-M. Svensson1, S. Guddbjorssdottr1, B. Eliasson2, K. Eeg-Olofsson3, B. Zethelius1, J. Cederholm1; 1Internal Medicine, University of Linköping, Linköping, Sweden, 2Center of Registers Vastra Götaland, Göteborg, Sweden, 3University of Gothenburg, Gothenburg, Sweden

Background and aims: Patients with type 2 diabetes have a markedly increased risk of coronary heart disease (CHD), and the long-term prognosis after a CHD event is worse in diabetic than in non-diabetic patients. We assessed risk factor control in patients with type 2 diabetes and CHD from the Swedish National Diabetes Register (NDR).

Materials and methods: Cross-sectional study of patients with first incidence of CHD (myocardial infarction, unstable angina, percutaneous coronary intervention and/or coronary artery bypass graft) 1-2 years before examination, aged 18-79 years: 666 examined in 2002, 1414 examined in 2005, and 2557

S 84

examined in 2008. HbA1c analyses were quality assured nationwide by regu-
lar calibration. Patients with LDL-cholesterol (LDL-C) data available were
around 70% of all due to missing data. Significance was analysed by GLM
regression, adjusting for age and sex.

Results: As shown in Table 1, mean HbA1c, blood pressure (BP) and LDL-C
decreased across the 6-year period from 2002 to 2008, while mean BMI
was unchanged and as high as 30 kg/m². Achievement of the treatment targets
HbA1c <7%, BP <130/80 mmHg and LDL-C <2.5% improved considerably
across the 6-year period, and were 56%, 48% and 79% in 2008. Patients ex-
amined in 2008 within intervals of HbA1c <7%, 7.0-7.9% and ≥8% were
56%, 27% and 17%, and those within intervals of systolic BP (SBP) <130, 130-139
and ≥140 mmHg were 36%, 26% and 38%. Use of antihypertensive drugs, as-
pirin (ASA), and especially lipid-lowering drugs increased across the 6-year
period, as were HbA1c as high as 96%, 87% and 90% in 2008. A high prevalence
of adverse lifestyle characteristics prevailed during the 6-year period, and
in 2008 the frequency of obesity (BMI ≥30 kg/m²) was 44%, while 45% per-
formed physical activity <3 times/week, and 20% of patients with age <65
years were smokers.

Conclusion: Control of HbA1c, BP and LDL-C improved significantly across
the 6-year period from 2002 to 2008. Although fewer patients available in
2002, significant improvement was also seen for BP and LDL-C from 2005
to 2008. In 2008, treatment targets were achieved by more than half of pa-

tients for HbA1c, and by 70% for LDL-C. Although barely half achieved BP
<130/80 mmHg, only one-third had systolic BP ≥140 mmHg. However, a
high prevalence of adverse lifestyle characteristics prevailed. Evidence-based
therapy with professional lifestyle intervention seems necessary for further
improvement in secondary prevention.

Table 1. Risk factors in patients with type 2 diabetes and CHD

<table>
<thead>
<tr>
<th>Examination year</th>
<th>P trend</th>
<th>P 2002-08 vs. 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers</td>
<td>666</td>
<td>1414</td>
</tr>
<tr>
<td>Men, %</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>Age (mean), years</td>
<td>68 (8)</td>
<td>67 (8)</td>
</tr>
<tr>
<td>(SD)</td>
<td>68 (8)</td>
<td>68 (8)</td>
</tr>
<tr>
<td>(SD)</td>
<td>7.0 (9)</td>
<td>8 (9)</td>
</tr>
<tr>
<td>Systolic BP >130 mmHg</td>
<td>7.1 (1.1)</td>
<td>7.1 (1.1)</td>
</tr>
<tr>
<td>BMI ≥30 kg/m²</td>
<td>41.9</td>
<td>54.4</td>
</tr>
<tr>
<td>SBP <130/80 mmHg</td>
<td>139 /76</td>
<td>138 / 75</td>
</tr>
<tr>
<td>LDL-C <2.5 %</td>
<td>29.6 (4.8)</td>
<td>29.6 (4.8)</td>
</tr>
<tr>
<td>(±SD)</td>
<td>29.6 (4.8)</td>
<td>29.6 (4.7)</td>
</tr>
<tr>
<td>HbA1c <7.0 %</td>
<td>41.1</td>
<td>42.0</td>
</tr>
<tr>
<td>(±SD)</td>
<td>41.1</td>
<td>42.0</td>
</tr>
<tr>
<td>HDL-C >1.0 mmol/l</td>
<td>85.4</td>
<td>85.4</td>
</tr>
<tr>
<td>(±SD)</td>
<td>85.4</td>
<td>85.4</td>
</tr>
<tr>
<td>Lipid lowering drugs, %</td>
<td>73.9</td>
<td>85.9</td>
</tr>
<tr>
<td>(±SD)</td>
<td>73.9</td>
<td>85.9</td>
</tr>
<tr>
<td>ASA, %</td>
<td>82.7</td>
<td>89.3</td>
</tr>
</tbody>
</table>

191

Type 2 diabetes significantly modulates the impact of low left ventricular
erection fraction on the risk of cardiovascular events

S. Greber1, C.H. Sach1, P. Rein1, A. Vorban1, T. Gansch1, C. Boehnel2, V. Iankovici2, H. Dreux1,2; 1Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria, 2Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.

Background and aims: The prevalence of coronary artery disease and of con-
gestive heart failure is high in patients with diabetes. In the present study we
aimed at prospectively investigating the impact of the left ventricular ece-
ction fraction (LVEF) and of angiographically verified coronary artery disease
(CAD) on the risk of cardiovascular events in patients with type 2 diabetes
(T2DM) and in non-diabetic subjects.

Materials and methods: Cardiovascular events were recorded over 8 years
in 629 consecutive patients undergoing coronary angiography for the evalu-
ation of established or suspected stable CAD. At the baseline angiography,
significant CAD was diagnosed in the presence of significant coronary sten-
ces with lumen narrowing >50%, and the baseline LVEF was determined
invasively by ventriculography.

Results: The baseline prevalence of significant CAD was higher (68.6% vs.
55.3%; p = 0.006) in patients with T2DM (n = 137) than in non-diabetic sub-
jects (n = 492); the baseline LVEF was similar in these two patient subgroups
(65.15% vs. 67.15%; p = 0.233). Prospectively, significant CAD (HR = 2.07
[1.50-2.88]; p <0.001) and the LVEF (standardised HR = 0.79 [0.71-0.88]; p
<0.001) after multivariable adjustment both proved significantly predictive
cardiovascular events in a mutually independent manner. The incidence of
vascular events was significantly higher in patients with T2DM than in non-
diabetic subjects (83.8% vs. 30.1%; p = 0.003). In analyses with respect
to the diabetes status, the LVEF strongly and significantly predicted cardio-
vascular events in non-diabetic subjects (HR = 0.72 [0.62-0.82]; p <0.001)
but in patients with T2DM (1.00 [0.75-1.22]; p = 0.711). An interaction term
LVEF*T2DM was significant (p = 0.047), indicating that the cardiovascular
risk conferred by a low LVEF was significantly higher in non-diabetic sub-
jects than in patients with T2DM. The presence of significant CAD proved
significantly and independently predictive of vascular events both in non-
diabetic subjects and in patients with T2DM (HRs 1.84 [1.26-2.67]; p = 0.001
and 2.45 [1.18-5.06]; p = 0.016, respectively).

Conclusion: From the results of this 8-year prospective cohort study we con-
clude that T2DM significantly modulates the cardiovascular risk conferred by
a low left ventricular ejection fraction.

192

Predictors of incident heart failure in community-dwelling older adults with
diabetes mellitus

S. Akter1,2, K. Karatzidou1, C. Adamopoulos1, M. Mujib1, Z. Hassan1, L. Ali1,2, A. Ahmed1; 1Department of Biochemistry and Cell Biology, BIRDEM, Dhaka, 2Dept of
Biochemistry, Bangladesh Institute of Health Sciences, Dhaka, Bangladesh;
3Papageorgiou General Hospital, Thessaloniki, Greece, University of Alabama at Birmingham, Birmingham, USA, 4Department of Physiology & Molecular Biology, BIRDEM, Dhaka, Bangladesh, Medicine, University of Alabama at Birmingham and VA Medical Center, Birmingham, USA.

Background and aims: Type II diabetes mellitus (DM) is a major risk factor
for heart failure (HF). However, little is known about the risk factors for HF
in those with DM. We used public-use copies of the Cardiovascular Health
Study (CHS) datasets, obtained from the United States National Institutes
of Health, to examine the predictors of HF in older adults with DM.

Materials and methods: Of the 5795 CHS participants, 2635 years, 5461 were
free of baseline HF. Of these, 862 had baseline DM (based on past history and
baseline fasting blood glucose ≥126 mg/dL) and 963 had baseline coronary
artery disease (CAD). Multivariable-adjusted Cox regression models were
used to determine predictors of centrally- adjudicated incident HF among
those with DM during over 12 years of median follow-up. Considering that DM
is considered CAD-equivalent, we repeated our analysis in a cohort with
baseline CAD.

Results: Participants with DM had a mean (±SD) age of 73 (±5) years, 50%
were women, and 24% were African American. Those with CAD had a mean
(±SD) age of 74 (±6) years, 45% were women, and 15% were African Ameri-
can. Incident HF occurred in 272 (32%) and 324 (34%) of participants with
DM and CAD respectively. Significant predictors of incident HF among those
with DM and in those with CAD are presented in Table.

Conclusion: Community-dwelling older adults with DM had similar inci-
dence and risk factors for new-onset HF as those with baseline CAD. Man-
agement of modifiable risk factors such as smoking and systolic blood pres-
sure may provide opportunities for reducing risk of incident HF among both
high-risk populations.
Table. Predictors of incident heart failure in older adults with diabetes mellitus (DM) and without DM but with coronary artery disease (CAD)

<table>
<thead>
<tr>
<th>Variable</th>
<th>With baseline DM Adjusted HR (95% CI)</th>
<th>P value</th>
<th>With baseline CAD Adjusted HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 75 and older</td>
<td>1.53 (1.8-2.00)</td>
<td>0.001</td>
<td>1.77 (1.41-2.23)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>0.89 (0.69-1.15)</td>
<td>0.383</td>
<td>0.71 (0.55-0.91)</td>
<td>0.008</td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.55 (1.02-2.36)</td>
<td>0.038</td>
<td>1.77 (1.24-2.51)</td>
<td>0.001</td>
</tr>
<tr>
<td>Systolic blood pressure, 1.02 (1.02-1.03)</td>
<td><0.001</td>
<td></td>
<td>1.01 (1.00-1.01)</td>
<td>0.005</td>
</tr>
<tr>
<td>Baseline coronary artery disease</td>
<td>2.20 (1.68-2.88)</td>
<td><0.001</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Baseline diabetes mellitus</td>
<td>---</td>
<td>---</td>
<td>1.71 (1.22-2.39)</td>
<td>0.002</td>
</tr>
<tr>
<td>Serum creatinine, mg/dL</td>
<td>1.25 (1.06-1.48)</td>
<td><0.001</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Serum uric acid, mg/dL</td>
<td>1.13 (1.04-1.23)</td>
<td>0.003</td>
<td>1.14 (1.06-1.23)</td>
<td>0.001</td>
</tr>
<tr>
<td>Left ventricular systolic mm Hg</td>
<td>2.13 (1.50-3.04)</td>
<td><0.001</td>
<td>1.54 (1.17-2.02)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Supported by: US NIH/NHLBI

OP 33 HbA\text{1c} for diabetes mellitus diagnosis: need for reassessment?

A comparison of performance from using two HbA\text{1c} cut-points (a ‘rule-in, rule-out’ spectrum) and one HbA\text{1c} cut-point to detect type 2 diabetes mellitus in a multi-ethnic cohort

S.A. Mostafa1, K. Khunti2, D.R. Webb1, B. Srinivasan1, L.G. Gray4, M.J. Davies4;
1Diabetes Research Unit, ‘Health Sciences, University of Leicester, United Kingdom.

Background and aims: HbA\text{1c} ≥ 6.5% has been recommended as a diagnostic tool to detect people with Type 2 Diabetes Mellitus (T2DM). However, using HbA\text{1c} ≥ 6.5% leads to discordance in people detected with T2DM from using an oral glucose tolerance test (OGTT). Therefore, using two HbA\text{1c} cut-points has been suggested to reduce the number of false positives/negatives: the first to ‘rule out’ T2DM (HbA\text{1c} ≤ 6.5%) and the second to ‘rule in’ T2DM (HbA\text{1c} ≥ 7.0%). Those with HbA\text{1c} 5.6-6.9% could have T2DM, especially if 6.5-6.9%, and may need a further glucose test for diagnosis. The aim of this study was to compare detection rates for T2DM using (a) HbA\text{1c} ≥ 6.5% or (b) the ‘rule-out, rule in spectrum’ and to determine the optimal cut-points in our multi-ethnic cohort.

Materials and methods: Analysis of 8696 previously undiagnosed primary care adults aged 40-75 years from the LEADER cohort, a combination of two systematic screening programmes. Participants underwent an OGTT and had HbA\text{1c} measured from 2002-2008 in Leicester, UK. T2DM was diagnosed according to WHO 1999 criteria.

Results: Use of an OGTT detected 291 (3.3%) people with previously undiagnosed T2DM. Using HbA\text{1c}≥6.5% to detect T2DM produced a sensitivity/specificity/positive predictive value (PPV)/negative predictive value (NPV) of 62.1%/97.7%/44.8%/98.9% in white Europeans and 78.9%/92.8%/36.2%/98.8% in south Asians. Using ROC curve analysis, the single optimal HbA\text{1c} cut-point for detecting T2DM was ≥ 6.1%, (sensitivity/specificity: 83.0%/87.8%) in white Europeans and ≥ 6.3% (sensitivity/specificity: 87.9%/85.5%) in south Asians. The optimal HbA\text{1c} cut-point to detect T2DM studied was lower than HbA\text{1c} of 6.5% or (b) the ‘rule-out, rule in spectrum’ and to determine the optimal cut-points ‘rule-in, rule-out’ T2DM (HbA\text{1c} ≥ 7.0%). Those with HbA\text{1c} 5.6-6.9% could have T2DM, especially if 6.5-6.9%, and may need a further glucose test for diagnosis. The aim of this study was to compare detection rates for T2DM using (a) HbA\text{1c} ≥ 6.5% or (b) the ‘rule-out, rule in spectrum’ and to determine the optimal cut-points in our multi-ethnic cohort.

Conclusion: The optimal HbA\text{1c} cut-point to detect T2DM studied was lower than HbA\text{1c} of 6.5% in both ethnic groups. Using a two cut-point ‘rule-in, rule out’ spectrum to detect T2DM appears to have better performance than using HbA\text{1c} ≥ 6.5% in isolation in our multi-ethnic cohort. However, as over 50% of this cohort had HbA\text{1c} values between 5.6-6.9%, many people may require a subsequent glucose test on a second visit, involving fasting, which could be impractical to implement. Within our cohort, a better two cut-point spectrum of HbA\text{1c} ≤ 5.8% and HbA\text{1c} ≥ 6.8% maintains high specificity/sensitivity/PPV and a reasonable NPV. Furthermore, using these cut-points, approximately one-quarter of the cohort would require a further glucose test, which is more feasible to implement in clinical practice.

194

Moving to the new HbA\text{1c} diagnostic criteria has a deep impact on prevalence of gluco-metabolic abnormalities among high-risk Spanish population

J.J. Cabre1, B. Costa1, F.X. Cos1, F. Barrio1, J.L. Piñol1, C. Castell2, J. Lindström3, N. Barenpo1, J. Tuomilehto4, DE-PLAN-CAT Research Group, 1Primary Health Care Division, Jordi Gol Primary Care Research Institute, Reus & Barcelona, 2Department of Public Health, Barcelona, Spain, 3Diabetes Prevention Unit, Helsinki, 4Department of Public Health, Helsinki, Finland.

Background and aims: Diabetes screening in risk individuals is usually based on the detection of hyperglycemia through an increase in fasting plasma glu-
A total of 1157 patients (962 women; body mass index (BMI)=29.9 kg/m²; 68% with a FINDRISC score ≥12 points (moderate, high or very high risk)). Diagnoses by 2hPG were: 1482 (64.8%) normal glucose tolerance (95% CI: 62.8-66.7), 609 (26.6%) prediabetes (20.7-25.6) and 196 (8.6%) diabetes. The mean HbA1c value (2hPG/FPG vs. A1C) was 0.29 (0.16/0.28, respectively). Likewise, only 19 out of 75 diabetic patients (692 women; body mass index 37.0±7.2 kg/m²; 41.2±13 years old) fulfilling the ADA 2010 criteria to be screened and who had not been diagnosed for diabetes previously underwent an oral glucose tolerance test (OGTT) and measurement of A1C. They were assessed for diabetes risk score (FINDRISC and DESIR score) and UKPDS coronary risk score.

Diagnosis of abnormal glucose levels in patients at high risk for the development of diabetes: A comparison of the oral glucose tolerance test and measurement of HbA1c following the American Diabetes Association recommendations 2010

Background and aims: American Diabetes Association have published in 2010 precise recommendations (ADA 2010) about (i) the population to be screened for dysglycemia, (ii) the diagnostic criteria for intermediate hyperglycemia (IH) and diabetes which include glucose values during oral glucose tolerance test (OGTT) and A1c and (iii) the patients to be considered for metformin treatment (those with both impaired fasting glucose and impaired glucose tolerance, or those with A1c ≥6%). The aim of the study was to evaluate diagnostic strategy with OGTT and/or A1C criteria.

Materials and methods: A total of 1157 patients (962 women; body mass index 37.0±7.2 kg/m²; 41.2±13 years old) fulfilling the ADA 2010 criteria to be screened and who had not been diagnosed for diabetes previously underwent an oral glucose tolerance test (OGTT) and measurement of A1C. They were assessed for diabetes risk score (FINDRISC and DESIR score) and UKPDS coronary risk score.

Results: Based on OGTT and A1c respectively, 76 and 113 patients had diabetes; 307 and 299 patients had IH; and 130 and 255 patients would have been eligible for treatment with metformin. The sensitivity/specificity of A1c ≥6.5% for the diagnosis of diabetes according to OGTT were 45.9/92.0%. In patients with A1c <6.5%, the sensitivity/specificity of A1c 5.7-6.4% for the diagnosis of IH were 59.9/56.2%. Diabetes risk scores and UKPDS risk score were the highest in the 130 patients with both an abnormal OGTT and an A1c ≥5.7%.

Conclusion: OGTT and A1c are both considered as relevant diagnostic criteria for dysglycemia as they correlate with retinopathy and the risk for developing diabetes. We show in a population who should be screened that choosing the A1c strategy rather than the OGTT strategy leads to diagnose more diabetes and to treat more patients with metformin, although the consistency of both diagnostic criteria is low (for example, 1/3 of the patients with A1c ≥6.5% have a normal OGTT). The patients who have the highest a priori risk of diabetes and cardiovascular disease are those with an abnormal OGTT associated with an A1c ≥5.7%.
were analyzed according to the recommendations of the "International Expert Committee Report on the Role of the A1c Assay in the Diagnosis of Diabetes" ADA/EASD/IDF (diabetes >= 6.5% and "pre-diabetes" > 5.7% and < 6.4%).

Results: Excluding people who had a previous diagnosis of diabetes, 96.8% (CI 95%: 96.5% to 97.3%) of the population had A1c < 6.5%. When the remaining 3.2% with A1c > 6.5 were tested with an OGTT, 65% had undiagnosed diabetes, 29% had "Pre-Diabetes" and 6% had no diabetes criteria. 30.0% of previously undiagnosed people had A1c levels > 6.5% (CI 95%: 23.6% to 36.4%). Thus, this method would not have allowed the diagnosis of 30.0% of cases of diabetes. Looking at metabolic control in people with previously diagnosed diabetes, we found that 34% had A1c values under 6.5%, 69.7% had values < 7% and 15.4% had values > 8%. Analyzing A1c values in people with Impaired Fasting Glucose (IFG), 29.9% had values >= 6.5% and 98% values < 7%, while in people with Impaired Glycated Hemoglobin (HbA1c) 29.7% had values >= 6.5% and 99.2% < 7%. According to the criteria proposed by the ADA/EASD/IDF and analyzing the total population of PREVADIA we verified that in the group of people with A1c values, < 5.7%, 2.9% of people had diabetes. With A1c between 5.7% and 6.4%, 13.9% of people had diabetes and A1c values >= 6.4%, 86.5% of people had diabetes. "Pre-diabetes" was present in the three levels, mainly in the group with A1c values between 5.7% and 6.4% (30.0% of the group).

Conclusions: Using A1c > 6.4% as a means of diagnosis, a large number of people without previous diagnosis of diabetes (30.0%) would not be diagnosed. In the population with A1c values between 5.7% and 6.4% we found that 13.9% had diabetes, 30.0% had "pre-diabetes" and 56.1% had normal glyceregulation. Thus we should be cautious using A1c for diagnosis. In our opinion, the use of fasting glucose and OGTT remains pertinent.

198

Discordance between fasting glucose-based and hemoglobin A1c-based diagnosis of diabetes mellitus in Koreans

C.-H. Kim1, H.-K. Kim2, S.J. Bae3, J.Y. Park2, K.-U. Lee1; 1Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Kyunggi-do, 2Health Promotion Center, Asan Medical Center, Seoul, 3Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Background and aims: Recently, the International Expert Committee recommended that hemoglobin A1c (HbA1c) > 6.5% be included as a diagnostic criterion for diabetes mellitus. However, the degree of diagnostic agreement with the fasting glucose-based criteria may be different across ethnic groups and populations. The aim of this study was to examine the difference between using fasting plasma glucose (FPG) and HbA1c criteria in screening for diabetes in Korean asymptomatic health check-up recipients.

Materials and methods: We retrospectively analyzed clinical and laboratory data of 37,754 Korean adults (age 20-89 years, 41% women) which were recorded during regular health check-ups. After excluding subjects with previously diagnosed diabetes mellitus (n = 1,812) and significant anemia or hemoglobinopathies (n = 318), 35,624 subjects (21,201 men and 14,423 women) were analyzed according to the recommendations of the "International Expert Committee Report on the Role of the A1c Assay in the Diagnosis of Diabetes" ADA/EASD/IDF and analyzing the total population of PREVADIA.

Results: Among the 35,624 subjects without known diabetes, 1143 (3.2%) patients were newly diagnosed as having diabetes using FPG criteria and 1019 (2.9%) patients by HbA1c criteria (Table 1). Thus, using HbA1c alone could detect slightly less (9%) diabetic patients compared with using FPG alone. By combining both FPG and HbA1c criteria, 1493 (4.2%) patients previously unknown to have diabetes could be newly diagnosed. Therefore, about 30% more diabetic patients could be detected by including new HbA1c criteria in addition to FPG criteria. Among the 1493 newly diagnosed diabetic subjects, 473 (31.6%) met FPG criteria only (DM-FPG group), 350 (23.5%) met HbA1c criteria only (DM-A1c group), and 668 (44.9%) were diagnosed as diabetes by both criteria. When we compared the DM-FPG and DM-A1c group, DM-A1c group were significantly older (55.1 ± 9.4 vs. 53.4 ± 9.2 years, P = 0.032), and had lower blood hemoglobin concentration (14.6 ± 1.5 vs. 15.2 ± 1.3 mg/dL, P < 0.001). In contrast, DM-FPG group had higher systolic (123±15 vs. 119±13 mmHg, P = 0.006) and diastolic (78 ± 9 vs. 74 ± 9 mmHg, P < 0.001) blood pressure, fasting serum insulin level (11.5 ± 8.7 vs. 8.8 ± 5.5 mIU/L, P < 0.001) and HOMA-IR (3.81 ± 2.95 vs. 2.47 ± 1.57, P < 0.001).

Conclusion: There was significant discordance in diagnosing diabetes mellitus between the FPG- and HbA1c-based criteria. Our results support the notion that fasting glucose criteria may be better in detecting patients with hepatic insulin resistance, while HbA1c criteria may be more useful in patients with predominant impairment of postprandial glucose metabolism.

Table 1. Prevalences (%) of newly diagnosed diabetes mellitus in health check-up recipients according to age groups by fasting plasma glucose (FPG) and HbA1c criteria

<table>
<thead>
<tr>
<th>Age Group</th>
<th>FPG</th>
<th>HbA1c</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>40-49</td>
<td>1.5</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>50-59</td>
<td>2.8</td>
<td>2.3</td>
<td>3.4</td>
</tr>
<tr>
<td>60-69</td>
<td>3.9</td>
<td>3.5</td>
<td>5.1</td>
</tr>
<tr>
<td>70-89</td>
<td>4.7</td>
<td>4.8</td>
<td>6.9</td>
</tr>
<tr>
<td>Total</td>
<td>7.7</td>
<td>6.4</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
</tbody>
</table>
OP 34 Inflammation in insulin resistance

199
Effect of IL-1βeta and TNFalpha inhibition on insulin secretion and metabolic control of type 2 diabetes patients with overweight or obesity
M. González-Oritz1, M.G. Ramos-Zavala1, E. Martínez-Abundis1, J.A. Robles-Cervantes1, R. González-López1, N.J. Santiago-Hernández1, J. Medical Research Unit in Clinical Epidemiology, Mexican Institute of Social Security, 2Physiology Department, University of Guadalajara, Jalisco, Mexico.

Background and aims: To compare the effect of IL-1β and TNFα inhibition on insulin secretion and metabolic control of type 2 diabetes patients with overweight or obesity.

Materials and methods: A randomized, double-blind, placebo-controlled clinical trial was carried out in 40 type 2 diabetes patients, aged between 40 to 60 years, BMI between 25 to 34.9 kg/m², glucose between 126 to 200 mg/dl, AIC >7%, without pharmacological treatment. At beginning and at end of the study, BMI, blood pressures, a metabolic profile (fasting glucose, A1C and lipids), IL-1β and TNFα concentrations were measured, as well as, insulin secretion assessment using the hyperglycemic - hyperinsulinemic clamp technique. The patients were randomly assigned to receive diabetes (50 mg twice/day), an inhibitor of IL-1β and TNFα, or placebo for a period of 60 days. Statistical analyses were calculated with Mann-Whitney U and Wilcoxon tests. The study protocol was reviewed and approved by the hospital-based Ethic Committee and written informed consent was obtained from all volunteers.

Results: In both groups decreased the BMI (30.9 ± 2.5 vs. 29.8 ± 2.5 kg/m², p = 0.002 and 30.6 ± 2.6 vs. 29.8 ± 2.8 kg/m², p = 0.001; respectively placebo and diarein groups) in the same magnitude, p = 0.756. Diastolic blood pressure (77 ± 6 vs. 75 ± 6 mmHg, p = 0.040), fasting glucose (145 ± 28 vs. 124 ± 19 mg/dl, A1C (8.3 ± 1.0 vs. 7.0 ± 0.8%, p <0.01), IL-1β (26.4 ± 6.6 vs. 17.9 ± 2.7 pg/ml, p=0.005), and TNFα concentrations (18.2 ± 3.9 vs. 13.8 ± 2.7 pg/ml, p=0.003) decreased significantly with diarein administration, as well as increasing in first (17.0 ± 10.6 vs. 21.8 ± 12.7 μU/ml, p = 0.002), late (36.6 ± 18.6 vs. 46.9 ± 22.5 μU/ml, p = 0.002) and total (29.9 ± 15.4 vs. 36.1 ± 16.6, p = 0.002) phases of insulin secretion were observed.

Conclusion: Inhibition of IL-1β and TNFα by means of diarein administration improved insulin secretion and the metabolic control of type 2 diabetes patients with overweight or obesity.

200
CCR5 promotes adipose tissue inflammation and insulin resistance in obesity
T. Ota, H. Kitade, K. Sawamoto, H. Inoue, S. Kaneko; Frontier Science Organization, Kanazawa University, Japan.

Background and aims: Adipose tissue macrophages (ATMs) play a critical role in obesity-induced inflammation and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 are important for ATM recruitment and the development of insulin resistance. However, deficiency of CCR2 or MCP-1 does not normalize obesity-induced ATM recruitment and insulin resistance. Therefore, other chemokine systems could also play a role in these processes. Recent reports have also shown that CCR5, a different CC chemokine receptor, and its ligands are upregulated in adipose tissue of lean or overweight healthy women and differentiated human skeletal muscle cells.

Materials and methods: Preadipocytes were isolated from subcutaneous adipose tissue of human obesity. However, it is not known if CCR5 is involved in ATM recruitment and insulin resistance. Here, we investigated the role of CCR5 in obesity-induced adipose tissue inflammation and systemic insulin resistance by high fat (HF) feeding or leptin deficiency.

Materials and methods: We analyzed gene expression levels of several chemokines and their receptors in white adipose tissue (WAT) of genetically (ob/ob) and HF diet-induced obese (DIO) mice. To determine whether CCR5 is required for obesity-induced ATM recruitment and insulin resistance, we examined metabolic phenotype of CCR5-/- mice. In addition, we performed bone marrow transplantation (BMT) of CCR5-/- mice or wild type (WT) C57Bl/6J mice donor cells into irradiated WT recipient mice to generate myeloid cell specific chimeric mice.

Results: Expression of mRNA for CCR5 and its all ligands was markedly increased in WAT in both DIO mice (CCR5,11.1; MIP-1α, 5.2; MIP-1β, 5.2; RANTES, 4.0; MCP-2, 2.1-fold; all p<0.05 vs WT) and ob/ob mice (CCR5, 5.3; MIP-1α,17.5; MIP-1β, 19.9; RANTES 4.9; MCP-2, 21.5-fold; all p<0.05 vs WT) at 15 weeks of age. Interestingly, upregulation of CCR5 and its ligands preceded ATM recruitment in DIO mice, and their expression levels were higher than MCP-1/CCR2 in ob/ob mice. CCR5-/- mice fed normal chow showed slightly better glucose tolerance. On a HF diet, CCR5-/- mice had decreased macrophage infiltration and crown-like structure formation in adipose tissue compared with WT mice at 20 weeks, even though weight and adipocyte size (191.5±9.3 vs 186.3±6.4 μm p=0.4) were similar. HF diet-induced insulin resistance and glucose intolerance were also significantly improved in CCR5-/- mice. These findings were associated with decreased inflammatory cytokine expression (TNFα and iNOS), reduction of endo-plasmic reticulum stress evaluated by XBP-1 splicing, attenuation of MAPK (p38-MAPK, JNK) and NF-κB activation in adipose tissue, and improvement of hepatic steatosis. We next introduced CCR5 deficiency into ob/ob mice to generate double-knockout (DKO) mice. DKO mice were strikingly resistant to the development of both insulin resistance and fatty liver. DKO mice also had decreased ATM recruitment compared to ob/ob littermates. Importantly, mRNA expression for CCR5 and its ligands in adipose tissue was higher in stromal vascular fraction than adipocyte fraction from DIO mice at 15 weeks. Furthermore, BMT study revealed that chimeric mice lacking CCR5 in myeloid cells were protected from HF diet-induced hyperinsulinemia (CCR5-/--; RANTES-/- 2.4±3.1 vs WT-BMT 5.1±1.1 ng/ml, p<0.05) and glucose intolerance.

Conclusion: Expression of CCR5 and its ligands is markedly increased in WAT of obese mouse models. Deficiency of CCR5 prevents insulin resistance induced by HF feeding or leptin deficiency. Therefore, CCR5 plays a crucial role in ATM recruitment and subsequent development of insulin resistance independently of MCP-1/CCR2.

Supported by: MEXT, Japan.
to 3-fold over the control level. Hsp60 also induces insulin resistance on the level of insulin-stimulated Akt and GSK3 phosphorylation in a dose-dependent manner with significant inhibition being observed at concentrations from 5 to 20 μg/ml of Hsp60 which reflects pathophysiological concentrations.

Conclusion: We demonstrate for the first time that treatment of human preadipocytes and adipocytes with Hsp60 results in increased release of various pro-inflammatory adipokines in a dose- and differentiation-dependent way. In skeletal muscle cells Hsp60 activates pro-inflammatory signaling pathways and leads to impaired insulin signaling. Therefore, Hsp60 might be a factor contributing to adipose tissue inflammation and obesity-associated insulin resistance.

Supported by: DFG

202
Communication between insulin-resistant skeletal muscle and beta cells
K. Bouzakri1, P. Ribaux1, T. Berney2, M.Y. Donath3, P.A. Halban4
1 Department of Genetic Medicine and Development, CMU, Geneva, 2 Cell Isolation and Transplantation Center, Division of Surgical Research, Department of Surgery, University Hospital, Geneva, 3 Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, Zurich, Switzerland.

Background and aims: Obesity and type 2 diabetes mellitus are characterized by an overlapping phenotype of insulin resistance with a relative deficiency in insulin secretion underlying hyperglycemia in type 2 diabetes. Systemic inflammation is another common feature, raising the hypothesis that elevated cytokine levels may contribute to peripheral insulin resistance and decreased beta cell functional mass. In healthy humans, TNF-α infusion induces skeletal muscle insulin resistance. We now explore the potential communication between insulin-resistant skeletal muscle and beta cells.

Materials and methods: Human skeletal muscle cells were cultured for up to 24 h with or without (control) 20 ng/ml TNF-α to induce insulin resistance. mRNA expression for cytokines was analysed after 24 h by hybridising cDNA to low-density oligo-nucleotide arrays. Conditioned media (test: TNF-α-CM; control: C-CM) were collected and candidate cytokines were measured by antibody array. Human and rat primary beta-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis (TUNEL assay), proliferation (BrDU incorporation), short-term insulin secretion, and key signalling protein phosphorylation and expression. Data are means +/- SE.

Results: Muscle cells (n=4) treated for 24 h showed an increase in expression of 19 cytokine and chemokine genes (confirmed and quantified by RT-qPCR) with increased amounts of 19 cytokines after 24 h in TNF-α-CM vs. C-CM. Both TNF-α-CM and TNF-α alone added to C-CM at the start of the beta-cell culture decreased glucose-stimulated insulin secretion to a similar extent. However, only TNF-α-CM also increased human and rat beta-cell apoptosis by 23.2 +/- 2.1 and 6.1 +/- 0.9 fold respectively (p < 0.05) and decreased beta cell functional mass. In healthy humans, TNF-α-induced insulin resistance. We now explore the potential communication between insulin-resistant skeletal muscle and beta cells.

203
IL-6 stimulated TLR-4 gene expression via mTOR and STAT3 in human skeletal muscles myotube and human skeletal muscle of IGT subject S. E. Choi1, T.H. Kim1, E.S. Ha1, S.Y. An1, Y.J. Jung1, E.K. Kim1, M.S. Lee2, S.J. Han1, H.J. Kim1, D.J. Kim1, Y. Kang1, K.-W. Lee1
1 Endocrinology and Metabolism, Institute for Medical Science, Ajou University School of Medicine, Suwon, Republic of Korea.

Insulin resistance is associated with chronic inflammation, and many inflammatory cytokines and signaling pathways are involved. In this study we investigated the cytokines and mechanisms involved in the induction of insulin resistance in human skeletal muscle. We recruited 10 IGT subjects and 10 control subjects. Whole-body insulin-mediated glucose uptake was determined using a euglycemic hyperinsulinemic clamp test. Muscle biopsies were obtained from the vastus lateralis muscles. We determined levels of inflammatory cytokine, TNF-α gene expression, and insulin signaling using immuno-blotting. We examined the mechanisms underlying TLR-4 gene expression using a human myotube culture system. Fasting blood glucose was significantly higher in IGT subjects than the controls. Hba1c showed a tendency to be higher in IGT subjects (p=0.059). Although there was no difference in HOMA beta cell function between the two groups, glucose utilization rates were significantly lower in the IGT group. Levels of IL-6, TNF-α, and IL-1β were significantly increased in the IGT group, but IL-1β was not. We studied which inflammatory cytokines induce TLR-4 gene expression using IL-6, TNF-α, free fatty acid, and high glucose. IL-6 gene expression increased significantly in human skeletal muscle myoblasts treated with IL-6. To determine the main signaling pathway for IL-6-induced TLR-4 expression, we examined several signaling factors associated with IL-6 signaling pathways. We found that the active forms of signal transducer and activator of transcription3 (STAT3) was increased in the IGT group as compared with controls (mTOR: 183.22 +/- 13.01 vs. 100 +/- 12.63, p < 0.05; STAT3: 170.39 +/- 14.64, p < 0.05). Stat6 (STAT3 inhibitor) markedly inhibited TLR-4 gene expression. We suggest IL-6 induction of TLR-4 gene expression via STAT3 is one of the main mechanisms underlying insulin resistance in human skeletal muscle.

204
Toll-like receptor 2 knockout mice present iNOS-dependent insulin resistance
A.M. Caricelli1, P.K. Picardi1, L.I.F. de Abreu1, M. Ueno1, P.O. Prada1, S.M. Hirabara1, R. Curi1, J. Carvalheira2, L.A. Velloso1, M.J.A. Saad1
1 UNICAMP, Campinas, 2 UNICISUL, São Paulo, USP, São Paulo, Brazil.

Background and aims: There are evidences that the activation of JNK, IKK and iNOS pathways are associated with the reduction of the insulin sensitivity, but only recently it has been shown that those pathways can be integrated in the insulin resistance by membrane receptors, such as the Toll-like Receptors (TLR). Studies in our laboratory show that mice with an inactivating mutation of TLR4 are protected from diet-induced obesity and activation of iNKK and iNKF. It is possible that other TLRs participate in this phenomenon. TLR2 is a good candidate, because it is activated by saturated fatty acids. However, no study has characterized the role of TLR2 in the insulin resistance of animal models. Therefore, the goal of the present study is to investigate the role of TLR2 on insulin resistance of mice.

Materials and methods: We investigated weight gain, insulin sensitivity and signaling in liver, muscle and white adipose tissue in TLR2 knockout (KO) mice and their controls, both fed with a standard chow. The glucose utilization was studied through euglycemic-hyperinsulinemic clamp, the protein signaling through Western Blotting, serum insulin, IL-6 and TNF-α through ELISA, oxygen consumption through an indirect open circuit calorimeter and glucose uptake by the soleus muscle was determined in vitro using 2-deoxy-D-[2,6-3H]glucose. In order to inhibit the expression of iNKK and iNOS, we used SP600125 (30mg/kg body weight) and 1-N6-(l-iminoethyl) lysine (l-NIL; 80 mg/kg body weight). All procedures were approved by the ethics committee at the Sytate University of Campinas.

Results: The animals were similar in concern to the weight gain, however TLR2 KO mice had a decreased oxygen consumption and a decreased UCP1 expression comparing with their controls. Moreover, TLR2 KO mice presented decreased glucose tolerance and decreased insulin sensitivity. Insulin signaling was also altered in these animals, because the activation of the insulin receptor and of AKT was reduced. iKK activation was reduced in TLR2 KO mice, which was accompanied by the decreased serum concentra-
OF 35 Novel aspects of beta cell function

205

Fork-head box transcription factor, FoxO1 inhibits glucose-regulated insulin gene expression in pancreatic beta cells by direct binding to the promoter region

G. Meur1, Q. Qian2, G. Da Silva Xavier1, T. Tsuboi2, C. McKinnon3, L.M. Fletcher2, J.M. Tavaré2, G.A. Rutter1;
1Division of Diabetes, Endocrinology and Metabolism, Imperial College, London, 2Department of Biochemistry, University of Bristol, United Kingdom.

Background and aims: Glucose and insulin stimulate preproinsulin (PPI) gene expression in pancreatic beta cells through mechanisms which are only partly defined. Pancreatic duodenum homeobox-1 (Pdx1) is a major transactivator of PPI whose action is antagonised by the fork-head box member protein, FoxO1. The effect of FoxO1 is thought to be largely due to inhibition of Pdx1 expression. However, we have also noted that a potential binding site also exists in the 5' flanking region of the rodent, and intron 2 of the human, PPI genes. Here we explore whether FoxO1 directly binds to this site to regulate insulin gene expression and examine the intracellular signalling pathways involved.

Materials and methods: Adenoviruses expressing wild type and a constitutively active (S256A) FoxO1-GFP and wild type Pdx1 were generated by standard techniques. Silencing of FoxO1 was achieved after 48 h of transfection of SiRNAs (10nM, Smart Pool) with Lipofectamine RNAiMAX in MIN6 beta cell lines. Chromatin immunoprecipitation was carried out after 24 h of CA-FoxO1 viral transduction, using a monoclonal anti-GFP antibody and CHIP grade protein G agarose. Real-time FoxO1 translocation was studied using a Nipkow spinning disc confocal microscope. The mRNA level was measured by qRT PCR using an ABI Fast Real-time PCR system normalised to endogenous cyclophilin. Insulin promoter-luciferase assays were carried out using a Stop and Glo, dual-luciferase kit. Statistical analyses of significance were done by Student's t test or ANOVA.

Results: Culturing of MIN6 beta cells at low (3mM versus 30mM) glucose led to a 2-3 fold decrease in PPI and Pdx1 mRNA levels. Constitutively active FoxO1-GFP over-expression led to a decrease in insulin and Pdx1 gene expression even at high glucose while silencing (~75%) of FoxO1 abolished the effects of low glucose. The effects of FoxO1 over-expression on PPI mRNA levels were still observed in the presence of over-expressed Pdx1 though both were present in the nucleus, and consistent with the direct action of FoxO1 on the insulin gene promoter. Chromatin immunoprecipitation using an anti-GFP antibody revealed direct binding of FoxO1 to a region located -768 to -141bp upstream of the transcriptional start site. FoxO1 over-expression inhibited the activity of an insulin promoter-reporter (luciferase) construct bearing this region and the latter inhibition was retained after co-expression of Pdx1, but lost in a truncated construct lacking the putative FoxO1 binding site. Confocal imaging revealed that wild type FoxO1-GFP translocated from the nucleus after 30-60 min of exposure to high glucose and this shift was blocked by a pharmacological inhibitor of phosphatidylinositol 3' kinase (PI 3-kinase, LY294002) but not by inhibitors of glycogen synthase kinase 3 (GSK3 beta, SB216763 and SB415286).

Conclusion: We show here that FoxO1, which is regulated through a PI 3-kinase dependent signalling pathway, has a direct binding site on rodent insulin gene promoter. This newly identified mechanism may contribute to the regulation of endogenous Insulin and Pdx1 gene complementing an effect on Pdx1 promoter described previously. Further dissection of this pathway may provide new therapeutic approaches to regulating the insulin gene in type 2 diabetes.

Supported by: Welcome Trust, MRC, JDRF
high glucose increases the expression of the lipogenic genes liver-type pyruvate kinase (L-PK) and fatty acid synthase (FAS) and inhibits the expression of ARNT/HIF1-β. We have also shown previously that Ca\(^{2+}\) influx is necessary for ChREBP activation in these cells. However, the precise molecular mechanism(s) through which ChREBP activity may be regulated by Ca\(^{2+}\) is unknown.

Materials and methods: A yeast two-hybrid screen was performed using ChREBP as a bait and the Matchmaker Gal4 Two-Hybrid System 3 (Clontech) with an in-house MIN6 pancreatic β cell library. Mammalian cell transfection was carried out using Lipofectamine 2000, and cells were imaged using a Zeiss Axiovert 200M microscope fitted with a PlanApo x63 oil-immersion objective. Confocality was achieved using a Nipkow spinning disc under the control of Velocity\(^{\text{TM}}\) 4.0 (Improvision) software. An EGFP-ChREBP chimera was generated by in-frame fusion of the corresponding cDNAs. Sorcin-specific siRNAs were purchased from Dharmacon. Chromatin immunoprecipitation was carried out using an in-house rabbit polyclonal anti-ChREBP antibody.

Results: Sorcin, a penta EF hand Ca\(^{2+}\) binding protein, was identified as a ChREBP interacting partner by yeast two-hybrid analysis. We confirmed that sorcin and ChREBP interacted in INS-1 (832/13) and MIN6 β cells by co-immunoprecipitation and that they also co-localised in the cytosol in a punctiform pattern in cells maintained in 3 mM glucose, as revealed by confocal microscopy. However, the extent of ChREBP and sorcin colocalisation was markedly reduced when cells were maintained at elevated (30 mM) glucose concentrations, where ChREBP staining became apparent in the nucleus. Moreover, ChREBP binding to the L-PK promoter, assessed by chromatin immunoprecipitation, was increased at lower glucose concentrations following sorcin expression by RNA interference. As the apparent physical interaction of sorcin with ChREBP implied that ChREBP may be regulated by intracellular Ca\(^{2+}\), we tested the ability of ChREBP to respond to elevated intracellular levels of these ions. Using live cell imaging of a GFP-tagged ChREBP construct, we found that ChREBP translocated into the nucleus within 5–7 min of cell depolarization with 50 mM K\(^{+}\) and activated Ca\(^{2+}\) influx. Finally, demonstrating the likely importance of sorcin in retaining ChREBP in the cytosol, sorcin silencing significantly inhibited insulin secretion from MIN6 β cells.

Conclusion: These results demonstrate that sorcin in a physiologically relevant molecular binding partner from ChREBP, and define a role for sorcin in the β cell function and insulin secretion. We propose a model wherein, at low glucose concentrations, sorcin sequesters ChREBP in the cytosol. Elevated glucose concentrations, which trigger Ca\(^{2+}\) influx, lead to conformational changes in sorcin which release ChREBP and allow it to translocate into the nucleus to regulate the transcription of genes involved in lipid synthesis. The up-regulation of these target genes may then contribute to glucolipotoxicity, and hence diminished beta cell function and survival, in the context of type 2 diabetes.

Supported by: DUK, Wellcome Trust

207

Beta cell specific c-Kit receptor over-expression improves beta cell growth and function.

R. Wang\(^{1}\), S. P. Yee\(^{1}\), J. Li\(^{1}\);

\(^{1}\)Physiology & Pharmacology, Children’s Health Research Institute, the University of Western Ontario, London, Canada, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, USA.

Background and aims: One of the major defects in diabetes is the loss of insulin producing cells in the pancreas. The reasons for beta-cell loss are not well understood. We previously focused on determining factors responsible for the maintenance of beta-cell mass and function and have demonstrated that the c-Kit receptor and its ligand, stem cell factor (SCF), are important for both rodent and human pancreatic islets. These results show that c-Kit is not only a marker of beta-cell precursors but is also critical for beta-cell proliferation, maturation, function and survival in vitro. Study on the c-Kit\(^{h/+}\) mice further showed that the mutant male mice displayed early onset of diabetes. However, a better understanding of the underlying mechanisms is necessary prior to the development of novel pharmacologically relevant cell-based approaches to treat and manage diabetes. The aim of the present study is to examine whether a beta-cell specific c-Kit overexpression would have physiological and functional implications in beta-cell development and function.

Materials and methods: A beta-cells specific over-expression c-Kit (RIP-c-Kit\(^{h}\)) transgenic mouse model in C57BL/6j background was generated following the characterization of beta-cell proliferation and function.

Results: We found that the beta-cell specific c-Kit transgenic mice display relatively large body mass and normal fasting blood glucose level compared to the control littermates. However, a significant improved glucose tolerance in the beta-cell c-Kit transgenic mice at both 4 and 8 weeks of age was observed (p<0.05). Morphometric analysis revealed a significant increase in the islet number and size (p<0.01) at 4 weeks of age. Increase beta-cell mass in beta-cell c-Kit transgenic mice along with an increase in beta-cell proliferation, Pdx-1 and Nkx6.1 expression compared with controls (p<0.05).

Conclusion: Our results demonstrate that c-Kit receptor tyrosine kinase is involved in the regulation of glucose metabolism and contributes to the maintenance of beta-cell function.

Supported by: Canadian Institute of Health Research

208

Mitochondria distinguish between fast and slow cytosolic Ca\(^{2+}\) oscillations in pancreatic beta cells

A.I. Tarasov\(^{1}\), M.A. Ravier\(^{2}\), E.A. Bellomo\(^{1}\), G.A. Rutter\(^{1}\);

\(^{1}\)Department of Medicine, Imperial College London, United Kingdom, \(^{2}\)INSERM, Montpellier, France.

Background and aims: The normal pulsatility of insulin secretion from pancreatic beta cells, critical for maintenance of glucose homeostasis, is lost in type 2 diabetic patients. Mitochondrial Ca\(^{2+}\) uptake has been suggested to be involved in the control of oxidative metabolism and ATP generation which, via the closure of ATP-sensitive K\(^{+}\) channels, may underlie fluctuations in the electrical activity of the beta cell plasma membrane. Whether Ca\(^{2+}\) influx into mitochondria can occur rapidly enough to contribute to the polarisation of the plasma membrane during glucose-induced bursts of electrical activity, or to slower oscillations in plasma membrane potential (V\(_{\text{m}}\)), is unknown. Here, we have combined optical imaging of targeted probes and patch clamp electrophysiology to monitor cytoplasmic [Ca\(^{2+}\)]\(_{\text{c}}\), intramitochondrial [Ca\(^{2+}\)]\(_{\text{m}}\), and V\(_{\text{m}}\) simultaneously in single living beta cells. The relationship between these parameters was studied in response to glucose or other stimuli.

Materials and methods: Mouse beta cells were infected with an adenovirus encoding the ratiometric GFP-based mitochondrial Ca\(^{2+}\) sensor, pericam. V\(_{\text{m}}\) was manipulated using the perforated-patch patch-clamp technique. The dynamics of Ca\(^{2+}\) changes in the cytosol (Fura-Red) and mitochondria (pericam) were imaged simultaneously using appropriate excitation wavelengths (490 and 410 nm respectively) and emission filters.

Results: Glucose (17 vs 3 mM) induced slow (2-5 min period) oscillations in [Ca\(^{2+}\)]\(_{\text{c}}\). The onset of each oscillation was tracked by changes in [Ca\(^{2+}\)]\(_{\text{c}}\), with the changes delayed by ~10s. Each glucose-induced increase of [Ca\(^{2+}\)]\(_{\text{c}}\) was preceded by depolarization of the plasma membrane. The imposition of depolarizations by extracellular K\(^{+}\) was able to mimic the glucose-induced oscillations of Ca\(^{2+}\) in both compartments, indicating that mitochondrial Ca\(^{2+}\) uptake occurred as a result of the [Ca\(^{2+}\)]\(_{\text{c}}\) increase. Likewise, acetylcholine-mediated Ca\(^{2+}\) mobilization from intracellular stores prompted increases in [Ca\(^{2+}\)]\(_{\text{c}}\) and these were also delayed compared to the [Ca\(^{2+}\)]\(_{\text{c}}\) increases. For a given [Ca\(^{2+}\)]\(_{\text{c}}\) rise, peak [Ca\(^{2+}\)]\(_{\text{c}}\) values were larger after cell membrane depolarization than after Ca\(^{2+}\) mobilization. To explore whether [Ca\(^{2+}\)]\(_{\text{c}}\) changes elicited by rapid membrane depolarizations could be sensed by mitochondria we next imposed trains of action potentials, mimicking those provoked by glucose, by voltage clamping the cell membrane. Such trains (25 pulses to 0 mV in 6 s imposed in 15 s intervals) led to increases in [Ca\(^{2+}\)]\(_{\text{c}}\), which were maximal after the first burst, and partially recovered between bursts. By contrast, [Ca\(^{2+}\)]\(_{\text{c}}\) did not increase detectably until the third burst in this protocol, and did not increase at all when the interburst interval was increased to >30 s.

Conclusion: We show that Ca\(^{2+}\) accumulation by beta cell mitochondria is dependent upon the duration and frequency of [Ca\(^{2+}\)]\(_{\text{c}}\) pulses. These results suggest that: (a) the filtering out by mitochondria of [Ca\(^{2+}\)]\(_{\text{c}}\) oscillations with sub-threshold frequency may contribute to the steep dependency of insulin secretion upon glucose concentration; (b) mitochondrial Ca\(^{2+}\) uptake and release are not a prerequisite for plasma membrane bursting electrical activity; (c) deranged uptake of Ca\(^{2+}\) by mitochondria may contribute to defective insulin secretion in some forms of type 2 diabetes.

Supported by: Wellcome Trust, JDRF

Springer

Impaired pancreatic beta cell Ca2+ dynamics and function in premature ageing

L. Li, A. Trifunovic1,2,3, M. Kohler1, J. Petrovic-Berglund4,5, N.-G. Larsson2,5, P.-O. Berggren1.

1The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, 2Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, 3CECAD Cologne - Excellent in Aging Research at the Institute for Genetics, University of Cologne, Germany, 4Department of Cell Biology, Duke University Medical Center, Durham, USA, 5Max Planck Institute for Biology of Ageing, Cologne, Germany.

Background and aims: People over age 65 have a significantly increased risk for type 2 diabetes. In ageing humans, only those whose beta-cells fail to compensate for insulin resistance develop diabetes. However, the ageing of beta-cells is poorly understood. Here we, for the first time, demonstrate a clear coupling between ageing and impaired pancreatic beta-cell function and thereby glucose homeostasis in mice with premature ageing induced by accumulation of mitochondrial DNA (mtDNA) mutations.

Materials and methods: We used homozygous knock-in mice expressing a L\textsuperscript{Beta-cell function and glucose homeostasis were assessed in islets and dispersed beta-cells from Bcl-2 knockout, heterozygous and wild-type littermate mice. Small molecule antagonists were used to assess the impact of acute Bcl-2/Bcl-x\textsubscript{L} inhibition on mitochondrial physiology, cellular ATP/ADP calcium signalling and insulin secretion of beta-cells in vitro.

Results: Quantitative real-time PCR and western blot confirmed the near complete loss of Bcl-x\textsubscript{L} expression and protein in islets from inducible Bcl-x KO mice. Loss of islet Bcl-x resulted in a moderate improvement of glucose tolerance in 10-12 week old mice within days of tamoxifen administration. The cellular ATP-to-ADP ratio of Bcl-x KO islet cells was markedly increased in the presence of both basal and stimulatory glucose. Moreover, cytosolic calcium responses were significantly enhanced in glucose-stimulated islets and dispersed beta-cells from both Bcl-xL and Bcl-2 deficient animals relative to their respective controls. In accordance with these findings, acute treatment of normal mouse and human islet cells with Bcl-2/Bcl-x\textsubscript{L} antagonists in the presence of 3 mM glucose enhanced basal glucose-dependent respiration and induced mitochondrial calcium fluctuations within minutes. This raised ATP/ADP and triggered K\textsubscript{ATP} channel- and voltage-dependent calcium influx and insulin secretion. Sustained Bcl-2/Bcl-x\textsubscript{L} inhibition resulted in beta-cell death but detailed time-course analyses demonstrated the induction of apoptosis to be temporally and causally disconnected from the observed physiological responses.

Conclusion: Our findings demonstrate that anti-apoptotic Bcl proteins exert a tonic suppression of beta-cell metabolic signalling and thus work at the interface of beta-cell survival and physiology. Further study of these survival-regulating proteins and the molecular mechanisms of their metabolic functions may help identify factors to preserve the functional beta-cell mass required to maintain glucose homeostasis.

Supported by: D.S.L is supported by CDA and MSFHR, J.D.J. by JDRF, CIHR, MSFHR and CDA

Loss of anti-apoptotic Bcl\textsubscript{x}\textsubscript{L} or Bcl-2 enhances beta cell glucose signalling

D.S. Luciani, S.B. Widenmaier, F. Taghizadeh, X. Hu, J.D. Johnson; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.

Background and aims: In many cell types, including pancreatic beta-cells, Bcl-2 and Bcl-x\textsubscript{L} have been demonstrated to preserve mitochondrial integrity and suppress apoptosis under a variety of cellular stress conditions. Whether these important pro-survival proteins also regulate beta-cell physiology in vivo or in vitro under normal conditions is not known. In this study we used a combination of genetic and pharmacological loss-of-function approaches to test the hypothesis that Bcl-2 and Bcl-x\textsubscript{L} impact beta-cell energy metabolism, calcium homeostasis and insulin secretion.

Materials and methods: Beta-cell function and glucose homeostasis were studied in vivo and following conditional deletion of Bcl-x in adult beta-cells by tamoxifen-injection of Bcl-xflox/flox;Pdx1-CreER (Bcl-x KO) and littermate Bcl-xflox/flox (Bcl-x WT) control mice. Glucose signalling was assessed in islets and dispersed beta-cells from Bcl-2 knockout, heterozygous and wild-type littermate mice. Small molecule antagonists were used to assess the impact of acute Bcl-2/Bcl-x\textsubscript{L} inhibition on mitochondrial physiology, cellular ATP/ADP calcium signalling and insulin secretion of beta-cells in vitro.
OP 36 Adipose tissue biology and inflammation

211

The endocannabinoid system links gut microbiota to adipogenesis
P.D. Cani1, D. Naslain1, E. Bäckhed2, C.S. Reigstad3, D.M. Lambert1, N.M. Delzenne1, G.G. Mucchioli1
1LDRI, Université Catholique de Louvain, Brussels, Belgium, 2University of Gothenburg, Sweden.

Background and aims: Obesity is characterized by a massive expansion of the adipose tissue associated with a low-grade inflammation. Recently, we and others have proposed that gut microbiota would favour the occurrence of inflammation, insulin resistance and metabolic diseases associated with obesity. We have demonstrated a connection between the gut microbiota, fat mass, gut permeability and inflammation associated with higher plasma LPS levels (metabolic endotoxaemia). The endocannabinoid-system (eCB) plays a major role in the development of the inflammation and metabolic disorders associated with obesity via mechanisms not fully understood. Interestingly, LPS is known to stimulate eCB-system tone. Therefore, we postulate that the higher plasma LPS levels and eCB-system-tone found in obesity could act as key mechanisms leading to gut barrier disruption and altered adipogenesis.

Materials and methods: To determine the contribution of gut microbiota in the regulation of the intestinal and adipose tissue eCB-system tone (CB, mRNA, FAAH mRNA, AEA) in both physiological and obese conditions, we investigated selective (prebiotics, high-fat), drastic (antibiotics, germ-free mice) modulation of the gut microbiota and bacteria-host interaction (Myd88-/-) models. To investigate the role of the eCB-system tone, we blocked the CB, receptor with a specific and selective antagonist (SR141716A) in obese ob/ob mice, or we mimicked the higher eCB-system tone observed during obesity by chronic (4-weeks) infusion of a CB receptor agonist (HU-210). We investigated in-vivo and in-vitro intestinal permeability, adipocyte differentiation (PPAR-γ, aP2, C/EBP-α) and lipogenesis (SREBP-1c, ACC, FAS) and the occurrence of inflammation (plasma LPS, cytokines) in the different models.

Results: Obese mice (genetic and nutritional models) are characterized by a higher intestinal and adipose tissue eCB-system tone (higher AEA content and CB, mRNA expression, lower FAAH mRNA). We found that the gut microbiota directly controls the intestinal eCB-system-tone in all five models of gut microbiota modulation. We found in-vitro and in-vivo that the activation of the intestinal eCB-system increases gut permeability (higher plasma LPS and plasma Dextran-FITC, alteration of tight junctions proteins ZO-1 and Occludin). We demonstrated that the blockade of the CB receptor reduced plasma LPS levels by a mechanism linked to the improvement of these markers. At the adipose tissue level, we show both in-vitro and ex-vitro that both eCB system and gut microbiota regulates adipogenesis, by increasing markers of differentiation (PPAR-γ, aP2, C/EBP-α) and lipogenesis (SREBP-1c, ACC, FAS). In addition, we found that LPS acts as a key regulator on the endocannabinoid and PPARy-driven adipogenesis.

Conclusion: First, we demonstrate that the peripheral (intestine and adipose tissue) eCB-system tone is under the control of the gut microbiota. Second, we demonstrate that eCB-system controls gut barrier function and therefore endotoxaemia. Third, we provide evidence that adipogenesis is under the control of the gut microbiota, through the modulation of the gut and adipose tissue endocannabinoid systems. These data indicate that gut microbiota determines adipose tissue physiology through LPS-eCB system regulatory loops and may play a critical role in the adipose tissue plasticity during obesity.

Supported by: FRS-FNRS (Fonds de la recherche Scientifique, Belgium)

212

Depot-specific induction of transdifferentiation, inflammation and apoptosis via cannabinoid type 1 receptor blockade
I. Wagner, N. Perwitz, M. Drenckhan, H. Lennert, J. Klein; Internal Medicine, Universität zu Luebeck, Germany.

Background and aims: The endocannabinoid system is a major component in the control of energy metabolism. CB1-receptor blockade induces weight loss and reduces the risk to develop the metabolic syndrome with its associated cardiovascular complications. These effects are mediated by central and peripheral pathways. Interestingly weight loss is mainly achieved by a reduction of visceral fat mass. Therefore we investigated fat depot-specific differences on adipocyte differentiation, inflammation, and oxidative metabolism in CB1-receptor knockout cells.

Materials and methods: We used newly generated inguinal and epididymal adipose cell lines from CB1-R knockout mice. Differences in differentiation were measured by fat specific oil red o staining and quantitative RT-PCR-based mRNA expression analysis of key differentiation markers. Induction of apoptosis was evaluated by using a cell death detection ELISA and performing protein analysis of p53 phosphorylation. Inflammation markers were quantified on RNA level. For analyzing the process of transdifferentiation we measured oxygen consumption and mitochondrial biogenesis.

Results: Differentiation was reduced in visceral adipocytes from CB1-receptor knockout mice as compared to wildtype controls. All markers of late differentiation, including AP2, GLUT 4 and PPAR gamma were decreased in these CB1-R KO cells. Moreover, the inhibitory preadipocyte factor, Pref-1, was elevated. Furthermore, we found a significant induction of apoptosis (increased by 51%) in these cells from the visceral fat depots. In contrast, subcutaneous cells from CB1-R knockout mice showed an accelerated differentiation as well as a reduced induction of apoptosis (decreased by 41%). Inflammation was increased in visceral fat cells, as analyzed by the expression pattern of IL-6 (+357%), MCP-1 (+326%), TNF a (+371%), whereas in subcutaneous adipocytes these markers were depressed by −60%, −26%, −32% respectively. In addition, subcutaneous CB1-R knockout cells were more sensitive towards a conversion into a brown fat phenotype. UCP-1 expression in these cells was significantly elevated by 176% in preadipocytes and 285% in fully differentiated adipocytes. Moreover, PGC-1 a expression was augmented by 152% and by 140%, respectively. Finally, we found an increase in mitochondrial biogenesis demonstrated by mitochondrial fluorescence staining and RNA expression pattern of TFAM and NRF-1 in these cells. In line with these data, there was also an increase in oxygen consumption by 83% in subcutaneous preadipocytes as well as an 92% enhancement in fully differentiated cells compared to wildtype controls.

Conclusion: In conclusion, we found depot-specific effects on differentiation, apoptosis, inflammation and oxidative metabolism in CB1-receptor knockout cells. Visceral adipocytes showed a lack of differentiation and an enhancement of apoptosis. In contrast to visceral fat cells, subcutaneous cells expressed an antiinflammatory cytokine profile and were more sensitive towards a conversion into a brown fat cell phenotype. Thus, CB1 receptor-mediated pathways differentially target adipose tissue depots to a dual effect that minimizes cardiometabolic risk, on the one hand, by diminishing fat, and that enhances thermogenesis in subcutaneous adipocytes, on the other.

Supported by: sanofi aventis

213

Portal IL-6 determines the effect of fat tissue transplantation on glucose homeostasis
J.M. Rytkä1,2, S. Wueest1,2, E.J. Schoenel1, D. Konrad1,2
1Division of Diabetology and Endocrinology, University Children’s Hospital Zurich, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.

Background and aims: Visceral obesity has been associated with insulin resistance, however the molecular mechanisms relating visceral fat accumulation and hepatic insulin resistance (portal theory) are still not well known. The portal theory implicate increased drainage of pro-inflammatory cytokines and lipids from portal drained adipose tissue directly to the liver. We applied herein a novel adipose tissue transplantation approach to investigate a potential effect of adipose tissue localization and in particular of venous drainage (caval versus portal) on glucose metabolism. Moreover, we hypothesized that IL-6 is a major contributor to hepatic insulin resistance associated with visceral fat accumulation.

Materials and methods: Epididymal fat pads of six weeks old C57Bl6 donor mice were transplanted either to the mesenterium (portal venous drainage) or to the peritoneum (caval venous drainage) of healthy littermates. Sham-operated mice were used as control. After five weeks of transplantation glucose metabolism was assessed by glucose tolerance test (2g/kg body weight) and by hyperinsulminemic-euglycemic clamp. Results: Mice receiving a portal-drained fat transplant developed impaire glucose tolerance compared to mice receiving a caval-drained transplant (p< 0.001) and to sham-operated (p<0.01) mice. In portal transplanted mice, glucose infusion rate (GIR) and insulin-mediated inhibition of hepatic glucose production (HGP) during hyperinsulminemic-euglycemic-euglycemic clamp was reduced compared to sham-operated mice (p< 0.05) demonstrating the development of hepatic insulin resistance in portal transplanted mice. This was also con-
firmed by reduced insulin-stimulated Akt phosphorylation (p < 0.01) in livers of portal transplanted mice. In contrast, hepatic lipid content and Kupffer cell activation was not different. Interestingly, Fas-ligand and interleukin-6 mRNA expression was increased in portal transplanted fat pads. Moreover, IL-6 levels of portal transplanted mice were elevated in portal compared to systemic plasma samples whereas no difference was found in sham-operated mice. Intriguingly, mice receiving a portal drained IL-6-deficient fat transplant showed normal glucose tolerance and hepatic insulin sensitivity. In addi-
tion, expression of pro-inflammatory cytokines was significantly reduced in IL-6-deficient transplants.

Conclusion: These results demonstrate an important role for venous drain-
age of adipose tissue on glucose homeostasis. In addition, IL-6 seems to play a major role in the development of hepatic insulin resistance associated with visceral fat accumulation.

Supported by: SNEZHP

Hyperactivation of inflammasome-mediated caspase-1: a new mechanism underlying increased inflammatory activity in visceral adipose tissue

General Internal Medicine, Radboud University Nijmegen Medical Centre, Netherlands.

Background and aims: Abdominal adipose tissue, stored viscerally (VAT) or subcutaneously (SAT), is metabolically active and secretes a wide variety of adipokines and cytokines. It has been suggested that VAT possesses more pro-
inflammatory properties characterized by an enhanced release of cytokines as compared to SAT. The pro-inflammatory trait of VAT may account for its stronger correlation with insulin resistance, relative to SAT. The inflamma-
tory IL-1 family members IL-1β and IL-18 are increased in obese subjects and negatively affect insulin signaling. The inactive pro-forms of both cytokines are processed into active IL-1β and IL-18 by a cysteine protease called caspase-1. Activation of this enzyme is mediated by the inflammasome, which involves formation of a complex between NOD like receptors and the adapter protein ASC. In this study, we assessed the presence of the inflammasome in human adipose tissue and tested whether inflammasome-dependent caspase-
1 activation is more dominant in abdominal VAT compared to SAT.

Materials and methods: Paired abdominal SAT and VAT biopsies were ob-
tained from ten mildly obese subjects (BMI: 25-28 kg/m²; aged: 40-60 years). Intact adipose tissue fragments were immediately cultured for 24 hours from both depots after which medium, RNA, and protein lysates were collected to determine the expression of the inflammasome components and the secre-
tion levels of pro-inflammatory cytokines.

Results: Ex-vivo experiments using adipose tissue explants cultures revealed a higher release of bioactive IL-1β (10-fold; P < 0.05) and IL-18 (4-fold; P < 0.05) from VAT compared to SAT. The increased secretion of both cytokines was significantly reduced when caspase-1 activity was blocked by the spe-
cific caspase-1 inhibitor Ac-YVAD-CHO. Although caspase-1 protein was expressed in both adipose tissue depots, western blot analyses and caspase-1 activity assays re-
vealed a 3-fold (P <0.05) up-regulation of active caspase-1 protein in VAT in line with the enhanced production of IL-1β and IL-18. In addition to the augmented caspase-1 activity, protein levels of the inflammasome complex members ASC and the Nod like receptor NLRP3 were significantly higher in VAT. Fractioning of VAT into mature adipocytes and stromal vascular cells revealed that caspase-1 gene expression mainly originates from adipocytes, while ASC was found to be more expressed in the stromal vascular cells. Con-
current with the enhanced bioactive IL-1β secretion, IL-6 and IL-6 release was also induced (3-fold; P < 0.05 and 4-fold; P < 0.05, respectively) in the VAT explants while adiponectin secretion was two times lower (P < 0.05).

Conclusion: Our results show that NLRP3 inflammasome components and caspase-1 are present in human abdominal adipose tissue and are highly activ-
ated in VAT compared to SAT, resulting in an enhancement of IL-1β and IL-
18 secretion. These findings imply that inflammasome-dependent caspase-1 activation contributes to the pro-inflammatory status of VAT.

215

The role of TGF-beta/Smad3 signalling in the pathogenesis of obese fat tissue

Department of Diabetes, Metabolism, and Endocrinology, Chiba University Graduate School of Medicine, Chiba, Japan.

Background and aims: Obesity is serious problem because it causes many kind of life-style related illness, such as type2 diabetes, hypertension, and dyslipidemia. In recent years, obesity is recognized to closely associate with inflammation, because hypertrophic visceral adipose tissue secretes a variety of inflammatory cytokines that lead to insulin resistance. TGF-β has a wide range biological effect, differentiation, proliferation, immunomodulation, and so on. We have previously reported the role of TGF-β on atherosclerosis and diabetic nephropathy, using mice lacking Smad3, a major mediator of TGF-β signalling. TGF-β is known to have inhibitory effect for adipocytogenesis, but the detail molecular mechanism is not fully understood. On the other hand, several studies have shown that cross-talk between TGF-β/Smad3 and Wnt-
β-catenin signaling, also known to have inhibitory effect for adipocytogene-
sis, plays important roles in the regulation of cell differentiation. In this study, we aimed to clarify the role of TGF-β/Smad3 signaling in the pathogenesis of obese fat tissue, and investigate the role of cross-talk between TGF-β/Smad3 and Wnt/β-catenin signaling in adipogenesis.

Materials and methods: (1) In order to clarify the expression of TGF-β/
Smad3 signaling in obese fat tissue, we isolated epididymal white adipose tissue of 12-week old obese ob/ob mice and wild type (WT) mice, and ana-
lyzed the expression of mRNA and protein related to TGF-β/Smad3 signal-
ing. (2) To clarify whether TGF-β inhibits adipogenesis dependence on Smad3, WT and Smad3 KO (KO) mouse embryonic fibroblasts (MEFs) were induced to differentiate into adipocyte with or without 1 ng/ml TGF-β. (3) To clarify the role of cross-talk between TGF-β/Smad3 signaling and Wnt-
β-catenin signaling in adipogenesis, WT and KO MEFs were stimulated with 1 ng/ml TGF-β, and then evaluated the translocation of β-catenin into nucleus. Moreover, HW preadipocytes were infected with retrovirus carrying empty vector or cby, an antagonist of β-catenin, and then differentiated into adipocytes with or without 1 ng/ml TGF-β. (4) To clarify the role of TGF-
β/Smad3 signaling in vivo, eight-week-old WT and KO mice were fed high fat diets for 8 weeks. The food intake and body weight were recorded. After 8 weeks, we performed insulin tolerance test and isolated epidydimal VAT for histological and genetic analyses.

Results: (1) mRNA and protein expression of TGF-β-, and phosphorylation of Smad3 were increased in the epididymal VAT of ob/ob mice. (2) TGF-β sup-
pressed adipocyte differentiation on WT MEF, but this inhibitory effect was attenuated on KO MEF. (3) TGF-β promoted translocation of β-catenin into nucleus on WT MEF, but this effect was attenuated on KO MEF. On the other hand, TGF-β suppressed adipocyte differentiation almost completely not only on empty vector infected HW cells but also on cby-infected HW cells. (4) Despite the amount of food intake was similar between two groups, the percent increase in the body weight was significantly larger in KO mice. KO mice were more insulin-sensitive than WT mice. VAT from KO displayed a larger number of adipocytes with a smaller cell diameter.

Conclusion: TGF-β is highly expressed in obese fat tissue, and it inhibits adi-
poctyogenesis via Smad3 and contributes to development of insulin-resist-
ance. TGF-β emphasizes Wnt-β-catenin signaling, but its inhibitory effect on adipogenesis may be not dependent on Wnt-β-catenin signaling.

216

PI3Kγ in non-hematopoietic cells plays a major role in the promotion of obesity, inflammation and glucose intolerance

G. Solinas1, R. Marone2, B. Becattini1, F. Zani1, A. Dullo1, I.-P. Montani1, F. Preitner1, M.P. Wymann2;
1Department of Medicine, Physiology, University of Fribourg, 2Department of Internal Medicine, University of Lausanne, Switzerland.

Background and aims: Obesity is associated with a state of chronic low-
grade inflammation (metabolic inflammation), which is believed to play an impor-
tant role in the pathogenesis of obesity and type-2 diabetes. Metabolic inflammation is characterized by leukocyte infiltration into obese adipose tissue, and polarization of T-cells and macrophages toward a more pro-
inflammatory cellular population. The lipid kinase phosphoinositide 3-kinase (PI3Kγ) has previously been shown to be central in leukocyte chemotaxis

S95
in different models. Furthermore PI3Kγ was shown to play a major role in β-adrenergic receptors signaling within cardiomyocytes, and in angiotensin II signaling in vascular cells. Therefore PI3Kγ is a likely candidate signal transducer at the interface between inflammation and metabolism. In this study we investigated the role of PI3Kγ in diet-induced obesity, metabolic inflammation, and insulin resistance.

Materials and methods: C57BL/6j mice (wt) and mice with a targeted PI3Kγ locus (PI3Kγ−/−) were exposed to a high-fat diet (60% of calories from fat) for 16 weeks. Body weight was measured weekly to determine growth curves. Analysis of body composition, energy balance, in-vivo and ex-vivo calorimetry were performed. To test the role of PI3Kγ in glucose homeostasis and insulin sensitivity we performed glucose tolerance test, insulin tolerance test, and hyperinsulinemnic-euglycemic clamp. To learn about the cell-type implicated in the metabolic action of PI3Kγ we have generated mice lacking PI3Kγ either in hematopoietic or non-hematopoietic cells by adoptive transfer. To test the role of the kinase dependent and independent functions of PI3Kγ we have investigated mice expressing a mutated form of PI3Kγ where its kinase function is selectively blocked (PI3kγKD/KD). Gene expression profiling was performed by DNA microarrays, and by real-time PCR.

Results: When placed on chow diet, wt and PI3kγ−/− mice display a similar phenotype. However, when fed with high-fat diet PI3Kγ−/− mice are resistant to diet-induced obesity, mainly because of increased energy expenditure. Insulin and glucose tolerance were markedly improved in PI3kγ−/− animals versus wt mice, and hyperinsulinemnic-euglycemic clamp revealed a four-fold increase in insulin sensitivity in PI3kγ−/− mice compared to controls. Metabolic inflammation was also markedly decreased in PI3kγ−/− mice compared to wt mice. Bone marrow transplantation experiments mapped the role of PI3Kγ in diet-induced obesity, inflammation, and glucose intolerance in the non-hematopoietic compartment. When placed on high-fat diet PI3kγKD/KD mice also showed a leaner phenotype, improved glucose homeostasis, and decreased inflammation compared to wt mice.

Conclusion: We demonstrate here for the first time that the PI3Kγ activity in non-hematopoietic cells plays a major role in the promotion of diet-induced obesity, metabolic inflammation, and insulin resistance by a molecular mechanism involving its kinase activity.

Supported by: the Swiss National Science Foundation grant SNF31

OP 37 Type 1 diabetes mellitus: incidence, natural history, morbidity and mortality

217

Thirty years of prospective nationwide incidence of childhood type 1 diabetes: the accelerating increase by time tends to level off in Sweden

Y.T. Berhan1, I. Waernbaum1, T. Lind1, A. Möllsten1, G.G. Dahlquist2

1Clinical Sciences, Pediatrics, ‘Statistics, Umea University, Sweden.

Background and aims: A rising incidence in childhood type 1 diabetes (T1D) has been reported from many countries during the last 20 years. Second to Finland, Sweden has the highest reported nationwide incidence of T1D in the world (>40/100.000). Over a 20 year period (1978 - 1997) the incidence of T1D among ages <15 yrs was almost doubled in Sweden, with the largest increase among children aged 0-5 yrs. The change over time has been partly explained by changes in lifestyle causing rapid early growth and weight development. In the present 30 yr follow up (1978 - 2007) of the Swedish Childhood Diabetes Register we describe the current time trend by age, sex and birth cohort, and analyze the changes in incidence using statistical models. We also aim to discuss the possibility to predict numbers of new cases of childhood onset T1D using generalised models over long periods of time. For discussion we also examine possible correlations between time trend in T1D incidence and indicators that mirror calorie-intake.

Materials and methods: The Swedish Childhood Diabetes Registry has recorded cases of childhood onset T1D (0-14yrs) since 1 July 1977 with a high level of coverage (96%-99% of cases). This study is based on 14,721 incident cases of childhood onset T1D occurring 1 Jan 1978-31 Dec 2007. Incidence numbers were calculated after extracting population data from Statistics Sweden. Official population projections were used to predict numbers of new cases in Sweden in 2017, 2027 and 2037. Generalized additive models were fitted for Poisson distributions and the impact of calendar year at onset in five years age groups, sex and interaction terms were tested. Model coefficients with significant goodness of fit were used for the prognosis of the trends in incidence. Finally a coefficient of determination was calculated to determine the extent to which incidence of childhood onset T1D and yearly soft drink consumption could be related.

Results: Age and sex specific incidence rates varied from 21·6 (95 % CI 19·4 - 23·9) during 1978-1980 to 43·9 (95 % CI 40·7 - 47·3) during 2005-2007. Cumulative incidence shifted to younger age at onset over the first 22 years, but from the birth year 2000 a reversed trend was seen. Using a model including all calendar years, age and sex the predicted number of incident cases may more than triple the next 30 years period (648 in 2007 and 2294 in 2037). An ecological analysis using soft drink consumption as a marker for eating habits and high energy intake showed a strong correlation with incidence rate in Sweden (R²=0.84).

Conclusions: Childhood T1D increased dramatically and shifted to younger age at onset the first 22 years of the study period, but since year 2000 for the first time we report a reversed trend. The predicted almost tripling of incident cases over the next 30 years is thus probably an overestimation. No distinct conclusions can be made from the ecological analysis, but the strong correlation between increasing soft drink consumption and increasing trend of T1D add an interesting contribution to the discussion.

Supported by: VR and VLL

218 The changing natural history of type 1 diabetes: contrasts between those diagnosed in the 1960s and 1970s

T.J. Orchard, R.G. Miller, T. Costacou; Epidemiology, University of Pittsburgh, USA.

Background and aims: Individuals with type 1 diabetes (T1D) face a number of different complications, or outcomes, and thus it is important to view, from a management perspective, a broad combination of major outcomes of diabetes (MOD). Little is known concerning the cumulative risk of MOD for childhood onset T1D and to what extent this may have declined with improved care.

Materials and methods: To examine these changes, data from the 22 year historical prospective Pittsburgh Epidemiology of Diabetes Complications study of childhood onset (<17 years) T1D diabetes were used. Participants,
diagnosed between 1960 and 1980 at Children’s Hospital of Pittsburgh, were grouped by year of diabetes diagnosis (1960-1969, n=321 and 1970-1980, n=368). MOD was defined as diabetes-related death, CAD (MI, revascularization), stroke, end-stage renal disease, amputation or blindness. Cumulative incidence estimates (figure) were calculated using Weibull accelerated failure-time modeling.

Results: By 25 years of diabetes duration, 34% (110) of individuals from the 1960s cohort had experienced such events (5% had died, 6% had CAD, 2% stroke, 12% ESRD, 8% blindness, 1% amputation) while for the 1970s cohort only 18% had suffered a MOD (3% had died, 2% had CAD, <1% stroke, 2% ESRD, 9% blindness, 2% amputation). These observed cumulative incidences were close to those predicted using Weibull models, which estimated that 31% (95% CI 27.4, 35.8) of the 1960s cohort and 20% (95% CI 16.7, 23.9%) of the 1970s cohort would have a MOD event by 25 years of T1D duration (p<0.0001). The majority of the care for the 1960s cohort was before the advent of self-monitoring of blood glucose and HbA1c testing, while the reverse is true of the 1970s cohort.

Conclusion: While these results suggest encouraging falls in many components of MOD, it is striking that no reduction is seen for blindness or amputation, which together now account for 60% of MOD events in the first 25 years of T1D in the 1970s cohort as opposed to only 27% in the 1960s. Further attention should be paid to the total morbidity burden of those with T1D and to understanding why blindness and amputation are not being delayed or prevented.

219
HbA1c levels and hospital admission in people with type 1 diabetes
L. Govan, The Scottish Diabetes Research Network Epidemiology Group; Public Health and Health Policy, University of Glasgow, United Kingdom.

Background and aims: There has been recent concern that very tight glycaemic control might be associated with an increase in morbidity in people with diabetes. We assessed the relationship between deciles of HbA1c and hospital admissions in patients with type 1 diabetes.

Materials and methods: The Scottish Care Information - Diabetes Collaboraton (SCI-DC) is a dynamic national register of diagnosed cases of diabetes in Scotland. These data were linked to centralised data on hospital admissions from Information Services Division (ISD) of NHS National Services. We identified 24,760 people with type 1 diabetes during January 2005 to December 2007 and include 19,777 patients with complete recording of covariates. Patients were divided into deciles according to levels of HbA1c. All-cause admission to hospital was the primary outcome. Logistic regression models were used to estimate the association between HbA1c and all cause admissions expressed with decile 3 (mean HbA1c 7.8%, range 7.6%-8.0%) as referent.

Results: 8.1% of people had HbA1c <7.0% and 16.2% under 7.5%. There was a J-shaped relationship of HbA1c to all hospital admissions with highest likelihood of admission in HbA1c deciles 7 through 10 (9.0%-18.4%). Likelihood of vascular admission was not significantly increased in the lowest decile of HbA1c (adjusted OR 1.10, 95%CI 0.65-1.87) and an increase in all cause admissions remained even after excluding admissions due to cancer and hypoglycaemia (adjusted OR 1.26, 95%CI 1.07-1.49).

Conclusion: Low and high mean HbA1c values were associated with increased admission to hospital with lowest rates of admission for any cause in deciles 2 through 5 (HbA1c 7.1-8.7%). People with the lowest levels of HbA1c had an increase in cancer admissions and this likely reflects reverse causality in this observational dataset. However, an increase in admissions remains even after exclusion of cancer and hypoglycaemic admissions. Overall the likelihood of admissions increases markedly with HbA1c and the highest levels of HbA1c marks out a group with high likelihood of admission and attendant hospital costs.

220
Time trends of mortality in patients diagnosed with type 1 diabetes below 30 years between 1970-1999 in Finland
V. Harjutsalo1,2, C. Forsblom1,2, P.-H. Groop1,3
1Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Biomedicum Helsinki, 2National Institute of Health and Welfare, Diabetes Prevention Unit, Helsinki, 3Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Finland.

Background and aims: Despite of great advances in the diabetes care, type 1 diabetes (T1D) is still associated with a premature mortality due to both acute and long-term diabetic complications. The aim of this study was to assess long-term time trends in mortality among patients diagnosed with early-onset (0-14 years) and late-onset (15-29 years) T1D in Finland. In addition, we aimed to study causes of deaths addressing the changes in the mortality over time.

Materials and methods: Individuals diagnosed with T1D during 1970-1999 (n=17,306) were identified from the Finnish nationwide population-based registers. Vital status and causes of deaths were obtained from the Finnish Cause of Death Register until the end of 2007. Patients were stratified into subcohorts by the year of diagnosis: 1970-74, 1975-79, 1980-84, 1985-89, 1990-94 and 1995-99. Cumulative mortalities were evaluated using Kaplan-Meier method. Crude mortality (per 100,000 person-years) and standardized mortality rates (SMR) were calculated. Time trend evaluation in the SMRs was performed by means of Poisson regression modeling.

Results: A total of 1,338 deaths were observed during 370,733 person-years of follow-up giving an all-cause mortality rate of 361 (342-382). The crude mortality was higher in the late-onset than in the early-onset cohort; 531 vs 245. However, the SMR was similar, 2.9 (2.6-3.1) in the early-onset and 2.7 (2.6-2.9) in the late-onset cohort. Women had higher SMR in both cohorts, 3.8 (3.4-4.1) and 3.5 (3.0-4.0), compared to men, 2.5 (2.3-2.6) and 2.4 (2.2-2.7). Overall cumulative mortality at 35 years of duration of diabetes was 17.9% (17.0-18.8). There was no beneficial development in the long-term prognosis below 30 years of age. However, a decreasing trend was seen in the 20-year cumulative mortality in the early-onset cohort from 4.7% (3.7-5.8) to 4.3% (3.3-5.2), 3.6% (2.8-4.5) and 2.7% (1.9-3.4) in the subcohorts 1970-74, 1975-79, 1980-84 and 1985-89. The SMR at 20 years duration of diabetes decreased OR 2.38, 95%CI 1.33-6.03) in the lowest decile of HbA1c, see Figure. Vascular admissions showed a positive relationship with HbA1c with significantly higher likelihood of admission in HbA1c deciles 7 through 10 (9.0%-18.4%).
from 2.6 (2.0-3.2) to 1.5 (0.8-2.2) from 1970-74 subcohort to 1985-89 (p for trend 0.07). There was, however, an inverse trend in the late-onset cohort with corresponding rates 4.4% (3.3-5.6), 5.9% (4.6-7.1), 6.5% (5.1-7.8) and 7.9% (6.4-9.4). The SMR increased from 1.3 (1.0-1.7) to 2.7 (2.0-3.3) from 1970-74 to 1985-89 (p for trend 0<0.001). At 20-years of duration of diabetes chronic diabetic complications explained 38% of the deaths in the 1970-74 subcohort decreasing to 17% in the 1985-89 subcohort among those with early-onset diabetes. In the late-onset cohort mortality decreased from 58% to 26%. The proportion of alcohol and drug related deaths was high in the early-onset diabetes, appr. 25%, while it increased to 39% in the late-onset cohort. SMR for alcohol-related deaths was 4.4 (3.1-5.7) and 2.7 (2.2-3.3) in the early and late-onset cohorts and was equal for men and women. SMR for suicides was significant only in women with early-onset diabetes, 3.3 (1.9-4.7).

Conclusion: We found improvement in survival of people with early-onset T1D. On the contrary, individuals with late- onset T1D showed worse survival after the 1980s compared to the 1970s. Reduction in chronic diabetic complications was, however, replaced by alcohol- and drug-related mortality.

OP 38 Diabetic nephropathy - clinical trials

221

Intensive glucose control is renoprotective in type 2 diabetes: New analyses from ADVANCE.

S. Zoungas1, J. Chalmers2, A. Patel3, M. Marr2, C.E. Mogensen4, L. Billot5, Q. Li1, M.E. Cooper1, on behalf of the ADVANCE Collaborative Group; 1The George Institute for International Health, The University of Sydney, Australia, 2Hôpital Bichat-Claude Bernard and Université Paris 7, France, 3Aarhus Sygehus, Denmark, 4Baker IDI Heart and Diabetes Institute, Melbourne, Australia.

Background: Blood glucose is an important determinant of kidney disease among patients with type 2 diabetes. In these analyses we determine the effects of intensive glucose lowering, targeting an HbA1c of less than or equal to 6.5%, a level below the currently recommended targets, on a range of renal outcomes among 11,140 patients who had type 2 diabetes and participated in the Action in Diabetes and Vascular disease: preterAx and diamicron-MR Controlled Evaluation (ADVANCE) study.

Methods: Patients were randomly assigned to intensive glucose control based on the use of gliclazide MR and other therapy as required to achieve an HbA1c level less than or equal to 6.5%, or standard glucose control. Treatment effects on total renal events, new or worsening nephropathy, new-onset microalbuminuria (UACR 30 to 300 g/mg), new-onset macroalbuminuria (UACR >300 g/mg), progression of albuminuria by at least 1 stage (from normoalbuminuria to either micro- or macroalbuminuria or from micro- to macroalbuminuria) and regression of albuminuria by at least 1 stage, were assessed.

Results: After a median follow-up of 5.0 years, the mean HbA1c level achieved in the intensive control group was 6.5% as compared with 7.3% in the standard control group. As compared to standard glucose control, intensive glucose control reduced the risk for total renal events by 11% (95% CI = (5%-17%), P=0.001), new or worsening nephropathy by 21% (95% CI, 7-34%, p=0.006), new-onset microalbuminuria by 9% (95% CI, 2-5%, p=0.018), new-onset macroalbuminuria by 30% (95% CI, 15-43%, P=0.001) and progression of albuminuria by 10% (95% CI, 2-16%, p=0.028). In patients with albuminuria at baseline, regression by at least one stage occurred in 62% of intensively treated patients, with the majority achieving normoalbuminuria. Compared to standard glucose control, intensive glucose control increased regression of albuminuria by 15% (95% CI, 5-26%, P<0.002). Effects of active treatment on total renal events were consistent across subgroups defined by median HbA1c level at baseline (p for interaction>0.1).

Conclusion: The glargide MR-based intensive glucose control regimen, aiming for an HbA1c level less than or equal to 6.5% in patients with established type 2 diabetes, provided renal benefits including regression or normalisation of albuminuria. This renoprotection, is evident even among those with initial HbA1c levels < 7% and we could not identify an HbA1c threshold below which renal benefit was lost.

Supported by: Servier and NHMRC of Australia

222

Prevention of microalbuminuria in type 2 diabetes (ROADMAP Trial)

H. Haller1, E. Ritz1, L. Rualope1, T. Rabelink1, G. Viberti1, on behalf of the ROADMAP Steering Committee; 1Medical School Hannover, 2University of Heidelberg, Germany, 3Hospital 12 de Octubre, Madrid, Spain, 4Leiden University Medical Center, Netherlands, 5King’s College London School of Medicine, United Kingdom.

Background and aims: Microalbuminuria is an early sign of diabetic nephropathy and increased cardiovascular risk. We investigated whether early treatment with an angiotensin receptor blocker (ARB) in diabetic subjects with normal albumin excretion delays the occurrence of microalbuminuria and concomitantly recorded cardiovascular and renal events.

Materials and methods: We studied 4,447 patients with type 2 diabetes and at least one additional cardiovascular risk factor in a randomized, double-blind, multicentre, controlled, and event-driven (onset of microalbuminuria) trial. They received either 40 mg olmesartan or placebo once daily for a median duration of 3.2 years. In both groups, additional antihypertensive drug treatment (except ACE inhibitors or ARBs) was used to reach the target blood pressure of <130/80 mmHg.
Background and aims: Renin angiotensin system (RAS) blockade prevents microalbuminuria in people with type 2 diabetes (T2DM) at high cardiovascular risk. However, most of these studies measured albumin:creatinine ratio on a single spot urine to define microalbuminuria. Using multiple timed overnight collections the DIRECT Programme could not demonstrate a benefit of RAS blockade on the development of persistent (3 of 4 consecutive samples > 20 μg/min) microalbuminuria. We re-analysed our data using the less stringent microalbuminuria definition of a single value >20 μg/min to be more consistent with previous studies.

Materials and methods: 1905 people with T2DM and mild/moderate retinopathy were randomised to Candesartan (titrated to 32 mg/d) or placebo. At baseline all were normoalbuminuric (median albuminuria 5.5 (IQR 3.5,8.5) μg/min. 62% were hypertensive (mean BP at entry 139/79 mmHg) and 38% normotensive (BP <130/85, mean 123/75 mmHg). Subjects collected 2 timed overnight urine collections annually for at least 4 years.

Results: The adjusted risk (Hazard Ratio - HR) and (95% CI) for microalbuminuria of 8.2% (n=178) with olmesartan and 9.8% (n=210) with placebo which represents a risk reduction of 23% (HR: 0.77; 95.1% CI: 0.63 to 0.94; p= 0.01) in favour of subjects receiving olmesartan. At study end eGFR was lower in the olmesartan-treated subjects (80.1 vs. 83.7 ml/min/1.73 m², p=0.001). In both groups 23 subjects had a doubling of the baseline serum creatinine. Overall cardiovascular morbidity and mortality rate was low and similar between groups with cardiovascular morbidity events in 81 (3.6%) and 91 (4.1%) patients, and total mortality in 26 (1.2%) and 15 (1.7%) on olmesartan and placebo, respectively (p > 0.1). Cardiovascular mortality however was higher (15 (0.7%) vs. 3 (0.1%); p= 0.01) in the olmesartan group, possibly due to hypertensive episodes in subjects with pre-existing CVD.

Conclusion: In subjects with type 2 diabetes and excellent blood pressure control early treatment with the ARB olmesartan showed a significant risk reduction in the time to onset of microalbuminuria. ClinicalTrials.gov ID no.: NCT00185159.

Supported by: Daiichi Sankyo

Aldosterone reduction during 24 weeks of treatment with alogliptin or placebo added to losartan in patients with type 2 diabetes and nephropathy, an AVOID substudy

F. Persson1, H.-H. Parving2, J.B. Lewis3, E.J. Lewis4, N.K. Hollenberg5, 6
1Steno Diabetes Center, Gentofte, 2Medical Endocrinology, Rigshospitalet, Copenhagen, 3Faculty of Health Sciences, Aarhus University, Denmark, 4School of Medicine, Vanderbilt University, Nashville, 5Medical Center, Rush University, Chicago, 6Brigham and Women’s Hospital, Harvard Medical School, Boston, USA.

Background and aims: Aldosterone suppression reduces albuminuria in diabetic and non-diabetic patients, and is known to improve cardiorenal prognosis. This study assessed the effects on urinary aldosteron, plasma renin activity (PRA) and plasma renin concentration (PRC) of direct renin inhibition with aliskiren (ALI) in combination with the ARB losartan (LOS) and optimal antihypertensive therapy in the Alogliptin in the Evaluation of PrOteinuria in Diabetes (AVOID) study.

Materials and methods: In the AVOID study, 599 patients aged 18–85 years with hypertension and diabetic nephropathy received 6 months’ ALI (150 mg force titrated to 300 mg after 3 months) or PBO added to LOS 100 mg and optimal antihypertensive therapy. Study exclusion criteria comprised non-diabetic kidney disease, urinary albumin:creatinine ratio (UACR) >3500 mg/g, eGFR <30 ml/min/1.73 m² and serum potassium >5.1 mmol/l. Urinary aldosteron, PRA and PRC were measured at baseline of the double-blind period and after 24 weeks in a subset of 133 patients.

Results: ALI added to LOS provided large reductions from baseline in urinary aldosteron compared with adding PBO (~24% vs. ~4%, p= 0.017) at week 24. There was no significant difference between the aliskiren and placebo groups in the proportion of patients with aldosteron breakthrough (ALI 35%, PBO 46%, p=0.199). There was no correlation between change in urinary aldosteron levels and change in UACR or change in systolic blood pressure (SBP). ALI treatment reduced PRA by 90% at 24 weeks (p=0.001); PBO treatment had no significant effect. PRC increased by 228% from baseline with ALI and decreased by 17% with PBO (p<0.001).

Conclusion: Adding ALI to LOS and optimal antihypertensive therapy provided significant, long-term reductions in urinary aldosteron beyond those provided by ARB and optimal antihypertensive therapy. Reduction in PRA by ALI treatment may be a potential mechanism behind the reduction in urinary aldosteron levels.

Supported by: Novartis
OP 39 CNS, appetite control and cognition

225

Acute administration of the GLP-1 receptor agonist, Exenatide, restores impaired central responses to food ingestion in type 2 diabetes

Y. Nathan1, J. Evans2, S. Lees3; L.J. Reed4, M.J. Brammer2, E.O. Zelaya5, S.A. Amiel6

1Diabetes Research Group, King's College London, 2Brain Image Analysis Unit, Institute of Psychiatry, 3Fatton Green Health Centre, 4Institute of Psychiatry, London, United Kingdom.

Background and aims: An appetite control system that allowed continued eating when food is available would be of evolutionary advantage in a hunter-gatherer lifestyle but would predispose to obesity in the modern world. Incretins, such as GLP-1, are secreted by the gastrointestinal tract in response to food ingestion and are involved in the satiety response that terminates eating. Incretin responses to food ingestion are abnormal in obesity and Type 2 diabetes (T2DM) and incretin-based therapies can deliver weight loss and improved diabetic control. The aim of our study was to use the GLP-1 receptor agonist Exenatide to explore the central control of appetite and satiety in people with T2DM, using functional magnetic resonance imaging (fMRI) and the food cue of food image viewing.

Materials and methods: 12 subjects with lifestyle ± metformin treated diabetes (age 55.0 ± 1.8 yrs, BMI 31.1 ± 1.7, HbA1c 7.1 ± 0.2%) underwent 4 fMRI brain scans, while observing images of food and non-food shown in a block design paradigm, after overnight fast. Satiety and hunger were assessed by visual analogue scales before and after both ingestion and image viewing. On two occasions, subjects consumed a mixed meal (554kcal) and on two other occasions, only water was consumed. Blood was drawn and cortical communication was recorded by MEG. MRI activation was assessed with fMRI using 80 food images and 80 non-food images and the food cue of food image viewing. The VTA is central to perception of the reward value of food. The accuracy of these responses is modulated by interactions between brain regions involved in mediating the motivational, behavioral, and cognitive aspects of reward processing. This reward circuit plays a key role in guiding appetitive behaviours, and its dysfunctions have been associated with obesity.

Results: The brains of 19 morbidly obese (age 46±10 years, BMI 43.9±3.7 kg/m²) and 16 lean individuals (age 48±10 years, BMI 21.4±2.1 kg/m²) were studied with 2-[18F]fluoro-2-deoxyglucose positron emission tomography (PET) during euglycemic hyperinsulinemia, and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures.

Results: We found that in obese individuals glucose metabolic rate (GMR) of the caudate nucleus was elevated when compared to controls (4, 8, 10, T = 3.97, p = 0.03 SVC), but not in any other a priori region of interest. Responses to all foods (appetizing and bland) were higher in obese patients than in controls in the left inferior occipital gyrus (-39, -59, -8, T = 3.76, p < 0.005, unc.), left amygdala (-30, -30, -27, T = 3.89, p < 0.005, unc.), right posterior cingulate cortex (8, -38, 19, T = 3.84, p < 0.005, unc.), and right postcentral gyrus (-56, -16, 30, T = 3.81, p < 0.005, unc.). However, responses were lower in obese than in lean subjects in the left superior frontal gyrus (24, 49, 4, T = 3.95, p < 0.005, unc.). Obese patients showed elevated functional responses to appetizing vs. bland food viewing compared with controls specifically in the right caudate nucleus, whereas they had lowered functional responses in the left insula, lateral frontal cortex, superior parietal lobule, right orbitofrontal cortex and superior temporal gyrus. The evaluation of functional connectivity of the caudate nucleus revealed that obese patients showed significantly large coupling between right caudate nucleus and right basolateral amygdala (35.5 -16, 16, 3.92, p < 0.005, unc.), primary somatosensory cortex (39, -13, 32, T = 3.63, p < 0.005) and posterior insula (30, 14, 18, T = 3.47, p < 0.005) than lean control subjects. This abnormal connectivity was specific to obesity, since no task-dependent changes in connectivity while viewing appetizing vs. bland foods were observed in the whole study group.

Conclusion: We found that obese individuals had increased hemodynamic responses in the caudate while viewing appetizing vs. bland foods, and increased amygdala responses to both appetizing and bland foods. Moreover, while viewing appetizing vs. bland foods the functional connectivity of the caudate nucleus and amygdala was increased in the obese vs. lean individuals. Conversely, insular cortex showed elevated responses to appetizing vs. bland foods in lean vs. obese individuals. These data show that adiposity is associated with caudate nucleus's elevated baseline activity, responses to appetizing foods as well as functional connectivity with amygdala and insula while viewing appetizing and bland foods. The elevated amygdala responses to foods and increased amygdalo-striatal connectivity and high tonic GMR in obese patients could be the critical mechanism which would explain overeating in obesity. Supported by: EU FP6 (18734, HEPADIP), Academy of Finland grant, AivoAALTO Grant

226

MRI-measured cerebral microbleeds and their relation to cognitive functioning and cerebral activity in patients with longstanding type 1 diabetes mellitus

L. van Duijnkerken1,2, M.P. Wattejs3, E.J. Snoek4, E.H. Sera4, M. Klein5, C.J. Stam6, R.G. IJzerman1, F. Barkho1, M. Diamant7

1Diabetes Centre / Department of Internal Medicine, 2Department of Medical Psychology, 3Department of Radiology, 4Department of Internal Medicine, 5Department of Clinical Neurophysiology / MEG Centre, 6Department of Clinical Neurophysiology, Amsterdam, Netherlands.

Background and aims: Only recently an increased occurrence of cerebral microbleeds (CMB), a magnetic resonance imaging (MRI) marker of vascular fragility, was reported in type 2 diabetic patients, in particular in those with proliferative diabetic retinopathy (DRP), relative to non-diabetic subjects. Here, we explored the relationship of CMBs, cognitive functions and functional brain connectivity, using MRI, neuropsychological assessment and magnetoencephalography (MEG), respectively, in a sample of patients with type 1 diabetes (T1DM) with and without microangiopathy and controls.

Materials and methods: Forty-eight T1DM patients with microangiopathy, 43 T1DM patients without microangiopathy and 42 healthy controls underwent MRI imaging using susceptibility-weighted imaging (SWI) to detect CMBs and neuropsychological assessment to measure cognitive performance. Blood was drawn and cortical communication was recorded by MEG.

Results: Nineteen participants (14.3%) showed one or more CMBs on SWI, of whom 11 had T1DM with microangiopathy (9.0%), 3 were T1DM patients without microangiopathy (2.3%) and 4 were controls (3.0%). Those with CMBs were older (45.8 vs 39.3 P = 0.007). CMBs were mainly located in the...
We examined 47 patients, 20 individuals with T1DM participants with microangiopathy as compared to T1DM patients without microangiopathy and healthy controls (both P > 0.05). Adjusting for either diabetes duration or diabetes age-of-onset, did not change the results. Interestingly, individuals with CMBS did not show cognitive impairments (P > 0.05), but demonstrated lower cortical communication in the lower alpha-band (8 - 10 Hz) compared to all individuals without CMBS (P < 0.05). Per group analyses yielded the same pattern of changes in cerebral communication, albeit in different frequency bands, with preserved cognitive functions. In T1DM patients the presence of CMBS was significant ly correlated with later-onset of diabetes (P < 0.05).

Conclusion: Taking into account the relatively small number of patients affected, the results indicate that CMBS are more prevalent in T1DM patients with microangiopathy and are related with changes in cerebral communication in order to compensate for structural damage, thus allowing cognitive functions to be temporarily spared. Whether CMBS are a marker of future cognitive decline, and whether these abnormalities are diabetes-specific, remains to be determined in large-scaled longitudinal studies.

Supported by: Dutch Diabetes Research Foundation

Comparison of neuropsychological testing and 99mTc-HMPAO brain SPET findings in patients with diabetes mellitus type 1 and type 2

M. Migra1, M. Kutláčik1, A. Lacko1, P. Galajda1, M. Mokan1; 1Internal Clinic, Faculty Hospital in Martin, *Internal Clinic, Central Military Hospital, Ružomberok, Slovakia.

Background and aims: Diabetes mellitus is a chronic metabolic disease characterised by macrovascular and microvascular complication. Although the evidence of cognitive deterioration in diabetic individuals is well known, the neuroanatomical substrate of subscribed changes remains uncertain. Evaluate and localise the resting alterations in brain microcirculation and compare them with affected cognitive domains.

Materials and methods: We examined 47 patients, 20 individuals with T1DM (15 men, 7 women), average age 37 ± 12.7 years, 27 individuals with T2DM (14 women, 13 men), average age 60 ± 9.2 years. Diabetic patients were compared with control group composed of 40 non-diabetic age-related individuals. Written consent was obtained from all patients prior the study. Patients performed battery of neuropsychological testing including 9 tasks covering 5 cognitive domains. Individuals underwent 99mTc-HMPAO brain SPET. Vascular and metabolic determinants were recorded. Collected data were analysed using parametric and nonparametric statistical methods.

Results: Compared to control group we found in type 1 diabetes changes in working memory, mental flexibility, mental recording, vigilance and information processing (p = 0.01) without significant correlation to gender, age, metabolic compensation or duration of diabetes (p > 0.05). In type 2 diabetes we discovered deterioration of short time memory, mental flexibility, information processing (p < 0.01) correlated with duration of diabetic disease more than 10 years (p = 0.01). Brain SPET revealed hypoperfusion on microvascular level in 65 % of T1DM group (thalamus and basal ganglia 30 %, temporal lobe 20 %, parietal lobe 40 %, cerebellum 25 %, occipital lobe 10 %, frontal lobe 10 %). In T2DM cohort was hypoperfusion in 81 % patients (parietal lobe 64 %, temporal lobe 36 %, occipital lobe 27 %, cerebellum 18 %, thalamus and basal ganglia 9 %). In frontal lobe we have seen both hypoperfusion and hyperperfusion in 32% related to age and duration of diabetes. Comparing the results of neuropsychological testing to brain SPET findings in both diabetic groups we found anatomically equivalent correlation only in verbal memory test, digit span test backwards and Stroop test C.

Conclusion: We confirmed expected cognitive changes in diabetic individuals, which did not correlate with brain SPET findings in all cognitive domains. Therefore we suggest multidimensional patomechanism including changes in perfusion, neurotransmitters and neuronal metabolism.

Mean glucose during ICU admission is related to mortality by a U-shaped curve; implications for clinical care

J.H. DeVries1, S.E. Siesjö2, I. Hermanides1, H.M. Oudemans-van Straaten1, P.H.J. van der Voort1, R.J. Bosman2, D.F. Zandstra2; 1Internal Medicine, Academic Medical Centre, 2Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands.

Background and aims: Reducing hyperglycaemia at the ICU reduces mortality but recently the optimal glucose target range has become unclear. We investigated in which way glucose regulation, defined as mean achieved glucose concentration during admission, is associated with ICU mortality, thereby trying to reconcile the conflicting data from the Leuven and NICE-SUGAR trials.

Materials and methods: We performed a retrospective database cohort study including patients admitted to a 20-bed medical/surgical ICU in a teaching hospital between January 2004 and December 2007. 5983 patients were eligible for analysis after excluding readmissions, patients with a withholding care policy and patients with only one glucose value measured. From this population we randomly selected 2435 patients with a surgical/medical ICU admission ratio of 55/45%, to enable comparison with the Leuven and NICE-SUGAR populations. All patients were treated for hyperglycaemia using a fully computerized tight glucose algorithm targeting for glucose values between 4.0 and 7.0 mmol/l. The cohort was subdivided in deciles and logistic regression analysis was performed adjusted for age, sex, severity of disease and admission duration to assess the Odds ratio of ICU mortality per glucose stratum.

Results: A median (IQR) of 12 (8-14) glucose values per admission day per patient was collected. The total population and the random sample were comparable regarding all baseline characteristics. We observed a U-shaped relation between mean glucose and mortality, with high mortality in the lowest and highest glucose-stratum, 21.3% and 27.6% respectively. Mean glucose values <7.0 mmol/l and >9.0 mmol/l were associated with significantly increased ICU mortality compared with the stratum with the lowest mortality (OR 2.06-4.24 and 2.33-6.70 respectively, Figure). Limitations of the study were its retrospective design and possible incomplete correction for severity of disease.

Conclusion: Mean glucose during ICU admission is related to mortality by a U-shaped curve. A ‘safe range’ of mean glucose regulation might be defined between 7.0 and 9.0 mmol/l. The U-shaped curve may help to explain the increased mortality in the intensively treated group of the NICE-SUGAR study but not the low mortality in the intensively treated groups of the Leuven studies. According to these findings and awaiting further studies we recommend treating hyperglycaemia at the ICU in a moderately intensive way, targeting for mean glucose values between 7.0 and 9.0 mmol/l and avoiding hypoglycaemia.
Accuracy and reliability of continuous glucose monitoring at the ICU; a head to head comparison of two subcutaneous glucose sensors in cardiac surgery patients

S.E. Siegelaar, T. Barwari, J. Hermanides, W. Stooker, P.H.J. van der Voort, J.H. DeVries

Background and aims: Both hyperglycaemia and hypoglycaemia are common during intensive care unit (ICU) stay and are associated with increased mortality. Continuous glucose monitoring (CGM) is a promising tool to assist glucose control but the accuracy and reliability of these devices in critically ill patients is uncertain. We studied two different CGM devices post-operatively in cardiac surgery patients in an investigator initiated trial.

Materials and methods: Two CGM devices (Guardian RT, Medtronic MiniMed; FreeStyle Navigator, Abbott Diabetes Care) were placed subcutaneously in the abdominal area in 60 patients before surgery. Both devices were calibrated simultaneously upon arrival at the ICU after surgery. Further calibrations were performed according to manufacturers’ instructions. An arterial blood glucose value was measured with an AccuChek device as a reference value every two hours. Mean absolute difference (MAD) between reference and sensor glucose values was calculated in six 5 minute intervals after the time of the reference glucose, to assess a possible delay for the CGM devices.

Results: In total, 1017 reference glucose values were measured. Of those, 77.8% could be paired with a Guardian and 91.8% with a Navigator glucose value. Missing values indicate technical problems with the device. Median (IQR) MAD was significantly smaller for Navigator compared to Guardian glucose measurements at the first and second interval (0.11 [0.08-0.16] and 0.10 [0.08-0.16] compared to 0.14 [0.11-0.18] and 0.14 [0.11-0.17], p<0.05 and p=0.001, Wilcoxon signed ranks test; figure). The lowest MAD of the Navigator was observed in the second interval, 5-9 minutes after reference glucose. The MAD of the Guardian was lowest after 15-19 minutes. Only for the Guardian there was a significant decrease over time indicating a delay (p=0.01, repeated measures ANOVA). For glucose values ≥6 mmol/l median (IQR) MAD was lower for the Navigator in all intervals, however not significantly (interval 1: Navigator 0.13 [0.10-0.23], Guardian 0.26 [0.17-0.41], p=0.24). The limited number of values ≥6 mmol/l (n=121) could have limited the power of this sub-analysis.

Conclusion: We report that the FreeStyle Navigator CGM system performed better than the Guardian RT in accuracy as well as reliability in post-operative cardiac surgery patients during ICU stay. Remarkably, the MAD of both sensors was quite good as compared to reported data for outpatients. Based on our results we conclude that this device can be used in this group of ICU patients characterized by relatively low disease severity scores and low mortality rates. Whether or not the use of CGM improves glycemic control and mortality has needs further research.

Supported by: Optiscan Biomedical Corporation

Intensive care unit (ICU) glucose monitoring measured in plasma using mid-infrared spectroscopy

G. Lim, C. Calentini, J. Gable, L. Nosek, T. Heise

Background and aims: There are increasing calls for a highly accurate, automated system to enable tight glycemic control and avoid hypoglycemia in an ICU setting. The OptiScanner (model 5000) is a glucose monitor based on mid-infrared spectroscopy that draws blood samples (120 µl) and measures plasma glucose concentration approximately every 15 min. The goal of this study was to validate the performance of the OptiScanner at different glycemic levels in a healthy diabetic patient population.

Materials and methods: Sixty people (50 males, age 49 (18-65) years, BMI 72.8% could be paired with a Guardian and 91.8% with a Navigator glucose measurement. Median (IQR) MAD was lower for the Navigator in all intervals, however not significantly (interval 1: Navigator 0.13 [0.10-0.33], Guardian 0.26 [0.17-0.41], p=0.01, repeated measures ANOVA). For glucose values ≤6 mmol/l median (IQR) MAD was significantly smaller for Navigator compared to Guardian (p=0.001, Wilcoxon signed ranks test; figure). The lowest MAD of the Navigator was observed in the second interval, 5-9 minutes after reference glucose, to assess a possible delay for the CGM devices.

Results: In total, 1017 reference glucose values were measured. Of those, 77.8% could be paired with a Guardian and 91.8% with a Navigator glucose value. Missing values indicate technical problems with the device. Median (IQR) MAD was significantly smaller for Navigator compared to Guardian glucose measurements at the first and second interval (0.11 [0.08-0.16] and 0.10 [0.08-0.16] compared to 0.14 [0.11-0.18] and 0.14 [0.11-0.17], p<0.05 and p=0.001, Wilcoxon signed ranks test; figure). The lowest MAD of the Navigator was observed in the second interval, 5-9 minutes after reference glucose. The MAD of the Guardian was lowest after 15-19 minutes. Only for the Guardian there was a significant decrease over time indicating a delay (p=0.01, repeated measures ANOVA). For glucose values ≥6 mmol/l median (IQR) MAD was lower for the Navigator in all intervals, however not significantly (interval 1: Navigator 0.13 [0.10-0.23], Guardian 0.26 [0.17-0.41], p=0.24). The limited number of values ≥6 mmol/l (n=121) could have limited the power of this sub-analysis.

Conclusion: We report that the FreeStyle Navigator CGM system performed better than the Guardian RT in accuracy as well as reliability in post-operative cardiac surgery patients during ICU stay. Remarkably, the MAD of both sensors was quite good as compared to reported data for outpatients. Based on our results we conclude that this device can be used in this group of ICU patients characterized by relatively low disease severity scores and low mortality rates. Whether or not the use of CGM improves glycemic control and mortality has needs further research.

Supported by: Optiscan Biomedical Corporation

Randomised study of basal bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 Surgery)

Background and aims: These preliminary results show that the OptiScanner is highly accurate in a healthy diabetic population.
in non-ICU patients undergoing general surgery. Study outcomes included differences in daily BG levels and a composite of hospital complications including postoperative wound infection, pneumonia, respiratory failure, acute renal failure, and bacteremia.

Materials and methods: A total of 211 patients (age: 58±11 yr, admission BG: 190±92 mg/dl, A1C: 7.7±2.2%, ±SD) with a BG between 140-400 mg/dl and a history of T2DM >3 months were randomized to glargine + glulisine (Gla+Glu, n=104) or SSI (n=107). Total daily dose of Gla+Glu was started at 0.5 U/kg, given half as glargine once daily and half as glulisine before meals. SSI was given 4 times/day for BG >140 mg/dl.

Results: The mean daily BG level after the 1st day of Gla+Glu vs. SSI was 145±32 mg/dl and 172±47 mg/dl, respectively, p<0.01. The percentages of BG readings <140 mg/dl were higher in Gla+Glu than SSI (53±30% vs 31±28%, p<0.001). We observed significant difference between groups in the frequency of the composite outcome (24.3% and 8.6% in the SSI and Gla+Glu, respectively; P=0.003). There were no differences in mortality (1% vs 1%); however, there were reductions with Gla+Glu as compared with SSI in wound infection (2.9% vs 10.3%), pneumonia (0% vs 2.8%), and acute renal failure (3.8% vs 10.3%), p=0.05, 0.24, 0.10. Compared to SSI group, Gla+Glu reduced the number of post-surgical ICU admissions (19.6% vs 12.5%, p=0.159) and ICU length of stay (3.2±2 vs 1.2±0.6 days, p=0.003). A BG <70 mg/dl was reported in 23.1% of patients (1.9% of BG readings) in the Gla+Glu and in 4.7% (0.3% of BG readings) in the SSI group, p=0.001; but only 3.8% of patients in the Gla+Glu and 0% in SSI had a BG <40 mg/dl (p=0.057).

Conclusion: In summary, treatment with glargine once daily plus glulisine before meals improved glycemic control and reduced hospital complications compared to SSI in general surgery patients with T2DM. Our study indicates that basal/bolus insulin regimen is preferable to SSI in general surgery patients with T2DM. NCT00596687.

Supported by: Investigator-initiated grant from Sanofi-Aventis

OP 41 Deregulation of fatty acid handling, obesity and diabetes

233

Effect of different dietary fat quantity and quality on skeletal muscle fatty acid handling in subjects with the metabolic syndrome

A. Jans1, A.M.JI. van Hees2, I.M.F. Gjesdset, A.C. Tierny2, U. Risérus3, C.A. Dreven2, H.M. Roche2, E.E. Blaak1

1Human Biology, Maastricht University, Netherlands, 2Department of Nutrition, University of Oslo, Norway, 3Nutrigenomics Research Group, University College Dublin, Ireland, 4Department of Public Health and Caring Sciences, Uppsala University, Sweden.

Background and aims: Insulin resistance is characterized by disturbances in lipid metabolism and increased fat storage in ‘non-adipose tissues’ like skeletal muscle (SM). The aim of this study was to investigate whether SM gene expression and the lipid content and the fatty acid (FA) profile of the SM lipids are affected by diets with different fat quantity and quality in subjects with the metabolic syndrome (MetS, NCEP criteria).

Materials and methods: 84 subjects (age 57.3±9.9y, BMI 30.9±4kg/m2, 42men/42women) were randomly assigned to one of four isocaloric diets: high-SFA (HSFA); high-MUFA (HMUFA) and two low-fat, high-complex carbohydrate (LFHCC) diets, supplemented with 1.24 g/day of long chain n-3 PUFA (LCn-3) or control for 12 weeks. Insulin sensitivity (SI) was determined by a insulin modified intravenous glucose tolerance test. SM biopsies were taken before and after the intervention to determine expression of genes involved in lipid metabolism. In a subgroup (n=25, all men) muscle TAG, DAG, free FA (FFA), and phospholipid content, their fractional synthetic rate (FSR) as well as lipid composition were determined. The people in the subgroup consumed (before and after dietary intervention) a high-fat mixed meal (2.6MJ, 61% fat) with 200 mg [U-13C]-palmitate added. Muscle biopsies were taken before and four hours after the meal. The FSR per lipid fraction was calculated by dividing the change in 13C-enrichment in the precursor pool (FFA). The study protocol was approved by the local Medical Ethical Committee of the Maastricht University.

Results: Expression of genes involved in lipogenesis (SREBP1c, SREBP2, ChREBP and ACC2) were downregulated after 12-weeks on HMUFA (mean fold change (FC) of -1.3) and on LFHCC LCn-3 (mean FC -1.7) in insulin resistant (IR) subjects (below the median of SI), whereas insulin sensitive (IS) subjects showed the opposite effect (mean FC +1.6 at both diets). HMUFA diet caused reduced DAG content (paired t-test p=0.027) and tended to decrease the FSR in TAG (p=0.055) and DAG (p=0.066). LFHCC LCn-3 diet reduced the muscle TAG content (p=0.032) and tended to increase percentage saturation of DAG (p=0.064).

Conclusion: Both HMUFA and LFHCC LCn-3 promoted a reduction of lipogenic genes in IR subjects with the MetS. In a subgroup HMUFA and LFHCC LCn-3 reduced DAG or TAG content, respectively, suggesting that these diets may reduce muscle fat accumulation by affecting the balance between fat storage and oxidation.

Supported by: DFN

234

Adipokines promote lipotoxic effects of low levels of palmitic acid but not oleic acid by reducing fatty acid oxidation and increasing diacylglycerol

A. Taube1, B. Platzecker1, A. Schober1, G. van Echten-Deckert1, M. Bosma2, J. Weiss1, K. Jeruschke1, K. Eckardt1, J. Eckel1

1Institute of Clinical Biochemistry and Pathobiology, German Diabetes Center, Duesseldorf, 2Kekulé-Institute LIMES Membrane Biology and Lipid Biochemistry, University of Bonn, Germany, 3Department of Human Biology, Maastricht University, Netherlands.

Background and aims: Skeletal muscle insulin resistance is an early defect in the pathogenesis of type 2 diabetes mellitus. Numerous studies have shown that elevated plasma free fatty acid (FA) levels as well as intramyocellular lipid accumulation are positively correlated with the incidence of insulin resistance. Furthermore, it is accepted that adipose tissue functions as a secretory organ releasing various adipokines. Aim of this study was to investigate combined effects of adipokines with physiological concentrations of free FA on human skeletal muscle metabolism. Furthermore, possible differences of saturated and unsaturated FA were to be analysed.
Twelve lean, healthy adults were studied after a 5 hour overnight fast with an oral intake of a liquid meal, consisting of a commercial dietary supplement and [1-13C] tripalmitin, [1-13C] triolein and [9,10-1H] trilinolein, every 15 minutes for 6 hours. [1-13C] palmitate, [13C] oleate and [1-13C] linoleate were infused intravenously for 2 h. Blood samples were taken for NEFA concentrations, tracer enrichment and specific activity, as well as chylomicron and total triglyceride concentration. Systemic rate of appearance (Ra) and spillover were calculated for each fatty acid using steady state assumptions.

Results: Total NEFA concentrations were 114±11 μmol/L during meal absorption. Plasma oleate concentration was significantly higher than palmitate or linoleate concentrations (41±5 vs 23±3 and 29±3 μmol/L, respectively; p < 0.05 for both). The Ra of palmitate was significantly lower than the Ra of either oleate or oleic acid (0.4±0.03 vs 0.8±0.07 and 0.8±0.06 μmol/kg/min, respectively, both p < 0.001). Clearance of oleate was higher than that of either palmitate or oleate (32±3 vs 21±3 and 22±2 μL/kg/min, respectively; p < 0.03 for both). Fractional spillover among the 3 groups was 40±4 vs 38±3 vs 23±2% for palmitate, oleate and linoleate respectively. The difference between oleate compared to palmitate and oleate was significant (p<0.01 for both comparisons). There was no difference between palmitate and oleate spillover.

Conclusion: These data show a significant difference in spillover of chyomicron triacylglycerols between hepatic and skeletal muscle. The relationship between this finding and the apparent reduction in cardiovascular risk associated with PUFAs is not clear. These results support the notion that saturated FA may play a more crucial role in mediating insulin resistance, in combination with adipokines. Hence, it may be speculated that adipokines rather than FA may play a more crucial role in mediating insulin resistance, since they not only increase FA uptake but also seem to interfere with FA metabolism. Furthermore, these results support the notion that saturated FA like PA are more detrimental than unsaturated FA like OA. While OA seems to increase the potential of the cell to store excess lipids in lipid droplets by increasing the expression of ADRP, PA seems to impair mitochondrial integrity and in combination with adipokines leads to incomplete FA oxidation and concurrent accumulation of DAG. Thus it may be assumed that already at an early stage of weight gain, when lipolysis has not yet contributed to increased plasma free FA levels, there might be lipotoxic damage to skeletal muscle cells.

235
Splanchnic balance of free fatty acids, endocannabinoids and lipids in subjects with NAFLD
A. Kotro1, J. Vesterbacka1, B.A. Fielding2, J. Wahren3, L. Hodson3, T. Seppänen-Laakso4, T. Suortti5, J. Arola1, R. Hultcrantz6, S. Castillo1, K.N. Frayn7, M. Oresic8, H. Yki-Jarvinen9;
1University of Helsinki, Finland, 2University of Oxford, United Kingdom, 3Karolinska Hospital, Stockholm, Sweden, 4VTT Technical Research Centre of Finland, Espoo, Finland.

Background and aims: Animal studies suggest that endocannabinoids could contribute to the development of non-alcoholic fatty liver disease (NAFLD). In addition, NAFLD has shown to be associated with multiple changes in lipid concentrations in liver biopsies. There are no data on splanchnic free fatty acid, glycerol, ketone body, endocannabinoid and lipid fluxes in vivo in subjects with NAFLD.

Materials and methods: We performed hepatic venous catheterization studies in combination with [14C]palmitate infusion in the fasting state and during a low-dose insulin infusion (0.5 mU/kg min) in nine subjects with various degrees of hepatic steatosis as determined using liver biopsy. Splanchnic balance of endocannabinoids and individual lipids was determined using Ultra Performance Liquid Chromatography coupled to mass spectrometry.

Results: Splanchnic free fatty acid (FFA) extraction during the euglycemic hyperinsulinemia correlated with liver fat content (r=0.75, p<0.005). Concentrations of the endocannabinoid anandamide were higher in arterialized (91±33 μmol/l basally) than in hepatic venous (51±19 μmol/l, p<0.05) plasma. Fasting arterial (r=0.72, p=0.031) and hepatic venous (r=0.70, p=0.037) concentrations of anandamide were positively related to liver fat content. Analysis of fluxes of 85 different triglycerides showed that the fatty liver over-produces saturated triglycerides. In the plasma FFA fraction in the basal state, the relative amounts of palmitoleate and oleate were lower and those of stearate and oleate higher in the hepatic vein than in the artery. Absolute concentrations of all non-triglyceride lipids were comparable in arterialized venous plasma and the hepatic vein both in the basal and insulin-stimulated states.

Conclusion: FFA extraction during hyperinsulinemia correlates with liver fat content, consistent with data showing defects in insulin action on lipolysis to contribute to liver fat. The human fatty liver takes up anandamide and over-produces triacylglycerols containing saturated fatty acids, which might reflect increased de novo lipogenesis.

Supported by: Academy of Finland, Sigrid Juselius Foundation, HELAID, FERA, OEF, RAK, HBRF

236
Fatty acid class influences spillover from chylomicrons into plasma nonesterified fatty acids
R.H. Nelson, A. Smaliovic, D. Vlazny, J.M. Miles;
Endocrinology, Mayo Clinic, Rochester, USA.

Background and aims: The mechanism by which diets high in polyunsaturated fatty acids (PUFA) reduce cardiovascular risk is not known. Lipoprotein lipase (LPL) mediates dietary fat storage in adipose tissue via its action on chylomicron triglycerides, but a portion of LPL-generated fatty acids are released directly into the plasma nonesterified fatty acid (NEFA) pool via a process known as spillover. The present study was undertaken to determine whether there are differences in spillover among different classes of fatty acids.

Materials and methods: Twelve lean, healthy adults were studied after a 5 day controlled diet and an overnight fast. Volunteers consumed ~15 mL of a liquid meal, consisting of a commercial dietary supplement and [1-13C] tripalmitin, [1-13C] triolein and [9,10-1H] trilinolein, every 15 minutes for 6 hours. [1-13C] palmitate, [13C] oleate and [1-13C] linoleate were infused intravenously for 2 h. Blood samples were taken for NEFA concentrations, tracer enrichment and specific activity, as well as chylomicron and total triglyceride concentration. Systemic rate of appearance (Ra) and spillover were calculated for each fatty acid using steady state assumptions.

Results: Total NEFA concentrations were 114±11 μmol/L during meal absorption. Plasma oleate concentration was significantly higher than palmitate or linoleate concentrations (41±5 vs 23±3 and 29±3 μmol/L, respectively; p<0.05 for both). The Ra of palmitate was significantly lower than the Ra of either oleate or oleic acid (0.4±0.03 vs 0.8±0.07 and 0.8±0.06 μmol/kg/min, respectively, both p<0.001). Clearance of oleate was higher than that of either palmitate or oleate (32±3 vs 21±3 and 22±2 μL/kg/min, respectively; p<0.03 for both). Fractional spillover among the 3 groups was 40±4% v 38±3% v 23±2% for palmitate, oleate and linoleate respectively. The difference between oleate compared to palmitate and oleate was significant (p<0.01 for both comparisons). There was no difference between palmitate and oleate spillover.

Conclusion: These data show a significant difference in spillover of chyomicron triacylglycerols during meal absorption in normal subjects compared to the other two most abundant dietary fatty acids. The low spillover of oleate indicates comparatively efficient storage of this fatty acid and thus less availability for ectopic fat accumulation in tissues such as liver and skeletal muscle. The relationship between this finding and the apparent reduction in cardiovascular risk associated with PUFAs will require further study.

Supported by: NIH: K23DK082473 & NCRR 1 UL1 RR024150
OP 42 Inflammation and metabolism

237

Resistin and adipocyte fatty acid binding protein are linked in type 2 diabetes mellitus and atherosclerosis

Background and aims: Systemic atherosclerosis is the co-morbidity of type 2 diabetes mellitus (T2D). Patients with T2D have increased body weight and adipokine production. The adipokines resistin and adipocyte fatty acid binding protein (AFABP) have each been linked to T2D and atherosclerosis. Recently, a direct influence of resistin on AFABP has been demonstrated in cell culture of human endothelial cells, whereas respective experiments in knockout mice failed. We investigated the interrelationship of resistin and AFABP in a cohort study of human individuals.

Methods and materials: Resistin and AFABP serum levels were investigated in 168 patients (61 female, 107 male) with systemic atherosclerosis. All patients suffered from peripheral arterial disease (PAD); 76 patients showed additional coronary or cerebral artery disease. Oral glucose tolerance tests (oGTT) were performed in all patients. Resistin and AFABP were obtained by commercially available ELISA (BioVendor, Montrichard, Czech Republic). Inter-assay coefficient of variation (CV) and intra-assay CV were 7.8% and 4.8% for resistin and 6.5%, and 2.9% for AFABP. Students’ unpaired t-test, univariate and multivariate regression modeling were applied as appropriate. Skewed data were lg10 transformed to render the distribution normal for parametric tests. Normal data are given as mean±STD, non-parametric data as median (25%/75%). In multivariate analysis, change of beta (D-beta) over 10%, were considered as confounding.

Results: According to oGTT, we had 51 subjects with normal glucose metabolism (NGM), 35 subjects with pre-diabetes (PRED, impaired fasting glucose/glucose tolerance), and 82 subjects with overt T2D. Resistin levels did not differ (NGM vs PRED vs T2D 6.3±1.7 vs 7.0±2.29 vs 7.26±2.5 ng/ml; p=0.195). AFABP levels were significantly higher in diabetes (NGM vs PRED vs T2D 29 (16;39) vs 30 (20;41) vs 33 (23;45) ng/ml; p=0.035). By univariate regression resistin was associated with AFABP in all patients (beta=0.308; p=0.001). Subgroup analysis revealed that the association was based on T2D (beta=0.392; p<0.001). Since recent papers have suggested an association between diabetes, hypertension and resistin in mouse models, data of the T2D subgroup were tested for confounding by multivariate modeling. Linear regression revealed that the effect of resistin on AFABP is not affected by the subjects’ blood pressure (systolic D-beta=1%; diastolic D-beta=2%), but is attenuated with increasing number of anti-hypertensive medication taken by the patient (D-beta=11%). Vice versa, alternative linear regression models showed that the association of AFABP on resistin is not affected by the subjects’ blood pressure (systolic D-beta=1%; diastolic D-beta=0%) or hypertension medication (D-beta=1%). Furthermore, this association of resistin on AFABP or AFABP on resistin was not attenuated by body mass index in multivariate models (D-beta=1% and D-beta=4%). The severity of atherosclerosis showed no effect on resistin and AFABP levels.

Conclusion: This is the first study to demonstrate an association of the adipokines resistin and AFABP in patients with systemic atherosclerosis. This association was due to the existence of diabetes, but not pre-diabetes. Whether hypertension is interrelated with resistin and AFABP in patients with or without diabetes needs to be investigated.

238

Asymmetric dimethylarginine does not contribute to endothelial dysfunction in subjects with abnormalities of glucose regulation

Background and aims: Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), has been associated with endothelial dysfunction and atherosclerosis. Increased plasma levels of ADMA have been described in diabetic subjects with nephropathy or cardiovascular disease. Studies assessing ADMA levels in patients with uncontrolled type 1 or type 2 diabetes are conflicting.

Materials and methods: Circulating levels of ADMA, SDMA (symmetrical dimethylarginine) and L-arginine (L-arg) together with brachial artery endothelium-dependent flow-mediated dilation (FMD) and endothelium-independent dilation by 25 µg sublingual glyceryl trinitrate (GTN) were evaluated in 26 subjects with normal glucose tolerance (NGT), 34 with pre-diabetes (IGF or IGF; pre-DM) and 18 newly diagnosed type 2 diabetes (newT2DM) identified through oGTT. Plasma concentrations of ADMA, SDMA and L-arg were determined simultaneously by high-performance liquid chromatography. FMD and GTN were assessed by high-resolution ultrasound and computerized edge detection system.

Results: Groups showed similar distribution for gender, smoking habits, BMI, waist circumference, dBP, total and LDL cholesterol, apoA1 and apoB, fibrinogen, and fasting insulin. Namely, there were no differences in eGFR and cystatin C. Age (55±5, 53±8 vs 48±9 years, p=0.01), fasting and post-load oGTT glucose, glucose area under the GTN curve (AUCgluc), HbA1c (6.0±8.4, 6.5±10.6 vs 5.5±0.4%, p<0.001) and triglycerides were higher in pre-DM and newT2DM than in NGT; HDL cholesterol was lower. In pre-DM, sBP (127±13) was in between in NGT (118±15) and newT2DM (137±15 mmHg, p=0.005). GTN decreased (4% 9.9±3.4, 8.8±3.3 and 7.4±3.9, m±sd: p=0.081) with significant differences between NGT and newT2DM (p=0.025). FMD was lower in newT2DM (4% 4.4±3.3, m±sd) and in pre-DM (Δ% 6.0±2.8) compared with NGT (Δ% 7.9±3.6, p=0.0017). L-arg levels were similar in NGT (97.5±20.0) and pre-DM (97.1±20.6), lower in newT2DM (81.2±18.9 µmol/l, p=0.015). ADMA progressively reduced from NGT (1.33±0.96 µmol/l) to pre-DM (1.02±0.79 µmol/l, p=0.14 vs NGT) and newT2DM (0.72±0.53 µmol/l, p=0.017 vs NGT; ANOVA, p=0.05). SDMA was similar in NGT (1.78±0.74) and pre-DM (1.56±1.02), p=0.31, reduced in newT2DM (0.97±0.35 µmol/l, p=0.002 vs NGT, p=0.02 vs pre-DM; ANOVA, p=0.006). No association was observed between ADMA (or SDMA) and eGFR or cystatin C. No correlation emerged between ADMA and FMD (r=0.14, p=0.23) with a weak one between ADMA e GTN (r=0.29, p=0.014). By multiple regression, AUCgluc (p=0.002) and sBP (p=0.047), but not ADMA were inversely related with FMD. AUCgluc, inversely, (p=0.024) and ADMA (0.044) correlated with GTN.

Conclusion: We suggest that uncomplicated newT2DM and subjects with pre-DM have lower circulating ADMA than nondiabetic control subjects, in presence of impaired endothelium-dependent flow-mediated dilation. ADMA levels are not related to endothelial function. In these subjects with early abnormalities of glucose regulation, endothelial dysfunction seems not a result of eNOS inhibition by ADMA.

239

Vascular inflammation stratified by C-reactive protein and LDL-cholesterol levels: analysis with 18F-Fluorodeoxyglucose positron emission tomography

Background and aims: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising imaging technique for the assessment of vascular inflammation within atherosclerotic plaques. Inflammatory biomarkers, such as high sensitivity C-reactive protein (hsCRP), have been suggested as independent predictors of cardiovascular events that add prognostic information beyond conventional risk factors. Recently, the justification for the use of statins in primary prevention: an intervention trial evaluating rosuvastatin (JUPITER) study has demonstrated that rosuvastatin significantly reduces the incidence of major cardiovascular events in asymptomatic individuals with low LDL-C levels, but increased hsCRP levels, a population that is currently not recommended to receive statin therapy.

Materials and methods: We examined vascular inflammation, represented as the target-to-background ratio (TBR) measured using FDG-PET scans in 120 healthy subjects without history of cardiovascular diseases, who had been stratified into four groups according to hsCRP (cut-point, 2mg/L) and low-density lipoprotein cholesterol (LDL-C) levels (cut-point, 130mg/dL). We also determined the correlation between circulating levels of other emerging inflammatory markers, such as lipoprotein-associated phospholipase A (Lp-PLA), monocyte chemoattractant protein-1 (MCP-1), and vascular inflammation assessed by FDG-PET. Lastly, we compared the factors which determine TBR and carotid intima-media thickness (IMT).

Springer

Results: Maximum TBR levels of the high hsCRP, low LDL-C group were significantly higher than those of the low hsCRP, low LDL-C or low hsCRP, high LDL-C group, even though there were no significant differences in IMT. TBR values were associated with various cardiovascular risk factors, including hsCRP, which had the strongest positive correlation with TBR. However, Lp-PLA₂ or MCP-1 levels were not independently associated with TBR values. Multiple stepwise regression analyses showed that hsCRP and diastolic blood pressure were independent decisive factors for maximum TBR, whereas age, diastolic blood pressure, and LDL-C were factors which determined the maximum IMT.

Conclusion: Vascular inflammation measured using FDG-PET was increased in healthy individuals without hyperlipidemia, but with elevated hsCRP.

Materials and methods: Serum LPS activity was analysed in 624 T1D patients and 220 nondiabetic control subjects (Limulus amoebocyte lysate chromogenic end point assay, Hycult Biotechnology). T1D patients were divided into quartiles according to their LPS activity. MetS was assessed according to National Cholesterol Education Program (NCEP) criteria which included waist circumference, triglycerides, HDL-cholesterol, and blood pressure or antihypertensive medication. All patients fulfilled the criteria for hyperglycemia. Three out of five criteria were required for the diagnosis of MetS. A metabolic score (1–5) was calculated based on the number of criteria each patient fulfilled. Data is presented as mean (standard deviation) or median (inter quartile range) as appropriate.

Results: LPS was significantly higher in patients with T1D than healthy controls [57 (50-69) vs. 53 (39-68), p≤0.001]. In T1D patients, comparison was made between the highest (q4) and lowest (q1) LPS quartiles. Patients in q4 had a higher HbA1c, BMI, waist, triglycerides, cholesterol, diastolic blood pressure and lower HDL-cholesterol and insulin sensitivity (gGDR) compared to patients in q1. The overall frequency of MetS was 28% among all T1D patients. Patients belonging to the highest LPS quartile q4 had significantly higher frequency of MetS compared to patients in q1 (Table 1).

Conclusion: In the present study, we show that about one third of T1D patients with normal albumin excretion fulfill the criteria for MetS. These results indicate that Gram-negative bacterial infections could also play a significant role in the development of MetS. We believe that MetS patients with elevated levels of bacterial endotoxins may carry the highest risk for the development of not only micro- but also macrovascular complications.

240

High serum LPS-activity is associated with features of the metabolic syndrome in patients with type 1 diabetes
M. Nymark1,2, C. Forsblom1,2, P.-H. Groop1,2, M. Lehto1,2, on behalf of the FinnDiane Study Group;
1FinnDiane, Folkhålsan Institute of Genetics, 2Department of Medicine, Division of Nephrology, Helsinki, Finland.

Background and aims: Long duration of diabetes, poor glycemic control and the metabolic syndrome (MetS) increase the risk for diabetic complications (retinopathy, neuropathy and nephropathy). We have recently shown that elevated serum levels of bacterial endotoxins are associated with the development of diabetic kidney disease in Finnish Type 1 diabetic (T1D) patients. In addition to kidney failure, lipopolysaccharide (LPS) infusion in human or in mice induces also insulin resistance, fasting hyperglycemia, and obesity, which all are features of the MetS. In the present study, we wanted to investigate whether serum LPS-activity is associated with MetS in T1D patients with normal albumin excretion.

Materials and methods: Serum LPS activity was analysed in 624 T1D patients and 220 nondiabetic control subjects (Limulus amoebocyte lysate chromogenic end point assay, Hycult Biotechnology). T1D patients were divided into quartiles according to their LPS activity. MetS was assessed according to National Cholesterol Education Program (NCEP) criteria which included waist circumference, triglycerides, HDL-cholesterol, and blood pressure or antihypertensive medication. All patients fulfilled the criteria for hyperglycemia. Three out of five criteria were required for the diagnosis of MetS. A metabolic score (1–5) was calculated based on the number of criteria each patient fulfilled. Data is presented as mean (standard deviation) or median (inter quartile range) as appropriate.

Results: LPS was significantly higher in patients with T1D than healthy controls [57 (50-69) vs. 53 (39-68), p≤0.001]. In T1D patients, comparison was made between the highest (q4) and lowest (q1) LPS quartiles. Patients in q4 had a higher HbA1c, BMI, waist, triglycerides, cholesterol, diastolic blood pressure and lower HDL-cholesterol and insulin sensitivity (gGDR) compared to patients in q1. The overall frequency of MetS was 28% among all T1D patients. Patients belonging to the highest LPS quartile q4 had significantly higher frequency of MetS compared to patients in q1 (Table 1).

Conclusion: In the present study, we show that about one third of T1D patients with normal albumin excretion fulfill the criteria for MetS. These results indicate that Gram-negative bacterial infections could also play a significant role in the development of MetS. We believe that MetS patients with elevated levels of bacterial endotoxins may carry the highest risk for the development of not only micro- but also macrovascular complications.

Table 1. Highest and lowest LPS quartile

<table>
<thead>
<tr>
<th>Quartile</th>
<th>N (M/F)</th>
<th>Age (yr)</th>
<th>Age at Onset</th>
<th>HbA1c (%)</th>
<th>Systolic BP (mmHg)</th>
<th>Diastolic BP (mmHg)</th>
<th>Antihypertensive medication (%)</th>
<th>Waist (M) (cm)</th>
<th>Waist (F) (cm)</th>
<th>Triglycerides (mmol/l)</th>
<th>HDL-cholesterol (M) (mmol/l)</th>
<th>HDL-cholesterol (F) (mmol/l)</th>
<th>Metabolic syndrome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>146 (57/89)</td>
<td>47 (39-55)</td>
<td>18 (11-25)</td>
<td>7.4±1.4</td>
<td>137±18</td>
<td>76±19</td>
<td>36</td>
<td>91±9</td>
<td>80±9</td>
<td>0.7 (0.6-0.8)</td>
<td>1.6±0.5</td>
<td>1.8±0.4</td>
<td>16</td>
</tr>
<tr>
<td>q4</td>
<td>147 (76/71)</td>
<td>39 (31-50)</td>
<td>13 (9-21)</td>
<td>7.9±1.2</td>
<td>136±16</td>
<td>81±9</td>
<td>27</td>
<td>96±12</td>
<td>88±13</td>
<td>1.4 (1.2-1.9)</td>
<td>1.3±0.4</td>
<td>1.6±0.4</td>
<td>46</td>
</tr>
</tbody>
</table>

All values are compared to q1. *p≤0.001; †p≤0.05
Supported by: Stockmann foundation, von Frenckell foundation, Liv och Hälsa
OP 43 New oral agents

241
Dapagliflozin vs glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin: 52-week results of a double-blind, randomised, controlled trial

M. Nauck1, S. Del Prato2, K. Rohlweder3, M. Elze2, S. Parkh4; 1Diabetes Centre, Bad Lauterberg, Germany; 2University of Pisa, Italy; 3AstraZeneca, Wedel, Germany; 4CliniResearch, Koeln, Germany; AstraZeneca, Wilmington, USA.

Background and aims: Glitazide (GLIP) is commonly used as an add-on to metformin (MET), but is associated with weight gain and hypoglycaemia. Dapagliflozin (DAPA) is a selective inhibitor of sodium-glucose cotransporter 2 that inhibits renal glucose reabsorption in an insulin-independent manner. DAPA is a potential therapy to reduce hyperglycaemia in T2DM, and has been associated with weight loss. We tested the efficacy, safety and tolerability of DAPA vs GLIP as add-on to MET in patients with T2DM.

Materials and methods: This randomized, double-blind, active-controlled, parallel-group, multicentre trial (D1690C000004) included patients with T2DM inadequately controlled with oral antidiabetic drugs (OADs) including MET (HbA1c 6.5–10.0%). Prior to randomization, as needed, OADs other than MET were discontinued and MET dose was up-titrated to the nearest of 1500, 2000, or 2500 mg/day, before an 8-week stabilization period. After a 2-week placebo lead-in, patients (≥18 years) were randomized to DAPA (n=406, starting 2.5 mg/d) or GLIP (n=408, starting 5 mg/d) added to open-label MET for 52 wk. For the first 18-wk study drugs were up-titrated (GLIP to ≤20 mg/d; DAPA to ≤50 mg/d) until fasting plasma glucose <6.1 mmol/L or to the max tolerated dose. The dose at the end of titration was maintained for a further 34 wk. Down-titration was allowed at any point in cases of recurrent hypoglycaemia. Primary endpoint was change from baseline in HbA1c at 52 wk, tested for non-inferiority of DAPA vs GLIP with a predefined margin of 0.35%. Secondary endpoints included change in body weight and number of subjects reporting hypoglycaemic episodes. There was no preplanned statistical analysis for other adverse events (AEs).

Results: Mean baseline HbA1c was 7.72%. At the end of the titration period, 86.9% of DAPA and 72.5% of GLIP patients were taking max doses. Adjusted mean changes from baseline in HbA1c at 52 wk were −0.52% (95% CI −0.60, −0.44) for DAPA and −0.52% (95% CI −0.60, −0.44) for GLIP (difference [95% CI] = 0.00 [−0.11, 0.11]), confirming non-inferiority. DAPA led to weight loss (change from baseline at 52 wk −3.2 kg) vs weight gain (1.4 kg) with GLIP (difference [95% CI] = −4.7 kg [−5.1, −4.2]; p<0.0001). Significantly more patients experienced weight loss of ≥5% from baseline with DAPA (33.3%) vs GLIP (25.2%) (p<0.0001). There were reductions in systolic and diastolic blood pressure (nominal p=0.0001) and improvement in HDL (nominal p=0.0001) in DAPA vs GLIP. More patients had hypoglycaemic episodes with GLIP (40.8%) vs DAPA (3.3%) (p=0.0001). Overall AEs were similar across groups. Serious AEs were 8.6% in DAPA and 11.3% in GLIP. Actively solicited events suggestive of urinary tract infection (UTI) were 10.8% and 6.4% for DAPA vs GLIP (p=0.04), and solicited events suggestive of genital infection (GI) were 12.3% (5.3% male, 21.1% female) and 2.7% (0.4% male, 5.4% female) for DAPA vs GLIP. One UTI led to discontinuation in each of the DAPA and GLIP arms. Three cases of GI led to discontinuation in the DAPA arm.

Conclusion: In T2DM inadequately controlled with OADs including MET, the addition of DAPA was non-inferior to GLIP in improving HbA1c at 52 wk, resulted in significant weight loss and significantly fewer hypoglycaemic episodes vs GLIP, and was generally well tolerated, with a tendency to more episodes vs GLIP, and was generally well tolerated, with a tendency to more

Supported by: AstraZeneca and Bristol-Myers Squibb

242
MK-0941, a novel glucokinase activator (GKA), lowers HbA1c in type 2 diabetes (T2DM) but lacks glycaemic durability

Background and aims: GKAs are allosteric activators of the GKA enzyme that bind to the same region as naturally-occurring GKA activating mutations in humans. GKAs are being developed as novel potential treatments for patients (pts) with T2DM. Preclinical studies with the GKA MK-0941 showed robust glucose-lowering effects both acutely and chronically (up to 9 mo) in associa-

tion with hypoglycaemia (Hypo) in fasted and fed non-diabetic animals. MK-0941 was evaluated in Phase (Ph) I studies, including those up to 4 wk in pts with T2DM, as monotherapy, add-on to metformin (MET), and add-on to insulin glargine (IG). In these studies, MK-0941 was generally well-tolerated, with no significant treatment-related effects on ECGs, vital signs, or lab measures, and was shown to have a duration of action of ~4 hrs. On the background of IG, MK-0941 showed robust glucose-lowering, with a reduction in 24-hr weighted mean glucose (WMG) of ~2.7 mmol/L relative to placebo (pbo). These data supported continuing development of MK-0941 with Ph II studies in pts with T2DM.

Materials and methods: MK-0941 was evaluated in 3 randomized, double-blind Ph II trials:

• 007, a 54-wk, pbo-controlled study in 587 pts on ongoing IG therapy (± MET ≥1500 mg/d), comprising an initial 14-wk, dose-ranging (10–40 mg TID) period followed by an additional 40-wk period during which all pts were to be up-titrated as tolerated to 40 mg or pbo TID;

• 017, a 6-wk, active-controlled study in 143 pts on going MET (≥1500 mg/d), with patients randomized to MK-0941 (up to 40 mg TID) or glimepiride (GLIM; up to 8 mg QD);

• 018, a 20-wk, pbo-controlled, MK-0941 dose-titration (up to 40 mg TID) study in 68 pts on ongoing IG therapy

The primary endpoint was change from baseline in HbA1c (007 and 018) or 24-h WMG (017).

Results: In 007, at Wk 14, all MK-0941 doses studied significantly improved HbA1c and 2-hr postmeal glucose (PGM) vs. pbo, with maximal pbo-subtracted changes from baseline in HbA1c (baseline HbA1c −9.0%) and 2-hr PGM of −0.8% and −2.1 mmol/L, respectively. No significant effect on FPG was observed at any dose vs pbo. Unexpectedly, efficacy results up to 30 wks demonstrated a lack of durability in glycaemic control (despite dose up-titration of MK-0941 after Wk 14), a phenomenon not predicted based on earlier studies. MK-0941 was associated with an increased incidence of Hypo relative to pbo that was, in part, managed with down-titration of MK-0941. In 017, 6-wk treatment with MK-0941 or GLIM added to ongoing MET resulted in similar changes in 24-hr WMG from baseline and incidences of Hypo. In 007 and 017, statistically significant increases in serum triglycerides (~15% median percent increase from baseline) and the proportion of pts meeting criteria for predefined limits of change for BP measures were observed. These safety findings were not seen in preclinical or Ph I studies. In 018, change in HbA1c from baseline at Wk 20 was not significantly different between MK-0941 and pbo when added to IG. The incidence of Hypo was numerically higher with MK-0941.

Conclusion: In Ph I studies, MK-0941 showed promise as an investigational agent for T2DM. This expectation was not borne out in 3 longer-term, Ph II studies. It is unknown if the efficacy and safety profiles observed with MK-0941 were compound-specific or mechanism-based. In the light of the above, a better understanding of the GK mechanism and its downstream metabolic effects are needed to determine whether GK activation is a viable treatment target.

Supported by: Merck

243
A selective GPR40 agonist, TAK-875, augments glucose-dependent insulin secretion without affecting glucagon secretion in isolated rat and human islets

H. Y. Asahiro1, Y. Tsujihata1, K. Takeuchi1, M. Hazama2, P. Rorsman3; 1Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan, 2The Oxford Centre for Diabetes, Endocrinology and Metabolism, United Kingdom.

Background and aims: GPR40 is a G protein-coupled receptor dominantly expressed in pancreatic β cells, and is involved in free fatty acid-induced insulin secretion. TAK-875 is a GPR40-selective agonist that improves glucose control in type-2 diabetic animal models by stimulation of glucose-dependent insulin secretion. We examined the effects of TAK-875 on insulin and glucagon secretion, and on intracellular Ca2+ ([Ca2+]i) in pancreatic β- and α-cells using both human and rat intact islets.

Materials and methods: Rat and human islets were isolated by collagenase digestion. Secreted insulin and glucagon were measured using radioimmunoassay. Gene expression levels were quantified by TaqMan PCR. For [Ca2+]i measurement, isolated islets were loaded with fluorescent indicator fluo-4 AM and monitored by confocal microscopy during perfusion experiments.

Results: In static incubation, TAK-875 augmented insulin secretion from rat islets at high (16 mmol/l) but not at low (1 mmol/l) glucose. The glucose-de-
pendent insulinovertic action of TAK-875 was also shown in islet perfusion experiments: TAK-875 enhanced both 1st and 2nd phase insulin secretion in high glucose but was without effect at low glucose. In human islets, expression of GPR40 was comparable to that of GLP-1R or ABC08 (S41), and TAK-875 enhanced glucose-dependent insulin secretion to the same extent as GLP-1 in static incubation experiment. In both rat and human islets TAK-875 was without effect on glucagon secretion at both low and high glucose. Measurements of [Ca++] in intact rat and human islets showed that TAK-875 enhanced glucose-induced [Ca++] in β cells. In contrast to β cells, a cells showed oscillatory [Ca++] response at low glucose which was suppressed by high glucose concentration. The addition of TAK-875 at high glucose did not affect α-cell oscillatory [Ca++] in rat islets, whereas it augmented the inhibitory effect of glucose in human islets.

Conclusion: These data indicate that TAK-875 potentiates glucose-dependent insulin secretion via direct stimulation of [Ca++], in β cells of both rat and human islets. TAK-875 does not increase glucagon secretion or [Ca++], in both rat and human α-cells. We conclude that the glucose-lowering action of TAK-875 is mediated by β cells and that TAK-875 does not affect α-cells.

ZGN-201 (ZGN), a methionine aminopeptidase 2 (MetAP2) inhibitor, durably eliminates excess body fat in obese mice through regulation of fat metabolism and food intake

Background and aims: MetAP2 inhibitor treatment reduces body weight (BW), reduces food intake, and increases fat oxidation in obese mice; however the mechanism(s) leading to weight loss have not been elaborated. We evaluated the effects of a 9 month treatment with ZGN on body weight and metabolic parameters in obese mice.

Materials and methods: Age-matched male C57BL/6J mice were maintained on standard chow or a 60% high fat diet for 12 weeks to induce obesity (DIO; mean BW 39.9 g) prior to treatment for 9 months. After matching on the basis of body weight, animals were assigned to either HFD (DIO; n=15 mice) or HFD supplemented with ZGN-201 to provide a daily dose of ~1 mg/kg (ZGN; n=15 mice). A group of lean age-matched low-fat-fed mice were studied for comparison (CHOW; n=15 mice). Food consumption was assessed every two days for groups of three animals per cage. Body weights were assessed for each animal every other day. Plasma glucose and beta-hydroxybutyrate concentrations were measured by standard colorimetric assays. Insulin was measured for each animal every other day. Plasma glucose and beta-hydroxybutyrate concentrations were measured by standard colorimetric assays. Insulin was measured for each animal every other day.

Results: During the first 4 weeks of treatment with 1 mg/kg ZGN p.o., mice lost all excess BW (loss of 4.0±0.7 g vs a gain of 3.0±0.4 g for control (DIO) mice, p<0.01), driven by a 30% reduction in food intake during days 3 - 12 of treatment (p<0.01). Once a BW nadir was reached on day 28 (33% BW loss, p<0.01), food intake returned to a level 13 percent below DIO (0.81g vs. 0.94g/day mouse, p<0.01) and was stable for the following 8 months, during which time the ZGN treated animals remained weight stable. Following 9 months, BW of ZGN mice were 43% lower than DIO (32.5±0.8 vs 57.1±1.7g, p<0.01). Fasting plasma glucose (6.8±0.4 vs 11.2±0.8 mmol/L, p<0.01) and beta-hydroxybutyrate was increased (1.5±0.1 vs 1.0±0.1 mEq/L, p<0.05) relative to DIO, a consistent feature of MetAP2 treatment. Gene expression analysis revealed a down-regulation of key lipid synthesis genes in liver for ZGN vs DIO, or age-matched CHOW mice. The insulin- and carbohydrate-responsive genes acetyl CoA carboxylase 1 and 2, fatty acid synthase, stearoyl CoA desaturase 1, and SREBP1c all were down-regulated by 58, 77, 80, 99, and 74%, respectively vs. DIO (all p<0.005), and by 31, 71, 74, 98, and 43%, respectively vs. CHOW (ZGN vs. CHOW, all p<0.05).

Conclusion: Hyperinsulinemia in the setting of diet-induced obesity activates fatty acid biosynthesis and transport pathways, reduces adipose lipolysis, and suppresses ketone body synthesis leading to enhanced triglyceride storage. MetAP2 inhibition appears to be well-tolerated and shows promise as a strategy to reverse hyperinsulinemia and other obesity-associated metabolic adaptations while driving rapid weight loss.

OP 44 Impact of education on glycaemic outcome

245

Patient education: impact on care outcomes, resources consumption and absenteeism. International Diabetes Management Practices Study (IDMPS) data

J.J. Gagliardino1, P. Aschner2, S.-H. Baik1, J. Chan1, H. Ikovaa1, A. Ramachandran1, 2

1CENTEXA (UNLP-CONICET), La Plata, Argentina, 2Endocrinology Unit, Bogota, Colombia, 3Division of Endocrinology, Seoul, Republic of Korea, 4Department of Medicine and Therapeutics, Shatin, Hong Kong, 5Department of Internal Medicine, Istanbul, Turkey, 6India Diabetes Research Foundation, Chennai, India.

Background and aims: Achievement of diabetes treatment goals greatly depends on the patient’s active and efficient participation in the control and treatment of the disease. Even when evidence has demonstrated the value of education to obtain such participation, in many places education is considered an additional cost rather than an important component of diabetes care. This study measures diabetes care indicators and resources consumption in a population of educated and non educated persons with type 2 diabetes.

Materials and methods: The IDMPS is an international, multicenter, observational study performed in 27 countries within Africa, Asia, Eastern Europe, Middle East and Latin America. Data were collected from people with type 1 and 2 diabetes (≥18 years) seen in current medical practice in yearly cycles (2-week cross-sectional recruitment period followed by a 9-month longitudinal period for type 2 patients) for 5 years. IDMPS was performed in compliance with the Helsinki Declaration and Good Clinical Practice Standards. We currently report and compare results from 11384 people with type 2 diabetes (educated vs. non educated, 5692 in each group, paired by age, gender and diabetes duration recruited during the cross-sectional period (November and December 2006). Data were analyzed using the Wilcoxon and the chi2 tests for continuous and categorical variables, respectively.

Results: The mean age ± SD for both groups was 57.7 ± 11.1 (53.1% female), with an average BMI of 28 ± 5.2 and 8 ± 7 years of diabetes duration. Educated patients had significantly (p<0.001) higher figures of people with normal BMI (28.3 vs. 24.4%), diastolic BP <80 mm Hg (56.5 vs. 32.3%), HbA1c < 7.0% (38.1 vs. 35.4%), LDL-c < 100 mg/dL (39.5 vs. 33%) and triglycerides < 150 mg/dL (52.7 vs. 49%). The percentage of complications was low in both groups (<20%), but the educated group had significantly lower values of people with proteinuria (16.6 vs. 18%) and foot ulcer (2.4 vs. 3.5%). Visits of educated patients to specialists increased by 21%, as well as insulin treatment (40%), fasting (10%) and postprandial (32%) SMBG performance. Absenteeism was 15% lower in educated patients.

Conclusion: These data, one of the largest reported on education of people with type 2 diabetes, demonstrate that education can significantly improve treatment outcomes, with a low increase in resources consumption and a decrease in absenteeism. They also show that education is an efficient tool to improve diabetes care quality with low impact on resources consumption and additional positive impact on productivity, particularly important for developing countries that bear the heaviest part of the global diabetes epidemic.

Supported by: an unrestricted grant from sanofi-aventis

246

The effects of a structured educational programme (DAFNE) for individuals with type 1 diabetes on DKA admissions

H. Kahal1, J.D. Ng1, D.M. Mellor2, V. Bansya1, A. Righy1, S.L. Atkin1, J. Patmore3, 1Department of Diabetes and Endocrinology, Hull Royal Infirmary, 2University of Hull, 3Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, United Kingdom.

Background and aims: In the UK national diabetes audit 2007/2008, around 10% of people with type 1 diabetes had an episode of Diabetic Ketoacidosis (DKA) within 5 years. Structured education programmes for individuals with Type 1 diabetes are acknowledged as an effective means of delivering skills based training to improve knowledge of diabetes. They aim to influence behaviour and to optimise self management and reduce negative outcomes. Locally we deliver DAFNE, Dose Adjustment for Normal Eating, as a 5 day programme for individuals with type 1 diabetes. DAFNE was introduced in our centre in 2005. The aim of our study was to assess the effects of attend-
ing DAFNE on DKA admissions to an acute University Teaching Hospital in the UK.

Materials and methods: A retrospective review of all individuals with type 1 diabetes who attended a DAFNE course between Oct 2005 and July 2008. Only patients who lived locally and subsequently would have been admitted acutely to our hospital in a case of DKA were selected. We used the hospital coding system to detect all DKA admissions for the same period between Oct 2002 and July 2009.

Results: A total of 236 patients attended the DAFNE course. DKA admissions are summarized in table 1. DKA admission rate in the first year before DAFNE was 0.113 admissions/person/year (95% CI=0.073, 0.165) compared to 0.069 admissions/person/year (95% CI=0.039, 0.112) in the first year after DAFNE. Relative risk reduction 39% (95% CI=0.78%, P=0.05. For the group of patients with any DKA admission (n=24), median duration of follow-up of 24 months (range 15 - 44) before and after attending DAFNE, DKA admission rate was 2.375 admissions/person/year (95% CI= 1.789, 3.0777) before Vs 1.166 admissions/person/year (95% CI = 0.775, 1.686) after DAFNE. 212 patients had no DKA admissions before or after DAFNE within the same period of follow up.

Conclusion: Attending structured education (DAFNE) resulted in significant reduction in hospital DKA admission rate for individuals with type 1 diabetes. This suggests that offering a structured education might be a productive strategy in reducing DKA admissions in type 1 diabetes.

<table>
<thead>
<tr>
<th>Time in relation to DAFNE course</th>
<th>2nd yr before</th>
<th>1st year before</th>
<th>1st yr after</th>
<th>2nd yr after</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of DKA admissions</td>
<td>31</td>
<td>26</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>No. of patients with data available</td>
<td>217</td>
<td>230</td>
<td>236</td>
<td>163</td>
</tr>
<tr>
<td>DKA admissions per group per year</td>
<td>14.2%</td>
<td>11.3%</td>
<td>6.7%</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

247

PRODIACOR: Educative interventions improve clinical and metabolic outcomes and optimise treatment costs in an Argentinian population with type 2 diabetes

G. Pfirter, S. Lapertosa, M. Villagra, J.E. Caporale, C. Gonzalez, C. Clark Jr, J.L. Bagliodino, on behalf of the PRODIACOR Group; 1CENEXA (UNLP-CONICET), La Plata, 2Hospital Vidal, Corrientes, 3UBA, Buenos Aires, Argentina, 4Indiana University School of Medicine, Indianapolis, USA.

Background and aims: PRODIACOR is a randomized controlled clinical trial implemented in a primary care setting (Corrientes city, Argentina) aimed at measuring the impact of educative interventions upon quality of care of people with type 2 diabetes (T2DM) and to measure the cost-effectiveness of such interventions.

Materials and methods: 36 primary care physicians and 468 persons with T2DM were randomized at physician level and allocated to 4 groups: 1) patients but not physicians received an education programme, 2) physicians but not patients received an education programme, 3) both physicians and patients received an education programme, and 4) control group (physicians/ patients received no education but education material and data feedback). Patients from all groups received complete coverage of drugs and supplies; clinical, metabolic and therapeutic indicators were recorded. Educated physicians attended 4 interactive theoretical-practical modules and received a manual with all the algorithms for diagnosis, control and treatment of T2DM. Educated patient attended 4 weekly teaching units and a reinforcing session after 6 weeks, with a focus at improving health behaviour. Educational material included an individual log-book to record the self-monitored data (blood glucose and body weight) and a book with the main contents of the programme. Every patient - irrespective of his group allocation - received a check-book which served 2 purposes: a) as a reminder system for medical visits and laboratory test performance, and b) as a data collection system (record of laboratory tests, consultations or prescriptions for drugs or devices). Physicians monitored and recorded clinical data and data collection was monitored twice a year. We currently report baseline and 3-year follow-up data.

Results: The population age was (Mean±SD) 63.9 years (66% female) and diabetes duration was 10.8 years. After the 3-year follow up we recorded no significant changes in BMI but significant improvements (p<0.001) in all groups in systolic (142±17 vs. 154±15 mmHg) and diastolic (87±11 vs. 80±9 mmHg) blood pressure, FBG (8.0±2.5 vs. 7.2±2.2 mmol/L), HbA1c (7.8±1.5 vs. 7.1±0.8%) and total cholesterol (4.7±0.9 vs. 4.4±0.7 mmol/L). All these changes were significantly larger in the intervention groups. The percentage of patients at target for all these parameters was significantly (p<0.01) larger in these groups. In the educated groups, we also recorded a significant increment in combined against oral monotherapy (42 vs. 30%) and insulin use (15 vs. 9%). Drug consumption and strips for blood glucose represented 64 and 83% of the total care cost at baseline and 2-year follow up, respectively. This cost increased (113%) in the control group while it significantly decreased (11 to 20%) in the intervention groups, particularly in the patient/physician educated group.

Conclusion: Educative interventions implemented at a primary care level to people with T2DM improved the clinical and metabolic outcomes and optimized the use of drugs for DM and other associated cardiovascular risks factors, decreasing the total costs.

Supported by: NovoNordisk International Affairs.

248

An integrated hospital-community diabetes education network based on self-management school and Telecom

Z.L. Sun, L.L. Liu, B. Xie, C.P. Lu, H. Jin, Q.S. Lu;
1Department of Endocrinology, Zhongda Hospital, Southeast University, 2Medical School, Southeast University, Nanjing, China.

Background and aims: It was shown from new data that China became the global epicentre of the diabetes epidemic with 92.4 million patients. The challenge for China is to find proper ways to deal with the big problem and help diabetic patients to control the disorder. In the present study, we established an integrated hospital-community diabetes education network based on a self-management school and telecommunication system, and evaluated the efficacy of this network on the metabolic control of diabetic patients in community.

Materials and methods: A total of 524 new diagnosed diabetic patients screened in community were recruited and assigned to intensive group (n=266) or control group (n=258). The patients in intensive group were enrolled in diabetes self-management school located in university hospital first to receive a five sequential days diabetes education course which including diabetes knowledge and diabetes self-management skills delivered by multidisciplinary teacher such as physicians, nurse, dietitian and podiatrist. After graduated from this one week duration school patients were back to community and followed up by community doctor and got subsequent regular advice based on educational focus (information, lifestyle behaviors, glucose monitoring and self-management skills) with telephone, short messages or internet. In the control group, subjects received common education lecture for a week for up to five weeks followed by regular advice. Outcomes were classified as knowledge, self-management skills and glycemic control in one year using questionnaires and laboratory data.

Results: All patients aged from 9 to 79 years, and average age was 53.19±12.67 years (male 274, female 250), there were no significant difference between two groups in age, gender, diabetes duration, education level, work status, type of insurance, HbA1c, blood pressure, BMI and lipid profile at baseline. After intervention with the integrated diabetes education network, the scores for diabetes knowledge and self-management skills were significantly increased from baseline and higher than control group (P<0.05). Mean HbA1c level was reduced from baseline by 2.43% in intensive group but 1.61% in control group. The percentage of patients with HbA1c<6.5% was significantly higher than control group (68.82% vs. 18.53%, P<0.01). The rate of patients’ BMI meeting criterion (Male 25kg/m², Female 24kg/m²) was elevated from 54.52% to 61.24% in intensive group(P<0.05). However, there were no significant changes in control group.

Conclusion: Evidence supports the positive effectiveness of the integrated hospital-community diabetes education network on knowledge and self-management skills, finally the better glycemic control was demonstrated.

Supported by: Jiangsu Health Science and Technique Foundation
OP 45 Brain effects on weight regulation and metabolism

249

Nesfatin-1 regulated oxytocinergic signalling in the paraventricular nucleus causes anorexia via melanocortin pathway

Y. Maegima1, U. Sekhara1, S. Suyama1, D. Kohn1, T. Onaka1, M. Koike2, Y. Uchiyama1, T.L. Horvath3, M.O. Dietrich3, M. Morit4, T. Yada5; 1Physiology, Iuchi Medical University, Shimotsuke, 2Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo, Japan, 3Yale University School of Medicine, New Haven, USA, 4Gunma University, Maebashi, Japan.

Background and aims: Nesfatin-1 is a recently discovered anorectic peptide derived from nucleobindin2. Nesfatin-1 is localized in several brain areas including the hypothalamic paraventricular nucleus (PVN). Starvation decreases NUCB2 mRNA specifically in the PVN. However, the mechanism underlying anorectic action of nesfatin-1 remains unknown. The aim of this study is to clarify the neural pathway through which nesfatin-1 regulates feeding.

Materials and methods: Cytosolic Ca2+ concentration ([Ca2+]i) in single neurons were measured with fura-2 combined with immunocytochemical cell identification. The guide cannula was placed stereotaxically into the third ventricle (3V) in Wistar rats or Zucker fatty rats. Oxytocin (Oxt) releases from PVN slices were measured by radioimmunoassay.

Results: After 3V injection of nesfatin-1, f-FOS was induced in several hypothalamus nuclei including the PVN and in the brain stem nuclei tractus solitarius (NTS). Intra-PVN injection of nesfatin-1 decreased food intake, suggesting that PVN was one of the target sites for nesfatin-1 induced anorexia. 3V nesfatin-1 injection induced f-FOS specifically in the PVN neurons. In the PVN, nesfatin-1 increased [Ca2+]i in single neurons immunoreactive to Oxt, nesfatin-1 and both. In the PVN slices, nesfatin-1 stimulated Oxt release. Immunoelectron micrographs revealed nesfatin-1 specifically in the secretory granules of PVN neurons, and immunono-neutralization against endogenous nesfatin-1 suppressed Oxt release in the PVN slices. These results suggested the paracrine and/or autocrine action of nesfatin-1 in the PVN. Nesfatin-1-induced anorexia was suppressed by an Oxt receptor antagonist. Furthermore, Oxt-induced anorexia was abolished by SHU9119, a melanocortin 3/4 receptor (MC3/4AR) antagonist, suggesting that MC3/4AR is involved in the downstream of nesfatin-1 regulated Oxt neurons. Moreover, Oxt terminals were closely associated with proopiomelanocortin (POMC) neurons in the NTS, and Oxt increased [Ca2+]i in single POMC neurons in the NTS. In Zucker fatty rats whose leptin receptors are mutated, 3V injection of Oxt induced anorexia that was blocked by SHU9119. The incidence of [Ca2+]i responses to leptin in NTS POMC neurons was markedly reduced in Zucker fatty rats compared with lean rats. In contrast, the incidence of [Ca2+]i responses to Oxt in NTS POMC neurons was the same between Zucker fatty and lean rats. This result indicates that Oxt can activate the NTS POMC neurons under leptin-resistant conditions.

Conclusion: Nesfatin-1 activates the activity and secretion of Oxt neurons in the PVN, and Oxt activates POMC neurons in the NTS. This pathway can function independently of leptin signaling and may provide a therapeutic target for treatment of leptin-resistant obese humans showing hypophagia.

Supported by: JSPS

250

Role of brain insulin signalling on tissue-specific glucose disposal

C.P. Cooman1, N.R. Biermasz1, L.M. Havelkes1, J.A. Romijn2; 1Endocrinology, Leiden University Medical Center, 2The Netherlands Organization for Applied Scientific Research - BioSciences, Gausbus Laboratory, Leiden, Netherlands.

Background and aims: Circulating insulin inhibits hepatic glucose production and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin receptors are required for the inhibitory effects of circulating insulin on endogenous glucose production. In this study, we examined the central effects of circulating insulin on tissue-specific glucose uptake.

Materials and methods: Tolbutamide, an inhibitor of ATP-sensitive potassium channels, was infused in the lateral ventricle (i.c.v.) in hyperinsulinemic eucloric clamp conditions in chow-fed and in diet-induced obese C57Bl6/J mice. Whole body glucose uptake was measured by D-[3H]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-D-[3H]glucose uptake.

Results: I.c.v. administration of tolbutamide impaired the ability of circulating insulin to inhibit endogenous glucose production by ~20% (p=0.01). Surprisingly, i.c.v. tolbutamide infusion also diminished insulin-stimulated glucose uptake by muscle (~59%; p=0.05), but not by heart or adipose tissue. In contrast, in diet-induced obese mice, high fat feeding abolished the inhibitory effect of i.c.v. tolbutamide on insulin-stimulated glucose production or muscle glucose uptake.

Conclusion: Circulating insulin stimulates glucose uptake in muscle in part through effects via ATP-sensitive potassium channels in the central nervous system, similarly to the effects on hepatic glucose production. In diet-induced obese mice, these effects of circulating insulin via the central nervous system are absent. These observations stress the role of the central effects of circulating insulin in normal physiological conditions and in diet-induced insulin resistance.

Supported by: TI Pharma

251

Lipoprotein lipase inhibition in rat hippocampus leads to increase in body weight, fat mass, and basal insulinemia without change in food intake

A. Picard1, C. Rouh2, C. Magnan1, C. Cruciani-Guglielmacci; 1Université Paris 7, France.

Background and aims: Regulation of energy balance implies peripheral signals (hormones, nutrients) conveying to specialized brain areas. Among them, the hypothalamus and the hindbrain contain both glucose and free fatty acids (FFA) sensitive neurons, which have been demonstrated to be part of the central integration of circulating signals of hunger and satiety. However other brain structures associated with the higher-order behavioral response, such as hippocampus, may also participate on the processing of these signals. Hippocampus is densely populated with both ghrelin, leptin and insulin receptors as well as with lipoprotein lipase (Lpl). Thus we postulated that triglycerides hydrolysis by lipoprotein lipase within the hippocampus may play a role in the control of energy homeostasis through local FFA delivery.

Materials and methods: Osmotic minipumps were stereotaxically inserted in the hippocampus of male Wistar rats. They received a chronic infusion of tylosepol (an inhibitor of Lpl activity, 10 µg/day, TYL) or saline (SAL) during 28 days. Food consumption and body weight were measured daily and body composition was analyzed weekly. Between day 20 and day 24, rats were placed in metabolic cages to study metabolic parameters. On day 23, ghrelin orexigenic response (10 nmol IP) was evaluated. On day 27, feeding response to mild hypoglycemia induced by insulin (1 U/rat) was also analyzed. In another series of experiment, rats were imposed a 24 hour fast. Hippocampus and cortex were collected for the measurement of Lpl activity.

Results: 28 days after minipump implantation, the Lpl activity in hippocampus of TYL rats was decreased by 26% (TYL: 0.91 ± 0.03 U/mg vs. SAL: 1.24 ± 0.08 U/mg, p<0.005); TYL rats have gained significantly more weight (TYL: 27.3 ± 1.8% vs SAL: 13.6 ± 2.8%; p<0.005) than SAL rats. Total energy intake was stable. Increase in fat mass (TYL: 20.6 ± 2.4% vs SAL: 9.5 ± 1.5%, p<0.05) accounted for most of body weight gain. This increased fat storage was neither due to a decreased energy expenditure as measured by indirect calorimetry nor to a decrease in total activity. Glycemia, circulating FFA and TG were similar between the two groups, whereas TYL rats displayed basal hyperinsulinaemia (TYL: 694.1 ± 42.7 µIU/ml vs SAL: 485.6 ± 40.6 µIU/ml, p<0.05). Food intake measurements after a 24 hour fast or after an insulin challenge were the same in SAL and TYL rats, whereas TYL rats displayed a decreased response to ghrelin (TYL: 5.6 ± 4.6 g/kg vs SAL: 13.9 ± 5.8 g/kg after 4 hours, p<0.05), indicating a potential adaptive mechanism to survive food intake and further weight gain.

Conclusion: The inhibition of hippocampal Lpl activity by a chronic tylosepol infusion led to a gain in body weight without any modification of food intake, plasma TG and FFA, and antagonized the orexigenic action of ghrelin. Moreover, tylosepol-infused rats displayed a hyperinsulinaemia without any change in blood glucose, suggesting an autonomic adaptation leading to mild peripheral insulin resistance. Taken together these results support the idea that hippocampal TG hydrolysis might directly influence energy balance regulation at both the metabolic and behavioral levels.
Hypothalamic leptin improves mitochondrial function in soleus muscle: The role of PI3K signalling
E.A. Roman1, A.P.S. Arruda2, T. Romanatto2, C. Solon3, J. Morari1, C.E.C. Nuñez1, L.A. Veloso1, M.A. Torsoni1
1University of Campinas, 2University of São Paulo, 3University of Bras Cubas, Mogi das Cruzes, Brazil.

Background and aims: Complex metabolic diseases such as obesity and type 2 diabetes mellitus (DM2) result from multiple interactions between genetic and environmental factors. DM2 is characterized by insulin resistance in skeletal muscle and other insulin-sensitive tissues, which is accompanied by defective insulin secretion. Muscle insulin resistance is manifested by a reduced capacity of insulin to stimulate glucose uptake due to impaired intracellular signaling. Additionally, insulin-resistant subjects present a reduced capacity to oxidize glucose and lipids in muscle which, at least in part, is due to impaired mitochondrial activity as evidenced by reduction of mitochondrial oxidative and phosphorylative activities. Acting in the hypothalamus, anorexigenic hormones such as leptin and insulin, as well as nutrients can modulate peripheral glucose homeostasis. Some of these effects depend on neural control of hepatic gluconeogenesis. However, the mechanisms by which hypothalamic leptin leads to improved glucose homeostasis in skeletal muscle are incompletely known. The aim of this study was to investigate the molecular mechanism by which ICV leptin improves glucose homeostasis in skeletal muscle.

Materials and methods: Rats were divided in three groups: i) Control (Sa); ii) Leptin (Leptin-ICV); and, iii) Ly (Ly294002 + Leptin-ICV). The expressions of PGC1α, Cytochrome c and UCP3 expression was performed by Western Blotting; Citrate synthase activity was analyzed by an spectrophotometric assay and mitochondrial respiration was measured in soleus muscle fibers, permeabilized with saponine, by a high-resolution respirometry assay (OROBORUS). All procedures were approved by the Ethics Committee at the University of Campinas.

Results: The central administration of leptin increased PGC1α expression (>100%) in skeletal muscle and the ICV administration of Ly 294002 (inhibitor of PI3K) prior to leptin inhibited this effect. Similarly was observed in Cytochrome c and UCP3 expressions, which increased 480% and 43%, respectively, after ICV leptin injection if compared to control group and the previous administration of Ly (ICV) reduced these effects. In addition, leptin injection (ICV) increased the activity of Citrate synthase (80%) and mitochondrial respiration (18%) compared to control group.

Conclusion: Leptin injection (ICV) is able to modulate the expression of proteins and mitochondrial function in the skeletal muscle in a hypothalamic PI3K-dependent manner.

Supported by: CNPq / FAPESP

OP 46 Prediction of type 2 diabetes: Can we do better than the usual suspects?

Low-cost screening model with standard cardiometabolic risk factors for prediction of incident type 2 diabetes: the Whitehall II study
A. Heraclides1, D. Vitsisn, E.J. Brunner2, A.G. Tabák2, M. Kivimäki2, J. Ferrie3, D.R. Witte4
1Epidemiological Research, Steno Diabetes Center, Gentofte, Denmark, 2Department of Epidemiology and Public Health, UCL, London, United Kingdom, 31st Department of Internal Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary.

Background and aims: Accurate prediction of incident type 2 diabetes (T2DM) is pivotal in enhancing strategies for diabetes prevention and cardiovascular risk management. Current strategies generally include a blood sample in a first or second stage, but few studies have systematically compared the accuracy of multiple alternative predictive models. We examined the predictive capability of 5 screening models for incident T2DM in incremental stages of accessibility and cost.

Materials and methods: We tested the following models in a cohort of 4352 men and women aged 39-64 years, free from diabetes (the Whitehall II study): (A) questionnaire only (age; gender; BMI; family history of diabetes; use of antihypertensive/lipid lowering medication); (B) clinical (previous model + blood pressure + waist circumference); (C) low-cost biomarker (previous + fasting glucose + fasting triglycerides + total cholesterol + HDL-cholesterol); (D) medium-cost biomarker (previous + fasting insulin); and (E) high-cost biomarker (previous + ApoA1/B + lipoprotein(a) + CRP + IL-6 + fibrinogen + von Willebrand factor + factor VII).

Results: Multivariate Cox regression analysis was used to estimate predictive models for 20-year incident T2DM (574 cases). We used a 2-step approach: (i) Receiver Operating Characteristics (ROC) analysis for assessing the improvement in prediction of each subsequent model; and (ii) Based on the results from ROC analysis, backwards elimination analysis for deriving a parsimonious model without reducing predictive performance. The Area Under the ROC Curve (AUC) was higher in all 3 screening models requiring a blood sample (Models C-E) compared to the questionnaire/clinical screening models (Models A and B) (table 1). Compared to model A, the clinical model (B) was not better in predicting incident T2DM (AUC difference=0.001). The low-cost biomarker model (C), improved significantly Model B (AUC difference=0.054). Only marginal improvement was found beyond Model C (addition of fasting insulin and detailed lipid/inflammatory markers) (AUC difference=0.008 and 0.007 respectively). In backwards elimination, we estimated a parsimonious model, which did not reduce the prediction of Model C, containing age, gender, BMI, family history of diabetes, use of antihypertensive/lipid lowering medication, fasting glucose, fasting triglycerides and HDL-cholesterol.

Conclusions: A questionnaire/clinical screening model for predicting incident T2DM is substantially improved by a low-cost blood sample test containing fasting glucose, triglycerides and HDL-cholesterol. Improvements to this model by addition of higher cost biomarkers are not of a clinically relevant magnitude.

Table 1 Area under the ROC curve for additive screening models

<table>
<thead>
<tr>
<th>Predictive models for incident type 2 diabetes</th>
<th>Area under curve (95% CI)</th>
<th>p for model improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaire only - model A (sex + age + family history of diabetes + use of antihypertensive or lipid lowering medication + BMI)</td>
<td>0.72 (0.69; 0.75)</td>
<td>n/a</td>
</tr>
<tr>
<td>Clinical - model B (questionnaire + blood pressure + waist circumference)</td>
<td>0.72 (0.69; 0.75)</td>
<td>0.72</td>
</tr>
<tr>
<td>Low-cost biomarker - model C (clinical model + fasting glucose + triglycerides + total cholesterol + HDL-cholesterol)</td>
<td>0.78 (0.75; 0.81)</td>
<td><0.001</td>
</tr>
<tr>
<td>Medium-cost biomarker - model D (low-cost biomarker + fasting insulin)</td>
<td>0.79 (0.76; 0.82)</td>
<td>0.001</td>
</tr>
<tr>
<td>High-cost biomarker - model E (medium-cost biomarker + ApoA1/B + Lp(a) + CRP + IL-6 + fibrinogen + vWf + factor VII)</td>
<td>0.79 (0.76; 0.82)</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Supported by: MRC; ESRC; BHF; HSE; DOH; NIH; AHRQ; MACARTHUR
254

The risk of incident diabetes for all possible combinations of metabolic syndrome components

G.A. Nichols1, E.J. Moler2;
1Kaiser Permanente Center for Health Research, Portland, 2Tethys Bioscience, Inc, Emeryville, USA.

Background and aims: Because metabolic syndrome (MetS) is defined as any three of five criteria, not all persons with MetS have the same cluster of risk factors. Whether the various combinations of criteria confer equal diabetes risk is not known. Our aim was to estimate the risk of incident diabetes simultaneously for all possible combinations of MetS components.

Materials and methods: Using electronic medical record data from a group model HMO, we identified an observational cohort of 58,056 non-pregnant adults age ≥ 30 with no evidence of diabetes and all MetS components measured in 2003-2004. Subjects were followed for up to 5 years for onset of type 2 diabetes. We estimated age and sex-adjusted diabetes incidence for all possible combinations of MetS components.

Results: The overall incidence rate of diabetes was 12.5/1,000 person-years (95% CI 12.1-12.9). The presence of each individual MetS component was associated with significantly greater diabetes incidence than absence of the component. The greatest relative difference was found among those with impaired fasting glucose, with an age and sex-adjusted incidence of 37.4/1,000 person years (36.0-38.9) compared to 3.8 (3.6-4.1) among those with normal glucose. Although persons with 1 or 2 MetS factors comprised about 50% of the sample, diabetes occurred in fewer than 5% of these individuals. While the proportion of the sample declined with each additional factor, the proportion developing diabetes increased precipitously with the number of factors present, reaching 28% among those with all 5 components. However, there was wide variation within each count of factors. Depending on which factors were present, incidence varied by >9-fold in patients with 3 risk factors, >5-fold in patients with 4 factors, and >4-fold in patients with ≤3 factors. Specifically, there was a clear separation between combinations that did and did not include hyperglycemia. In fact, all two-factor combinations that included hyperglycemia had higher incidence rates than three- or four-factor combinations that did not. For example, incidence in patients with only hyperglycemia and obesity was 21.7/1,000 person-years (95% CI 17.4-27.1), compared to 11.4 (9.8-13.4) among those with the four component combination of obesity, hypertension, low HDL, and elevated triglycerides.

Conclusion: Diabetes risk increases exponentially with MetS factor count, but varies substantially depending upon which factors are present. Hyperglycemia, regardless of the presence of MetS, is a much stronger predictor of incident diabetes than MetS without hyperglycemia.

Supported by: Tethys Bioscience, Inc

255

Physiological predictors of changes in glucose tolerance in a non-diabetic population: the RISC Study

A. Natali1, E. Muscelli1, B.D. Astiarraga1, A. Marz1, E. Ferrannini1, on behalf of the RISC Study Investigators;
1Department of Internal Medicine, University of Pisa, 2Institute of Biomedical Engineering, National Research Council, Padova, Italy.

Background and aims: Previous studies using the euglycaemic insulin clamp technique have reported that both insulin resistance and a reduced acute insulin response to intravenous glucose (AIR) predict incident diabetes in isolates (the Pima Indians). We undertook to systematically analyse the relationship between insulin sensitivity/secretion and spontaneous changes in glucose tolerance in non-diabetic subjects.

Materials and methods: In 1,048 subjects from the RISC cohort (561 women and 467 men, mean age 44 years) followed up for 3 years, we measured baseline insulin sensitivity (by a 240 pmol/min·m² insulin clamp) and β-cell function (i.e., fasting insulin secretion rate, total insulin output and β-cell glucose sensitivity, by mathematical modelling of the C-peptide response to a standard OGTT). Subjects were categorised as NGT, IFG, IGT or T2D and then grouped into stable NGT (if they were NGT both at baseline and follow up, n=809), stable non-NGT (if they were IFG or IGT on both occasions, n=49), progressors (if their glucose tolerance deteriorated, n=129) or regressors (if their glucose tolerance improved, n=61).

Results: In comparison with stable NGTs, progressors, regressors and stable non-NGTs presented a similar clinical (higher prevalence of familial diabetes, older age and higher WHR, fasting and 2-hour plasma glucose, fasting and 2-hour plasma insulin concentrations) and metabolic phenotype (lower insulin sensitivity and reduced β-cell glucose sensitivity with increased fasting secretion rate and total insulin output). In a multivariate logistic model, both insulin sensitivity and glucose sensitivity were independent negative predictors of progression (odds ratios [95% CI] of 0.70 [0.52-0.93] and 0.42 [0.28-0.65], respectively), while WHR and fasting plasma glucose were positively associated with progression. The same set of baseline variables also predicted regression. At follow up, insulin sensitivity and β-cell glucose sensitivity were unchanged in the stable NGTs and non-NGTs, declined in the progressors and improved in the regressors.

Conclusion: Among non-diabetic Caucasians, non-NGTs, progressors and regressors appear to derive from a common pool of at-risk subjects, in whom reduced insulin sensitivity and impaired β-cell glucose sensitivity predict deterioration of glucose tolerance. Changes in both insulin sensitivity and β-cell glucose sensitivity mark progression as well regression of dysglycaemia.

Supported by: EU grant QLG1-CT-2001-01252; AstraZeneca, MerckSerono

256

Serum fibroblast growth factor 21 and triglycerides independently predict the development of type 2 diabetes

B. Angelin1, A. Hilding1, C.-G. Östenson2, H.A. Bina2, A. Kharitonenkov2, M. Rudling1;
1Department of Endocrinology, Metabolism & Diabetes, Karolinska Institutet and University Hospital, Stockholm, Sweden, 2 Lilly Research Laboratories, Indianapolis, USA.

Background and aims: There is a need to identify novel factors that more accurately predict the risk of developing type 2 diabetes (T2D). Circulating levels of both fibroblast growth factors 21 and 21 (FGF19 and FGF21) show a large interindividual variation in normal humans. Case-control studies have reported correlations between FGF21 and impaired glucose tolerance, insulin resistance, hypertriglyceridaemia, obesity and/or T2D. We tested the hypothesis that fasting levels of FGF19, FGF21 or triglycerides could predict the subsequent development of prediabetes (IFG, IGT) or T2D in a healthy cohort followed for a ten-year period.

Materials and methods: In the Stockholm Diabetes Prevention Program (SDPP), a total of 2227 men and 2205 women with normal glucose tolerance were followed-up after ten years. We identified 461 subjects with abnormal glucose regulation (163 with T2DM, 97 of which were newly diagnosed) and compared them with 479 matched controls that remained normal at follow-up. Serum levels of FGF19 and FGF21 were analyzed by ELISA.

Results: At baseline, all subjects (n=940; 396 F and 544 M), mean age was 48.2 yr, BMI 26.3, fasting glucose 4.73 mM, cholesterol 6.23 mM, triglycerides 1.45 mM, FGF19 139 pg/mL, and FGF21 193 pg/mL. At follow-up, subjects with prediabetes or T2D had significantly higher levels of FGF21, 262 and 328, respectively, compared to controls,179; P<0.001 and of triglycerides (1.83 and 2.07 versus 1.33; P<0.001); FGF19 and cholesterol levels were similar, and there were no gender differences. When baseline levels were analyzed in the groups, FGF21 levels were higher in both women and men who later developed prediabetes (213; 228) or T2DM (241; 286) compared to controls (150; 165). This was also seen for triglycerides (prediabetes, F/M, 1.45: 1.86; T2DM, 1.69: 1.89 versus controls 1.11: 1.32), all differences were highly significant (P<0.001). FGF19 or cholesterol did not show any relation to development of glucose intolerance or T2DM. Adjusted for age, BMI, physical activity, smoking, and socioeconomic position, FGF21 and triglyceride level
Diabetic nephropathy (DN) is a leading cause of morbidity and mortality in people with diabetes mellitus. Current clinical methods to predict development of diabetic kidney disease are subject to measurement variability and lack predictive power. In several recent studies, it has been shown that urinary proteome analysis enables the definition of biomarkers specific for chronic kidney disease (CKD) in general and for DN; both models includes in the majority different collagen fragments. These might prove valuable in clinical practice, but confirmation of their diagnostic value in independent patient population not included in the original samples used in discovery is required to support their validity and robustness. Therefore, we aimed to validate these biomarkers and biomarker-based models in an independent blinded set of 148 samples, collected prospectively in multiple centers not involved in the original identification of biomarkers to rule out any center-based bias.

Materials and methods: Cases of diabetic nephropathy were defined as albuminuria >300 mg/d and diabetic retinopathy (n=66). Controls were matched for gender and diabetes duration (n=82). High-resolution capillary-electrophoresis coupled to time-of-flight mass-spectrometry (CE-MS) was used to profile the low-molecular-weight proteome in urine of these type 2 diabetic patients.
patients. CE-MS spectra were evaluated employing the previously developed biomarker models for all case and control patients in a blinded setting.

Results: Urinary profiling using CE-MS was successfully applied to urine samples of diabetic patients with or without existing DN. Models for the diagnosis of CKD in general and for the identification of patients with DN in particular, were validated with this multicentre blinded test set and allowed diagnosis of DN with high accuracy (AUC = 0.94) (see figure). Furthermore, 61 of the 65 previously identified peptides (94%) were significantly different between these cases and controls.

Conclusion: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin.

Figure A: Sensitivity and specificity of urinary collagen fragments in subjects with and without diabetic nephropathy.

Figure B: Receiver operating characteristic (ROC) curve for urinary collagen fragments.

260

Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology

J. Siwy1, D.M. Maahs2, H. Mischak1,2, P. Rossing4, E. Schiffer4, J.K. Snell-Bergeon3, P. Zürbig1,1

1Mosaïques Diagnostics Inc., Hannover, Germany, 2Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, USA, 3BHF Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom, 4Steno Diabetes Center, Gentofte, Denmark.

Background and aims: Although all forms of diabetes mellitus (DM) are characterized by hyperglycemia and β-cell dysfunction, the pathogenesis of DM is variable, comprising different degrees of β-cell dysfunction, apoptosis, inflammation and immune responses. Proteome analysis holds the promise of delivering substantial insight into the pathophysiological changes associated with different types of diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes, and diabetes-associated micro- and macrovascular complications. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and specifically associated with either type 1 (T1D) or type 2 diabetes (T2D).

Materials and methods: The low-molecular-weight urinary proteome of 902 subjects from 9 different clinical centres, 315 controls and 587 patients with T1D (n=299) or T2D (n=288), was analyzed using capillary-electrophoresis mass-spectrometry.

Results: A previously discovered panel of 261 urinary biomarkers (102 were sequenced) based on 205 subjects distinguished DM subjects from control subjects with 94% (95% CI: 92-95) accuracy in 697 independent subjects. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n=68) and T2D (n=42) was employed, enabling tentative identification of 204 biomarker candidates (68 were sequenced) differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n=108) with 93% (95% CI: 86-97%) accuracy. When applied to patients with impaired renal function (n=369) accuracy was 91% (95% CI: 88-94%). Most of the biomarkers significantly associated with diabetes, and those that are apparently diabetes-type specific, were specific collagen fragments, indicating highly significant changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional indications for chronically sustained renal injury mediated by inflammatory processes and pro-thrombotic alterations were observed.

Conclusion: These findings, based on the largest proteomic study ever performed on subjects with DM, pinpoint potential differences in the pathophysiology of T1D and T2D that may improve understanding of diabetes and diabetes-associated complications and result in improved therapeutic strategies.

Supported by: PREDICTIONS, InGeniousHyperCare
OP 48 Biomarkers of type 1 diabetes

261

Age-related and islet autoimmunity associated differences in metabolites of the amino acid and lipid metabolism in children at high risk for type 1 diabetes

M. Pfieger1, A.-G. Ziegler1, P. Achenbach1, M. Orešić2
1Institut für Diabetesforschung Helmholtz Zentrum München, Germany, 2VTT Technical Research Centre of Finland, Espoo, Finland.

Background and aims: Data from the BABYDIAB study demonstrate that islet autoimmunity in children of mothers or fathers with type 1 diabetes (T1D) is initiated early in life with two phenotypically distinct peaks of antibody incidence before age 4 and after age 7 years. Changes in lipid and amino acid metabolism are suggested to precede the development of T1D. The aim of this study was to examine whether there are changes in serum metabolite profiles (metabolomics) which are characteristic for early (< 4 years) compared to late (> 7 years) initiation of islet autoimmunity.

Material and methods: Metabolites of the amino acid and lipid metabolism were measured in samples from 70 BABYDIAB children, including 13 who developed islet autoantibodies (AA) early (< age 4 years) and 22 who developed islet AA late (≥ age 7 years), and 35 age, date of birth, and HLA-matched children who remained islet AA negative (controls). Metabolites and lipids were measured quantitatively in the first antibody-positive serum sample or in aged-matched samples of controls using UPLC coupled with UV detection and UPLC-MS, respectively. The 511 detected molecular lipids were clustered into 12 groups (LC). Concentrations were compared using the Mann-Whitney-U-Test.

Results: Specific changes in metabolite and lipid profiles were identified in BABYDIAB children. These included both age-related and antibody appearance-related. Regardless of antibody status, children aged >7 years had higher concentrations of glutamine (p=0.004), arginine (p=0.008), glycine (p=0.0001), and citric acid (p=0.006) as compared to children <4 years of age. Similarly, older children had higher concentrations of LC 2 and 4 which represent proinflammatory lysophosphatidylcholines and sphingomyelins, as compared to younger children (p<0.001 and p=0.002), respectively, whereas younger children had higher concentrations of lipids in LC 10, containing saturated triglycerides, as compared to older children (p<0.0001).

Conclusion: These data demonstrate that there are changes in metabolic profiles that appear specifically associated with the appearance of islet autoantibodies and with the age of antibody seroconversion. These changes may reveal important novel pathways related to the pathogenesis of autoimmune diabetes. Additional marked age related changes of metabolomic profile which are independent of autoimmunity indicate that age is an important confounder for any future studies using metabolomics technology. Supported by: EU(FP7-HEALTH-2007;DIAPREPP),KKNIDm funded by BMBF

262

A distinct metabolic profile at birth identifies children developing type 1 diabetes before 20 years of age

D. La Torre1, Å. Lernmark1, P. Spigé1, H. Elding Larsson1, S.A. Iverson1, M. Orešić2
1Clinical Sciences, Lund University, Malmö, Sweden, 2VTT Technical Research Centre of Finland, Espoo, Finland.

Background and aims: Islet autoantibodies are early markers of developing type 1 diabetes and are useful for disease prediction. Recent data suggests that metabolomics analysis may uncover metabolic disturbances prior to seroconversion and clinical diabetes, and that specific alterations may already be detectable at birth. The aim of this study was to confirm evidence of altered metabolic pattern at birth in children who developed type 1 diabetes before 20 years of age.

Materials and methods: Unbiased metabolomics analysis was applied in a case-control analysis of paired cord blood samples from 24 children diagnosed with type 1 diabetes at a median age of 17 years (range 3.2-18.8) and an equal number of healthy controls matched for age (year/month/day) and gender. Cord blood serum from the cases and controls was collected in 1970-1991. All samples were stored frozen at -20°C and had been subjected to an equal number of freeze-thaw cycles. Children born to diabetes mothers were excluded. The analysis of coded samples was performed randomly by gas Chromatography/Time-of-Flight Mass Spectrometer (Pegasus 4D; Leco). The potential effect of long-term storage on metabolites was investigated through Spearman’s rho correlation between metabolite concentrations and sample age. Paired case-control differences were calculated with nonparametric Wilcoxon rank-sum test (p<0.05 considered significant).

Results: The type 1 diabetes progression related changes were detected in specific groups of metabolites. The cord blood serum metabolome from the children who develop type 1 diabetes showed 1.2-1.4 -fold higher concentrations of several fatty acids compared to the controls: linoleic acid p=0.008, oleic acid p=0.002, lauric acid p=0.017, palmitoleic acids p<0.02. Oleic and palmitic acid did not differ between cases and controls. Fatty acids did not correlate with the years of storage except for lauric acid that increased up to 2-fold in the oldest samples (p<0.001) in cases as well as in controls. There was no significant correlation between metabolite concentrations and age at diagnosis or maternal age in the case group.

Conclusion: Although storage time and conditions are critical in metabolomics studies for the potential confounding effects of lipolysis and proteolysis on the metabolites, our samples from carefully matched cases and controls enabled the use of older samples. In our study the metabolite pattern at birth distinguished children who developed type 1 diabetes from the matched control children who remained healthy. The evidence of these early metabolic alterations may give new insights into type 1 diabetes early pathogenesis and identify potential triggering factor of islet autoimmunity possibly involving gestational events. The identification and validation of key metabolites marking the progression to islet autoimmunity and clinical onset may also provide new markers for disease prediction. Supported by: DIAPREPP

263

GAD65- and (pro)insulin-specific CD4+ T cells detected by MHC class II tetramers in diabetes-associated autoimmunity

Novel triples mix radio binding assay for the ZnT8 (ZnT8RWQ) autoantibody variants in children with newly diagnosed diabetes

F. Vaziri-Sani1, A.J. Deli1, H.E. Larsson1, B. Lindblad1, A. Carlsson1, G. Forsander1, S.A. Ivansson1, J. Ludvigsson1, C. Marcus1, Å. Lernmark1, 1Department of Clinical Sciences, Lund University, Malmö, 2Department of Pediatrics, The Queen Silvia Children’s Hospital, Göteborg, 3Department of Pediatrics, Lund University, Linköping University Hospital, Department of Clinical and Experimental Medicine, 4Department of Pediatrics, Karolinska University Hospital, Huddinge, Sweden.

Background and aims: Autoantibodies (A) against the ZnT8 transporter are common in type 1 diabetes. The ZnT8A analyses are complicated by the fact that it is not only one but three autoantigens representing ZnT8R (arginine), ZnT8W (tryptophan) and ZnT8Q (glutamin) at amino acid position 325. It is important to detect all ZnT8A variants not only to predict type 1 diabetes but also to select subjects for prevention and intervention clinical trials. The aims were: 1) to develop an autoantigen triple mix radio-binding assay (RBA) to screen for ZnT8A; 2) to identify the individual ZnT8-RWQA reactivity and 3) to validate the triple mix ZnT8A RBA in children with newly diagnosed type 1 diabetes.

Materials and methods: Serum or plasma samples were obtained from 1868 patients in the on-going Better Diabetes Diagnosis (BDD) study. BDD is a nationwide prospective cohort study that involves newly diagnosed diabetes children who are <18 years from 40 (95%) pediatric clinics in Sweden. The cDNA coding for the C-terminal end of each variant was subcloned into the high efficiency in vitro transcription translation pTNT vector (Promega, Madison, WI, USA) following site-directed mutagenesis. The ZnT8 variants were labelled with 35S-methionine and used at 425 cpm/µL in standard RBA separating free from autoantibody-bound autoantigen with Protein A-Sepharose. All samples were first analyzed for autoantibodies to each individual variant of ZnT8. Bound radioactivity was converted into in-house units using a standard curve generated negative controls and by a type 1 diabetes serum standard with high reactivity for each of the ZnT8R, ZnT8W and ZnT8Q antigens. All samples were also analyzed in a triple mix RBA to detect all three variants (ZnT8-RWQA) simultaneously. The ZnT8-RWQA RBA was performed after the three variants were mixed at a final concentration of 425±25 cpm/µL. The bound radioactivity were converted into in-house units using negative controls and a type 1 diabetes serum standard with high reactivity for all three ZnT8A variants.

Results: We examined sera from 1868 (53% males) newly diagnosed incident type 1 diabetes patients <18 years who were registered in the BDD study. ZnT8-RA was detected in 964 (52%) patients, ZnT8-WA in 895 (48%) and ZnT8-QA in 609 (33%). Autoantibodies to all three variants were found in 527 (28%) patients. ZnT8-RWQA was detected in 1267 (68%) patients representing only 5.6% false positive samples. None of the new-onset patients was false negative for ZnT8-RWQA. The highest ZnT8A frequencies were found among the 5-9 (67%) and 10-14 (72%) year old patients. Neither the ZnT8-RWQA nor the three individual variants showed gender variation.

Conclusion: The major finding in this study was that the ZnT8A triple mix assay had a low false positive rate and a negligible false negative rate. The ZnT8A triple mix assay would therefore be highly suitable for screening the general population, as it is likely not to miss individuals who have any of the three variants.

Supported by: DIAPREP, NIH, SCDE, SRC, SDARE, SCFFRD and SKL.

PS 1 Monogenic forms of diabetes

264

265

Differences in thrombotic and inflammatory markers comparing subjects with maturity onset diabetes of the young and type 2 diabetes

Background and aims: Mutations in the Hepatocyte Nuclear Factor 1α (HNF-1A) gene are the commonest cause of Maturity onset diabetes of the young (MODY) in the UK, characterised by β-cell dysfunction without insulin resistance. Cardiovascular disease is the main cause of mortality in individuals with diabetes and it has been demonstrated that fibrin network structure and its resistance to lysis determines predisposition to atherothrombotic disease. The aim of this work was to investigate clot structure/fibrinolysis and cardiovascular inflammatory markers in subjects with HNF1A-MODY and type 2 diabetes (T2DM).

Materials and methods: Subjects with HNF1A-MODY (n=18, mean age 35.3 years, 11 female) and T2DM (n=12, mean age 43.3 years, 8 female) were recruited. Fibrin clot structure was measured using a validated turbidimetric assay; clot final turbidity, a measure of clot density and time from full clot formation to 50% lysis, an indicator of lysis potential, were recorded. Plasma fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and the cardiovascular inflammatory markers complement-3 (C3) and C-reactive protein (CRP) were also measured by ELISA. All values are given mean±SEM.

Results: The groups did not significantly differ in age, gender, insulin use, blood pressure, HbA1c or BMI. The HNF1A-MODY group recorded lower final turbidity compared with T2DM (0.33±0.13 vs 0.44±0.12 au respectively, p=0.03). Time from full clot formation to 50% lysis was shorter in the HNF1A-MODY group than T2DM (47±159 vs 588±199s, p=0.048). Despite differences in final turbidity and lysis time, fibrinogen levels were similar (2.8±0.7 vs 2.9±0.5g/L, p=0.6), as were PAI-1 levels (1.99±1.27 vs 1.65±0.82ng/ml, p=0.47). C3 levels were significantly lower in HNF1A-MODY subjects than T2DM (0.58±0.20 vs 0.80±0.21mg/ml, p=0.006), whereas CRP was not different (1.16±0.27 vs 1.85±1.09mg/L, p=0.3). C3, a protein known to be incorporated into the fibrin network, correlated strongly with final turbidity (r=0.66, p<0.001) and time to 50% lysis (r=0.7, p=0.001).

Conclusion: Our data suggest that, despite phenotypic similarities between the groups, those with T2DM have tighter clot structure, which is more resistant to fibrinolysis compared with HNF1A-MODY. The similar plasma levels of fibrinogen and PAI-1 suggests this is due to post-translational modifications in the fibrinogen molecule or other, yet unidentified, plasma factors. One possible explanation may be related to higher C3 plasma levels in T2DM patients, directly affecting clot structure and lysis time. Taken together, our data suggest that patients with HNF1A-MODY are at lower risk of macrovascular diabetic complications than matched T2DM patients.

Supported by: Oxford NIHR

266

A large part of the MODY patients in Slovakia do not have any mutation in GCK, HNF1A, HNF4A, HNF4B, KCNJ11 or insulin genes

D. Gasperikova1, J. Stanik1, M. Hucikova1, L. Valentinova1, I. Masindova1, D. Lesayova1, L. Barak1, M. Kusekova1, V. Sandrikova1, J. Javorkova1, J. Michalek1, Slovak MODY Collaborative Study Group, I. Klimes1, 1DIABGENE, Institute of Experimental Endocrinology, Bratislava, 1Children Diabetes Center, 1st Dept. of Pediatrics, Comenius University, Bratislava, 11st Dept. of Pediatrics, Children University Hospital, Bratislava, 2Dept. of Pediatrics, P.J Safarik University, Kosice, 3Outpatient Patients Endocrinology Clinic, Prievidza, 3Dept. of Pediatrics, Jessenius Medical School, Comenius University, Martin, 2National Inst. of Diabetes and Endocrinology, Lubochna, Slovakia.

Introduction: Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of monogenic diabetes with early onset, familiar appearance, and autosomal dominant inheritance. MODY could be caused by a mutation in one of the nine MODY genes, or genes causing predominantly neonatal diabetes. Nevertheless, large number of MODY families does not have any mutation in the genes so far identified. Patients with clear phenotype of MODY diabetes without one of the known mutation, are thus labelled as MODY-X subjects.

Supported by: DIAPREP, NIH, SCDE; SRC, SDARE, SCFFRD and SKL.
Liver adenomatosis in MODY 3 diabetes mellitus families: screening 174 patients

A. Rod, C. Bellanne-Chantelot,1 PHRC MODY 3 and Liver Adenomatosis Study Group, L. Chiche, Y. Renziz;
1Laboratoire de génétique des maladies métaboliques, CH La Pitié Salpêtrière, Paris, 2Service de chirurgie digestive et hépato-biliaire, CHU Côte de nacre, Caen, France.

Background and aims: Liver adenomatosis is a rare disorder susceptible to hemorrhagic complication and rarely malignant transformation. Liver adenomatosis results from the biallelic inactivation of the HNF1A gene which encodes a transcriptional factor. The epidemiology of the disease is poorly documented. The aim of this study was to evaluate the frequency of liver adenomatosis in a population of MODY 3 patients carrying a HNF1A germline mutation, and to describe the clinical course of the disease in the patients affected by the liver disease.

Materials and methods: 174 patients from 74 families MODY 3 were included in 13 French centres. Screening for liver adenomatosis was performed by systematic liver ultrasonography. When the disease was suspected, liver CT or MRI was performed for confirmation of the diagnosis. Histopathological analysis was performed when a surgery was mandatory.

Results: Among 137 patients carrying an HNF1A mutation, 9 cases of liver adenomatosis were identified in 7 different families. Mutations were spread all over the coding region of the HNF1A gene. Patients mean age was 32.8 years (11-56), the M/F sex ratio was 2/7, 7/9 patients had diabetes mellitus, the two remaining patients were children presently normoglycemic. Liver imaging showed adenomas of various sizes from less than ten mm (1/9), to larger lesions (8/9) up to 120 mm. Liver biology was near normal in all patients. One case of adenomatosis was revealed by two episodes of internal hemorrhage. Five women had ten pregnancies without any complication nor progression of the adenoma size. Histopathological confirmation of liver adenomatosis was available in five patients, and all adenomas were steatotic at variable degree.

Conclusion: The frequency of liver adenomatosis in this cohort of MODY 3 diabetic patients (6.5%) and the risk for hemorrhagic complication of the disease favours the systematic screening for liver adenomatosis in MODY 3 families.
Results: Two patients were self referral and 20 were referred by other physicians. Ten patients had been diagnosed with mitochondrial diabetes (MIDD) including mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome, 8 patients with maturity-onset diabetes of the young (MODY), one with early onset type 2 diabetes having renal hyperplasia, one with diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DDM/DMAOD) or Wolfram syndrome, one with type 2 diabetes and cardiac myopathy, and one with just type 2 diabetes. We found 4 cases with mutations in the HNF1b/MODY5 gene among 7 cases of MODY (57%) who received the genetic testing; two cases with P291HisC, one with R200W and one with P379A (CCT>TCT). A subject with renal hyperplasia but lacking family history of diabetes showed a large deletion at chromosome 17q12 including HNF1b/MODY5 gene. Among 8 cases with MIDD, 6 cases were positive for 3243 A>G mutation in the mitochondrial gene. Subjects with DDMD/DMOAD had found to have compound heterozygous mutation in the exon 8 of wolf-ran 1 gene (L688X, del509YVLLLY). Genetic testing for three patients with MIDD/MELAS and one with MODY had been carried out at other institutions. They had not received appropriate counseling regarding the nature of their condition and visited our clinic to obtain more information regarding the results of the genetic testing.

Conclusion: Our study indicates that 1) a need of the genetic counseling for diabetes exists in Japan, 2) MODY3 is prevalent among MODY in our institute, 3) patients should receive genetic counseling and psychological evaluation before any genetic testing are carried out.

Supported by: Ministry of Education, Science, Culture and Sports

270

Insulin sensitivity in children with permanent neonatal diabetes mellitus treated with sulfonylurea

A. Szadkowska, I. Pietrzak, A. Gach, B. Mianowska, W. Fendler, W. Mlynarski; Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland.

Background and aims: Adults with permanent neonatal diabetes mellitus (PNDM), carriers of a Kir6.2 mutation were characterized by decreased insulin sensitivity. The transfer to sulphonylurea therapy improved insulin sensitivity in them. Aim of the study was to estimate insulin sensitivity in PNDM children with Kir6.2 mutation during insulin therapy and after their transfer to sulfonylurea.

Materials and methods: Three children aged 9, 11, 14 years with diabetes mellitus recognized in the first 6 months of life with confirmed Kir6.2 activating mutations were included into the study. Euglycemic-hyperinsulinemic clamp was performed to estimate insulin sensitivity. Glucose disposal rate (M value) determined during the last 30 min of the test was calculated as a surrogate of insulin resistance. The height, weight were measured and body mass index (BMI) was calculated. HbA1c was measured by HPLC. All examinations were performed on insulin therapy and 6 months after transfer to sulfonylurea.

Results: Baseline M values in children were: 15.0, 7.25 and 13.35 mg · kg⁻¹· min⁻¹ (mean 11.86±4.08). The mean BMI was 15.27±4.9 kg · m⁻² and HbA1c was 6.9±0.38%. Six months after the initiation of sulfonylurea therapy we did not observe significant reduction of body weight (Δ BMI = -0.46±0.54; p=0.28). The improvement in metabolic control was noted (Δ HbA1c = -1.03±0.25%; p=0.02). A substantial improvement in insulin sensitivity was found in all examined patients. Mean decrease in M value (Δ M) was 2.92±1.88 mg · kg⁻¹· min⁻¹ (p=0.11). After adjusting to BMI and HbA1c Δ M value was -1.21±1.52 mg · kg⁻¹· min⁻¹ (p=0.33).

Conclusion: In PNDM children insulin resistance was not observed during insulin therapy. A slight improvement of insulin sensitivity was noted after initiation of sulphonylurea therapy, but it was influenced by improvement of metabolic control.

271

The first case report of sulphonylurea use in a woman with PNDM due to KCNJ11 mutation during a high risk pregnancy

E. Kożek, T. Klupa, N. Nowak, K. Cyganek, A. Gach, T. Milewicz, K. Czajkowski, J. Tollerzko, W. Mlynarski, M.T. Malecki; 1Department of Metabolic Diseases, Jagiellonian University, Krakow, 2Department of Genetics, Polish Mother’s Memorial Hospital, Lodz, 3Department of Gynecological Endocrinology, Jagiellonian University Medical College, 42nd Department of Obstetrics and Gynecology, Warsaw Medical University, 5Department of Neonatology and Neonatal Intensive Care, Warsaw Medical University, 6Department of Genetics, Polish Mother’s Memorial Hospital, Poland.

Background and aims: Sulphonylureas (SU) were proven to be more effective than insulin in most KCNJ11 gene (encoding Kir6.2) related Permanent Neonatal Diabetes Mellitus (PNDM) patients. So far, there was no data on SU use in pregnancy in a KCN11 mutation carrier. Here, for the first time, we report SU use in a woman with PNDM due to the KCN11 mutation during a high-risk pregnancy.

Materials and methods: A woman with the R201H Kir6.2 mutation became pregnant at the age of 37. The patient had been on glipizide 30 mg for 3 years; her HbA1c level was 5.8%. She was diagnosed with chronic diabetes complications and a congenital defect of urogenital tract– a bicornuate uterus with septum. As the effect of SU on fetal development is uncertain, she was switched to insulin after the pregnancy diagnosis, however, the subsequent glycemic control was unsatisfactory, with episodes of hyper- and hypoglycemia. Thus, in the 2nd trimester, the patient was transferred to SU (glibenclamide 40 mg).

Results: Transfer to glibenclamide resulted in stabilization of glycemic control; HbA1c in the 3rd trimester was 5.8%. The prenatal genetic testing excluded the Kir6.2 R201H mutation in the fetus. The preterm Cesarian delivery was carried out in the 35th week due to cardiocography abnormalities. The Apgar score of the newborn boy (weight 3010g, 75th percentile) was 8 at 1 min. He presented with hypoglycemia, transient tachypnea of the newborn (TTN), and hyperbilirubinemia. The recovery was uneventful. No birth defects were recorded. His development at the 9th month of life was normal.

Conclusion: We show a high-risk pregnancy in long-term PNDM that in spite of perinatal complications ended with the birth of a healthy child. SU, that seem to constitute an alternative to insulin during pregnancy in Kir6.2 related PNDM, were used during the conception period and most of the 2nd and 3rd trimester. Prenatal molecular testing should be considered in pregnant women with PNDM especially when other medical indications for amniocentesis, like older age of the mother, are present.

Supported by: Polish Ministry of Education and Science

272

Diabetes onset among carriers of the WFS1 gene mutation in the families with Wolfram syndrome

A. Zmysłowska, M. Borowiec, K. Wyka, K. Antosik, A. Szadkowska, I. Pietrzak, W. Mlynarski; Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland.

Background and aims: Wolfram syndrome is a rare form of diabetes mellitus associated with an optic atrophy and disorders of different organs e.g. deafness, endocrinologic, neurologic and hematologic abnormalities. This syndrome is caused by the mutations in wolframin gene localized on chromosome 4p16.1 (WFS1). Wolfram syndrome is inherited as an autosomal recessive trait. The aim of the study was an evaluation of the clinical course of this syndrome and the mutations in the WFS1 gene in the Polish patients.

Materials and methods: 9 patients with the clinical symptoms suggesting Wolfram syndrome (at least diabetes mellitus and optic atrophy) aged: 10-24, mean 15.3±4.9 years and 22 first-degree relatives aged: 3-50, mean 27.8±15.7 years were examined. The genetic analysis was carried out by direct DNA sequencing of WFS1 gene. Additionally, a cosanquinity evaluation using the multiplex-PCR method at16 polymorphic loci was performed.

Results: In 9 patients with Wolfram syndrome nine mutations in WFS1 gene were identified. In the patients the mean age of diagnosis of diabetes mellitus was 5.6±1.8 years. Six patients were homozygous for the following mutations: V412fs, S443R, W539X, W659fs. They developed diabetes at the age of 5, 5, 4, 4, 5 and 8 years, respectively. Three patients were complex heterozygous for the following mutations: S167fs, Q392X, Y513fs, W648X, V779G. They
developed diabetes at age of 8.8, 7 and 3.8 years, respectively. Among different nine mutations five - S167del, S443R, Q392X, Y513S, W539X were novel. Among first-degree relatives 17 individuals were heterozygotic carriers of the mutation. In this group no clinical symptoms characteristic for Wolfram syndrome were noticed and none of these carriers had diabetes (age at examination: 34.2±16.1 yrs).

Mean age of diagnosis of diabetes among the Polish patients was typical for Wolfram syndrome, however, complex heterozygotic patients were slightly older at diabetes onset. Interestingly, none of the heterozygotic carriers of WFS1 mutation suffered from diabetes, which is in contrary with the results from the whole genome association studies suggesting that some common SNPs in WFS1 may predispose to type 2 diabetes.

Supported by: Polish Ministry of Science and Higher Education

PS 2 Genetics of type 1 diabetes

273

Clinical and genetical characterisation of a series of patients with type 1 diabetes induced by interferon therapy

K. Nakanishi,

1 Dept. of Endocrinology and Metabolism, Okinaka Memorial Institute for Medical Research, Tokyo,
2 Dept. of Internal Medicine, Fuji-Torazonom Hospital, Gotemba, Japan.

Background and aims: Interferon alpha is widely used for treatment of several diseases including chronic hepatitis C, and rarely causes type 1 diabetes. The aim of this study is to clarify clinical and genetical characteristics of interferon-induced type 1 diabetes.

Materials and methods: Subjects were consecutive 12 patients in whom type 1 diabetes occurred after interferon therapy due to chronic hepatitis C during 1998-2009. To compare clinical pictures, 128 patients with type 1 diabetes who had at least one data about anti-GAD65 antibodies or serum fasting C-peptide levels during first 4 years were enrolled. As genetic controls, 10 patients in whom diabetes did not develop after interferon therapy due to chronic hepatitis C were enrolled. In addition, 136 normal control subjects were enrolled. GAD antibodies were assayed by radioligand binding assay, and C-peptide was measured by sensitive radioimmunoassay. HLA-A, -DRB, -DQA and -DQB alleles were typed by PCR-RFLP methods.

Results: Ten of 12 (83.3%) patients with interferon-induced type 1 diabetes showed ketosis at the onset and 11 of 12 (91.7%) needed insulin therapy within 3 months after the onset of diabetes. Titer of GAD antibodies were higher in the patients with interferon-induced type 1 diabetes than those with type 1A diabetes at the onset (median range: 3,309 (15-110,000) vs. 7.7 (<1.2-38,000) U/ml, p=0.0001), at 1 year (347 (31-100,000) vs. 1.6 (<1.2-3.194) U/ml, p=0.0041), and at 2-4 years (1,248 (37.6-6,379) vs. 3.5 (<1.2-6,514) U/ml, p=0.0002) after the onset of diabetes. Levels of fasting serum C-peptide were higher in the patients with interferon-induced type 1 diabetes than those with type 1A diabetes at the onset (0.42 ± 0.27 vs. 0.25 ± 0.24 nmol/l, mean ± SD, p=0.016), at 1 year (0.49 ± 0.24 vs. 0.33 ± 0.23 nmol/l, p=0.0015) and at 2-4 years (0.37 ± 0.32 vs. 0.13 ± 0.15 nmol/l, p=0.018) after the onset of diabetes.

Insulin dose was not different at the onset (0.37 ± 0.21 vs. 0.47 ± 0.20 U/kg/day, p=0.12), but lower at 1 year (0.30 ± 0.19 vs. 0.59 ± 0.14 U/kg/day, p=0.007) and at 2-4 years (0.41 ± 0.25 vs. 0.59 ± 0.21 U/kg/day, p=0.029) after the onset of diabetes in the patients with interferon-induced type 1 diabetes than those with type 1A diabetes, while mean HbA1c, levels during first 5 years were not different between 2 groups (7.07 ± 0.97 vs. 7.48 ± 1.38%, p=0.51). Allele frequency of HLA-A*2402 was increased in patients with interferon-induced type 1 diabetes compared with those who did not develop diabetes despite interferon therapy [50.0% (12/24) vs. 20.0% (4/20), odds ratio (OR) (95% confidence interval (CI)): 4.00 (1.09-17.26)]. Although frequency of other HLA-A alleles and DR-DQ haplotypes did not differ between these two groups, phenotypic frequency of DRB1*1302-DQA1*0102-DQB1*0604 was increased in these two groups combined [59.0% (13/22)] compared with normal controls [16.2% (22/136), OR (95%CI): 4.89 (2.89-20.27)], and those with type 1A diabetes [9.7% (10/103), OR (95%CI): 13.4 (4.72-40.96)].

Conclusion: Despite acute-onset form, interferon-induced type 1 diabetes was characterized by prolonged high titers of GAD antibodies, relatively preserved residual beta cell function, and subsequently lesser dose of insulin required. Addition of HLA-A*2402 to specific HLA class II background was characterized by prolonged high titers of GAD antibodies, relatively preserved residual beta cell function, and subsequently lesser dose of insulin required. Addition of HLA-A*2402 to specific HLA class II background (DRB1*1302-DQA1*0102-DQB1*0604) may confer susceptibility to type 1 diabetes induced by interferon therapy.

274

The frequency of ZnT8 autoantibodies and their HLA associations differ between Swedish and immigrant children with newly diagnosed type 1 diabetes in the Better Diabetes Diagnosis Study

1 Department of Clinical Sciences, Lund University, Malmö, 2 Department of Pediatrics, Lund University Hospital, 3 Department of Pediatrics, The Queen Silvia Children’s Hospital, Göteborg, 4 Department of Clinical and Experimental Medicine, Linköping University Hospital, 5 Department of Pediatrics, Karolinska University Hospital, Huddinge, Stockholm, Sweden.

Background and aims: The ZnT8 autoantibodies (ZnT8A) are assuming an increasing importance in the prediction and diagnosis of childhood type 1 diabete...
abetes (T1D). The fact that single amino acid polymorphism at position 325 of ZnT8 identifies three antigenic variants: Arginine (ZnT8-R), Triptophan (ZnT8-W) or Glutamine (ZnT8-Q); highlights the importance of ZnT8A in T1D. The type and frequency of autoantibodies against ZnT8 variants and their associations with the HLA class II DQ genes among different ethnic entities were not previously investigated. Our aim was to determine the relationship between ethnic origin of the patient and the detection of ZnT8A in relation to high-risk HLA DQ genotypes and conventional islet autoantibodies (GAD65, IA-2A and IA2A) in Sweden.

Materials and methods: A total of 1868 (53% males) newly diagnosed T1D children <18 years at onset were recruited from the Better Diabetes Diagnosis (BDD) study during the period from May 2005 to September 2008. This cohort was grouped into three subgroups based on the origin of patients defined by country of birth of their parents and grandparents into Swedes (67%), non-Swedes (8%) and mixed-origin (16%) with 9% were of uncertain origins. Chi square test of independence was used to detect significant differences among ethnic groups in relation to ZnT8A variants and HLA and other islet autoantibodies. Logistic regression models were used to assess a possible association between nine high-risk HLA DQ genotypes and ZnT8A among ethnic groups.

Results: A total of 964 (52%) tested positive for ZnT8RA, 895 (48%) for ZnT8WA and only 609 (33%) for ZnT8QA. Among the same cohort, 1338 (72%) patients were positive for IA-2A, 1052 (56%) for GAD65A and 587 (31%) for IA2A. In total only 126 (7%) patients were negative for all six autoantibodies. Nine HLA DQ genotypes were identified as high risk genotypes among the BDD patients compared to the Swedish general population. Only the ZnT8WA variant was significantly higher among Swedes (49%) compared to non-Swedes (39%) (p=0.02). Among Swedes ZnT8WA was associated with the DQ8/B7 and DQ8/6.4 (p=0.001) genotypes while ZnT8W was associated only with DQ8/6.4 genotype (p=0.009 and p=0.007 respectively). However, the DQ2 haplotype but not the DQ2/2 genotype was negatively associated with ZnT8RA and ZnT8QA variants among Swedes (p=0.008 and p=0.005 respectively) but not the ZnT8WA variant. Among non-Swedes none of these genotypes showed an association with any of the three ZnT8A variants. On the other hand, among Swedes both IA-2A and GAD65A were associated with all the three variants of ZnT8A. However, among non-Swedes only IA-2A showed associations with ZnT8RA and ZnT8WA but not ZnT8QA (p values are not shown).

Conclusion: The DQ8/6.4 genotype and specifically the DQ6.4 haplotype are associated with ZnT8A among Swedish patients with T1D. Immigrant patients; however, develop ZnT8A in association with IA-2A but they may have different genetic associations from Swedish patients. Supported by: NIH, SCDF, SRC, SDARE, SCCFRD and SKL Sweden

276

Genetic predisposition score for obesity is associated with BMI in individuals with type 1 diabetes

E. Fagerholm1,2, C. Forsblom1, N. Sandholmi1,2, J. Söderlund3, V. Harjutsalo1, J. Waden1, N. Tolonen2, M. Sarasteimo3, D. Gordin4, L. Thorn2, P. H. Groop2, on behalf of the FinnDiabe Study Group; 1Folkhalsan Institute of Genetics, Folkhalsan Research Center, Biomedicum, Helsinki, 2Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, 3Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, Espoo, Finland.

Background and aims: With the help of large genome-wide association studies (GWAS) several obesity-predisposing variants have been identified. Attempts to replicate and further evaluate the association of these variants with different measures of obesity have also been carried out. The replications have been performed in different populations using both individual SNPs and genetic scores of identified SNPs. Whether the same obesity-predisposing SNPs that affect obesity in the general population affect obesity in individuals with type 1 diabetes (T1D) is not known. Therefore our aim was to study the association of obesity-predisposing SNPs with obesity in T1D using both individual SNPs and a genetic predisposition score based on the identified SNPs.

Materials and methods: All patients were part of a nationwide study of adult patients with T1D. Body mass index (BMI) and genotype data were available for 3232 individuals. 12 single nucleotide polymorphisms (SNP) in or near the following genes: FTO, MC4R, SH2B1, MTCH2, KCTD15, NEGR1, TME18, GPDA2, BDNF, FAIM2, SEC16B, ETV5 were used to create a genetic predisposition score for BMI. The SNPs had previously been associated with BMI in two large GWAS with BMI. The genetic predisposition score was created by calculating the number of risk alleles of the 12 SNPs for each patient. The genetic predisposition score for BMI among the patients ranged from 6 to 20. BMI was divided into three obesity categories: normal weight (BMI < 25), T1D and T2D susceptibility genes may increase the rate of progression from islet autoantibody positive to diabetes. Supported by: BMF (Kompetenznetz Diabetes mellitus), DFG Center CTRT, NGFN

275

Novel type 1 and type 2 diabetes susceptibility genes influence development of islet autoimmunity and type 1 diabetes in children of parents with type 1 diabetes

C. Winkler1, E. Bonifacio2, H. Grallert1, C. Lauber1, E. Trovesi1, T. Illig2, A.-G. Ziegler1,2.

1Institut für Diabetesforschung der Forschgruppe Diabetes e.V. at Helmholtz Center Munich, Neuberger, 2Center for Regenerative Therapies - Dresden University of Technology, 3Institute of Epidemiology, Helmholtz Center Munich, Neuberger, 4Forschgruppe Diabetes der Technischen Universität München, Germany.

Background and aims: Type 1 Diabetes (T1D) is an autoimmune disease with multiple susceptibility genes. It has been suggested that T1D and type 2 diabetes (T2D) may share some pathophysiological and genetic aetiology. The aim was to investigate whether novel T1D and T2D susceptibility genes influence development of islet autoimmunity and/or progression from islet autoantibody positive to T1D.

Materials and methods: The single nucleotide polymorphisms (SNPs) in 6 T1D associated gene regions (PTPN22, ESRB3, PTPN2, KIAA0350, CD25, IFIHI) and 9 T2D associated gene regions (KCNI11, PPARC, TCFC7L2, SLC30A8, CDKAL1, CDKN2A2/B, HHEX-IDE, IGF2BP2, FTO) were analyzed in 1350 children from the German BABYDIAB study, a prospective observational study that follows offspring of mothers or fathers with T1D from birth to adulthood. A total of 137 children developed at least one persistent islet autoantibody [median age at first islet autoantibody appearance 4.9 (IQR 2.0-8.1)]; and 43 of these children progressed to T1D [median age at diagnosis 11.9 (IQR 8.4-14.9)].

Results: The T2D protective TCFC7L2 TT genotype was associated with a significantly higher incidence of islet autoimmunity than the CT and CC genotype (12% vs. 7% by age of 10 years, p=0.012). After stratification of the HLA genotype the TCFC7L2 TT genotype was associated with a significantly higher incidence of islet autoimmunity than the CT and CC genotype in children carrying the moderate/neutrale/protective HLA genotypes (10% vs. 5% by age 10 years p=0.006) but not in children carrying the high risk HLA genotypes (DR3/4 or DR4/4) (p=0.483). None of the other T1D and T2D susceptibility genes were associated with the development of islet autoimmunity in our cohort. Amongst the islet autoantibody positive children, progression to T1D was increased in children with the T1D susceptible IFIHI GG genotype (47% within 10 years after seroconversion vs. 32% in children with the GA and AA genotypes; OR: 1.9, p=0.01), children with the T1D susceptible PTPN22 AA genotype (OR: 15.9, 95%CI: 1.6-160.4; p=0.001 vs CA and CC genotypes), children with the T2D susceptible SLC30A8 CC genotype (OR: 2.4, 95%CI: 1.2-4.8; p=0.015 vs CT and TT genotypes), and children with the T2D susceptible FTO AA genotype (OR: 2.4, 95%CI: 1.1-5.4; p=0.031 vs CA and CC genotypes).

Conclusion: These data suggest that T2D susceptibility genotypes are not uninformative when we want to determine the genetic basis for T1D development. Supported by: SKL Sweden.
277

Association of type 2 diabetes genes WFS and HHEX-IDE with disease progression in children with new onset type 1 diabetes

L.B. Nielsen,1, 2 M.-L.M. Andersen,1 J. Svensson,1 S. Pörksen,1 P. Hougaard,1 P. Swift,2 H. Hoey3, H.B. Mortensen,1 L. Hansen;1
1Pediatrics, Glostrup University Hospital, 2Statistics, University of Southern Denmark, Odense, Denmark, 3Leicester Royal Infirmary Children’s Hospital, United Kingdom, 4University of Dublin, Ireland.

Background and aims: Recently, several T2D related SNPs were investigated in a large T1D case-control study and PPARG and HHEX-IDE showed association with T1D. Previously we reported association of PPARG with residual beta-cell function and glycemic control during disease progression in T1D patients. The objective of this study was to investigate the impact of 11 newly identified T2D-related SNPs on disease progression in children with new onset T1D.

Materials and methods: The study is a multicenter longitudinal investigation with 18 participating paediatric centres from 15 countries in Europe (84% Caucasians). Clinical information and blood samples were collected from 275 children at diagnosis and at 1, 6, 12 months after onset. Genotyping of common SNPs in CDKAL1, WFS1, SLC30A8, CDKN2A-2B, IGBP2, TCF7L2, FTO, HHEX-IDE, THADA was done by Kbioscience using an in-house KASPar assay system. Statistics: C-peptide, HbA1c, IDAa, and proinsulin were analysed by multiple regression using age at onset, gender, DKA at onset, HLA class II risk groups, and genotypes as explanatory factors in a compound symmetric repeated measurement model.

Results: In a dominant model the G allele carriers (the wildtype allele) of the rs10010131 variant of the WFS1 gene, WFS1, was significantly positively associated with stimulated C-peptide (est.: 1.55, p=0.0045) the first 12 month after disease onset compared to the AA genotype carriers. In a co-dominant model the G allele carriers of the rs1111875 variant of the HHEX-IDE locus was significantly associated with stimulated C-peptide 12 months after disease onset compared to the AA genotype carriers in a allele dose-dependent manner (est.: -1.76 (GC), 1.30 (AG); p=0.0031).

Conclusion: The rs10010131 variant of the WFS1 gene is highly associated with a better residual beta-cell function and a corresponding better metabolic control during disease progression in new onset T1D when compared to AA carriers. In addition the rs1111875 variant of the HHEX-IDE locus is significantly associated with a better residual beta-function with an allele-dose effect the first 12 month after diagnosis. This longitudinal study shows that genetic variants related to T2D might have an impact on disease progression in new onset T1D patients even if these same variants are found not to be predisposing to the onset of T1D. Thus, there might be some mechanistic overlap between T1D and T2D, which potentially can have therapeutic benefits for children with new onset T1D.

278

The PTPN22 1858T allele enhances the emergence of clinical type 1 diabetes after the initiation of beta cell autoimmunity

J. Lempainen,1 R. Hermann,2 R. Veijola,1 G. Simell,1 M. Knip,2,4 J. Ilonen;1
1Immunogenetics Laboratory, University of Turku, 2Department of Pediatrics, University of Oulu, 3Department of Pediatrics, University of Turku, 4Department of Pediatrics, Tampere University Hospital, ‘Hospital for Children and Adolescents, University of Helsinki, 5Department of Clinical Microbiology, University of Kuopio, Finland.

Background and aims: Data on genetic factors enhancing beta-cell destruction and emergence of type 1 diabetes (T1D) after the initiation of autoimmunity is limited. We set out to analyze the role of two polymorphisms associated with T1D, PTPN22 1858C/T and insulin gene (INS) -238Hpl A/T in progression to T1D after the appearance of beta-cell autoimmunity.

Materials and methods: The study population comprised 285 children from the Finnish DIPP cohort with HLA-confirmed T1D risk. All subjects had developed positivity for at least one of the T1D-associated biochemically defined autoantibodies and 136 subjects presented with T1D. Two hundred-eight subjects developed at least two biochemically defined autoantibodies, and among these 124 presented with T1D.

Results: After the appearance of the first biochemically defined beta-cell autoantibody the PTPN22 1858C/T single nucleotide polymorphism (SNP) was strongly associated with progression to T1D. Fifty-eight (60%) subjects with the TT or CT genotype presented with T1D compared to 71 (40%) subjects with the CC genotype (P<0.001, HR 2.044, 95% CI 1.425-2.931, Cox regression analysis, multivariate test for the effect of PTPN22, INS and HLA DR3/DR4 genotypes). The effect remained significant also when analyzed after the appearance of the second biochemically defined autoantibody (P<0.001). INS -238Hpl AA genotype was similarly associated with progression to clinical disease after the appearance of the first autoantibody (P=0.03), but the association disappeared when analyzed after the emergence of the second autoantibody (P=0.14).

Conclusion: The PTPN22 1858T allele is strongly associated with beta-cell destruction and progression to clinical disease after the initiation of beta-cell autoimmunity. The effect of the INS genotype predisposing to beta-cell autoimmunity remained weaker and disappeared after autoantibody spreading.

279

Mutation in SIRT1 in familial type 1 diabetes

M. Böni-Schnetzler1,2, A. Biaso-Lauber3, B.P. Hubbard4, K. Bouzakri5, M. Meyer-Böni6, D. Meier7, F. Pociot8, G. Leibowitz9, B. Glaser;6, H. Zulewski7, C. Westphal10, D.A. Sinclair;11, M.Y. Donath;12
1University Hospital of Zürich, 2University Children’s Hospital, Zürich, Switzerland, 3Harvard Medical School, Boston, USA, 4University of Geneva, Switzerland, 5Hagedorn Research Institute and Steno Diabetes Center, Gentofte, Denmark, 6Hadassah Hebrew University Medical Center, Jerusalem, Israel, 7University Hospital of Basel, Switzerland, 8Siriraj, Boston, USA.

Background and aims: Type 1 diabetes was diagnosed in a 26-year-old Ashkenazi Jewish male on the basis of hyperglycaemia, a lean body mass index of 21.5 Kg/m2 and β-cell auto-antibodies. The patient’s sister, father, and a paternal cousin were also diagnosed with type 1 diabetes at the ages of 7, 12, and 15 years, respectively. The aims were to further characterise the patient, to identify the mutation and its pattern of inheritance and to characterise the molecular phenotype of the mutated protein.

Materials and methods: To characterise the index patient an OGTT, a euglycaemic-hyperinsulinemic clamp and a muscle biopsy were performed. The mutation was identified with a candidate gene approach and exonic sequencing and introduced by site directed mutagenesis into a retroviral vector (MSCV) containing the wild type gene. Mutated and wt protein were stably expressed in 293T cells and insulin producing MIN6 cells.

Results: The index patient presented with signs of beta-cell autoimmunity (auto-antibodies to glutamic acid decarboxylase 1150 U1 and islet-cell autoantibody titres > 3.0 U/L) insulin dependence and impaired beta-cell function. Further, there was an unexpected insulin resistance as revealed by a euglycaemic-hyperinsulinemic clamp study (M value 34.1 ± 14.7 mU/m for KG BW) and a muscle biopsy. The affected family members lacked measurable C-peptide and were also islet-auto-antibody positive. The pattern of inheritance was indicative of an autosomal dominant mutation. Analysis of SIRT1, a potential deacetylase implicated in ageing, beta-cell function and insulin resistance, revealed the presence of a T to C exchange in exon 1 of a single allele, corresponding to a Leucine-proline mutation at residue 107 in the protein. A common polymorphism of the T to C substitution, mutations in the MODY genes and HLA associations were ruled out. Analysis of the structure of the SIRT1 protein revealed that L107P lies outside of the conserved Sirtuin enzymatic core, in a densely-charged region of the protein involved in protein-protein interactions. Isolated SIRT1-L107P protein showed only a slight decrease in deacetylase activity relative to the wild-type protein, and there were no changes in protein-stability or localization. The catalytic core, in a densely-charged region of the protein involved in protein-protein interactions. Stable overexpression of L107P sirt1 protein in the beta-cell line MIN6 did not change insulin mRNA expression and insulin secretion relative to the equal expression of the wild-type protein. NF-kappaB is a known deacetylation target of SIRT1 and SIRT1-L107P MIN6 cells displayed elevated expression of NF-kappaB regulated genes iNOS, chemokine KC and cytokine TNF-alpha together with overproduction of nitric oxide.

Conclusion: Here we describe the first human mutation in the SIRT1 gene in a family with clusters of type1 diabetes. The study implicates that SIRT1 plays a role in autoimmunity and glucose homeostasis in humans and it may serve as a paradigm to initiate further screening of SIRT1 mutations in families with clusters of type 1 diabetes.

Supported by: Swiss National Science Foundation
Genetic regulation of 25(OH)D3 and 1,25(OH)2D3 serum concentrations in type 1 diabetes patients
K. Badenhoop, H. Kahles, C. Greisil, M. Penna-Martinez, F. Shoghi, E. Ramos-Lopez; Endocrinology, Diabetes & Metabolism, University of Frankfurt am Main, Germany.

Background and aims: Growing evidence suggests an important role for the vitamin D system in the pathogenesis of type 1 diabetes. In humans, low serum levels of 25(OH)D3, and its active form 1, 25(OH)2D3, correlate with a higher risk for this disease. In order to become biologically active, vitamin D3 needs to be hydroxylated first into 25(OH)D3 in the liver by the enzyme CYP2R1. After this hydroxylation, 25(OH)D3 binds to the vitamin D binding protein (DBP) and circulates. In the kidney 25(OH)D3 is hydroxylated to 1,25(OH)2D3 by CYP27B1. Then 1,25(OH)2D3 binds to the vitamin D receptor (VDR) to exert its immunomodulator effects via vitamin D response elements (VDRRE). Catabolism of both the 25(OH)D3 and 1,25(OH)2D3 occur via the 24-hydroxylase (CYP24). Therefore we investigated whether genetic variation in vitamin D synthesis, metabolism, transport and catabolism influence 25(OH)D3 and 1,25(OH)2D3 serum levels in type 1 diabetes patients.

Material and methods: 223 type 1 diabetes patients were genotyped for polymorphisms in the VDR (rs7975232, rs731236, rs1544410, rs10735810), the CYP2R1 (rs10741657, rs12794714), the DBP (rs4588, rs7041), the CYP27B1 (rs10877012) and the CYP24 (rs229641, rs2248137, rs2585426, rs927650) genes by using restriction fragment length polymorphism or real time PCR. The 25(OH)D3 and 1,25(OH)2D3 serum levels were measured by radioimmunoassay (Diasorin). Concentrations of 25(OH)D3 < 20 ng/ml of 1,25(OH)2D3 were defined as vitamin D insufficiency, while a range of 19.9-67 pmol/ml of 1,25(OH)2D3 was defined as vitamin D deficiency. A p value < 0.05 was considered as significant.

Results: Deficiency of 25(OH)D3 or 1,25(OH)2D3 was found in 54% and 9.4% respectively. Of the 13 analyzed polymorphisms the rs10877012, rs10741657 and the rs7041 within the CYP27B1, CYP2R1 and the DBP genes respectively, had a statistically significant influence on the serum concentrations of 25(OH)D3 or 1,25(OH)2D3. Thus patients carrying the allele C of the CYP27B1, which has been reported to be a risk factor to develop type 1 diabetes, had lower 1,25(OH)2D3 serum levels (34 pmol/L) than those patients carrying the alleles A (42 pmol/L) or AC (38 pmol/L; p<0.05). Also patients carrying the allele T of the rs7041 within the DBP gene showed lower levels of 25(OH)D3 (p=0.02), whereas patients with the genotype A of the rs10741657 within the CYP2R1 had higher levels of 25(OH)D3 in comparison to those patients without these genotypes (p=0.03).

Conclusion: This study demonstrates that vitamin D serum levels, both 25(OH)D3 and 1,25(OH)2D3, are regulated by genetic variations at least within the genes coding for CYP27B1, CYP2R1 and DBP altering 25(OH)D3 and 1,25(OH)2D3 concentrations. Therefore these genetic variants are functionally relevant and may thereby predispose to impaired function of the immune system in type 1 diabetes through systemic and/or tissue specific differences in vitamin D action.

Supported by: EU-FP7 (NAIMIT), Else-Kröner-Fresenius-Stiftung

Meta-analysis of sex-specific genome-wide association studies of type 2 diabetes
A.P. Morris1, S. Cauchi2, M. Ginsger3, H. Grallert4, G. Thorleifsson5, B.F. Voight6, The DIAGRAM Consortium;
1Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom, 2Institute of Biology, Pasteur Institute, Lille, France, 3Department of Biostatistics, University of Michigan, Ann Arbor, USA, 4Institute of Epidemiology, Helmholz Zentrum Muenchen, Neuhberg, Germany, 5DeCODE Genetics, Reykjavik, Iceland, 6The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, USA.

Background and aims: Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have identified more than thirty confirmed loci contributing to the disease. However, despite this success, much of the genetic component of T2D susceptibility remains unexplained. One potential source of genetic variation contributing to this “missing heritability” is that with effects that differ in magnitude and/or direction in males and females. Sex-specific effects have been observed in a variety of traits, including lipid levels and schizophrenia, but may not be readily identified through traditional analysis of GWAS of males and females, combined, because of a lack of statistical power. We have therefore undertaken the first large-scale meta-analysis of sex-specific T2D GWAS to address the following aims: (i) assess the heterogeneity of effects between the sexes at confirmed disease loci; and (ii) identify novel male- and female-specific associations with the disease for follow-up.

Materials and methods: We performed GWAS of T2D in six cohorts of northern European ancestry (total effective sample size of 9332 males and 7744 females). Genotype data were imputed in each cohort for up to 2.5 million SNPs, genome-wide, including the X chromosome. SNPs were subsequently tested, in males and females separately, for association with disease under an allelic-dose model, adjusting for cohort specific covariates. For each sex, allelic odds ratios (OR) were then combined across cohorts through fixed-effects inverse-variance weighted meta-analysis. Heterogeneity of combined allelic OR between males and females was assessed by means of Cochran’s Q-statistic.

Results: Among confirmed T2D loci, allelic effects between males and females were generally homogeneous. However, there was nominal evidence of heterogeneity at two loci, both demonstrating stronger effects on T2D in males: BCL11A (p = 0.023, male OR = 1.16 [1.10-1.24], female OR = 1.05 [0.99-1.12]); and KCNQ1 (p = 0.036, male OR = 1.15 [1.08-1.22], female OR = 1.04 [0.98-1.12]). The strongest novel signals of association with T2D in sex-specific meta-analyses were observed in males, with SNPs at two loci achieving genome-wide significance (p<5x10^-8): proximal to SLC35D3 (p=1.7x10^-8, OR = 1.19 [1.12-1.26]); and proximal to DGKB (p=2.3x10^-8, OR = 1.26 [1.16-1.37]). The male-specific signal at DGKB is independent of the overall T2D association previously reported at this locus (r^2=0.023). Novel signals with suggestive evidence of association (p<10^-5) were observed at 7 additional loci in males, and at 14 loci in females, both sets incorporating genes with plausible biological candidacy for T2D.

Conclusion: Sex-specific GWAS of T2D did not highlight strong evidence of heterogeneity of allelic effects between males and females at already confirmed loci. SNPs from 23 regions with at least suggestive evidence of association, identified using male- and female-specific meta-analyses, are currently being followed up in additional cohorts through in silico replication and de novo genotyping.

Age-dependent genetic effects on post-load glucose during 18 years of follow-up of the Whitehall II Cohort
C. Langenberg1, A.C. Jensen1, A. Barker1, E.J. Brunner2, A.D. Hingorani1, M. Kumar1, M. Kivimäki3, N.J. Wareham1, A.G. Tabak1, D.R. Witte4; 1MRC Epidemiology Unit, Cambridge, United Kingdom, 2Steno Diabetes Center, Gentofte, Denmark, 3Department of Epidemiology & Public Health, London, United Kingdom.

Background and aims: Cross-sectional, genome-wide association studies have recently identified common, single nucleotide polymorphisms (SNPs)
associated with fasting and/or 2-hour post-load glucose levels in non-diabetic individuals. It is unknown whether effects of these variants are constant over time or change with advancing age, as most genetic studies rely on glucose measurements at a single time point.

Material and methods: A total of 4,519 non-diabetic British civil servants (aged 40-78 years) participating in the Whitehall II study and attending up to four 5-yearly clinic visits including repeated oral glucose tolerance tests were studied. A weighted genetic score of glucose raising alleles was calculated separately for fasting and 2-hour glucose levels, including 16 and 5 SNPs respectively (mean score (SD) 17.0 (3.0) for fasting and 4.0 (1.4) for 2-hour glucose). Multilevel models accounting for the dependence of measurements within individuals and adjusted for sex and BMI were used to study the main effects of each genotype score on fasting and 2-hour glucose levels and their interactions with age.

Results: Over a mean follow-up of 10 years (range 0-18 years), 2-hour but not fasting glucose levels showed a significant increase with age (0.048 (95% CI: 0.037-0.058) mmol/l per year in participants without any risk alleles). The fasting glucose score significantly predicted glucose levels at 55 years (0.026 (95% CI: 0.016-0.036) mmol/l difference per genetic score point), an effect that remained constant over time (figure 1, left). At age 55 years, 2-hour glucose levels differed by 0.070 (95% CI: 0.044-0.096) mmol/l per genetic score point; notably, this effect became stronger with increasing age (0.004 (95% CI: 0.001-0.006) mmol/l per genetic score point per year), resulting in diverging age trajectories by genetic score (figure 1, right).

Conclusion: Genetic effects on 2-hour glucose appear to depend on age, such that the difference in 2-hour glucose levels per additional risk allele increases with advancing age. Our findings suggest that the effects of age or related environmental factors need to be taken into account when studying genetic influences on 2-hour glucose levels.

Background: Major advances have recently been made in discovering genetic loci for hyperglycemia. These findings emerged primarily through genome-wide scans of cross-sectional data. Little is known of how these loci affect changes in glycaemia over time.

Methods: Sixteen recently discovered fasting glucose-raising loci were genotyped in middle-aged non-diabetic participants in the GLACIER Study, a population-based prospective cohort from Northern Sweden. Genotypes were tested for association with baseline fasting and 2-hour glucose concentrations (N=16,048), and with change in glucose concentrations and the development of impaired fasting glucose (IFG) over 10-years follow-up (N=4,109).

Results: Cross-sectional directionally consistent replication with fasting glucose levels was achieved for 12/16 variants. After adjusting for fasting glucose levels, the fasting glucose risk alleles for 4 loci were positively and 3 loci were negatively associated with 2-hr glucose concentrations. In a genetic risk score (GRS) derived by adding unweighted risk alleles, those in the 20th percentile had fasting glucose levels 0.17 mmol/l higher than those in the 80th percentile (P=5.3x10^-8). In prospective analyses (Table 1), fasting glucose raising alleles at 5 loci were nominally associated with worsening fasting glycaemia, 3 also predicted the development of IFG. After adjustment for baseline and follow-up fasting glucose, 2 variants were nominally associated with change in 2-hr glucose levels, (ADCY5 rs11708067, MTNRB1 rs10830963). Surprisingly the MTNRB1 variant, which was predictive of worsening fasting glycaemia, was protective of deterioration in 2-hr glycaemia. The GRS (80th vs. 20th percentiles) was associated with 0.13 mmol/l (P=4.3x10^-7) greater elevations in fasting glucose and 1.34-fold (95% CI: 1.07-1.70) greater risk of developing IFG during 10-years follow-up. Adjusting the fasting glucose models for 2-hour glucose, or vice versa, or weighting the GRS by previously published effect estimates did not materially affect these results.

Conclusion: Multiple genetic loci predict deteriorations in fasting glucose concentrations during 10-years follow-up of a Northern Swedish cohort. Studies testing prospective relationships with the development of diabetes complications will be required to determine the clinical value of these genetic prediction models.

Table 1: The ability of each single nucleotide polymorphism (SNP) to explain and/or predict changes in fasting and 2-hour glucose levels and development of impaired fasting glucose (IFG) over a 10-year follow-up period (N=16,048).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Top allele (GRS percentiles)</th>
<th>Effect allele (GRS percentile)</th>
<th>Baseline fasting glucose (mmol/L)</th>
<th>Baseline 2-hour glucose (mmol/L)</th>
<th>2-hour glucose (mmol/L)</th>
<th>2-hour glucose (mmol/L)</th>
<th>GRS percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4073577</td>
<td>GCA</td>
<td>A/G</td>
<td>0.05 (0.02-0.08)</td>
<td>0.05 (0.03-0.08)</td>
<td>0.73</td>
<td>0.73</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs10830963</td>
<td>MTNRB1</td>
<td>G/C</td>
<td>0.38 (0.04-0.07)</td>
<td>0.08 (0.05-0.13)</td>
<td>0.22</td>
<td>0.03</td>
<td>0.003 (0.003)</td>
</tr>
<tr>
<td>rs1593468</td>
<td>GOCO-TAGTCGTG</td>
<td>T/G</td>
<td>0.51 (0.31-0.71)</td>
<td>0.08 (0.05-0.13)</td>
<td>0.12</td>
<td>0.09</td>
<td>0.009 (0.009)</td>
</tr>
<tr>
<td>rs10834522</td>
<td>ADCAAD</td>
<td>G/A</td>
<td>0.09 (0.05-0.13)</td>
<td>0.03 (0.01-0.05)</td>
<td>0.12</td>
<td>0.03</td>
<td>0.003 (0.003)</td>
</tr>
<tr>
<td>rs503887</td>
<td>GLUD2</td>
<td>G/T</td>
<td>0.01 (0.00-0.02)</td>
<td>0.00 (0.00-0.01)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs695774</td>
<td>FNDK2</td>
<td>G/T</td>
<td>0.22 (0.13-0.31)</td>
<td>0.12 (0.07-0.18)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs13575657</td>
<td>CVODHR</td>
<td>A/G</td>
<td>0.00 (0.00-0.01)</td>
<td>0.01 (0.00-0.02)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.002 (0.002)</td>
</tr>
<tr>
<td>rs7628456</td>
<td>PDBG2</td>
<td>T/C</td>
<td>0.20 (0.10-0.30)</td>
<td>0.09 (0.05-0.13)</td>
<td>0.12</td>
<td>0.09</td>
<td>0.009 (0.009)</td>
</tr>
<tr>
<td>rs760954</td>
<td>GCRA</td>
<td>G/C</td>
<td>0.71 (0.40-0.10)</td>
<td>0.12 (0.07-0.18)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs12201141</td>
<td>SCDR5</td>
<td>G/T</td>
<td>0.79 (0.01-0.01)</td>
<td>0.03 (0.00-0.01)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs749154</td>
<td>MW3D</td>
<td>A/T</td>
<td>0.16 (0.05-0.06)</td>
<td>0.09 (0.05-0.13)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs741935</td>
<td>MW3D</td>
<td>T/C</td>
<td>0.16 (0.05-0.06)</td>
<td>0.09 (0.05-0.13)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs13220090</td>
<td>SCDR5</td>
<td>T/C</td>
<td>0.09 (0.00-0.01)</td>
<td>0.01 (0.00-0.01)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs11659265</td>
<td>CRP</td>
<td>A/G</td>
<td>0.00 (0.00-0.01)</td>
<td>0.01 (0.00-0.01)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs9106148</td>
<td>GOCO-TAGTCGTG</td>
<td>T/G</td>
<td>0.07 (0.00-0.01)</td>
<td>0.01 (0.00-0.01)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>rs704374</td>
<td>GUCR2</td>
<td>G/C</td>
<td>0.43 (0.20-0.66)</td>
<td>0.03 (0.01-0.05)</td>
<td>0.30</td>
<td>0.00</td>
<td>0.001 (0.001)</td>
</tr>
</tbody>
</table>

SNP values are corrected for the partial effect (p-value) on fasting glucose. Models are adjusted for age, sex, and follow-up time. In the model where fasting glucose or 2-hr glucose is the outcome, models are also adjusted for baseline fasting or 2-hr glucose levels, respectively. All genotypes are located on the chromosome and are counted according to UniSNP (EU).
Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion
Department of Internal Medicine IV, Tübingen, Germany.

Background and aims: Several polymorphisms in genes associated with diabetes risk reduce glucose- and/or incretin-induced insulin secretion. In this study, we investigated whether there are interactions between glycemia and such diabetes-risk polymorphisms. We hypothesized that diabetes risk genes specifically associated with impaired incretin-induced insulin secretion would show a glycaemia dependent effect on insulin secretion.

Materials and methods: Insulin secretion was assessed by insulinogenic index and AUCC-pep/AUCGc in 156 subjects with various glucose tolerance statuses using an oral glucose tolerance test. Participants were genotyped for 5 SNPs which were previously shown to be associated with type 2 diabetes and impaired insulin secretion and specifically impaired incretin-induced insulin secretion (rs7903146 [TCF7L2], rs10010131 [WFS1]). Furthermore, the impact of the interaction between genetic variation in TCF7L2 and glycaemia on changes in insulin secretion was tested in 315 individuals taking part in a lifestyle intervention study for 9 months.

Results: For two SNPs (TCF7L2, WFS1) we found a significant interaction with glucose control on insulin secretion (all p less of equal 0.0018 for glucose x genotype). When plotting insulin secretion against glucose at 120 minutes during the OGTT, the compromising effect of the risk alleles on insulin secretion was most evident under high glucose conditions for both SNPs. In the longitudinal study, rs7903146 in TCF7L2 showed a significant interaction with baseline glucose tolerance on change in insulin secretion during lifestyle intervention (p=0.0008). Increased glucose levels at baseline predicted an increase in insulin secretion in carriers of the risk alleles, whereas the change in insulin secretion during lifestyle intervention was not influenced by blood glucose levels in carriers of the non-risk alleles. None such interaction was found for the WFS1 SNP.

Conclusion: For the diabetes risk genes TCF7L2 and WFS1 which are associated with impaired incretin signaling, glycemia determines SNPs effects on insulin secretion. This implicates the relevance of these SNPs in different stages of the pathogenesis towards type 2 diabetes mellitus.

The risk allele score for type 2 diabetes mellitus was associated with age and systolic blood pressure. As a result of the association between age and the risk allele score, the risk allele score on the clinical presentation of T2DM was investigated.

Materials and methods: The subjects were 720 T2DM outpatients of our hospital and associated hospitals, and 760 non-diabetic controls. Ten SNPs out of 10 candidate T2DM-susceptibility genes, namely, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, PPARG, TCF2, FTO and KCNQ1 were genotyped by TaqMan PCR analysis. Clinical information, including the current BMI, age at diagnosis of diabetes, age at the maximum body weight, family history, disease duration, FPG, HbA1c, F-CPR (=fasting serum C-peptide), CPI (=F-CPR*100/FPG), UCPR (=urinary C-peptide)/Cr and treatment was collected.

Results: Of the 10 genes, a significant difference between the T2DM group and control group was found for 5 genes, namely, CDKAL1, CDKN2A/B, IGF2BP2 and KCNQ1. Based on the frequency distribution of the risk alleles of the 5 SNPs, which were significantly associated with type 2 diabetes, we classified the participants into low/(a total of four or fewer risk alleles), intermediate/(a total of five or six risk alleles) and high/(a total of seven or more risk alleles). Logistic regression was used to investigate the association between the risk allele score and the clinical presentation between the low-risk group and high-risk group, although the maximum BMI of the latter group (27.0) was significantly lower than that of the former group (28.3) (p<0.01), the age at diagnosis of diabetes in the latter group (49.4 years) was significantly younger than that of the former group (52.1 years) (p<0.05). However, there was no significant correlation between the total number of risk alleles (0–2) for each gene and the age at diagnosis of diabetes mellitus. According to the classification of the baseline insulin secretion capacity, the F-CPR, CPI and UCPR/Cr were all significantly lower in the high-risk group than in the low-risk group, after adjustments for age, sex, FPG, BMI, and duration of diabetes (p<0.01). The ratio of insulin therapy in the high-risk group (37%) was greater than that in the low-risk group (25%) (p<0.05).

Conclusion: It was demonstrated that while the risk alleles for each individual polymorphism had little effect on the onset of diabetes, the high risk allele score of 5 SNPs, which were associated with significantly associated with type 2 diabetes in this study, was related with earlier age at onset of diabetes, decreased insulin secretion and increment of the ratio of insulin therapy.
287

Evaluation of the phenotypic effects of common FTO and MC4R genetic polymorphisms in a general population from South India

1Molecular Medicine & Surgery; Karolinska Institutet, Stockholm, Sweden, 2Biostatistics, Christian Medical College, Vellore, India, 3Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India, 4Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, United Kingdom.

Background and aims: Obesity is a multi-factorial trait that results from a complex interplay between genes and environment. Genome wide association (GWA) studies have shown that common variants in the FTO (Fat mass and Obesity associated) and MC4R (Melanocortin 4 receptor) genes are associated with increased risk of Obesity and type 2 diabetes in Caucasians. These associations, however, were not consistent and the effect was independent of body mass index (BMI) in the subjects with type 2 diabetes among Asians. In the present study, we aimed to evaluate the phenotypic effects of the common FTO and MC4R genetic polymorphisms in a young adult population from South India.

Materials and methods: We examined the common variants of the FTO (rs9939609) and MC4R (rs17782513) genes in two independent cohorts (n=3241) stratified based on the area of residence to rural (n=1221) semiurban (n=1023) and urban (n=997) from South India. Anthropometric measurements of adiposity including BMI, waist circumference (WC), waist-to-hip ratio (WHR), body fat % and skin fold thickness were performed. Serum glucose, lipids were measured in non-fasting venous blood samples. The data were summarized by comparing means across groups by ANOVA and Kruskall Wallis tests respectively for normal distributed and skewed variables. Comparative analyses of genotype frequencies between study groups were performed using chi-square test. Phenotypic effects in each genotypes were deduced based on dominant/recessive models using multivariate logistic regression analyses.

Results: The rural group comprised of lean phenotypes with low mean BMI (19.8 ± 3.4) and WHR (0.83 ± 0.07) while the urban population had a significantly higher mean BMI (21.8 ± 3.9, p=0.001), higher WC (77.1 ± 10.9, p=0.001) and higher fasting blood glucose (5.6 ± 1.0) compared to the rural and semi-urban groups. Despite a lean phenotype, the homoyzous AA genotype of the FTO gene, was significantly associated with higher body fat % (23.2 ± 9.6, p=0.03), Skin fold measurements at triceps (median 9.55, interquartile range 6.53-14, p=0.004), biceps (median 4.53, range 3.13-7.22, p=0.03), subscapular (14.73, range 10.35-25.88, p=0.01) and abdomen (median 16.13, range 8.63-30.55, p=0.002) in the rural group. Significant association with anthropometric measurements was not seen among the urban and the semi urban group though they had a significantly higher BMI and subcutaneous fat. A similar trend was also observed amongst the rural population in the homozygous CC genotype of MC4R with modest significance.

Conclusion: Data from the present study suggests that the common variants of the FTO and MC4R genes have significant genetic influence on subcutaneous fat and body fat percentage, but not BMI in the South Indian population.

Supported by: Svenska Institutet, Sweden

288

Common variant of MTRNR1B is associated with difficulties maintaining sleep but fails to influence the association between sleep disturbances and type 2 diabetes: the HUNT study

L. Olsson, A. Alhambra, S. Carlsson, K. Midtihell, V. Grdlić

1Department of Epidemiology, Karolinska Institutet, Stockholm, Sweden, 2Department of Cancer Research and Molecular Medicine, The Norwegian University of Science and Technology, Trondheim, 3Department of Community Medicine and General Practice, HUNT Research Centre, The Norwegian University of Science and Technology, Levanger, 4Department of Endocrinology, St. Olav University Hospital, Trondheim, Norway.

Background and aims: Recent studies have demonstrated that genetic variation in the melatonin receptor 1B (MTRNR1B) is associated with type 2 diabetes. Melatonin contributes to the regulation of sleep, and sleep problems are a documented risk factor for type 2 diabetes. Whether the MTRNR1B gene variant, which confers risk of diabetes, induces sleep problems is not known, nor whether a putative effect on sleep impacts on the link between sleep problems and type 2 diabetes. We tested 1) whether the risk variant SNP rs10830963 in the MTRNR1B gene is associated with self reported sleep problems, and 2) whether presence of the risk variant influences the association between sleep disturbances and type 2 diabetes.

Materials and methods: We used information from a case-control study nested within the population-based Nord-Trøndelag Health Study, including 1,074 cases of type 2 diabetes and 1,447 controls matched by age and sex. Information on different aspects of sleep disturbances was obtained by questionnaire. Genotyping was performed using the Taqman discrimination assay (Applied biosystems). Odds ratios (OR) and 95% confidence intervals (CI), adjusted for age, sex and BMI, were calculated using logistic regression models.

Results: Reported difficulties maintaining sleep were more frequent in subjects with the G allele of the rs10830963 (OR 1.49, 95% CI 1.04-2.14). In confirmation of previous studies, this allele also conferred increased risk of type 2 diabetes (OR 1.19, 95% CI 1.01-1.41). However, the previously documented association between sleep problems and type 2 diabetes was not influenced by the MTRNR1B G allele. Hence, the OR for the association between sleep disturbances and type 2 diabetes was 1.46 (95% CI 1.01-2.10) for subjects with the G allele of rs10830963, and 1.53 (95% CI 1.08-2.16) for subjects without the G allele.

Conclusion: The common variant rs10830963 in the MTRNR1B gene is associated with difficulties maintaining sleep and also with type 2 diabetes. However, presence of the risk allele does not influence the association between sleep disturbances and type 2 diabetes.

Supported by: Liaison Committee, St Olav’s Hospital Trust/Medical Faculty NTNU and FAS

289

Expression of ARL15, a type 2 diabetes risk variant, is increased in cultured human skeletal muscle cells from insulin-resistant type 2 diabetes patients

A.E. Brown, C.J. Williams, N. Rocha, J.B. Richards, R. Semple, M. Walker

1Institute of Cellular Medicine, Newcastle University, 2University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, United Kingdom, 3Departments of Medicine, Human Genetics and Epidemiology and Biostatistics, McGill University, Montreal, Canada, 4Twin Research and Genetic Epidemiology, King’s College London, United Kingdom.

Background and aims: A recent genome wide association (GWAS) meta-analysis identified a new variant in the ARL15 gene associated with decreased circulating adiponectin levels, and increased risk of coronary heart disease and type 2 diabetes. ARL15 (ADP-ribosylation factor like 15) encodes a GTP-binding protein of unknown function that is highly expressed in skeletal muscle. The aim of this study was to investigate ARL15 expression in cultured human skeletal muscle cells, and to determine (1) whether expression changed with differentiation from myoblasts to myotubes, and (2) whether expression was altered in cultured muscle cells from insulin resistant type 2 diabetic patients.

Materials and methods: Cultured skeletal muscle cells derived from type 2 diabetic patients with a family history of diabetes and clinical evidence of insulin resistance and healthy non-diabetic control subjects with no family history of diabetes were studied. We have previously shown that defects of insulin action are retained in the cultured myoblasts from the diabetic patients. ARL15 expression was measured in cultured myoblasts and day 7 differentiat ed myotubes. Quantitative real-time PCR (QPCR) was used to measure gene expression relative to GAPDH as the reference gene, while protein expression was determined by Western blotting. Statistical analyses were performed using the Wilcoxon signed rank and Mann Whitney U tests.

Results: In cultures from healthy control subjects, ARL15 was expressed in both myoblasts and myotubes and increased with differentiation. After normalisation to GAPDH, expression increased from 0.2±0.06 (mean±SEM) units in myoblasts to 0.6±0.25 in myotubes (n=9; p=0.03). Western blotting confirmed ARL15 protein expression in both myoblasts and myotubes, and was 1.6-fold higher following differentiation to myotubes (n=3; p=0.04). ARL15 expression was compared between cultured muscle cells obtained from 6 insulin-resistant type 2 diabetic patients and 6 age- and BMI-matched controls. ARL15 expression tended to be higher in diabetic vs control myoblasts (0.4±0.24 vs 0.12±0.04 units; p=0.06), ARL15 expression increased with differentiation in both groups, and was significantly higher in the diabetic vs control myotube cultures (0.94±0.27 vs 0.25±0.05 units; p=0.004).
Conclusion: These data show that ARL15 and the encoded protein are well expressed in cultured human skeletal muscle cells, and expression is altered with differentiation. ARL15 expression was increased in differentiated myotubes from insulin resistant type 2 diabetic patients. Further work is needed to explore whether the increased ARL15 expression in the diabetic myotubes is directly related to the previously observed impairment of insulin action in these muscle cell cultures.

Supported by: Diabetes UK

Whole genome sequencing identifies naturally-occurring polymorphisms in a polygenic model of spontaneous type 2 diabetes

Welcame Trust Centre for Human Genetics, Oxford, United Kingdom.

Background and aims: The GK rat is a well-established inbred model of type 2 diabetes (T2D), spontaneously exhibiting the main features of T2D, as the consequence of naturally-occurring diabetes-causative DNA variants isolated from an outbred Wistar stock. By making use of massively parallel next-generation sequencing technologies, our aim was to sequence the entire genome of the GK rat at sufficient coverage for accurate identification of nucleotide and possibly structural variants. More particularly we will examine GK genomic regions linked to phenotypes related to T2D and other metabolic traits as well as genes found to be differentially expressed between GK and control strains through genome-wide gene expression (eQTL) studies.

Materials and methods: Genomic DNA is extracted from GK rat liver using Qiagen DNeasy blood and tissue kit. The DNA is fragmented, and adaptors are ligated to the fragments to make a library for 51 bp paired-end sequencing on an Illumina Solexa Genome Analyzer II next-generation sequencer. Solexa software is used for base calling (Bustard) and initial alignment (GERALD) with the ELAND algorithm. Further alignments are carried out using STAMP and SNP detection by an in-house algorithm at the Wellcome Trust Centre for Human Genetics.

Results: In total, 29 lanes of sequencing were run, giving a total of about 330 million 51-bp reads, and resulting in approximately 9x average coverage across the genome. Currently 80% of the sequence maps back to the BN rat RGSC 3.4 assembly. Looking specifically in a 6.32 Mb region carried by a congenic strain, we find 14,453 candidate SNPs, some in genes that have emerged from monogenic family studies and genome wide association studies in humans, including Gli3, as well as in Dmrt3, a novel candidate which is an expression QTL in GK. Gene expression and physiological QTLs are now annotated with a more complete set of SNPs and other variants.

Conclusion: We have generated whole genome sequence for the GK rat, aligned it to the BN reference sequence, and have identified sequence variants in candidate genes for T2D. Integration of whole genome polymorphism data with physiological and genome-wide gene expression quantitative trait loci in F2 crosses and congenic strains, provides a powerful novel resource for understanding the full genomic landscape of spontaneous polygenic T2D and for identifying new candidate genes and pathways contributing to T2D and the metabolic syndrome.

Supported by: Wellcome Trust, FGENTCARD, EC.

PS 4 Genes and islets

PS 4 Genes and islets

What can a meal test tell us about the heritability of the beta cell function?

A.M.C. Simonis-Bik,1 D.I. Boomsma,2 J.M. Dekker,3 M. Diamant,4 E.J.C. de Geus,5 L.M. ‘t Hart,6 R.J. Heine,1 M.H.H. Kramer,1 A.J. Maassen1, A. Mari3, A. Tura7, G. Willemsen,5 E.M.W. Eekhoff,5 1Diabetes Centre, VU University Medical Centre, Amsterdam, 2Biological Psychology, VU University Amsterdam, 3Epidemiology and Biostatistics and EMGO institute for Health and Care Research, VU University Medical Centre, Amsterdam, 4Nuclear Cell Biology and Medical Statistics, Leiden University Medical Centre, 5Internal Medicine, VU University Medical Centre, Amsterdam, Netherlands, 6CNR Institute of Biomedical Engineering, Padova, Italy.

Background and aims: Type 2 diabetes is a multi-factorial disease in which deterioration of the beta cell function plays a crucial part. This same-sex twin family study is the first to assess the heritability of beta cell function parameters derived from the most physiological challenge test, the mixed-meal tolerance test.

Materials and methods: We recruited 77 same-sex twin families from the Netherlands Twin Register, including 51 MZ twin pairs, 21 DZ twin pairs, 5 twins without a co-twin and 34 same-sex siblings of the twins. All 183 healthy participants (77 male) were of European origin and aged 20-49 years. After anthropometric measurements were performed, a standardized mixed-meal was given and blood was sampled repeatedly. Glucose, insulin and C-peptide levels were determined to calculate the insulin sensitivity, the insulinogenic index, insulin levels at different time periods, 4 parameters of postprandial glycaemia and 9 model derived (Mari) parameters of beta-cell function, namely beta-cell glucoses sensitivity, rate sensitivity, potentiation factor ratios and insulin secretion rate in 5 different periods. All genetic analyses were carried out in Mx, a structural equation modeling program. In the univariate analyses the heritability of each variable was estimated individually. Subsequent multivariate analyses were performed to test overlap in the genetic factors influencing beta cell function, waist circumference and insulin sensitivity.

Results: The highest heritability was found for the insulinogenic index (63%), of which one third was shared with waist and insulin sensitivity. Beta cell glucose sensitivity had a heritability of 50% with a negligible overlap with genetic factors for waist and insulin sensitivity. Insulin secretion rate was only heritable before and during the first 2 postprandial hours (range 40-45%). Genetic factors determine half of the variability of the insulin sensitivity and of the postprandial glycaemic responses during mixed-meal tolerance tests. The fasting insulin but not postprandial insulin levels showed significant heritability (38%). In 7 beta cell function parameters, of which 5 were model-derived, genetic influence did not reach significance.

Conclusion: Classical and model derived beta cell function parameters of the first two hours of a meal test show a significant heritability. These parameters provide important physiological data that can be used to follow up results of gene finding studies.

Supported by: DFN and NWO-MagW

292

Genetic variability of G6PC2 influences beta cell function and insulin sensitivity in patients with newly diagnosed type 2 diabetes

E. Turri1, S. Bonetti,1 M. Trombetta,1 L. Boselli,2 E. Trabetti,2 G. Malerba,2 P.F. Pignatti, 1M. Muggio1, I. Pichiri1, E. Bonora, R.C. Bonadonna2; 1Department of Medicine, 2Department of Life and Reproduction Sciences, University of Verona, Italy.

Background and aims: G6PC2 (glucose-6-phosphatase catalytic subunit 2) is the catalytic subunit of glucose-6-phosphatase and it has specific expression in the beta cell. The rs560887 G allele of G6PC2 is associated with higher levels of fasting plasma glucose (G) and increased first phase of insulin secretion during IVGTT. We evaluated the role of genetic variation at G6PC2 in determining clinical and pathophysiological traits in patients with newly diagnosed type 2 diabetes (T2D).

Methods: 494 GAD-negative and drug-naïve patients (age 57.7±10.3 years, BMI 29.9±5.1 kg/m², HbA1c 7.0±1.4 %) with newly diagnosed T2D underwent standard clinical characterization. Furthermore, beta cell function (BF) and insulin sensitivity (SI) were assessed by mathematical modeling of G-C...
peptide curves during a 240’ frequently sampled OGTT and by euglycemic insulin clamp, respectively. The beta-cell responses to the rate of increase of G (derivative or dynamic control; DC; median[IQR range]: 430[0.6-904] [pmol x m⁻² x BSA]/[mM x min⁻¹]) and to G concentration (proportional or static control, PC, presented as the insulin secretion rate at G concentrations of 5.5, 8.0, 11.0, 15.0 and 20.0 mM, respectively; 160±68, 222±121, 358±219, 569±378, 839±594 pmol·min⁻¹·m⁻² BSA) are herein reported as measures of βF. SI is presented as the M value in the last 60’ of the clamp ([561[355-796] µmol·min⁻¹]).

Background and aims: Genome-wide association studies (GWAS) have recently suggested that a receptor (MTNR1B) for the pineal hormone melatonin is involved in the pathogenesis of Type 2 Diabetes Mellitus (T2DM). Melatonin binds predominantly to its receptors MTNR1A (MT1) and MTNR1B (MT2), which are G-protein coupled receptors and are proposed to exert an inhibitory effect on insulin secretion. Here, we investigate whether a metabolic phenotype evolves in mice when melatonin receptor signalling is disrupted. Also, we examined whether a knock-out of melatonin receptors affects islet morphology and function.

Materials and methods: Knock out mice for MT1, MT2 and both receptors were kindly provided by Professor David Weaver. Every second week blood samples were taken from the Saphenous vein in awake male mice. We measured glucose and insulin concentrations in plasma. We also performed immunohistochemistry to calculate β-cell mass and area and to determine cellular location of the receptors in islets. Standard errors are given as standard deviations.

Results: Plasma glucose (8.61 ±1.43 mM) and insulin levels (1.58 ±0.98 ng/ml) did not differ between the mouse lines and did not change over time (10-22 weeks). MT2 knock-out mice were significantly heavier than WT, MT1 and MT1/2 knock-out mice (MT2: 59.7 ±1.0g; WT: 34.0 ±0.9g; MT1: 31.0 ±0.7g; MT1/2: 30.45 ±0.7g). Mean β-cell mass did not vary between mouse lines, but there was a trend towards increased islet area in MT2 and MT1/2 double knock-out mice (MT2: 2.42 x 10² ± 2.0 x 10⁴ AU (Arbitrary Units); MT1/2: 2.44 x 10² ± 1.7 x 10¹ AU; WT: 1.52 x 10² ± 1.10 x 10⁴ AU; MT1 1.39 x 10² ± 1.10 x 10⁴ AU).

Conclusion: Our data indicate differences in whole body metabolic regulation in MT2 receptor knock-out mice, since they are significantly heavier than WT, MT1 and MT1/2 knock-out mice. The trend towards increased islet area in MT2 and MT1/2 double knock-out mice suggests that MT2 and MT1/2 knock-out mice tend to have more islets than WT and MT1 mice, which could be explained by increased demands in insulin in the heavier mice.

295

Effects of KCNQ1 on glucose-induced insulin secretion in rat pancreatic beta cells or on glucagon-like peptide-1 secretion in cultured NCI-H716 cells
S. Maeda, S. Tsukada; Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Japan.

Background and aims: Two genome-wide association studies conducted in Japanese populations have identified a gene encoding KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) as a strong susceptibility gene to type 2 diabetes, and the polymorphisms in the KCNQ1 have also been shown to be associated with β cell functions, or with secretion of glucagons-like peptide-1 (GLP-1). The aim of the present study is to know the role of the KCNQ1 in insulin secretion using isolated rat pancreatic β cells, or in GLP-1 secretion using cultured human GLP-1 secreting cell lines (NCI-H716).

Materials and methods: We examined the expression of KCNQ1 mRNA by real-time PCR. The rat isolated β cells were incubated with or without chromanol 293 (specific KCNQ1 inhibitor), and insulin secretion from the cells were measured by enzyme linked immunosorbent assay (ELISA). We also measured GLP-1 secretion from the NCI-H716 cells with or without the treatment of chromanol 293 by ELISA.

Results: We found clear expressions of the KCNQ1 as well as KCN2E2, a β subunit of the potassium channel, in isolated rat pancreatic beta cells by RT-PCR. Treatment of isolated rat β cells with chromanol 293B (100 µM) could signifi-
cantly increase the glucose (16.7 mM)-induced insulin secretion. A similar effect could be observed in isolated pancreatic β cells under the presence of 300 µM of tolbutamide, although the difference was not statistically significant. The KCNQ1 inhibitor did not affect insulin secretion from the β cells under low glucose conditions or under the presence of 30 mM KC1. In NCI-H716 cells, the expressions of KCNQ1 and KCNE1 - 5 were detected. The treatment with chromanol 293 increased bethanochol (1000 µM)-induced GLP-1 secretion, but did not affect GLP-1 secretion under a basal condition or under the presence of 10 µM isononycine.

Conclusion: These results suggest that KCNQ1 may regulate secretion of insulin and GIP, and may contribute to the susceptibility to type 2 diabetes by decreasing glucose-induced insulin secretion in the pancreatic β cells or diet-induced GIP-1 secretion in the L-cells.

Effects of KCNQ1 inhibitor on insulin secretion in pancreatic beta cells, or on GIP-1 secretion in NCI-H716 cells.

<table>
<thead>
<tr>
<th>Insulin secretion</th>
<th>Mean ± SEM</th>
<th>kg/h/µL protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>86.1 ± 4.6</td>
<td>386.0 ± 74.5</td>
</tr>
<tr>
<td>+</td>
<td>66.1 ± 3.1</td>
<td>649.8 ± 109.9</td>
</tr>
</tbody>
</table>

Results: The G allele of rs685438 was associated with lower fasting proinsulin/insulin ratio in a cohort of 167 diabetic and non-diabetic individuals with type 2 diabetes through a perturbed insulin secretion, an impaired incretin effect and impaired cell survival (increased apoptosis and/or decreased proliferation).

Conclusion: A common variant in the PAX6 gene influences islet function in man.

Polymorphisms in CACNA1D affect insulin release and channel expression and associate with type 2 diabetes.

T.M. Reinbothe, V. Lyssenko, S. Lang, E. Renstrom

Lund University Diabetes Centre, Lund University, Malmö, Sweden.

Background and aims: Voltage-gated Ca⁺⁺ channels of the L-type are essential triggers for insulin secretion in rodents but little is known about their role in human type 2 diabetes. We here set out to determine the contribution of the human L-type channel subtype Ca₃.₁.₃ (encoded by CACNA1D) for inherited capacity of insulin secretion.

Materials and methods: Gene expression in human islets: Total RNA was isolated from pancreatic islet donors including 45 non-diabetics / 6 diabetics (24/4 males, 21/2 females, age=56±10/58±15, BMI=26±3/28±4) using the AllPrep DNA/RNA Mini Kit (Qiagen) and analyzed using Gene 1.0 ST whole transcript based assays (Affymetrix). Genetic studies: DNA from the Diabetic Genetics Initiative was analyzed with the Affymetrix Human Mapping SNP GeneChip in order to identify single nucleotide polymorphisms. Three candidate SNPs were tested in 766 non-diabetics (358 males, 408 females, age=49±13, BMI=25±4) from the Botnia study by genotyping using Taqman allelic discrimination assays and common variants were detected by ABI PRISM 7900. Phenotypes were assessed with oral (OGTT) or intravenous (IVGTT) glucose tolerance tests with insulin measured using a radioimmunoassay. Insulin phenotypes were corrected for age, gender and BMI.

Results: A SNP that was associated with fasting proinsulin/insulin ratio in the Diabetes Genetics Initiative (DGI) genome-wide association scan. The G allele of rs685438 was associated with lower fasting proinsulin/insulin ratio as well as with increased fasting insulin (p=0.001) and HOMA-IR (p=0.0008). Expression of PAX6 (p=0.01) and PCSK1 (p=0.001) was lower in pancreatic islets from human donors carrying the G-allele. The effect on fasting proinsulin/insulin ratio was also seen in the Helsinki birth cohort study (P=0.07), as was higher fasting insulin (p=0.04) and HOMA-IR (p=0.03). In the Botnia Prospective study G allele carriers had higher 2 hour insulin levels (p=0.03) and higher 2 hour glucose levels (p=0.0001). Acute arginine-stimulated insulin secretion in a cohort of 167 diabetic and non-diabetic individuals was reduced (p=0.02). Glucose stimulated insulin secretion was also significantly lower in human pancreatic islets (p=0.002). Furthermore, G allele carriers had lower fasting plasma levels of both GIP (p=0.03) and glucagon (p=0.03).

Conclusion: A common variant in the PAX6 gene affects PAX6 and PCSK1 expression affecting islet function. In spite of increased insulin resistance individuals with low expression have lower proinsulin/insulin ratio rather than higher, which was previously reported for carriers of PAX6 mutations. In contrast, they have reduced acute arginine-stimulated insulin secretion, a measure of total insulin secretion capacity, and reduced incretin levels, which is in accordance with the expected effect of PAX6 on expression of insulin and incretin mRNA.
We studied 70 T2D-patients and 6 S20G-patients. Type 2 diabetic patients have islet amyloid deposition more than T2D-patients. A rescue experiment restoring (decreasing) the Tps3 expression level prevented the increase in apoptosis seen after Tcfl2 knock down, suggesting that the Tcfl2 effect required the p53 pathway and Tps3 expression.

Conclusion: The p53 pathway, particularly TP53INP1 (S20G-patients), seems to be central for progression in patients carrying S20G mutation. The long time course of the endogenous insulin secretion (EAD) was calculated from the individual regression line between CP and duration (years after diagnosis). The estimated annual decline of endogenous insulin secretion (IAD) was calculated from the individual regression line between total points of CP and duration (n=527 for F-CP; n=165 for 5'-CP and d-CP) in all T2D-patients (n=70), although it was a cross-sectional analysis. In T2D-patients, we used EAD of both 5'-CP and d-CP instead of IAD, because IAD of both 5'-CP and d-CP could not be calculated due to small number of the plots of each patient.

Results: IAD of F-CP was greater in S20G-patients than T2D-patients (0.140±0.076 Vs 0.062 ng/ml/year, p<0.001). In T2D-patients, EAD was 0.031 ng/ml/year and it was almost same as IAD. IAD of both 5'-CP (n=4) and d-CP (n=4) in S20G-patients were high compared with those of EAD in T2D-patients (5'-CP: 0.202±0.096 Vs 0.101 ng/ml/year and d-CP: 0.118±0.056 Vs 0.062 ng/ml/year, respectively).

Conclusion: We showed the long-termed decline of the endogenous insulin secretion in non-obese Japanese T2D-patients. The results suggested that the decline of the endogenous insulin secretion is more rapid in S20G-patients than T2D-patients.

300 A common polymorphism in the cc12 gene regulatory region affects mcp-1 gene expression and function of isolated non-diabetic and type 2 diabetic islets

S. Del Guerra, V. D’Aleo, G. Gualtieriotti, F. Vistoli, F. Filippioni, U. Boggi, S. Del Prato, P. Marchetti, R. Lupi

1Endocrinology and Metabolism, Metabolic Unit, 2Oncology, Transplants and Advanced Technologies in Medicine, Division of Surgery in Uremic Patients, 3Oncology, Transplants and Advanced Technologies in Medicine, Liver Transplant Unit, 4Endocrinology and Metabolism, Division of Organ Transplantation and Cellular, University of Pisa, 5Endocrinology and Kidney, Metabolic Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.

Background and aims: It has been shown that human islets release monocyte chemoattractant protein-1 (MCP-1), a macrophage chemokine which may impair the fate of the islets in vivo and after a transplant. In this study we evaluated presence and role of monocyte chemoattractant protein-1 (MCP-1) and its receptor CC –chemokine receptor-2 (CCR2) in isolated non-diabetic (Ctrl) and type 2 diabetic (T2DM) islets, including genotyping for a common polymorphism.

Materials and methods: Pancreatic islets were obtained from 47 Ctrl and 18 T2DM multiorgan donors. We evaluated glucose-stimulated insulin release (IR, µU/islet/min, expressed as Stimulation Index: SI), measured MCP-1, CCR2 and insulin mRNA expression, and analyzed the MCP-1 (−2518 G/A, rs1024611 in the promoter region) and the CCR2 (G46295A Val64Ile, rs1799864 in exon2) Single Nucleotide Polymorphisms (SNP).

Results: As expected, in T2DM islets SI (1.44±0.17) and insulin gene expression (7.15±1.5) were significantly reduced respect to Ctrl (2.34±0.20 and 26.47±6.64, respectively) islets (all p<0.001). MCP-1 and CCR2 expression was significantly higher in T2DM (3.80±0.62 and 0.31±0.05, respectively), respect to Ctrl (1.60±0.18 and 0.062±0.02, respectively) islets (all p<0.001). We observed a positive significant correlation between MCP-1 and CCR2 gene expression (R2=0.235, p=0.0032), a negative significant correlation between MCP-1 mRNA expression and both SI (R2=0.116, p=0.0095) and IR at 16.7 mmol/l (R2=0.077, p=0.037), and a positive significant correlation between MCP-1 gene expression and BMI (R2=0.076, p=0.039). Both in Ctrl and in T2DM, we found that MCP-1 mRNA expression was significantly higher in CC and CT respect to TT genotype groups, with a SI significant lower in CC respect to TT genotype group. Intriguingly, islets presenting both SNPs studied (rs1799864 and rs1024611), showed a high MCP-1 and CCR2 gene expression and a reduced beta-cell function.

Conclusion: These data show that MCP-1 gene is present in human pancreatic islets, it’s more expressed in T2DM respect to Ctrl islets, is regulated by the -2518 G/A polymorphism, and correlates with glucose-stimulated insulin release. The study of MCP-1 expression and genotype could be useful also in understanding the inflammatory response in vivo against pancreatic islets after transplantation.
PS 5 Candidate genes in type 2 diabetes

301

Relationship between adiponectin and insulin-like growth factor-binding protein 1 and their combined effects in type 2 diabetes

T. Gu1, L. Kärvestedt1,2, K. Brismar2, H.E. Gu1

1Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; 2Stockholm Sjukhem, Sweden.

Background and aims: Evidence has demonstrated that serum levels of adiponectin (AdipoQ) and insulin-like growth factor-binding protein 1 (IGFBP-1) are decreased in type 2 diabetes (T2D) patients compared to non-diabetic control subjects. AdipoQ genetic polymorphisms are found to be associated with T2D. IGFBP-1 genetic polymorphisms are associated with impaired renal function in T2D. However, whether adiponectin and IGFBP-1 have gene- and protein-protein interactions in T2D is unknown. In the present study, we attempted to explore possible relationship between these two molecules and their effects in T2D.

Materials and methods: We genotyped five SNPs (-11426A/G, -11391G/A, -11377G/C, +45T/G Gly15Gly and +276A/C) in the AdipoQ gene and two SNPs (-575G/A and -4403A/G Lle233Met) in the IGFBP-1 gene in 163 Swedish T2D patients. Of the patients, 85 had family history of diabetes (FHD). We also measured serum levels of adiponectin and IGFBP-1 in all patients by using radio-immunoassays. We further employed generalized multifactor dimensionality reduction (GMDR) to assess the impact of gene-gene interactions (the patients without FHD as controls). Linear regression and logistic regression models were used for correlation analyses of adiponectin and IGFBP-1 serum levels and for confirmation of the data from GMDR logistic regression models.

Results: We found that serum adiponectin levels in T2D-FHD(-) (4.47 mg/l, 4.07-4.90) was significantly lower compared to T2D-FHD(+) (5.50 mg/l, 4.90-6.17) (P=0.006). GMDR analyses of all studied SNPs in the AdipoQ gene and two SNPs (-575G/A and +4403A/G Lle233Met) in the IGFBP-1 gene in 163 Swedish T2D patients. Of the patients, 85 had family history of diabetes (FHD) (P=0.374).

Conclusion: Data from the present study implicate that promoter polymorphisms of the AdipoQ and IGFBP-1 genes may have an impact on gene-gene interaction in T2D. These two promoter polymorphisms may influence the correlation between adiponectin and IGFBP-1 at protein levels. Replication study with additional T2D patients and non-diabetic control subjects will be conducted to further understand genetic and functional effects of adiponectin and IGFBP-1 in the development of T2D.

Supported by: Family Erling-Persson foundation

302

Circulating HMW adiponectin is positively correlated and shares a common genetic background with urinary albumin excretion in non diabetic white caucasians from Italy

C. Menzaghi-Caprin1, L. Salvi2, G. Ferrer1, C. De Boni1, D. Mangiacotti1, G. Fini1, V. Trischitta1,2, S. De Cosmo3

1Research Unit of Diabetes and Endocrine Diseases, IRCCS, San Giovanni Rotondo, Italy; 2University ‘Sapienza’, Rome, Italy; 3Unit of Endocrinology, IRCCS, San Giovanni Rotondo, Italy.

Background and aims: Circulating levels of adiponectin, an insulin sensitizing hormone, have been reported to be paradoxically increased in patients with higher urinary albumin excretion (UAE), a condition characterized by insulin resistance. In order to avoid the possible confounding effects exerted in these previous studies by the presence of diabetes - and related treatments - and that of reduced kidney function, we investigated the relationship be-

between adiponectin and UAE levels in a large (n = 640, 246M/394F), family-based sample of relatively young (age 40.3 ± 14.5 yrs) non diabetic, White Caucasians from Italy without known kidney impairment who were not on any pharmaceutical treatment.

Materials and methods: UAE was measured by nephelometric method and reported as urinary albumin-creatinine ratio (ACR). Serum adiponectin (high, medium and low molecular weight isomers; HMW, MMW, LMW) levels were measured by ELISA. Glomerular filtration rate was estimated by the reciprocal of serum cystatin C (CC) expressed in mg/L multiplied by 100 (CC-GFR; mean: 125.4 ± 35.9). Five SNPs in the ADIPOQ gene, previously reported to be associated to adiponectin levels and/or diabetic nephropathy (rs182052, rs17300539, rs2241766, rs1501299 and rs877395) were genotyped. A linear mixed effects model was used to assess both phenotypic correlations and to test associations. Bivariate analyses were conducted to study genetic correlations between adiponectin isosforms and UAE.

Results: ACR levels (median: 0.53 mg/mmol; range 0.06 - 12.4) were directly associated with HMW adiponectin (β = SE = 0.058 ± 0.02, p = 3.7x10⁻⁵). Differences in UAE patterns of association (β = 0.06 ± 0.02, p=2.7x10⁻⁵). A significant genetic correlation (rhȯ = 0.38 ± 0.20, p=0.04) was observed between ACR and HMW adiponectin. Among the ADIPOQ SNPs tested, rs17300539, which was associated with both HMW (p = 4.4x10⁻³) and ACR (p=2.7 x10⁻⁵), partially accounted for this genetic correlation (2.5%).

Conclusion: In conclusion, circulating HMW adiponectin and UAE levels are directly correlated and share, at least partly, a common genetic background, involving the ADIPOQ locus for a small proportion of it.

Supported by: Accordo Programma Quadro Regione Puglia-PST 2006

303

Assocations of common variants of ADIPOQ, ADIPOR1 and ADIPOR2 with adiponectin concentration and diabetes incidence in the Diabetes Prevention Program

K.J. Mather1, C.A. Christophi1, K.A. Jablonski1, W.C. Knowler2, R.B. Goldberg3, S.E. Kahn1, E.K. Pi-Sunyer1, T.I. Pollin1, J.C. Florez1, P.W. Franks2, 1Indiana University School of Medicine, Indianapolis, IN, 2The George Washington University Biostatistics Center, Rockville, MD, 3The University of Miami Miller School of Medicine, Miami, FL, 4Veterans Affairs Puget Sound Health Care System, Seattle, WA, 5St. Luke’s-Roosevelt Hospital, New York City, 6University of Maryland School of Medicine, Baltimore, MD, 7Center for Human Genetic Research, Massachusetts General Hospital, Boston, USA, 8Umea University Hospital, Umea, Sweden.

In the Diabetes Prevention Program, a trial enrolling people from multiple ethnic backgrounds who were overweight and had impaired glucose regulation, baseline concentrations of adiponectin were independently predictive of incident type 2 diabetes. We examined the association of genetic variation in the genes encoding adiponectin (ADIPOQ) and the two known adiponectin receptors (ADIPOR1, ADIPOR2) with circulating adiponectin concentrations and with diabetes incidence. Fourteen of 24 ADIPOQ SNPs were nominally associated with adiponectin concentrations; 9 exceeded experiment-wide significance and 4 exceeded genome-wide significance in the entire study population (rs1648707 p=10⁻⁷; rs17366568 p=10⁻⁷; rs6810075 p=10⁻⁴; rs182052 p=10⁻⁵). For these 4 SNPs, minor allele homozygotes had 11-25% lower mean circulating concentration of adiponectin than major allele homozygotes. Among white subjects only (n=1622) these SNPs showed similar patterns of association (rs1648707 p=10⁻⁴; rs17366568 p=10⁻⁴; rs6810075 p=10⁻⁴; rs182052 p=10⁻⁴), indicating that these signals are not confounded by population stratification. One ADIPOR1 SNP (p=10⁻⁸) was also associated with adiponectin concentrations (p=10⁻⁸); no ADIPOR2 SNPs were associated with adiponectin concentrations. Three of 22 ADIPOQ SNPs and 2 of 31 ADIPOR2 SNPs were associated with diabetes incidence in the whole population (p=10⁻¹ to 10⁻⁴). None of the ADIPOQ variants, and specifically none of those associated with adiponectin concentrations, was associated with diabetes incidence in the whole study population. Two of the 77 evaluated SNPs interacted with treatment to influence diabetes incidence in the whole study population (ADIPOQ rs1737341 p=0.04, hazard ratio higher in lifestyle than placebo; ADIPOR2 rs785027 p=0.01, hazard ratio higher in metformin than placebo). A parallel rs768027 interaction was evident among whites, again arguing against confounding by population stratification. ADIPOQ SNPs are significantly associated with adiponectin concentrations in the DPP cohort, confirming the results published from cohorts with lower
diabetes risk and expanding them to a multi-ethnic population with impaired glucose regulation. Despite associations with circulating adiponectin concentrations and the known robust relationship between adiponectin concentrations and diabetes risk in this cohort, loci influencing diabetes risk did not overlap with those influencing adiponectin concentrations in the DPP. This highlights the complex relationships of genetic and non-genetic determinants of adiponectin concentrations with type 2 diabetes risk.

Supported by: NIH Grant

304

Effect of variants in the RORA gene on risk of type 2 diabetes
A. Jonsson1, S. Alkayal2, B. Isomaa1,2, T. Tuomilehto1, L. Groop1, V. Lysyloo1
1Clinical Sciences, Diabetes & Endocrinology, Lund University, Malmö, Sweden; 2Poikilas Research Centre, Helsinki, 1Malmona Municipal Health Care Center and Hospital, Jakobstad, 1Medicine, Helsinki University Central Hospital and University of Helsinki, Finland.

Background and aims: A genetic variation in the RAR-related orphan receptor alpha (ROR-a) gene (RORA) was found to be associated with reduced insulin secretion in the DGI genome wide association study for early insulin secretion. ROR-a has been previously implicated in glucose and lipid metabolism. The aim of the study is to validate the effect of genetic variants in RORA on insulin secretion, and to explore its effects on risk for type 2 diabetes (T2D) and related phenotypes.

Materials and methods: Six RORA variants (rs10519116, rs11071557, rs17204545, rs2414689, rs2477389 and rs4775292) were genotyped in three cohorts, totaling 13,560 Scandinavian individuals (Malmo Case Control MCC, n=6,380; Prevalence, prediction and prevention of diabetes in Botnia [PPP], n=4,852, and Botnia Prospective Study [BPS], n=2,328 with a median follow-up period of 7.6 years).

Results: In the DGI, the T-allele of rs4775292 was associated with reduced insulin secretion (N=1,018, beta (semi) -0.214 (0.041), P=0.0024). Furthermore, in the independent follow-up PPP study the same allele showed increased insulin secretion in young (N=1,499, 0.103 (0.031), P=0.00079), but decreased in elderly (N=1,245, -0.081 (0.030), P=0.0073, median age 50 yrs as cut-off). Combined analysis confirmed association of the T-allele of rs4775292 with reduced insulin secretion in elderly individuals (N=2,698, -0.075 (0.023), P=0.0011). In the MCC, in line with increased insulin secretion, the T-allele of rs4775292 was associated with protection from T2D (OR [95%CI]: 2.78 [0.61-0.99], P=0.039) in young, but no effect was seen in elderly (1.00 [0.91-1.11], P=0.94) in elderly. In note, of the MCC, the C-allele of another SNP, rs10519116, was more frequent in cases than in controls (26.5% vs. 24.2%, P=0.015). This difference was more pronounced in elderly individuals (27.0% vs. 24.0%, P=0.0027), which translated into an age, sex and BMI adjusted OR for T2D of 1.16 [1.03-1.29], P=0.011. The same C-allele of rs10519116 and also the T-allele of rs4775292 were associated with increased 2hr proinsulin and GIP levels during OGTT (rs10519116: 0.081 (0.036), P=0.024 and 0.119 (0.037), P=0.0014; rs4775292: 0.080 (0.030), P=0.0079 and 0.105 (0.031), P=0.00091) in male PPP participants. Furthermore, the same T-allele of rs4775292 and the GT/TT-genotype of rs11071557 were associated with decreased HDL and APOAI both at baseline (rs4775292: -0.037 (0.014), P=0.0087 and -2.77 (1.00), P=0.0059; rs11071557: -0.183 (0.057), P=0.0015 and -14.43 (4.08), P=0.0042) and at follow-up (rs11071557: -0.203 (0.075), P=0.0071 and -11.17 (4.98), P=0.025) in male BPS participants. Finally, two SNPs were associated with decreased insulin sensitivity (rs17204545: PPP -0.535 (0.020), P=0.0079 and rs2414689: BPS -0.077 (0.026), P=0.0026) in male participants. Interestingly, RORA shows a rich methylation pattern where rs4775292 is a candidate for a CpG site. Methylation studies are on.

Conclusion: This results suggest that genetic variants in the RORA gene are associated with increased risk of T2D, and influence glucose and lipid metabolism.

Supported by: Swedish Research Council, an EFSD Clinical Research Grant, Filibsson and Novo Nordisk foundations

305

Vaspin is involved in the pathophysiology of type 2 diabetes by regulating insulin sensitivity
J. Breitfeld1, N. Kloting1, J.T. Heiker1, U. Engvik1, M. Kern2, Y. Böttcher2, D. Schlenzka2, K.E. Dietrich1, N. Wiede1, A. Tonjes2, A.G. Beck-Sickinger2, M. Stumvoll1, M. Blüher1, P. Kovacs3
1Interdisciplinary Centre for Clinical Research, 2Department of Medicine, 3Institute of Biochemistry, University of Leipzig, Germany.

Background and aims: Visceral adipose tissue derived serine protease inhibitor (vaspin) is a novel adipokine that may link obesity, insulin resistance (IR) and type 2 diabetes (T2D), but so far its pathophysiological role remains largely unknown. The first aim was to study the effects of recombinant vaspin treatment on insulin sensitivity in db/db mice. In addition, we investigated the role of genetic variation in the human vaspin gene in the pathogenesis of T2D.

Materials and methods: Animal studies: After recombinant vaspin administration (1mg/kg body weight i.p.; at 6 pm and at 6 am prior to the tests), we performed glucose tolerance tests (2g/kg body weight i.p.) and hyperinsulinemic-euglycemic clamps in db/db mice (N=5 for each test). Human genetic studies: Vaspin (exons, exon-intron boundaries, 5´ and 3´ UTRs) was sequenced in DNA samples from 48 unrelated Caucasian subjects (ABI PRISM 3100 Avant; Applied Biosystems Inc.). Six single nucleotide polymorphisms (SNPs) identified by sequencing and 22 haplotype tagging SNPs representative for their linkage disequilibrium groups (r2>0.8 and minor allele frequencies>0.05) were genotyped in 1046 clinically well-characterized German subjects from Germany for subsequent association study on metabolite traits including insulin resistance and secretion indices (e.g. fasting Belfiore, Stumvoll index, HOMA-IR) based on glucose tolerance test in non diabetic subjects. P values <0.05 were considered to be of nominal statistical significance. For in vitro analyses of the effects of the stop codon mutation (p.R211X), full-length (wild type) and short-length (carrying the mutation) vaspin was cloned into p3xFLAG-myc-CMV expression vector (Sigma-Aldrich) and transfected into HEK-cells (Fugene HD Transfection Kt; Roche). Proteins were detected by western blot.

Results: Animal studies: Vaspin administration in db/db mice resulted in improved glucose tolerance (P<0.05). Consistently, glucose infusion rate (GIR) during the steady state of the clamp significantly increased after vaspin treatment (P<0.05). Human genetic studies: Sequencing of the vaspin gene revealed one SNP (rs61757459) in exon 3 resulting in a STOP-codon (p.R211X). Western blot experiments showed that full-length and short-length vaspin were expressed in eukaryotic cells. Short-length vaspin yielded in a prominent ~25-kDa band. Several SNPs were nominally associated with WHR (waist-to-hip-ratio), 30min glucose levels or 2hr-insulin levels (adj. for age, sex and BMI). Furthermore, one SNP (rs2236242) showed additional associations with AUCins, insulin sensitivity and insulin resistance indices.

Conclusion: In conclusion, our data demonstrate the substantial insulin sensitizing effect of vaspin and suggest a role of vaspin genetic variants in the pathophysiology of insulin resistance and T2D.

Supported by: DFG

306

ABO blood groups and incidence of type 2 diabetes in men and women
L. Qi1, Y. Song2, J. Manson3, E.B. Hu4
1Nutrition and Epidemiology, Harvard School of Public Health, Boston, 2Department of Medicine, Harvard Medical School, Boston, USA.

Background and aims: Previous small studies associated ABO blood types with the prevalence of diabetes. Recent genome-wide scans identified ABO locus might determine various risk factors for type 2 diabetes.

Materials and methods: We prospective examined the relationship between ABO blood types and the risk of incident type 2 diabetes in men and women from two cohorts: the Health Professionals Follow-up Study (HPFS) and the Nurses’ Health Study (NHS).

Results: In the HPFS, during 452,404 person-years of follow-up, 1,764 participants developed type 2 diabetes. Compared with participants with blood group O, the relative risk (RR) associated with blood group A, B, and AB were 1.08 (95% confidence interval [CI] 0.97-1.20), 1.15 (1.00-1.34), and 1.31 (1.10-1.57). In the NHS, during 111,724 person-years of follow-up, 4,376 participants developed type 2 diabetes. Compared with participants with blood group O, the RRs (95% CI) of type 2 diabetes associated with blood groups A, B, and AB were 1.10 (1.03-1.18), 1.03 (0.94-1.13), and 1.02 (0.91-
307

Contribution of mother and father in the familial transmission of type 2 diabetes mellitus according to the proband's gender

E.L. Cavalot, P. Poy, A. Pomero, A. Pagliarino, P. Massucco, M. Trovati; Dept of Clinical and Biological Sciences, Faculty of Medicine San Luigi Gonzaga, University of Turin, Orbassano, Italy.

Background and aims: Type 2 diabetes mellitus (T2DM) shows strong familial aggregation: the relative role of maternal and paternal familiarity, however, needs to be further investigated. In this study, we evaluated the distinct contribution of the mother and the father in T2DM transmission according to proband's gender.

Materials and methods: We evaluated through a structured interview the familial transmission in 1076 T2DM patients aged <70 years attending our Diabetes Clinic, divided into two groups according to the age at diagnosis: 30-49 years (Group A: 540 consecutive patients, M/F: 366/174) and 50-69 years (Group B: 536 consecutive patients, M/F: 312/224).

Results: Group A showed the following parental transmission: only mother: 34.6%; only father: 19.8%; both parents: 10.7%. Thus, mother was affected in 45.3%, father in 50.3% (p<0.0001). When proband's gender was considered, paternal transmission was: a) in men (n=366): only mother: 34.2%; only father: 22.4%; both parents: 7.7%. Thus, mother was affected in 41.9%, father in 30.1% (p<0.018); b) in women (n=174): only mother: 35.6%; only father: 14.4%; both parents: 17.2%. Thus, mother was affected in 52.8%, father in 31.6% (p<0.004). Thus, the excess of maternal transmission was present in both genders, but women probands showed an increased probability to have both parents affected (p=0.026); furthermore, in the presence of father affected, the conditional probability to have also mother affected was greater in women than in men (55% vs 25%, p<0.007). Familiarity was not modified by proband's body mass index. In Group B, paternal transmission was less frequent than in Group A, mother being affected in 35.7% vs 45.3% in Group A (p=0.023), father in 14.8% vs 30.5% in Group A (p<0.0001). Also in Group B, however, mother was more frequently affected than father (p<0.0001). By considering the two groups together, multivariate linear regression showed that, in comparison to the absence of familiarity in parents: a) in men probands, familiarity in the mother anticipated diabetes diagnosis 2.6±0.7 yrs (p<0.0001), in the father 5.1±1.0 yrs (p<0.0001) and in both parents 9.1±1.4 yrs (p<0.0001); b) in women probands, familiarity in the mother anticipated diabetes diagnosis 2.2±1.0 yrs (p=0.023), in the father 2.5±1.3 yrs (p=0.065) and in both parents 7.2±1.5 yrs (p<0.0001). Thus, familiarity in the father anticipated the diagnosis of T2DM more strongly in men than in women. Men excess in both Group A and Group B induced us to compare our data with the percentage of men in T2DM patients aged <70 years living in the District in which our Hospital is located, obtained from the Health Service data of our Region: this percentage was 65% (vs 68% in Group A) in patients with diabetes diagnosis at age 30-49 years and 57% in those with diabetes diagnosis at age 50-69 years (vs 58% in Group B). Thus, an excess of diabetic men vs women was present in our District, independently from attendance at our Diabetes Clinic.

Conclusion: In Type 2 diabetes: i) familiarity predicts early diagnosis; ii) maternal transmission is stronger than the paternal-one in both proband genders independently of age at diagnosis; iii) if father is affected, maternal co-transmission is more frequent in women.

Supported by: Regione Piemonte Research Grant

S132

308

PS 6 Gene and environment: interaction, pharmacogenetics

TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes

M. Hahn1, A. Körner2, M. Stumvoll3, P. Kovacs1, A. Holstein2; 11st Department of Medicine, Klinikum-Lippe, Detmold, 2University Hospital for Children and Adolescents, University of Leipzig, 3Department of Medicine, University of Leipzig, 4Interdisciplinary Centre for Clinical Research, University of Leipzig, Germany.

Background and aims: Variants in the TCF7L2 gene have been shown to be associated with an increased risk for type 2 diabetes (T2D). Since the association with diabetes could be explained by effects on insulin secretion, we investigated whether patients with diabetes risk alleles at rs7903146 might have an altered hypoglycaemic response to sulfonylureas (SUs).

Materials and methods: We recruited 189 patients with T2D being treated with SUs and determined the rs7903146 diabetes risk genotype. We used a logistic regression with secondary SU failure defined as the addition of insulin after at least 6 months of SU therapy and corresponding AIC measurement of ≤0.05.

Results: In univariate regression analyses, TCF7L2 genotype and diabetes duration were the main predictors of SU treatment failure. The rs7903146 T-allele was significantly more frequent in the group of patients additionally treated with insulin (40%) than in the control group treated only with SUs (28%) [P=0.03; odds ratio: 1.73 (1.06-2.84) in an additive mode of inheritance].

Conclusion: Our data suggest that patients with diabetes risk alleles in TCF7L2 have an altered hypoglycaemic response to SUs resulting in early secondary failure, thus supporting previously reported findings and indicating the potential of pharmacogenomics in the therapy of T2D.

309

The role of genetic variation in the sodium-glucose cotransporter 2 gene (SGLT2) in the pathophysiology of type 2 diabetes

D. Schleinitz1, U. Enigk1, J. Breitfeld1, B. Enigk2, K. Dietrich1, L. Müller2, J. Halbritter1, A. Fischer-Bosinsky1, A.H. Pfeiffer3,4, J. Spranger3,4, M. Stumvoll1, P. Kovacs1, A. Tönjes2; 1IKZF Leipzig, University of Leipzig, 2Department of Medicine, University of Leipzig, 3Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, 4Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.

Background and aims: The sodium-glucose cotransporter 2 (SGLT2) is the major cotransporter involved in glucose reabsorption in the kidney. Mutations in the SGLT2 gene cause renal glucosuria and are associated with reduced circulating glucose levels. Treatment with SGLT2-inhibitors results in decreased fasting glucose levels, reduction of HbA1c and additive BMI. We therefore investigated the effects of common genetic variation in SGLT2 on glucose traits and BMI in non-diabetic subjects as well as the association with type 2 diabetes (T2D).

Materials and methods: Four HapMap tagging single nucleotide polymorphisms (SNPs) (www.hapmap.org) were genotyped (TaqMan, Applied Biosystems, Inc.) for subsequent association studies on BMI, T2D and related metabolic traits in 1046 Sorbs from Germany who had undergone a detailed phenotyping. The SNPs were representative of their linkage disequilibrium in decreased fasting glucose levels, reduction of HbA1c and additive BMI. We therefore investigated the effects of common genetic variation in SGLT2 on glucose traits and BMI in non-diabetic subjects as well as the association with type 2 diabetes (T2D).

Results: The sodium-glucose cotransporter 2 (SGLT2) is the major cotransporter involved in glucose reabsorption in the kidney. Mutations in the SGLT2 gene cause renal glucosuria and are associated with reduced circulating glucose levels. Treatment with SGLT2-inhibitors results in decreased fasting glucose levels, reduction of HbA1c and additive BMI. We therefore investigated the effects of common genetic variation in SGLT2 on glucose traits and BMI in non-diabetic subjects as well as the association with type 2 diabetes (T2D).
Conclusion: In conclusion, our data suggest a role of SGLT2 genetic variation in the regulation of insulin and glucose levels in non-diabetic individuals. SGLT2 polymorphisms might therefore be potential candidates in pharmacogenomic studies investigating the interaction between these genetic variants and the efficacy of antidiabetic treatment based on inhibition of SGLT2.

310
ENPP1 expression and metformin efficacy in type 2 diabetes
O. Ludovic1, M.G. Farina1, S. Prudente1, A.P. Palena1, V. Proto1, V. Marotta1, L. Frittitta1, V. Trischitta1,2

Background: ENPP1 is an inhibitor of insulin signalling whose overexpression plays a role on insulin-resistance. Also the ENPP1 K121Q polymorphism has been associated with insulin resistance, with the Q121 variant being a gain of function substitution which increases the protein inhibitory activity on insulin signalling. Metformin (Met) is an insulin-sensitizer, established as “first choice” oral hypoglycemic agent (OHA) in type 2 diabetes (T2D). In the Diabetes Prevention Program (DPP) study, the efficacy of Met in preventing future T2D was significantly greater in Q121 carriers (individuals carrying KQ or QQ genotypes) as compared to those carrying the KK genotype, thus suggesting that higher ENPP1 inhibitory activity predicts better metformin efficacy.

Aims: to investigate i) whether ENPP1 expression predicts the efficacy of 3-month metformin monotherapy on fasting glucose (FG) in patients with T2D; ii) whether Met modulates ENPP1 expression in peripheral blood mononuclear cells (PBMC).

Method: 55 patients (31 M/24 F; age: 40–70 yrs; disease duration: 2.25 yrs; HbA1c 6.5–9%: no need of insulin therapy) were recruited. Contraindications to Met treatment were considered as exclusion criteria. Previous OHA were discontinued for 5 days and then Met (2550 mg/daily) was given. Body mass index (BMI), HbA1c, insulin, insulin-resistance HOMA index, triglycerides and HDL-cholesterol were measured at baseline and 12 weeks after Met treatment. ENPP1 expression levels were measured by quantitative RT-PCR in PBMC before and after treatment.

Results: ENPP1 baseline expression was significantly and directly correlated with Met efficacy as indicated by change in FG after treatment (i.e. baseline FG minus 3-month FG) (adjusted R2=0.033, p<0.0001). Of all other measured variables, only baseline FG was able to predict Met efficacy (adjusted R2=0.033, p<0.0001). Of note, ENPP1 maintained a significant prediction ability also when adjusted for baseline FG (p<0.045) as well as when also sex, BMI and duration of T2D were added into the model (p=0.04). Average ENPP1 expression levels didn’t change after Met treatment (6.94±6.14 arbitrary units and 7.66±5.78, before and after, respectively; p=0.173).

Conclusion: Our data indicate that Met efficacy is higher in individuals with higher ENPP1 expression and then, presumably characterized by higher ENPP1 inhibitory effect on insulin signalling. These data are very much along the same line of those from the DPP study showing increased metformin efficacy in carriers of ENPP1 Q121 variant. A better understanding of these phenomena could help setting up strategies aimed at predicting Met efficacy.

Supported by: Società Italiana di Diabetologia (SID) 2007

312
Resistance to exercise-induced changes in the global DNA methylation pattern of skeletal muscle in individuals with a family history of type 2 diabetes
M. Dekker Nert1, T. Daehy, S. Lang, T. Elgzyri, B. Yang, O. Hansson, T. Rönn, K.-F. Eriksson, L. Groop, C. Ling;
Lund University Diabetes Centre, Malmö, Sweden.

Background and aims: First degree relatives of individuals with type 2 diabetes (T2D) have an increased risk of developing the disease. This is conferred by genetic and shared environmental factors, not least physical inactivity, as physical activity is known to improve glucose homeostasis. However, it is unknown if epigenetic changes contribute to the increased risk of T2D. Whether physical exercise can affect methylation of genes of importance for the abnormal glucose metabolism characteristic of individuals with a genetic predisposition to T2D is not known. This study examines the global changes in DNA methylation in skeletal muscle in humans with or without a family history of T2D before and after a six-month exercise intervention.

Materials and methods: 16 men with (FH+) and 13 men without (FH-) a first-degree family history of T2D, matched for age, BMI and VO2max, participated in a supervised six-month exercise intervention study. Biopsies from the vastus lateralis muscle were obtained before and after the exercise intervention. DNA was isolated and MeDIP-Chip was performed e.g. 1 μg DNA was immunoprecipitated with a monoclonal antibody against methylated cytosine and hybridized to the NimbleGen 2.1 DeLuxe Array containing 2.1 million probes covering a 10 kb region of all genes, with 7.5 kb upstream and 2.5 kb downstream of the transcription start site in addition to all known CpG islands.

Results: Before exercise, 1891 genes displayed lower methylation and 1237 genes showed higher methylation in skeletal muscle from FH+ vs FH- individuals. Exercise increased methylation of 1402 and decreased methylation of 2136 genes in the whole chohort. Notably, exercise changed methylation of fewer genes in FH+ than in FH- subjects (1085 vs 2355 genes increased, and 2035 vs 3281 decreased methylation) with little overlap between the top 100 genes of the two groups.

Conclusion: Human skeletal muscle of individuals with a family history of T2D is partially resistant to epigenetic changes induced by exercise in individuals with no T2D heredity.

Supported by: The Swedish Research Council, an EFSD/Lilly grant, Påhlsson Novo Nordisk Foundation

313
Does macronutrient intake or physical activity level interact with genetic risk for increased fasting glucose?
G. Hindy1, E. Sonestedt2, A. Sharmar, M. Oro-Melander1
1Department of Clinical Sciences, Diabetes and Cardiovascular Disease, Genetic Epidemiology, Sweden; 2Nutrition Epidemiology, Lund University Diabetes Centre, Lund University, Malmö, Sweden.

Background and aims: The prevalence of type 2 diabetes (T2D) is drastically increasing around the globe and is believed to be linked to the adoption of a western lifestyle mainly in terms of dietary habits and physical inactivity. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose (IGLU) levels and T2D. The aim of this study was to investigate if a combined effect of 15 SNPs previously shown to associate with IGLU levels in GWAS interacts with dietary intakes or physical activity level on fasting glucose levels in the population based Malmö Diet and Cancer Study- Cardiovascular cohort (MDC-CV).

Materials and methods: The 15 SNPs identified in or near G6PC2, MTRN1B, GCK, DGKB-TMEM195, GCKR, ADCYS, MADD, CRY2, ADRA2A, PROX1, SLC2A2, GLI5, SLC30A8, FAM148B, and TCF7L2 were genotyped by taqman in MDC-CV. After excluding all patients with diabetes, individuals without diet-data and those with incomplete genotype information we included 615 individuals in the study (41% males, age 55±6 years, BMI 26±4 kg/m², IGLU 5.7±0.8 mmol/L). A IGLU genetic risk score (IGLU-GRS) was calculated to identify individuals carrying two functional variant alleles (p=0.001). These patients were also 3.8 times more likely to fail achieving treatment target (p=0.06).

Conclusion: In keeping with the pharmacokinetisk role of this gene, our data suggest CYP2C8 variants have a marked impact on glycaemic response.

Supported by: DUK 07/0003525
created summing the number of fGLU increasing alleles of the 15 SNPs. Assuming additive model and adjusting for age and sex we analysed association between fGLU-GRS and fGLU. Association between GRS and fGLU was evaluated in strata of gender-specific tertiles according to percentage of energy from macronutrients as well as physical activity score. Interaction between dietary factors or physical activity and fGLU-GRS was assessed by introducing a multiplicative factor with continuous variables adjusting for age, sex, season and total energy intake.

Results: The fGLU-GRS was strongly associated with fGLU (p=5.8e-15) with a mean effect size of 0.04 mmol/l per each glucose increasing allele. Similar associations were found in males (p=1.7e-6) and females (p=2.4e-10). Individuals in the highest fGLU-GRS quintile had 0.26 mmol/l higher fGLU compared to those in the lowest quintile. The effect sizes of each fGLU increasing alleles were 0.04, 0.06 and 0.02 mmol/l within low, medium and high carbohydrate intake tertiles (p=0.11, p=0.09 and p=0.71 for interaction in all, males and females, respectively); 0.05, 0.04 and 0.04 mmol/l within low, medium and high fiber intake tertiles (p=0.27, p=0.50 and p=0.45) and 0.02, 0.05 and 0.04 mmol/l in low, medium and high fat intake tertiles (p=0.23, p=0.16 and p=0.89). The mean effect size of each fGLU increasing allele was 0.4 mmol/l in all physical activity tertiles (p=0.84, p=0.50 and p=0.65 for interaction in all, males and females, respectively).

Conclusion: GRS of 15 fGLU SNPs associated strongly with fGLU in a population based Swedish sample. Our study did not reveal significant interactions between such genetic susceptibility and macronutrient intakes or physical activity level. We believe that larger sample sizes and taking into account the quality of dietary carbohydrates and fat need to be taken into account in future studies to exclude such interactions.

Supported by: Swedish Medical Research Council, Swedish Diabetes Foundation and LiDUC

Body mass index is a potential modifier of the influence on beta cell function exerted by SLC30A8 and KCNJ11 diabetes risk variants in patients with newly diagnosed type 2 diabetes

M. Trombetta, S. Bonetti1, E. Turini1, L. Boselli1, E. Trabetti, G. Malerba2, P.F. Pignatti2, M. Muggeo1, E. Bonora1, R.C. Bonadonna1
1Department of Medicine, 2Department of Life and Reproduction Sciences, University of Verona, Italy.

Background and aims: The zinc transporter, SLC30A8, and the potassium channel, KCNJ11, are both expressed in the beta cell and are involved in insulin transport and secretion. The rs13266634 G allele in SLC30A8 and the rs5219 A allele in KCNJ11 are associated with type 2 diabetes (T2D) risk and with reduced beta cell function (BF) in non-diabetic subjects. We evaluated the role of these two non-synonymous polymorphisms in determining clinical and pathological traits in patients with newly diagnosed type 2 diabetes.

Materials and methods: 456 GAD-negative and drug-naive patients (age 57.8±10.3 years, BMI 29.9±5.1 kg/m², HbA1c 7.0±1.4 %) with newly diagnosed type 2 diabetes underwent standard clinical characterization. BF and insulin sensitivity (SI) were assessed by mathematical modeling of glucose/C-peptide curves during a 240’ frequently sampled OGTT and by euglycemic insulin clamp, respectively. The beta-cell responses to the rate of increase of glucose (G) (derivative or dynamic control; DC; median[IQR range]): 421 [0.6-907] (pmol·m⁻¹·BSA·min⁻¹) and to G concentration (proportional or static control, PC, presented as the insulin secretion rate at G concentrations of 5.5, 8.0, 11.0, 15.0 and 20.0 mmol/l, respectively: 160±69, 223±122, 359±218, 572±376, 843±591 pmol·min⁻¹·m⁻²·BSA) are herein reported as measures of BF. SI is presented as the M value in the last 60’ of the clamp (561 [355-796] pmol·min⁻¹·m⁻²·BSA). Rs13266634 in SLC30A8 and rs5219 in KCNJ11 were genotyped in all patients.

Results: In obese patients (n=202 with BMI>=30), but not in the nonobese (p=0.40), the rs13266634 G allele of SLC30A8 (frequency: 0.74) was associated with reduced PC (8.5±7.7, -27.3±13.8, -60.3±24.4, -93.9±45.8, -167±97.2 at G concentrations of 5.5, 8.0, 11.0, 15.0 and 20 mmol/l, p<0.05) and increased fasting plasma G (A [A+0.33 mmol/l]: p<0.02) according to a recessive model.

Conclusion: In patients with newly diagnosed type 2 diabetes the non-synonymous variants of SLC30A8 and KCNJ11 herein investigated are associated with worse BF, with BMI (obesity) apparently playing a modifying role on this relationship. These data, if confirmed, could be useful for diagnostic, therapeutic and clinical purposes.

Supported by: an EFSID/Novartis grant

The presence of CAD significantly modulates the diabetes risk conferred by the TCF7L2 rs7903146 variant

S. Geller-Rhomberg1, A. Muendlein1,2, C.H. Saeidi1,2, G. Sonderegger1, P. Rein1,2, T. Winder2, S. Beer2, A. Vohnbank1,2, H. Drexel1,2
1Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria, 2Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.

Background and aims: Genetic variant rs7903146 in the transcription factor 7-like 2 (TCF7L2) gene has been consistently associated with type 2 diabetes (T2DM) in several studies. It is unknown whether it confers the same amount of diabetes risk in patients with CAD as in patients who do not have CAD. We therefore aimed at investigating whether the presence of CAD modulates the association of TCF7L2 variant rs7903146 with T2DM.

Materials and methods: We therefore performed genotyping of variant rs7903146 in a large cohort of 1650 consecutive Caucasian patients undergoing coronary angiography for the evaluation of established or suspected CAD. Significant CAD was diagnosed in the presence of significant coronary stenoses with lumen narrowing of ≥50%. The association between rs7903146 and T2DM was evaluated in an additive genetic model.

Results: Variant rs7903146 was significantly associated with the presence of T2DM in the total study cohort (adjusted odds ratio [OR]=1.38 [1.15-1.65]; p<0.001). Also, diabetes duration significantly (p=0.024) increased from the CC over the CT to the TT genotype (7.7±8.6, 8.1±7.3 and 9.2±6.8 years). When patients with CAD (n=950) were analyzed separately from those without significant CAD, the association between variant rs7903146 and T2DM was strongly significant in patients with significant CAD (adjusted OR=1.59 [1.26-2.00]; p<0.001), but not in subjects who did not have significant CAD (OR=1.04 [0.77-1.40]; p=0.807). Variant rs7903146 was also significantly associated with diabetes duration in individuals with CAD (7.9±8.8 vs 8.9±7.4 and 9.3±6.8 years for the CC, CT, and TT genotype, respectively, p=0.018), but not in patients without significant CAD (p=0.718). An interaction term CAD x rs7903146 was significant (p=0.018), indicating a significantly stronger impact of the polymorphism on T2DM risk in patients with significant CAD than in subjects without significant CAD.

Conclusion: We conclude that the presence of CAD significantly modulates the diabetes risk conferred by the TCF7L2 rs7903146 variant.
PS 7 Genetics of diabetic complications, related metabolic traits

316

Background and aims: Oxidative stress is involved in the pathophysiology of diabetic nephropathy (DN). The antioxidant enzyme Catalase plays a major role in the detoxification of reactive oxygen species and thus could have a protective role against DN. In this study, we tested the impact of allelic variation in the Catalase gene (CAT) on the development and progression of DN in subjects with Type 1 Diabetes Mellitus (T1DM).

Materials and methods: Twelve SNPs (table 1), giving information on ~90% of the allelic variation of the haplotypic block containing CAT gene were analyzed in 1463 subjects from three independent T1DM cohorts: the SURGENE prospective study (follow-up of 10 ± 3 years, mean ± SD), GENEDIAB and GENESIS studies. Genotypes were determined by an Assay by Design kit from Applied Biosystems. Genotype associations with DN were assessed by logistic regression analyses. Associations with DN severity were assessed by ordinal logistic regression analyses, with stages of DN coded as ordinal polytomous dependent variables: absence (1), microalbuminuria (2), macroalbuminuria (3), reduced renal function (4) and end stage renal failure (5).

Results: In the SURGENE cohort, the rs7947841 variant was associated with DN both at baseline (Odds Ratio 8.60, 95% C.I. 1.83 - 40.32, p=0.005) and at follow-up (Odds Ratio 4.34, 95% C.I. 1.29 - 14.78, p=0.01). The variant was also associated with the severity of DN, both at baseline (p=0.005) and at follow-up (p=0.001). In GENEDIAB cohort, five SNPs were associated with DN (Table 1). These SNPs were also associated with the severity of DN (p<0.009, p=0.006, p=0.006 and p=0.006, respectively) and with microalbuminuria (p=0.03, p=0.05, p=0.04, p=0.01 and p=0.003, respectively). We have also observed associations of these variants with arterial hypertension.

Conclusion: We have observed associations of CAT allelic variations with diabetic nephropathy, its severity and with intermediate phenotypes in subjects with Type 1 Diabetes Mellitus (T1DM). We are currently performing haplotypic studies in the 3 cohorts and analysis of 6 years follow-up data of GENESIS and GENEDIAB cohorts.

Table 1: GENEDIAB study: Association of CAT polymorphisms with diabetic nephropathy

<table>
<thead>
<tr>
<th>SNP</th>
<th>Diabetic nephropathy at baseline</th>
<th>Odds ratio (95% IC)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2266630</td>
<td>1.17 (0.41 - 3.66)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>rs1001179</td>
<td>2.84 (1.24 - 6.79)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>rs11032699</td>
<td>1.23 (0.63 - 2.42)</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>rs12272630</td>
<td>0.18 (0.04 - 0.77)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>rs2300182</td>
<td>0.77 (0.33 - 1.84)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>rs11032703</td>
<td>1.22 (0.40 - 3.87)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>rs2300181</td>
<td>0.65 (0.32 - 1.33)</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>rs10488736</td>
<td>0.44 (0.22 - 0.88)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>rs420288</td>
<td>1.00 (0.49 - 2.08)</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>rs566979</td>
<td>0.44 (0.23 - 0.86)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>rs7947841</td>
<td>1.87 (0.55 - 6.73)</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>rs499406</td>
<td>2.14 (1.07 - 4.32)</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for sex, age, duration of diabetes, HbA1c and ACE inhibitors

317

Does genetic variability in the fructosamine-3-kinase play a role in the progression of diabetic nephropathy, morbidity and mortality of diabetics? L. Pácal1, V. Tanhäuserová1, J. Svojanovská2, D. Krusová2, S. Štěpánková2, J. Olovský2, J. Bělobrádková2, J. Rehová2, J. Smrzová2, K. Katkova2; 1Department of Pathophysiology, Faculty of Medicine, Masaryk University, 2Department of Internal Medicine, St. Anne’s Faculty Hospital, 3Department of Gastroenterology, Faculty Hospital Brno-Bohunice, Brno, Czech Republic.

Background and aims: Fructosamines are products of non-enzymatic glycation formed in accelerated rate during hyperglycemia. As precursors of advanced glycation end-products (AGEs) fructosamines supposedly contribute to the development of glucotoxic injury. Mechanism of enzymatic deglycation of proteins in vivo by fructosamine-3-kinase (FN3K) was described recently. FN3K is a ubiquitous intracellular enzyme that phosphorylates fructosamines resulting in unstable fructose-3-phosphate, which subsequently spontaneously decomposes to inorganic phosphate, 3-deoxyglucosone and the unmodified amine. Recently, the -385A/G (rs3859206) and 900C/G (rs1056534) single nucleotide polymorphisms (SNPs) in the FN3K gene were found to have potential functional impact - association with FN3K enzyme activity in erythrocytes (genotypes -385AA and 900GG associated with lowest enzymatic activity). Fructosamine pathway may therefore represent either potentially protective metabolic process in hyperglycemia since degradation of fructosamines prevents formation of Lys-based AGEs or quite the reverse - harmful process - by formation of 3-deoxyglucosone as a potent mobile Arg-directed glycation agent. The aim was to study relationship between polymorphisms in FN3K gene, progression of diabetic nephropathy (DN) and cardiovascular morbidity and mortality of diabetics.

Materials and methods: Study comprised a total of 420 T1DM or T2DM subject with variable stage of DN (i.e. normoalbuminuria, microalbuminuria, proteinuria or ESRD) prospectively followed for 45 [21 - 63] months (median [IQR]). Following end-points were considered: [1] renal (progression of DN by stage or reaching the ESRD), [2] major cardiovascular event (MCVE: non-fatal myocardial infarction or stroke, limb amputation), [3] cardiovascular mortality (CVM: fatal myocardial infarction, stroke or sudden death) and [4] all-cause mortality (AM). SNPs were genotyped by PCR with subsequent RFLP.

Results: Progression of DN was reached in 16.5% of subjects, MCVE in 15.6%, CVM in 9.9% and ACM in 19.3%. Allele and genotype frequencies did not differ between DN stage groups (chi-square test). Using Kaplan-Meier time-to-event analysis significant effects were ascertained for the carrier state of the -385AA and 900GG genotype combinations and progression of DN, MCVE and CVM (all P<0.05, log-rank test). In all cases, group defined by the presence of at least one “low-activity” allele in both positions (i. e. -385AA or AG combined with 900GG or GC) were associated with significantly longer median of time to DN progression, MCVE and CVM.

Conclusion: Interindividual variability in FN3K enzyme activity represents potentially significant genetic risk factor for the progression of DN and cardiovascular morbidity and mortality of diabetics. Based on our results, we can’t identify high FN3K deglycating activity as a protective factor, on the contrary higher rate of 3-deoxyglucosone formation may counterbalance protective protection by providing substrate for Arg-directed glycation and AGE formation.

Supported by: NR 9443-3/2007 and Research grant from DANONE

318

PPAR-γ2 P12A polymorphism and albuminuria in patients with type 2 diabetes S. De Cosmo1, S. Prudente2, O. Lamacchia3, D. Camarchio3, M. Cignarelli4, M. Copetti5, V. Trischitta1; 1Unit of Endocrinology, Scientific Institute “Casa Sollievo della Sofferenza”, SGR, Foggia, 2CSS-Mendel Institute, Rome, 3Department of Medical Sciences, Unit of Endocrinology, Foggia, 4Scientific Institute “Casa Sollievo della Sofferenza”, SGR, Foggia, 5Scientific Institute Casa Sollievo della Sofferenza and University of Rome, SGR, Foggia and Rome, Italy.

Background and aims: Insulin resistance (IR) is believed to be pathogenic for albuminuria in patients with T2D. The PPAR-γ2 P12A polymorphism has been consistently associated with IR and T2D with the A12 variant playing a protective role. The association of this variant with a reduced risk of albu-
Carnosine has been shown to be protective against oxidative stress and endothelial damage. Homozygosity for 5-leucine repeat (5L-5L) in the carnosinase gene (CNDP1) has recently been found to be associated with diabetic nephropathy in cross-sectional studies, mainly in women with type 2 diabetes. Longitudinal data on survival are, however, not yet available. We prospectively investigated whether allelic variation in CNDP1 predicts (cardiovascular) mortality in patients with type 2 diabetes and to what extent this is modified by sex.

Materials and methods: This study is part of the ZODIAC study, a prospective observational study in primary care patients with type 2 diabetes. Leucine repeats in CNDP1 were assessed by fluorescent DNA analysis. In 2009, data on mortality were collected. A Cox proportional hazard model was used to compare 5L-5L with other allelic variations, after adjustment for potential confounders, including age, body mass index, duration of diabetes, macrovascular complications, systolic blood pressure, HbA1c, total cholesterol to HDL-cholesterol ratio, plasma creatinine, and urine albumin excretion. Furthermore, CNDP1 and sex were entered as an interaction term.

Results: 872 patients (68.1% ± 11.2 years, 366 (42%) males) were included. At baseline, median diabetes duration was 5 (interquartile range (IQR) 2-11) years, mean HbA1c 56 ± 12 mmol/mol, plasma creatinine 91 (IQR 82-104) μmol/L, and urinary albumin creatinine ratio 1.94 (IQR 0.95-6.18) mg/mmol. 5L-5L was found in 331 patients (38%); this was for men 39% and for women 37%. After 9.5 (IQR 5.9-10.3) years of follow-up, 136 (41%) patients with 5L-5L had died, with 55 deaths (17%) attributable to cardiovascular causes. In patients with other allelic variants, these numbers were 205 (38%) and 81 (15%), respectively. Adjusted hazards ratios (HR) for all-cause mortality and cardiovascular mortality in 5L-5L versus other allelic variants were 1.08 (95%CI 0.87-1.35) and 1.12 (95%CI 0.79-1.60), respectively. There was a significant interaction between allelic variation in CNDP1 and sex for prediction of cardiovascular mortality (P=0.02), but not for all-cause mortality (P=0.69). After stratification for sex, adjusted HRs of 5L-5L for cardiovascular mortality were 0.74 (95%CI 0.42-1.32, P=0.31) in males and 1.61 (95%CI 1.02-2.55, P=0.04) in females.

Conclusion: In this prospective study on allelic variation in CNDP1 in patients with type 2 diabetes, 5L-5L was gender-dependently associated with the risk for cardiovascular mortality, with a higher risk in women.
The ZODIAC study is a prospective cohort study– GLGC meta-analysis data of ~2.6 million geno-
FFA0 593±246 μmol/l, FFA120 159±80 μmol/l and dFFA 431±229.
among 2845 participants of the Botnia Prevalence, Prediction and Prevention
region or age, sex and region as covariates. Replication analyses are performed
655±235 μmol/l, FFA120 221±114 μmol/l and dFFA 432±221. Linear regres-
determined using Half-micro and Micro 96-plate methods with two differ-
Materials and methods: The ZODIAC study is a prospective cohort study of T2DM and cardiovascular disease, respectively. We examined the SNPs in relation to the total and cardiovascular mor-
tality in a population based cohort of T2DM patients.
Materials and methods: The ZODIAC study is a prospective cohort study of T2DM patients treated in primary care in the Netherlands. Rs10811661 and rs10757278 were genotyped in 914 subjects from the ZODIAC study and 920 healthy Dutch controls. Associations of the SNPs with mortality were assessed by use of Cox proportional hazard analyses.
Results: After a median follow-up of 9.5 years 538 out of 914 patients had died. The adjusted Hazard Ratios (HR) for total mortality for patients homozygote and heterozygote for the wild type allele of rs10811661 was 1.34 (95% CI 1.06-1.69, p=0.01) compared to individuals homozygous for the risk allele. For rs10757278 total mortality was lower among patients heterozygous and homozygous for the wild-type allele than in homozygous carriers for the risk allele (HR 0.64 (95%CI 0.43-0.95), p=0.03, and HR 0.73 (95%CI 0.48-1.11), p=0.14, respectively). This effect was more pronounced in the lower tertile of HbA1c: the adjusted HR for patients heterozygous and homozygous for wild-type allele of rs10757278 was 0.48 (95% CI 0.28-0.83, p=0.01) and 0.48 (95%CI 0.27-0.85, p=0.01), respective-
Conclusion: This prospective study shows a significant association between two common SNPs on 9p21 and mortality in type 2 diabetes patients.

232

Genome wide association analysis for free fatty acid levels in DGI
I.A. Stojkovic, C. Saloranta, P. Almgren, V. Lyssenko, E. Laurila, M. Svensson, A. Sharma, B. Isomaa, L. Groop, M.O. Melander, A. Diabetes, Cardiovascular Disease and Genetic Epidemiology, Lund University, Malmö, Sweden, 2Department of Medicine, Helsinki University Hospital, Finland, 3Diabetes and Endocrinology, Lund University, Malmö, Sweden, 4Department of Medicine, Folkhälsoan Research Center, Helsinki, Finland.

Background and aims: Recent genome wide association (GWA) studies identified two single nucleotide polymorphisms (SNP), rs10811661 and rs10757278 in the same region on the 9p21 chromosome to be consistently and independently associated with the risk of developing type 2 diabetes (T2DM) and cardiovascular disease, respectively.

Materials and methods: The ZODIAC study is a prospective cohort study of T2DM patients treated in primary care in the Netherlands. Rs10811661 and rs10757278 were genotyped in 914 subjects from the ZODIAC study and 920 healthy Dutch controls. Associations of the SNPs with mortality were assessed by use of Cox proportional hazard analyses.

Results: After a median follow-up of 9.5 years 538 out of 914 patients had died. The adjusted Hazard Ratios (HR) for total mortality for patients homozygote and heterozygote for the wild type allele of rs10811661 was 1.34 (95% CI 1.06-1.69, p=0.01) compared to individuals homozygous for the risk allele. For rs10757278 total mortality was lower among patients heterozygous and homozygous for the wild-type allele than in homozygous carriers for the risk allele (HR 0.64 (95%CI 0.43-0.95), p=0.03, and HR 0.73 (95%CI 0.48-1.11), p=0.14, respectively). This effect was more pronounced in the lower tertile of HbA1c: the adjusted HR for patients heterozygous and homozygous for wild-type allele of rs10757278 was 0.48 (95% CI 0.28-0.83, p=0.01) and 0.48 (95%CI 0.27-0.85, p=0.01), respective-
Conclusion: This prospective study shows a significant association between two common SNPs on 9p21 and mortality in type 2 diabetes patients.

Interpretation of genome wide association data for lipoprotein traits using systems biology approach
A. Sharma, N. Gulbahce, S. Lang, C. Ladenvall, S. Kathiresan, M. Orho-Melander, A.-L. Barabasi, 1Diabetes and Cardiovascular Diseases, Genetic Epidemiology unit, Lund University, University Hospital Malmö, Sweden, 2Department of Physics, Center for Complex Network Research, Boston, 3Center for Human Genetic Research and Cardiovascular Research Center, General Hospital, Harvard Medical School, Boston, USA.

Background and aims: Genome wide association studies (GWAS) with large meta-analyses have identified a number of new loci contributing to multifactorial diseases. Hereby we assumed that by analysis of interaction networks of GWAS genes with SNPs providing P <5x10−8 (seed genes) in meta-analysis data of Global Lipids Genetics Consortium (GLGC) including > 100,000 indi-
viduals it could be possible to reveal novel candidate genes and pinpoint important pathways for lipid and lipoprotein traits. By integrating GLGC meta-analysis data with Molecular networks (expression, transcriptional, proteomic and metabolic interaction networks) as well as with phenotypic disease network (comorbidity network), we will gain new biological in-
sights for better understanding of lipoprotein metabolism.

Materials and methods: GLGC meta-analysis data of ~ 2.6 million geno-
tyed or inputted SNPs for four lipid/lipoprotein traits i.e. total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) was analyzed. After correcting for linkage disequilibrium, SNPs were assigned to genes on the basis of the location within 20kb region of first and last exon. We defined a seed gene data set with p value less than 5x10−8 of 112 genes for HDL-C, 117 for LDL-C, 158 for TC and 115 for TG. Interaction information gleaned from the first order neighbours and second order neighbours were used in further analysis. We then approached to identify additional candidate genes by studying clusters of seed genes using Molecular Triangulation (MT) algorithm. In the next step we only selected genes that were co-expressed with the seed genes using 79 human tissues expression data. Further, the GLGC meta-analysis p-values of seed genes were superimposed on the interaction networks to identify the sub-networks and additional 100 random control networks were generated. For weighing the identified sub-networks for comorbidity we utilized the large scale US Medicare database of comorbidity patterns of 13 millions patients.

Results: By MT algorithm we identified 223, 172, 140 and 243 additional can-
didate genes for HDL-C, LDL-C, TG and TC with significance of real scores of P< 5x10−8, P< 4.7x10−8, P< 4.4x10−8 and P< 6.5x10−8, respectively. Receiver operating characteristic (ROC) curve showed accuracy of 93% and sensitivity of 64% for MT algorithm with the seed genes. After prioritization of those ad-
tional candidate genes that co-expressed with seed genes and were present in the sub-networks having highest comorbidity values we were left with 39, 19, 27 and 20 genes for HDL-C, LDL-C, TG and TC. Of these genes, lowest p-values in GLGC meta-analysis data were for HDL-C in INSIR (P=2.1x10−8) and ASCC2 (P<0.0005), for LDL-C in SH2GL2 (P<0.0001) and NDUFAL2 (P<0.0003), for TG in GCK (P=3.7x10−8) and RAFI (P=8.6x10−8) and for TC in SH2GL2 (P=0.0002) and GOLM1 (P=0.004).

Conclusion: Combining large GWAS meta-analysis data with systems bi-
ology approaches and comorbidity data identified new candidate genes for lipoprotein traits and addresses the importance of network based genetic analyses in the future.

Supported by: SMRC and Heart & Lung Foundation
PS 8 Epidemiology and genetics of adiposity

326 Three year-follow-up incidence of cardio-metabolic alterations in a metabolically normal population
Z. Patiaki, E. Bobbioni-Harsch, V. Makoundou, A. Golay; WHO Collaborating Centre, University Hospitals of Geneva, Switzerland.

Background and aims: It has been claimed that obese subjects with normal metabolic profile are not at increased risk for cardio-metabolic diseases, as compared to normal body weight. The aim was to compare the 3-year evolution of cardio-metabolic parameters in normal body weight (NBW) and obese (OB) healthy subjects, free from MS and with a normal glucose tolerance at baseline.

Materials and methods: We investigated a sub-group of the RISC study (Relationhip between Insulin Sensitivity and Cardiovascular Disease) participants (NBW=288 and OB=141) free from metabolic syndrome (MS, according to IDF criteria) and with a normal glucose tolerance at baseline. In these subjects, fasting insulin was measured and insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp. Based on quartiles established in NBW, both NBW and OB subjects were classified as normo-insulinemic or hyper-insulinemic and insulin sensitive or insulin resistant. Metabolic normality was defined as the presence of normal levels of both fasting insulin and insulin sensitivity. Three years later, the cardio-metabolic parameters suggested by the IDF to define MS as well as glucose tolerance were re-measured.

Results: At 3 years, the incidence of MS was 6.6% in NBW and 21.3% in OB (p<0.001), the incidence of impaired fasting glucose was 7.6% vs 20.6% (p<0.001) and of impaired glucose tolerance 3.8% vs 10.6% (p=0.05), in NBW and in OB respectively. Hypertension occurred in 6.3% of NBW vs 14.9% in OB (p=0.003). In the overall population, both BMI at baseline and BMI modifications along the 3-year period were predictors for MS (OR=1.12, p=0.04 and OR=1.44, p=0.01 respectively), whereas BMI at baseline was predictor of impaired fasting glucose (OR=1.20, p=0.001). BMI evolution predicted impaired glucose tolerance (OR=1.14, p=0.02) and hypertension (OR=1.47, p=0.04).

Conclusion: Even when metabolically normal, OB subjects show an increased risk for MS, pre-diabetes and hypertension. Therefore, they need a closer surveillance.

Supported by: EU

327 Gestational diabetes is not associated with adiposity measurements in 18 months offspring: the mother child rhea cohort in Crete, Greece
L. Chatzi, E. Papadopoulou, M. Vafeiadi, K. Mathianaki, A. Pappas, A. Kouitsi, M. Kogevinas;1 1)Department of Social Medicine, Heraklion, 2)Diabetic Clinic, Venizelio Hospital, Heraklion, Greece, 3)Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain, 4)National School of Public Health, Athens, Greece.

Background and aims: Studies of developmental origins of health and disease have put focus on the possible role of intrauterine exposure to hyperglycemia in the pathogenesis of obesity and cardiovascular disease in offspring. Although gestational diabetes is a strong risk factor for obesity in the offspring, the age at which this association becomes apparent is unknown. The purpose of this study was to examine the relation of gestational diabetes with measures of adiposity in early childhood.

Materials and methods: The mother-child “Rhea” study in Crete is a prospective cohort examining pregnant women (Greek and immigrants) residents at the prefecture of Heraklion that became pregnant during one year starting in February 2007 and initiated prenatal care before 15 weeks of gestation (mean: 12 weeks). Six hundred and thirty five pregnant women and their children, were included in the analysis. Pregnant women were screened for gestational diabetes (GDM) between 24 and 28 weeks of gestation, and GDM was defined by the criteria proposed by Carpenter and Coustan. Weight, height, abdominal circumference, and thickness of triceps, subscapular, suprailiac, and subcapsular were measured in 635 children at 18 months of age (59 offspring of mothers with gestational diabetes). Multivariable linear and logistic regression models were used to estimate the effect of GDM on the risk of adiposity in early childhood after adjusting for offspring sex, age, maternal education, and parity.

Supported by: EU

324 Association of FTO gene variation with fat oxidation in women with polycystic ovary syndrome
I. Kowalska1, A. Adamska1, M.T. Malecki1, M. Karczewska-Kupczewska1, A. Nikolaiczak1, M. Szopa1, A. Lebkowska, M. Górska1, M. Straczkowski1; 1)Endocrinology, Diabetology and Internal Medicine, Medical University, Białystok, 2)Department of Metabolic Diseases, Jagiellonian University, Medical College, Krakow, Poland.

Background and aims: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, where insulin resistance might be involved in the development of endocrine and metabolic abnormalities. It was recently shown that the FTO gene modifies weight, fat mass and insulin sensitivity in women with polycystic ovary syndrome, where its role might be larger than in other phenotypes. The aim of the present study was to estimate the effect of FTO variation on glucose and lipid oxidation in PCOS women.

Materials and methods: The study group consisted of 68 women with PCOS and 25 healthy, normally menstruating women. Clinical examination, anthropometric measurements, euglycemic hyperinsulinemic clamp and the measurements of serum sex hormones were performed. Glucose and lipid oxidation was evaluated with indirect calorimetry in the baseline state and during the last 30 minutes of the clamp. The FTO rs9939609 polymorphism was genotyped using the restriction fragment length polymorphism method.

Results: There was no difference in glucose and lipid oxidation between PCOS and control women. TT homozygotes had higher baseline fat oxidation in comparison to the carriers of A allele (p=0.019) in the entire study population. We found similar differences when PCOS women were analyzed separately (p=0.018). We did not observe the effect of FTO gene variation on insulin-stimulated lipid oxidation and either baseline or insulin-stimulated glucose oxidation.

Conclusion: Our data show that FTO gene variation might influence baseline lipid oxidation in PCOS patients. This might be one of potential mechanisms explaining the impact of the FTO gene on body weight.

Supported by: Medical University of Białystok

325 Impact of the I148M mutation in PNPLA3 (adiponutrin) on weight loss-induced decrease in liver fat
K. Sevastianova1, A. Kotronen1, A. Gastaldelli1, A. Hakkarainen1, N. Lundbom1, E. Ferramini1, A. Rissanen1, H. Yki-Järvinen1; 1)Department of Internal Medicine, Helsinki University Central Hospital, Finland, 2)Department of Internal Medicine, University of Pisa School of Medicine, Italy, 3)Department of Radiology, Helsinki University Central Hospital, 4)Department of Psychiatry, Obesity Research Unit, Helsinki University Central Hospital, Finland.

Background and aims: The rs7380409 C>G single nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (PNPLA3; adiponutrin) gene leads to a missense mutation (I148M) in PNPLA3. Carriers of the GG genotype (prevalence ~5%) have a marked 60% increase in liver fat. In vitro, adiponutrin has been associated with both transacylase and lipase activities. We explored whether the I148M variant in the adiponutrin gene influences weight loss -induced decrease in liver fat in humans.

Materials and methods: We recruited 17 subjects of whom 8 had the GG genotype and 9 the CC genotype. We matched the groups with respect to age (48 ± 4 vs. 33 ± 4 yrs, GG vs. CC, NS), BMI (29.2 ± 2.1 vs. 31.5 ± 1.9 kg/m², NS) and liver fat (10.2 ± 1.8 vs. 13.2 ± 1.8 %, NS). The subjects were placed on a hypocaloric (1000 kcal deficit/ day) low-carbohydrate (<20 g/ day) diet for six days. Liver fat was measured by proton magnetic resonance spectroscopy before and after the intervention. Whole-body insulin sensitivity was measured by the euglycemic hyperinsulinemic clamp technique (0.4 µIU * kg⁻¹ * min⁻¹ clamp technique).

Results: Weight loss was similar in both groups (-3.7 ± 3.5 vs. -3.3 ± 0.3 kg, GG vs. CC, NS). Liver fat decreased by 45 % in the GG and by 20 % in the CC group (p=0.046). Whole-body insulin sensitivity increased significantly in the GG group from 0.90 ± 0.18 to 1.33 ± 0.25 mg * kg⁻¹ * min⁻¹ (p=0.04) and remained unchanged in the CC group (0.62 ± 0.10 vs. 0.68 ± 0.11 mg * kg⁻¹ * min⁻¹, p=0.58). No significant differences between changes in fasting concentrations of triglycerides, glucose or insulin were observed.

Conclusion: These data suggest that the I1148M mutation facilitates weight loss -induced mobilization of intrahepatocellular triglyceride in vivo in humans.
Results: Offspring of mothers with gestational diabetes did not differ significantly in BMI (beta coefficient: -0.20, 95% Confidence Intervals: -0.83-0.44), abdominal circumference (beta coefficient: 0.30, 95% Confidence Intervals: -0.65-1.25), or body fat percentage (beta coefficient: -0.27, 95% Confidence Intervals: -1.59-1.05) compared with offspring of non-diabetic mothers after adjustment for offspring sex, age, maternal education, and parity. Similarly, adiposity ratios (BMI/85th percentile- Odds ratio: 0.96; 95% Confidence Intervals: 0.41-1.55, abdominal circumference/85th percentile- Odds ratio: 1.20; 95% Confidence Intervals: 0.59-2.84, sum of skin folds >85th percentile- Odds ratio: 1.14; 95% Confidence Intervals: 0.20-1.26, and percent body fat >85th percentile- Odds ratio: 0.95; 95% Confidence Intervals: 0.36-2.53) did not differ significantly between the two groups.

Conclusion: The study found no association between gestational diabetes and obesity in early childhood. These findings are consistent with the few other studies with adiposity measurements in early childhood. Further follow up of this cohort will allow determining if gestational diabetes has an effect on obesity and cardiovascular risk in later childhood.

Supported by: the EU Integrated Project Chicos

328

Body mass index and fasting glucose levels in a large cohort of patients assigned to age decades between <20 and >80 years - relationship with cardiovascular events and medication

A. Dzień¹, J. Niesiobdzinska¹, E. Türk¹, H. Winner¹, M. Lechleitner¹,¹Internal Medicine, Medical Center Hentschelhof, Innsbruck, 1Public Economics, University of Innsbruck, 1Economics and Social Sciences, University of Salzburg, 1Internal Medicine, Hospital Hochzir, Zirl, Austria.

Background and aims: There is an ongoing debate about the relationship between obesity and morbidity in the elderly and the clinical relevance of overweight in older patients. The main purpose of our study was to investigate whether a higher BMI is associated with an increase in fasting glucose levels and cardiovascular morbidity in all age groups.

Subjects and methods: We performed a retrospective evaluation of clinical data from 5374 patients who visited a medical outdoor center for diagnostic and/or therapeutic interventions in the period from January 1995 to September 2009. Patients were assigned to eight age groups of one decade from <20 years to >80 years and results were analyzed with respect to the presence or absence of cardiovascular events and need for medication.

Results: The Body Mass Index (BMI) revealed a hump-shaped pattern, with a peak in the age group 60-69. In all age groups, there was a significant difference in the BMI in patients with and without a cardiovascular event. BMI and the percentage of body fat were higher in all patients with cardiovascular events. The fasting glucose values increased continuously in the patients without events from 85.7±15.9 mg/dL in the age group <20 to 115.6±40.4 mg/dL in patients ≥80 years. In patients with events fasting glucose values increased up to 134.8±61.6 mg/dL in the age group 40-49, and, probably because therapeutic interventions were begun at that point, no further increase could be observed with increasing age. The analysis of patients with and without a need for medication demonstrated that patients with a need for medication revealed higher fasting glucose levels in the age groups between <20 and 60-69 years. Fasting glucose values showed a continuous increase with increasing age with the highest values in the age group 70-79 in patients without medication (112.2±30.4 mg/dL) and in the age group >80 in patients with medication (115.1±41.6 mg/dL).

Conclusion: Our study supports the hypothesis that overweight is a risk factor not only for younger and middle-aged, but also for active elderly patients. Fasting glucose levels revealed a continuous increase up to the oldest age groups. Preventive strategies for type 2 diabetes should thus be offered for all age groups.

329

Comparison of visceral adiposity and liver fat in 4277 individuals from an international cohort of patients classified according to their glucose tolerance status: the INSPIRE ME IAA Study

J.-P. Després¹, S.M. Haffner², B.J. Balkau³, R. Ross⁴, N. Alméras¹, INSPIRE ME IAA Investigators,¹Queen's School of Medicine, Cleveland, OH, USA, 3Inserm unit 1018, Villejuif, France, 4Queen's University, Kingston, Canada.

Background and aims: Excess visceral adiposity and liver fat are well known correlates of metabolic abnormalities increasing the risk of type 2 diabetes (T2D) and cardiovascular disease. The first aim of the INSPIRE ME IAA study was to determine the relationships between visceral adiposity and liver fat measured by computed tomography (CT), related cardiometabolic risk markers and history of ischemic cardiovascular events and T2D.

Materials and methods: The INSPIRE ME IAA study (International Study of Prediction of Intra-abdominal adiposity and its Relationships with Cardiometabolic Risk/Intra-Abdominal Adiposity) is an international observational prospective study with a planned 3-yr follow up conducted in 29 countries and involving 297 physicians. Physicians were either hospital-based primary care physicians and internists, 2- cardiologists or 3- endocrinologists/diabetologists with approximately 1/3 of each clinical practice group represented. Of the 4505 patients included in the study, 4277 had data available for the present analyses. Male outpatients were aged 40-70 years whereas female outpatients were aged 45-70 years. At baseline, demographic and clinical data were obtained as well as a cardiometabolic profile which included a 75 g oral glucose tolerance test. Visceral adiposity and liver fat were measured by CT and all images were read centrally by a core imaging laboratory. The present analyses focus on the comparison of visceral adiposity/liver fat across subgroups of patients defined according to their glucose tolerance status: 1- normal (NGT), 2- impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), 3- controlled T2D (HbA1c<7%), 4- poorly controlled T2D (HbA1c≥7%). All comparisons across the 4 groups were adjusted for age, sex and clinical practice group.

Results: Across the 4 groups with differing glucose control, there was a clear gradient for waist circumference with the lowest values found in NGT subjects and the highest in poorly controlled T2D patients (p<0.001). Accordingly, there was also a positive gradient for fasting triglyceride levels and a negative gradient for HDL cholesterol, the lowest values being found in patients with poorly controlled T2D (p<0.001). There was also a progressive increase in visceral adiposity measured by CT from the NGT subjects to the poorly controlled patients with T2D (p<0.001). Mean attenuation value of the liver (used as an index of liver fat) also showed significant group differences (p<0.001). In men and women, significant correlations were observed between visceral adiposity and the CT-derived index of liver fat (r=-0.39 in men and r=-0.47 women, p<0.001).

Conclusion: INSPIRE ME IAA is the largest international study on visceral adiposity/liver fat and cardiometabolic risk profile. Analyses of the baseline data revealed marked differences in visceral adiposity/liver fat associated with glucose tolerance status. In both men and women, T2D diabetes is characterized by high levels of visceral adipose tissue/liver fat. A strong association between visceral adipose tissue and liver fat is found in both men and women. Excess visceral adiposity/liver fat is associated with a deteriorated cardiometabolic risk profile in patients with T2D.

Supported by: sanofi-aventis

330

Variants in vitamin D genes are associated with liver density and non-alcoholic fatty liver disease (NAFLD) in Hispanics and African Americans: the IRAS Family Study

K.A. Young¹, T.E. Fingerlin¹, L.E. Wagenknecht², S.P. Sibbel³, J.M. Norris¹,¹Colorado School of Public Health, Aurora, 2Colorado School of Public Health, Aurora, 3School of Medicine, Wake Forest University, Winston-Salem, 4School of Medicine and Public Health, University of Wisconsin, Madison, 5University of Texas Health Sciences Center, San Antonio, 6 Cedars Sinai Medical Center, Los Angeles, USA.

Background and aims: NAFLD is a condition that may be involved in the pathogenesis of type 2 diabetes, obesity, and the metabolic syndrome. Given the association between these factors and vitamin D status, we examined whether vitamin D pathway genes are associated with NAFLD in Hispanic (HA) and African-Americans (AA), two ethnicities at increased risk for obesity, type 2 diabetes, and vitamin D deficiency.

Materials and methods: After eliminating 120 subjects with excessive alcohol intake, the IRAS Family Study examined 830 HA and 350 AA individuals from families in San Antonio, San Luis Valley and Los Angeles who had a computed tomography (CT) measure of the liver and visceral fat (VAT), and single-nucleotide polymorphism (SNP) data on VDR (15 SNPs), DBP (11 SNPs), CYP27B1 (5 SNPs), CYP24A1 (22 SNPs), and CYP2R1 (3 SNPs) genes. The continuous outcome liver density was examined using a variance components approach, while the dichotomous outcomes of NAFLD (liver/spleen density ratio < 1) was examined using generalized estimating equations (GEE); both analytic approaches account for the relatedness of the subjects. Additive models were
assumed for the SNPs. Models were adjusted for age, gender, admixture, and VAT. HA analyses were also adjusted for clinic site.

Results: In HA, mean age was 48.2 years, 63.4% were female, and mean VAT was 116.9 cm³. In AA, mean age was 49.8 years, 60.2% were female, and mean VAT was 103.3 cm³. 236 subjects were classified as having NAFLD (203 HA and 33 AA). CYP27B1 and CYP2R1 were not associated with liver density nor NAFLD in HA and AA. In HA, DBP and VDR were not associated with NAFLD, however, rs4334809 in VDR was associated with liver density (p = 0.027). In AA, while DBP and VDR were not associated with liver density, 3 SNPs in DBP and 1 SNP in VDR were associated with NAFLD. In AA, each copy of the A allele at rs10783219 in VDR resulted in 3.70 greater odds of having NAFLD (95% CI: 1.03-14.29); and for DBP, each copy of the T allele at rs4753 resulted in 3.09 greater odds of NAFLD (95% CI: 1.51-6.34); each copy of the C allele at rs222020 resulted in 1.89 greater odds of having NAFLD (95% CI: 1.08-3.33); and each copy of the G allele at rs10110100 resulted in 9.66 greater odds of NAFLD (95% CI: 1.13-3.40). Several SNPs in CYP24A1 were associated with liver density in AA (rs2248359 (p = 0.036), rs3787554 (p = 0.025), rs6089960 (p = 0.044), rs6022199 (p = 0.016) and in HA (rs3787555 (p = 0.013), rs6068816 (p = 0.002), rs6097809 (p = 0.029), rs6127119 (p = 0.039)). In addition, SNPs rs3787557 in AA and rs6068816 in HA were significantly associated with NAFLD. In AA individuals, each copy of the C allele at rs3787557 resulted in 2.60 greater odds of having NAFLD (95% CI: 1.33-5.07). In HA individuals, each copy of the C allele at rs608816 resulted in 1.59 greater odds of having NAFLD (95% CI: 1.05-2.38).

Conclusion: In a minority population at increased risk for obesity and type 2 diabetes, variants in vitamin D pathway genes, particularly CYP24A1, are associated with liver density and NAFLD.

Supported by: American Heart Association

331

Using imputation to investigate association of low-frequency variants with adiposity in the 1966 Northern Finnish birth cohort

M.J. McCarthy¹, A. L. Hopper¹, L. Peltonen², M.-R. Jarvelin², M.-I. McCarthy¹, A. P. Morris³, C. M. Lindgren³, L. Gustafsson⁴, A. S. Manjer⁴, J. Visscher⁵, J. Wray⁶, A. L. Hopper⁷, M. S. Manjer⁸, A. J. Blangero⁹, K. McCarthy¹⁰

¹Welch Centre for Human Genetics, Oxford, United Kingdom, ²University of Helsinki, FIMM Institute for Molecular Medicine, Helsinki, Finland, ³Wellcome Trust Sanger Institute, Cambridge, ⁴Deceased, Cambridge, ⁵Division of Epidemiology, Public Health and Primary Care, Imperial College London, United Kingdom.

Background and aims: Adiposity measures are known to be substantially heritable. While genome-wide association studies (GWAS) have identified over 20 common variants associated with adiposity measures, less than 5% of the total heritability of adipose traits has been explained. One possible source of the remaining heritability is in low-frequency causal variants, with many minor allele frequency (MAF) <5%. Such variants pose several analytical challenges, due to a lack of statistical power for detecting association and their sparse availability on current GWAS genotyping chips (by design). Here, we utilise genotype imputation and a novel statistical test of association to try and overcome these challenges.

Materials and methods: Given a set of SNPs for some individuals, imputation allows us to estimate genotypes at untyped variants in each individual by utilising a combination of population reference panels and a fine-scale recombination map. The recent release of 1000 Genomes pilot data (and already available HapMap3 data) allows us to impute the majority of low-frequency variants with MAF as low as 1%, as well as many much rarer variants. Using this newly available data, we test for association of gene regions with adiposity measures by considering the proportion of low-frequency and rare variants per genomic region at which individuals carry minor alleles in a linear regression framework. This method offers improved power over the traditional tests of association typically applied to common variants. Using this framework, 4 different adiposity phenotypes were investigated in the 1966 Northern Finnish Birth Cohort (genotyped using the Illumina HumanCNV-370DUO chip). We examined variants with MAF of <5% for association with BMI, hap circumference (HC), waist circumference (WC) and waist to hip ratio (WHR). Additional covariates were included in the model to adjust for population structure as well as sex. Models were also fitted separately for each sex.

Results: Imputation allowed us to investigate 89 514 and 1 121 633 variants with MAF <1% and <5% respectively, as opposed to the original GWAS data which contained 14 119 and 28 470 variants. The strongest signal of association over all genes and phenotypes was with WHR adjusted for BMI in males on a region of chromosome 7 (p = 2.1x10⁻⁸, allelic effect β = 0.23 [-0.31, -0.15]). In addition to this, a total of nine genes demonstrated strong evidence of association (p < 10⁻⁸) with the adiposity measures investigated. A further ten genes were also strongly adjusted for on chromosome 11; PNPLA2, RPLP2 and TSPN4, had significance that is likely to be meaningful.

Conclusion: A number of novel possible adiposity associated genomic regions have been identified for follow up. Many of the identified regions have previously been identified in VDR as having plausible biological roles in adiposity and these regions are currently being sequenced in individuals at the extremes of the phenotypes.

Supported by: WT

332

MCIR gene variant rs17782313 (C/T) is associated with increased muscle mass in lean women

O. Bradnova¹, M. Vankova¹, P. Lukasova¹, J. Vcełák¹, H. Krasnickova¹, K. Vondra¹, J. Vrbíkova¹, B. Bendlova¹

¹Molecular Endocrinology, Institute of Endocrinology, ²Dep. of Anthropology and Human Genetics, Charles University, Prague, Czech Republic.

Background and aims: Melanocortin-4 receptor (MCIR) plays a critical role in regulating food intake and energy balance. MCIR activation in brain reduces food intake and increases energy expenditure (3-10%), via a leptin-signaling pathway. MCIR deficiency is the most common form of monogenic obesity. Recently, the meta-analysis of 15 genome-wide association studies strongly confirmed the association of the common polymorphism rs17782313 lying 188 kb downstream of the MCIR gene with body mass index (BMI) and obesity risk in adults and children. We examined the impact of the rs17782313 (C/T) on obesity in cohort of Czech women and studied its possible metabolic effects.

Materials and methods: Polymorphism was assessed by ABI TaqMan SNP Genotyping Assay in 951 non-diabetic normoglycaemic women: 128 lean (age 26.4±5.86 years; BMI 18.9±0.92 kg/m²), 409 normal weight (age 30.4±9.84 years; BMI 22.3±1.38 kg/m²), 208 overweight (age 37.8±13.65 years; BMI 27.3±1.39 kg/m²) and 206 obese women (age 38.6±13.86 years; BMI 34.9±11.41 kg/m²). All women were detailed anthropometrically and biochemically characterized including oGTT and ITT tests. For statistical analyses the Mann-Whitney test and Chi-square test were used (NCSS 2004).

Results: Genotypes were in Hardy-Weinberg equilibrium. The allelic frequencies did not differ among groups (risk minor C allele: lean 33.2%; normal 27.3%; overweight 26.9%; obese 29.1%). The frequency of the minor allele corresponds to the other European populations. In the whole group of pooled women (age 30.5±9.28 years; BMI 24.9±5.54 kg/m²), the carriers of the minor C allele (CC+CT) did not differ in BMI in comparison with non-carriers (TT) and surprisingly, they had significantly lower WHR (0.82 vs. 0.84, p = 0.046) and waist circumference (73.8 vs. 75.9 cm, p = 0.035) and higher serum creatinine level (69.9 vs. 66.9 umol/L, p = 0.005). These effects were most apparent in the subgroup of lean women with BMI<20 kg/m² where the C allele carriers had significantly lower WHR (0.78 vs. 0.82, p = 0.001), waist (65.6±6.9 cm, p = 0.010) and abdominal circumference (68.5±7.49 cm, p = 0.008), higher % of muscle mass (41.3 vs. 39.1, p = 0.001) and higher creatinine levels (73.4 vs. 64.2 umol/L, p = 0.02). In the subgroup of obese women with BMI > 30 kg/m², the association of the C allele with anthropometric parameters was not found, but the C allele carriers tend to be more obese and had also increased creatinine levels compared to non-carriers (69.8 vs. 61.9 umol/L, p = 0.01).

Conclusion: We did not confirm the association of rs17782313 with obesity in our cohort of women. However, the C allele carrierhip was associated with increased creatinine levels and increased % of muscle mass, especially in lean women.

Supported by: IGA MHCR NS/9839-4, NS 10209-3/2009

333

The effect of birth weight on obesity is not modified by FTO rs9939609

K. Faech¹, K. Pålgaard², E.A. Andersson³, M.N. Harder⁴, D.R. Witte⁵, C. Pisinger⁶, T. Jorgensen⁷, O. Pedersen⁸, T. Hansen⁸, A. Vaag⁹

¹Steno Diabetes Center, Gentofte, ²Hagedorn Research Institute, Gentofte, ³Research Centre for Prevention and Health, Glostrup, ⁴Faculty of Health Sciences, University of Copenhagen, Denmark.

Background and aims: Increased birth weight and the A allele of FTO rs9939609 are both associated with adult obesity. However, it is unknown
whether the effects of birth weight and FTO variation are additive or whether the FTO risk variant modifies the effect of birth weight on adult obesity. Thus, the aim of this study was to examine whether there is an interaction between birth weight and the FTO rs9939609 on the development of adult obesity.

Materials and methods: Baseline data from the Danish population-based Inter99 study were used. Birth weight data on 4,584 participants (all singletons) were collected through midwife journals from the Danish State Archives. The FTO rs9939609 was genotyped using KASPar® technology (n=4,371). Obesity was assessed by body mass index (BMI). Age- and sex-adjusted linear regression analyses with BMI as outcome were performed. Model 1 allowed for interaction between birth weight and FTO rs9939609, whereas model 2 only included main effects of birth weight and FTO rs9939609. The model included main effects of birth weight and FTO rs9939609.

Results: Mean BMI in the population was 26.11 kg/m² (SD: 4.5), mean age was 46.3 years (SD: 7.9), and 46.5% were men. There was no interaction between birth weight and the FTO rs9939609 variant on adult BMI (P=0.23, model 1), but both birth weight and FTO rs9939609 were independently associated with adult BMI in model 2. One kg increase in birth weight was associated with a 0.01 kg/m² increase in BMI (95% CI: 0.01-0.02, P<0.001). Likewise, the A allele of FTO rs9939609 was associated with an increase in BMI of 0.49 kg/m² (95% CI: 0.30-0.68) per risk allele (P<0.001) assuming an additive genetic model.

Conclusion: The effect of birth weight on obesity in adult life is not modified by the FTO rs9939609 variant in the Danish population. Thus, FTO variation and birth weight contribute independently to adult obesity. Supported by: Danish Medical Research Council, Danish Centre for Health Tech. Ass. etc.

334

GIP receptor polymorphism rs10423928 affects body mass index and insulin and glucagon response after ingestion of glucose or mixed meals in Japanese

Background and aims: GIP enhances insulin and glucagon secretion, and regulates fat deposition and bone formation through binding to GIP receptor (GIPR). Recent study showed an association of a single nucleotide polymorphism (SNP) in the human GIPR gene, rs10423928 with elevated post-challenge plasma glucose levels. To evaluate effects of this SNP, as well as SNPs in KCNQ1 rs2237892, we aimed to study a possible association of a GIPR SNP rs10423928 with elevated post-challenge plasma glucose levels.

Materials and methods: Japanese healthy controls (n=33, age 46±2, HbA1c 5.2 ±0.0%, BMI 21.6±0.5), IGT (n=24, age 56±2, HbA1c 5.9±0.3%, BMI 23.7±2.0) and untreated type 2 diabetes (T2DM), impaired glucose tolerance (IGT) and healthy controls (n=22, age 55±2, HbA1c 6.3±0.1%, BMI 23.5±0.9; duration 1.9±0.4 years) were subjected to 75-g oral glucose and 480 kcal meal tolerance tests (OGTT and MTT, respectively) and their glucose and glucagon responses were measured. Genotyping was done via allele-specific primer PCR method using peripheral leukocyte DNA of each subject.

Results: Allele frequencies of SNPs in each group were as follows: GIPR rs10423928 Controls, AA 0.2/AT0.3/TT0.5; IGT, AA0.1/AT0.3/TT0.6; T2D, AA0.2/AT0.4/TT0.4. KCNQ1 rs2237892 Controls, CC0.4/CT0.4/TT0.2; T2D, CC0.4/CT0.4/TT0.2; KCNQ1 rs9939609 Controls, CC0.9/CT0.1/TT0.0; T2D, CC0.9/CT0.1/TT0.0. Parameters that are significantly different (unpaired t-test, p<0.05) between GIPR rs10423928 AA- and TT-carriers are as follows (Figure 1): BMI glucose-AUC(0-120) in OGTT and MTT, and glucagon-AUC(0-120) in OGTT and MTT. Parameters related to insulin secretion (i.e. insulinogenic index, insulin-AUC(0-120), HOMA-beta) and insulin resistance (i.e. HOMA-IR) show no significant difference between AA- and TT-carriers, although insulin-AUC(0-120) in OGTT and MTT showed significance difference between AT- and TT-carriers. No parameter related to insulin and glucagon secretion show significant difference among KCNQ1 rs2237892 CC-, CT- and TT-carriers. No parameter shows significant difference between KCNQ1 rs9939609 CC- and CT-carriers.

Conclusion: GIPR rs10423928 AA-carriers have significantly lower BMI, reduced glucagon secretion, and lower plasma glucose levels after ingestion of glucose or meal. In addition, GIPR rs10423928 also affects insulin secretion after ingestion of glucose or meal. Notably, no GIPR rs10423928 AA-carrier was found in IGT and T2DM of the current study. Although the subject number in the current study is limited, our results are consistent with roles of GIP in secretion of glucagon and insulin and fat accumulation, and strongly suggests that GIP dysfunction could play a role in pathogenesis of T2DM.
PS 9 Epidemiology of type 1 diabetes mellitus: incidence and mortality

336

Estimate of incidence and prevalence of type 1 diabetes using electronic drug prescription archives

M. Maggini1, R. Da Cas1, C. Lunghi2, F. Pricci3;
1Epidemiology, National Institute of Health, Roma, 2ProtEra, Sesto Fiorentino, 3Cell Biology, National Institute of Health, Roma, Italy.

Background and aims: A very wide range of childhood diabetes incidence rates within Europe has been shown, but no recent data are available in Italy. Type 1 diabetes features are that is usually diagnosed in children and young adults, and causes dependence on insulin treatment for life. On the other hand, diabetes is the only indication for insulin therapy. Aim of this study was to estimate incidence and prevalence of type 1 diabetes among people 0-15 years old in the Lazio Region in the period 2005-2008, and to describe the insulin prescription pattern, using a record linkage between drug prescription and National Health Service (NHS) enrollee electronic archives.

Materials and methods: The Italian NHS provides antidiabetic drugs free of charge to all citizens. Data on outpatient antidiabetic drug use were obtained from the Regional drug prescription monitoring database for the period 2005-2008. Data on characteristics of population exposed to the study drugs were derived from Lazio (about 6 millions inhabitants) database of NHS enrollees, which contains demographic data of residents. The two databases can be linked by a unique individual code allowing to trace back an historical patient drug profile. Patients were considered as "prevalent" cases if they received insulin (ATC A10A - insulins and analogs) prescriptions during the study period. "Incident" case was defined as a patient who received the first insulin prescription in the period 2006-2008, without any antidiabetic prescription in the previous 12 months. The date of the first insulin prescription was used as date of diagnosis.

Results: An annual mean of 692 type 1 diabetes cases were identified in the four-year study period. The prevalence of diagnosed type 1 diabetes increased from 81 (CI 95% 74-87) per 100,000 inhabitants in 2005 to 91 (CI 95% 84-97) in 2008 with no evidence of a difference between boys and girls. The prevalence rates increase with age, in 2008 they were 20 per 100,000 (CI 95% 11-28) for children aged 1-3 years, and 173 (CI 95% 156-191) for 12-15 years. A total of 696 incident cases were identified from 2006 through 2008. The cumulative incidence varied from 21 (CI 95% 17-24) per 100,000 in 2006 to 27 (CI 95% 14-19) in 2008. At the first prescription, the majority of children received rapid-acting human insulin and analogs. Overall, with respect to 2005 there was a shifting of prescriptions to long-acting insulin.

Conclusion: The estimated incidence is quite higher from that previously reported for Lazio: 8.1 per 100,000 in the period 1993-94. Our study shows a likely increase in the prevalence rates of diagnosed type 1 diabetes among children 0-15 years from 2005 through 2008. However, the study period was too short to investigate a time trend in incidence and prevalence. Completeness of ascertainment is being evaluated through a validation procedure with the data of one of the most important diabetic center of the Region. The use of routinely collected data to estimate incidence and prevalence of type 1 diabetes, and to identify cohorts of patients, may represent an alternative to other costly and time consuming methods.

337

Increasing incidence of childhood onset type 1 diabetes in Norway

T. Skrivhaug1, L.C.M. Stone2, H. Strem1, A.K. Drivd1, P.R. Nielstad1, G. Joner1, The Norwegian Childhood Diabetes Study Group;
1Dept of Pediatrics, Oslo University Hospital, Ulleval, 2Division of Epidemiology, Norwegian Institute of Public Health, Oslo, 3Dept of Pediatrics, Haukeland University Hospital, Bergen, Norway.

Background and aims: There is a worldwide increase of type 1 diabetes (T1DM). In 1989, the Norwegian population-based childhood diabetes register was initiated including all newly diagnosed children aged 0-14 years with diabetes. All 26 paediatric departments in Norway reports new cases of childhood diabetes to The Norwegian Childhood Diabetes Register based on informed consent from the child and/or parents. Since 2004 the Prescription Database (NorPD) at the National Institute of Public Health has registered all drug prescription in Norway, including insulin. Data published by the authors previously showed a clear increasing trend during the period 1973-2003 with IR moving from 19.1/105 in 1973 to 28.9/105 in 2001-2003. The aim of the study was to determine the incidence of T1DM in children 0-14 years in Norway during 2005-2008, and to calculate the ascertainment in the nationwide Norwegian Childhood Diabetes Register during the same period.

Materials and methods: During the study period 2005-2008,1232 new cases of childhood onset diabetes were registered by The Norwegian Childhood Diabetes Register. Of these, 1144 were classified as T1DM and were below 15 years at onset. Information on individual insulin prescriptions was obtained from The Prescription Database, and the first prescription of insulin 2004-2008 was registered and assumed to be at a date close to onset of T1DM. Consequently, "new cases" in the NorPD could only be defined for the years 2005-2008. The assumption of source independence and equal probability of capture of each case by these two sources is verifiable. This is the first time these two registries are linked with the purpose to give information about incidence of childhood T1DM and completeness of The Norwegian Childhood Diabetes Register.

Results: In the period 2005-2008, the uncorrected incidence rate of T1DM 0-14 years was 32.4/105/year for both sexes, for boys 34.1/105 and for girls 30.9/105, which indicates an steadily increasing trend compared to previously published incidence rates. The Prescription Database contained data on first time insulin prescriptions in 115 subjects, not reported to the diabetes register and the completeness is calculated to 92% for the whole study period which is appropriate according to the criteria for entering national data into the EURODIAB study.

Conclusion: The incidence of type 1 diabetes has further increased in Norway as in many other European countries. The incidence has been studied nationwide since 1989 and the completeness of registration of new cases can be documented to be 90-95% % in all periods with obligatory signed informed consent forms from all patients.

338

The influence of birth cohort on the incidence of childhood type 1 diabetes in Wales

J.N. Harvey1, R. Hibbs1, H. O’Connell1, J.W. Gregory2, on behalf of the Brecon Group;
1Centre for Endocrinology & Diabetes, Wales College of Medicine, Wrexham, 2Paediatrics, Wales College of Medicine, Cardiff, United Kingdom.

Background: It is suggested that type 1 diabetes (T1DM) occurs when genetically susceptible individuals experience a viral infection in the period preceding diagnosis: a period effect. There is also evidence that perinatal factors influence the incidence of childhood T1DM. Systematic changes in these two factors over time may lead to a birth cohort effect. The present study was designed to investigate whether a birth cohort effect is present in Wales, and if so, whether it is dominated by a period effect.

Materials and methods: Annual incidence rates for cases of T1DM in children aged <15 years in 2005-2008 were obtained from all paediatric units in Wales. Data on characteristics of population exposed to the study drugs were obtained from the Regional drug prescription monitoring database for the period 2005-2008. Information on 2046 cases diagnosed with T1DM from 1995-2008 was obtained prospectively from all paediatric units in Wales. Ascertainment was >95% in each calendar year to 2006.

Results: The overall increase in incidence (poisson regression modelling) assumes continuous linear growth was 1.9% per annum (residual deviance 0.84, p<0.001) but best fit was obtained with a model showing no further increase in incidence rate since 2000 (residual deviance 0.7, p<0.001) with no further increase in cases before age 5. The current annual incidence rate is 28 cases per 100,000 children. Modelling the influence of birth cohort suggests an effect of approx 1.5 on incidence rate when birth cohorts since 1985 are compared with 1980-84 and that this effect has not increased since 1985. Adding period effect produces a less good model (residual deviance 1.27, p<0.001) but indicates that an increasing period effect is counterbalanced by a reducing birth cohort effect.

Conclusion: The incidence rate of T1DM has not increased in Wales since 2000. Birth cohort effects have more influence than period effects and the absence of any continuing increase in birth cohort effect in Wales is a major influence on the incidence rate. Perinatal factors therefore require further investigation. Differences in the relative contribution of birth cohort and period effects on incidence compared to other nations may explain the current plateau in incidence in Wales.
Incidence of childhood and youth type 1 diabetes in La Palma Island 1993-2009
B.M. Belinchón1, J.A. Hdez.-Bayo2, S. Vázquez Dieguez1; 1Family Care, S/C La Palma, 2Endocrinology, General Hospital of La Palma, Breña Alta, 3Pediatrics, General Hospital of La Palma, Breña Alta, Spain.

Background and aims: The incidence of type 1 diabetes shows wide geographical variability and heterogeneity. The aim of this study was to determine the incidence of type 1 diabetes in children and young people younger than 30 yr in La Palma Island (the most northwest of Canary Islands, Spain: 730 Km², 85000 inhabitants and subtropical climate).

Materials and methods: All subjects with type 1 diabetes (according WHO and/or ADA criteria) diagnosed between January 1993 and December 2009 (prospectively 1995-2009) were included. The population at risk (0-29 yr) fluctuated between 36419 inhabitants (15711 inhabitants younger than 15 yr) - 1991 General Census- and 29620 (11899 habitants younger than 15 yr) - 2001 General Census-. All the reported cases were on insulin treatment. All subjects were living in La Palma Island at least six months before diagnosis of type 1 diabetes. Using the capture-recapture method (primary source was hospital records, while secondary sources were membership files of La Palma Diabetic Association and Primary Care Physicians), the ascertainment was 100%. The incidence rates were expressed as number of cases per 10³ habitants per year. The 95% Confidence Intervals were estimated assuming the Poisson distribution of the cases. The age adjustment for the rates was done using the direct method with a World and European Standard Population.

Results: 13 subjects younger than 30 yr had presented type 1 diabetes at the last 17 yr (64 boys, 49 girls; medium age: 13.5(?)) yr. The annual incidence fluctuates between 5.8 and 33.7/10³ per yr, being the average annual incidence 20.8/10³ (95% CI: 18.6-23; 34/10³ in the 0-14 yr group, CI 95%: 31.2-36.8; 11.6/10³ in the 15-29 yr group, CI 95%: 10-13.2) without sex differences (21.4/10³ in boys versus 17.3/10³ per yr in girls). The incidence is higher in the 5-9 yr age-group (39.6/10³ per yr), followed by the 10-14 yr age group (38.4/10³ per yr), the 0-4 yr age-group (21.9/10³ per yr), the 25-29 yr age group (13/10³ per yr), the 15-19 yr age-group (12.8/10³ per yr) and the 20-24 yr age-group (9/10³ per yr). The age-adjusted incidence to World Standard Population was 23.1/10³ per yr (95% CI: 20.8-25.4; 32.4/10³ in the 0-14 yr group, 11.6/10³ in the 15-29 yr group). The age-adjusted incidence to European Standard Population was 22.4/10³ per yr (95% CI: 20.2-24.6; 32.8/10³ in the 0-14 yr group, 11.6/10³ in the 15-25 yr group).

Conclusion: The incidence of type 1 diabetes in La Palma Island is the highest reported up to date in a Spanish community, and is close to the highest of the world. It is inconsistent with the hypothesis of a north-south gradient in diabetes risk. The knowledge of the incidence rates in La Palma Island can contribute to study the role that genetics and environmental factors may play in these differences.

Prospective nation wide registration of type 1 diabetes incidence in 0-34 years old during 25 years - a shift to younger age at diagnosis
G.G. Dahlquist1, L. Nyström1, G.C. Patterson1, 1Swedish Childhood Diabetes Study Group and Diabetes Incidence in Sweden Study Group; 2Clinical Science, Pediatrics, Umeå University, Sweden, 3Department of Epidemiology and Public Health, Queen’s University, Belfast, United Kingdom.

Background and aims: To clarify if the increase in childhood type 1 diabetes is mirrored by a decrease in older age groups on a birth cohort basis and to test the hypothesis that autoimmune diabetes shifted to younger age at onset. To test if cohort effects dominated over calendar period effects.

Materials and methods: The data base included 20 249 individuals with diabetes onset 1983 to 2007 combining data from two prospective research registers, the Swedish Childhood Diabetes Register including cases 0-14.9 years at onset and the Diabetes in Sweden Study including cases 15-34.9 years at onset. Incidence rates over time were analyzed using Poisson regression models.

Results: The overall yearly incidence rose to a peak of 42.3 per 100000 in males10-14 years and of 37.1 in females 5-9 years age group and decreased thereafter with increasing age. There was a significant increase by calendar year in both sexes in the three under 15 years age groups but decreases in the older age groups with significant decreases in the two age groups over 25.A cohort effect dominated over the time period effect.

Conclusion: Twenty-five years of prospective nationwide incidence registration demonstrates a clear shift to younger age at onset rather than a uniform increase in incidence rate across all age-groups. Exposures that affect young children more than older children and adults and accelerates disease onset may be responsible.

Ethnic differences in incidence rates of childhood type 1 diabetes in Yorkshire 1978-2007
K. Harron1, P.A. McKinney1, R.G. Felthower1, C.R. Stephenson1, P.D. Norman1, H.J. Bodansky1, G. Chhokar1, R.C. Parslow2, 1Paediatric Epidemiology Group, University of Leeds, 2School of Geography, University of Leeds, 3Leeds General Infirmary, 4St. James University Hospital, Leeds, United Kingdom.

Aims: To examine incidence rates and trends of childhood Type 1 diabetes in Yorkshire from 1978-2007.

Materials and methods: Data from the population-based Yorkshire Register of Diabetes in Children and Young People was used to analyse the incidence of Type 1 diabetes in children aged <15 years diagnosed in the former Yorkshire Regional Health Authority. Incidence rates (per 100,000 per year) were estimated using mid-year population estimates stratified by sex, age and ethnicity (south Asian, Indian, Pakistani, Bangladeshi and/or non-south Asian (all other ethnicities). Ethnicity was assigned using two name recognition programs (Nam Pelchan and SANGRA) and a local expert. Age-sex standardised rates were calculated between 1978-2007 and by ethnic-group between 1990-2007. Poisson regression was used to assess incidence trends and estimated predicted rates up to 2020. Goodness-of-fit, AIC and likelihood-ratio tests were used to assess model fit.

Results: 3911 children were diagnosed in Yorkshire between 1978-2007. Overall incidence was 18.1 (17.6-18.7) and lowest among 0-4 years-old compared to 5-9 and 10-14 year-olds: 11.7 (95% CI 10.9-12.5), 18.6 (17.6-19.6) and 23.7 (22.6-24.8) respectively. Incidence increased significantly over time with an average annual percentage change (AAPC) of 2.9% (2.5-3.2). The AAPC differed slightly between age-groups - 0-4: 2.6% (1.7-3.4), 5-9: 3.2% (2.6-3.8) and 10-14 years: 2.8% (2.2-3.3). The inclusion of an age-sex interaction term provided evidence for differences in trends between sexes depending on age, with females having higher incidence and AAPC than males for those aged 5-9. Incidence for non-south Asians (21.6 (20.7-22.4)) was significantly higher than that of south Asians (14.7 (12.4-17.1)) over the entire study period. A significant increasing trend in incidence was observed for non-south Asians of 3.4% (2.7-4.2) compared to a non-significant trend seen in south Asians (1.5% (-1.5, 4.5)). Overall forecasted incidence for 2020 is 38.8.

Conclusion: Type 1 diabetes incidence rates have continually risen over the last three decades for non-south Asians of all ages but not for south Asians, whose families come from a low incidence area. This is contrary to findings in the Bradford area of Yorkshire between 1978-1998. Overall incidence increased most quickly in the 5-9 age-group. Incidence doubled from 12.5 to 25.6 between 1978-2007. If current trends continue, rates will rise by 52% to 38.8 between 2007-2020.

Supported by: NHS Diabetes, HQCIP
342
Long-term mortality and causes of death among patients with type 1 diabetes in Japan
A. Morimoto, R. Nishimura, H. Sano, T. Matsudaira, N. Tajima, K. Utsunomiya;
Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iikei University School of Medicine, Tokyo, Japan.

Aims: To investigate long-term prognosis including causes of death among patients with type 1 diabetes in Japan.

Methods: A total of 1,387 patients (536 males and 831 females) were registered from two nationwide type 1 diabetes surveys in Japan. They were diagnosed as type 1 diabetes at less than 18 years of age between 1965 and 1979. All patients were tracked for survival status until January 1, 2005, with this status determined based on the questionnaires sent to their attending physicians or the residents' records. Causes of death were identified through questionnaires or death certificates. Their survival status as of January 1, 2005 was expressed in terms of standardized mortality ratio (SMR) and crude mortality rate (CMR). Mortality was compared between the male and female patients by using the Cox proportional-hazards model. The causes of death for deceased cases were divided into 9 groups (1. diabetic renal disease; 2. acute diabetic complications; 3. accident/suicide; 4. cardiovascular disease; 5. infections; 6. malignant neoplasms; 7. other non-diabetic causes; 8. other diabetic causes; 9. unknown) and were also compared by duration of diabetes.

Statistical analyses were performed by using SAS 9.1.

Results: The mean age at diagnosis was 8.8 ± 4.1 (SD) years, with a duration of diabetes of 27.9 ± 6.4 years. One thousand one hundred and three patients were confirmed as alive as of January 1, 2005, and 223 deaths (16.1%) were observed (confirmation rate: 95.6%). The SMR was 10.6 (males, 9.6; females, 11.5). The male patients were shown to be at 1.37-fold higher mortality risk than the females. Diabetic renal disease, cardiovascular disease, and acute diabetic complications were found to be the leading causes of death. However, as the duration of disease became longer, acute diabetic complications were found to be the leading causes of death. Thus, the longer the duration of disease, the greater the mortality from acute diabetic complications, and the greater the mortality from cardiovascular disease. The time from the initiation of diabetes to death was shown to be 5.5 ± 4.8 years in 89 patients who were confirmed to have been dead after initiation of dialysis.

Conclusion: The mortality risk of patients diagnosed as type 1 diabetes between 1965 and 1979 in Japan was shown to be 10.6-fold higher than that of the general population. The males were found to be at 1.37-fold higher mortality risk than the females. Diabetic renal disease, cardiovascular disease, and acute diabetic complications were found to be the leading causes of death. However, as the duration of disease became longer, acute diabetic complications contributed less and cardiovascular disease contributed more to mortality.

Supported by: NIH, Health Science Research Grant (Japan), Ministry of Education

PS 10 Environmental factors and type 1 diabetes mellitus

343
First trimester cytokine levels in mothers to children diagnosed with islet autoimmunity or type 1 diabetes before eight years of age
S.R. Resic Lindehammer1, M. Fest2, K. Marsal2, Å. Lernmark2;
1Diabetes and Celiac Disease, Clinical Sciences, Malmö, 2Department of Obstetrics and Gynecology, Clinical Sciences, Lund, Sweden.

Background and aims: Gestational infections and/or stress have with conflicting results been associated with an increased type 1 diabetes risk in offspring. Using multi-array analysis of cytokines, we tested whether Th1/Th2 cytokines during the first trimester were different between mothers who gave birth to children who developed islet autoimmunity at 1-8 years of age and matched control mothers.

Materials and methods: First trimester serum samples were analyzed for IFNγ, IL-10, IL-12, IL-13, IL-1β, IL-2, IL-4, IL-5, IL-8 and TNFα using the Meso-Scale Multi-Array system (MesoScale, Gaithersburg, Maryland). We compared 53 non-diabetic mothers who gave birth to a child who developed at least two islet autoantibodies against either GAD65, IA-2 or insulin with increasing levels at the second, third, fourth or fifth year of follow-up (a total of 40 children developed type 1 diabetes before 8 years of age) with 106 non-diabetic control mothers which were matched by age, HLA genotype as well as first trimester sampling date. The mothers included in this study are participating in the Skåne Diabetes Prediction Study (DiPIS). In 2000-2004, DiPIS recorded 48 058 live births with the aim to determine etiology indicators for type 1 diabetes. Blood samples (both mother serum and cord blood) were obtained at the time of delivery in 75% of the 48 058 recorded live births, and first trimester samples (10-16 gestational weeks) were available from the Southern Sweden Microbiological biobank for the non-diabetic mothers included in this part of the study.

Results: The median of IFNγ (p=0.02) and IL-1β (p=0.04) levels were significantly higher in the index mothers compared to the matched controls. The mean length of gestation in the index mothers was 275 days compared to 280 days in control mothers (p=0.04). The shortened gestational length was not related to the IFNγ or IL-1β levels. However, the gestational length in index but not control mothers was significantly correlated to IL-10 (p=0.03), IL-12 (p=0.01), IL-13 (p=0.04), IL-2 (p=0.04) and IL-5 (p=0.008).

Conclusion: This study revealed that 1) index mothers had elevated Th1 mediated cytokines (IFNγ and IL-1β) during the first trimester; 2) gestational length was significantly shortened in the index mothers; and that 3) several Th2 mediated cytokines were inversely related to the gestational length in the index but not in the control mothers, in first trimester samples. We therefore conclude that an increase in Th1 cytokine levels during the first trimester may signify gestational infection or stress. Furthermore, we conclude that Th2 cytokines may affect gestational length. In summary, these aberrations may contribute to an increased risk for islet autoimmunity and subsequent development of type 1 diabetes in the offspring.

Supported by: an EFSID Clinical Research Grant

344
First trimester serum cytokine levels and the development of autoimmune disease in offspring
M. Fest, S. Björck1, K. Lynch1, C. Brundin1, K. Marsal1, D. Agardh1, S.R. Resic Lindehammer2;
1Diabetes and Celiac Disease, Lund University, Malmö, 2Department of Obstetrics and Gynecology, Lund University Hospital, Lund, Sweden.

Background and aims: Pregnancy involves local and systemic changes in the balance between the Th1 and Th2 immunological response. It is generally accepted that pregnancy is mediated by a Th2 response inducing tolerance in the mother towards the fetal allograft. Several studies suggest that a shift in the Th1/Th2 balance during pregnancy caused by underlying environmental factors could be associated with post-partum autoimmune disease in the offspring. In this study we used Celiac disease as a model to investigate if autoimmunity is triggered already in utero during early pregnancy, observed as changes in the mother’s cytokine profile.

Material and methods: Ten cytokines were measured by electro chemiluminescence multiplex ELISA in serum samples obtained from mothers during the first trimester. Cases included women with children who before the
age of 5 developed verified Celiac disease. Matched controls were selected based on age. Celiac Disease associated HLA genotype and serum sampling date. Mann-Whitney U tests first tested for a significant overall shift in cytokine levels in cases compared to controls. Chi-square tests further examined whether the cases were distributed evenly across quartiles ranges of the control distribution.

Results: We observed that seven out of ten cytokines were significantly increased in the cases when compared to matched controls. Five of the cytokines were Th1 mediated (TNFα, IFNy, IL-2, IL-1β, IL-12), and two were Th2 mediated cytokines (IL-13 and IL-10). In the matched case-control analysis, the three top cytokines were shown to be: TNFα (p=0.002), IL-13 (p=0.002) and IFNy (p=0.003) which all were all elevated in the case group.

Conclusion: A delicate balance between Th1 and Th2 mediated cytokines is required to ensure a successful pregnancy. However, changes in this balance could predispose the fetus to future disease. In this study we show that autoimmunity in children is triggered already during early pregnancy and can be observed as quantitative changes in the serum cytokine levels of pregnant mothers.

Supported by: an EFSD Clinical research Grant and the Novo Nordisk foundation

345

Maternal serum 25-hydroxy-vitamin D during late pregnancy and risk of type 1 diabetes in the offspring

L.C.M. Stene1, I.M. Sørensen2, P.A. Torjesen1, P.A. Jenum3, A. Ekdål3, G. Joner2, 1Division of Epidemiology, Norwegian Institute of Public Health, Oslo, 2Department of Paediatrics, Oslo University Hospital Ullevål, Oslo, 3Hormone Laboratory, Oslo University Hospital Aker, Oslo, Department of Microbiology, Aker and Barum Hospital, Barum, 1Department of Obstetrics and Gynaecology and Medical Faculty Division, Akershus University Hospital, University of Oslo, 4Institute of Health and Society, University of Oslo, Norway.

Background and aims: A few case-control studies and one cohort study have suggested that use of vitamin D supplement in childhood or by the mother during pregnancy may be associated with lower risk of type 1 diabetes in children. However, vitamin D status is influenced not only by dietary intake (from food and supplements) but also skin exposure to ultraviolet light. No published study has yet reported the possible relation between the serum level of 25-hydroxy-vitamin D, which is a good marker of the integrated effects of dietary and endogenous sources of vitamin D, and the risk of type 1 diabetes. We aimed to test whether higher maternal serum concentration of 25-hydroxy-vitamin D during late pregnancy predicts a lower risk of childhood onset type 1 diabetes in the offspring.

Materials and methods: Based on a prospective cohort of nearly 30,000 pregnant women who gave birth in Norway during 1992-94, we analysed serum samples from 99 pregnant women whose child developed type 1 diabetes before 15 years of age and 155 randomly selected control women whose child did not develop type 1 diabetes during follow-up. The sera were collected around week 37 of pregnancy and stored at -20°C until analysed in batches.

Results: There were no significant differences between cases and controls in demographic data. The mean level of 25-hydroxy-vitamin D in cases was 66.4 nmol/l and in controls 71.5 nmol/l, odds ratio (per nmol/l): 0.9 (95% CI 0.9-1.0, p=0.1). Comparing the 4th vs. 1st quartile of maternal serum 25-hydroxy-vitamin D, the odds ratio was 0.6 (95% CI 0.3-1.3). Test for trend over quartiles: p=0.2. Adjustment for season of blood collection, maternal diabetes or other potential confounding variables did not influence these results.

Conclusion: In this first study to test the hypothesis that high serum 25-hydroxy-vitamin D status during pregnancy predicts a lower risk of type 1 diabetes in children we found no statistically significant association despite a suggestive trend.

Supported by: South-Eastern Norway Regional Health Authority

346

No association of human enterovirus RNA in monthly faecal samples and islet autoimmunity in the Norwegian MIDIA study

G. Tapia1,2, O. Cinek1, T. Rasmussen1, E. Witos3, B. Grinde4, L.C.M. Stene5, K.S. Ronningen5

1Department of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway, 2Second Faculty of Medicine, Charles University, Prague, Czech Republic, 3Department of Virology, Norwegian Institute of Public Health, Oslo, Norway.

Background and aims: To test whether the frequency of human enterovirus RNA in faecal samples collected monthly from early infancy was associated with development of multiple islet autoantibodies in children with the highest risk HLA genotype.

Materials and methods: Individuals carrying the HLA-DRB1*0401-DQA1*03-DQB1*0202/DRB1*03-DQA1*05-DQB1*02 genotype were identified at birth and followed with monthly stool samples from 3 to 35 months. Blood samples taken at age 3, 6, 9, 12 months, and then annually, were tested for autoantibodies to insulin, glutamic acid decarboxylase 65 and protein tyrosine phosphatase IA-2. Twenty seven children developed positive titre for at least 2 islet autoantibodies in 2 or more consecutive samples (cases). Two matched controls per case were selected. Stool samples from these children were analyzed for enterovirus with a semi quantitative real-time reverse transcriptase PCR. The frequency of enterovirus was modelled as the dependent variable and took account of the intra-individual correlation in enterovirus infection using a random intercept for the enterovirus infection. The data was also analysed using conditional logistic regression modelling with islet autoimmunity as the outcome.

Results: The frequency of enterovirus RNA in stool samples from cases prior to seroconversion (43/139, 12.7%) did not differ from the frequency in matched controls (94/692, 13.6%); odds ratio=1.01 (95% CI: 0.59 - 1.72), P=0.97. Results remained essentially unchanged after adjustment for potential confounders, restriction to various time windows before seroconversion, infections in the first year of life, or after including samples collected after seroconversion. There was no difference in the average quantity of enterovirus RNA, or the frequency of repeatedly positive samples. In the conditional logistic regression analysis, the odds ratio per enterovirus infection was 1.12, with corresponding 95% confidence interval 0.66-1.91.

Conclusion: The data strongly suggest that faecal shedding of enterovirus RNA does not predict islet autoimmunity, as human enterovirus infections are not more frequent before or after autoantibodies appear.

347

Identification of type 1 diabetes-associated methylation variable positions that precede disease diagnosis

H. Beyan1, V.K. Rakyan1, T.A. Down1, M.I. Hawa1, S. Maslau2, C. Wallace3, D. Aden1, C.A. Mein1, B. Manfris2, A. Curtotti4, C.G. Bell5, J.A. Todd6, B.O. Bøhm2, S. Beck6, R.D. Leshchiner4, 1Centre for Diabetes, Blizzard Institute of Cell and Molecular Science, London, 2Department of Genetics, University of Cambridge, 3Department of Medical Genetics, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, London, 4The Genome Centre, Queen Mary University of London, Barts and The London School of Medicine and Dent, London, United Kingdom, 5Department of Internal Medicine I, University Medical Center Ulm and Center, University Medical Center Ulm, Germany, 6UCL Cancer Institute, University College London, United Kingdom.

Background and aims: Type 1 diabetes (T1DM) is a complex multifactorial autoimmune disease caused by a combination of genetic and non-genetic factors. A role for the latter is suggested by studies of migrant populations, twin-cohorts, and the recent rise in T1DM prevalence. To assess whether epigenetic factors could contribute to these non-genetically determined effects we performed a genome-wide, promoter-specific DNA methylation analysis. We identified 132 T1D-associated methylation variable positions that precede disease diagnosis

Materials and methods: We studied CD14+ monocytes from 15 childhood-onset T1DM-discordant monozygotic (MZ) twin pairs, 9 control MZ twin pairs, plus 7 non-diabetic antibody-positive children studied prospectively before and after they developed T1DM. Methylation profiling was done using Illumina HumanMethylation27 BeadChips which allow for DNA methylation analysis of >27,000 CpG sites associated with >14,000 promoters per sample.

Results: We identified 132 T1D-associated methylation variable positions (T1D-MVPs) (P=0.02). Importantly, T1D-MVPs displayed statistically sig-
Smoking is known to negatively influence metabolic control in patients with type 1 diabetes mellitus. However, previous multicenter cross-sectional studies lack information on possible differences in diabetes therapy and consultation adherence between smokers and non-smokers. The aim of this prospective single-center study was to determine the effect of smoking on metabolic control during a longitudinal observation period.

Materials and methods: Patients with type 1 diabetes mellitus who were referred to our institution were included if written informed consent was given. Data on smoking habits and metabolic control (HbA1c) were taken at baseline and during follow-up, as well as on insulin dosage, weight, blood pressure and serum lipids. All patients were seen every 3 to 4 month and treated with intensive insulin therapy or continuous subcutaneous insulin infusion.

Results: 763 patients were included, 160 (17.1%) were smokers. HbA1c levels differed significantly between current smokers and non-smokers at baseline and during follow-up (mean 6.6 years, mean HbA1c 7.9±1.3 vs 7.3±1.1%, p<0.001) (figure 1, **p<0.001, *p<0.05). There was no difference between smokers and non-smokers in terms of age (35.1±12.8 vs 36.1±14.2y), diabetes duration (11.5±10.8 vs 13.4±12.5y) and BMI (23.6±4.5 vs 23.9±5.8kg/m²). However, there was a significant difference in gender between the two groups (71.3% male in smokers, 52.1% in non-smokers). Therefore, every analysis comparing the two groups was adjusted for gender. At the end of follow-up, weight, blood pressure and serum lipids were not different between the two groups when adjusted for gender. The proportion of patients with two or more diabetes related complications was higher in smokers at the end of follow-up (p=0.04). Insulin requirement at the end of follow-up was higher in smokers than in non-smokers (0.71±0.30 vs 0.65±0.31IU/kg/d, p=0.04), whereas there was no difference in the occurrence of severe hypoglycemias (16 events per 100 patient years in smokers, 17 in non-smokers).

Conclusion: In conclusion, this study demonstrates that patients with type 1 diabetes mellitus who smoke have a significantly worse metabolic control than non-smokers despite the same quality and intensity of diabetes treatment.
PS 11 Ethnic differences in metabolic traits

350

A comparison of diabetes incidence in Whites, South Asians, Chinese, and Blacks: a population-based cohort study in Ontario, Canada

M. Chiu, P. Austin, D.G. Manuel, B.R. Shah, J. Tu;
Institute for Clinical Evaluative Sciences, Toronto, Canada.

Background and aims: Diabetes is a growing epidemic in many countries worldwide. While ethnic differences in the prevalence of diabetes is well documented, little is known about the relative incidence of diabetes across the world’s four major racial-ethnic groups; Whites, Chinese, South Asians, and Blacks. We therefore conducted a population-based comparison of incidence rates of diabetes across Whites, Chinese, South Asians, and Blacks living in Ontario, Canada. We also derived ethnic-specific body-mass index (BMI) cutoff values to define obesity based on clinically-ascertained diabetes.

Materials and methods: We conducted a cohort study of 59824 non-diabetic adults (57210 Whites, 866 Chinese, 1001 South Asians, and 747 Blacks) aged 30 years or older, who were derived from Statistics Canada’s population health surveys (1996-2005). Subjects were followed up for up to 12 years for diabetes incidence using record linkages to the Ontario Diabetes Database, an administrative-based algorithm shown to identify diabetes with 86% sensitivity and 97% specificity.

Findings: Diabetes incidence (per 1000 person-years) was highest among South Asians (20.8), followed by Blacks (16.3), Whites (9.5), and Chinese (9.3). Cox proportional hazards regression models adjusted for age, sex, BMI, and sociodemographic characteristics revealed hazard ratios (HR) that were significantly higher in South Asians (HR: 3.40), Blacks (HR: 1.99), and Chinese (HR: 1.87) than Whites (all p<0.0001). The median age at diagnosis was 9 years younger in South Asians and 3 years younger in Chinese than in Whites. Ethnic-specific BMI cutoff points for diabetes risk were identified using Poisson regression and restricted cubic splines. For the equivalent incidence rate of diabetes at BMI 30 kg/m² in Whites, the candidate BMI cut-off points were 23 kg/m², 25 kg/m², and 26 kg/m² in South Asians, Chinese, and Blacks, respectively (see Figure).

Interpretation: Current screening and prevention strategies for diabetes are informed mainly by studies of White populations; however, our study suggests that the risk of new diabetes is significantly greater in South Asians, Chinese, and Blacks; that these groups present with diabetes at younger ages; and that the current definition of obesity is inadequate for assessing diabetes risk in these non-White groups. Ethnic-specific prevention programs and equitable health services are needed to reduce the burden of diabetes in these high-risk populations.

Figure. Ethnic-specific BMI cutoff values associated with diabetes incidence

Conclusion: Physical inactivity was independently associated with DM; after adjustment for sex, ethnicity and BMI, the odds of having diabetes was 1.69 (95% CI: 1.08-2.63) higher in individuals in the lowest quartile of physical activity, compared to those in the highest quartile. This association was present in both overweight individuals and those with a normal BMI, although this was only significant in overweight individuals (normal BMI: OR 1.51, 95% CI 0.60-3.75, overweight: OR 1.79, 95% CI 1.07-2.98). The association between physical inactivity and diabetes was stronger in ethnic Dutch (OR 4.81, 95% CI 1.32-17.61) than in Hindustani Surinamese (OR 1.50, 95% CI 0.76-2.98) and African Surinamese (OR 1.40, 95% CI 0.70-2.81), after adjustment for sex, age, BMI. As also observed in the total population, weight status did not alter the association between physical activity and DM within the ethnic groups. Similar results were obtained when using waist circumference as an indicator of overweight.

Conclusion: Physical inactivity was independently associated with type 2 diabetes among both individuals with overweight and individuals with normal weight. This confirms the importance of regular exercise for all. However, the results suggest that potential health gain may differ between ethnic groups.

352

Risk factors associated with age at diagnosis of type 2 diabetes mellitus in a bi-ethnic population

A. Chetrit1, K. Abu-Saad1, H. Murad2, F. Lubin3, A. Ziv1, G. Alpert3, A. Atamna1, O. Kalter-Leibovici3,1

1Cardiovascular Epidemiology, Gertner Institute, Ramat-Gan, 2Biostatistics, Gertner Institute, Ramat-Gan, 3Information and Computer, Gertner Institute, Ramat-Gan, 4Shomron Administration, Clalit Health Services, Hadera, 5Sackler Faculty of Medicine, Tel-Aviv University, Israel.

Background and aims: Ethnic minorities have higher prevalence of type-2 diabetes mellitus (T2DM) as compared to majority population groups. Younger age at diagnosis may further increase the burden of disease in ethnic minority groups. We explored factors associated with age at diagnosis of T2DM in the Arab minority and the Jewish majority groups in Israel.

Materials and methods: Participants (1,100; age: 25-74 years) were selected at random from the urban general population in the Hadera district in Israel. Information collected by interviews included socioeconomic status (SES) parameters, diabetes status, lifestyle habits (including dietary intake till T2DM diagnosis or interview), height, body weight during most of adult life, and history of diabetes in first degree relatives. Family history score of diabetes (T2DM FHScore) and dietary energy density (DED) in calories/grams were calculated. Factors associated with age at diagnosis of T2DM were tested using a multivariate Cox proportional hazard model.

Results: Of 1,093 participants with information on diabetes status, 180 had T2DM (16.5%). Arabs had higher prevalence of T2DM than Jews (21.0% vs. 12.0%; HR: 1.99 [95%CI: 1.47-2.71, P<0.01]). The mean (SD) age at T2DM diagnosis was 52.2 (10.2) years in Arabs vs. 56.1 (10.8) in Jews; =0.02. By the age of 57 years, 25% of the Arab participants had T2DM. The corresponding
age in the Jewish participants was 68 years (p<0.0001). In multivariate analysis, Arabs had 1.70 times greater risk for T2DM compared to Jews (95%CI: 1.19-2.43), adjusted for gender, BMI during most of adult life, T2DM FHScore and DED. Other factors associated with risk of T2DM included: higher BMI during most of adult life, higher T2DM FHScore, and higher DED (see table). SES parameters, cigarette smoking, gender, and current physical activity were not significantly associated with the risk for T2DM.

Conclusion: Compared to the Jewish majority group, people of the Arab minority group in Israel are at higher risk for having T2DM at a younger age, and greater loss of healthy life-years. Efforts to prevent or delay the onset of T2DM should be directed towards ethnic minority groups at high risk, in order to reduce diabetes-related health disparities.

Table: Factors associated with the risk for T2DM

<table>
<thead>
<tr>
<th>Risk Factor*</th>
<th>Hazard Ratio (HR); 95% confidence interval (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnic group (Arabs vs. Jews)</td>
<td>1.70; 1.19-2.43</td>
</tr>
<tr>
<td>BMI during most of adult life (highest vs. tertile)</td>
<td>2.07; 1.34-3.21</td>
</tr>
<tr>
<td>T2DM FHScore (highest vs. lowest)</td>
<td>5.78; 3.99-8.36</td>
</tr>
<tr>
<td>DED (highest vs. lowest quartile)</td>
<td>1.67; 1.08-2.61</td>
</tr>
</tbody>
</table>

*adjusted for gender

Supported by: *The Israel National Institute for Health Policy & Health Services Research*

353

Ethnic-specific cut-points for central obesity measures for predicting insulin resistance in South African women

J. Evans, L. Micklefield*1,2*, C. Jennings*, J. Yoffe*, N.S. Levi**1, E.V. Lambert*, T. Olsson*, J.H. Goeckede*6

*1University of Cape Town, *2University of the Witwatersrand, Johannesburg, South Africa, *3Umea University, Sweden

Background and aims: The relationship between waist circumference (WC), visceral adipose tissue (VAT) and insulin resistance (IR) differs by ethnicity. The aim of the present study was to explore ethnic-specific cut-points for measures of central obesity for predicting IR as estimated by the homeostasis model (HOMA-IR) in black and white women, and to determine the optimal measure of central obesity i.e. WC vs. waist-height-ratio (WHHR) vs. VAT that best predicts IR in each ethnic group.

Materials and methods: Anthropometry (weight, height, WC, hip circumference), VAT (computed tomography) and HOMA-IR were measured in 241 black and 188 white premenopausal non-diabetic South African women, free from known disease and not on medication. IR was defined as the upper tertile of HOMA-IR for the whole group. The Youden index was calculated to determine the ‘optimal’ cut-point for WC, WHHR and VAT that best predicted IR. The accuracy of each measure to predict IR was assessed using receiver operating characteristic (ROC) curves.

Results: Ethnic-specific cut-points for central obesity measures for predicting IR are presented in Table 1.

Conclusion: In our population of apparently healthy black and white South African women, we show that measures of central obesity better predict IR in white than black women, but there is little difference between WC, WHHR and VAT in their ability to predict IR in both ethnicities. As we show that VAT adds no advantage in the prediction of risk, WC or WHHR, basic cost-effective anthropometrical measures, should be used to identify risk. Long-term prospective studies are required to examine whether individuals from these ethnic groups who exceed these cut-points develop cardiovascular disease and diabetes and/or whether these relationships are similar in groups with known disease or pathophysiology.

Table 1: Optimal WC, WHR and VAT cut-points which best predict IR defined as HOMA-IR > 2.09

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>WC (cm)</th>
<th>WHR</th>
<th>VAT (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Women</td>
<td>ROC AUC</td>
<td>Cut-point</td>
<td>J value</td>
</tr>
<tr>
<td>Migrant South Asian</td>
<td>0.76 ± 0.03</td>
<td><94</td>
<td>0.42</td>
</tr>
<tr>
<td>Asian Indian</td>
<td>0.77 ± 0.03</td>
<td>>62</td>
<td>0.44</td>
</tr>
<tr>
<td>White Women</td>
<td>ROC AUC</td>
<td>Cut-point</td>
<td>J value</td>
</tr>
<tr>
<td>Migrant South Asian</td>
<td>0.72 ± 0.04</td>
<td>>78</td>
<td>0.36</td>
</tr>
</tbody>
</table>

354

The impact of migration on metabolic outcomes and coronary heart disease risk: a comparison of migrant South Asians, Asian Indians and white Europeans

J.J. Henson, L.J. Gray*, K. Khunti, A. Guru*, A. Misra*, M.J. Davies*

*1Diabetes Research, Leicester Royal Infirmary; *2Health Sciences, University of Leicester, United Kingdom; *3Department of Diabetes and Metabolic Diseases, Fortis Hospitals (Vasanti Kunj and NOIDA), New Delhi, India, *4Department of Cardiovascular Sciences, Leicester Royal Infirmary, United Kingdom

Background and aims: Given the consistent findings of increased prevalence, premature onset and increased mortality from CHD in South Asian (SA) individuals, there is a need to determine the underlying causes in order to develop effective prevention and treatment strategies. One fifth of the developing world is represented by individuals of a SA origin and migration has resulted in large numbers of SAs settling in many developed countries. We investigated the impact of migration upon metabolic and CHD risk factors.

Materials and methods: This cohort consisted of 2287 White Europeans (WEs), 1007 SAs living in India (ISA) and 927 Migrant SAs (MSA) residing in the United Kingdom (UK). All subjects were aged 40-75 years. The WE and MSA cohort were recruited from a cross-sectional diabetes screening study conducted in Leicestershire, UK. ISA participants were recruited from a community-based epidemiological study, undertaken in Punjab, India. All participants underwent metabolic and anthropometric measurements. All those with established or newly diagnosed diabetes and CHD were excluded from analysis. Data is presented as mean ± SD or number (%). The MSA group were used as reference. P values were calculated using between groups ANOVA (p<0.05, *p<0.001; see table 1). Non-parametric data were analysed using the Kruskal-Wallis test. *p test was used for categorical data.

Results: MSAs had a significantly higher mean BMI and waist circumference for both males and females (p=0.001) compared to ISAs however, WEs had a significantly larger waist circumference than both Asian groups (see table 1). These relationships remained statistically significant after adjustment for age. MSAs had a significantly higher fasting plasma glucose compared to ISAs (p<0.05); furthermore, the prevalence of the metabolic syndrome (International Diabetes Federation criteria) was greater in MSAs compared to both ISAs (p=0.001) and WEs (p<0.05). MSA males had significantly higher cholesterol compared to ISAs (5.1mmol/L vs. 4.8mmol/L, p<0.05). In addition, MSA males had a significantly higher 10-year CHD risk (Framingham) compared to WEs (p<0.05); however, WE and ISA females had a significantly higher diabetes than MSAs (p=0.05).

Conclusion: This large dataset demonstrates that factors associated with migration serve to exacerbate some important indicators of cardiovascular and diabetes risk such as BMI, fasting glucose, serum cholesterol and waist circumference; however, certain modifiable risk factors, such as smoking were higher in ISAs compared to MSAs, which contributed to a higher CHD risk in this group.

< Springer
Levels of 25-OH-vitamin D in early pregnancy in women from five ethnic groups with and without gestational diabetes

L. Sletner1,2, K. Mørkrid3, B. Nakstad1, K.I. Birkeland1, A.K. Jenum1; 1Dep. of Endocrinology, Oslo University Hospital, Aker, 2Dep. of Pediatrics, Akershus University Hospital, Lørenskog, Norway.

Background: The STORK Groruddalen Research Program was set up to identify predictors for gestational diabetes (GDM) and foetal growth in a multiethnic population in Oslo. Inclusion will finish in May 2010. Poor vitamin D status has been linked to insulin resistance and in some studies it has been associated with GDM.

Aims: To assess levels of 25-OH-vit. D in early pregnancy in women from five ethnic groups who later developed GDM compared to women without GDM.

Methods: This is a population-based cohort study of pregnant women attending the Child Health Clinics in Groruddalen and their offspring. Information and questionnaires were translated to eight languages, covering the largest ethnic groups. Women were eligible if 1) living in the districts, 2) planned giving birth at the study hospitals, 3) in gestational week (GW) ≥20, 4) not suffering from diseases necessitating intensive hospital follow-up during pregnancy, 5) could communicate in Norwegian or any of the translated languages and 6) able to give informed consent. Ethnic origin in the present study: Europe (including North America), South Asia, East Asia, Middle East (including North Africa/Central Asia) and Somalia. Questionnaire data, blood pressure, anthropometric measurements, fasting blood and urine samples collected by midwives were obtained at GW 10-20, 28 and 12 weeks postpartum. A 75 g OGTT was performed at GW 28 (24-32), glucose analyzed on site in venous EDTA blood samples (HemoCue, Angelholm, calibrated for plasma). The diagnosis of GDM was based on the WHO-criteria: fasting ≥7.0 or 2-hour value ≥7.8 mmol/l. 25-OH-vitamin D was measured by a radioimmunoassay method (DiaSorin, Stillwater, MN, USA). Descriptive analyses, ANOVA for continuous variables, chi-square tests for categorical variables and logistic regression analyses were performed.

Results: By March 1st 2010, 744 women were included (From Europe: 81.2% of the invited, Asia: 66.0%, Middle East: 64.9%, Africa: 60.3%). OGTT data were available from 539 women and 78 GDM cases (14.5%) were identified. The crude prevalence of GDM was high in all groups (Europe: 12.7%, South Asia 13.4%, East Asia 24.0%, Middle East 22.4%, Somalia 18.5%)(Table 1). East Asian GDM women had a lower mean BMI than European GDM women (p<0.05). In women without GDM mean BMI was higher in the Middle East group than in Europeans (p=0.03). Odds ratio for GDM adjusted for age, parity, BMI and GW for minority groups from Asia and Africa compared to Europeans was 1.5-2.7, borderline significant for women from Middle East (p=0.057) and East Asia (p=0.054). 25-OH-vit. D was significantly lower in both GDM and non-GDM women from ethnic minorities compared to Norwegians, but no significant differences between GDM and non-GDM women were found.

Conclusion: The crude prevalence of GDM was high in all groups, but highest in groups from Asia and Africa. Low levels of 25-OH-vit.D was significantly associated with ethnicity, but not with GDM.

J. Park1, S.G. Kim2, S.J. Yang3; 1Inju University Sanggye Paik Hospital, Seoul, 2Korea University Anam Hospital, Seoul, 3Korea University Guro Hospital, Seoul, Republic of Korea.

Objective: This study was designed to determine the differences in the prevalence of diabetes based on the level of education in Korean women.

Research design and methods: A total of 3,842, 2,894, 3,020, and 1,647 women were included from The Korea National Health and Nutrition Examination Survey 1998, 2001, 2005, and 2007 surveys, respectively. Diabetes was defined as a self-reported history or a fasting plasma glucose ≥126 mg/dl. Education was classified into the following three categories: low (less than high school graduate), medium (less than college graduate), and high (college graduate or more). A linear model was used to test a trend of diabetes prevalence according to educational health inequality. A multiple logistic regression analysis was performed to estimate odds ratios for diabetes prevalence according to education levels.

Results: The prevalence of diabetes among Korean women was decreased from 8.1% in 1998 to 6.6% in 2007. Between these periods, there was a significant decreasing trend of the prevalence from 2.8% to 0.7% among women with a high education level, but no significant change was observed, such as from 12.2% to 15.3% among those with a low level of education (p=0.002 and p=0.15, respectively). A difference of diabetes prevalence between the high and low levels of education increased significantly across survey periods (p=0.0007). The odds ratio for the prevalence of diabetes in women with a low level of education compared to women with a high level of education increased from 1.6 in 1998 to 2.2 in 2001, 3.4 in 2005, and 4.8 in 2005 after adjusting for age, BMI, smoking, and exercise.

Conclusion: The prevalence of diabetes had an inverse relationship with the level of education in Korean women during last decade. More than the negative relationship, an educational health inequality for the prevalence of diabetes was widened during Korea’s rapid economic development. Further studies on the causes of educational inequalities in the prevalence of diabetes, as well as the development of an effective intervention program, are imperative to reduce the prevalence of diabetes and a gap of the prevalence in Korean women.
PS 12 Environmental factors and type 2 diabetes mellitus

357

Dairy consumption and insulin resistance syndrome: results from a French prospective study, D.E.S.I.R., data from the Epidemiological Study on the Insulin Resistance Syndrome

F. Fumeron,1 A. Lamrifi, I. Porchay-Baldirelli, R. Jaziri, O. Lantieri, S. Voli, B.J. Balkau, M. Marre;1 INSERM U695, Paris,1 IRSA, La Riche,1 INSERM U1018, Villejuif, France.

Background and aims: In the French population from the D.E.S.I.R. cohort, cross-sectional analyses have shown that a higher consumption of dairy products or calcium is associated with a lower prevalence of the insulin resistance syndrome (IRS). The aim of our study was to assess the influence of dairy products on the nine year cumulative incidence of the IRS or associated diseases in this population-based prospective study with a 9-year follow-up, D.E.S.I.R.

Materials and methods: In total, 5212 volunteers from the western central part of France were included in the cohort. A questionnaire was completed by each participant at baseline, to determine the frequency and level of consumption of different foods. Two items concerned dairy products (cheese, milk and other dairy products). There were 4 groups according to the intake of dairy products (except cheese) and 3 groups for cheese intake. Calcium intake was calculated from the questionnaire. Calcium density of the diet was defined as the amount of calcium ingested per 1000kCal. Sex-specific calcium density quartiles were calculated. The associations between these dairy variables at inclusion and the incidence of metabolic diseases were tested using logistic regression models adjusted 1) for sex, age, alcohol, smoking, physical activity, fat intake and 2) the same covariates plus BMI. The odds ratios were determined by the logistic regression, indicating the risk for a change from one group to the next, e.g. from one quartile of calcium density to the next quartile. The association of dairy products with continuous variables was tested by analysis of covariance for repeated measures, using the same covariates as for the logistic regression.

Results: The consumption of dairy products other than cheese and calcium density of the diet were inversely associated with the incidence of the IRS and with the incidence of impaired fasting glycaemia (IFG) or type 2 diabetes (T2D) during the 9-year follow-up. The consumption of cheese was negatively associated with the incidence of the IRS, in particular after adjustment for BMI. (Table). These 3 parameters were associated with lower 9-year means of diastolic blood pressure, plasma triglycerides and insulin levels and with lower BMI gain in this period. Higher cheese intake and calcium density were associated with lower increase in waist circumference and plasma triglyceride levels. Dairy products and cheese intake were associated with a lower increase in blood pressure during the follow-up.

Conclusion: A higher consumption of dairy products and calcium reduces the incidence of the IRS during a 9-year period in a large cohort drawn from the French general population. This inverse association is observed with the French general population. This inverse association is observed with different covariates as for the logistic regression.

358

High intake of fermented milk is associated with decreased risk of type 2 diabetes and better insulin sensitivity

E. Sonestedt, M. Orho-Melander; Department of Clinical Sciences, Lund University, Malmö, Sweden.

Background and aims: Several observational studies have shown an inverse association between intake of dairy products and risk of type 2 diabetes (T2D). Fermented dairy products contain probiotic bacteria that may influence the composition of the gut microbiota, which are suggested to play a crucial role in the development of metabolic disorders; however, studies examining the association with fermented milk are lacking. We therefore explored the association between intake of specific dairy products (fermented milk, non-fermented milk, cheese (>10% fat), cream and butter) and incident T2D using the large Swedish Malmö Diet and Cancer study (MDCS) with comprehensive and detailed data on dairy food intakes. A genetic variant near the insulin receptor substrate 1 gene (IRS1) has been shown to associate with insulin resistance and T2D and we therefore wanted to examine if the associations between dairy intake and T2D differentiate depending on IRS1 genotype.

Materials and methods: Among participants in the MDCS without a history of cardiovascular disease and diabetes (n=26,369, 44-74 y of age; 62% females), 1,616 individuals with incident T2D were identified from national and regional registers during a mean period of 12 y follow-up. Fasting blood glucose and plasma insulin were measured in 4,628 of the subjects at baseline, and HOMA index was used as a measure of insulin resistance. A total of 24,132 of the individuals were genotyped for the genetic variant in IRS1 (rs2943641). Dietary data was collected using a modified diet history method. Cox proportional hazard regression was used to calculate hazard ratios (HR) for each energy-adjusted food group adjusted for several potential confounders (i.e. age, sex, energy intake, BMI, smoking habits, alcohol consumption, leisure-time physical activity, and education). In sensitivity analyses we excluded individuals reporting dietary change in the past as they are suspected to have unstable food habits. The interaction between IRS1 genotype and food variables on incident T2D was assessed by introducing a multiplicative factor with continuous variables in the multivariate analyses.

Results: After adjusting for potential confounders, high intake of fermented milk was associated with lower HOMA index (P-trend=0.002), whereas high intakes of non-fermented milk and butter were associated with higher HOMA index (P-trend=0.002 and 0.066, respectively). Without taking dietary change in the past into account, high intakes of cream, cheese and butter were associated with decreased risk of T2D (P-trend=0.05 for all). However, after excluding those 22% individuals reporting dietary change in the past, only high intake of fermented milk was significantly associated with decreased incidence of T2D (HR, 0.76; 95% CI, 0.64-0.91 for highest tertile compared to lowest tertile). The interaction between IRS1 genotype and food variables on incident T2D was assessed by introducing a multiplicative factor with continuous variables in the multivariate analyses.

Conclusion: This study indicates that intake of fermented milk is associated with better insulin sensitivity and that a high intake may reduce the risk of T2D. Our observation suggests that it is crucial to separate the effect of fermented and non-fermented milk products when investigating the health effect of dairy foods.

Supported by: Lund University Diabetes Center

359

Alcohol consumption and the risk of developing prediabetes and type 2 diabetes in Swedish middle-aged men and women

M. Cullmann, A. Hilding, C.-G. Ostenson; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Type 2 diabetes (T2D) has become a major health problem in many industrialized countries. Alcohol consumption represents a common and increasing habit in Sweden. It has been suggested as a potential, modifiable risk factor of T2D. However, more detailed information on effects of different types of alcoholic beverages as well as the effects on early phases of T2D development seems warranted. The aim of the present study was to investigate the influence of alcohol consumption and specific alcoholic beverages on the risk of developing prediabetes and T2D in Swedish middle-aged men and women.

Supported by: CERIN/CNIEL
Materials and methods: The data of 2004 men and 2961 women, aged 35-56 yrs at baseline, from the Stockholm Diabetes Prevention Program was evaluated in this cohort study. All subjects had normal glucose tolerance at baseline. Logistic regression analysis was performed to estimate the risk (expressed as odds ratio (OR) and 95% CI) to develop prediabetes and T2D at follow up, 8-10 yrs later, in relation to self reported, baseline alcohol intake (converted to g/day) derived from wine, beer, dessert wine and hard liquor. Adjustment was performed for several life style factors.

Results: When adjusted for confounders, no significant association was found with total alcohol consumption and prediabetes or T2D in both men and women. However, men showed a higher risk for T2D when having a high liquor consumption (OR: 2.01 [95% CI: 1.10-3.65]) and a higher risk for prediabetes when drinking high amounts of beer (OR: 1.72 [1.06-2.81]) compared to occasional drinkers. Women showed a reduced risk for T2D in the medium liquor group (OR: 0.39 [0.17-0.91]) and a 2-fold higher risk for prediabetes in the high liquor group (OR: 2.37 [1.44-3.89]) but a reduced risk for prediabetes in the high wine intake group (OR: 0.65 [0.43-0.99]) compared to occasional drinkers.

Conclusion: This is the first study to investigate the possible risk of different alcoholic beverages on the development of prediabetes in women. Although no significant associations were found to total alcohol consumption in men and women, high consumption of hard liquor and beer increased the risk of T2D development. Since alcohol in some instances reduced the risk, it is possible that other factors than ethanol might play a role.

The inverse association between alcohol intake and complement C3 can be attributed to wine consumption and is explained by inflammation, HDL and insulin resistance, the CODAM study

M.J.M. van Greevenbroek, J.C.H. van der Kallen1, I. Ferreira2, E.E. Blaak3, C.G. Schalkwijk1, E.J.M. Feksens1, C.D.A. Stehouwer3; 1Internal Medicine (UNS 50 box 14), Maastricht University, Internal Medicine / KEMTA, Maastricht University, 2Human Biology, Maastricht University, 3Wageningen University, Netherlands.

Background and aims: Moderate alcohol consumption has beneficial effects on CVD risk. Complement C3 is an early marker of insulin resistance and a risk factor for CVD and a negative association between alcohol consumption and circulating C3 has been reported. However, whether all sources of alcohol (e.g., wine, beer or other) are equally associated with C3 is not known. Also, the mechanisms that can explain any salient inverse associations are not known. Beneficial effects of (moderate) alcohol consumption on inflammation, HDL and insulin resistance are likely candidates in this regard. The aim of this study was therefore to determine whether an inverse association between alcohol consumption and C3 is present and to investigate the extent to which this is (1) due to a specific source of alcohol and (2) explained by inflammation, HDL and/or insulin resistance.

Materials and methods: We investigated the Cohort on Diabetes and Atherosclerosis Maastricht (n=574, 61.3% men, 59.1 ± 7.0 yrs of age). Alcohol intake from different sources (beer, wine and others) was estimated by means of a validated food frequency questionnaire (FFQ). Subjects with unreliable FFQ (n=56) or who had missing data on the other variables (n=22) were excluded. First, we determined the association between alcohol consumption (total amount or from different sources, main determinant) and C3 (main outcome, standardized value) using linear regression (adjusted for age, sex, total energy intake, physical activity, waist, smoking, total cholesterol, ALAT, prior CVD, glucose tolerance status, use of medication). Next, we investigated whether this association could be attributed to a specific dietary source of alcohol. Lastly we investigated whether this association was (statistically) explained by inflammation (expressed as the average Z-score of CRP, IL6, SAA, sICAM, ceruloplasmin and haptoglobin), HDL-cholesterol and/or insulin resistance (as HOMA2IR).

Results: After adjustment for the above-mentioned covariates, alcohol consumption (in 10 g/d) was inversely associated with circulating C3; β [95% CI]; -0.057 [-0.108, -0.014] (P=0.010). When each source of alcohol was adjusted for each other and the covariates, only wine was independently associated with C3 [β [95% CI] = -0.087 [-0.140, -0.033], P=0.002; -0.042 [-0.107, 0.023], P=0.222; -0.004 [-0.080, 0.072], P=0.908 for wine, beer and others, respectively]. In the final analyses, we therefore analysed alcohol consumption from wine (in 10 g/d). The strength of the association between alcohol from wine and C3 was attenuated after further adjustments for inflammation (by 24.1%), HDL (by 33.3%), or HOMA2IR (by 36.8%), and was attenuated by 73.6% when these three mediators were added together.

Conclusion: The negative association between alcohol intake and circulating C3 can be mainly attributed to wine consumption and is largely explained by the favorable impact of alcohol consumption on inflammation, HDL and insulin resistance. This suggests that this association is more likely related to non-alcohol components of wine, than to the alcohol component itself.

Supported by: NWO/DFN. IF is supported by NHS

361

361

Steatosis of donor’s liver and its relationship to post-transplant diabetes mellitus in liver transplantation

M.X. Yu, X. Chen, J. Zhou, J. Gao, X. Gao; Endocrinology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.

Background and aims: Previous study indicated that HCV infection, immunosuppressive including steroid and calcineurin inhibitor, age over 45yrs, family history of DM, overweight, impaired glucose regulation before transplant, MCV infection, acute rejection(AR), cirrhosis especially decompensation cirrhosis et al were risk factors to post-transplant diabetes mellitus(PTDM). The relation between steatosis of donor’s liver and PTDM was rarely reported. The aim of our study was to discuss steatosis of donor’s liver and its relationship to post-transplant diabetes mellitus in liver transplantation.

Materials and methods: We retrospectively analyzed 438 patients who performed orthotopic liver transplantation (OLT) in our center between April, 2001 and December, 2008. Patients with history of using steroids, or data incomplete or died within 3 months after OLT were excluded. The grade of liver steatosis was taken pathological grading of non-alcoholic fatty liver disease (NAFLD), and fatty content less than 5% was considered without steatosis, otherwise was steatosis. Liver function was graded to A, B and C according to Child-Pugh grade system. Patients were divided into PTDM and non-PTDM group according to fasting plasma glucose(FPG) after operation. Univariate analysis was used to analyze the possible risk factors, such as age, gender, family history of DM, HBV or HCV infection, FPG, BMI, liver function pre-operation, cirrhosis, steatosis of donor’s liver, AR, immunosuppressive drugs, metabolite related risk factors, interleukin 2 receptor antagonist(IL-2RA). Multivariate logistic regression was used to analyze factors including age, FPG, HBV infection, cirrhosis, liver function pre-operation, steatosis of donor’s liver, basic diseases before operation, IL-2RA, immunosuppressive drugs and AR. Student’s t test (One-Way ANOVA) was used to compare quantitative variables and Chi-square test was used to compare qualitative variables. P value less than 0.05 was considered statistically significant. Statistic analysis was done by SAS 8.2 and SPSS 16.0.

Results: Among 438 patients, there were 298 non-PTDM and 140 PTDM patients. Among 298 non-PTDM patients, there were 103 steatosis of donor’s liver, taking 34.6%, and 62 steatosis of donor’s liver among 140 PTDM patients, taking 44.3%. Univariate analysis indicated that liver function and fasting plasma glucose pre-operation, the use of IL-2RA and calcineurin inhibitor were significantly related with PTDM (All P<0.05), but steatosis of donor’s liver was at the critical level (P=0.050). While multivariate logistic regression indicated that FPG pre-operation and steatosis of donor’s liver had positive relationship with PTDM, their OR value was 1.853 (P<0.01) and 1.803 (P<0.05) respectively. And the use of IL-2RA was negatively related with PTDM with OR value of 0.427 (P<0.01).

Conclusion: We found that steatosis of donor’s liver, abnormal fasting plasma glucose, liver function pre-operation and calcineurin inhibitor were risk factors of PTDM.

362

B12 deficiency is more common than folate deficiency in early pregnancy: do we need to consider B12 fortification?

P. Saravanavan1, C. Wood2, N. Anderson1; 1CSI, Warwick Univ. & George Elliott Hospital, Coventry; 2Biochemistry, George Elliott Hospital, Nuneaton, United Kingdom.

Background and aims: Foetal programming due to gene–diet interactions during the periconceptional period has been linked to increased risk of Type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) in the offspring during their adult life. In addition, children who are born small but gain weight rapidly during the early years and become obese in adult life are particularly at risk of T2DM and CVD. A large prospective observational
study showed that offspring born to mothers with high folate and low B12 levels during mid-pregnancy, had the highest adiposity and greatest insulin resistance. In presence of such imbalance, it is plausible biochemically, excess energy is converted to adipogenesis as opposed to myogenesis. Though such imbalance is likely to be common in a mainly vegetarian population such as in India, recent evidence suggests that such phenomenon may not be uncommon in the UK adult population too. In animal studies, epigenetic alterations of DNA methylation by B12 and folate during the periconceptional period result in increased adiposity and metabolic risk in the offspring. In addition, methyl donor deficiency leads to dysfunction of the ghrelin system with dramatic effects on intrauterine growth. Because of fortification of various foods and the recommendation for periconceptional folic acid supplementation, folate deficiency has become rare. B12 deficiency has thus become a potentially major modifiable risk factor for metabolic disease as well as neural tube defects (NTDs). Indeed, in the presence of adequate folate, NTDs due to B12 deficiency have tripled. Thus, reducing the incidence of B12 deficiency by fortification / supplementation has the potential to reduce the risk of metabolic disease in adult life and the overall burden of metabolic disease worldwide.

To investigate the incidence of B12 deficiency in a Caucasian population during early pregnancy.

Materials and methods: 200 Maternal serum samples (mean age 27y) at 16-18 weeks gestation were analysed for B12 and folate levels using an electrochemiluminescence immunoassay. 200 samples from non-pregnant women of child-bearing age (mean 28y) were analysed as controls.

Results: B12 deficiency (<191ng/L) was common during pregnancy compared to age-matched control non-pregnant women (20% vs 4%, p=0.0001). Folate deficiency was 6% and 13% in the pregnant and non-pregnant women respectively (<4.6μg/L). Significantly more pregnant women had folate levels above the reference range (>18.7μg/L), compared to the non-pregnant group (8% vs 3%, p=0.0283). This is likely due to increased folic acid intake during pregnancy. Median B12 levels are significantly lower (median: 262ng/L vs 363ng/L, p=<0.0001) at 16-18 weeks of pregnancy. This may be due to increased utilization during pregnancy, especially in the presence of higher folate levels.

Conclusion: These data indicate that B12 deficiency is common in early pregnancy even in a non-vegetarian UK population. If untreated, such deficiency may get worse in later pregnancy, potentially increasing the risk of metabolic disorders such as T2D and CVD. Given recent evidence linking B12 deficiency to NTDs, our findings suggest in addition to folic acid, B12 fortification should be considered. Intervention studies of B12 supplementation in early pregnancy and their effects on offspring are urgently needed. In addition, further studies designed to identify the potential mechanisms are warranted.

PS 13 Screening and prediction of type 2 diabetes mellitus

363

Comparison of American Diabetes Association and World Health Organisation indications for performing oral glucose tolerance test

P. Tsouli1, E. Denver2, N. James3, M. Barnard3

1Department of Diabetes, 2Department of Biochemistry, The Whittington Hospital NHS Trust, London, United Kingdom.

Background and aims: There is a discrepancy between American Diabetes Association (ADA) and World Health Organisation (WHO) cut-off values of fasting plasma glucose (FPG) for diagnosing Impaired Fasting Glaecmia (IFG). ADA recommends an FPG cut-point for IFG of 100 mg/dl (5.6 mmol/l). WHO and the European Diabetes Epidemiology Group recommend the cut-point of 110 mg/dl (6.1 mmol/l). The aim of this study is to determine which FPG cut-point should be used when deciding whether to perform an Oral Glucose Tolerance Test (OGTT).

Results: Data was collected on 1598 patients (mean age 58.7 years ± 13.5 years, 54.2% males and 45.8% females). Amongst the subjects there were 44.7% White, 9.9% Black, 6.2% Asian and 39.2% cases of ‘other ethnic origin’ or ‘not stated’. Among participants with FPG of 100-109 mg/dl (normal according to WHO, but IFG according to ADA) 34.1% had impaired glucose tolerance (IGT) and 11.8% had diabetes based on 2-h PG (overall 45.9% impaired glucose regulation). In those with FPG of 110-125 mg/dl (IFG according to both ADA and WHO), 39.0% had IGT and 29.0% diabetes based on 2-h PG (overall 68.0% impaired glucose regulation). In those with FPG of <100 mg/dl (normal according to ADA and WHO), 19.3% had IGT and 4.6% diabetes based on 2-h PG (23.9% impaired glucose regulation). A statistically significant association was found between FPG and 2-h PG (p<0.001) and a positive linear relationship between FPG and 2-h PG was observed (correlation coefficient 0.436). For participants with FPG of 100-109 mg/dl, a statistically significant relationship between different age groups and 2-h PG was demonstrated (p=0.012). The proportion of participants with FPG of 100-109 mg/dl who had IGT showed a steady increase: 26.7% among <50 years of age, 29.6% among 50-60 years, 38.7% among 60-70 years, 42.4% among >70 years of age. A similar trend was noted in the proportion of individuals who were diagnosed with diabetes based on 2-h PG. For subjects with FPG of 100-109 mg/dl, no statistically significant association was noted between gender or ethnic origin and 2-h PG.

Conclusion: In this study, by applying a WHO cut-point for FPG of 110 mg/dl (6.1 mmol/l) we would have missed the diagnosis of impaired glucose regulation in a large proportion of subjects. A significant proportion of our population with FPG of 100-109 mg/dl had IGT (34.1%) or diabetes (11.8%) based on 2-h PG. This may reflect the characteristics of our local population and further studies should guide whether OGTT is indicated in individuals with FPG of 100-109 mg/dl.

<table>
<thead>
<tr>
<th>FPG</th>
<th><140 mg/dl (normal)</th>
<th>140-199 mg/dl (IGT)</th>
<th>≥ 200 mg/dl (diabetes)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100 mg/dl</td>
<td>347 (76.1%)</td>
<td>88 (19.3%)</td>
<td>21 (4.4%)</td>
</tr>
<tr>
<td>100-109 mg/dl</td>
<td>219 (54.1%)</td>
<td>138 (34.1%)</td>
<td>48 (11.8%)</td>
</tr>
<tr>
<td>110-125 mg/dl</td>
<td>148 (32.0%)</td>
<td>180 (39.0%)</td>
<td>134 (29.0%)</td>
</tr>
<tr>
<td>≥ 126 mg/dl</td>
<td>24 (8.7%)</td>
<td>56 (20.4%)</td>
<td>195 (70.9%)</td>
</tr>
</tbody>
</table>
Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance (NGT) one-hour post-load plasma glucose (1h-OGTT glucose) >155 mg/dl may predict type 2 diabetes (T2DM) and is associated with subclinical atherosclerosis. This study evaluates beta-cell function, insulin-sensitivity and cardiovascular risk profile of NGT subjects with 1h-OGTT glucose >155 mg/dl.

Materials and methods: In 929 subjects, participating in to the GENFIEV (Genetic and Pathophysiology of Type 2 Diabetes Evolution) study, we performed an OGTT with measurement of C-peptide and fasting insulin. Insulin resistance was assessed by HOMA-IR, while beta-cell function was estimated by the Insulinogenic Index and minimal model analysis of plasma glucose and C-peptide response to a 2-hr 75-g OGTT.

Results: Based on the OGTT results, 51% had NGT, 4% IFG, 24% IGT, 7% both IFG and IGT, and 14% were diagnosed with new T2DM. Thirty-nine percent among NGT, 76% of IFG, 90% of IGT, 99% of IFG+IGT and 98% of newly diagnosed T2DM had 1h-OGTT glucose >155 mg/dl. This cutoff point has an high specificity (89%), a good sensitivity (69%) and an high positive predictive power (92%) in identifying subjects with IGR or newly diagnosed T2DM. Among subjects with NGT (n. 474, 37% men and 63% women; age: 46±12 years, BMI: 28±4.5 kg/m2), those with 1h-OGTT glucose >155 mg/dl, were more insulin-resistant (HOMA-IR 2.7±1.9 vs 2.1±1.2 mmol/l, p=0.01) and had impaired first phase insulin secretion. (Insulinogenic Index: 0.052±0.030 vs 0.092±0.17; p=0.01; C-CD: 1381±865 vs 1721±1384 Pmol/ml/sample/min; p<0.005) and beta-cell performance (Disposion Index: 0.055±0.097 vs 0.026±0.025; p=0.001) compared to those with 1h-OGTT glucose ≤155 mg/dl. Moreover, HbA1c (5.6±0.4 vs 5.3±0.4%; p=0.0001), blood pressure (systolic: 128±13 vs 122±14 mmHg; p=0.0001 and diastolic: 81±10 vs 77±11 mmHg; p=0.0001), LDL-cholesterol (136±41 vs 127±37 mg/dl; p=0.05) and triglycerides (136±96 vs 117±75 mg/dl; p=0.05) were higher in subjects with 1h-OGTT glucose >155 mg/dl, while HDL-cholesterol was lower (52±14 vs 56±16 mg/dl; p=0.05) in subjects with 1h-OGTT glucose >155 mg/dl.

Conclusion: 1h-OGTT glucose >155 mg/dl shows a good performance in discriminating subjects with IGR/newly diagnosed T2DM and may identify, among NGT individuals, those with lower insulin-sensitivity, impaired beta-cell function and worse cardiovascular risk profile, i.e. those subjects at higher risk of developing T2DM and cardiovascular disease.

Supported by: FoRiSID with an unconditioned grant from Eli Lilly, Italy.
Usual delay in sample processing can underestimate detection of prediabetes and diabetes in Korea

J. Kang1, C. Kim1, S. Lee1, S.-H. Ihm1, M. Choi1, H.-J. Yoo1, C.-Y. Park1, S. Park2

1Hallym University Sacred Heart Hospital, Gyeonggi-do, 2Chuncheon Sacred Heart Hospital, Gangwon-do, 3Hangang Sacred Heart Hospital, Seoul, 4Endocrinology and Metabolism, Kangbuk Samsung Hospital, Seoul, Republic of Korea.

Background and aims: Diabetes has emerged as a public health issue worldwide, particularly in East Asia including Korea and consensus statements recommended early detection and preventive treatment in high-risk individuals. For detection of prediabetes and diabetes (hyperglycemic state), fasting plasma glucose (FPG) alone is commonly used as a screening test but serum should not be used, because the glucose concentration decreases 5–7% per hour as a result of erythrocyte glycosis or slow serum/plasma separation. However, since serum glucose is commonly used as screening test in Korea. The purpose of this study was to assess whether ordinary delay in sample processing influences screening results of hyperglycemic state.

Materials and methods: Between 2007 and 2009, study subjects were recruited in 2028 Korean who visited the division of endocrinology for the evaluation of the IFG previously diagnosed with the serum glucose in the health examination. We make a comparison of difference between fasting serum glucose and fasting plasma glucose, measured at the same times, and evaluated the classification of glucose tolerance determined by a 75g oral glucose tolerance test (OGTT). We also make a comparison of laboratory findings between normoglycemia and diabetes, diagnosed with plasma glucose in study populations with normoglycemia in routine chemistry. We conducted a cross-sectional study, which was approved by the Institutional Review Board of the University Hospital.

Results: We firstly obtained blood samples from another 30 adults and serum glucose concentrations were measured immediately and after 0.5, 1, 1.5, 2, 2.5 and 3 hr. All the specimens were kept at room temperature during this preliminary test. The concentration of glucose declined with time (118.9mg/dL, 114.4mg/dL, 111.9mg/dL, 107.9mg/dL, 107.1mg/dL, 105.8mg/dL and 102.6mg/dL at each times) and the main decrease occurred during the first 30 min. Among 1428 persons, we recruited 1254 subjects who were diagnosed with normal fasting glucose or IFG using FPG. Mean glucose concentrations were 117.4 ± 11.3 mg/dL in plasma and 106.8 ± 8.1 mg/dL using routine chemistry (mean difference: 10.6 ± 2.5 mg/dL). Of 1061 subjects diagnosed with IFG using serum glucose, 235 (22.1%) were newly diagnosed with diabetes in fasting plasma glucose and 306 (28.8%) in 75g OGTT. Age, c-peptide and insulin level at 30minutes for 75g OGTT, AST and metabolic syndrome (%) showed significant differences between normoglycemia and diabetes diagnosed with plasma glucose in 169 subjects with normoglycemia in routine chemistry.

Conclusion: This study evaluated that the ordinary delay in sample processing influences diagnosis of hyperglycemic state and our results showed that this delay can underestimate detection of hyperglycemic state, in Korea. For the screening of prediabetes and diabetes, glucose level should be measured in plasma or within 30 minutes from venous sampling.

Increasing the flexibility of a screening model for incident diabetes only increases the predictive power marginally

D. Vistisen, A. Herachides, K. Borch-Johnsen, D.R. Witte; Steno Diabetes Center A/S, Gentofte, Denmark.

Background and aims: Risk scores for predicting diabetes tend to be simple and highly dependent on age. As such, they have limited use as a first step in a screening programme. The aim of this study was to derive a screening model based on established risk factor information obtained through a mailed questionnaire but with a more flexible structure which accommodates the fact that some risk factors for diabetes may have different impacts in different sub-groups of people.

Materials and methods: The analysis is based on a Danish population-based primary prevention study, the Inter99 study. A total of 4,363 participants, free of diabetes at baseline and with 5-year follow-up data on diabetes status were analysed. All participants had complete information on age, sex, BMI, waist circumference, the use of antihypertensive- or lipid lowering treatment, family disposition to diabetes, smoking and physical activity. Glucose tolerance status at baseline was based on OGTTs. Incident diabetes was based on self-reported diabetes or OGTTs at follow-up examination. Two alternative screening models for incident diabetes were derived. A standard risk score assessed by Poisson regression analysis (risk score) and a more flexible model identified through tree-structured regression analysis (decision tree). The performance of the models was compared by ROC analysis.

Results: The standard risk score included information on age, sex, BMI, the use of antihypertensive- and lipid lowering treatment, parents with diabetes, smoking and leisure-time physical activity. The AUC of the standard risk score was 0.78 (95%-CI: 0.74-0.82). The decision tree included the same information as the standard model with the additional inclusion of waist circumference and had an AUC of 0.79 (95%-CI: 0.75-0.82).

Conclusion: A screening model allowing for a more flexible structure only increased the performance marginally.

Value of the FINDRISC questionnaire to identify prediabetes in a middle-aged population in Sweden

M.I. Hellgren1, P. Friberg1, M. Petzold2, C. Börknelund3, H. Wedel4, P.-A. Jansson1, U. Lindblad1

1Department of Public Health and Community Medicine/Primary Health Care, University of Gothenburg, 2Nordiska Högskolan för Hälsosamhällets, 3Dep of Molecular and Clinical Medicine, University of Gothenburg, Göteborg, Sweden.

Background: Diabetes is a common disease in the western world today, particularly in Sweden and in Finland where the prevalence of the population between 45-75 years is about 5% and 5-10%, respectively. Type 2 diabetes (T2D) is preceded by a pre-diabetic state with either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). In this state, which may last for years, several studies have shown that diabetes can be prevented. A combination of improved diet and increased physical activity is recognized as an efficient means to prevent development of overt T2D in subjects with IGT, but is not proved to be efficient in subjects with prediabetes/IFG. Identification of subjects with IGT is therefore of utmost importance in the strategy to prevent T2D. A questionnaire, FINDRISC, the Finnish Diabetes Risk Score, is developed and validated in Finland to identify subjects with increased risk of abnormal glucose tolerance (AGT =IFG/IGT/T2D). FINDRISC has never been evaluated in a Swedish population and is not validated to identify individuals with IGT.

Aim: To evaluate the FINDRISC questionnaire as a screening tool for diabetes and prediabetes (AGT) in an ordinary Swedish middle-aged and elderly population. In particular we wanted to identify individuals with IGT.

Materials and methods: The FINDRISC questionnaire was sent to a complete population of 3157 people, 35 to 75 years old, in a defined area in Skövde, a middle sized town of 50,000 inhabitants in the Western part of Sweden. All recipients were asked to return the completed questionnaire to the Primary
Three DRSs were developed based on a 10-year follow-up cohort of 1,457 individuals aged 48-87 years without diabetes at baseline and validated on another cohort of 394 non-diabetes individuals age 43-88 years, followed up after 10 years. DRS1 contained simple clinical information, while DRS2 added fasting plasma glucose based on DRS1, and DRS3 added serum lipids based on DRS2. The DRS with the largest area under the ROC curve (AUC) was chosen as the final DRS and was evaluated on screening of glucose abnormality in a cross-sectional sample of 699 individuals without known diabetes.

Results: DRS3 was considered as the final DRS because it had the best predictive property. AUC was 0.754 (95% CI 0.702-0.766) predicting diabetes within 10 years, and also had adequate performance in validation cohort (AUC=0.759 (0.686-0.831). The DRS had sensitivity of 64.5% and 72.9% specificity of 71.6% and 63.9% with an optimal cutoff of 4 of 12. In the cross-sectional sample, AUCs were respectively 0.828 (0.797-0.860) and 0.909 (0.884-0.933) detecting abnormal glucose tolerance and diabetes. A two-step strategy, identifying individual at increased risk for diabetes using DRS3 as a first step, followed by OGTT performance led to the identification of 76.2% of first step, followed by OGTT performance led to the identification of 76.2% of incident diabetes and evaluate its efficiency on screening for individuals at high risk for undiagnosed diabetes and abnormal glucose tolerance in Chinese population.

Conclusion: In this first Swedish study the FINDRISC questionnaire was found to have a relatively high PPV of 51% when screening for AGT, but for IGT only 9.8% was found. IGT had by far the most common form of abnormal glucose metabolism and preventive measures for these individuals should be better defined.

Supported by: GU, Sahlgrenska Academy, VGR, Skaraborg Institute

A Chinese diabetes risk score for opportunistic screening of undiagnosed diabetes and abnormal glucose tolerance

M. Liu 1, M. Jin 1, C. Pan 1
1Endocrinology, The First Hospital Affiliated to Chinese PLA General Hospital, Endocrinology, Peking University First Hospital, 2Endocrinology, Chinese PLA General Hospital, Beijing, China.

Background and aims: To develop a diabetes risk score (DRS) to predict incident diabetes and evaluate its efficiency on screening for individuals at high risk for undiagnosed diabetes and abnormal glucose tolerance in Chinese population.

Materials and methods: Three DRSs were developed based on a 10-year follow-up cohort of 1,457 individuals aged 48-87 years without diabetes at baseline and validated on another cohort of 394 non-diabetes individuals age 43-88 years, followed up after 10 years. DRS1 contained simple clinical information, while DRS2 added fasting plasma glucose based on DRS1, and DRS3 added serum lipids based on DRS2. The DRS with the largest area under the ROC curve (AUC) was chosen as the final DRS and was evaluated on screening of glucose abnormality in a cross-sectional sample of 699 individuals without known diabetes.

Results: DRS3 was considered as the final DRS because it had the best predictive property. AUC was 0.754 (95% CI 0.702-0.766) predicting diabetes within 10 years, and also had adequate performance in validation cohort (AUC=0.759 (0.686-0.831). The DRS had sensitivity of 64.5% and 72.9% specificity of 71.6% and 63.9% with an optimal cutoff of 4 of 12. In the cross-sectional sample, AUCs were respectively 0.828 (0.797-0.860) and 0.909 (0.884-0.933) detecting abnormal glucose tolerance and diabetes. A two-step strategy, identifying individual at increased risk for diabetes using DRS3 as a first step, followed by OGTT performance led to the identification of 76.2% of incident diabetes and evaluate its efficiency on screening for individuals at high risk for undiagnosed diabetes and abnormal glucose tolerance in Chinese population.

Conclusion: In this first Swedish study the FINDRISC questionnaire was found to have a relatively high PPV of 51% when screening for AGT, but for IGT only 9.8% was found. IGT had by far the most common form of abnormal glucose metabolism and preventive measures for these individuals should be better defined.

Supported by: GU, Sahlgrenska Academy, VGR, Skaraborg Institute

371

Low self rated health is associated with impaired glucose tolerance in men

B. Daka 1, C.A. Larsson 2, L. Bennet 1, L. Råstam 2, U. Lindblad 3
1Department of Public Health and Community Medicine, The Sahlgrenska Academy, University of Gothenburg, 2Lund University, Department of Clinical Sciences, Malmö, Sweden.

Background and aims: Self-rated health (SRH) is an independent predictor of future mortality. Recently, the weight gain in women seems to be influenced by previous poor SRH. Poor SRH in diabetics has been related with increased mortality according to McEwen et al. We attempt to see how poor SRH is related to IGT in subjects who are not aware of having it, in a Swedish population.

Materials and methods: This investigation is based on data from a population-based study in Vara(1811) and Skövde(1005) including subjects aged 36-74 years (1416 women and 1400 men) in two small communities in a rural area of south-western Sweden, as part of the Skaraborg Project. SRH was investigated by the question: “How do you rate your current health status in general?” with reply alternatives very good, good, reasonable, bad and very bad (called SRH-5 in the following text). Only a few participants rated their own health bad and very bad (fig 1). The variable SRH-5 was dichotomised in 2 values: High SRH if the answer was “very good” and “good” and Low-SRH if the answer was “reasonable”, “bad” and “very bad”. A standard 75g oral glucose tolerance test (OGTT) was performed in each participant without known diabetes. Blood samples at fasting, 10, 30, 60 and 120 minutes after glucose administration were collected and analysed for p-glucose and p-insulin. IGT, IGT and diabetes was defined concordant with WHO criteria. HOMA-IR was calculated by formula HOMA-IR= FPG X FP insulin/22.5. Subjects with diabetes (108) were excluded from our analysis. Average weekly alcohol consumption, physical activities (PA) and sleeping disorders were estimated in a structured questionnaire. Logistic regression analysis has been used on estimating dichotomised variables and Univariate Analysis of Variance was used to estimate mean differences for continuous variables in subjects with low respective high SRH. Results were calculated separately in men and women.

Results: According to criteria described on methods 72.6 % rated high his own health and 26.3 % low (in 30/2816=1.1% missing). An evaluation av mean differences between subjects with low respective high SRH showed that low SRH is associated with higher BMI, fasting glucose, fasting insulin and HOMA-IR. Low SRH was also associated with higher incidence of IGT(M:...
5.2% resp 13.4% Or 2,83 CI 1.8-4.4 p<0.001; F 8.5% resp 12.4% Or 1.52 CI 1.0-2.2 p=0.033). Adjusting for possible confounders age, BMI, PA, alcohol consumption and sleeping disorders we found a remaining strong association between SRH and IGT in males but not in females (Tab.1).

Conclusion: These results confirm IGT to influence independently the perception of health even when it is an unknown state. Nevertheless there are some gender differences suggesting ulterior confounders in men, in addition to those we reported. On the other hand SRH is confirmed an independent risk factor to disease which confirm the importance of using it on daily practice.

Table 1. Logistic regression analysis adjusted for possible confounders in males.

<table>
<thead>
<tr>
<th>Males</th>
<th>High OR/Δ CI Mean</th>
<th>P-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGT</td>
<td>5.2%</td>
<td>2.83</td>
<td>1.8-4.4</td>
</tr>
<tr>
<td>Adj. for age</td>
<td>2.83</td>
<td>1.8-4.5</td>
<td>0.000</td>
</tr>
<tr>
<td>Adj. for age and BMI</td>
<td>2.51</td>
<td>1.6-4.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Adj. for age and PA</td>
<td>2.36</td>
<td>1.4-3.9</td>
<td>0.001</td>
</tr>
<tr>
<td>Adj. for age and sleep</td>
<td>2.76</td>
<td>1.7-4.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Adj. for age and alcohol</td>
<td>2.88</td>
<td>1.8-4.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Adj. for all conf together</td>
<td>1.95</td>
<td>1.1-3.4</td>
<td>0.017</td>
</tr>
</tbody>
</table>

372

Predictors of normalisation of prediabetes and of persistence of normal glucose tolerance: KORA S4/F4 cohort study

B. Kowall1, W. Rathmann1, M. Heier2, R. Holle2, A. Peters3, B. Thorand1, C. Herder2, K. Strassburger1, G. Giani1, C. Meisinger1, 1German Diabetes Center, Düsseldorf, 2Helmholtz Zentrum München, Germany.

Background and aims: Reversion from prediabetes to normal glucose tolerance (NGT) without specific interventions has been rarely studied. We investigated in a cohort study which factors beyond blood glucose (lifestyle, clinical parameters) are associated with normalization of glucose tolerance. In addition, we investigated which factors contribute to long-term persistence of NGT.

Materials and methods: Oral glucose tolerance tests were conducted at baseline and at follow-up in a population-based study in Southern Germany (KORA S4/F4; 1,223 non-diabetic subjects aged 55-74 years at baseline (1999-2001); 887 subjects (73%), 436 of whom had prediabetes at baseline, participated in the 7-year follow-up). Prediabetes comprised impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) (ADA diagnostic criteria). Subjects who were prediabetic at baseline and normoglycaemic at follow-up were only classified as “return to NGT” when their fasting plasma glucose decreased by > 5 mg/dl or when their 2 h glucose decreased by > 10 mg/dl (clinically relevant differences).

Results: 66 of 436 (15%) subjects who had been prediabetic at baseline returned to NGT after 7 years. In a logistic regression model with age, sex, BMI, change of BMI, glucose values, diabetes family history, and lifestyle factors as independent variables, fasting and 2h glucose were strong predictors of normalization of prediabetes (p<0.001 both). Women were more likely to return to NGT (OR=2.6, 95%-confidence interval (CI)=1.3-5.0). A decrease in BMI significantly improved the chance of returning to NGT (OR, 95%CI: 1.7, 1.0-2.81 for BMI change <= -1kg/m² < 1kg/m² < BMI change <= 1kg/m², compared to BMI change > 1kg/m²) whereas baseline BMI was not independently associated with return to NGT (p=0.57). Physical activity, smoking and alcohol intake were not significantly associated with return to NGT. After replacing BMI by waist circumference (WC), an increase in WC turned out to diminish chances of return to NGT (OR: 0.7, 0.5-0.9 per 5 cm). Moreover, subjects with hypertriglyceridaemia (triglycerides >= 2.0 mmol/l) and subjects with low HDL-cholesterol (men: <= 1.03 mmol/l, women: <= 1.29 mmol/l) were less likely to become normoglycaemic (p<0.05). Among 451 subjects with NGT (baseline) 321 (71%) remained normoglycaemic in the 7-year follow-up. In a logistic regression model with age, sex, BMI, glucose values, family history, and lifestyle factors as independent variables, higher levels of 2h glucose (p<0.001), higher BMI at baseline (OR: 0.93, 0.88-0.99 per BMI unit), high alcohol consumption (OR: 0.5, 0.3-0.97 compared to moderate consumption), and parental diabetes (OR: 0.5, 0.3-0.9) significantly decreased the likelihood of NGT persistence. For BMI change, a borderline significance was found (OR, 95%CI: 1.9, 0.99-3.8 for BMI change <= 1kg/m² compared to BMI change > 1kg/m²).

Conclusion: Reversion to NGT without specific interventions is not a rare event in older prediabetic subjects. Several factors modifiable by lifestyle (in particular weight change) have an influence on normalization of prediabetes as well as on persistence of NGT.

Supported by: German Research Foundation (DFG)
PS 14 HbA1c as a diagnostic test

Assessment of glycated haemoglobin A1c as a potential diagnostic tool in prediabetes and diabetes

T. Tankaova, N. Chakarova, L. Dakovska, I. Atanassova;
Department of Diabetology, Clinical Center of Endocrinology, Sofia, Bulgaria.

Background and aims: During recent years there is an increasingly recognized need to develop strategies and criteria for diabetes screening and diagnosis that will allow effective early disease detection and will find out the possible utility of glycated hemoglobin A1c (HbA1c). The aim of the present study is to measure the level of HbA1c in subjects with different glucose tolerance - normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and newly-diagnosed diabetes (NDD) and to evaluate the potential role of HbA1c as a diagnostic tool for undetected diabetes and prediabetes (IFG and IGT).

Materials and methods: A total of 2134 subjects (899 males and 1235 females), of mean age 50.3±13.9 years and mean BMI 29.5±6.2 kg/m² were included in the study. According to their glucose tolerance they were divided into 4 groups: 1) Normal OGTT (NGT), 2) Impaired fasting glucose (IFG), 3) Impaired glucose tolerance (IGT) and 4) New-onset diabetes (NDD). HbA1c was measured by an immunoturbidimetric method (COBAS INTEGRA 400, Roche Diagnostics GmbH, Mannheim, Germany). Statistical analysis of the data was performed by SPSS 16.0 for Windows (SPSS, Chicago, USA). Receiver operating characteristic (ROC) curve analysis was used to examine the sensitivity and specificity of HbA1c, for detecting diabetes and prediabetes.

Results: HbA1c levels were significantly higher in all groups with altered glucose tolerance 5.72±0.61% in IFG, 5.84±0.63% in IGT and 7.5±1.69% in NDD as compared to the group with NGT 5.32±0.65% (p<0.0001 for all groups). There was significant difference in HbA1c between the two prediabetic states (p=0.02), the level of HbA1c of both groups being significantly lower as compared to NDD (p<0.0001). Significant positive correlation was established between the level of HbA1c and both fasting plasma glucose (r=0.78, p<0.001) and 2-hour plasma glucose (r=0.76, p<0.001). The ROC analysis demonstrated that HbA1c had strong correlation with undiagnosed diabetes, with an area under the receiver operating characteristic curve (AUC-ROC) of 0.958 (95% CI: 0.946-0.970), as well as with undiagnosed prediabetes - AUC-ROC of 0.729 (95% CI: 0.702-0.755). The AUC-ROC for undiagnosed DM was similar between HbA1c and fasting plasma glucose 0.99 (95% CI: 0.983-0.997) and 2-hour plasma glucose 0.982 (95% CI: 0.973-0.992). Analysis with ROC curves showed that the optimal cut-off level of HbA1c for diagnosis of diabetes was 6.1% with a sensitivity of 86% and specificity of 92%. The optimal cut-off level of HbA1c for undiagnosed prediabetes (IFG and IGT) appeared to be 5.3% with a sensitivity of 71% and specificity of 64%.

Conclusion: HbA1c appears to be a sensitive and useful tool for identifying subjects with impairment in glucose tolerance (prediabetes and diabetes) and it should be considered in the development of diagnostic strategies.

Supported by: Ministry of Education and Science, Bulgaria

374

The role of haemoglobin A1c testing in diagnosing diabetes in Korean adults

1Internal Medicine, Ewha Womans University, Seoul, 2Internal Medicine, Catholic University, Seoul, 3Internal Medicine, Catholic University, Incheon, 4Internal Medicine, Gachon University, Incheon, 5Internal Medicine, Sunkyunkwan University, Seoul, 6Internal Medicine, Yonsei University, Gangwon, Republic of Korea.

Background and aims: The international expert committee has recently recommended the use of HbA1C assay to diagnose diabetes, with a threshold of ≥ 6.5%. We aimed to characterize the cut off value of HbA1C in diagnosing diabetes based on 75-g oral glucose tolerance test (OGTT) in Korean adults.

Materials and methods: We recruited 902 adults (mean age 40±13 (21-80) yrs, mean BMI 22.9±3.5 kg/m²) without a self-reported history of diabetes from 8 university hospitals in 2009. A 75-g OGTT and HbA1C sampling were performed in all examinees. Glucose concentrations were measured by colorimetry method (ADVIA2400 autoanalyzer, Siemens, USA), and HbA1C was measured by immunobioradiometric method (Cobas integra800, Roche, Switzerland) at the central laboratory. Receiver operating characteristic curve analysis was used to examine the sensitivity and specificity of HbA1C for diagnosing diabetes.

Results: The HbA1C threshold of 6.0% proved to be the optimal limit for diagnosing diabetes, with a 88.2% sensitivity and a 79.9% specificity. The cut off values increased with age (6.0% at ages 21-40, 6.2% at 41-60, and 6.4% at > 61 years) and were similar in both men and women (6.2 vs. 6.1%). HbA1C of ≥6.5% had a 53.8% sensitivity and a 98.3% specificity in detecting diabetes. This relatively low sensitivity may limit its use as a screening method for diabetes. Using the HbA1C ≥ 6.5% criteria, the positive predictive value (PPV) of OGTT based diabetes was 74.6%, with a negative predictive value (NPV) of 95.2%. And using the HbA1C ≥ 6.0% criteria, the PPV of OGTT based diabetes was 74.6%, with a NPV of 95.2%.

Discussion: From our study, the cut-off value of HbA1C for diagnosing diabetes based on 75-g OGTT was 6.0%, and adjustment of this value by age would be needed. Further studies will be carried out to determine whether age-specific diagnostic criteria should be needed.

375

Screening for diabetes: inappropriate classification of “low risk”?

A.J. Dawson1, J.M. Ng1, K.A. Smith2, D.D. Mellor1, M.M. Aye1, S.L. Atkinson1, E.S. Kilpatrick1;
1Department of Diabetes and Endocrinology, University of Hull, 2Department of Clinical Biochemistry, Hull and East Yorkshire NHS Trust, Hull, United Kingdom.

Background and aims: Recently there has been debate regarding screening strategies for type 2 diabetes (T2DM). Latest guidelines from the American Diabetes Association (ADA) and from the UK Department of Health in the United Kingdom (DoH) recommend the use of glycated haemoglobin (HbA1c) as a diagnostic test for type 2 diabetes (T2DM). Both ADA and DoH have recommended an HbA1c of equal to or more than 6.0% as a diagnostic threshold for T2DM. In the identification of patients at high risk of T2DM, the ADA has proposed an HbA1c of equal to or more than 5.7% as compared to DoH of 6.0%. Patients considered at high risk of developing DM should be offered diet/lifestyle interventions and recommended for regular screening in the future. This study sought to study the patients who had an HbA1c and a concurrent glucose tolerance test (OGTT) and to study the relationship between the two results with regard to these new proposed thresholds.

Materials and methods: During the period Jan 2007 to Nov 2009 inclusive, all patients who had an OGTT and HbA1c performed concurrently within our primary care trust were included in the analysis. Data was obtained from the laboratories services serving the area. All HbA1c results were calibrated through harmonisation to the DCCT (NGSP) assay. All patients tested for abnormal glucose or were pregnant were excluded from the analysis. The results were then stratified into groups with HbA1c of less than 5.7%, between 5.7 and 5.9% and more than 6.0% and OGTT result of either a fasting glucose of ≥7 mmol/L or a 2 hour reading of ≥11.1 mmol/L.

Results: There were a total of 835 patients who fit the criterion for analysis. (444M, 391F; median age 64 years (interquartile range 56-73). Using the ADA cut off of an HbA1c of less than 5.7%, 4.0% of all patients screened had an OGTT consistent with diabetes. Increasing the cut off to less than 6.0% (DoH guidelines) results in a further 58 patients (6.9% of all patients screened), i.e. in total 91 patients (10.9% of all screened) who would have been stratified as low risk despite their abnormal OGTT.

Discussion: In summary using a current ADA cut off of HbA1c 5.7% in the identification of patients at risk of developing DM fails to identify approximately 1 in 25 patients who may have overt diabetes mellitus. The DoH cut off of 6.0% results in a further 1 in 15 of patients who were classified as low risk. This results highlight a clinical concern as these patients may not receive another screening appointment for a prolonged period despite results which previously would have resulted them receiving appropriate intervention.

Table 1

<table>
<thead>
<tr>
<th>HbA1c</th>
<th>Normal OGTT</th>
<th>Abnormal OGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal OGTT</td>
<td>88 (10.5%)</td>
<td>98 (11.7%)</td>
</tr>
<tr>
<td>Abnormal OGTT</td>
<td>33 (4.0%)</td>
<td>58 (6.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
<td>156</td>
</tr>
</tbody>
</table>
Screening diabetes with HbA1c and fasting plasma glucose

T. Yang, D. Yu, H. Zhou, G. Zhu; Dept. Endocrinology, First Affiliated Hospital of Nanjing Medical University, China.

Background and aims: To examine the validity of glycated Haemoglobin A1c and fasting plasma glucose (FPG) as a screening test for type 2 diabetes.

Materials and methods: A total of 1330 Chinese subjects (433 male and 897 female) at an average age of 58.23 ± 12.75 were enrolled. All subjects underwent a 75g oral glucose tolerance test (OGTT) and A1c measurement. Receiver operating characteristic curve (ROC curve) analysis was used to examine the sensitivity and specificity of FPG and A1c for detecting diabetes.

Results: Based on 1999 WHO criteria, 944 had normal glucose tolerance (NGT), 22 had impaired fasting glucose (IFG), 236 had impaired glucose tolerance (IGT), 37 had both of IGT and IFG, 91 had diabetes. The prevalence of newly diagnosed diabetes was 6.86%. Based on the ROC curve, the optimal cut-point of FPG related to diabetes diagnosed by OGTT was 5.77 mmol/L which was associated with a sensitivity and specificity of 85.7% and 91.2% respectively. The area under the curve (AUC) was 0.905 (95% CI): 0.881–0.924). The positive likelihood ratio is 3.22 while the negative likelihood ratio is 0.04. The optimal cut-point of A1c related to diabetes diagnosed by OGTT was 6.1%, which was associated with a sensitivity and specificity of 83.5% and 88.9% respectively. The area under the curve (AUC) was 0.905 (95% CI): 0.881–0.924). The positive likelihood ratio is 3.22 while the negative likelihood ratio is 0.04. The optimal cut-point of A1c related to IGT was 5.7% which was associated with a sensitivity and specificity of 65.6% and 83.1% respectively. The area under the curve (AUC) was 0.718 (95% CI): 0.684–0.752). The positive likelihood ratio is 1.87 while the negative likelihood ratio is 0.53. The optimal cut-point of A1c related to IFG was 6.1% which was associated with a sensitivity and specificity of 65.2% and 65.2% respectively. The area under the curve (AUC) was 0.657 (95% CI): 0.628–0.686). The positive likelihood ratio is 1.77 while the negative likelihood ratio is 0.55.

Conclusion: Compared with A1c, FPG has a greater value in diabetes screening, they have relativity in sensitivity, specificity, positive likelihood ratio and negative likelihood ratio. The subjects with HbA1c ≥ 6.1% or FPG ≥ 5.77 mmol/L should be tested by OGTT to identify if they have diabetes or not.

Comparisons of the sensitivity and specificity with different diagnosis values for diabetes

<table>
<thead>
<tr>
<th>Standard</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPG ≥ 5.60 mmol/L</td>
<td>85.7</td>
<td>88.5</td>
<td>7.45</td>
<td>0.16</td>
</tr>
<tr>
<td>FPG ≥ 7.00 mmol/L</td>
<td>62.6</td>
<td>100</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>FPG ≥ 7.75 mmol/L</td>
<td>85.7</td>
<td>91.2</td>
<td>9.74</td>
<td>0.16</td>
</tr>
<tr>
<td>HbA1c ≥ 6.1%</td>
<td>83.5</td>
<td>88.8</td>
<td>7.46</td>
<td>0.19</td>
</tr>
<tr>
<td>FPG ≥ 5.77 mmol/L and HbA1c ≥ 6.1%</td>
<td>78.0</td>
<td>95.2</td>
<td>16.25</td>
<td>0.23</td>
</tr>
<tr>
<td>FPG ≥5.77 mmol/L or HbA1c ≥6.1%</td>
<td>93.4</td>
<td>78.6</td>
<td>4.36</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Supported by: Jiangsu Province’s Key Medical Center Program of China

Limitations of HbA1c as a diagnostic test

A. Peter; E. Schlechtriem; H.-U. Haring; A. Fritzsche; Universität Tübingen, Germany.

Background and aims: Recent ADA recommendations have included glycated hemoglobin as a new diagnostic criteria for diabetes mellitus. However, glycation of hemoglobin is a complex process influenced by hereditary, racial and environmental factors as well as the hemoglobin turnover. Together, only about 50% of the variation in glycated hemoglobin levels is expected to be explained by blood glucose profiles. In this study, we have therefore compared the diagnostic value for diabetes of glycated hemoglobin and fasting and stimulated blood glucose concentrations after an oral glucose tolerance test according to the new ADA recommendations in a risk cohort.

Materials and methods: 2036 previously non-diabetic Caucasians at risk to develop type 2 diabetes consecutively underwent a 75g oral glucose tolerance test. Glycated hemoglobin was determined with the HPLC method (Tosoh A1c 2.2), external and internal quality controls were well within the allowed ranges.

Results: The oral glucose tolerance test classified 1523 individuals as normal glucose tolerant (NGT), 387 as impaired glucose tolerant (IGT) or impaired fasting glycemia (IFG) and 126 as diabetic. Using the newly recommended glycated hemoglobin cut-off for diabetes of 6.5%, 33% of the diabetic individuals were not detected. In our cohort, 2-hour plasma glucose but not fasting glucose identifies 65% of all diabetic patients with glycated hemoglobin <6.5%. 39% of the diabetic patients’ glycated hemoglobin was in the intermediate range of 5.7-6.5%. To diagnose these patients, one third of the total cohort with a glycated hemoglobin in the intermediate range would need to undergo a re-screening by an OGTT. Still, one in seven diabetic subjects had a glycated hemoglobin below 5.7% and would remain undiagnosed.

Conclusion: Aiming to prevent glucotoxic beta-cell destruction at an early stage of the disease, increased postprandial blood glucose values need to be diagnosed and treated. Therefore, despite the intriguing simplicity, glycated hemoglobin has obvious limitations to diagnose diabetes and prevent its complications.

The HbA1c cut points for detecting type 2 diabetes and prediabetes in a risk population - is this the right way?

C. Koehler, E. Henkel, F. Schaper, M. Hanefeld; Center for Clinical Studies, GWT-TUD GmbH, Dresden, Germany.

Background and aims: The study’s aim was to evaluate the adequacy of a HbA1C cut point as screening tool to detect type 2 diabetes (T2DM) and prediabetic stages in a risk population for diabetes.

Materials and methods: A total of 1,028 middle aged (40-70 years) German participants of the Risk factors in IGT for Atherosclerosis and Diabetes study (RIAD) without known diabetes were included. A standardized 75g OGTT was performed after an overnight fasting period. As the basis for the classification of diabetes and its prediabetes stages it was applied the definition by WHO. Plasma glucose was measured by hexokinase method and HbA1C by HPLC. Based on the method of the receiver operating characteristic curve (ROC) the optimal cut point for T2DM, impaired glucose tolerance (IGT) and impaired fasting glycemia (IFG) with sensitivity and specificity was calculated.

Results: The prevalence of newly detected T2DM was 13.8%, of IGT 25.7% and IFG 10.6%. The cut points with the corresponding values for sensitivity and 1-specificity were prepared in the table.

Conclusion: The results of the HbA1C measurement (as screening tool for newly diagnosed T2DM and the prediabetic stages) suggest in this risk population a sensitivity of approx. 65% but a high rate of false positive tests between 21 and 48%. This indicates that HbA1C could not appropriate to detect T2DM and prediabetes in a risk population. The physicians should assess the individual risk of the patient and in case of high risk should perform an OGTT to evaluate the glycemic state.

HbA1C cut points for the hyperglycemic stages

<table>
<thead>
<tr>
<th>HbA1C cut point value (%)</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>1-specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2DM</td>
<td>6.0</td>
<td>0.80</td>
<td>0.66</td>
</tr>
<tr>
<td>IGT</td>
<td>5.6</td>
<td>0.62</td>
<td>0.67</td>
</tr>
<tr>
<td>IFG</td>
<td>5.6</td>
<td>0.65</td>
<td>0.63</td>
</tr>
</tbody>
</table>

The HbA assays in population diabetes screening in Eastern Poland

G. Mardarowicz, T.A. Nipec; Family Medicine Department, Lublin, Poland.

Background and aims: The glycosylated haemoglobin (HbA1c) assay is the test of choice for the metabolic control of diabetes (DM). In recent time it is recommended also for its diagnosis. The aim of the study was to evaluate the diagnostic utility and limitations of HbA1c in screening for DM in adult population of Eastern Poland.

Materials and methods: In the representative sample of adult population of the Lublin region chosen from the general population by two layer drowning, the oral glucose tolerance test (OGTT), estimation of blood lipids, evaluation of blood pressure, body mass index (BMI) at baseline (1999-2001), and at 5th year follow-up (2004-2005) were performed. DM was diagnosed according to WHO criteria. HbA1c was determined in 2170 of 3781 survey par-

Background and aims: Hospital Universitario Central de Asturias, Oviedo, Spain.

J. Bayon
J.M. De la Hera

Disease Proposal to rule out the unknown diabetes in patients with coronary artery disease based in the FPG and A1C only diagnoses 31% of the real population.

Supported by: Spanish Society of Cardiology

NDD. The OGTT is still absolutely necessary to rule out the NDD in this population of patients with coronary disease, selecting the indication of the OGTT. Materials and methods: In a cohort of 383 patients without known DM, we perfectly characterized the glycometabolic profile with fasting plasma glucose (FPG), OGTT, A1C and insulinaemia, the coronary risk factors and the extension of the coronary disease. With a logistic regression analysis the predictors of UDM by the OGTT (defined as glucose postchallenge>200 mg/dl) were determined and the score was assigned to each patient.

Results: Seventy-seven of the 338 patients presented UDM, 146 prediabetes and 115 were normoglycemics. Thirty-one percent of the UDM could be diagnosed only with the FPG and A1C. The predictors of UDM in OGTT were: Age: >65 years (OR 2.8 (1.2-5.9), p=0.018, 3 points), non-coronary vascular disease (OR 2.9 (1.2-5.9), p=0.018, 3 points), ejection fraction<45% (OR 2.7 (1.03-7) p=0.044, 3 points), FPG>100 mg/dl (OR 4.74 (2.4-9.5) p<0.001, 5 points) and A1C>6.1% (OR 5.8 (1.5-21.7) p=0.009, 6 points). The best cut-off point was established in >6 points (AUC 0.80, CI 95% (0.74-0.87) p<0.001). Thus, performing the OGTT to 31% of the population and together with the diagnosis by FPG and A1C it is possible to localize 83% of the real cases of UDM.

The score was validated in another series of 115 patients with very close reproducibility (AUC 0.84, CI 95% (0.74-0.95) p<0.001).

Conclusions: A systematic screening with FPG and A1C and performing the OGTT only depending on the risk assessed by our score (31% of the population) allows the diagnosis of 83% of the UDM.

Supported by: Spanish Society of Cardiology

Detection of diabetes in coronary artery disease: oral glucose tolerance test or glycated haemoglobin and fasting plasma glucose?

E. Delgado1, J.M. De la Hera, I. Lozano, E. Hernandez1, J.M. Vegas1, C. Fernandez-Cimadevilla2, E. Torres2, A. Carro1, J. Bayon, J.M. Garcia-Ruiz2, P. Avanzas3

1Endocrinology, Hospital Universitario Central de Asturias, Oviedo, 2Cardiology, Hospital Universitario Central de Asturias, Oviedo, 3Cardiology, Hospital Clinico Universitario, Valladolid, Spain.

Background and aims: The proposal of the ADA of incorporating the glycated haemoglobin (A1C) in the diagnosis of the newly detected diabetes (NDD) may interfere with the recommendation of the EASD about performing the oral glucose tolerance test (OGTT) in patients with coronary artery disease without known diabetes. We sought to determine the impact of both test, A1C and OGTT, in the diagnosis of diabetes in our series.

Methods: We analysed 338 patients with coronary artery disease without known diabetes treated with percutaneous intervention. Two weeks after discharge an analysis including fasting plasma glucose (FPG), OGTT and A1C was performed. Newly detected diabetes was diagnosed by FPG if glucose ≥126 mg/dl; by A1C if FPG<126 mg/dl and A1C≥6.5% and by OGTT if FPG<126 mg/dl and A1C<6.5% and glucose post-challenge ≥200 mg/dl.

Results: Age 66.5 (56-74), males 80.1%, hypertension 49.7%, obesity 35.5%, previous myocardial infarction 37.3%. After the analysis the metabolic profile of the series was: NDD 77 patients (22.8%), prediabetes 146 (43.2%) and normoglycemic 115 (34%). Of the totality of patients diagnosed of NDD, in 19 (24.6%) the diagnosis was by WHO criteria as diabetic and 52 subjects had an A1C value ≥6.5% in a population of 169.

Conclusion: In our series a screening of diabetes in patients with coronary artery disease was performed and A1C only diagnoses 31% of the real NDD. The OGTT is still absolutely necessary to rule out the NDD in this population.

Supported by: Spanish Society of Cardiology

Proposal to rule out the unknown diabetes in patients with coronary disease

J.M. De la Hera1, J.M. Vegas, I. Lozano, E. Hernandez1, J.M. Garcia-Ruiz2, J. Bayon1, C. Fernandez-Cimadevilla1, E. Torres1, S. Secades1, T. Menendez1, P. Avanzas1, E. Delgado2

1Cardiology, Hospital Universitario Central de Asturias, Oviedo, 2Cardiology, Hospital Clinico Universitario, Valladolid, Spain.

Background and aims: The EASD recommends to perform an oral glucose tolerance test (OGTT) to all the patients with coronary disease with unknown diabetes. This proposal needs to be balanced with three facts: the OGTT is not usually performed in daily practice; the key in this population is the diagnosis of unknown diabetes (UDM) because the presence of pre-diabetes would not substantially modify its secondary prevention and lastly the inclusion of the glycated hemoglobin (A1C) in the diagnosis of diabetes. We sought to validate a new score to rule out the presence of UDM in patients with coronary disease, selecting the indication of the OGTT.

Materials and methods: In a cohort of 338 patients without known DM, we perfectly characterized the glycometabolic profile with fasting plasma glucose (FPG), OGTT, A1C and insulinaemia, the coronary risk factors and the extension of the coronary disease. With a logistic regression analysis the predictors of UDM by the OGTT were determined and a score was assigned to each patient.

Results: Seventy-seven of the 338 patients presented UDM, 146 prediabetes and 115 were normoglycemics. Thirty-one percent of the UDM could be diagnosed only with the FPG and A1C. The predictors of UDM in OGTT were: Age>65 years (OR 2.8 (1.2-5.9), p=0.018, 3 points), non-coronary vascular disease (OR 2.9 (1.2-5.9), p=0.018, 3 points), ejection fraction<45% (OR 2.7 (1.03-7) p=0.044, 3 points), FPG>100 mg/dl (OR 4.74 (2.4-9.5) p<0.001, 5 points) and A1C>6.1% (OR 5.8 (1.5-21.7) p=0.009, 6 points). The best cut-off point was established in >6 points (AUC 0.80, CI 95% (0.74-0.87) p<0.001). Thus, performing the OGTT to 31% of the population and together with the diagnosis by FPG and A1C it is possible to localize 83% of the real cases of UDM.

The score was validated in another series of 115 patients with very close reproducibility (AUC 0.84, CI 95% (0.74-0.95) p<0.001).

Conclusions: A systematic screening with FPG and A1C and performing the OGTT only depending on the risk assessed by our score (31% of the population) allows the diagnosis of 83% of the UDM.

Supported by: Spanish Society of Cardiology

Differences in cardiovascular risk profile of diabetic subjects discordantly classified by diagnostic criteria based on glycated haemoglobin and the oral glucose tolerance test

L. Lopez Rios1, M. Boronat Cortés1, P. Saavedra, M. Riaño1, A.M. Wagner2, F.J. Nóvoa1, 1Dpto. Ciencias Médicas y Quirúrgicas, Universidad de Las Palmas de GC, 2Sección de Endocrinología, Complejo Hospitalario Insular Materno Infantil de Gran Canarias, 3Dpto. Matemáticas, Universidad de Las Palmas de GC, 4Servicio de Bioquímica, Complejo Hospitalario Insular Materno-Infantil, Las Palmas de GC, Spain.

Background and aims: Last year, an International Expert Committee advocated the use of glycated haemoglobin A1C testing for diagnosis of diabetes. Based on the correlation between A1C levels and risk of retinopathy in several epidemiological studies, the committee determined that an A1C value of 6.5% or greater should be used as the diagnostic threshold. Guided by this report, several leading organizations, including the American Diabetes Association (ADA), have approved the use of A1C as an additional criterion for diagnosing type 2 diabetes. The present study assesses the differences in the cardiovascular risk profiles of subjects differently categorized as having or not having diabetes with diagnostic criteria based on plasma glucose and A1C proposed by the 2010 American Diabetes Association clinical practice recommendations.

Materials and methods: A standard oral glucose tolerance test (OGTT), A1C, and a set of cardiovascular risk factors and indirect measures of insulin resistance and insulin secretion were assessed in 964 individuals without previously known diabetes participating in the Telde Study, a cross-sectional epidemiological survey in Gran Canaria, Canary Islands, Spain.

Results: Taking the OGTT as the golden standard, the sensitivity and specificity of an A1C value ≥6.5% was 38.7% and 99.6%, respectively. Only four subjects diagnosed with diabetes by A1C did not also fulfill OGTT-based diagnosis. Those who met both diagnostic criteria presented greater measures of BMI and waist circumference, and higher values for fasting and 2-h plasma glucose, HOMA-IR, plasminogen activator inhibitor-1 and fibrinogen than subjects with diabetic OGTT but A1C <6.5%. Abdominal obesity and 2 hours plasma glucose were the only variables independently associated with an A1C value ≥6.5% in a multivariate regression analysis.

Conclusion: Newly diagnosed diabetic individuals who fulfill both glucose and A1C-based diagnostic criteria for the disease seem to display a more unfavorable cardiovascular risk profile than individuals who meet the glucose-based but not A1C-based criteria.
PS 15 Anthropometric and clinical predictors of type 2 diabetes mellitus

383
Prediction of incident type 2 diabetes in Norwegians using simple anthropometric measures - the HUNT study
C.M.Y. Lee, S. Colagurü, M. Woodward, K. Midttunæ; 1 Boden Institute of Obesity, Nutrition and Exercise, The University of Sydney, 2 The George Institute for International Health, Sydney, Australia, 3 HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway.

Background and aims: Waist circumference cut-points have been used to indicate increased risk of diabetes and cardiovascular disease. The cut-points for Caucasians have been recommended, however, based on limited data. Moreover, it is still uncertain if measures of abdominal obesity such as waist circumference and waist-to-hip ratio are superior at predicting diabetes risk over body mass index. The aims were, therefore, to establish which simple anthropometric measure best predicts incident type 2 diabetes, and to determine the optimal cut-points of each anthropometric measure for the prediction of incident type 2 diabetes in Caucasians.

Materials and methods: Participants without known diabetes at the Norwegian HUNT second survey (HUNT 2) who also participated in the third survey (HUNT 3), with height, weight, waist and hip circumferences measured at HUNT 2, and diabetes outcome at HUNT 3 were included. Receiver operating characteristic curves were used to assess discrimination of type 2 diabetes, separately, for men and women.

Results: A total of 34293 participants (55% female) with 1176 new cases of type 2 diabetes were included in the analyses. The area under the curves for waist-to-height ratio (0.783 for men; 0.821 for women) and waist circumference (0.768 for men; 0.810 for women) were larger than for body mass index (0.760 for men; 0.797 for women). The optimal cut-points for men were 27.8 kg/m² for body mass index (sensitivity 67%; specificity 71%), 95 cm for waist circumference (sensitivity 70%; specificity 70%), 0.90 for waist-to-height ratio (sensitivity 76%; specificity 62%), and 0.53 for waist-to-height ratio (sensitivity 71%; specificity 71%). For women, the respective cut-points were 26.8 kg/m² (sensitivity 81%; specificity 66%), 85 cm (sensitivity 76%; specificity 66%), and 0.51 (sensitivity 81%; specificity 68%).

Conclusion: Measures of abdominal obesity were superior to body mass index in the prediction of type 2 diabetes. There was, however, no statistical difference to suggest clinical advantage of one measure over another. The optimal cut-points for body mass index in both sexes and for waist circumference in men were higher than those currently applied to Caucasians. Hence, the current anthropometric cut-points for Caucasians, or at least for Norwegians, may be inappropriate. These results should inform risk prediction algorithm in Caucasians.

Supported by: Nord-Trøndelag County Council, NTNU, GlaxoSmithKline

384
Waist circumference and body mass index as predictors of prediabetes and type 2 diabetes in middle-aged Swedish women and men
A. Hilding, C.-G. Östenson; Dept. of Molecular Medicine and Surgery, The Endocrine and Diabetes Unit, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Obesity is an important risk factor for type 2 diabetes (T2D). Waist circumference (WC) and body mass index (BMI), measurements of central fat distribution and general obesity, respectively, are used to predict T2D. Recently, in a 7-years follow-up study of older subjects (mean age 69 yrs at baseline) it was shown that WC and BMI yielded similar prediction in men, whereas WC was a superior predictor of T2D in women. The aim of the present population-based study was to evaluate WC and BMI as predictors of T2D, as well as of prediabetes (IFG, IGT), in a cohort of younger Caucasian subjects and in separate analysis for men and women.

Materials and methods: Subjects having normal glucose tolerance (NGT) at baseline, 3190 women (48±5 yrs, mean±SD) and 2215 men (47±5 yrs), participants of Stockholm Diabetes Prevention Program, were again at follow-up, 8-10 years later, investigated with an oral glucose tolerance test (OGTT). T2D, including also those who were diagnosed with T2D during the time period between baseline and follow-up, IGT and IGT was detected in 59 (1.8%), 41 (1.3%) and 120 (3.8%) women and in 107 (5.0%), 81 (3.7%) and 126 (5.7%) men, respectively. Logistic regression analysis was performed and receiver operating characteristic (ROC) curves, with corresponding area under curve (AUC), evaluated the predictive power of WC and BMI, measured at baseline.

Results: In univariate analysis, both WC and BMI were strongly associated with the development of IFG, IGT and T2D in women and men, p<0.001. In women, WC and BMI predicted IGF similarly, ROC-AUC was 0.73 (0.67-0.81, 95% CI) for WC and 0.75 (0.69-0.81) for BMI. However, for IGT and T2D WC was a stronger predictor in women; ROC-AUC was 0.70 (0.65-0.75) as compared to 0.67 (0.62-0.72), p=0.034, for IGT, and corresponding values for T2D were 0.80 (0.74-0.86) vs. 0.76 (0.69-0.83), p=0.010. In men, BMI was superior to WC in the prediction of IFG, ROC-AUC was 0.65 (0.59-0.70) vs. 0.59 (0.53-0.65), p=0.005, whereas the two measurements predicted similarly for IGT and T2D. The BMI ROC-AUCs were 0.67 (0.62-0.72) and 0.68 (0.63-0.73) and the WC ROC-AUCs were 0.65 (0.59-0.70) and 0.67 (0.61-0.72) for IGT and T2D, respectively. The optimal cut-off point for WC in the prediction of T2D, using optimal sensitivity and specificity, was 83 cm in women and 96 cm in men.

Conclusion: In middle-aged men BMI is equal or better than WC in the prediction of prediabetes and T2D. In contrast, in women WC is the equal or stronger predictor. The cut-off points for WC in the prediction of T2D are close to the values of the metabolic syndrome definition according to the International Diabetes Federation.

385
Optimal waist circumference cutoff value predicting the incident type 2 diabetes as a diagnostic criterion of metabolic syndrome in Korean population aged 40 years and over: the Chungju Metabolic Disease Cohort study (CMC study)
Y.-M. Park¹, H.-S. Kwon¹, H.-S. Ha¹, S.-H. Lee², H.-I. Lee³, H.-W. Yim¹, K.-H. Yoon¹, M.-I. Kang¹, H.-Y. Son¹, W.-C. Lee³;
¹Department of Preventive Medicine, ²Division of Endocrinology and Metabolism, Department of Internal Medicine, ³The Catholic Institute of Uihautec Healthcare, The Catholic University of Korea, Seoul, Republic of Korea.

Background and aims: In 2009, a joint statement of the International Diabetes Federation (IDF); the National Heart, Lung, and Blood Institute (NHLBI); the American Heart Association (AHA); the World Heart Federation; the International Atherosclerosis Society; and the International Association for the Study of Obesity proposed a harmonized definition of metabolic syndrome (MetS) in which the presence of any three of five risk factors comprises a diagnosis of MetS. This new definition of MetS recommends that the IDF cutoff points of waist circumference (WC) be used for non-Europeans until more data are available. Several WC cutoffs for Korean population have been proposed, however, their results have limitation of cross-sectional studies. We aimed to determine the cutoff value of waist circumference as a diagnostic criterion of metabolic syndrome with respect to its ability to predict the incident type 2 diabetes in a Korean population.

Materials and methods: The Chungju Metabolic Disease Cohort (CMC) study that began in 2003 is an ongoing community-based cohort study of metabolic disease including type 2 diabetes and metabolic syndrome in a population aged 40 years and over. We conducted a baseline study using stratified random cluster sampling between 2003 and 2006. A total of 3,815 non-diabetic subjects (1,474 men and 2,341women) without a history of ischemic heart disease and cerebrovascular disease were followed up for an average of 4.5 years. Receiver operating characteristic (ROC) curve analysis using Youden index and the area under curve (AUC) was applied. In addition, we performed a multivariate Cox proportional hazard model adjusting age, BMI, smoking, and smoking, drinking alcohol, exercise, and dietary habits to evaluate the relative risk of development of type 2 diabetes according to the WC category for men and women.

Results: In the ROC curve analysis for the different WC cutoffs including 80 cm, 85 cm, and 90 cm, the highest value of Youden index was obtained at a WC cutoff point of 85 cm for both sexes. Sensitivity and specificity were 55.7% and 66.4% in men and 60.0% and 54.7% in women, respectively. After being controlled for other covariates, the relative risks for the development of type 2 diabetes tended to increase significantly, especially in women, as WC incremented. In addition, the relative risk for the development of type 2 diabetes using <75 cm of waist circumference as a reference increased sig-
Association of body height with diabetes, blood pressure and metabolic syndrome among Sri Lankan adults

P. Ranasinghe,1 M.A.R. Jayawardena,1 G.R. Constantine,1 R. Sheriff,1 D.R. Matthews,1 P. Katulanda1; 1Department of Clinical Medicine, Diabetes Research Unit, Colombo, Sri Lanka; 2Oxford Center for Diabetes Endocrinology and Metabolism, United Kingdom.

Background and aims: Being tall has been suggested to be associated with better cardio-vascular health and longevity. Height, a marker of childhood growth, is associated with lower mortality and morbidity from diabetes mellitus and from associated risk factors. It is thought that better childhood conditions, such as improved nutrition and fewer respiratory infections, result in both greater adult height and lower rates of chronic non-communicable diseases. We aimed to report the relationship of height with diabetes mellitus, blood pressure (BP) and metabolic syndrome (MS) among Sri Lankan adults.

Materials and methods: Data were available for height and socio-demographic factors from a nationally representative cross-sectional sample of 4477 subjects above 18 years. Recruitment was preformed between 2005-2006. Height was measured using Harpenden pocket stadiometers to the nearest 0.1 cm according to the standard methods. Subjects were considered to have 'undiagnosed diabetes' if they had been previously diagnosed at a government hospital or by a registered medical practitioner. New cases ('undiagnosed diabetes') and metabolic syndrome were diagnosed according to World Health Organization criteria. Seated blood pressure was recorded on two occasions after at least a 10-min rest using an Omron IA2 digital blood pressure monitor. Data were analysed using SPSS.

Results: Males were 39.5% and mean age of all subjects was 46.1 (SD±15.1) years. The mean height of all adults, males and females were 156.2±8.9 cm, 163.6±6.9 cm and 151.4±6.4 cm respectively (p<0.001, males vs. females). In all adults Height showed a significant negative correlation with fasting blood glucose (r=-0.05, p=0.052), 2-hour post-glucose blood glucose levels (p=0.001, r=-0.109) and diabetes (p=0.001, r=-0.060). There was a significant negative correlation between mean systolic BP and height (p<0.05, r=-0.032), this was not observed for the mean diastolic BP. Height demonstrated significant correlations with total cholesterol (p<0.001, r=-0.106), HDL cholesterol (p<0.001, r=-0.142), LDL cholesterol (p<0.001, r=-0.104) and triglyceride (p<0.001, r=0.064) levels. Similar changes were observed in both genders (Table 1). The mean heights of patients with MS and without MS were 154.8±8.8 cm and 156.6±8.9 cm respectively (p<0.001).

Conclusion: Our data showed a negative correlation between height and blood glucose levels, serum cholesterol levels and mean systolic BP. Also patients with MS were significantly shorter than those without MS. These data suggest that being tall reduces diabetes and cardiovascular risks and the underlying mechanisms need further study.

Table 1. Relationship between height and metabolic parameters (*p<0.05)

<table>
<thead>
<tr>
<th>Metabolic parameter</th>
<th>Correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Fasting blood sugar</td>
<td>-0.052*</td>
</tr>
<tr>
<td>2 hour post glucose blood sugar</td>
<td>-0.089*</td>
</tr>
<tr>
<td>Presence of diabetes</td>
<td>-0.069*</td>
</tr>
<tr>
<td>Mean systolic blood pressure</td>
<td>-0.032*</td>
</tr>
<tr>
<td>Mean diastolic blood pressure</td>
<td>-0.028</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>-0.106*</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>-0.104*</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>-0.142*</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.064*</td>
</tr>
</tbody>
</table>

Supported by: The NSF, Sri Lanka and OCDEM, UK

888

Impaired insulin sensitivity and beta cell function predict the onset of diabetes in non-diabetic women with former gestational diabetes

A. Grassi1, A. Tura1, G. Pacini1, A. Mari, Y. Winhofer1, A. Kautzky-Willer1; 1Metabolic Unit, ISIB-CNR, Padova, “Department of Information Engineering, University of Padova, Italy,” 2Department of Internal Medicine III, Medical University of Vienna, Austria.

Background and aims: Gestational diabetes mellitus (GDM) is the specific type of diabetes that may develop during pregnancy. After delivery, women with previous GDM (pGDM) often normalize their glucose levels, but they are at increased risk of developing type 2 diabetes, especially if they have other risk factors (i.e. obesity, hypertension, family history of type 2 diabetes). In this context, it is important to see whether there are indications in insulin sensitivity and beta cell function between non-diabetic pGDM developing diabetes within 3-5 years after delivery and those who instead remained non-diabetic.

Materials and methods: A total of 77 pGDM were studied with a 75-g 3 h oral glucose tolerance test (OGTT) at baseline (i.e., immediately after parturum) and during the 5 year study period. Insulin sensitivity was evaluated with the oral glucose sensitivity index (OGIS), while beta cell function through mathematical modelling of C-peptide, that yields B-cell sensitivity to glucose stimulus (BGS) and early insulin response (rate sensitivity, BRS). After the baseline examination, at a following visit the OGTT of 17 women matched the ADA/WHO criteria for diabetes (progressors, PROG), while in the remaining 60 women no sign of diabetes was found (NON-PROG).

Results: In Table 1, subjects’ characteristics and metabolic parameters at baseline are shown. PROG were slightly older and with higher BMI. Glucose, both fasting and during OGTT, was more elevated in PROG, while insulin response was not significantly different, yielding lower insulin sensitivity (OGIS). Beta cell response was markedly impaired in PROG, especially the beta cell sensitivity to glucose (BGS) which was 40% lower.

387

Neck circumference positively related with central obesity, overweight and metabolic syndrome in Chinese people with type 2 diabetes

G. Yang, S. Yuan, H. Fu; Endocrinology, Tongren Hospital, Beijing, China.

Background and aims: To investigate the association between neck circumference and central obesity, overweight as well as metabolic syndrome in Chinese individuals with type 2 diabetes.

Materials and methods: Subjects with type 2 diabetes (age 20-80 years) were recruited from 15 community health centers in Beijing using a multi-stage random sampling approach. Anthropometrics, including neck and waist circumference measurement was conducted. Metabolic syndrome was identified based on criteria of WHO. Central obesity was diagnosed according to criteria of IDF.

Results: 3182 diabetics (1294 men and 1888 women) without thyroid swelling, were enrolled with mean (±SD) age of 64.0±10.1 years. The diabetic duration was 9.37±6.56 years. The mean neck circumference was 36.6±3.7 cm, 38.4±3.6 cm for men, and 35.4±3.3 cm for women (p<0.001). Receiver operating characteristics (ROC) analysis showed that the area under the neck-circumference and-central-obesity curve was 0.74 (95% C.I. (0.72, 0.77)) for men, and 0.75 (95% C.I. (0.72, 0.78)) for women (p<0.001). Furthermore, neck circumferences ≥39 cm (with sensitivity of 56.3% and specificity of 79.2%) for men and ≥36 cm (with sensitivity of 61.1% and specificity of 73.1%) for women were best cutoff levels for determining people with BMI ≥25.0 kg/m². Neck circumferences ≥38 cm for men and ≥36 cm for women were best cutoff levels for determining people with metabolic syndrome. After adjusting with gender and age, neck circumference was associated significantly with metabolic syndrome (OR, 1.13 (95% C.I. (1.10-1.17)).

Conclusion: In the present study, neck circumference is positively related with body mass index, waist circumference and metabolic syndrome in Chinese people with type 2 diabetes. The neck circumference might be used in clinical convenient index as a predictor for central obesity and metabolic syndrome. Further studies are needed for closer identification of this association in general population.

Supported by: Capital Medical Developing Foundation of China
Conclusion: Non-diabetic women with previous GDM developing diabetes within 3-5 years exhibit lower insulin sensitivity and B-cell function than pGDM who remain non-diabetic. The assessment of these metabolic parameters immediately after delivery could therefore be very useful to characterize the subjects at particularly high risk in order to start early prevention against the development of diabetes.

Table 1

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>NON-PROG</th>
<th>PROG</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.4 ± 0.5</td>
<td>36.2 ± 1.2</td>
<td>0.0337</td>
<td></td>
</tr>
<tr>
<td>BMI (kg m⁻²)</td>
<td>25.6 ± 0.5</td>
<td>31.8 ± 1.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fasting plasma glucose (pmol l⁻¹)</td>
<td>4.80 ± 0.06</td>
<td>5.45 ± 0.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>Plasma glucose at 2h (pmol l⁻¹)</td>
<td>6.06 ± 0.17</td>
<td>8.30 ± 0.41</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean plasma glucose (pmol l⁻¹)</td>
<td>6.37 ± 0.13</td>
<td>8.41 ± 0.22</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean plasma insulin (pmol l⁻¹)</td>
<td>280 ± 21</td>
<td>336 ± 50</td>
<td>0.133</td>
</tr>
<tr>
<td>OGIS (ml min⁻¹m⁻²)</td>
<td>456 ± 9</td>
<td>379 ± 13</td>
<td><0.0001</td>
</tr>
<tr>
<td>BGS (pmol min⁻¹m⁻²)</td>
<td>106 ± 6</td>
<td>64 ± 7</td>
<td>0.0005</td>
</tr>
<tr>
<td>BRS (pmol m⁻²m⁻²)</td>
<td>649 ± 66</td>
<td>324 ± 98</td>
<td>0.0321</td>
</tr>
</tbody>
</table>

Characteristics and metabolic parameters of the subjects at the baseline (mean ± SE).

Supported by: Austrian Nationalbank Jubiläumsfonds, grant 11198 to AKW

389

Contribution of different biomarkers to risk of type 2 diabetes

1German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, 2University of Tuebingen, 3Technische Universität München, Freising, Germany.

Background and aims: Over the past years, a number of circulating blood biomarkers have been identified and proposed as predictors of type 2 diabetes. In the present study we quantified to what extent biomarkers of different metabolic pathways contribute to the risk of type 2 diabetes.

Materials and methods: The contribution of different biological pathways to the development of type 2 diabetes was estimated in a case-cohort design based on circulating blood biomarkers from participants aged 35 - 65 years in the EPIC-Potsdam Study. The analytic sample included 613 participants with incident diabetes and 1965 participants without diabetes. We constructed a biomarker score based on plasma values of glycated haemoglobin (HbA1c), gamma-glutamyltransferase (GGT), HDL-cholesterol, hs-CRP and adiponectin. Cox proportional hazard regression was used to estimate relative risks adjusted for age, sex, body mass index, waist-circumference, education, sport activity, cycling, occupational activity, and smoking and alcohol intake. The proportion of the association between the score and diabetes risk explained by each biomarker was estimated using effect decomposition method by entering quintiles of glycated haemoglobin (HbA1c), gamma-glutamyltransferase (GGT), HDL-cholesterol, CRP and adiponectin simultaneously in the model.

Results: The relative risk of type 2 diabetes between extreme quintiles of the overall biomarker index score was 16.6 (95% confidence interval (CI): 6.81, 31.2; P<0.001). A total of 27.7% (CI: 22.0, 34.1) of the risk was explained by HbA1c. For the other biomarkers the corresponding proportions were 11.5% (CI: 5.53, 17.7) by GGT, 14.4% (CI: 8.67, 20.3) by HDL-cholesterol, 6.45% (CI: 0.38, 13.4) by hs-CRP, and 13.5% (CI: 6.98, 20.3) by adiponectin.

Conclusion: The results support the hypothesis that different biological pathways reflected by markers such as HbA1c, GGT, HDL-cholesterol, and adiponectin play a role in the development of type 2 diabetes independently from each other.

Supported by: Bundesministerium für Bildung und Forschung

390

Association between liver markers and insulin secretion and endogenous glucose production in non-diabetic individuals

F. Bonnet, M. Laville, B.J. Balkau, on behalf of the RISC Study investigators;
1Dept of Endocrinology-Diabetology, University hospital; 2Inserm U625, Rennes, 3Inserm U870-Inra 1235, Centre de Recherche en Nutrition humaine Rhône-Alpes, Lyon, 4INSERM CESP U1018, Villejuif, France.

Background and aims: An association between elevated concentrations of gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT) with the risk of type 2 diabetes has been shown. However, the underlying physiological mechanisms remain poorly determined. The aim of our study was therefore to explore whether a modest elevation of liver markers is associated with insulin resistance and/or altered insulin secretion.

Materials and methods: We studied 1310 healthy individuals from the RISC study (Relationship between Insulin Sensitivity and Cardiovascular disease). All participants had a euglycemic-hyperinsulinemic clamp and an OGTT with determination of indices of insulin secretion. A subgroup of 409 also had an assessment of endogenous glucose production (EGP) with a tracer.

Results: Both fasting and 2 h glycaemia progressively increased over GGT and ALT quartiles. Insulin sensitivity (as assessed by the M/I value) was inversely correlated to the plasma concentration of GGT or ALT (r=-0.30, p<0.0001 for each). Modest elevations in liver markers were significantly associated with an increase of risk in insulin-resistance (defined as the M/I value in the first quartile) after adjustment for age, sex, physical activity and waist: GGT>20 UI/l, OR:1.80 (1.3-2.5), p=0.0007; ALT>20 UI/l, OR:1.59 (1.2-2.2), p=0.004. There was no association between aspartate aminotransferase levels and insulin sensitivity. The hepatic insulin resistance index (EGP x fasting insulinemia) was more strongly correlated with GGT (r=0.29, p=0.0001) than with ALT levels (r=0.16, p=0.02). These significant associations persisted in multivariate models. GGT and ALT levels were positively correlated with fasting glucagon and inversely to adiponectin concentrations. Insulin secretion, as assessed by the disposition index, was not significantly associated with liver markers. In multivariate models, GGT and ALT were independent determinant of 2h glycaemia during the OGTT.

Conclusion: GGT and ALT, even at moderately elevated levels, are closely linked to both peripheral and hepatic insulin resistance but not with insulin secretion, in healthy non-diabetic individuals. This confirms the pertinence of these markers to identify insulin resistant individuals at high risk of type 2 diabetes.

Supported by: EU
PS 16 Novel biomarkers in diabetes prediction

391

Urinary myo-inositol is a useful and cost-effective marker to detect glucose intolerance: a community-based "Tottori-Kofu" study

H. Shiouchi1, H. Shimohori1, S. I. Taniguchi1, N. Yamamoto1, Y. Fujisaka1, K. Sumi1, K. Matsuzawa1, S. Iwasa1, H. Kinoshita1, T. Okhura1, H. Ohkura1, K. Inoue1, M. Takechi1, C. Shigemasa1,
1Division of Molecular Medicine and Therapeutics, Department of Multidisciplinary Internal Medicine, Uppsala University Faculty of Medicine, Uppsala, 2Department of Pathobiological Science and Technology, School of Health Science, Tottori University, Yonago, 3Institute of Medicine and Public Health, Copenhagen University Hospital, Hvidovre, 4B1i Clinic, Kofu, Japan.

Background and aims: Myo-inositol is one of 9 inositol stereoisomers with cyclic sugar alcohol and its composition is like D-glucose. Myo-inositol exists in human tissues. The urinary excretion of myo-inositol is augmented in diabetes patients, since the ascent of plasma glucose obstructs the re-absorption of myo-inositol in renal uriniferous tubule. Consequently, urinary myo-inositol excretion indirectly reflects plasma glucose level. Therefore, urinary myo-inositol could be a useful marker of glucose intolerance. We performed Tottori-Kofu study, which was designed to pick up patients with impaired glucose tolerance (IGT). We applied 75gOGTT as the most effective strategy to detect IGT. However, OGTT requires much time and cost. We presumed urinary myo-inositol could be a good candidate marker to detect IGT. In this study, we aimed to estimate urinary myo-inositol value in OGTT.

Materials and methods: We performed 75gOGTT in 110 people (male 35, female 75, average age 68.3 years old). In OGTT, we collected blood samples before, 30, 60 and 120 min. after glucose loading. Urine samples were also taken before and 120 min. after glucose loading. According to OGTT results, we segmented the group "normal glucose tolerance (NGT)" (plasma glucose ≤110 mg/dl before glucose loading and ≤140 mg/dl after 120 min.), "IGT" (plasma glucose ≤140 mg/dl and <200 mg/dl after 120 min.) and "diabetes mellitus (DM)" (plasma glucose ≥200 mg/dl after 120 min.). We defined the subjects as pre-IGT if their plasma glucose is ≤180 mg/dl after 60 min. The OGTT results were follows: NGT 67 (male 15 / female 52), pre-IGT 9 (male 3 / female 6), IGT 27 (male 12 / female 15) and DM 7 (male 5 / female 2). Urinary myo-inositol (Umi) was calibrated by urinary creatinine (Ucre). We calculated ΔUMI as follows: ΔUMI (mg/gCre) = UMI(Ucre of 120min) - UMI(Ucre of 0min).

Results: ΔUMI was significantly associated with the plasma glucose response in OGTT. Estimated ΔUMI (mg/gCre) was follows: NGT 8.6±13.4, pre-IGT 27.6±30.0, IGT 77.0±48.4. The worse glucose intolerance, the higher ΔUMI would be expected. Based on the ROC curve, we set ΔUMI cut-off value as 10mg/gCre and compared the detecting ability of glucose intolerance among ΔUMI, AIC(≥26.2%) and urinary glucose excretion (≥100mg/dl after 120 min in OGTT). Within these three candidates, ΔUMI(≥10 mg/gCre) was the most powerful marker to isolate IGT. The positive rate of detecting glucose intolerance was follows; ΔUMI 69.8%, AIC 18.6% and urinary glucose excretion 55.8%.

Conclusion: We confirmed that ΔUMI derived from OGTT protocol is an effective marker to isolate glucose intolerance. We presume ΔUMI measurement could be an easy and cost-effective way in a community-based screening of glucose intolerance, since we need only urine samples, not blood, after oral glucose loading to calculate ΔUMI.

392

The association between IGFBP-1 and type 2 diabetes is modified by degrees of insulin sensitivity and early insulin response

C. Berne1, A. Flybyng2, H. Gomnab3, J. K. Jensen4, L. Berglund4, B. Zethelius4.
1Department of Medical Sciences, Uppsala University, Sweden, 2Department of Endocrinology and Internal Medicine, Clinic Institute, Aarhus University Hospital, 3Medical Department V, Clinical Institute, Aarhus University Hospital, Denmark, 4Uppsala Clinical Research Center, Uppsala University, 5Department of Public Health and Caring Sciences /Geriatrics, Uppsala University, Sweden.

Background and aims: Clinical studies suggest that insulin-like growth factor binding protein 1 (IGFBP-1) may be an important determinant of glucose tolerance. Further, defects in insulin secretion and action are major abnormalities in type 2 diabetes (T2DM). Accordingly, we studied the relationship between serum IGFBP-1, IGFBP-3, IGFBP-1/IGFBP-3 and T2DM taking into account insulin sensitivity (M/I) and the early insulin response (EIR).

Materials and methods: The participants were from a population-based cohort of 71-year-old men (n=1219) from which patients taking anti-diabetic oral medication or insulin were excluded. The cohort then underwent a 7-year follow-up (n=667). At baseline a euglycaemic insulin clamp and a 75-g OGTT were performed. The concentrations of IGFBP-1, IGFBP-3, IGFBP-1/IGFBP-3 were measured and their respective relationship with T2DM was assessed using logistic regression, presenting odds ratios (ORs) with 95% confidence intervals (CIs) for 1 SD increase in the predictor variable, adjusted for BMI and heredity for diabetes.

Results: The cross sectional associations with T2DM are presented in Table 1. The odds ratio for the association between IGFBP-1 and a low risk of T2DM was altered after adjustment for insulin sensitivity. IGFBP-1, IGFBP-3, IGFBP-1/IGFBP-3 were not significantly associated with the risk for T2DM over 7 years of follow-up (p=0.14-0.90).

Conclusion: The association between IGFBP-1 and risk of T2DM is modified by EIR and insulin sensitivity implying confounding effects of insulin secretion and insulin resistance on the association, whereas it was not observed for IGFB-II and the carrier proteins. The IGFBPs and their carrier proteins did not predict T2DM but were associated with the diabetic state.

Table 1. Cross sectional associations between IGFBP-1, IGFBP-2, IGFBP-3 and T2DM

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR, 95% CI</th>
<th>OR, adjusted for EIR</th>
<th>OR, adjusted for M/I</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP-1</td>
<td>1.36, 1.07-1.73</td>
<td>1.38, 1.18-1.99</td>
<td>1.28, 0.99-1.63</td>
</tr>
<tr>
<td>IGFBP-2</td>
<td>1.33, 1.05-1.70</td>
<td>1.42, 1.09-1.86</td>
<td>1.29, 1.02-1.64</td>
</tr>
<tr>
<td>IGFBP-3</td>
<td>0.71, 0.56-0.90</td>
<td>0.52, 0.40-0.68</td>
<td>1.23, 0.90-1.66</td>
</tr>
<tr>
<td>IGFBP-1/IGFBP-3</td>
<td>1.38, 1.07-1.77</td>
<td>1.52, 1.15-2.01</td>
<td>1.34, 1.03-1.74</td>
</tr>
</tbody>
</table>

393

The association between soluble urokinase plasminogen activator receptor (suPAR) levels and incident diabetes is modified by body weight status in high-risk people with impaired glucose regulation

1Steno Diabetes Center, Gentofte, 2Department of Endocrinology, Copenhagen University Hospital, Hvidovre, 3Clinical Research Center, Copenhagen University Hospital, Hvidovre, 4ViroGates A/S, Birkerod, 5Department of General Medicine, University of Aarhus, Denmark.

Background and aims: An association between the inflammatory marker soluble urokinase plasminogen activator receptor (suPAR) and incident type 2 diabetes mellitus (T2DM) has been documented in healthy individuals. We aimed to assess whether this association exists among high-risk people with impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) and whether it is affected by other risk factors for progression to diabetes.

Materials and methods: suPAR levels were measured in plasma samples from 1933 participants of the ADDITION study (aged 37-73 years) who had isolated IFG, isolated IGT or combined IFG/IGT at baseline (2001-2006) using the suPARnostic ELISA kit (ViroGates, Denmark). Incidence of T2DM was ascertained by OGTT at 3 years of follow-up in combination with regular reports on glucose measurements in GP practice up to December 2008. The association between suPAR levels at baseline and incident T2DM was analyzed using logistic regression. Analyses were stratified by glucose regulation status (IFG, IGT, IFG/IGT) and BMI (lean, overweight, obese - WHO definition).

Results: Adjusting for sex and age, there was a 48% overall increase in risk of developing T2DM per 2-fold increase in baseline level of fasting suPAR (Table 1). The association was modified by body weight status, being limited to overweight participants. Additional adjustment for waist, blood pressure, lipids and smoking attenuated the association between suPAR levels and T2DM in the population as a whole; however, the association in the overweight group remained robust. Glucose regulation status did not modify the association.

Conclusion: suPAR levels are associated with incident T2DM in overweight individuals with impaired glucose regulation. Our finding of an absence of association among the obese may be due to the exclusion by design of those with diabetes at baseline, or may be caused by a difference in phenotype of obese subjects compared to overweight participants. This effect needs to be examined in greater detail in future studies.
Table 1. Odds Ratios for incident type 2 diabetes per each 2-fold increase in baseline suPAR level among 1933 participants of the ADDITION study.

<table>
<thead>
<tr>
<th>sex+age adjusted sex+age+BMI*+ waist+ bp+ triglycerides+ HDL+ smoking</th>
<th>No of cases/ total</th>
<th>OR (95% CI)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample</td>
<td>599/1933</td>
<td>1.48 (1.12; 1.96)</td>
<td>1.24 (0.91; 1.69)</td>
</tr>
<tr>
<td>By glucose regulation status**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-IFG</td>
<td>186/800</td>
<td>1.36 (0.84; 2.21)</td>
<td>1.08 (0.63; 1.84)</td>
</tr>
<tr>
<td>I-IGT</td>
<td>175/652</td>
<td>1.56 (0.95; 2.56)</td>
<td>1.48 (0.85; 2.58)</td>
</tr>
<tr>
<td>IFG/IGT</td>
<td>238/481</td>
<td>1.28 (0.75; 2.16)</td>
<td>1.12 (0.63; 2.01)</td>
</tr>
<tr>
<td>By body weight status**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean (BMI<25kg/m²)</td>
<td>70/341</td>
<td>0.65 (0.31; 1.37)</td>
<td>0.61 (0.26; 1.41)</td>
</tr>
<tr>
<td>Overweight (BMI ≥25 <30kg/m²)</td>
<td>231/806</td>
<td>2.36 (1.48; 3.76)</td>
<td>2.14 (1.31; 2.51)</td>
</tr>
<tr>
<td>Obese (BMI≥30kg/m²)</td>
<td>298/786</td>
<td>1.12 (0.73; 1.73)</td>
<td>1.00 (0.63; 1.60)</td>
</tr>
</tbody>
</table>

*BMI included both as linear and quadratic term; Only waist circumference was used in the models stratifying by BMI
**p for interaction = 0.93 for glucose regulation status; 0.003 for body weight status

Supported by: Funding of the ADDITION study: http://www.addition.au.dk/Funding.htm

394
Leptin independently predicts diabetes in Swedish men
M. Lilja1, O. Rolandsson2, M. Norberg3, P.W. Franks3, S. Soderberg2
1The Research and Development Unit, Jämtland County Council, Östersund, 2Department of Public Health and Clinical Medicine, Umeå University, Sweden.

Background and aims: Leptin may have detrimental effects on the beta-cell function, and may decrease insulin sensitivity. Previous studies have shown an independent association between leptin levels and future diabetes in men, but not in women, whereas other studies have opposed these findings. The aim of this study was to evaluate leptin as an independent predictor of future diabetes in a northern Sweden setting.

Materials and methods: Within the Västerbotten Intervention Program (VIP), all inhabitants were invited to a health survey the year they turned 40, 50 and 60 years old. Questionnaires, blood sampling, measurements of anthropometry and blood pressure, and an oral glucose tolerance test (OGTT) were included. Through registries covering Västerbotten County, 638 subjects with type 2 diabetes were identified, who had participated in VIP prior (more than one year, mean 6.4 years) to diagnosis. A control group of 1584 non-diabetics, matched for age, sex, region of residence and survey date within VIP was identified. Leptin was analyzed with a RIA in stored samples. Logistic regression analysis was performed, and Odds Ratios (OR) and their 95% Confidence Interval (95% CI) calculated. Leptin data are presented as quartiles with sex-specific cut-offs based on the distribution amongst controls.

Results: In the univariate analysis, high leptin (Quartile 4 vs. Quartile 1) predicted diabetes in both men (OR 8.2 95% CI 5.2-13.0) and women (OR 6.4 95% CI 3.8-10.6, p21 <0.0005). After adjustments for BMI, cholesterol, smoking habits, physical activity, education level and hypertension, leptin remained associated with diabetes in men OR 2.2 95% CI 1.2-3.9, p21 = 0.05. In separate models adjusting for BMI and adiponectin, diabetes heredity and smoking habits, physical activity, education level and hypertension, leptin remained associated with diabetes in men (p21 <0.0005 for all).

Conclusion: Leptin independently predicts future diabetes in Swedish men, but not in women.

Supported by: Visare Norr

395
A novel method for the assessment of insulin physiology: urinary C-peptide creatinine ratio can be used to assess insulin sensitivity and beta cell function in non-diabetic subjects
A. Rawlingson, B.A. Knight, R. Oram, T.J. McDonald, B.M. Shields, A.T. Hattersley
Peninsula NIHR Clinical Research Facility, Exeter, United Kingdom.

Background: Urinary C-peptide creatinine ratio (UCPCR) is a convenient, non-invasive measure of insulin secretion that is stable at room temperature for 3 days. It has been validated as a test of beta-cell function in type 1 and type 2 diabetes. The aim of our study was to test if UCPCR can be used to assess insulin sensitivity and insulin secretion in non-diabetic subjects under laboratory conditions and in the home setting.

Methods: We performed an oral glucose tolerance test (OGTT) using a standardised 75 g glucose load on 30 healthy volunteers (median age = 46 years; median BMI = 24.47). Serum insulin and C-peptide were measured on fasting blood samples and those taken at 30 min intervals for 120 min following glucose load and used to calculate insulin secretion and insulin resistance. UCPCR was measured on fasting urine samples and 120 min following glucose load. On a separate day, volunteers were asked to collect urine samples for 24 h, 120 min following their largest meal of the day and post them to the laboratory.

Results: Fasting UCPCR correlated with HOMA-S (R=0.55; P<0.001). 120 min OGTT UCPCR correlated with serum insulin area under the curve (AUC) (R=0.69; P<0.001), serum C-peptide AUC (R=0.60; P<0.001) and early insulin secretion (R=0.41; P=0.05). Post-meal UCPCR correlated with 120 min OGTT UCPCR (R=0.55; P=0.01), serum insulin AUC (R=0.55; P<0.01), serum C-peptide AUC (R=0.53; P<0.05) and early insulin secretion (R=0.42; P=0.05).

Conclusion: In non-diabetic subjects, UCPCR measured in fasting urine samples and those collected following a glucose load or large meal are correlated with physiological measures of insulin sensitivity and insulin secretion. As urine samples are stable for 3 days at room temperature and can be collected by individuals at home, UCPCR is a convenient method for the assessment of insulin physiology that could be used in large scale epidemiological studies.

Supported by: Research & Development Directorate, Royal Devon & Exeter Hospital

396
Sialic acid predicts incident cases of hospital-treated diabetes during 40 years of follow-up in a defined population: the Värmland Health Survey, Sweden
P. Khalili1, E. Lundin1, J. Jendle1, I. Jungner1, P. Nilsson1
1Faculty of Health Sciences, Örebro, 2Värmland County Research Council, Karlstad, 3Department of Medicine, Karolinska Institutet, Stockholm, 4Department of Clinical Sciences, Malmö, Sweden.

Background and aims: Elevated inflammatory markers correlate with features of the metabolic syndrome and predict the development of type 2 diabetes. Sialic acid (SA) is related to glycoproteins and a marker of inflammation that has previously been associated with risk of coronary heart disease (CHD) events. We examined the role of SA in predicting incident hospital-treated cases of diabetes during 40 years of follow-up.

Materials and methods: A population-based health survey was carried out between 1962 and 1965 in the county of Värmland, Sweden. In total, 47327 men and 48124 women participated (mean age 48.9 and 48.6 years; range 25-80 years). The screening consisted of measurement of height, weight and blood pressure, as well as blood sampling including the determination of serum SA concentration. All subjects have been followed in national registries until end of 2005 for incident cases of hospital-treated diabetes mellitus (DM) as primary or secondary diagnosis. The material was sub-divided into quintiles (Q1-Q5) from lowest (Q1) to highest SA-levels (Q5). The risk of incident DM in relation to SA was analyzed by logistic regression separately for each sex. The association between baseline SA and risk of incident hospital-treated diabetes was analyzed by Cox proportional hazards regression before and after stepwise adjustment for baseline characteristics (age, BMI, hepatic transaminase GOT).

Results: During 40 years of follow-up, in all 4591 cases of diabetes treated in hospitals was recorded for men (9.7% of all men), and 5184 cases for women (10.8% of all women). The risk (OR) of incident DM in relation to SA-

quintiles for men was 1.0 in Q1 (reference), 1.19 (95% CI 1.08-1.30) in Q2, 1.20 (1.09-1.32) in Q3, 1.13 (1.02-1.25) in Q4 and 1.12 (1.02-1.24) in Q5. In women the corresponding OR was 1.0 in Q1, 1.24 (CI 1.12-1.36) in Q2, 1.31 (1.19-1.43) in Q3, 1.56 (1.42-1.71) in Q4 and 1.56 (1.45-1.74) in Q5. After full adjustment in the Cox-regressions, Exp (B) for one standard deviation of SA was 1.11 (95% CI 1.08-1.14) in men. The corresponding risk for women was 1.14 (1.11-1.17). P-values for all analyses were <0.0001.

Conclusion: The risk of incident diabetes mellitus in relation to high levels of sialic acid as an inflammatory marker is stronger in women than in men. The increased risk was independent of the other baseline characteristics.

Supported by: The Värmland County Research Council, Sweden

PS 17 Epidemiology of type 2 diabetes mellitus and its complications

Cardiovascular risk factors and micro- and macrovascular complications in patients with type 2 diabetes in Italy

G. Pugliese, A. Solini, E. Bonora, G. Zerbini, S. Morano, M. Cignarelli, L. Laviola

Background and aims: Type 2 diabetes mellitus (T2DM) is associated with increased morbidity and mortality for cardiovascular disease (CVD) and microvascular complications. This study aimed at assessing the prevalence of CVD risk factors and micro and macrovascular complications in patients with T2DM in Italy.

Materials and methods: We used baseline data from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study, a prospective cohort study on reduced estimated GFR as an independent predictor of CVD morbidity and mortality in T2DM subjects. The RIACE cohort consists of 15,773 T2DM patients consecutively visiting 19 Diabetes Clinics throughout Italy in years 2007-2008. Exclusion criteria were dialysis or renal transplantation. The following information was collected by a structured interview: age, gender, smoking status, diabetes duration, current therapy, and previous major acute CVD events. Height, weight, blood pressure (BP), HbA1c, triglycerides (TG), total- and HDL- cholesterol (C), creatinine and albuminuria were measured. GFR was estimated using the 4-variable MDRD equation, and retinopathy was assessed with ophtalmoscopy or retinography

Results: Age was 66.0± 10.3 years, diabetes duration 13.2± 10.2 years, and male (M)/female (F) ratio 57/43. HbA1c was 7.55±1.51%, with 24.2% and 40.9% below 6.5% and 7%, respectively; 61.4%% were on oral agents, 15.5% on insulin, and 9.6% on combination therapy. BMI was 28.96±5.14, with 41.9% overweight, and 24.4%, 8.4% and 3.3%, respectively, with grade I, II and III obesity. Waist was 103.7±12.7 cm, with 51.8% M below 102 and only 12.4% F below 88. TG, HDL-, LDL- and non-HDL-C levels were 139.2±88.2, 49.8±13.6, 107.7±32.6 e 134.9±36.8 mg/dl, respectively, with 68.3% on target for TG, 50.7% of M and 56.8% of F for HDL-C, 42.1% for LDL-C and 48.3% for non-HDL-C; 46.2% were on lipid-lowering drugs and 42.5% on a statin. BP levels were 138.1±18.0 and 78.8±9.4 mmHg, with 43.5% and 73.1% with systolic and diastolic values <130 and 80 mmHg, respectively; 70.7% were on anti-hypertensive agents and 58.1% on RAS blockers. Current, former and never smokers were 15.3%, 28.1% and 55.6%, respectively. History of any CVD event was detected in 23.2%, myocardial infarction in 11.1%, stroke in 3.3%, foot ulcer/gangrene in 3.4%, and coronary, carotid and lower limb revascularization in 10.0%, 4.9% and 2.9%, respectively. Background and advanced retinopathy were detected in 12.5% and 9.6%, and micro and macroalbuminuria in 22.2% and 4.7%, respectively. Prevalence of GFR classes 1, 2, 3 and 4 as estimated by the MDRD formula was 29.6%, 51.7%, 17.1% and 1.6%, respectively. Of the 2,960 patients with chronic kidney disease, 56.6% were normo, 12.6% micro and 12.6% macroalbuminuric.

Conclusion: Results of this large-cohort study indicate a relatively good control of CVD risk factors and low prevalence of complications in Italian T2DM patients.

Supported by: Fo.Ri.SID, DEM Foundation, Eli-Lilly Italia, Takeda, Chiesi and Boehringer
Diabetes duration: a crucial factor when determining individual target levels of glycaemic control in old age (ZODIAC-20)
K.J.J. van Hateren1, G.W.D. Landman1, N. Kleefstra1,2, I. Drion1, K.H. Groenier1, S.T. Houweling1,2, H.J.G. Bilo1,2
1Diabetes Centre, Zwolle, 2Langerhans Medical Research Group, Zwolle, 3Department of General Practice, University Medical Center Groningen, *General Practice Sleeuwijk, 4Department of Internal Medicine, University Medical Center Groningen, Netherlands.

Background and aims: Studies regarding macrovascular consequences of glucose control in elderly patients (>75 years) with type 2 diabetes mellitus (T2DM) are lacking. This study aimed to investigate the relationship between HbA1c and (cardiovascular) mortality, and the role of diabetes duration in this relationship, in an elderly population.

Materials and methods: Between 1998 en 1999, 374 primary care patients older than 75 years with T2DM participated in the ZODIAC study, a prospective observational study. Data on mortality were collected in 2009. A Cox proportional hazard model was used to investigate the relationship between HbA1c as a continuous variable, as well as dichotomous variables (HbA1c <53 mmol/mol vs. HbA1c ≥53 mmol/mol, and HbA1c <48 mmol/mol vs. HbA1c ≥48 mmol/mol) and mortality. Analyses were performed in strata according to diabetes duration (<5 years, 5-11 years, and ≥11 years). Age, gender, smoking (yes or no), BMI, duration of diabetes, serum creatinine level, macrovascular complications (yes or no), albuminuria (yes or no), systolic blood pressure, total cholesterol-HDL ratio, and use of insulin (yes or no) were selected as possible confounders.

Results: In the group with a diabetes duration <5 years, the hazard ratios for HbA1c as a continuous variable were 1.40 (95% CI 1.14-1.73) and 1.66 (95% CI 1.25-2.21) for all-cause and cardiovascular mortality respectively. Within this patient group, a HbA1c level of <53 mmol/mol at baseline was associated with a reduced all-cause and cardiovascular mortality risk compared to patients with worse glycaemic control. The hazard ratios were 0.56 (95% CI 0.33-0.95) and 0.28 (95% CI 0.11-0.69) respectively. Figure 1 illustrates the increased cardiovascular mortality rates for patients with a HbA1c level ≥53 mmol/mol. Glycemic control was not related to mortality for patients with a diabetes duration ≥5 years.

Conclusion: Worse glycemic control is related to increased mortality in elderly diabetic patients, but only in those with T2DM of short duration. Randomised controlled trials are necessary to answer the question whether improving glycemic control is beneficial in elderly patients. Perhaps different optimum target levels should be used for T2DM of short and long duration.

Background and aims: The incidence of cardiovascular disease (CVD) is increased in postmenopausal women, and the presence of CVD risk factors diminishes the favorable profile of women against CVD. Thus, understanding the role of CVD risk factors for CVD events and identifying effective interventions is important in postmenopausal women. The aim of this study is to assess the combined effect of CVD risk factors including abnormal fasting glucose (AFG) on the development of CVD in hypercholesterolemic post-menopausal women, and to evaluate the effect of low-dose pravastatin treatment, using the data from a large-scale clinical trial (MEGA Study).

Material and methods: The MEGA Study examined the effect of low-dose pravastatin (10-20 mg/day, approved in Japan) on primary prevention of CVD in 7,832 Japanese patients (5,356 women, post-menopause to 70 years; 2,476 men, 40 to 70 years) with mild to moderate hypercholesterolemia. Patients were randomized to diet alone (3,966 patients) or diet + pravastatin (3,866 patients) and followed for an average 5 years. AFG was defined as fasting plasma glucose (FPG) ≥6.1 mmol/L or anti-hyperglycemic agent users. Patients not having FPG value were excluded from this analysis (n=1,661). Normal fasting glucose (NFG) was defined as FPG <6.1mmol/L. Hypertension was defined by the attending physician as ≥140/90 mmHg, using the Japan Society of Hypertension guideline. The incidence of CVD in relation to age, hypertension, and AFG were compared between sexes. Hazard ratios (HRs) for incident CVD were calculated by using Cox’s multivariable proportional hazards model, with the combinations of age, hypertension, and AFG, adjusted for treatment arm, high density lipoprotein cholesterol, and smoking.

Results: The incidence of CVD events was 2.3% (125/5,356) in women and 5.3% (130/2,476) in men. Table shows HRs for incident CVD for the eight possible combinations of the analyzed risk factors (age, hypertension, AFG). In women, compared to men, the risk for CVD was higher for each possible combination of age, hypertension and AFG, although no sex interaction was found for any risk factor combination due to small number of events. A similar risk reduction for coronary heart disease and cerebral infarction was found in the diet + pravastatin group compared to diet alone group (23% for women, p=0.39; 43% for men; p=0.03; interaction p=0.81).

Conclusion: The combining the older age and hypertension in AFG markedly increased the CVD risk in postmenopausal hypercholesterolemic women than men. Women with AFG may achieve a similar risk reduction for coronary heart disease and cerebral infarction with low-dose pravastatin as did men with AFG.

HRs for incident CVD for the combinations of age, hypertension, and AFG

<table>
<thead>
<tr>
<th>Age ≥60y</th>
<th>HT</th>
<th>AFG</th>
<th>Men (n=1,661) HRs P-values</th>
<th>Women (n=1,661) HRs P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9/536 1.0</td>
<td>4/955 1.0</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>8/191 2.6</td>
<td>12/857 3.3 0.0391</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>12/258 3.0</td>
<td>12/512 4.9 0.0059</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>14/299 2.7</td>
<td>4/291 3.0 0.1241</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>17/183 5.4</td>
<td><0.0001 9/207 8.8 0.0003</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>13/190 4.6</td>
<td><0.0005 27/723 8.3 0.0001</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>17/177 5.9</td>
<td><0.0001 18/303 13.5 <0.0001</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>22/152 9.4</td>
<td><0.0001 21/337 12.7 <0.0001</td>
</tr>
</tbody>
</table>

Supported by: MEGA Study Group, Daiichi Sankyo, Tokyo, Japan.
400

Peptic ulcers and inflammatory diseases of the upper digestive tract increase the risk of incident diabetes independently of obesity. The Whitehall II study

D.R. Witte, B. Carstensen1, A.G. Tabák1, C. Herder1, M. Kivimäki1, Sterno Diabetes Center, Gentofte, Denmark, 2Epidemiology and Public Health, University College London, United Kingdom, 3Semmelweis University, Budapest, Hungary, 4Institute for Clinical Diabetology, Düsseldorf, Germany.

Background and aims: Recent interest in the effect of intestinal microflora and gastric bypass surgery on diabetes risk has highlighted the close connection between the gastrointestinal (GI) system and glucose metabolism. We studied whether a diagnosis of upper GI peptic/inflammatory or ulcerative disease increased the risk of subsequent diabetes during up to 20 years of follow up.

Materials and methods: We studied 6766 participants of the Whitehall II study (69.7% men, mean age: 49.9 years (SD:6.0), BMI: 25.3 (3.7)) free of diabetes and GI diagnoses at baseline in 1991-1993. Participants were followed for incident diabetes with repeated OGT Ts at 5-year intervals and self reports at 2.5-year intervals until December 2009. Hospital diagnoses were obtained from Hospital Episode Statistics data, covering all admissions to National Health Service hospitals in England. Participants with oesophagitis, gastritis, duodenitis, dyspepsia, gastrointestinal-ulcerative reflux or peptic ulcers of the oesophagus, stomach or duodenum (ICD-10 codes K20-K22, K25-K27, K29-K31) prior to diagnosis of diabetes or end of follow up were considered exposed. Their risk of incident diabetes was compared to the risk in those not exposed to an upper GI diagnosis using multivariate Poisson regression adjusting for relevant confounders.

Results: During a mean follow up of 16.9 years (total: 114,442 py), we observed 772 cases of incident diabetes (incidence rate: 8.0 per 1000 py) and 363 upper GI diagnoses. Mean time between GI diagnosis and DM was 5.5 years (SD: 3.3). The risk of diabetes increased after an upper GI diagnosis (Table 1). Adjustment for BMI, waist circumference, HDL cholesterol, triglycerides, fasting glucose and hs-CRP did not attenuate the effect. Models assuming that exposure starts with a 1-year lag after an upper GI diagnosis showed very similar results. The proportion of diabetes cases diagnosed through a study visit OGGT did not differ significantly between those with and without a GI diagnosis, indicating that detection bias is unlikely. Results were also consistent when examining oesophageal or gastric/duodenal diagnoses separately.

Conclusion: We found that peptic/inflammatory or ulcerative conditions in the upper GI tract increase the risk of diabetes by 10% per year in subsequent years independently of central and overall obesity as well as other major risk factors for diabetes. Although baseline low grade inflammation did not explain our results, a later inflammatory response may play a role, in conjunction with alterations of the internal environment in the upper GI tract. Our results indicate that clinicians should be alert to the elevated risk of diabetes in patients with upper GI peptic/ulcerative disease.

Table 1. Incidence rate ratios (IRR) for the risk of diabetes after an upper GI diagnosis

<table>
<thead>
<tr>
<th>Per year after diagnosis</th>
<th>IRR (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
<td>1.08 (1.02;1.15)*</td>
</tr>
<tr>
<td>Model B</td>
<td>1.09 (1.03;1.16)*</td>
</tr>
<tr>
<td>Model C</td>
<td>1.10 (1.04;1.17)*</td>
</tr>
</tbody>
</table>

‘Ever diagnosed’

<table>
<thead>
<tr>
<th>IRR (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
</tr>
<tr>
<td>Model B</td>
</tr>
<tr>
<td>Model C</td>
</tr>
</tbody>
</table>

Adjustments: Model A: age and sex, Model B: A + BMI and waist, Model C: B + HDL-cholesterol, triglycerides, fasting glucose and hs-CRP. * p-value <0.01.

Supported by: Funding structure: http://www.ucl.ac.uk/whitehallII/index.htm

401

Increased risk of acute renal failure in patients with type 2 diabetes compared to those without diabetes

K.G. Brodovicz1, C.J. Girmian1, T.D. Kou1, S.S. Engel1, L. Katz2, C.M. Alexander3, D.E. Williams-Herman1, 1Epidemiology, Merck, North Wales, 2Metabolism, Merck, Rahway, 3Global Medical Affairs, Merck, North Wales, USA.

Background and aims: Acute renal failure (ARF) is characterized by a rapid decline in glomerular filtration rate and can occur in patients with normal renal function as well as patients with pre-existing renal disease. ARF is a broad condition encompassing a spectrum of clinical renal dysfunction. While the natural history of a progressive decline in renal function from diabetic nephropathy has been well-described in patients with type 2 diabetes mellitus (T2DM), few studies have assessed the risk of ARF in a large population of T2DM patients. This study quantified the risk of ARF associated with T2DM in a large general practice database from the United Kingdom. In addition, the risk of ARF in T2DM patients with multiple comorbidities was assessed.

Materials and methods: Patients with T2DM (n=148,963) based on diagnosis, prescriptions or laboratory glucose and patients without diabetes (n=2,834,927) were identified from the General Practice Research Database. Patients with end-stage renal disease were excluded from the study. Crude incidence and age/gender-adjusted hazard ratios (HR) of ARF were estimated for T2DM and non-DM. Multivariate Cox regression models adjusted for risk factors including prior ARF, chronic kidney disease (CKD - including diabetic nephropathy), congestive heart failure (CHF), hypertension (HT), alcohol use, obesity, smoking, and Charlson comorbidity index. To assess potential additive effects, ARF risk was also assessed in patients with T2DM plus CHF and/or HT relative to patients without T2DM.

Results: Between 2003 and 2007, ARF incidence was 192 per 100,000 person-years (p-y) in patients with T2DM compared to 24/100,000 p-y among patients without T2DM (crude HR 8.3, 95% CI 7.7, 8.9). Age, obesity, prior ARF, CHF, CKD, HT, and comorbidity index were also higher in patients with T2DM. The risk of ARF for T2DM patients remained significant but attenuated in multivariate analyses adjusting for these factors (adjusted HR 2.4, 95% CI 2.2, 2.5). Adjusted ARF risk was also increased for patients with CHF (adjusted HR 2.2, 95% CI 2.0, 2.4), HT (adjusted HR 2.0, 95% CI 1.8, 2.2), and all of the above factors except CKD. Interestingly, the presence of CKD was not associated with an increased risk of ARF diagnosis (adjusted HR 1.25, 95% CI: 0.97 - 1.59). Adjusted ARF risk increased in T2DM patients with CHF and/or HT - T2DM with no HT/CHF: HR 2.3 (95% CI 2.1, 2.5), T2DM+HT (no CHF): HR 2.0 (95% CI 1.8, 2.3), T2DM+CHF (no HT): HR 4.5 (95% CI 3.7, 5.5), T2DM+HT+CHF: HR 3.5 (95% CI 2.7, 4.5).

Conclusion: Patients with T2DM have increased risk for ARF compared to patients without diabetes, even after adjustment for known risk factors including CKD. The finding that CKD alone is not associated with an increased risk of ARF diagnosis needs to be confirmed in other studies. The combination of T2DM, CHF, and HT further increased the risk for ARF relative to patients without T2DM. Physicians should be aware of this increased risk of ARF in T2DM patients, and the additional risk associated with the presence of other comorbidities such as CHF and HT.

402

Oral contraceptive use and abnormal glucose regulation in Swedish middle aged women

Background and aims: Use of oral contraception has been suggested to increase the risk of type 2 diabetes. Results of previous studies are however conflicting. The aim of this study was to investigate the association between oral contraceptives (OCs) use and abnormal glucose regulation in Swedish middle aged women.

Materials and methods: The present study includes 4794 women, aged 36-56 at baseline (1996-98), residing in five municipalities in Stockholm County Council and participating in the cross-sectional and follow-up study of Stockholm Diabetes Prevention Programme, which is a prospective population-based study. At both baseline and follow up 8 years later, the women were examined by oral glucose tolerance test (OGTT) classifying the subjects as having normal glucose tolerance, prediabetes (impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or IFG+IGT) or type 2 diabetes. In addition, anthropometric measurements were collected and a questionnaire

was answered, including questions on lifestyle factors and use of OCs in different doses of estradiol and progesterone.

Results: In the cross sectional study, current use of OCs was associated with prediabetes, odds ratio (OR) = 4.1 (95% CI: 2.2-7.8) but not with type 2 diabetes. The association to prediabetes was entirely linked to IGT, OR=7.1 (3.3-15.8) in current users of OCs and in former users, OR=2.1 (1.1-3.9). Women who used OC at baseline had a better cardiovascular risk profile with lower BMI, were more physically active and smoking was less common. At the follow up, the increased risk for prediabetes did not persist.

Conclusion: Current use of OC was associated with a four times increased risk of having prediabetes and seven times increased risk of having impaired glucose tolerance. No increased risk persisted at the follow-up, suggesting that the risk of prediabetes due to prior use of OC is decreasing with time. The healthier lifestyle in women who used OCs may have contributed to reduce the long-term risk of prediabetes.

403

Diabetic patient or patients with diabetes: an approach from comorbidity in primary health care

G. Mora Navarro, A. Alberquilla Menéndez-Asenjo, P. Magán Tapia, M. Gil de Pareja Palmero, V. Del Saz Moreno, C. González Rodríguez-Salinas, M. Pilas Pérez, M. Ugalde Dier, P. Vallejo Sánchez-Monge, L. Rodríguez García, G. García Álvarez; 11th Primary Health Care Area, Madrid, Hospital Universitario 12 de Octubre, Madrid, CIBER Epidemiología y Salud Pública, Barcelona, Spain.

Background and aims: To describe differences in burden of illness and variability in the Family Physicians management of patients with diabetes depending on their co-morbidity.

Materials and methods: Cross-sectional observational and descriptive study. Participants and settings: 129 family physicians selected by quality clinical records, attending 149417 patients during 2007. Computerized clinical record and pharmaceutical billing database: after grouping all patients with an episode of diabetes through case-mix ACGs System, the following indicators were built: chronic co-morbidities, consumption of visits, pharmaceutical consumption and referrals and standardized morbidity rate (SMR, using standard prevalence observed in all patients). To analyse variability of family physicians management of diabetes, two indicators were calculated for each family physician: Risk Index (RI) that relates the complexity of patients with the standard prevalence observed in all patients. To study the variability of RI, a second indicator: EI was calculated in the 25-75 percentiles (EQ25-75).

Results: 10058 (6.7%) patients suffering from diabetes with an mean age of 66.7 years (SD 15.1), 52.6% were female. 97.9% of those with diabetes has no associates chronic co-morbidities and 41% had 3 or 4 and 34% 5 and more chronic co-morbidities. Most frequent pathologies were hypertension = 64.8%, dyslipidaemia = 44.5%, obesity = 33.05% and depression = 21.5%. The correlation between the burden of illness and the number of visits, pharmacy and the number of referrals was R=0.99 (R²=0.99), R=0.99 (R²=0.99) and R=0.97 (R²=0.94) respectively. SMR was higher than 1 for most of chronic diseases, especially hepatic chronic disease, skin ulcer, kidney chronic disease, chronic heart failure and coronary heart disease; and was lower than 1 for osteoporosis. Variability indicators: coefficient of variation (CV), Extremal Quotient (EQ), excluding the outliers beyond of the 5-95 percentiles (EQs-595) and of the 25-75 percentiles (EQ25-75).

Results:

<table>
<thead>
<tr>
<th>Table 1: Glucose and OGTT Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Glucose and OGTT Results</td>
</tr>
</tbody>
</table>
| **403**
| **Diabetic patient or patients with diabetes: an approach from comorbidity in primary health care** |

Table 1:

<table>
<thead>
<tr>
<th>Table 1: Glucose and OGTT Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Glucose and OGTT Results</td>
</tr>
<tr>
<td>Diabetic patient or patients with diabetes: an approach from comorbidity in primary health care</td>
</tr>
</tbody>
</table>

404

Prevalence of diabetes mellitus and pre-diabetes in an Irish cohort age 45-75 years

Backgrounds and aims: Type 2 diabetes (T2DM) and pre diabetes are preventable if known risk factors are identified and modified. To date there have been no large-scale studies of the prevalence of T2DM or pre-diabetes in Ireland. To address this issue the largest Irish health insurer, (covering over 62% of individuals with Private Medical insurance; 1.4 million members), has undertook a study of the prevalence of undiagnosed T2DM and pre diabetes by screening 30,000 members. We report results from the first year of screening. To identify the prevalence of undiagnosed T2DM, impaired fasting glucose (IFG), impaired glucose intolerance (IGT) and diabetes risk in an Irish population.

Materials and methods: Members without a diagnosis of T2DM, aged 45 to 75 years living within 5 km of two major University Teaching Hospitals in Dublin, were chosen randomly and invited to participate. Participants completed a detailed medical questionnaire. Fasting plasma glucose (FPG), lipid profiles, blood pressure, weight, height, BMI, waist circumference, and waist-hip ratio were measured. Those subjects with initial FPG results of greater than or equal to 5.6 less than or equal to 6.9mmol/L had an Oral Glucose Tolerance Test (OGTT) performed. Those with an FPG greater than or equal to 7.0mmol/L had a repeat FPG performed. The Diabetes Risk Score was calculated based on FINRISK.

Results: 3771 participants (2125 female / 1646 male), were screened. Mean Age 60 ± 8.3 years (59.8 years ±8.2 for women; 60.2 years ± 8.3 for men). In the total screened group: T2DM = 1.8%, IFG = 6.5%, IGT = 3.8%. However among those subjects with an FPG between 5.6-6.9 mmol/L: T2DM = 5%, IFG = 26%, IGT =15%. Glucose and OGTT results are summarised in the Table 1. Diabetes Risk Score results indicated that over 25 % of participants had a moderate or greater risk of developing T2DM (15 % women; 10 % men).

Conclusion: The prevalence of undiagnosed T2DM in the population screened to date is low, however over 10% of participants have pre-diabetes. Performing an OGTT as follow up on FPG 5.6-6.9 mmol/ identified either T2DM or pre diabetes in 46% of those tested. In conclusion screening for T2DM or pre diabetes is achievable in this setting, identifies unreco gnised vascular and diabetes risk and could lead to disease prevention if the identified risk factors are modified.

Table 1:

<table>
<thead>
<tr>
<th>Table 1: Glucose and OGTT Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Glucose and OGTT Results</td>
</tr>
<tr>
<td>Diabetic patient or patients with diabetes: an approach from comorbidity in primary health care</td>
</tr>
</tbody>
</table>

Table 1:

<table>
<thead>
<tr>
<th>Table 1: Glucose and OGTT Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Glucose and OGTT Results</td>
</tr>
<tr>
<td>Diabetic patient or patients with diabetes: an approach from comorbidity in primary health care</td>
</tr>
</tbody>
</table>
Background and aims: Diabetes-related complications and physical impairment are more prevalent in old age, and are likely to have detrimental effects on health-related quality of life (HRQOL) and cardiovascular mortality, and the role of age in this relationship.

Materials and methods: Between 1998 en 1999, 1353 primary care patients with type 2 diabetes mellitus (T2DM) participated in the ZODIAC study, a prospective observational study. Early 2009, data on mortality were collected. HRQOL at baseline was assessed using the RAND-36 questionnaire. A Cox proportional hazard model was used to investigate the relationship between HRQOL and mortality. Analyses were performed in strata according to age: ≤ 75 years (n=979) and >75 years (n=374). The following variables were selected as possible confounders: age, gender, smoking (yes or no), systolic blood pressure, BMI, duration of diabetes, macrovascular complications (yes or no), albumin-creatinine ratio, serum creatinine level, total cholesterol-HDL ratio, and HbA1c.

Results: After a follow-up time of 10 years, 570 out of 1353 patients (42%) had died, of whom 280 deaths (41%) were attributable to cardiovascular causes. The Physical Component Summary (PCS) in both age groups was inversely related to all-cause and cardiovascular mortality (table 1; the hazard ratios refer to an increase of 10 points in the HRQOL scores). For the Mental Component Summary (MCS) an inverse relationship was observed only for patients aged 75 years of younger. Two separate RAND-36 dimensions were inversely related to all-cause and cardiovascular mortality in both age groups: physical functioning and general health perception.

Conclusion: Decreased HRQOL was related to increased all-cause and cardiovascular mortality in both younger and older patients with T2DM. These results are of special interest for elderly patients, since traditional risk factors become less predictive of mortality at higher age. HRQOL may be a useful tool to identify elderly patients at high-risk of mortality.

PS 18 Diabetes comorbidities: hospitalisation and cancer

Analysis of hospital admission causes in diabetic patients

Background and aims: To describe the clinical features of diabetic patients who require hospital admission and the main reasons.

Materials and methods: Descriptive cross-sectional, observational study. Participants and settings: 584896 persons assigned to one of the Primary Health Care Centres attached to a reference hospital. From Primary Health Centres and hospital medical records, clinical data, number of admission and diagnostics that motivated during 2007 were registered. Hospitalization episodes were pooled using the patients DRGs (diagnostic related groups) classification system.

Results: 26845 patients were diabetics (4.6%), of which 10.6% (2840) had at least one admission. 51.6% of admitted were women and 52.2% of those who never was admitted during 2007, p = 0. 56. Admitted diabetic patients were coronary atherosclerosis 2.5%, congestive heart failure 2.0%, leg degenerative osteoarthritis 1.8% and intermediate coronary syndrome 1.6%. The admissions obtained by major diagnosis categories (MDC) distribution was 23.6% circulatory, 9.9% musculoskeletal, 9.6% respiratory and 9.2% digestive pathology. Episodes concerning endocrine, nutritional and metabolic were 4.6% of the cases. DRGs associated to diabetes appear only in 2.6% of hospitalizations. More frequent DRGs were respiratory disorders (3.4%) excluding infections, bronchitis and asthma complications or major co-morbidity, followed by two related heart failure DRGs (4.7%) Avoidable hospitalizations according to list of validated Ambulatory Care Sensitive Conditions (ASC) for Spain diabetes codes were only 39 cases (0.97%) of this admissions group.

Conclusion: Cardiovascular pathology is the most usual cause of hospitalization in diabetic patients. Other complications of diabetes do not appear to be frequent admission reasons for patients with diabetes. A limited number of hospital admissions of diabetics are avoidable, which may reflect an appropriate management of diabetics in Primary Health Care.

Supported by: Fondo de Investigación Sanitaria, Instituto de Salud Carlos III

The impact of diabetes mellitus in a tertiary hospital

Background and aims: The number of people with diabetes worldwide is set to double in the next 20 years. The impact of diabetes mellitus and associated co-morbidities on a tertiary hospital is not completely understood. The aim of this study is to characterize the diabetic population admitted to our Hospital and analyze its evolution in the years 2000, 2005 and 2009.

Materials and methods: A retrospective, descriptive and correlational study, encompassing patients with diabetes (as primary or secondary diagnoses) admitted to a tertiary Hospital in the years 2000, 2005 and 2009 was performed. We evaluated age, gender, type of diabetes, cause of admission, length of stay, macrovascular complications, such as acute myocardial infarction and stroke and in-hospital mortality. Our results were compared with a national diabetes database. We used the International Classification of Diseases-9-Clinical Modification and the information provided by the local Medical Support System database. Statistical analysis of the data was performed using Statistical Package for Social Sciences 18. Inferential statistics (t test, ANOVA and X2)was used to conduct an analysis of age, length of stay and in-hospital mortality predictors.

Results: The total patients admitted to our Hospital in these three years was 85588, 24635 in the year 2000, 30261 in the year 2005 and 30692 in the year 2009. In these years, 872 patients (4%), 1874 patients (6%) and 2205 patients (7%) had the diagnosis of diabetes, as primary or secondary, diagnoses in a total of 4951 diabetic patients (6%), 2624 (53%) male. The rate of diabetes as
a primary diagnosis was 14.3% and among these 30.6% were type 1 diabet-
es. We included patients of all ages (9 months - 100 years) with a mean of
69±16 years (2000: 68±16 years; 2005: 69±16 years; 2009: 70±16 years).
In patients with type 1 diabetes the average age was 59±28 years and in patients
with type 2 diabetes 69±15 years (p<0.001). Acute myocardial infarction
was the primary diagnosis in 335 diabetic patients (7.1%) and stroke in 91 pa-
tients (1.8%). The average length of in-hospital stay of diabetic patients in the
three years was 10±12 days. The average length of stay of type 1 diabetic
patients was lower comparing with patients with type 2 diabetes (p=0.019).
Age (p<0.001) and macrovascular complications (p<0.001) were also predic-
tors of increased length of stay. Comparing the average hospitalization time
between diabetic and non-diabetic patients, there was no significant differ-
ence (p=0.202) in year 2000. Inversely, there were significant differences in
the years 2005 (p<0.001) and 2009 (p<0.001). The in-hospital mortality rate
in diabetic patients was three times higher than that of non-diabetic patients
(12% versus 4%, p<0.001). Age (p<0.001), diabetes as secondary diagnosis
(p=0.013) and macrovascular complications (p=0.004), were predictors of high
mortality.
Conclusion: 1- The number of hospitalizations and the average age of diabetic patients, as
primary or secondary diagnosis, have increased over a ten year period.
2- Patients with type 2 diabetes have a longer length of stay than patients with
 type 1 diabetes, probably related to their advanced age.
3- The average length of stay and in-hospital mortality in diabetic patients
were higher comparing with national diabetes database.
4- This study suggests the need for a more aggressive intervention in the pre-
 vention, diagnosis and treatment of diabetes mellitus, reinforcing the need
for optimal metabolic control for prevention of macrovascular complications.

408
Gender effect on the relation between diabetes and hospitalisation for heart failure
C. Seghieri1, S. Nuci1, G. Seghieri2, F. Bardelli3, F. Franceschi1
1Scolar Superiore S.Anna, University of Pisa, 2Dept of Internal Medicine, Spedali Riuniti, Pistoia, 3Dept. of Pharmacology, University of Sarsari, Italy.

Background and aims: Heart failure (HF) is a major cause for hospitaliza-
tion especially in the elderly, and, at the same time, is mainly due to ischemic
heart disease which, as well known, is strongly related to diabetes mellitus. It
is likewise known that women are more protected than men toward the risk of
cardiovascular diseases at least during the premenopausal period, while
diabetes fully reverses such advantage, conferring to postmenopausal females
a higher risk for cardiovascular complications and consequently HF. With
such premises one can expect that gender difference is able to modify the as-
sociation between diabetes and HF hospitalization, but no clear information
so far exists about this point. More details on this point might be obtained by
the availability of a wide centralized database containing all discharges across
a given period from hospitals of a homogeneous region.

Materials and methods: To achieve this purpose we used a database concern-
ing all hospital discharges from the wards of internal medicine (n=362,352M
and n=385,806F) and of cardiology (n=91,411M and 49,212F) in Tuscany,
Italy (3,686,377 inhabitants) during the period 2002-2007 with a DRG de-

erived from the corresponding ICD-9-CM codes of diabetes (250.xx) and/or
of HF (DRG 127, containing ICD-9-CM codes 401.91, 402.01, 402.11, 402.91,
404.01, 404.3, 404.13, 404.93, 428.0, 428.1, 428.9) as main or secondary di-
agnosis. We considered discharges above age of 30 years due to the very low
prevalence of HF below this age and calculated the relative risk and 95% CIs
of being diagnosed diabetic in patients hospitalized for HF, stratified for age
and sex.

Results: HF related hospitalization rate increased with age from 2.3% in the
age group 30-39yr to 27.3% in the age group ≥80yr in men and from 1.1% to
30% in females, while diagnosis of diabetes progressively increased from the
first decade to a maximum in age class 70-79yr (16.4% in men and 18.1% in
females) and then decreased with further ageing in both sexes. The relative
risk (95% CI) of HF hospitalization was about two-fold higher in diabetic
than in non diabetic individuals across the entire observation period [1.97
(1.34-3.41) in males and 2.16 (1.60-3.53) in females]. The association dia-
tes-HF had a ‘horse-shoe’ pattern significantly raising in decade 30-39yr [2.27
(1.34-4.03)] (only in males), then reaching a maximum in class 40-49yr for
males [3.24 (2.64-3.53)] and in decade 50-59yr for women [3.75 (1.94-4.03)],
and afterwards progressively decreased, remaining more elevated in females
during the entire period 40-69yr, and becoming equal in both genders during
the following decades.

Conclusion: Hospitalization risk for HF was about two-fold higher in pa-
patients of both sexes with diabetes, being more elevated in females than in
males in the life period ranging between 40 and 60 years, thus disclosing a
risk peak linked to the existence of a ‘perimenopausal effect’.
Supported by: Fondazione Cassa di Risparmio di Pistoia e Pesca, Italy

409
Glucose status in emergency medical admissions to one of the five busiest
emergency hospitals in the Republic of Ireland
G.A. Roberts1, D.B. Moore2, K.T. O’Brien3, S.E. Manley3
1Waterford Institute of Technology, Ireland, 2Clinical Biochemistry, University Hospital Birmingham NHS Foundation Trust, United Kingdom.

Background and aims: Decreasing physical activity and increasing obesity
of ageing populations in Western Europe contribute to increased incidence
of impaired glucose tolerance (IGT) and diabetes mellitus (DM). Stress hy-
poglycaemia is common in acutely ill patients. Dysregulation of glucose
is associated with increased morbidity / mortality and has major financial
implications for healthcare. In this study, glycaemic status was determined
in emergency medical admissions to the one of the five busiest emergency
hospitals in the Republic of Ireland.

Materials and methods: During an 18 month time frame, an unselected subset
(14%) of all 8659 emergency medical admissions were enrolled in the study.
Patients with prior diagnosis of diabetes, impaired fasting glucose (IFG) or
IGT were recorded. In the remaining patients, a 75g OGTT was performed on
patients (18 years or older) who displayed symptoms of diabetes or a his-

tory suggestive of diabetes complications. OGTT glycaemic status was re-
corded according to WHO 2006 definitions.

Results: 270 of the sample admissions had previously diagnosed type 1, type 2,
or IGT. 6 new cases of type 1 diabetes were diagnosed at the time of admission
without the need for OGTT. 719 sample admissions (58%) did not meet the inclusion
criteria for performing the OGTT. 20 of the sample admissions were excluded from
the OGTT due to age <18 years or known end-

docrine disease. OGTT was performed in the remaining 222 (18%) of sample
admissions. All 222 were Caucasian with median age 71 years, IQ range 58
years to 81 years, 122 (55%) male. 55% were admitted due to cardiovascular
illness, 12% due to neurological illness (including stroke or transient ischaemic
attack) and 12% due to respiratory illness. 78 (35%) of OGTT screened pa-
tients were demonstrated to be normoglycaemic. 84 (38%) of OGTT screened
patients demonstrated IGT and 53 (24%) demonstrated FPG or 2h-PG in the
diabetic range. 144 (65%) of OGTT screened patients had abnormal glucose
states that were previously undiagnosed representing 12% of the admissions
sample. Adding to the 270 (22%) of admissions who had previously known
abnormal glucose states, we demonstrated a minimum of 33.5% of emergen-
cy medical admissions and that had abnormal glucose states.

Conclusion: This study indicates that 65% of patients admitted to one of
the five busiest emergency admissions hospital of Ireland with symptoms of
diabetes or its complications but not previously diagnosed with glucose dys-
regulation had impaired glucose tolerance or diabetes diagnosed by a OGTT
during their stay. Whether this persists after their recovery needs to be as-
certained, however there is still a considerable burden on diabetes services
during their acute admission stay.

Emergency medical hospital admissions screened by OGTT for altered
glucose status
(Patients had no previous known altered glucose state but displayed symptoms of diabetes or a
history suggestive of diabetes complications)

\[
\begin{array}{c}
\text{New OGTT (n=110)} \\
\text{30%} \\
\text{Normal OGTT (n=222)} \\
\text{New IGT (n=111 new}} \\
\text{and IGT)} \\
\text{38%} \\
\text{New Type 2 DM (n=19)} \\
\text{24%}
\end{array}
\]

\[\text{Normal OGTT (n=222), New OGTT (n=111 and IGT), New IGT (n=111, new IFG and IGT), New Type 2 DM (n=19).}
\]
Elevated basal insulin increases the risk for total mortality in cancer incident subjects: The Israel Glucose Intolerance, Obesity and Hypertension 25-year Follow-Up Study

R. Dankner1,*, A. Chetrit1,†, C. Cohen1,‡, I. Segal1

1Unit for Cardiovascular Epidemiology, Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, †Epidemiology and Preventive Medicine, School of Public Health, Sackler School of Medicine, Tel Aviv, ‡Endocrinology, Sackler School of Medicine, Tel Aviv, Israel.

Background and aims: Type 2 diabetes has been associated with increased incidence, in the range of 1.2-2.5, for cancers of the liver, pancreas, endometrium, breast, colon, and bladder, and non-Hodgkin's lymphoma. Possible upstream factors, i.e. shared risk factors of diabetes and cancer, such as obesity, hyperlipidemia, and baseline hyperinsulinemia, have been suggested as explanations. The aim of this study was to investigate endogenous insulin as a risk factor in 25-year cumulative cancer incidence and as a prognostic factor among subjects who developed cancer.

Materials and methods: We followed cancer incidence and mortality in a sample of 1770 non-diabetic men and women, with mean age at baseline of 52.1±8.0, from 1980 until 2005. Baseline fasting, 1 and 2-hour post-load plasma insulin levels were recorded. Cancer events were self-referred and confirmed with data obtained about hospital admissions and treatment prescriptions. The risk of cancer was compared between 6721 subjects (8 were lost due to absence of reply) with and without diabetes (chi-squared, Yates' continuity correction). In order to adjust for possible confounders, a multiple logistic regression analysis was performed, including the overall risk of cancer as the dependent variable and age, gender, body mass index, years of smoking and parental history of cancer as independent variables. A p value below 0.05 was considered significant.

Results: Information was available for analysis from 6721 subjects of the cohort. The overall prevalence of cancer was 1.8%: 3.9% among the diabetic and 1.5% among the non-diabetic subjects (OR 2.604 [95% CI 1.694-4.002], p=0.0005). After adjustment for possible confounders, the association between diabetes and cancer remained significant (OR 1.633 [1.034-2.579], p=0.036). Gender (OR 0.511 [0.327-0.797], p=0.004 for males), age (OR 1.067 [1.048-1.086] per year, p<0.0005) and maternal history of cancer (OR 2.391 [1.598-3.579], p<0.0005) were also associated with cancer in this medium size years of smoking, body mass index and paternal history of cancer were not.

Conclusions: Diabetes is associated with an increased risk of cancer in the Canarian population, independently of age, gender, body mass index, smoking and parental history of cancer.

410

411 Diabetes is associated with an increased risk of cancer in the Canarian population

A. Arín Martínez1,*, A. Cabrera de León1, M.C. Rodríguez Pérez1, D. Almeida González1, B. Brito Díaz1, J. Nóvoa1,‡, A. González Hernández1,‡, A.M. Wäagner1,‡

1Endocrinology Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, 2Research Unit, Hospital Universitario Nuestra Señora de Candelaria. Universidad de La Laguna, Santa Cruz de Tenerife, 3Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Las Palmas de Gran Canaria, 4Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Las Palmas de Gran Canaria, Spain.

Background and aims: While obesity has shown an association with most types of cancer, the association of diabetes with the disease is still controversial. The Canary Islands (Spain) have a high prevalence of obesity (32% of the adult population) and diabetes (13%) and the metabolic syndrome (25.3%, according to the criteria of the International Diabetes Federation). Furthermore, some types of cancer are also increased in our population, especially breast cancer. The aim of this study was to assess the relationship between diabetes and the risk of cancer in the Canarian population.

Methods: A cross-sectional study was performed on the subjects enrolled in the "CDC (cancer, diabetes and cardiovascular disease) of the Canary Islands", a population-based cohort of 6729 individuals, aged 18-75 years, chosen randomly from the census of health care system affiliates (covering 99% of the population). Recruitment took place between 2000 and 2005. Clinical information was obtained using a questionnaire, anthropometric measurements were taken and blood samples were drawn. Diabetes was defined if the patient had a known diagnosis and/or received glucose-lowering treatment. In the absence of information confirming the diagnosis, diabetes was defined by fasting glucose concentrations above 125 mg/dL on two separate occasions. Cancer was self-referred and confirmed with data obtained about hospital admissions and treatment prescriptions. The risk of cancer was compared between 6721 subjects (8 were lost due to absence of reply) with and without diabetes (chi-squared, Yates' continuity correction). In order to adjust for possible confounders, a multiple logistic regression analysis was performed, including the overall risk of cancer as the dependent variable and age, gender, body mass index, years of smoking and parental history of cancer as independent variables. A p value below 0.05 was considered significant.

Results: Information was available for analysis from 6721 subjects of the cohort. The overall prevalence of cancer was 1.8%: 3.9% among the diabetic and 1.5% among the non-diabetic subjects (OR 2.604 [95% CI 1.694-4.002], p=0.0005). After adjustment for possible confounders, the association between diabetes and cancer remained significant (OR 1.633 [1.034-2.579], p=0.036). Gender (OR 0.511 [0.327-0.797], p=0.004 for males), age (OR 1.067 [1.048-1.086] per year, p<0.0005) and maternal history of cancer (OR 2.391 [1.598-3.579], p<0.0005) were also associated with cancer in this medium size years of smoking, body mass index and paternal history of cancer were not.

Conclusions: Diabetes is associated with an increased risk of cancer in the Canarian population, independently of age, gender, body mass index, smoking and parental history of cancer.

412

Diabetes and cancer in Mauritius

D.J. Maglione1, S. Soderberg1,*, P. Zimmet3, S. Kowlessur1, V. Pauvaday1, J.E. Shaw2

1Population and profiling, Baker IDI Heart and Diabetes Institute, Melbourne, Australia, 2Department of Public Health and Clinical Medicine, Cardiology, Umeå University Hospital, Sweden, 3Ministry of Health and Quality of Life, Port Louis, Mauritius.

Background and aims: Although evidence supporting the association of diabetes with cancer risk is growing, there are no data on diabetes and cancer in South Asian and Africans populations. The aim of this work was to explore the relationship between diabetes, impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) and all-cause and site-specific cancer mortality adjusted for conventional risk factors in a large multi-ethnic cohort living in the developing nation of Mauritius.

Materials and methods: Population-based surveys were undertaken in Mauritius in 1987, 1992 and 1998 (n= 9559). Participants were aged 18 years or greater and 66%, 27%, and 7% were of South Asian (Indian), African (Creole and Chinese descent, respectively. Response rates for all surveys were greater than 85%. Questionnaires, anthropometric measurements, and a 2 hour 75-g oral glucose tolerance test were undertaken at each survey. Glucose tolerance was classified according to World Health Organisation 1999 criteria. In 2007, a mortality follow-up was undertaken. Cox's proportional hazards model with age as the time scale was used to obtain hazard ratios (HRs) for all-cause cancer and site-specific cancer mortality, adjusted for sex, smoking, prior CVD, ethnicity, hypertension, education, waist and hip circumference, and leisure time physical activity.

Results: Over a median follow-up of 15.1 years, there were 1559 deaths (19% due to cancer), 7148 survivors and 832 participants were lost to follow-up. After exclusion of deaths in the first year after baseline, compared with those with normal glucose tolerance (NGT), the all-cancer mortality HRs (95% confidence intervals (CI)) for known diabetes mellitus (KDM), newly diagnosed diabetes mellitus (NDM), impaired glucose tolerance and impaired fasting glycaemia were 2.34 (1.49 to 3.79), 1.80 (1.00 to 3.26), 1.34 (0.73 to 2.46) and 0.80 (0.28 to 2.25) in men and 1.19 (0.63 to 2.22), 0.58 (0.26 to 1.33), 1.34 (0.80 to 2.27) and 0.53 (0.13 to 2.22) in women, respectively. In men, but not women, total cancer mortality risk increased with rising plasma levels of postload glucose - HR for the top versus bottom quintile was 2.52 (1.34 to 5.39). P<0.025 in fully adjusted models. There was no relationship between fasting plasma glucose and total cancer mortality in either sex. The HRs for breast and reproductive tract cancer mortality for women with diabetes (KDM and NDM) compared to women without diabetes were 2.67 (0.95 to 7.67) and 1.09 (0.28 to 4.26) in South Asians and Africans, respectively after adjustment for age, smoking and waist circumference.

Conclusions: This is the first study in a developing country of the impact of glucose intolerance on cancer mortality in an African or South Asian population. The independent association of diabetes (KDM and NDM) and post-
The study group was 18 non-diabetes individuals with newly diagnosed pancreatic cancer (PC group) (mean age 69.6±8.9 years, BMI 23.0±4.7 kg/m²). 13 age- and body weight-matched healthy subjects served as controls. All subjects underwent oral glucose tolerance test (OGTT) according to WHO protocol with plasma glucose and insulin measurements. HOMA index and fasting plasma adiponectin, TNF-alfa, interleukin-6 (IL-6), interleukin-1beta (IL-1b), sE-selectin, thrombomodulin, soluble adhesion molecules sICAM and sVCAM, and high-sensitive CRP were assessed.

Results: PC and control subjects plasma glucose values in OGTT were at 0 min 98±21 and 90±17, 60 min - 166±43 and 103±36 (p<0.01), 120 min - 173±39 and 90±28 (p<0.001) mg/dl, and plasma insulin at 0 min 3.6±1.8 and 10.2±7.9 (p<0.01), 60 min - 22.3±17.4 and 33.1±21.4, 120 min - 31.9±19.3 and 34.1±44.7 mIU/l. PC patients presented also with significantly greater insulin sensitivity as measured with HOMA than the controls (0.83±0.39 vs 2.34±1.87; p<0.01). Moreover, PC subjects as compared with the controls had significantly greater plasma adiponectin (16132±4329 ng/ml; p<0.001), IL-6 (8.6±4.9 vs 3.9±1.4 pg/ml; p<0.01), thrombomodulin (2.0±0.8 vs 1.1±0.5 ng/ml; p<0.01), sICAM (929±417 vs 318±85 ng/ml; p<0.001) and sVCAM (1668±489 vs 857±312 ng/ml; p<0.001).

Conclusion: Individuals with newly diagnosed pancreatic cancer present with elevated post-challenge plasma glucose associated with significant insulin sensitivity. Diagnosing glucose metabolism disturbances in lean subjects with high insulin sensitivity should point at the possibility of pancreatic cancer as an underlying condition. Moreover, despite absence of insulin resistance, newly diagnosed PC subjects present with clinical markers of subclinical inflammation and endothelial dysfunction.

414

Risk factors for pancreatic cancer aetiology of glucose intolerance

L. Czupryniak1, A. Gasiorowska1, R. Talar-Wojarowska1, E. Szymanska-Garbac1, M. Pawlowski2, M. Saryusz-Wolska2, A. Borkowska2, E. Malecka-Panas2, J. Loba3;
1Internal Medicine and Diabetology Department, Medical University of Lodz, 2Digestive Tract Diseases Department, Medical University of Lodz, Poland.

Background and aims: Relationship between the incidence of pancreatic cancer and the development of diabetes is unclear. Diabetes has been suggested to be a risk factor for pancreatic cancer. On the other hand, glucose intolerance or frank diabetes is often the first sign of a pancreatic cancer, a fatal disease unless diagnosed at a very early stage. However, at present with diabetes being so prevalent, cancer etiology of glucose intolerance might be easily missed, bringing fatal consequences upon a patient. We studied glucose tolerance in patients with newly diagnosed pancreatic cancer aiming at identifying factors suggestive of cancer etiology of glucose metabolism disturbances. The additional aim of the study was to assess endothelial dysfunction and subclinical inflammation as markers of cardiovascular risk, often neglected in this group of patients.

Materials and methods: The study group was 18 non-diabetes individuals with newly diagnosed pancreatic cancer (PC group) (mean age 69.6±8.9 years, BMI 23.0±4.7 kg/m²). 13 age- and body weight-matched healthy subjects served as controls. All subjects underwent oral glucose tolerance test (OGTT) according to WHO protocol with plasma glucose and insulin measurements. HOMA index and fasting plasma adiponectin, TNF-alfa, interleukin-6 (IL-6), interleukin-1beta (IL-1b), sE-selectin, thrombomodulin, soluble adhesion molecules sICAM and sVCAM, and high-sensitive CRP were assessed.
PS 19 Early mechanisms in autoimmune diabetes - animal models

415
An experimental study showing dietary gluten as triggers of type 1 diabetes

J.T.J. Visser1, K. Lammers2, A. Fasano3, H. Harmsen3, G. Welling1, F. Stellard4, N. Bos1, J. Rozing1
1Cell Biology, Section Immunology, University Medical Center Groningen, Netherlands; 2Mucosal Biology Research Center, Baltimore, USA; 3Medical Microbiology, University Medical Center Groningen; 4University Medical Center Groningen, Netherlands.

Background and aims: Type 1 diabetes (T1D) is a multifactorial autoimmune disease and besides genetic susceptibility several environmental factors such as diets and gut microbiota contribute to the onset of the disease. Recent epidemiological data indicate that T1D incidence in Europe might double around the year 2020. Genetic factors cannot explain this dramatic increase, which indicates that changes in environmental factors are mainly responsible. There is accumulating evidence that dietary gluten might be important dietary triggers of T1D. Epidemiological data show that early introduction of dietary gluten increases the chance to develop T1D. Also aberrant immune responses against wheat gluten have been found in T1D patients. In this study we investigated in the diabetes prone (DP/B) rat animal model for T1D whether dietary gluten can modulate diabetes development and potential mechanisms involved such as changes in gut microbiota composition, intestinal barrier function and (innate/mucosal) immune status.

Materials and methods: BBDP rats were fed specific diets with different amounts of gluten. One group received the hydrolysed casein (HC) diet. The HC-diet is gluten free and the proteins are degraded to small fragments leading to the loss of diabetogenic epitopes. The other groups received the HC-diet with 2%, 4% and 10% gluten respectively. The control group received the standard diet with ±4% gluten. Rats were followed for T1D development and fed feces, gut tissue, lymph-nodes and blood were collected. Because gluten can affect intestinal permeability, BBDP rats were subjected to a Lactulose Mannitol (LM) test to measure intestinal permeability in vivo. Composition of gut microbiota was established in the feces by qPCR.

Results: Addition of 10% gluten to the HC-diet completely abrogated the diabetes protective effect of the HC-diet. HC-fed rats (n=21), 50% diabetic median age 85 days vs HC-gluten fed rats (n=14), 90% diabetic median age 76 days (p<0.05, log rank test). Moreover, addition of 10% gluten also completely reversed the HC-diet induced improved intestinal barrier function as shown by a 2-fold increased urinary LM/MA levels (p<0.05, MWU test) and a trend for a reduced ileal expression of claudin-1 mRNA (p=0.1, MWU test). We have shown previously that the HC-diet lowers intestinal bacteria levels of BBDP rats. Yet, the gut microbiota composition of HC fed rats did not differ from HC-gluten fed rats. High levels of anti gliadin antibodies were found in sera of HC-gluten fed rats, indicating systemic immune activation. Effects of gluten on (innate/mucosal) immune status are now under investigation.

Conclusion: Gluten are potent dietary triggers of T1D. Manipulating intestinal barrier function and (innate/mucosal) immune activation might be important mechanisms for this effect. Better insight in how dietary gluten can induce T1D development will lead to dietary intervention strategies in order to reduce the chance to develop T1D in people at risk.

Supported by: Dutch Diabetes Foundation

416
Rapid influx of macrophages into peritoneal cavity of NOD mice after weaning suggests increased permeability to gut bacteria

A.L.M. Hänninen, C. Alam, S. Valkonen; Medical Microbiology and Immunology, University of Turku, Finland.

Background and aims: Increased gut permeability has been proposed as an important mechanism of sensitization against T1D-related autoantigens in gut immune system. The distal part of gut also contains a large ecosystem of microbes, which are important in creating the right balance of helper-T-cell subsets for gut immune responses. Our recent findings indicate an excess of Th17 cells and other inflammatory cells in colons of young NOD mice. The aims of this study were to investigate if this inflammation leads to extra-intestinal manifestations such as increased peritoneal cell numbers, and any signs of bacterial leakage from the gut.

Materials and methods: Peritoneal leukocytes in NOD and BALB/c mice were counted and phenotyped using trypan blue, flow cytometry and real-time PCR. Presence of bacteria was investigated with PCR using primers for bacterial 165-RNA. IL-1β, IL-6 and IL-12 were analyzed using q-PCR.

Results: In peritoneum of 4.5 week-old NOD mice total number of macrophages was 3.0±0.43x10E6 compared to 0.76±0.23x10E6 in BALB/c mice and 0.68±0.51x10E6 in NOD mice fed anti-diabetogenic Prosobee-diet (p < 0.001, one-way ANOVA). At the same age, bacterial 165-RNA PCR revealed the presence of bacterial DNA in peritoneum of 3/20 NOD mice compared to 0/20 BALB/c mice (N.S.). In all 3 cases, sequencing identified the presence of the same bacterial species in NOD peritoneum. The excess of macrophages did not associate with increased production of proinflammatory cytokines in the peritoneum compared to BALB/c mice.

Conclusion: Shortly after weaning, there is a rapid “influx” of macrophages into peritoneum of NOD mice which is prevented by anti-diabetogenic diet. This might at least partially attribute the disease. Further studies are needed to investigate if bacterial overgrowth in NOD mice may stimulate the innate arm of systemic immune responses and break tolerance to autoantigens.

Supported by: Finnish Academy and Piävikkis and Sakari Sohlberg Foundation

417
Daintain/AIF-1 plays important role in the initiation and progress of type 1 diabetes

Z.-W. Chen1,2, X.-Y. Huang1, W. Wang1, Y.-Y. Zhao3
1College of Life Science and Technology, Wuhan, China; 2Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.

Background and aims: Type 1 diabetes (T1D) is characterised by progressive destruction of pancreatic beta cells as a consequence of infiltration by mononuclear cells and lymphocytes. The early stage of the disease process is termed insulitis. The beta cell death in the course of insulitis is suggested to be caused by direct contact with activated macrophages and T-cells, and/or exposure to soluble mediators secreted by these cells, including cytokines, nitric oxide (NO), and oxygen free radicals. The molecular mechanisms for the pathogenesis of T1D are still incompletely understood. Daintain/AIF-1, as an inflammatory factor, is secreted by macrophages and T cells. We have previously demonstrated a densely accumulative daintain/AIF-1 immunostaining in the pancreas of BB rats, an animal model of T1D, when they were suffering from insulitis. The aim of the present study was to further investigate the roles of daintain/AIF-1 in the pathogenesis of T1D.

Materials and methods: Studies were performed in NOD mice, an animal model of T1D, using immunoprecipitation, Western blots, immunohistochemistry, Total Internal Reflection Fluorescence Microscope (TIRFM), flow cytometry, and affinity chromatography.

Results: Using immunoprecipitation followed by Western blot, we found that daintain/AIF-1, as a circulating protein, exists in the blood of non-diabetic Balb/c and diabetic NOD mice, but the plasma concentration in NOD mice was distinctly higher than in age-matched Balb/c mice (40 ug/L vs 10 ug/L, p < 0.001), which suggests that daintain/AIF-1 associates with T1D. We also found that daintain/AIF-1 immunostaining appeared in the pancreas of NOD mice when they already suffered with T1D, and no insulin was detected in the peritoneum of those animals, indicating that daintain/AIF-1 may be involved in the pathogenesis of T1D.

Conclusion: Taken together, these results indicate that daintain/AIF-1 plays an important role in the initiation and progress of T1D. Daintain/AIF-1 is a novel target molecule for prevention and treatment of T1D.

Supported by: Foundation, the Swedish Diabetes Association; Grants of Chinese 863 Program
Previous Coxsackievirus B3 infection in mothers protect offspring from virus-induced type 1 diabetes

P.G. Larsson, M. Flodström-Tullberg.
Center for Infectious Medicine, Dept. of Medicine, H5, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Type 1 diabetes (T1D) results from the destruction of the pancreatic insulin-producing beta cells. It is a complex autoimmune disease involving both genetic and environmental risk factors. Epidemiological studies and clinical observations point to an association between T1D and enterovirus infections, in particular those with Coxsackie B virus serotypes (CVBs). Enteroviruses have been identified in and isolated from the pancreas of newly diagnosed T1D patients. Moreover, enterovirus RNA has been more frequently found in serum from recent-onset T1D patients than in serum from healthy controls. Despite the strong association between enterovirus infections and T1D, recent studies in different human populations (countries) have suggested that the presence of enterovirus infections in the background population shows an inverse relationship with the population incidence of T1D. This counterintuitive finding has lead to the suggestion that enterovirus infections may have a more severe impact in populations where infections occur less frequently (a.k.a. the poliovirus hypothesis). Indeed, low background herd immunity to a pathogen may lead to more severe disease in infected individuals. This may in part be due to a reduced transfer of maternal antibodies to offspring (passive immunity). To date there has been no attempts to experimentally test this hypothesis. Thus, the aim of this study was to establish a model in which we could determine whether maternally transferred antibodies protect genetically susceptible offspring from enterovirus-induced T1D.

Materials and methods: The present study used the SOCS-1 transgenic NOD model (SOCS-1 Tg NOD) that develops T1D rapidly after infection with CVB3 and CVB4, and non-tg NOD mice that do not develop T1D upon infection with these viruses. NOD females were infected intra-peritoneally (i.p.) with an immunizing dose of CVB3 (10^2 pfu). After the acute infection was cleared, infected and uninfected females were bred with SOCS-1 Tg NOD males, progeny was challenged i.p. with a diabetogenic dose of CVB3 (10^3 pfu). Diabetes development was monitored by daily blood glucose measurements. Neutralizing antibodies were quantified by a serum neutralization assay.

Results: Immunized NOD females (n=3) had CVB3-neutralizing antibodies in the serum (p<0.001, vs. uninfected controls, n=4). The majority of SOCS-1 transgenic offspring from uninfected mothers developed T1D after infection (83%, n=10/12). In contrast, only approximately half (54%, n=13/24) of the transgenic offspring from immunized mothers developed T1D (p=0.14).

Conclusion: Preliminary observations suggest that passive immunization via the transfer of antibodies from the mother protects offspring from virus-induced T1D. These results support the extended poliovirus hypothesis as an explanation for the reported inverse correlation between the observed number of enterovirus infections and the incidence of T1D in a population. These studies may also have important implications for the development of an effective therapy to protect neonates from enterovirus infections. Our findings indicate that vaccination of women before childbirth could be an efficient therapy to prevent enterovirus infections in progeny, and thereby possibly also virus-induced T1D.

Supported by: the Swedish Diabetes Research Association and the Swedish Child Diabetes Foundations

Apoptosis resistance of non-obese diabetic mouse thymocytes is mediated by a defective p53 expression and altered microRNA network controlling cell death and proliferation

N. Tormo-Badia, C. Bolmeson, M. Carlén, A. Makowska, S. Ahmad, C.M. Cilio.
Department of Medical Cell Biology, Uppsala University, Sweden.

Clonal deletion during negative selection in the thymus is fundamental in order to establish central tolerance and to avoid the development of autoimmune disorders such as type 1 diabetes (T1D). It has been previously shown that NOD thymocytes display a defect in the establishment of central tolerance as well as and resistance to cell death when exposed to apoptosis inducing agents. However, the underlying mechanisms contributing to these traits are still elusive. The tumour suppressor gene p53 has been demonstrated to be involved in thymocyte apoptosis and is up-regulated in response to DNA damage and during thymocyte selection. Our aim was to study the molecular basis of apoptotic resistance of NOD thymocytes and to understand whether this process could be involved in diabetes pathogenesis in NOD mice. Here we were able to show that NOD mice are unable to up-regulate p53 and caspases 1 and 11 after γ-irradiation compared to wild type C57BL/6 mice. Recently, it has been shown that p53 is regulated by the microRNA (miRNA) family miR-34. We found a decreased expression of mir-34a and mir-34b/c in NOD thymocytes in response to DNA damage. Sequencing of the miR-34 gene family revealed 3 significant polymorphisms in the miR-34a gene in NOD mice. Interestingly, one of the nucleotide variant in NOD miR-34a gene is located in close proximity to a p53 binding site. The miR-34a gene is located in the mouse Idd2.8 diabetes susceptibility locus, and the miR-34b/c genes are clustered in the Idd2 locus. Thus, the miR-34 genes represent potential candidate genes for diabetes development in NOD mice. In conclusion, our results highlight the molecular basis for thymocytes apoptosis resistance observed in NOD mice, which might ultimately predispose to the development of autoimmune diabetes.

Supported by: VR

MafA is a key regulator of insulin expression in the thymus

1Department of Endocrinology, Metabolism and Diabetes, Kinki University School of Medicine, Osaka, Japan, 2Laboratory of Molecular and Developmental Biology, Nara Institute of Science and Technology, Ikoma, Nara, 3Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan.

Background and aims: Tissue-specific self-antigens are ectopically expressed within the thymus and play an important role in the induction of central tolerance. Abnormal regulation of the intra-thymic expression of a certain self-antigen is therefore expected to cause organ-specific autoimmune disease. Insulin is expressed in both pancreatic islets and the thymus, and is considered to be the primary antigen for type 1 diabetes. Here, we report the role of insulin transactivator MafA in the expression of insulin in the thymus and susceptibility to type 1 diabetes.

Materials and methods: The expression profiles of transcriptional factors (Pdx1, NeuroD, MafA and Aire) in pancreatic islets and the thymus were examined in NOD (non-obese diabetic) and control mice (C3H mice). The nucleotide sequence of MafA was identified by direct sequencing in NOD, C3H, Balb/c, CTS and NSY mice. Luciferase reporter assay was performed for newly identified promoter polymorphisms of NOD MafA sequences.

Results: Mafa, Ins2 and Aire expression was detected in the thymus. Mafa expression was significantly lower in NOD thymus than control, and was correlated with Ins2 expression (R=0.809). When the data were stratified by strain, the correlation was stronger in control (R=0.863) than in NOD mice (R=0.393). No correlation was found between Ins2 and Aire in either control C3H (R=0.145) or NOD mice (R=0.0135). The entire nucleotide sequence of mouse Mafa was identical among the control strains (Balb/c, C3H and CTS mice) and an animal model of type 2 diabetes (NSY mice). Only NOD mice showed variation in the nucleotide sequence of Mafa compared to other strains. NOD Mafa promoter activity was significantly lower than that of wild type by 27% (p<0.0001).

Conclusion: These data suggest that Mafa is a key regulator of insulin expression in the thymus, and functional polymorphisms of Mafa are newly identified in the NOD mouse.

Supported by: Grants-in-Aid for Scientific Research (C) and Japan Diabetes Foundation

Altered leukocyte recruitment during inflammation in type 1 and type 2 diabetes models

U.S. Pettersson, S.M. Santos, G. Christoffersson, L. Jansson, J. Henriksson, M. Phillipson; Dept. of Medical Cell Biology, Uppsala University, Sweden.

Background and aims: Diabetes is often associated with a systemic low-grade inflammation, the origin of which is uncertain. Despite the low-grade inflammation, diabetic patients are known to have an impaired bacterial clearance. To fight an infection, leukocytes need to leave the circulation at the afflicted
site, which occurs through regulated steps of activation and interactions of endothelium and leukocytes. The effect of this study was to evaluate leukocyte recruitment in established models of inflammation during high- and moderate hyperglycemia.

Materials and methods: The experimental models of diabetes used in the current study were induced either by i.v. administration of alloxan, causing a severe hyperglycemia, or by a high fat diet, causing a moderate hyperglycemia. In anesthetized diabetic or control C57Bl/6 mice, the number of adherent and emigrated leukocytes was studied using intravital microscopy of the exposed cremaster muscle before and during exposure to the chemokine MIP-2. Bacterial clearance in alloxan- or untreated mice was studied after a subcutaneous injection of luminescent Staphylococcus aureus using a non-invasive IVIS camera system, and the fraction of recruited leukocyte subtypes was analyzed at different time points post infection.

Results: During basal conditions, prior addition of chemokines, both severe and moderate hyperglycemia resulted in increased numbers of adherent and emigrated leukocytes compared to normoglycemic mice. In response to MIP-2 addition, the number of adherent cells was significantly increased in severely hyperglycemic mice compared to control mice. However, alloxan-treated mice demonstrated decreased number of recruited leukocytes after 5 and 10 days post infection and an impaired ability to clear bacterial infections compared to control mice.

Conclusion: In conclusion, in both alloxan-, and high fat diet-induced diabetes, leukocyte recruitment was increased in untreated as well as chemokine exposed cremaster muscles, indicating that acute hyperglycemia activated leukocytes and/or endothelial cells. However, the ability to clear bacterial infections was reduced in alloxan-treated mice due to fewer amounts of recruited leukocytes later in the recruitment process.

Supported by: Thuringen stiftelse

422

Metabolic phenotypes in preclinical autoimmune diabetes in man and mouse: pathways behind progression to overt disease

1VTT Technical Research Centre of Finland, Espoo, 2Aalto University School of Science and Technology, Espoo, 3University of Turku, 4University of Helsinki, Finland.

Background and aims: The incidence of type 1 diabetes among children and adolescents has increased markedly in the Western countries during the recent decades and is presently, for unknown reasons, increasing at a faster rate than ever before. Recent evidence from serum metabolomics indicates that specific characteristic metabolic disturbances precede β-cell autoimmunity markers and accurately identify those children who subsequently progress to diabetes. The causes and tissue-specific mechanisms leading to these early metabolic disturbances are unknown.

Materials and methods: A total of 70 mice (26 female) were monitored weekly with serum collection from age 3 weeks until either (a) the development of diabetes and then followed by treatment with insulin for 4 weeks (progressor group), or (b) followed until 36 weeks of age in females and 40 weeks in males in the absence of a diabetic phenotype (non-progressor group). Global lipidomics using UPLC/MS was applied on all 1172 samples, and a biomarker for diabetes prediction in 8 week old female mice was developed based on insulin autoantibody (IAA) level and the lipidomic profile. Computational statistical modeling was applied to compare and align the longitudinal lipidomic profiles of NOD mice with the profiles of children who later developed diabetes. In an independent experiment normoglycemic female NOD mice were sacrificed at 8 (n=57) or 19 (n=14) weeks of age and blood, liver and pancreas samples were collected. The mice were stratified according to high or low risk of developing diabetes based on lipidomics-derived serum marker. Additionally, lipidomics, metabolomics (GCxGC-TOFMS) and transcriptomics were applied to isolated islets and liver.

Results: The specificity of the pre-autoimmune metabolic changes identified in serum lipidomes of human type 1 diabetes progressors, as indicated by their conservation in murine model of type 1 diabetes. We show that young female non-obese prediabetic mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern than prediabetic children, and that these changes are accompanied by dysregulation of specific metabolic and immunoregulatory pathways in pancreatic islets and liver. Specifically, plasma insulin, insulinoceptive amino acids in islets, and pathways of liver insulin signaling were already significantly upregulated in those prediabetic mice at high risk of developing diabetes. The pathogenic relevance of these metabolic pathways is further suggested by the observation that insulin autoantibody-positive mice, that were protected from diabetes, had reduced mitochondrial pathways including OXPHOS in the islets.

Conclusion: The findings indicate that autoimmune diabetes is preceded by a state of islet increased metabolic demands resulting in elevated insulin secretion and suggest alternative metabolic related pathways as potential therapeutic candidate targets.

Supported by: EU FP7 project DIAPREPP
PS 20 Intervention in animal models of type 1 diabetes

423
Depletion of IL-2/15 receptor beta-positive cells protects from diabetes in non-obese diabetic mice: role of natural killer cells and a subset of CD8+ T cells

H. Brauner,1,2 S. Johansson,1 H. Hall,1 M. Flodström-Tullberg,2 K. Karese,1 P. Höglund2

1Microbiology, Tumor and Cellbiology; 2Center for Infectious Medicine, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

Background and aims: A role for natural killer (NK) cells in type 1 diabetes has been suggested, but the literature is conflicting. We have recently shown NK cells with unique phenotypic and functional properties in the pancreas of NOD mice. This project aims at elucidating a possible role of NK cells in type 1 diabetes (T1D) by applying in vivo depletion of NK cells in non-obese diabetic (NOD) mice using the monoclonal antibody TMB1.

Materials and methods: TMB1 is a monoclonal antibody directed against the beta chain of the murine IL-2/15 receptor (CD122). CD122 is highly expressed on all NK cells and on a small subpopulation of CD8+ T cells in the spleen. 200ug of the antibody to CD122 (TMB1) was given i.p. once weekly to NOD mice and urine glucose measured. The effect on NK cells and T cell subsets were investigated in the pancreas, spleen and draining pancreatic lymph nodes (PLN). In order to investigate the presence and phenotype of pancreatic lymphocytes without contamination of lymphocytes from blood or lymph nodes the mice were flushed with PBS via the heart and lymph nodes removed under microscopy. The effect of TMB1 treatment on lymphocyte infiltration into the pancreas was also explored using immunohistochemistry. NK cell function after TMB1 treatment was assessed in vivo as the elimination of fluorescently labelled MHC class I-deficient spleen cells. The influence of TMB1 treatment on primary CD8+ T cell responses was studied as IFNg production following immunization with the non diabetogenic antigen GP33. The TMB1 effect on priming in the draining lymph nodes was investigated in an adoptive transfer model where BDC2.4 transgenic CD4+ T cells bearing a diabetogenic TCR were labelled with cells labelled with the fluorescent dye CFSE and transferred to NOD mice treated with TMB1 or PBS. CFSE distributes equally in divided cells, and was used to measure proliferation after 3 days.

Results: In vivo administration of the TMB1 antibody to non-obese diabetic (NOD) mice protected against diabetes development when administered just before disease onset. Depletion removed all NK cells and most CD122-expressing CD8+ T cells in the spleen. Some CD8+ T cells in the pancreas also disappeared despite lack of CD122 expression, suggesting either an indirect effect of NK cells, or reduced trafficking of CD122+ peripheral T cells to the pancreas. NK cell function is totally abolished after TMB1 treatment whereas specific NK cells, or reduced trafficking of CD122+ peripheral T cells to the pancreas. Depletion of IL-2/15 receptor beta-positive cells protects from diabetes in NOD mice.

Conclusion: These results show that TMB1 administration via the pancreatic duct is an efficient approach for genetic manipulation of the pancreas. This approach could be used to study islet and pancreas physiology and also to assay new gene therapy approaches for Diabetes Mellitus and other pancreatic disorders.

Supported by: SAF2008-00962 and the EC (FP6 CLINIGENE)

424
Efficient gene transfer to the pancreas using adeno-associated viral vectors for prevention of type 1 diabetes in mice

A. Casellas1,2, V. Jimenez1,2, E. Ayuso1,2, J. Agudo1,2, M. Obach1,2, A. Salavert1,2, S. Muñoz1,2, X. Leon1,2, M. Moya1,2, D. Ramos1,2, J. Ruberte1,2, F. Bosch1,2

1CIBER of Diabetes and Associated Metabolic Disorders, Barcelona, 2Microbiology, Tumor and Cellbiology, School of Veterinary Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain.

Background and aims: Gene therapy may provide new treatments for severe pancreatic disorders. However, gene transfer to the pancreas is difficult because of the anatomic location and structure, and pancreatitis is a serious concern. We have previously shown that pancreatic beta cells can be transduced to express marker genes after systemic injection of first generation adenovirus (FGAd) in mice with clamped hepatic circulation. However, FGAd are not suitable for long term effects because the immune system recognizes and eliminates transduced cells due to the expression of viral genes. Here we investigated whether adeno-associated viral vectors (AAV), which lack all viral genes, are low immunogenic and capable of long-term expression, were able to mediate efficient gene transfer to the pancreas.

Materials and methods: AAV serotypes 6, 8 and 9 carrying GFP as a marker gene or murine hepatocyte growth factor (mHGF), were generated by triple transfection in 293 cells and were purified by double cesium chloride gradient. AAV vectors were administered into the pancreatic duct through the sphincter of Oddi while the choledoc was clamped close to the liver edge.

Results: The intraductal injection of several doses of AAV6, AAV8 and AAV9 vectors coding GFP resulted in an efficient transduction of the exocrine and endocrine pancreas. The number of transduced acinar cells increased in a dose dependent manner and AAV9 was the most efficient serotype transducing these cells. Transduction of ductal cells was only observed when AAV6 was administered intraductally. AAV6, AAV8 and AAV9 vectors administered via the pancreatic duct transduced beta cells in the periphery of the islets. Moreover, beta cells in the periphery and in the core of the islets showed high expression of AAV6, AAV8 and AAV9 were administered to the pancreas. However low percentage of alpha cells were transduced by AAV serotypes 6, 8 and 9. Furthermore, the intraductal administration of AAV9 vectors coding mHGF resulted in partial prevention of T1D in a transgenic animal model of diabetes.

Conclusion: These results show that AAV administration via the pancreatic duct is an efficient approach for genetic manipulation of the pancreas.

Supported by: Swedish Research Council, Swedish Diabetes Association
Ciliary neurotrophic factor prevents, delays and ameliorates type 1 diabetes in Swiss, C57Bl6 and INOS-/- mice

L.F. Rezende, G.J. Santos, E.M. Carneiro, A.C. Boscherio; Anatomy, Cellular Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas, Brazil.

Background and aims: CNTF is a cytokine known for its survival effects in many cell types, including rat pancreatic islets. Type 1 Diabetes (DM1) is characterized by a selective loss of pancreatic islet beta-cell mass and subsequent hyperglycaemia, a condition that can be induced by Multiple Low Doses of Streptozotocin (STZ), a model (MLDS) that resembles human Type 1 Diabetes. The Nitric Oxide (NO) production and Inducible Nitric Oxide Sintase (INOS) expression role on the DM1 onset and progression have been controversial. Given CNTF beta-cell protection against apoptosis, we decided to evaluate the effects of CNTF in a Type 1 Diabetes model that resemble the human disease (MLDS), and since CNTF was described to increase INOS expression and NO production, we assessed whether or not its effects on DM1 would be hampered in a INOS Knockout mice.

Materials and methods: For MLDS, 4-6 weeks-old Swiss, C57Bl6 or INOS-/- mice were administered by intra-peritoneal injection once daily for 5 consecutive days with either saline or 0.1 mg/kg STZ (Cornelius), 40mg/kg of STZ (INOS-/- group) or 80mg/kg of STZ (INOS rescued group) (S) 40mg/Kg of STZ plus 0.1 mg/Kg of CNTF for CNTF group (N). We assessed mice fed glycemia in days -3, 0, 1, 3, 7, 14, 21, 28 and 35 after the first injection. Type 1 diabetes considered as blood glycemia >250 mg/dl for 2 days. We evaluated mice overall glycemia, Type 1 diabetes incidence, severity and time until occurrence. Furthermore, we evaluate INOS mRNA expression in MIN6 cells cultured for 3 days in the absence (CTRL) or presence of 0.1nM, 1nM or 5nM of CNTF by RT-PCR (n=16). Data=Mean + SEM. p<0.05.

Results: In all strains (Swiss, C57Bl6 and INOS-/-), CNTF-treated mice had an overall lower glycemia than STZ group and a lower Type 1 diabetes incidence, although it was more pronounced in the C57Bl6 one. Even among those that developed diabetes in CNTF group, it took them longer to occur and was less severe than the STZ group. CNTF increased INOS expression in MIN6 cells in a dose-dependent manner, but even so, its protective effects against DM1 in INOS-/- strain were similar to those observed in the wild-type C57Bl6.

Conclusion: The results indicate that CNTF protects against STZ-induced Type 1 Diabetes, even in INOS-/- mice strain. Given that CNTF increased MIN6 cells INOS expression in a dose-dependent manner, the CNTF protective effects were not mediated through or hampered by the increased INOS expression, and the functional importance of this increase in INOS expression by CNTF in vivo beta-cells is yet to explained. Lastly, we can conclude CNTF could be a potential therapeutic tool in the prevention or early treatment of DM1 patients.

Supported by: FAPESP/CNPq

Induction of regulatory CD8 T cells after diabetes manifestation by treatment with a rat specific CD3 antibody in the IDDM rat as a tool for protection of pancreatic beta cell function

T. Arndt, S. Lenzen, A. Jorns; Institute of Clinical Biochemistry, Hannover Medical School, Germany.

Background and aims: In human type 1 diabetic patients the residual function of the beta cells, measured by C-peptide, can be restored by treatment with CD3-antibody (AB) for up to one year. Interestingly, in humans it was found that the number of regulatory CD8 T-cells in the blood was increased after therapy with CD3-AB. In this study we treated IDDM (LEW.1AR1-iddm) rats, an animal model of type 1 diabetes mellitus (T1DM), immediately after diabetes manifestation with CD3-AB in analogy to the human therapy. The aim of the study was to analyse changes of the immune cell subpopulations in the blood and pancreas draining lymph nodes of animals treated with CD3-AB in comparison to acutely diabetic animals without therapy and normoglycaemic rats.

Materials and methods: To secure beta cell function after diabetes manifestation, acutely diabetic IDDM rats were treated with CD3-AB (Clon R73 0.5 mg/kg b. wt.) consecutively over 5 days. The effect of the CD3-AB therapy and changes in the immune cell subpopulations were analysed by flow cytometric analysis in the blood and by real time PCR analysis of isolated T-cells from pancreas draining lymph nodes. The infiltration stages of the pancreatic islets in CD3-AB treated IDDM rats were compared to normoglycaemic IDDM rats and diabetic rats without treatment.

Results: In prevention therapy with CD3-AB, initiated directly after diabetes manifestation, the reduction of all T-cells can be monitored by flow cytometric analysis. FoxP3 positive T-cells, especially CD8 T-cells, increased within one week of therapy. The increased number of regulatory CD8 T-cells induced by CD3-AB therapy was observed in all treated IDDM rats in comparison to acutely diabetic rats even though the efficacy of the prevention therapy with CD3-AB was dependent of the metabolic state of the diabetic IDDM rats before start of treatment. Only animals with a blood glucose concentration up to 13 mmol/l at the start of the therapy could be completely cured. After therapy the number of pancreatic beta cells increased in the islets of these animals whereas the signs of immune cell infiltration were less reduced in comparison to the diabetic animals without treatment. Even after a complete clinical remission of diabetes, a certain immune cell infiltration remained in the islets.

Conclusion: Interestingly, analogues to the findings in type 1 diabetic patients with CD3-AB therapy, the IDDM rat is a very good model to analyse the function of regulatory T-cells in the context of CD3-AB treatment to modulate the imbalance of the immune cells during diabetes development by an increase of regulatory T-cells.

Comparison of two type 1 diabetes prevention therapies of a CD3 antibody in combination with FTY720 or a TNF-α antibody on beta cell function in the IDDM rat, an animal model of type 1 diabetes

A. Jorns, M. Akin, G. Ertekin, A. Meyer zu Vilsendorf, T. Taivankhau, S. Lenzen; 1Institute of Clinical Biochemistry, 2Department of Visceral- and Transplantation Surgery, Hannover Medical School, Germany.

Background and aims: The IDDM (LEW.1AR1-iddm) rat is an animal model of type 1 diabetes mellitus without lymphopenia and therefore very suitable for evaluation of combined immunomodulatory therapies. The aim of the CD3-antibody (AB) treatment in combination with the immunomodulatory agent FTY720 or the TNF-α-AB was to protect the remaining pancreatic beta cells from autoimmune destruction after onset of the disease. The CD3-AB interacts with the T-cell receptor to inhibit cytokine production and release from T-lymphocytes, while the sphingosine-1-phosphate receptor antagonist FTY720 retains the lymphocytes in the organ draining lymph nodes and the TNF-α-AB blocks the released TNF-α.

Materials and methods: Animals were treated with CD3-AB (0.5 mg/kg body weight) in combination with either TNF-α-AB (1 mg/kg b. wt.) consecutively over 5 days or over 40 days with FTY720 (1 mg/kg b. wt.). Besides the metabolic changes, pancreatic biopsies at the time point of diabetes manifestation, at the end of therapy, and 60 days after the end of therapy were analysed for beta cell survival and immune cell infiltration by ultrastructure as well as on the gene and protein expression level.

Results: Prevention therapy with both combinations starting immediately after disease manifestation with blood glucose concentration values between 10 - 15 mmol/l reversed classical diabetes leading to normoglycaemia during and after therapy. Morphologically, beta cells in the islets during and after therapy showed a fivefold reduced apoptosis rate and a threefold increased islet beta cell area. Both CD8 T-cells and CD68 macrophages were markedly decreased in the islets at the end of therapy and nearly completely lost 60 days later. The small amount of immune cells surrounding the islets and in the capillary system of the islets lost the pro-inflammatory cytokine expression after therapy. In both combined therapies with the immunomodulatory agents the remaining beta cells in the islets were ultrastructurally well preserved without signs of destruction. The only difference between both combination therapies was the higher amount of macrophages in and around the islets after CD3- and TNF-α-ABs-therapy.

Conclusion: Combined therapy of CD3-AB with FTY720 or with TNF-α-AB showed a great benefit with respect to the survival of pancreatic beta cells with a normalized apoptosis rate in islets without immune cell infiltration in comparison to the initial small number of beta cells and the high apoptosis rate in the severely infiltrated islets before the start of the therapy. The beneficial effects of both strategies could be maintained also after the end of the therapy.
PS 21 Islet autoantibodies in type 1 diabetes

429

Combined measurement of autoantibodies against GAD, IA-2, insulin and ZnT8 in the Diabetes Autoantibody Standardization Program 2009 Workshop

M. Schlosser1, PW. Mueller2, V. Lampasona3, A.J.K. Williams1, P. Achenbach2;
1Department of Medical Biochemistry and Molecular Biology, Ernst-Moritz-Arndt University Greifswald, Karlsruhe, Germany, 2Centers for Disease Control and Prevention, Atlanta, USA, 3Center of Genomics, Bioinformatics and Biostatistics, Milano, Italy, 4Clinical Science at North Bristol, University of Bristol, United Kingdom, 5Diabetes Research Group of the TU Munich, Germany.

Background and aims: The Diabetes Autoantibody Standardization Program (DASP) is a collaboration between the Immunology of Diabetes Society and US Centers for Disease Control and Prevention, Atlanta, USA, 5Center of Genomics, Bioinformatics and Biostatistics, Milano, Italy, 4Clinical Science at North Bristol, University of Bristol, United Kingdom, 5Diabetes Research Group of the TU Munich, Germany.

Materials and methods: Autoantibodies to zinc transporter 8 (ZnT8) were measured in laboratories throughout the world. We assessed the combined detection of these four autoantibodies (AAab) in DASP serum samples considering differences in assay performance.

Results: The number of multiple AAAB positive patient sera increased from 24 (59%) to 46 (92%) in C3. None of the 94 control sera were included in C1 (0%), while 19 IA-2A was positive by at least 90% of assays. Category 2 (C2) included 19 IA-2A sera plus additional sera that were found AAAB positive by at least 50% of assays. Category 3 (C3) included 22 other sera plus sera that were found AAAB positive by at least 25% of assays.

Conclusion: In Japanese patients with diabetes, ZnT8Ab was positive in 51% of T1D and 2% of T2D. In T1D, patients in the age from 13 to 19 demonstrated higher positive rate than older groups. ZnT8Ab seemed to be associated with other autoantibodies, especially such as IA-2Ab, suggesting its similar feature. Combination of ZnT8Ab in addition to GADA and IA-2Ab respectively. In T1D, the prevalence of GADA as a single autoantibody was 77%, and double positive rate with IA-2Ab was 80%. Further addition of ZnT8Ab increased the rate up to 85%. In clinical respects, serum C-peptide demonstrated a significant difference between ZnT8 positive patients and negative patients (0.75±0.57 vs. 0.96±0.66; p=0.024). And body mass index of ZnT8 positive patients was lower than that of negative patients (19±2.1 vs. 21±3.4; p=0.005).

431

The catalytic cysteine of islet antigen 2 is crucial to autoantibody binding in type 1 diabetes

K.T. Elvers1, J.W. Broadhurst1, P.R. Easton2, V. Lampasona3, P.J. Bingley3, A.J.K. Williams1;
1Clinical Science at North Bristol, University of Bristol, 2Cellular and Molecular Medicine, University of Bristol, United Kingdom, 3Center of Genomics, Bioinformatics and Biostatistics, Milano, Italy.

Background and aims: Autoantibodies to islet antigen 2 (IA-2A) are important for characterising the predrome of type 1 diabetes (T1D) and underpin current methods of disease prediction, IA-2A show selective binding to dominant epitopes in the juxtamembrane (JM) and protein tyrosine phosphatase (PTP) regions of IA-2. We have shown that azide and high concentrations of Tween-20 cause large reductions in binding to PTP epitopes of IA-2, possibly by modification of cysteine residues. This could disrupt disulphide bonds or modify the catalytic cysteine of the PTP active site. Our aim was to identify which cysteine residues are critical to autoantibody binding in patients with T1D.

Materials and methods: Candidate cysteine residues within a major epitope region (position 846) and the catalytic cysteine (position 909) of IA-2ic (606-979) were substituted with serine by site-directed mutagenesis. The effects of these changes on autoantibody binding were investigated by radiolabelling assay using in vitro transcribed and translated 35S-labelled antigens (20,000cpm); (1) A panel of 22 well-characterised samples which included 19 IA-2A positive sera from 15 patients with T1D, 3 T1D relatives and 1 T1D standard pool, as well as IA-2 negative sera from 3 healthy controls (2) subset of 35 IA-2A positive patients (19 male) with newly diagnosed T1D (median age 11, range 2 to 19 years).

Results: (1) Mutation of the catalytic cysteine at position 909 caused a large reduction in IA-2A binding by the 19 well-characterised IA-2A positive sera (Figure); median 73%, range 7 to 90%, (p<0.001, Wilcoxon signed rank test), affecting sera for antibodies to both PTP and JM regions. In contrast, cysteine substitution at position 846 had no effect; median 3%, range 31 to 12% (p=0.167). (2) In IA-2A positive patients with T1D, mutation of cysteine 909 caused a median reduction in binding of 60%, range 21 to 79%.
432
Characterisation of IA-2 antibody epitopes by proteolysis of antibody-antigen complexes and mass spectrometry
K.A. McLaughlin1, C.C. Richardson1, K.A. Homer1, M.R. Christie1; 1Diabetes Research Group, Department of Microbiology, Dental Institute, King's College London, United Kingdom.

Background and aims: Destruction of pancreatic beta cells in Type 1 diabetes is T-cell-mediated but circulating autoantibodies are also strongly associated with disease progression. Autoantibody-secreting B-cells participate in diabetes pathogenesis by facilitating antigen processing and presentation and are potential targets for diabetes therapy. Knowledge of autoantibody epitopes will aid the development of antigen-specific, B-cell targeted immune intervention. We have two monoclonal autoantibodies from diabetic patients that recognise dominant epitopes on IA-2, a major target of autoimmunity in the disease. Limited information on these epitopes has been obtained by amino acid substitution experiments. The aim of this study was to further define the antibody binding region by mass spectrometric identification of peptides remaining bound to antibody after proteolysis of antibody-antigen complexes.

Materials and methods: Recombinant protein representing the tyrosine phosphatase (PTP) domain of IA-2, either free or complexed with the Sepharose-bound monoclonal antibodies, was digested with chymotrypsin and antibody-bound peptides eluted at pH 11.7. Peptides were analysed by matrix assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry and identified by mass comparison against a database of IA-2 chymotryptic products. Peptide identity was confirmed by liquid chromatography-tandem mass spectrometry. Acceptance criteria included a mass tolerance of less than 1.5 Da and X-correlation score of greater than 2 for doubly charged ions and greater than 2.5 for triply charged ions.

Results: Mass spectrometry of chymotryptic digestion products of free IA-2 PTP domain identified peptides with broad coverage (78%) of the molecule, whereas peptides eluted from the two monoclonal antibodies were restricted to four regions spanning positions 765-795, 813-832, 833-854 and 885-873. The latter 3 regions are adjacent on the surface of a model of the IA-2 PTP domain and encompass residues previously shown to be important in antibody binding using site directed mutagenesis. The 765-795 region is largely buried within the protein and lies directly beneath the regions previously mentioned. Six cleavage sites (at positions 794, 823, 839, 850, 856 and 872) detected with free IA-2 were never cleaved in peptides eluted from the antibodies, suggesting that antibody protects these sites from protease digestion.

Conclusion: Using antibody footprinting followed by mass spectrometry, we have mapped regions on IA-2 that represent major epitopes for diabetes-associated autoantibodies in Type 1 diabetes, confirming and extending previous studies using site-directed mutagenesis. Peptides remaining antibody-bound after proteolytic digestion closely overlap with areas of known T-cell reactivity in Type 1 diabetes, supporting the concept that B-cells influence the T-cell response through modulation of antigen processing.

Supported by: JDRF

433
Formation of insoluble immune complexes impairs detection of type 1 diabetes-associated autoantibodies in radioligand binding assays
C.C. Richardson, K.A. McLaughlin, M.R. Christie; Diabetes Research Group, King's College London, United Kingdom.

Background and aims: Detection of autoantibodies associated with Type 1 diabetes is commonly achieved using radioligand binding assays. In these assays, complexes of serum autoantibodies with radiolabelled autoantigens are captured on protein A-Sepharose prior to quantification by scintillation counting. We have observed that a proportion of Type 1 diabetic patients show up to 5-fold higher recoveries of immunoprecipitated IA-2 or glutamic acid decarboxylase when serum antibodies are pre-bound to protein A Sepharose prior to incubation with antigen (solid phase assay) than when immune complexes are formed in solution and subsequently captured on protein A Sepharose (liquid phase assay). These observations suggested either the presence of a serum factor inhibiting autoantibody-antigen interactions, or poor binding to protein A Sepharose of immune complexes with autoantibodies of some diabetic patients. The aim of this study was to investigate the cause of these differences using IA-2 as the target antigen.

Materials and methods: Sera were selected from Type 1 diabetic patients showing higher antibody reactivity to IA-2 in the solid phase compared to liquid phase assay. IgG fractions were isolated from sera by protein A-Sepharose affinity chromatography and IA-2-specific autoantibodies affinity purified on IA-2-conjugated Sepharose and eluted at pH 11.7. Fab fragments of IgG were generated by papain cleavage. Antibody binding to radiolabelled IA-2 was analysed in two assay formats: i) where antibodies were pre-bound to protein A Sepharose and washed before addition of in vitro transcribed and translated IA-2 (40,000 cpm per reaction) for 4 h or ii) where antibodies were incubated for 4 h in liquid phase with the radiolabelled IA-2 before protein A Sepharose addition. Protein A Sepharose-bound complexes were washed by centrifugation (5,000 cpm for 30 secs on microfuge) before scintillation counting. Insoluble immune complexes were isolated by centrifugation at 13,000 rpm for 20 mins and washed with 5% polyethylene glycol. All incubations were performed at 4°C.

Results: Increased IA-2 antibody binding in solid phase assay was observed with both serum and protein A sepharose-purified antibodies from diabetic patients, indicating that any factor that may inhibit antibody binding was present in IgG fraction. Inhibitory effects of anti-idiotypic antibodies were shown to be unlikely because Fab fragments of IA-2 antibody-depleted IgG failed to block binding of affinity-purified antibodies to IA-2 in liquid phase assays. However, we were able to demonstrate the presence of radiolabelled IA-2 within insoluble immune complexes isolated from supernatants from the liquid phase assays. These insoluble immune complexes failed to bind protein A Sepharose. Radiolabelled IA-2 was not detected in insoluble immune complexes isolated from solid phase assays.

Conclusion: This study demonstrates that a proportion of Type 1 diabetic patients possess circulating IA-2 autoantibodies that form insoluble immune complexes with antigen with poor binding to protein A. Assays dependent on protein A capture of immune complexes may underestimate autoantibody levels in those patients and these observations need to be considered when designing new protocols for autoantibody detection. The ability to form insoluble immune complexes in vivo may have implications for tissue damage and the regulation of autoimmune responses in the diabetic patient.

Supported by: an EPS/IDRF/Novo Nordisk grant

434
Seroconversion to persistent antibody-positivity occurs frequently after age 10 and is best predicted by GAD antibodies

Background and aims: The appearance of autoantibodies (Ab) before clinical diabetes onset has mainly been studied in children. However, most patients develop type 1 diabetes in adulthood. We studied seroconversion to Ab in first-degree relatives aged 0-39 years to determine 1) age distribution...

Supported by: Diabetes UK
at seroconversion; 2) predictors of Ab-persistence and prediabetes; 3) order of appearance of different Ab-types.

Materials and methods: Seroconverters (n=221) were identified by measuring Abs against insulin (IAA), islet cell cytoplasm (ICA), GAD (GADA), IA-2 (IA-2A) and zinc transporter 8 (ZnT8A-GRCW) during follow-up of 6125 first-degree relatives.

Results: One hundred and five (48%) relatives seroconverted to persistent Ab+. Most seroconversions (63%) occurred after age 10. Persistently Ab+ relatives were more frequently GADA+ (61% vs 23%) and multiple Ab+ (26% vs 2%) (resp. p<0.001 and p<0.008 by logistic regression) at seroconversion than transiently Ab+ relatives. The prevalence of IA-2A and ZnT8A was initially (resp. 12% and 7%) but increased most thereafter (resp. +100% and +214% vs +24% for IAA and +11% for GADA). Progression to diabetes occurred almost exclusively (20/22) in persistently Ab+ relatives (p<0.001 by logrank vs transiently Ab+) and preferentially in case of seroconversion under age 10 (p=0.021). Still, 9 (41%) prediabetics, had seroconverted after age 10.

Conclusion: Seroconversion after age 10 is not a rare event; 2) GADA is the most frequent and in case of Ab-persistence, IA-2A and ZnT8A preferentially mark later disease stages, compatible with their known association with rapid progression to diabetes.

Supported by: JDRF and EWO

435

Frequency of development of type 1 diabetes mellitus and immunity indices in prediabetic children of Ukraine who are positive to autoantibodies to Langerhans islet antigens

V.V. Popova, K.P. Zak, B.M. Mankovsky, M.D. Tronko; Dept. of Preventive Diabetology, Institute of Endocrinology and Metabolism, Kiev, Ukraine.

Background and aims: The discovery of human diabetes-associated autoantibodies (DAAb) contributed to an early prediction of development of type 1 diabetes mellitus (T1DM) and to investigations of the immunological mechanisms of its progression to a latent stage. In 1998, for the first time in Ukraine a Programme "Immunity at preclinical stage of T1DM progression" has been developed by the Institute, whose purpose was a prospective study of the frequency of T1DM development and dynamics of changes in several immunity indices in prediabetic period among children of a number of regions of Ukraine who have a family history of diabetes and are positive or negative to the presence of DAAb.

Materials and methods: 450 children aged 13.62±3.4 years were followed up. Out of 366 practically healthy normoglycemic children with first degree relatives having T1DM, 94 were positive (group A) and 272 (group B) negative to DAAb (GADA and IA-2A). A control group C comprised 84 normoglycemic children without a family history of diabetes and being DAAb-negative. The measurements of IAA, GADA, and IA-2A titers were carried out by radioimmunoassay, the immunophenotype of lymphocytes (CD3+, CD4+, CD8+, CD20+, and CD56+ cells) by FACScan analysis, the content of cytokines (IL-1, IL-2, IL-6, IL-8, IL-10, IL-16, TNFα, and IFN-γ) by ELISA.

Results: T1DM has appeared in different periods of follow-up (from 6 months to 9 years: 30.9±3.2 months) in 48.9% of children from group A and in one child (0.8%) from group B. Among relatives of group A subjects, in 55.3% of children the sibs, in 36.1% the father, and in 9.6% the mother, had diabetes. Group A, unlike groups B and C, was characterized by lower absolute number content of CD3+ (0.79±0.05 × 10^9/L), CD4+ (0.52±0.03 × 10^9/L), and CD56+ (0.18±0.02 × 10^9/L) cells in peripheral blood compared to group C (1.39±0.09 × 10^9/L; p<0.01; 0.98±0.04 x10^9/L; p<0.01; 0.29±0.02 x10^9/L; p<0.01, respectively), and group B (1.02±0.06 x10^9/L; p<0.05; 0.67±0.04 x10^9/L; p<0.02 x10^9/L; p<0.01, respectively), and by a higher concentration of circulating IL-1α, IL-6, IL-8, IL-16, TNFα, and IFN-γ by ELISA.

Conclusion: T1DM has appeared almost exclusively (20/22) in persistently Ab+ relatives (p<0.001 by logrank vs transiently Ab+) and preferentially in case of seroconversion under age 10 (p=0.021). Still, 9 (41%) prediabetics, had seroconverted after age 10.

Supported by: JDRF and EWO

436

Role of diabetic family history in the prediabetic autoimmune process in children recruited from the general population based on HLA-associated disease risk

H.T.A. Silijander1,2, R.-T. Saloosaari3, A. Hekkalä, S. Simell3, R. Veijola1, J. Ilonen1,2, O. Simell3, M. Knip1,‡

1Research Laboratory, Hospital for Children and Adolescence, Helsinki, 2Department of Pediatrics, Tampere University Hospital, 3Department of Pediatrics, University of Oulu, 4Department of Clinical Microbiology, University of Kuopio, 5Immunogenetics Laboratory, University of Turku, Finland.

Background and aims: To assess differences in the in the appearance and progression of beta cell autoimmunity between children with and without first-degree relatives (FDRs) affected by type 1 diabetes (T1D) in a study cohort recruited from the general population based on HLA-conferred disease risk.

Materials and methods: 7410 children with HLA-conferred disease risk were recruited at birth from the general population and observed for 9.2 years (median) for beta-cell autoimmunity and T1D. At birth 177 (2.4%) of the children had affected FDRs. ICA were used for autoantibody screening. After ICA-positivity or T1D was confirmed, all samples available from that individual were analyzed for ICA, IAA, GADA, and IA-2A. Children with advanced autoimmunity (persistent positivity for ≥2 diabetes-associated autoantibodies, DAAs) were eligible for an intervention trial with nasally administrated insulin/placebo that proved to have no effect on progression to T1D.

Results: Children with affected FDRs seroconverted to autoantibody positivity and developed persistent multipositivity more frequently, and seroconverted at a younger age than children without FDRs with T1D (Table 1). They had also higher autoantibody levels throughout the follow-up. However, in children with advanced multipositivity autoantibody levels were similar regardless of family history. In children with affected FDRs, paternal T1D was associated with higher risk of seroconversion (paternal vs. maternal/sib: OR 2.0 [CI1.0-3.9], P=0.004), persistent multipositivity (OR 2.2 [CI1.0-5.0], P=0.048), and T1D (OR 4.5 [CI1.7-11.7], P=0.002) than maternal T1D or T1D in siblings. For comparison, OR for T1D in children with paternal T1D vs. children without affected FDRs was 13.4 (CI7.8-23.1).

Conclusion: The most conspicuous effect of familial T1D is seen in the initiation of the preclinical disease process. Children with paternal T1D are at the highest risk of developing beta-cell autoimmunity and T1D. After the diabetic autoimmune process is established, the FDR status plays a minor role in terms of disease progression.

Table 1. Beta-cell autoimmunity in children with HLA-conferred disease risk in relation to family history of type 1 diabetes (T1D).

<table>
<thead>
<tr>
<th>Family history of T1D</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA-based seroconversion</td>
<td>49 (27.7)</td>
<td>1124 (55.5)*</td>
</tr>
<tr>
<td>Seroconversion sample multipositive</td>
<td>16 (12.7)</td>
<td>141 (12.5)*</td>
</tr>
<tr>
<td>Positivity for >2 DAAs</td>
<td>34 (38.1)</td>
<td>333 (49.9)*</td>
</tr>
<tr>
<td>Persistent autoantibody positivity</td>
<td>40 (27.8)</td>
<td>652 (87.4)*</td>
</tr>
<tr>
<td>Persistently positive for >2 DAAs</td>
<td>31 (17.0)</td>
<td>292 (40.5)*</td>
</tr>
<tr>
<td>Progression to T1D</td>
<td>24 (13.6)</td>
<td>156 (23.0)*</td>
</tr>
</tbody>
</table>

*P<0.001, †P<0.02.

Supported by: Academy of Finland, JDRF, the Novo Nordisk Foundation

S180
Effect of family history of type 1 diabetes on the phenotype of type 2 diabetes
V.M. Lundgren, M.K. Andersen, B. Isomar, L. Groop, T. Tuomilehto
Botnia Study Group;
1Department of Medicine, Helsinki University Central Hospital, Folkhalsan Research Centre, Helsinki,
2Research Program of Molecular Medicine, Helsinki,
3Research Program of Molecular Medicine, University of Helsinki,
4Folkhalsan Ostland and Malmkska Municipal Health Care, Jacobstad,
5Department of Clinical Sciences-Diabetes & Endocrinology, Malm, Sweden.

Background and aims: Type 2 diabetes (T2D) is a heterogeneous disease and 10-20% of patients develop marked insulin deficiency. Some have GAD antibodies (LADA, latent autoimmune diabetes in adults) and share susceptibility genotypes with type 1 diabetes. In Finland, Type 1 and Type 2 diabetes cluster in same families. We evaluated the impact of family history of diabetes and susceptibility genotypes on the phenotype of type 2 diabetic patients.

Materials and methods: We recruited 197 T2D patients with family history of T1D and 139 matched (age, sex, BMI, sex) T2D controls with family history of T2D only. Phenotypical data included an oral glucose tolerance test (OGTT) and i.v. glucagon test followed by i.v. insulin tolerance test (GIIT) and GAD antibodies (GADA). Patients were genotyped for TID (HLA-DQA1-DQB1, PTPN22, INS) and T2D (TCF7L2, FTO, PPARG, KCNQ1, SLC30A8) susceptibility genes. Patients were stratified according to T1D family history and GADA positivity.

Results: There were altogether 58 GADA + T2D patients; 43 with T1D family history (LADA-; 30 had 1st degree relatives with T1D) and 17 with family history for T2D only (LADA+). p=0.024. The LADA+ patients had higher HbA1c and glucose values during OGTT than both LADA- and GADA- T2D patients with mixed family history (T2Dmixed) (table 1). They were less obese and they had lower measures of insulin secretion (fasting and glucagon-stimulated C-peptide, corrected insulin response during 30 min of OGTT, CIR) even when adjusted for the degree of insulin resistance (Disposition index). 37.2% of the LADAmix patients had markedly decreased stimulated C-peptide (<0.7 nmol/l) compared to 10.4% of T2Dmix and 4.9% of T2Dpatients (p=0.001). Surprisingly the LADA+ patients also seemed to be more insulin resistant (higher HOMA and lower KIR during the insulin tolerance test), but this could be due to worse diabetes control. LADAmix patients had significantly more often HLA-DQ T1D risk genotypes 19/43 (44.2%) compared with T2Dmix 39/154 (25.3%, p=0.05) and T2Dpatients 17/121 (14.0%; p=0.003).

Conclusion: T1D family history together with GADA positivity is associated with insulin deficiency in type 2 diabetic patients.

Table: Data are means ± SD or median (IQR). In statistical analyses (Ancova) the data were adjusted for sex. *p<0.05, **p<0.001 LADA- vs T2D-; +p<0.05, †p<0.001 LADA+ vs LADA-; +p<0.001 LADA+ vs LADA-

Clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>LADA- (n=17)</th>
<th>LADA+ (n=43)</th>
<th>T2D- (n=156)</th>
<th>T2D+ (n=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>29.3±2.3</td>
<td>28.2±2.4</td>
<td>29.8±5.7</td>
<td>30.4±4.8</td>
</tr>
<tr>
<td>GADA (IU/ml)</td>
<td>42.58±16**</td>
<td>89.0±21±6**</td>
<td>12.0±9.25**</td>
<td>16.0±12.0</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>6.0±9.5</td>
<td>7.0±11.0</td>
<td>6.0±8.3</td>
<td>8.0±8.0</td>
</tr>
<tr>
<td>T1D onset (years)</td>
<td>50.0±16.0*</td>
<td>49.0±13.0</td>
<td>52.0±12.3</td>
<td>52.0±10.3</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.9±1.1**</td>
<td>7.7±1.5**</td>
<td>6.9±1.1**</td>
<td>6.8±1.0</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td>8.2±2.7</td>
<td>8.4±2.6</td>
<td>7.9±2.0</td>
<td>7.5±1.8</td>
</tr>
<tr>
<td>C-peptide (nmol/l)</td>
<td>1.5[0.8]††</td>
<td>1.0[1.4]**</td>
<td>1.4[0.9]**</td>
<td>1.4[0.8]</td>
</tr>
<tr>
<td>HOMA-β*</td>
<td>2.3[4.2]††</td>
<td>2.5[2.0]*</td>
<td>3.3[3.2]*</td>
<td>3.0[2.8]</td>
</tr>
<tr>
<td>CIR</td>
<td>21.9[20.0]</td>
<td>18.0[24.1]††</td>
<td>22.7[22.2]††</td>
<td>22.0[23.5]††</td>
</tr>
<tr>
<td>Disposition index*</td>
<td>2.7[1.8]††</td>
<td>1.6[2.2]**</td>
<td>2.6[2.3]**</td>
<td>2.7[2.3]</td>
</tr>
<tr>
<td>KIR</td>
<td>2.0[1.1]</td>
<td>1.5[1.4]*</td>
<td>1.9[1.3]*</td>
<td>2.0[1.3]</td>
</tr>
</tbody>
</table>

PS 22 T regulatory cells and Th17 immunity in type 1 diabetes

438

IL-17 immunity in human type 1 diabetes
J. Honkanen, J.K. Nieminen, R. Gao, K. Luopajärvi, H.M. Salo, J. Bondenki, O. Vaarala, T. Otonkoski, M. Knip
1Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Helsinki,
2Biomedical Stem Cell Center, University of Helsinki,
3Immunogenetics Laboratory, University of Turku,
4Department of Clinical Microbiology, University of Eastern Finland, Kuopio,
5Hospital for Children and Adolescents, University of Helsinki,
6Department of Pediatrics, Tampere University Hospital, Finland.

Background and aims: T1D is considered as an autoimmune disease caused by T-cell mediated destruction of the insulin-producing pancreatic beta-cells. Th17 immunity has been demonstrated in the development of autoimmune diabetes in animal models. IL-17 neutralization prevented development of diabetes in NOD mice. Moreover, islet-cell antigen specific Th17 cells converted into IFN-γ secreting Th1-like cells and caused diabetes in mice recipients. Our aim was to address the role of Th17 cells in human T1D.

Materials and methods: We studied 15 children with T1D and 12 non-diabetic children for the comparison of IL-17 immunity in PBMCs stimulated with plate-bound anti-CD3 and soluble anti-CD28 for 40h. Culture supernatants were collected for cytokine analysis and stimulated cells were collected for gene expression analysis of IL-17, ROR-C2, IL-22, IFN-γ, T-bet and FOXP3 with qRT-PCR. Th17 immunity associated genes in freshly purified CD4+ memory T-cells were also compared between nine T1D patients and eight healthy children. CCR6, TCR-aβ, TCR-y and intracellular IFN-γ expression of IL-17 producing cells were analysed by flow cytometry. The apoptotic and inflammatory effects of IL-17 alone or in combination with IL-1β and IFN-γ on human islets from five different donors were studied in vitro with qRT-PCR. The proportion of apoptotic islets cells were determined by nuclear double staining with Hoechst 33342 and propidium iodide.

Results: We observed increased IL-17 secretion (p=0.018, median 173 pg/ml vs. 0 pg/ml), and mRNA expression (p=0.012, median 42 RU vs. 3 RU) in activated PBMC from patients with T1D. Also ROR-C2 (p=0.02, median 70 RU vs. 0 pg/ml), and mRNA expression (p=0.012, median 42 RU vs. 3 RU) in activated PBMC from patients with T1D. Also ROR-C2 (p=0.02, median 70 RU vs. 0 pg/ml), and mRNA expression (p=0.012, median 42 RU vs. 3 RU) in activated PBMC from patients with T1D. Also ROR-C2 (p=0.02, median 70 RU vs. 0 pg/ml), and mRNA expression (p=0.012, median 42 RU vs. 3 RU) in activated PBMC from patients with T1D. Also ROR-C2 (p=0.02, median 70 RU vs. 0 pg/ml), and mRNA expression (p=0.012, median 42 RU vs. 3 RU) in activated PBMC from patients with T1D.
specific autoantibodies and have a genetic susceptibility and type 1 diabetes mellitus (T1DM) patients at different stages of the disease.

Materials and methods: We examined 85 patients with T1DM at different stages of the disease: 36 patients with recent-onset T1DM, 12 - with the duration of diabetes from 1 to 5 years, 11 - from 5 to 10 years, 26 - over 10 years. 14 subjects at high-risk diabetes and 8 healthy subjects (control group) also included in the study. The HLA-DR and DQ alleles were identified by using PCR-RFLP method. CD4+, CD8+, CD25+, HLA-DR+; CD25+, CD4+ T cells were analyzed by flow cytometry. FoxP3 expression was determined by Real Time PCR. All subjects were tested for islet cell antibodies, autoantibodies that glutamic acid decarboxylase, insulin and tyrosine phosphatase, C-peptide, HbA1c.

Results: An increasing tendency of CD 25+ and CD4+ T-lymphocytes and decreasing tendency of FoxP3 expression between control and high-risk subjects was observed (p<0.01). Significant differences were found in content of activation molecules CD38 and HLA-DR (p<0.05) in those groups, indicating the tolerance of the immune system. There was no significant difference in the content of Tregs in patients with recent-onset T1DM (0.8% [0.6; 0.8]) and control subjects (0.8% [0.3; 2.1]). However FoxP3 expression was significantly lower in patients with recent-onset T1DM than in the control group (0.39 [0.18; 0.71] vs. 1.11 [0.66; 2.26], Z = 5.26, p<0.001). Reduced FoxP3 expression was observed at any stage of the disease compared with control subjects. FoxP3 expression was 0.37 [0.18; 0.89] (Z = 2.63, p<0.01) in patients with duration of diabetes from 1 to 5 years; 0.14 [0.01; 0.31] (Z = 3.33, p<0.01) in patients with duration of diabetes from 6 to 10 years and 0.47 [0.17; 0.86] (Z = 3.15, p<0.01) over 10 years of the disease.

Conclusion: A rising tendency of Tregs in high-risk subjects may appoint for suppression of autoimmune process. Despite the fact that there was no significant difference in the content of Tregs in patients with T1DM compared with control subjects, their functional activity - FoxP3 expression was significantly lower at any stage of the disease, which may indicate the reduced ability to suppress T cell proliferation.

The deficiencies of T regulatory lymphocytes (Tregs) in cell amount, expression and coordination of suppression-related proteins at type 1 diabetes onset are only partially remedied in long term patients S.A. Paschou1, G. Vartholomatos1, A. Petsiou1, N. Kolaris1, E. Giota1, A. Tatsoulis1, G.K. Papadopoulos1, 1Department of Endocrinology, University of Ioanna Regional Hospital, 2Molecular Biology Unit, Haematology Laboratory, University of Ioanna Regional Hospital, 3Haematology Laboratory, University of Ioanna Regional Hospital, 4Department of Nursing, Epirus Institute of Technology, Ioannina, Greece

Background and aims: T regulatory lymphocytes (Tregs) play an important role in the maintenance of self tolerance and immune homeostasis. Thus an imbalance between different types of T cells, such as effector T cells and Tregs, has been reported to play a major role in the pathogenesis in autoimmune diseases like type 1 diabetes. Growing bodies of evidence from animal and in vitro studies suggest a role for vitamin D in modulating the function of CD4+ T cells, including Tregs. In the present study, we aimed to elucidate, whether supplementation with vitamin D has the potential to increase the number or function of peripheral Tregs in apparently healthy human individuals. Furthermore we investigated the pleiotropic in vivo effects of Vitamin D supplementation on other circulating cells of the human innate and adaptive immune system.

Materials and methods: A double-blinded and placebo controlled trial was performed among 35 healthy subjects (46% females, mean age: 35 ± 11 years). Subjects were randomized to oral vitamin D (140 000 IU monthly) or placebo treatment for 3 months. Peripheral blood was drawn at baseline and monthly visits and the percentage of Tregs within 20 000 CD4+ T cells as well as the percentage of other circulating cells of the human innate and adaptive immune system were determined by using a multi-parametric FACS-analysis.

Functional tests for FACS-sorted Tregs were assessed in a 3H-Thymidin based suppression co-culture, including stimulation of effector cells with anti CD3/CD28 beads. 25-hydroxyvitamin D levels were significant higher in the vitamin D-treated group than in the placebo group (mean level at 3 months: 60.2 ± 21.1 ng/ml vs. 18.8 ± 7.2 ng/ml). Accordingly, the median percentage of Tregs increased significantly from a median baseline level of 4.8% (interquartile range: 4.3-5.8%) to a level of 6.4% (5.9-7.2%) at month 3 (p<0.001 for general linear model with repeated measurements) in the vitamin D group whereas there was no statistically significant change in the placebo group (p=0.956). Between group comparison at month 3 revealed a significant difference in the median levels of %Tregs (p=0.017). Suppressive function of regulatory T cells remained unchanged in both groups. Furthermore, analysing the other peripheral immune cells showed no statistically significant chances in the frequency of naive CD4+ and CD8+ T cells, memory CD4+ and CD8+ T cells, CD25+CD4+ cells, NK cells, NKT cells, B cells, monocytes, granulocytes, stem cells and blood dendritic cells (myeloid and plasmacytoid DC) in both groups. C-reactive protein was within the normal range before and after the treatment and did not change significantly between the study visits. In both groups no clinically relevant adverse events have been reported.

Conclusion: High dose of vitamin D supplementation increased the frequency of peripheral Tregs significantly in healthy subjects. This finding supports previously described associations of vitamin D deficiency and autoimmune diabetes and provides a rationale for further studies to investigate the immunomodulatory effects of vitamin D in diabetic subjects.
Background and aims: Reduced risk for type 1 diabetes (T1D) has been reported in the offspring of mothers with T1D when compared to children of affected fathers. To evaluate the hypothesis that exposure of the offspring to maternal diabetes and insulin therapy results in tolerization to insulin in utero and thereby decreases the risk for T1D, we compared the FOXP3 expressing regulatory T cells in cord blood of infants born to mothers with or without T1D.

Subjects and methods: Cord blood mononuclear cells from 20 infants with maternal T1D and from 20 infants with an unaffected mother were analysed for the expression of CD4+CD25+ cells and FOXP3+ cells. The children were evaluated during the first year of life. The amount of CD95L-expressing CD4+CD25+ cells in cord blood was higher in the infants of mothers with T1D than in the infants of unaffected mothers (p = 0.023; median values 31.5% [range 6.1-63.1%] and 16.4% [range 2.0-36.3%], respectively). The numbers of FOXP3+ positive CD4+CD25+ T cells were higher after in vitro stimulation of cord blood cells of human insulin than in unstimulated cord blood cells in the infants with maternal T1D (p < 0.001; Wilcoxon test; median values 17.2% [range 2.4-56.9%] and 28.1% [range 8.4-60.8%]). In infants of non-diabetic mothers there was no difference in FOXP3 expression in CD4+CD25+ T cells stimulated with insulin compared to non-stimulated CB mononuclear cells (p = 0.21, Wilcoxon test; median values 10.9% [range 10.0-30.5%] and 15% [range 0.7-31.4%]). Furthermore, an increased intensity of FOXP3 in CD4+CD25+ cells was observed in response to insulin stimulation in infants of T1D mothers (p = 0.05). Only in infants with maternal diabetes FOXP3-, IL-10- and TGF-β specific mRNA increased compared to non-stimulated CB mononuclear cells (p = 0.21). Expression CD95L was similar during first year of disease.

Conclusion: We suggest that maternal insulin treatment induces expansion of insulin-specific FOXP3 expressing regulatory T cells in the fetus, likely due to tolerization to insulin through transplacental transfer of insulin bound to insulin antibody complexes.

Supported by: Diabetes Research Foundation, Sigrid Juselius Foundation

Otelixizumab markedly inhibited the proliferation of alloantigen-specific Teffs in primary MLRs as well as secondary MLRs, while this effect was added to primed alloantigen-specific Teffs. Inhibition of T cell proliferation was dose-dependent and peaked at the highest saturating concentration of otelixizumab. Subsaturating concentrations of mAb resulted in the proliferation of a subset of T cells with an activated but not a naïve phenotype, and the number of naïve T cells did not decrease in the presence of mAb. Addition of otelixizumab to primary MLRs was accompanied by the appearance of and an increase in the number of dividing Tregs, irrespective of the dose. Otelixizumab-induction of Treg proliferation was optimal at subsaturating concentrations. The dose-dependent inhibition of T cell proliferation was more pronounced among Tregs than Teffs, resulting in a ~5-fold decrease in the ratio of dividing Teff:Tregs at saturating concentrations of mAb as compared to controls. Furthermore, addition of otelixizumab to primary MLRs was associated with increases in non-dividing Tregs, suggesting that otelixizumab can induce Treg commitment in activated T cells. Lastly, no mAb-induced cell death was observed.

These studies indicate that Tregs, activated Teffs, and naïve T cells respond differently to otelixizumab and to different concentrations of otelixizumab. Naïve T cells were minimally affected by otelixizumab. In contrast, otelixizumab induced a significant increase in Tregs that exhibited a lower susceptibility to otelixizumab-mediated inhibition of proliferation than activated Teffs. This suggests that otelixizumab's activity is principally confined to activated Teffs and Tregs, and are markedly affected by dose. Further experiments comparing otelixizumab-induced signaling cascades in the various T cell subsets and the antigen specificity and potency of otelixizumab-expanded Tregs are being conducted.
Analysis of expression of Th1 and Th2-associated chemokine receptors on CD4+ T lymphocytes: comparison between recent onset type 1 diabetics and nondiabetic first degree relatives

T. Milicic1, N. Lalic1, A. Jotic1, I. Markovic2, M. Zamaklar3, K. Lalic1, L. Lukic1, N. Rajkovic1, M. Macesic1, J. Seferovic1, S. Aleksic1
1Clinical Center of Serbia, Institute for Endocrinology, 2University of Belgrade, Institute for Biochemistry, Belgrade, Serbia.

Background and aims: Previous studies have reported an important role of the chemokine receptors CXCR3 and CCR4, which are associated with Th1 and Th2 CD4+ cell subsets respectively and involved in their extravasations into inflamed pancreatic islets, in the initial phase of Type 1 diabetes (T1D). However, the changes in CXCR3+ and CCR4+ subsets of the memory CD4+CD45RO+ T cells in recent onset type 1 diabetics and their nondiabetic first-degree relatives (FDRs), have not yet been clarified. Therefore, the aim of this study was to analyze the percentage of the (a) CXCR3+ (Th1 associated) and (b) CCR4+ (Th2 associated) subsets of T memory cells, in peripheral blood in 24 recent-onset T1D patients in insulin-requiring state (IRS) at the onset (group A), 10 T1D patients in the state of clinical remission (CR) (group B), 41 nondiabetic FDRs (group C), as well as in 18 healthy, age-matched control subjects (group D).

Materials and methods: T1D was diagnosed in accordance to WHO criteria. The CR was defined as optimal metabolic control without insulin lasting >30 days. The percentages of CXCR3+ and CCR4+ T memory CD4+CD45RO+ cell subsets were analyzed in peripheral blood by using four-color immunofluorescence staining and flow cytometry.

Results: We found that there was no difference among the groups concerning the percentage of CD4+CD45RO+ T lymphocytes (A: 27.23±8.54 vs B: 24.19±6.50 vs C: 25.73±6.78 vs D:27.67±6.59 %, A vs B vs C vs D, p=NS). However, when the percentage of CXCR3+ T memory lymphocytes was analyzed, we found that in groups A and B it was significantly lower than in groups C and D (A: 40.19±11.52; B: 42.16±11.13; C: 53.92±8.19; D: 53.09±6.29 %; A vs C, D vs B vs C, p<0.001; B vs C, D: p<0.01), while there was no difference between groups C and D. Simultaneously, the percentage of CCR4+ T memory cells was also found to be significantly lower in groups A and B than in groups C and D (A: 31.53±9.67; B: 31.40±8.14; C: 39.88±9.10; D:40.90±7.24 %; A vs C, D and B vs C, D p<0.01) also without difference between groups C and D. Conclusion: Our results have shown that the onset of T1D was associated with the decreases in the CXCR3+ and CCR4+ subsets of T memory lymphocytes, presumably reflecting their extravasation into pancreatic tissue. However, these changes could not be detected in the nondiabetic FDRs, thus implying that the onset of the disease could be modified on the level of these subsets of T memory cells.

PS 23 Inflammatory mediator responses and markers in type 1 diabetes

Systemic cytokines and chemokines in prediction of type 1 diabetes in high risk antibody positive subjects

M.-C. Simon1, S. Schimmack1, K. Strassburger2, M. Roden1, E.A.M. Gale3, P.J. Bingley4, T. Mandrup-Poulsen5, H. Kolb6, N.C. Schloot7, EINDT Group;
1Institute for Clinical Diabetology, German Diabetes Center, Duesseldorf, 2Clinic for Metabolic Diseases, University Hospital Duesseldorf, Germany, 3Department of Clinical Science at North Bristol, University of Bristol, United Kingdom, 5Steno Diabetes Center, Gentofte, 6Hagedorn Research Institute, Gentofte, Denmark, 7Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.

Background and aims: Type 1 diabetes is the result of a chronic immune mediated destruction of β-cells lasting several months to years before manifestation of overt hyperglycemia. Cytokines and chemokines have been shown to orchestrate the immune response and can also directly harm β-cells and associate with the disease process after diabetes manifestation. This study therefore aimed to evaluate whether systemic concentrations of cytokines and chemokines predict type 1 diabetes.

Materials and methods: Serum samples from baseline visits of 291 first-degree ICA-positive relatives, (55% males / 45% females, age 20–11 years) of the European Nicotinamide Diabetes Intervention Trial (ENDIT) were analysed for chemokines (IL-8, MIP1-α) and cytokines (MIF, TNF-α, interleukin (IL)-13, IL-16, IL-1- receptor antagonist (IL-1ra)). The clinical endpoint (overt diabetes mellitus) was monitored during the observational period of 5 years. Subjects were grouped into two age groups, below and above 16 years of age, as disease progression is thought to be faster in younger versus older subjects. Immune mediators were measured by ELISA based technology. Regression analysis was adjusted for potential confounders sex, age, body mass index (BMI) and nicotinamide treatment.

Results: 73 (25%) subjects were diagnosed with type 1 diabetes during the follow up, with the earliest diabetes manifestation observed after one year and the latest after 5 years. 218 (75%) subjects remained non-diabetic. As known from previous ENDIT analyses, diabetes developed more frequently in pediatric (56 of 138, 41%) than in adults (16 of 153, 10%; p=0.001). Subjects above age 16 showed higher IL-1ra concentrations compared to children (239 pg/ml versus 183 pg/ml, p=0.019). All other immune parameters did not differ between pediatric versus adult subjects. Within the age groups, neither IL-1ra, nor IL-8, MIP1-α, MIF, TNF-α, IL-13 or IL-16 were predictive for later diabetes development.

Conclusion: In our study systemic chemokines, cytokines or cytokine receptor antagonist concentrations obtained one to five years before diabetes onset did not serve as predictive markers for disease manifestation. The age-associated increase of IL-1ra in adult subjects may contribute to the overall reduced rate of diabetes development compared to younger subjects.

447 Proinflammatory and regulatory cytokines are similar in type 1 diabetes (T1D) and LADA and lower compared to type 2 diabetes (T2D) patients: results from Action LADA Study

M.N. Pham1, I.M. Hava1, C. Plieger1, M. Roden1, G. Scherthanher2, F. Pouzil3, R. Buzzetti3, J. Seisser4, S. Hunter5, R.D. Leslie5, N.C. Schloot6,1, Action LADA Study Group;
1German Diabetes Center, Duesseldorf, Germany, 2Institute of Cell and Molecular Science, London, United Kingdom, 3Benaroya Research Institute, Seattle, USA, 4Clinic for Metabolic Diseases, University Hospital, Duesseldorf, Germany, 5Rudolfstiftung Hospital, Vienna, Austria, 6University Campus Bio-Medico, Rome, 1Dipartimento Scienze Cliniche, Rome, Italy, 2Ludwig-Maximilians-University, Munich, Germany, 3Centre for Endocrinology and Diabetes, Belfast, United Kingdom.

Background and aims: LADA (latent autoimmune diabetes in adults) is clinically almost indistinguishable from T2D but has T1D like islet antibodies (GADA). Previous studies showed that cytokines are involved in the pathogenesis of T1D and T2D. As cytokines play an important role in pathogenesis
We investigated systemic cytokines of 90 patients with T1D (F/M= 28/62, age 45±10yrs), 61 LADA patients (35/26, 52±10yrs) positive for GADA who had not required insulin for at least 6 months after diagnosis, 465 T2D patients who were GADA negative (202/263, 55±5yrs) and 41 control subjects (C) (25/16, 47±9yrs). All patients were recruited from the Action LADA cohort with diabetes duration <5yrs. Anti-inflammatory IL-1ra and pro-inflammatory TNF-a and IL-6 from serum samples were measured by multiplex technology. Differences of circulating cytokine concentrations among all groups were assessed using Kruskal-Wallis test followed by Mann-Whitney test. With multiple linear regression models we compared log-transformed systemic cytokine concentrations of different groups as dependent variables using age, sex, BMI, blood pressure (BP) and diabetes duration as covariates.

Results: For all three cytokines significant differences were detected between different groups (all p<0.0001). Group by group comparison revealed similar cytokine concentrations in T1D and LADA patients. Compared with controls, T1D and LADA had significantly up-regulated IL-1ra, IL-6 and TNF-a (p<0.05). When comparing T1D and LADA versus T2D, all three cytokines were significantly higher in T2D (IL-6 p<0.01, TNF-a and IL-1ra p<0.05). As groups differed by BMI, age, sex, BP and disease duration we performed stepwise regression analysis with adjustment for these potential confounders. As expected, systemic concentrations of IL-1ra and IL-6 were positively associated with BMI (p<0.0001). TNF-a did not show an association with BMI.

The significant increase of cytokines in T2D versus T1D/LADA and C found in unadjusted comparisons persisted upon adjustment for sex, age, BMI, BP and diabetes duration in multiple linear regression models (all p<0.05).

Conclusion: We conclude that proinflammatory as well as anti-inflammatory cytokine levels are elevated in T2D compared to T1D, LADA and C. IL-1ra, IL-6 and TNF-a of LADA were lower compared to T2D but were similar compared to T1D. As cytokines cannot distinguish T1D from LADA, other factors are likely to determine clinical outcome that is characterized in immediate insulin need in T1D and preserved endogenous insulin secretion in LADA. Further studies should investigate which other factors might influence the pathogenic process leading to slower deterioration of β-cell function in LADA and faster deterioration of β-cell function in T1D.

448

Serum CXCL1 levels are elevated in subjects with type 1 diabetes mellitus and possibly reflect the rate of c-peptide loss.

K. Takahashi, M. Masaya, T. Takahashi, K. Nagasawa, H. Homma, M. Yamashina, M. Ishii, F. Fujitara, T. Kajiwara, H. Taneichi, N. Takebe, J. Satoh; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Japan.

Background and aims: Identification of unique inflammatory biomarkers may improve prediction of type 1 diabetes (T1D), and be used as clinical measures in trials aimed at preventing this disease. We previously compared transcript profiles of bone marrow (BM)-derived dendritic cells (DC) from NOD mice, with a model of T1D, with those from a sister strain, NON. Intriguingly, in the human, these chemokines (Wang X, 2008) and S100 factors are likely to determine clinical outcome that is characterized in immediate insulin need in T1D and preserved endogenous insulin secretion in LADA. Further studies should investigate which other factors might influence the pathogenic process leading to slower deterioration of β-cell function in LADA and faster deterioration of β-cell function in T1D.

Results: Serum CXCL1 levels were elevated in subjects with type 1 diabetes mellitus and possibly reflect the rate of c-peptide loss.

K. Takahashi, M. Masaya, T. Takahashi, K. Nagasawa, H. Homma, M. Yamashina, M. Ishii, F. Fujitara, T. Kajiwara, H. Taneichi, N. Takebe, J. Satoh; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Japan.

Background and aims: Identification of unique inflammatory biomarkers may improve prediction of type 1 diabetes (T1D), and be used as clinical measures in trials aimed at preventing this disease. We previously compared transcript profiles of bone marrow (BM)-derived dendritic cells (DC) from NOD mice, with a model of T1D, with those from a sister strain, NON. Intriguingly, in the human, these chemokines (Wang X, 2008) and S100 factors are likely to determine clinical outcome that is characterized in immediate insulin need in T1D and preserved endogenous insulin secretion in LADA. Further studies should investigate which other factors might influence the pathogenic process leading to slower deterioration of β-cell function in LADA and faster deterioration of β-cell function in T1D.

Results: Serum CXCL1 levels were elevated in subjects with type 1 diabetes mellitus and possibly reflect the rate of c-peptide loss.

K. Takahashi, M. Masaya, T. Takahashi, K. Nagasawa, H. Homma, M. Yamashina, M. Ishii, F. Fujitara, T. Kajiwara, H. Taneichi, N. Takebe, J. Satoh; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Japan.

Background and aims: Identification of unique inflammatory biomarkers may improve prediction of type 1 diabetes (T1D), and be used as clinical measures in trials aimed at preventing this disease. We previously compared transcript profiles of bone marrow (BM)-derived dendritic cells (DC) from NOD mice, with a model of T1D, with those from a sister strain, NON. Intriguingly, in the human, these chemokines (Wang X, 2008) and S100 factors are likely to determine clinical outcome that is characterized in immediate insulin need in T1D and preserved endogenous insulin secretion in LADA. Further studies should investigate which other factors might influence the pathogenic process leading to slower deterioration of β-cell function in LADA and faster deterioration of β-cell function in T1D.

Results: Serum CXCL1 levels were elevated in subjects with type 1 diabetes mellitus and possibly reflect the rate of c-peptide loss.

K. Takahashi, M. Masaya, T. Takahashi, K. Nagasawa, H. Homma, M. Yamashina, M. Ishii, F. Fujitara, T. Kajiwara, H. Taneichi, N. Takebe, J. Satoh; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Japan.

Background and aims: Identification of unique inflammatory biomarkers may improve prediction of type 1 diabetes (T1D), and be used as clinical measures in trials aimed at preventing this disease. We previously compared transcript profiles of bone marrow (BM)-derived dendritic cells (DC) from NOD mice, with a model of T1D, with those from a sister strain, NON. Intriguingly, in the human, these chemokines (Wang X, 2008) and S100 factors are likely to determine clinical outcome that is characterized in immediate insulin need in T1D and preserved endogenous insulin secretion in LADA. Further studies should investigate which other factors might influence the pathogenic process leading to slower deterioration of β-cell function in LADA and faster deterioration of β-cell function in T1D.
The association between vitamin D levels and biomarkers in newly diagnosed children with diabetes and their siblings

J. Svensson1, H.B. Mortensen1, J. Johannesen1,2, M. Fenger1, A. Linneberg1,3; 1Dept. of Paediatrics, Glostrup University Hospital, 2Glostrup University Hospital, 3Hvidovre University Hospital, Denmark.

Background and aims: Vitamin D insufficiency has been suspected as a contributing factor to the development of type 1 diabetes. Different cells in the immune system are capable of converting 25-OH to its active form 1,25 OH and vitamin D has been shown to suppress Th1 cytokines and enhance Th2 cytokines. The aim of the present study was to investigate the association between levels of vitamin D and different cytokines and chemokines.

Materials and methods: Data is derived from The Danish Diabetes Registry (DIA-REG Be-U) initiated in 1996 with an attached bio bank. All serum samples were analysed using high-capacity Luminex xMAP technology. Vitamin D is determined by HPLC and divided in quartiles. Data was analysed using multiple regression with biomarkers as outcome and vitamin D in quartiles and CYP27B1 genotype as explanatory variables together with age and gender. All children were genotyped for the CYP27B1 variant rs4646536.

Results: There were 466 newly diagnosed children with diabetes and 466 healthy siblings. 599 men and 423 females. We found no difference in vitamin D level between patients and siblings. CXCL8 (0.34 +/- 0.12; p<0.001), IL-1b (0.12 +/- 0.04; p=0.01), IL-18 (0.03 +/- 0.028; p=0.03) and IL-1b (0.20 +/- 0.17; p=0.001) significantly increased with increasing vitamin D level in the joined analysis of patients and siblings, when only patients were analysed CXCL8 (0.20 +/- 0.17; p=0.02), IL-18 (0.07 +/- 0.04; p=0.001) and IL-1b (0.16 +/- 0.15; p=0.04) were still positively associated with vitamin D. No association was found with IL-10, IL-12, IFN-g and TGFB. Only for IL-1b and IL-18 there was a significant association with CYP27B1 genotype.

Conclusion: We found no indication of suppressed Th1 and enhanced Th2 in either patients or healthy siblings with high levels of vitamin D but on the contrary increasing levels of Th1 oriented cytokines/chemokine IL-1b, IL-8, CXCL8 and Th2 oriented cytokine IL-4 with each quartile in vitamin D. The effect of vitamin D in relation to onset may be questioned.

Supported by: Copenhagen Region

MicroRNA profiling from peripheral blood of diabetic patients

C.M. Khoo, A. Armugam, P. Swaminathan, P. Lim, K. Jeyaseelan; National University Health System, Singapore.

Background and aims: MicroRNAs (miRNAs) play important roles in post-transcriptional control of gene expression. While specific miRNAs are implicated in several disease processes including type 2 diabetes (DM), few have been evaluated and validated in humans. We therefore profiled the miRNA expression from the peripheral blood of type 2 DM patients.

Materials and methods: We compared 12 DM male subjects with 12 healthy male controls. They were well matched in age [mean(SD)] 37.3 (7.1 yrs) and body mass index [mean(SD)] 26.1 (5.6) kg/m². Blood pressure (BP) and fasting blood for glucose, lipids and Hba1c were measured. Total RNA was extracted from peripheral blood for miRNA profiling and real-time PCR analysis. The signal log ratio and p-values were calculated. T-test was used to compare DM subjects with controls.

Results: Systolic BP, fasting glucose, Hba1c, total cholesterol and LDL-cholesterol levels were significantly higher in DM subjects compared with controls (all P<0.05). Compared with controls, we identified 37 differentially regulated miRNAs in DM subjects. Among them, 21 miRNAs were upregulated (two to five-fold change, P<0.01) and 16 miRNAs were downregulated (1.5 to two-fold change, P<0.01). These miRNAs are primarily involved in regulating pancreatic development and functions, adipocyte differentiation, insulin signaling and glucose-dependent insulin secretion.

Conclusion: We have found several differentially expressed miRNAs from the peripheral blood of DM patients that are involved in glucose homeostasis and related functions. These miRNAs can be used as markers of disease progression and may be developed for therapeutic applications in DM.

Supported by: NUHS Cross Department Collaborative Grant

452

Virus-induced beta cell death depends on CXCL10 and the AKT-JNK-PKR crosstalk

E. Domsgen1, F. Paroni1, J. Kerr-Conte1, A. Dotzauer2, K. Maedler1;
1Centre for Biomolecular Interactions, University of Bremen, Germany.
2ENSERM / Université de Lille, Thérapie Cellulaire du Diabète, France.

Background and aims: Both, type 1 (T1DM) and type 2 diabetes (T2DM) result from β-cell destruction and decreased β-cell mass. Virus infection seems to be an important environmental factor for the development and progression of the disease. Group B coxsackievirus (CVB) infection of β-cells has been associated with the development of diabetes. Intra-islet viral particles have been detected in pancreata from patients with T1DM and T2DM, but the mechanisms of a correlation between virus infection and diabetes progression are poorly understood. In this study we asked the question whether virus induced cytokines and chemokines correlate with β-cell destruction and which intracellular signals are involved.

Materials and methods: Isolated human islets and the CM human β-cell line were infected with two different CVB serotypes B3 and B4. Replication of CVB was confirmed by immunostaining of viral protein 1 (VP1) and titration of islet lysates. CXCL10 secretion from the islets was measured by ELISA, CXCL10, IFNγ, IFNα, IL-1β, TNFa, IL-6, MCP1 and IL-8 mRNA production by quantitative RT-PCR and β-cell apoptosis by double-staining for the TUNEL assay and insulin. Islet protein expression and phosphorylation were analyzed by western blot.

Results: CVB3 and CVB4 infection of isolated human islets and β-cells induced a high virus replication. VP1 positive staining in up to 70% of the β-cells and resulted in a 7-fold increase in β-cell apoptosis in both the CVB3 and -4 infected islets together with an abolished glucose stimulated insulin secretion. This correlated with the increase in CXCL10, IFNγ, IL-1β, TNFa, IL-6, MCP1 and IL-8 mRNA levels in the infected islets. CXCL10 was the highest induced factor (~35-fold increase in secretion, 15-fold increase in mRNA, p<0.001), compared to uninfected islets. In contrast, IFNγ remained unchanged, suggesting that CXCL10 upregulation was independent of the known induction pathway. To determine the host cell pathways involved in CVB infection, we analyzed the kinetics of pro- and anti-apoptotic signals. We have previously shown, that CXCL10 induces transient Akt phosphorylation despite massive induction of β-cell apoptosis. In line with this data, Akt was also activated during CVB infection within 30 minutes p.i. and lasted for up to 24 h. After 24 h, Akt was downregulated together with an up-regulation of phospho-c-Jun NH2-terminal kinase (pJNK), activation of Caspase-3, strong induction of CXCL10 and the appearance of VP1, switching survival signals into apoptosis. A link of such pro-inflammatory signals and viral infections is provided by double-stranded RNA-dependent protein kinase R (pPKR). Both virus strains lead to phosphorylation of pKRK as well as its substrate eIF2α in islets. Blocking PKR phosphorylation by 2-aminopurine lead to a decreased VP1 expression.

Conclusion: Our data show that CVB infections have a direct deleterious effect on β-cell survival, resulting from virus-induced activation of pro-inflammatory cytokines and chemokines. During the early phase of infection, the virus triggers the Akt pathway, possibly to initially maintain host survival and its own replication. Antagonism by JNK and PKR phosphorylation would switch β-cell pro-survival paths into death. Further understanding of the pathways involved in viral infection of β-cells will be of particular interest in order to develop new therapies to rescue the β-cell.

Supported by: IDRF

453

Coxsackievirus B3 induces the mRNA expression of IFNbeta and viral recognition receptors in human pancreatic islets

K. Lind1, P.G. Larson1, M. Hühn2, O. Korsgren3, M. Flodstroem-Tullberg1; 1Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, 2Department of Clinical Immunology, Uppsala University, Sweden.

Background and aims: Many observations have suggested a role for enterovirus infections, especially those with Coxsackieviruses (CV), in the etiopathogenesis of type 1 diabetes (T1D). Enteroviruses may contribute to T1D development by inducing functional impairment of beta cell functions, and/or beta cell destruction. An important immune response upon infection is the rapid production of type 1 interferons (IFNs) that inhibit viral spread and facilitate viral clearance. Interferon production is initiated via viral recognition by pattern recognition receptors. Cellular detection of RNA viruses
Type 1 diabetes (T1D) is an autoimmune disease characterized by a T-cell mediated destruction of the pancreatic beta cells. Cytokines, such as IL-1β and IFN-γ, play a crucial role in beta cell destruction, by activating two different pathways, NF-κB and JAK/STAT, among others. Previous work from our group discovered a dual role for the IFN-γ signaling pathway. If the pathway was interrupted at the level of STAT-1, islets and purified beta cells were fully protected against cytokine-induced apoptosis; however, deletion of the direct downstream effector gene STAT-1, Irf1, showed a dual response. Thus, whole mouse islets were partially protected in vitro, while purified beta cells demonstrated no difference in protection against cytokine-induced apoptosis, suggesting a role for non-beta cells in the islets in this destruction. In vivo, Irf1 deletion in islets was associated with a higher prevalence of primary non-function and shorter functioning graft survival. In the present study, we aimed to study the protein profiles in islets with a disruption of either transcription factor exposed to inflammatory cytokines, such as IL-1β and IFN-γ, play a crucial role in beta cell destruction. Previous work from our group discovered a dual role for the IFN-γ signaling pathway. If the pathway was interrupted at the level of STAT-1, islets and purified beta cells were fully protected against cytokine-induced apoptosis; however, deletion of the direct downstream effector gene of STAT-1, Irf1, showed a dual response. Thus, whole mouse islets were partially protected in vitro, while purified beta cells demonstrated no difference in protection against cytokine-induced apoptosis, suggesting a role for non-beta cells in the islets in this destruction. In vivo, Irf1 deletion in islets was associated with a higher prevalence of primary non-function and shorter functioning graft survival. In the present study, we aimed to study the protein profiles in islets with a disruption of either transcription factor exposed to inflammatory cytokines.

Materials and methods: Alterations in protein profile upon cytokine-treatment were investigated in islets from C57BL/6, STAT-1−/− or IRF-1−/− mice after 24h incubation with/without a combination of IFN-γ (1000 U/ml) and IL-1β (50 U/ml). Differential protein expression was analyzed using 2-dimensional difference gel electrophoresis (2D-DIGE) and differentially expressed spots were identified by MALDI-TOF/TOF. In parallel, susceptibility to apoptosis was measured by microscopic counting (Hoechst/PI staining).

Results: While the combined treatment of IL-1β + IFN-γ clearly caused apoptosis in C57BL/6 islets (40.63±3.7%, similar to 5.61±1.5% apoptosis for non-treated islets, p<0.001, n=12), STAT-1−/− islets were completely protected against cytokine-induced apoptosis (4.6±0.3% compared to 5.0±0.7% for non-treated islets (n=10)) and IRF-1−/− islets were partially protected (25.1±4.4% compared to 5.1±0.7% for non-treated islets (p<0.001, n=9)). 2D-DIGE analysis, revealed a total of 1853 spots, of which 301 were differentially expressed (p<0.05). Fourteen up 144 spots. 60% of these were exclusively regulated in the C57BL/6 islets, with identified proteins belonging to different functional groups such as mRNA processing, insulin signaling, metabolism and folding of proteins. Treatment with cytokines generated far less response in the proteome of STAT-1−/− and IRF-1−/− islets. Moreover, the proteomic response generated in the knock-out mouse islets was indicative for unique effects of Stat1 or Irf1 gene disruption. An example is heat shock 70 kDa protein 9 (GRP75), which had markedly lower levels in IRF-1−/− islets and higher levels in STAT-1−/− islets, as compared to control C57BL/6 islets (p<0.05).

Conclusion: We identified proteins whose regulation was not only dependent on STAT-1 and/or IRF-1, but whose functionality can explain the difference in sensitivity of these islets to cytokine-induced cell death. These proteins could be important targets for clinical intervention in T1D, as disruption of the JAK/STAT pathway is not a feasible option for treatment or prevention of T1D.
PS 24 Clinical intervention in type 1 diabetes

456
Preservation of beta cell function by treatment with DiaPep277 - a retrospective analysis of phase II data in adult type 1 diabetes patients
S. Dagan1, D. Elias1, M. Yamin1, A. Avron1, G. Harari1, I. Raz1, 352 Study Group, 520 Study Group;
1Andromeda Biotech Ltd., Yavne, 2MediStat Ltd., Tel Aviv; 3Hadassah Center for the Prevention of Diabetes, Hadassah University Hospital, Jerusalem, Israel.

Background and aims: DiaPep277, a peptide derived from the human Hsp60, modulates the immunological destruction of β cells that lead to autoimmune diabetes. Several phase II studies (352, 420, 441/451, 520) were conducted to evaluate the ability of DiaPep277 to preserve insulin secretion in adult type 1 diabetes (T1D) patients. Due to the small number of patients and the diversity in β cell function among T1D patients, a statistically significant difference could be demonstrated only for one study (420) despite the similarity in trend analysis in all 4 studies analyzed. To evaluate the efficacy of DiaPep277 in a larger number of patients, we performed a retrospective combined data meta-analysis of the efficacy parameters.

Materials and methods: To compensate for the small group size in the individual studies, the efficacy data of studies 352, 420, 441/451, and 520 were pooled and analyzed. This is justifiable in view of the comparable demographic data. Patients were treated for 12 months and C-peptide levels were measured at month 13 and at month 18 (6 months after end of treatment, excluding study 441/451). Preservation of β cell function was evaluated as the change in total secreted C-peptide (AUC) following glucagon stimulation from Baseline to 13 and 18 months.

Results: A significant preservation of β cell function in patients treated with 1.0 mg DiaPep277 was demonstrated. At the end of treatment, the change in glucagon stimulated C-peptide AUC in the DiaPep277 treated group (n=58) was -0.36 nmol/l/min as compared to -2.79 nmol/l/min in the placebo group (n=46) (p=0.028). At the end of follow-up, although C-peptide values had declined in both arms, the decrease in the DiaPep277 arm was significantly smaller than that in the placebo arm, -2.28 ± 5.4 nmol/l/min versus -5.56 ± 7.0 nmol/l/min, respectively (p=0.04). This decrease may indicate that the treatment of adult patients should be longer than 1 year to maintain treatment effect. In addition, DiaPep277 treatment improved the ability to maintain the ADA-recommended HbA1c target of <7%. At the end of follow-up, 64% of DiaPep277 treated subjects reached the target glycemic level compared to only 47% in the placebo group.

Conclusion: The combined data analysis of the phase II studies in adult T1D patients showed a statistically significant treatment effect of preservation of β cell function and clinical benefit of improved glycemic control. This clearly indicates that the lack of conclusive difference in the individual studies stems from the small number of patients per arm and not from a limited treatment effect. Based on these results, 2 phase III studies are being conducted worldwide in newly diagnosed adult T1D patients to obtain regulatory approval for registration.

<table>
<thead>
<tr>
<th>Study 352</th>
<th>Study 420</th>
<th>Study 441/451</th>
<th>Study 520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 males</td>
<td>16 females</td>
<td>35 males</td>
<td>18 females</td>
</tr>
<tr>
<td>32 males</td>
<td>18 females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>23±1±3.6</td>
<td>21±2±2.8</td>
<td>22±3±3.0</td>
</tr>
<tr>
<td>Age</td>
<td>13±6.91</td>
<td>25±7.97</td>
<td>26±8.3</td>
</tr>
<tr>
<td>Basal C-peptide (nmol/l)</td>
<td>0.29±0.24</td>
<td>0.48±0.44</td>
<td>0.25±0.2</td>
</tr>
<tr>
<td>% HbA1c</td>
<td>5.93±0.92</td>
<td>6.83±1.22</td>
<td>7.61±1.57</td>
</tr>
<tr>
<td>Insulin Dose U/kg/day</td>
<td>0.44±0.17</td>
<td>0.34±0.18</td>
<td>0.34±0.23</td>
</tr>
</tbody>
</table>

457
CoQ10 affects peripheral natural killer cells in patients with type 1 diabetes mellitus
J. Grünler1, G. Dallner1, K. Brisma1, A. Brauner1, H. Brauner1; 1Department of Molecular Medicine and Surgery, 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.

Background and aims: Natural killer (NK) cells have been implied in the pathogenesis of type 1 diabetes (T1D), although their exact role in the disease is still not known. T1D leads to long term complications, including increased mortality mainly due to cardiovascular disease (CVD). The antioxidant CoenzymeQ10 (CoQ10) has been suggested to decrease CVD risk by a mainly unknown mechanism. We here, for the first time, investigate the impact of CoQ10 treatment on the NK cells in T1D.

Materials and methods: Patient data and peripheral blood samples were collected immediately before and after 12 weeks of oral CoQ10 treatment (100 mg twice daily). Peripheral blood mononuclear cells (PBMC) were analysed using flow cytometry after staining with monoclonal antibodies. The NK cells were defined as CD56+ CD lymphocytes, NK cell frequency, subset distribution and phenotype in patients with T1D was compared with patients with type 2 (T2D) diabetes as controls since they too exhibit chronic hyperglycemia, which by itself could influence lymphocyte phenotype and function, but lack the autoimmune pathology of particular interest to this study. 13 T1D and 10 T2D patients (mean age 58±1.9 vs 62.8±8.9 yrs, females 54 vs 30%, fasting plasma glucose 7.2±1.3 vs 6.9±3.3 mmol/L p=0.27, HbA1c 6.7±1.3 vs 5.6±1.1, none significantly different) were treated with oral CoQ10 1.0 mg twice daily. CD11c positive NK cells have been demonstrated to be potent cytokine producers and might interact in long term complications. NK cells are divided into two phenotypically and functionally distinct subsets on the basis of their expression level of the surface marker CD56. While NK cells with a bright expression of CD56 have a higher capacity to produce cytokines, the CD56 dim NK cells are more cytotoxic. In addition, we recently demonstrated that CD56 dim NK cells might play a role in CoQ10 mediated benefit by their capacity to produce cytokines.

Results: CoQ10 treatment led to a small but highly significant (p<0.001) upregulation of NKG2D on CD11c+ CD56 dim NK cells. Preservation of β cell function was evaluated as the change in total secreted C-peptide (AUC) following glucagon stimulation from Baseline to 13 and 18 months.

Conclusion: Our results demonstrate that CoQ10 treatment increased NK cell numbers in both T1D and T2D, as well as the percentage of CD56 bright NK cells and the activating receptor NKG2D in T1D. Collectively our results opens up for a possible role of NK cells in a CoQ10 mediated beneficial effect in patients with T1D.

Supported by: Erling Persson Foundation

458
Does immune tolerance with Alum-GAD prevent or delay onset of type 1 diabetes in non-diabetic children with multiple islet autoantibodies?
H. Elding Larsson1, C. Andersson1, A. Carlsson1, E. Cedervall2, G. Hansson3, S.A. Ivarsson1, B. Jönsson1, K. Larsson1, A. Lernmark1, J. Neiderud4, C. Nilsson5, for the DiAPREV-IT Study Group; 1Department of Clinical Sciences, Malmö, 2Pediatrics, Lund, 3Pediatrics, Angelholm, 4Pediatrics, Ystad, 5Pediatrics, Kristianstad, 6Pediatrics, Helsingborg, Sweden.

Background and aims: Type 1 diabetes (T1D) is predictable by HLA-risk genotypes and islet autoantibodies. The subclinical phase, lasting months to years, is defined by islet autoantibodies (A) against GAD65 (GADA), insulinaoma-associated protein 2 (IA-2A), insulin (IAA) or the ZnT8 transporter (ZnT8A). A gradually deteriorating glucose metabolism precede clinical...
onset. Children with genetic risk of T1D are followed prospectively by us in the Diabetes Prediction in Skåne (DiP6S) and The Environmental Determinants of Diabetes in the Young (TEDDY) studies. Immune tolerance with human recombinant GAD65 formulated with alum (Alum-GAD) has shown promising results to preserve residual beta-cell function in newly diagnosed T1D children. As only a fraction of the residual beta-cell function remains at onset, we initiated Diabetes Prevention - Immune Tolerance (DiAPREV-IT) as a first prevention study with Alum-GAD. The aim is to evaluate safety and efficacy of Alum-GAD in non-diabetic children from 4 years of age with multiple islet autoantibodies.

Materials and methods: DiAPREV-IT is an investigator-initiated, placebo-controlled, double-blind study of Alum-GAD (donated by Diaymed Medical AB, Sweden) in children with GADA and at least one additional islet autoantibody. Children from 4 years of age (n=50) recruited from DiP6S and TEDDY will be treated with placebo (n=25) or Alum-GAD (n=25) in two doses of 20 microgram. The children are followed every 3rd month during the 5 year follow-up with alternating IVGTT and OGTT to evaluate beta-cell function. Placebo children developing T1D during the study period will be treated with Alum-GAD at clinical onset. GADA, IA-2A, IAA and ZnT8A (both ZnT8RA and ZnT8WA) are measured by standardised radioimmunoassays.

Results: As of April 1, 2010, a total of 26 islet autoantibody-positive children have been screened for participation. Of those, three children had lost GADA or the additional islet autoantibody at screening. One family withdrew their consent and another child was excluded due to illness. The included 21 children were 4.9-9.8 (mean 6.0) years old. All but one child (20/21) were positive for one or two of ZnT8RA/WA and 17/21 were positive for IA-2A. While 2/21 children were positive for GADA and only the additional autoantibody, the remaining 19 children were positive for 3, 4 or 5 autoantibodies. A total of 17 children have received both injections, and an additional two children have received the first injection. The first visit after the second injection has been completed by 14 children. No serious adverse events were reported and none of the children have developed T1D. Mild to moderate injection site reactions were reported by all participants.

Conclusion: DiAPREV-IT is the first prevention study with Alum-GAD in non-diabetic children with multiple islet autoantibodies. In including analysis of the ZnT8RA/WA the number of T1D-risk children is increased. As no serious adverse events have been reported so far, DiAPREV-IT will continue to recruit children.

Supported by: Swedish Research Council, Swedish Childhood Diabetes Fund, ALF

459 Prediction of remission after 6 months and residual beta cell function 12 months after diagnosis in Danish children using multivariate statistical methods

M.-L.M. Andersen, M.A. Rasmussen, S. Pörksen, L.B. Nielsen, J. Svensson, J.V. Jorgensen, J. Thomsen, N.T. Hertel, J.S. Petersen, A.F. Karlsen, L. Hansen, H.B. Mortensen; Pediatrics, Herlev University Hospital, Quality and Technology, Dep. of Food Science, Copenhagen; Pediatrics, Skejby University Hospital, Aarhus; Pediatrics, Kolding Hospital; Pediatrics, Odense University Hospital; Department of Diabetes Research Unit, Novo Nordisk A/S, Maaloev, Denmark.

Background and aims: Children and adolescents with newly diagnosed type 1 diabetes (T1D) experience a remission period, where the requirement for exogenous insulin treatment declines or even becomes non-existent. The purpose of this prospective study, conducted in a Danish cohort of children with new onset T1D, is to identify patterns of early clinical and laboratory characteristics, which can help us to explore the metabolic disturbance and genetic background as predictors of the residual beta-cell function and remission the first 12 months after diagnosis.

Materials and methods: 129 children and adolescents aged < 17 years from 4 centres in Denmark with newly diagnosed T1D were followed for 12 months. HbA1c, autoantibodies, HLA typing and mixed meal stimulated C-peptide, proinsulin, Glp-1, GIP and Glucagon 1, 3, 6, 12 months after diagnosis were analyzed centrally. pH and standard bicarbonate were determined locally. In addition 40 SNPs in either T1D or T2D related genes have been genotyped. Regression models for prediction of log (C-peptide), and insulin dose adjusted HbA1c (HbA1cAlc) at 12 months was done by 10 fold cross validated Lasso for variable selection followed by Multiple Linear Regression (MLR) analysis on these relatively few selected variables. Covariates for age, gender and the clinical- and laboratory data were included in the analysis. Data is initially split randomly into 70% training data and 30% test data in order to estimate model performance from independent data. Statistical inference is reported for the test set.

Results: The best predictors for stimulated C-peptide concentration at 12 months were HbA1c at diagnosis (positive association (PA)), C-peptide at 1, 3, and 6 months (PA), IDAA1c at 3 months (negative association (NA)) and proinsulin at 6 months (PA). The selected variables are consistent over time, the model performance slightly improves when data are included over the different time points (r=0.74 0, 1 month data; r=0.79 0, 1, 3 months data and r=0.84 0, 1, 3, 6 months data) and all models are significant (p<0.001). Genotypes of common variants in the T2F22 and TCF2 genes refine the C-peptide models, but they do not have a significant quantitative impact. HLA risk groups and autoantibodies were not selected by the models. The best predictors for remission after 6 months are C-peptide at 1 month (NA), stimulated blood glucose at 1 month (PA) and height at 1 month (NA), probably a surrogate marker for beta-cell mass. This model is significant (p=0.007, r=0.42) both when we use IDAA1c ≥ 9, to define partial remission (stimulated C-peptide > 300 nmol/L) and IDAA1c as a continuous variable (p=0.013, r=0.41).

Conclusion: This study illustrates the strength of multivariate statistical analysis when applied to observational data, in predicting the course of the residual beta-cell function and remission in children with new onset T1D. The results suggest that disease progression and proportion of patients in remission can be predicted by objective factors present soon or later after diagnosis.

460 Fasting and stimulated C-peptide at baseline in DEFEND-1, a phase 3 study of otelixizumab in new onset type 1 diabetes

P. Pozzilli, G. Ghilandi, A.M. Brennan, B. Belanger, C.M. McKeel; 1Endocrinology and Diabetes, Università Campus Biomedico, Rome, Italy; 2Endocrinology and Diabetes, Università Cattolica del Sacro Cuore, Rome, Italy; 3Tolera, Cambridge, USA.

Background and aims: Stimulated C-peptide is frequently used to determine residual beta cell function. We compared mixed meal-stimulated and fasting C-peptide levels using baseline data from the DEFEND-1 Phase 3 study, and investigated the optimal single time point post-meal for determining maximum C-peptide in adults and adolescents with new onset type 1 diabetes (NOD1T1D).

Materials and methods: DEFEND-1 is a multinational, placebo-controlled Phase 3 study of the safety and efficacy of otelixizumab, an investigational Fc-disabled anti-CD3 monoclonal antibody with T cell immunomodulatory activity, in subjects with NOD1T1D (clinical trials identifier NCT00688886). Subjects were 12-45 years old, enrolled within 90 days of diagnosis, had BMI < 32, had at least 1 T1DM-associated autoantibody, and were otherwise healthy. Adult subjects had a mixed meal tolerance test (MMTT) with BOOST™ at screening and another MMTT at predose (≤ 14 days before the first dose of study drug); subjects < 18 years had a single C-peptide assessment at 120 min post-meal at screening and 120 min MMTT at predose. To be eligible for DEFEND-1, subjects had to have a maximum stimulated C-peptide > 0.20 nmol/L at screening or predose. The current analysis includes data from one MMTT per subject; the predose MMTT if available, otherwise the screening MMTT.

Results: Data were available from 243 adult and 29 adolescent subjects who went on to receive either otelixizumab or placebo and 101 adults and 8 adolescents who failed screening. Baseline characteristics are shown in Table 1. Fasting and stimulated C-peptide values were available for 339 subjects. Fasting C-peptide was highly correlated with maximum stimulated C-peptide (r=0.76, P<0.0001) and age group had no significant effect on this association. In adults, a fasting C-peptide > 0.11 nmol/L had a sensitivity of 88% and specificity of 75% to identify subjects with a maximum stimulated C-peptide > 0.20 nmol/L. In adolescents, the same cutoff value had a sensitivity of 78% to identify subjects with a maximum stimulated C-peptide > 0.20 nmol/L, specificity could not be determined, as no adolescents had a maximum stimulated C-peptide < 0.20 nmol/L. Maximum stimulated C-peptide occurred at 120 min in most subjects (42%); maximum values occurred at 30, 60, and 90 min in 5%, 16%, and 35% of subjects, respectively. Of the 334 subjects with a recorded C-peptide at 120 min, 326 had a maximum stimulated C-peptide > 0.20 nmol/L; of these, only 2 (0.6%) had C-peptide < 0.20 nmol/L at 120 min.

Conclusion: In these subjects with NOD1T1D, a fasting C-peptide level of > 0.11 nmol/L was a reasonable determinant of residual beta cell function and, when combined with a single 120 minute post-meal sample for subjects who fall below this threshold, captured 99% of subjects compared with a full
Effect of sirolimus versus mycophenolate mofetil on glucose metabolism in pancreas and kidney transplantation: final results of a prospective randomised study

T. Havrdova, F. Saudek, K. Lipar, T. Jedinakova, J. Skibova; 1Diabetes Center, 2Transplant Center, 3Statistical Department, Inst. Clinical Exp. Medicine, Prague, Czech Republic.

Objectives: Metabolic effects of immunosuppressive agents are important in pancreas or islet transplantation. The aim of our study was to compare glucose metabolism in Type 1 diabetic pancreas and kidney recipients on tacrolimus-based immunosuppression with sirolimus (RAPA) or mycophenolate mofetil (MMF) in a prospective randomised study.

Methods: The investigation was performed in 40 insulin-independent rejection-free patients after simultaneous pancreas and kidney transplantation (with systemic venous drainage of pancreatic graft) on discharge from the hospital (0.60±3 [mean±SD] month post-transplant; with steroid dose 11±4.3 mg/day) and subsequently at 21.2±9.9 months (steroid-free). All recipients had a good function of the kidney graft. Fasting glycemia, insulin, and C-peptide levels, HbA1c, IVGTT with Kelling’s calculation were assessed in both groups. Insulin sensitivity was evaluated by HOMA-IR. Areas under the insulin/C-peptide curves during the IVGTT (AUC-IRI, AUC-CP) were used as the parameters of insulin/C-peptide secretion.

Results: The RAPA and MMF groups did not differ in age, BMI, post-transplant period and steroid daily dose. Trough levels of tacrolimus had no significant impact on any of examined parameters. HbA1c, and HOMA-IR of the whole study group significantly improved between the exams (1.0±0.4 vs. 1.43±0.44 %/min., p<0.01 and 4.1±4.1 vs. 2.73±1.98, p<0.05, respectively). We found only a significant difference between the groups in stimulated AUC-CP after steroid withdrawal.

Conclusion: Glucose tolerance measured by IVGTT significantly improved in whole study group probably due to better insulin sensitivity after steroid withdrawal. The higher stimulated C-peptide secretion in the MMF was not associated with a significant difference in IVGTT results between the groups. In steroid-free tacrolimus-based immunosuppression the choice of RAPA or MMF did not lead to clinically relevant differences in parameters of glucose metabolism.

Supported by: MZO 00023001
The role of pancreas transplantation alone (PTA) in type 1 diabetic patients

Dept. Endocrinology and Metabolism, University of Pisa, Italy.

Background and aims: The role of pancreas transplantation alone (PTA) in type 1 diabetic patients (T1DM) is still debated. This study describes the effects of pancreas transplant alone (single centre experience) on metabolic parameters, cardiovascular risk factors, diabetic complications and kidney function in type 1 diabetic patients followed up to 4 years post-transplant.

Materials and methods: We report our single centre experience on PTA in 71 T1DM (age: 38.4±8.5 yrs; gender: 37 males/34 females; body mass index, BMI: 23.5±3.0 kg/m²; duration of diabetes: 23.7±9.9 yrs), with a follow-up of up to 8 yrs. Patients were transplanted according to the portal (73.2%) or systemic (26.8%) drainage technique, with enteric diversion of exocrine secretion. Immunosuppression consisted of induction with basiliximab (76.1%) or thymoglobulin (23.9%) and high-dose steroid, followed by mycophenolate mofetil, tacrolimus and low-dose steroid for maintenance.

Results: Patient and pancreas (insulin independence) survival at 4 yrs from transplant were respectively 98.4% and 76.7% with graft losses mainly due to immunological reasons. Relaparotomy was needed in 18.3% of cases, and 15.5% of recipients developed infections. Fasting plasma C-peptide levels rose from 0.15±0.33 ng/ml pre-transplant to 3.00±1.92, 2.78±1.40, 2.36±1.19 and 2.74±1.26 ng/ml at 1, 2, 3 and 4 yrs post-transplant. This was associated with sustained normalization of fasting plasma glucose concentrations and HbA1c levels. In addition, several cardiovascular risk factors (blood pressure, total and LDL-cholesterol and fibrinogen) decreased significantly after PTA and so remained up to 4 yrs of follow-up, with no apparent changes in the group with proliferative and/or laser treated retinopathy, the lesion disappeared in 90% pancreatectomised rats. Gastrin stimulated the expression of the crucial transcription factors

Conclusion: We conclude that PTA was effective and reasonably safe in selected type 1 diabetic patients.
Role of Maf transcription factors in the endocrine cell differentiation in the developing pancreas

M.A. Mazur, I. Arner
Stem Cell and Pancreas Developmental Biology, Lund University, Lund, Sweden.

Background and aims: Pancreatic endocrine cell differentiation is dependent on the interactions of several transcription factors. MafA and MafB are essential activators of insulin and glucagon expression. However, MafA and MafB are distinct from others in regards to temporal and islet cell expression pattern, with beta cells only affected by MafB during development and exclusively by MafA in the adult. To elucidate the function of MafA and MafB in β cell differentiation, E18.5 mutant pancreata were analyzed for changes in gene expression. From these gene profiling studies several genes regulated by MafA and MafB factors were identified.

Materials and methods: To identify genes regulated by MafB, expression profiling was performed on wild type and MafB-/− pancreata at embryonic day 18.5. Samples of embryonic and adult tissue were evaluated for candidate genes by qRT-PCR, immunohistochemistry and in situ hybridization.

Results: The microarray studies showed that expression levels of several genes are altered in MafB deficient mice. Gene ontology analysis revealed that the differentially expressed genes were mainly associated with mature beta cell function, such as ion binding and transport, signal transduction, and hormone secretion. This suggests that MafB is involved in beta cell maturation and function. My experiments have shown that Neuronatin (Nnat) and islet-specific zinc transporter (Slc30a8), Endothelin receptor B (Ednrb), Melanocortin 3 receptor (Mc3r), and Microphthalmia associated transcription factor (Mitf) are downregulated in mutant embryonic pancreata. In contrast, the mRNA level of Retinol Binding Protein-4 (Rbp4) was upregulated in mutant tissue. Immunochemical analysis shows that Mif, Ednrb and Mc3r are expressed in the adult pancreas. Endothelin and melanocortin signalling pathways are coupled in the modulation and expression of Mitf gene.

Conclusion: These novel findings indicate a possible involvement of Mitf, Ednrb and Mc3r in the differentiation of pancreatic endocrine cells and adult beta cell function.

Supported by: IDRE, Jeannsons Stiftelse

468

Glucagon-like peptide 1 protein and receptor are present during embryonic life. Biological effects and gene targets

C. Sanz1, P. Vázquez1,2, E. Blázquez1
1CIBERDEM-University Complutense of Madrid, 2Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.

Background and aims: Glucagon-like peptide 1 (GLP-1) functions during adult life as an incretin hormone with antidiabetogenic properties. However, the role of GLP-1 if any, in early stages of development or in undifferentiated cells, such as human bone marrow mesenchymal stem cells (hMSCs) or mouse embryonic stem cells (mES), remains unknown and it was the aim of this study.

Materials and methods: The presence of GLP-1 and GLP-1 receptor were tested by immunostain of mES and hMSC, as well as in mouse embryos (E 8.5, E10.5 and E13.5). Furthermore, the effects of GLP-1 were tested in hMSC under proliferative, cytoprotective and adipogenic conditions and signalling pathways involved in these processes were also analyzed. Additionally, GLP-1 genes target were studied by quantitative gene expression in a TaqMan Low Density Array.

Results: The isolated hMSCs expressed mRNP and GLP-1 receptor protein. One-day treatment with 10 nM GLP-1 did not modify the stem cell markers SCF, nestin, c-kit and Thy-1, but produced a transcriptional induction of the pancreatic transcription factors neurogenin-3, isl-1 and ipf-1. GLP-1 increased the proliferation of hMSCs, which decreased when they were induced to differentiate into adipocytes. Differentiation produced biochemical and cell morphologic changes with the expression of PPARy, c/EBPβ, AP2 and LPL in a time-dependent pattern. Interestingly, GLP-1 significantly reduced the expression of PPARy, c/EBPβ and LPL (inhibition of 30%±4, 33%±2 and 90%±5 respectively). These effects were, at least, exerted through MEK and PKC signalling pathways. In addition, GLP-1 significantly reduced cell apoptosis. In other words, both, peptide and GLP-1 receptor were present in mouse embryonic stem cells derived from the inner cell mass where were...
found new genes target for GLP-1. Likewise, they were mainly present in cells derived from ectodermal and endodermal linages, in early development of the mouse.

Conclusion: Our data indicate that GLP-1 promotes proliferation and cytokoprotection of hMSC, at the same time as it prevents its differentiation into adipocytes, which suggests that this peptide may play a role in the renewal of tissues. Furthermore, both peptide and receptor are present in embryonic life before GLP-1 may play a role as an incretin and modulates the expression of new target genes in mouse embryonic stem cells. These results open new views about the role of this peptide during different periods of life.

Supported by: CIBERDEM and MINISTERIO DE CIENCIA E INNOVACION

469

Ablation of FGFR2b in a subset of pdx1+ pancreatic progenitor cells

Background and aims: Mesenchymal-epithelial interactions mediated by Fibroblast growth factor receptor 2b, FGFR2b, and its ligand FGF10 have been shown to play an important role in early pancreatic development by regulating proliferation and differentiation. However, it is not known if these effects are direct or indirect due to interactions between the pancreatic epithelium and mesenchyme.

Materials and methods: To address the functional role of FGFR2b in pancreatic development in a cell-autonomous fashion, we generated mice with a conditional mosaic deletion of FGFR2b under regulation of the pdx1 promoter. All statistical analyses were performed using GraphPad Prism version 4.03 and t-tests.

Results: This study confirms that FGFR2b deletion in a subset of pancreatic progenitors results in a smaller pancreas due to reduced proliferation of pdx1+ cells. We have also successfully narrowed this lack of proliferation down to between embryonic day e13.5 and e14.5. Surprisingly, the cells still retained their ability to differentiate into all lineages of the pancreas, although the ductal development was favored at the expense of the exocrine.

Conclusion: We conclude that proliferation mediated by FGFR2b is cell autonomous while differentiation defects are rescued in the mosaic mouse model, suggesting that there is signaling crosstalk between mutant and wild type cells. Which these secondary signals are and how the differentiated cells behave in terms of migration capacity, maturation status and functionality are still to be determined.

Supported by: JDRF, NIH, EU, VR

470

Gene therapy of diabetic rats by hepatic insulin expression after lentiviral gene transfer

M. Elsner1, T. Terbish1, A. Jörns2, S. Lenzen1; 1Institute of Clinical Biochemistry, Center of Anatomy, Hannover Medical School, Germany.

Background and aims: The release of insulin from non-endocrine cells is an interesting therapeutic concept for the treatment of insulin dependent diabetes mellitus. Modern lentiviral vector systems are able to transduce non-dividing cells and are therefore a valuable tool for gene therapy approaches. The aim of the present study was to normalise the blood glucose concentrations by lentiviral gene transfer of the human insulin gene into hepatocytes of diabetic rats.

Materials and methods: The cDNA of furin-cleavable human insulin was subcloned into a lentiviral vector system. The ubiquitous protease furin allows a processing of proinsulin into mature biological active insulin in non-endocrine cells. Lentiviruses were isolated by ultrafiltration with a titer of 7x1010 infectious particles per ml. Virus solutions were injected into the portal vein of immune-diabetic IDDM and STZ-diabetic rats. Diabetic controls were treated with GFP lentivirus. The blood glucose concentrations and the body weight of the treated animals were measured over one year. 30 and 270 days after virus injection oral glucose tolerance test (OGTT; 2 g/kg body weight) were performed. The serum insulin and c-peptide concentrations were measured by an EILSA. The insulin expression in the liver and the pancreas was analysed by PCR and immunostaining.

Results: 10 days after injection of insulin lentivirus into the portal vein of immune-diabetic IDDM or STZ-diabetic rats the blood glucose concentrations were lowered from 21.6 mmol/l ± 4.6 to 5.9 mmol/l ± 1.1 or from 19.6 mmol/l ± 3.5 to 5.5 mmol/l ± 0.7, respectively. In control rats treated with GFP virus there was no significant reduction of the blood glucose concentration detectable. The blood glucose concentration after OGTT of rats injected with insulin virus increased up to 19.7 mmol/l after 30 min and were normalised after 3 h. The serum insulin concentrations increased from <0.1 ng/ml to 2.1 ng/ml after treatment with insulin lentivirus. The rat c-peptide concentrations were below the detection limit. Insulin expression in the liver was detected by PCR and immunostaining. Around 20% of the hepatocytes were insulin positive. The hepatocytes showed no signs of transdifferentiation into beta cells.

Conclusion: The lentiviral gene transfer of furin-cleavable human insulin into hepatocytes of immune-diabetic IDDM and STZ-diabetic rats leads to a blood glucose normalisation for more than one year. The insulin was processed in the hepatocytes and released constitutively from the cells. This study shows that the diabetic state can be improved by insulin release from non-endocrine cells in a somatic gene therapy approach.

471

Modulation of components of Hedgehog signalling pathway in response to beta cell injury

E. A. Grrecio1, M. Moretti1, G. Sebastiani1, I. Spagnuolo2, A. De Smaele1, A. Gulino3, M. Maroder1, F. Dotta1; 1University of Siena, 2Fondazione Umberto Di Mario, Siena, 3University of Rome "La Sapienza", Rome, Italy.

Background and aims: Pancreatic beta cell mass undergoes major remodeling during neonatal growth and adult life. It has been established that both in Type 1 and Type 2 diabetes there is a significant loss of insulin-producing beta cells and consequently decreased functional beta cell mass. The molecular mechanisms that regulate beta cell mass are still not fully characterized. Since Hedgehog (Hh) pathway plays an important role both in endocrine pancreas development and in the regulation of insulin secretion, we have focused our attention on the contribution of Hh pathway in the regulation of beta cell mass after beta cell injury. To this end, we have studied the expression of Hh signaling key molecules (transcription factors Gli1, Gli2, Gli3) and of Hh receptor Ptc, in C57/BL6 mice in which diabetes was induced by streptozotocin (STZ).

Materials and methods: Six-week old C57/BL6 male mice (n=12) were intraperitoneally injected with a single dose of STZ (200mg/kg b.w.) and then sacrificed and pancreas was collected after 1, 3, 7 and 10 days post STZ administration. In addition, a group of 6-week old C57/BL6 male mice (n=10) not treated with STZ was used as control. The expression of Gli-1, -2, -3, and of the inhibitory receptor Ptc was analyzed on pancreatic sections by indirect immunofluorescence with confocal microscopy analysis. In order to establish the endocrine cell type expressing the Hh molecules of interest, double immunostaining for each of the Hh component and for insulin, glucagon and somatostatin was performed as well.

Results: In untreated mice, Gli1 was expressed both in alpha and beta cells, while Gli2 and Gli3 expression was beta-cell specific. Following STZ administration, Gli1 was not detected in the residual beta cells (1 day post-STZ) in which it reappeared after 7 days; Gli1 expression remained unchanged in alpha cells after STZ. In contrast, expression of Gli2 and Gli3 did not change in beta cells. Of note, Gli2 and Gli3, which showed a beta-cell specific expression in untreated mice, were detected in alpha cells in a time window between 1 and 3 days post STZ. As for the inhibitory receptor Ptc, this was detected only in somatostatin-positive cells (i.e. delta cells) and its expression was not affected by STZ treatment.

Conclusion: These data show a differential expression, among pancreatic endocrine cell subsets, of Gli transcription factors family members and that such expression is modulated in response to beta cell injury, thus confirming the involvement of Hh pathway in the regulation of beta cell mass. Moreover, the expression of the inhibitory receptor Ptc only in delta cells indicates that in these cells the Hh pathway is inactive and indirectly supports the hypothesis that Hedgehog signaling is indeed involved in the development and regulation of both alpha and beta cells.

Supported by: FORISD- Italian Diabetes Research Foundation, Italian Ministry of Research.
472

Adaptive response of pancreatic alpha cells and hepatic carbohydrate metabolism during chronic nutritional deprivation

E. Fernández-Millán1, J. De Toro-Martín1, E. Lizárraga-Mollinedo1, F. Escribá1, C. Álvarez2;
1Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM).
ISCIII, 2Bioquímica y Biología Molecular II, Facultad de Farmacia Universidad Complutense, Madrid, Spain.

Background and aims: Type 2 diabetes is mainly characterized by β-cell secretory dysfunction and decreased β-cell mass but inappropriate levels of circulating glucagon and increase in the α-cell/β-cell mass ratio are also important determinants of the hyperglycemia seen in type 2 diabetes patients. In rats, pancreatic β-cell disease is particularly sensitive to an altered intra-uterine environment what contributes to increase the incidence of adult onset type 2 diabetes. However, little is known about the contribution of α-cells in this context. We previously showed that food-restriction applied during the last third of gestation caused in fetuses at term, an increase of β-cell mass, hyperinsulinemia and enhanced insulin secretion while prolonged malnutrition until adulthood impaired β-cell growth and functionality. Therefore, our first aim was to determine whether maternal food-restriction would affect α-cell growth and functionality in offspring. Since pancreatic hormones play a crucial role in the regulation of hepatic glucose metabolism, our second aim was to examine the adaptive changes of carbohydrate metabolism in response to chronic food deprivation.

Materials and methods: Wistar rats were 65% food-restricted from the last week of gestation until adult age. The experiments were carried out in fetuses at term, in suckling and adult rats. α-cell mass, neogenesis and apoptosis were evaluated by immunocytochemistry and morphometry. For the study of α-cell function fetal and adult islets were isolated. Serum hormone levels, islet glucagon secretion and content were measured by radioimmunoassay. Basal glycogen storage, PEPCK activity and phospho- and total GSK3β protein levels were determined in homogenized livers after fasting.

Results: Undernourished (U) suckling rats were hypoglycaemic. Serum insulin/glucagon ratio was higher in U fetuses and neonates on postnatal day 4 (PN4) as compared to controls (C) but, from PN14 onwards this ratio was lower in U rats. Moreover, glucagon secretion was damaged in U fetuses and adults. α-cell mass increased from fetal period to PN14 then, it remained stable until PN23 and finally, it decreased at adult age in both populations. However, U rats showed defective α-cell mass comparing with C at all the ages studied. The impaired α-cell growth was neither due to increased α-cell apoptosis nor decreased neogenesis but to the presence of islets of smaller size. Liver glycogen content was enhanced in U rats at all the ages studied and this was associated with a higher inhibition of GSK3β. In contrast, PEPCK activity was found impaired from PN14 to adulthood in U rats.

Conclusion: 1) Intra-uterine growth restriction due to maternal malnutrition induces a defective metabolic adaptation of neonates to extraperinatal life; 2) The factors involved include morphological and functional alterations of pancreatic α- and β-cells, improved efficiency to store glycogen in the liver but impaired glycogenogenesis; 3) This adaptive process could be crucial to survival during periods of nutritional scarce but detrimental in case of normal diet or overfeeding.

Supported by: CIBERDEM (ISCIII) and MEC, Spain

PS 26 Islet imaging

473

Live in vivo imaging of Langerhans islets in normal and diabetic mice by extended focus optical coherence microscopy

J. Goullé1, M. Villiger2, C. Berclaz2, P. Meda3, A. Grapin-Botton1, T. Lasser1; 1UPGRA, EPFL-SV, Lausanne, 2LOB, EPFL, Lausanne, 3Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.

Background and aims: Structural and functional imaging of the islets of Langerhans and the insulin-secreting beta cells during diabetes progression represents a significant challenge and a long lasting objective. We have developed extended focus optical coherence microscopy (xOICM) to image murine islets of Langerhans in vivo. No labeling is required, since the native, intrinsic scattering properties of pancreatic tissues allow for a direct visualization of endocrine islets of various sizes, blood vessels and ductal tree. Moreover, streptozotocin-induced destruction of beta-cells was detected and quantification of this depletion was determined in vitro to evaluate the sensitivity of xOICM. A longitudinal study performed on NOD mice, a model of type 1 diabetes, unraveled new perspectives for xOICM to image onset and progression of diabetes.

Materials and methods: A very same group of NOD mice was repeatedly monitored using xOICM prior to the development of diabetes, at the early onset of the disease, weeks later and just before sacrifice. Imaging was followed by automated quantification of islet mass. The same animals were regularly sampled for basal glucose measurement tests, intraperitoneal glucose tolerance tests, and body weight measurements. Histological analysis of the pancreata after immunohistochemistry allowed us to characterize the nature of the detected structures.

Results: We show that xOICM can detect islets of Langerhans in the absence of labeling in mice, and that the islet mass in the sample can be quantified. The longitudinal in vivo imaging study performed on NOD mice shows that (1) we can detect infiltrated islets (2) a decrease in beta cell mass measured by xOICM is detected prior to detection of impaired glucose tolerance and overt diabetes. The presence of infiltrated islets and beta cell mass disappearance were confirmed by immunohistochemistry.

Conclusion: Our results demonstrate that xOICM is a suitable tool to assess insulin and beta cell mass loss prior to impaired glucose homeostasis and diabetes. Therefore, xOICM will be useful to anticipate a diabetes outcome, since it non-invasively captures islet alterations that cannot be appreciated in vivo by other methods.

Supported by: an EFSMD/MSD grant, Betaimage

474

Bioluminescence quantifies alterations of beta cells mass in living Ins-DTR mice

L. Vinet1, J. Virotski2, D. Callie1, O. Fazio1, A. Powers2, P.L. Herrera1, P. Meda2;
1Université de Genève, Switzerland, 2Vanderbilt University, Nashville, USA.

Background and aims: Studies of β cell loss in the pre-diabetic and diabetic state are impeded by the inability to non-invasively assess pancreatic β cell mass. Non-invasive imaging may also aid the development of therapeutic interventions aimed at mitigating the diabetes-related β cell loss or to regenerating islets. Current methods for quantifying β cell mass and regeneration require the sacrifice of mice and the analysis of pancreatic sections, and do not allow for a sequential evaluation of β cell loss and regeneration in individual mice over time. To assess whether bioluminescence may help to address this problem, we generated MIP-Luc/Ins-DTR double transgenic mice which express the diphtheria toxin receptor (DTR) and luciferase (Luc) under the control of the insulin promoter, i.e. specifically in β cells. In these mice, injection of luciferin permits the emission of photons from β cells, whereas injection of diphtheria toxin (DT) causes a loss of the cells expressing DTR.

Materials and methods: Two-month old MIP-Luc/Ins-DTR double transgenic mice, both on a C57BL/6 genetic background, were injected 3 times i.p. with DT at 3 day intervals. When blood glucose was > 450 mg/dl, mice received a s.c. insulin implant. At weekly intervals, bioluminescence imaging (BLI) was recorded from a pancreatic region of interest, 5, 10, 15 and 25 min after the luciferin injection.

Results: In control MIP-Luc mice, the BLI recorded over the pancreas remained stable for the 4 month duration of the experiment. Prior to DT injection, males and females MIP-Luc/Ins-DTR mice had similar values of BLI.
After DT injection, this BLI signal sharply decreased in males (n=5) to about 5-10%, whereas in females, as the animals developed hyperglycemia, it remained with a major loss of β-cells. BLI then, remained at this low level throughout the experiment. In age-matched females (n=4), DT decreased BLI by 40-70%, but did not cause hyperglycemia, consistent with the loss of only a fraction of the β-cells. The BLI then, remained stable for the first 2 months. Thereafter, it increased, suggesting a change in β-cell mass analysis, in the efficiency of the photon emission. In this model, the BLI and blood glucose changes differed in males and females, due to the targeted insertion of the DTR transgene to the X chromosome.

Conclusion: The data show that bioluminescence provides for a non-invasive monitoring of graded, and sequential changes in β-cells mass within individual mice.

475
Islets transplanted into the anterior chamber of the eye serve as a mirror of in situ pancreatic islets

E. Ilegems, A. Bahow, A. Sharma, A. Dicker, S. Speer, P. Karlsson Edlund, M. Köhler, I.B. Leibiger, P.-O. Berggren

1Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Technical University Dresden, Germany.

Background and aims: Since insulin-secreting beta-cells are located in the endocrine pancreas, deeply embedded in the exocrine pancreas, imaging of beta-cells in living organisms is difficult. The anterior chamber of the eye was recently proposed as a transplantation site for non-invasive in vivo imaging of pancreatic islets. This location can be used as a natural “body-window” allowing for a repetitive assessment of islet mass and function. The aim of the present study is to demonstrate that islets transplanted into the anterior chamber of the eye serve as a representative of the islets status in the endogenous pancreas.

Materials and methods: We performed syngeneic transplantations into control and obese-hyperglycemic ob/ob mice - a model for type 2 diabetes. Animals were transplanted into the anterior chamber of the eye at 4 weeks of age with islets isolated from age-matched donors. Pancreas and transplanted eyes were collected 3 months later and processed for immunohistochemical studies.

Results: Immunohistochemical staining for insulin showed an altered expression pattern in both ob/ob pancreatic and transplanted islets as compared to control mice. Islets in ob/ob mice showed a strong proliferation rate (1.0 ± 0.2 %) as well as an increased size of beta cells (+30 %), both at the transplantation site and in the endogenous pancreas. The typical increase in intra-islet vessel diameter in the ob/ob mouse was also observed and found to be identical in transplanted islets. We next aimed at demonstrating islet plasticity in the anterior chamber of the eye. Ob/ob mice were treated with daily injections of leptin 2 months after transplantation. After 1 month of treatment, their blood glucose levels normalized and their body weight diminished to reach a similar value as in control mice. Immunostaining at this time point showed that the typical islet properties of ob/ob mice were reversed: quantification of beta cell size, proliferation, and vessels diameters gave similar values as observed in control non-obese mice.

Conclusion: Islets transplanted into the anterior chamber of the eye reflect endogenous pancreatic islets properties. This transplantation site thus serves as a perfect imaging platform allowing for a non-invasive and repetitive assessment of islet function and beta-cell mass regulation at single-cell resolution.

Supported by: Wenner-Gren Foundation & Swedish Research Council

476
High resolution magnetic resonance imaging detects individual pancreatic islets in whole pancreas

S. Lamprianou, R. Ummen, A. Gjino, L. Vinet, R. Grutter, P. Meda

1PHYME, Université de Genève; 2Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.

Background and aims: In type 1 and type 2 diabetes the gradual loss of pancreatic β-cell function and mass leads to impaired regulation of blood glucose with severe secondary peripheral effects. Currently, we lack non-invasive methods for monitoring the evolution of the disease. β-cells make-up 80% of the islets of Langerhans which, in the adult, represent 1% of the total pancreas volume, have a diameter of 30-600 μm and are scattered within the pancreas. Imaging these islets in vivo is the ultimate challenge. To approach this goal, we tested whether the ultra high field of 14.1T MRI, in combination with manganese infusion, can image individual pancreatic β-cells. This enabled the use of manganese as a contrast agent to quantify islet size and β-cell mass in vivo.

Materials and methods: Mice were untreated (3 mice) or subjected to a MnCl2 i.v. infusion together with a glucose i.p. stimulus (6 mice). MnCl2 and glucose infused mice were further injected i.p. with either streptozotocin (STZ) (4 mice) or citrate buffer (5 mice). In all cases, the pancreata were excised, fixed in 4% PFA for 6h and placed into Fomblin. Samples were then imaged in a 14.1T 26 cm horizontal bore scanner using quadrature half-volume coil 20 mm in diameter. High resolution images were acquired using gradient echo multi slice sequence with fourteen 0.3 mm-thick slices, FOV 26*25 mm, data matrix 512*512 (51*49 μm in plane resolution) to cover the whole mouse pancreas. Two sets of combined T1 and T2* weighted images (TR=282 ms, TE=7 ms, flip=60°, 30 averages and TR=500 ms, TE=14 ms, flip 60°, 20 averages) were acquired for optimal tissue contrast.

Results: The ultra high field of 14.1T allows for the visualization of different pancreatic tissues (lymphatic ganglia, ducts and vessels), whose identity was ascertained by histology. Structures that featured the size, shape and distribution of pancreatic islets were also revealed. The MRI signal of the latter structures was enhanced by MnCl2 and glucose infusion, and their islet nature was demonstrated by histological analysis. The distribution of islets areas observed in MRI images was consistent with that evaluated in the histological sections of the very same samples. However, the two distributions were not identical, due to the shrinking of the pancreas during the histological treatment, and to the partial volume effects ascribed to the finite slice thickness of MRI. Preliminary experiments indicate that the approach can detect the loss of islets induced by injection of a diabetogenic dose of STZ.

Conclusion: We conclude that, when using high resolution MRI together with manganese and glucose infusion, individual pancreatic islets can be visualized within the whole pancreas in the absence of β-cells targeted labeling. The study provides the first proof of concept that a clinically relevant imaging method could be applied for visualizing individual islets in vivo and holds promise for the evaluation of the β-cells changes induced in diabetes.

477
Vesicular monoamine transporter 2 gene expression in beta cells of primates but not of rodents: implications for developing radioligands for imaging of beta cell mass in animal models

M.K. Schafer, L.E. Eiden, E. Weihe

1Molecular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Germany; 2Section on Molecular Neuroscience, NIMH, Bethesda, USA.

Background and aims: Imaging of pancreatic islets and in particular of beta cell mass is a major challenge in diabetes research. Our original observation that the vesicular monoamine transporter 2 (VMAT2) is expressed in the vast majority of human and non-human primate beta cells has led to the suggestion that VMAT2 is a promising biomarker of beta cell mass independent of mechanisms of insulin production. Consequently, radiolabeled analogs of tetrabenazine, a low molecular weight VMAT2 selective ligand, have been employed for pancreatic islet imaging in human and non-human primates but not of rodents: implications for developing radioligands for imaging of beta cell mass in animal models.

Materials and methods: Pancreatic tissue was obtained from Wistar, Sprague Dawley and Lewis rats as well as from C57/BL6 and Balb-C mice. Deparaffinized sections or cryosections from formaldehyde or Bouin Hollande fixed tissues were processed for immunocytochemistry with a panel of species-specific VMAT2 antibodies and in situ hybridization in combination with immunostaining for insulin and RT-PCR analysis from laser-microdissected beta cells.

Results: We demonstrated lack of specific VMAT2 expression in beta cells of both mice and rats throughout development. Our antisera revealed an abundant network of VMAT2 positive catecholaminergic innervation contained for tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis. Absence of VMAT2 transcripts from beta cells was confirmed by RT-PCR analysis from laser-microdissected beta cells. In contrast, beta cells from primates exhibited abundant VMAT2 expression on the mRNA and protein level as previously reported. Thus, it is clearly shown that primate but not rodent species qualify as animal models for beta cell mass imaging with radiolabeled VMAT2 ligands such as 11-C-dihydrotetrabenazine or newly developed VMAT2 biomarkers.
Conclusion: The choice of species is crucial for developing optimal animal models for beta cell mass imaging and requires proof of principle experiments including species-specific gene expression analysis that the biomarker in question is truly valid for both humans and the animal model used. Tetrabenazine remains one of the ligands of choice for imaging of VMAT2 in human pancreas, however existing animal models must be adjusted and/or chosen carefully. Transgenic VMAT2 mice under the insulin promoter may be a way to provide a rodent model for pancreatic beta cell imaging. Supported by: EU FP7/2007-2013

478

In vivo visualisation of transplanted islets in rat by SPECT imaging with 111In-Exendin-3

K.M. Andralojc, M. Brom, L. Joosten, W. Oyen, O. Boerman, M. Gotthardt; Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Netherlands.

Background and aims: At this moment, there is no reliable non-invasive method to determine beta-cell mass in vivo. Such a method would not only allow longitudinal studies on the engrafted islets survival in case of human islet transplantation, but might also enable improved treatment of patients with immune-suppressive drugs to prevent rejection of transplanted islets. We have developed a non-invasive imaging technique that specifically visualizes beta-cells in vivo. This method is based on the targeting of the glucagon-like peptide 1 receptor (GLP-1R). The GLP-1R is expressed at high levels on pancreatic beta-cells. We have developed an In-111-labeled tracer that specifically binds to the GLP-1R. In-111-labeled Exendin-3. Previous studies showed a linear correlation between the beta-cell mass and Exendin-3 uptake. We examined whether intramuscularly transplanted beta-cells in rats could be visualized by SPECT (Single Photon Emission Computed Tomography) imaging after i.v. injection with radiolabeled Exendin-3.

Materials and methods: Langerhans islets were isolated from Wag/Rij rats and cultured overnight in RPMI medium prior to transplantation. One thousand islets were transplanted into the hind limb muscle of Wag/Rij rats, while vehicle was injected in the right muscle as a control (n=3). Two, 7 and 14 days after transplantation 111In-labeled Exendin-3 was injected intravenously and SPECT images were acquired 1 hour post injection using a U-SPECT II microSPECT scanner. After acquiring the SPECT images at the day 14 the rats were euthanized and the radioactivity in the transplanted and other relevant tissues was measured. The muscle with engrafted islets was fixed and embedded in paraffin for autoradiography and immunohistochemical analysis.

Results: The transplanted islets were clearly visualized with SPECT at 7 and 14 days after transplantation. In vivo autoradiography of the engrafted islets showed high uptake of In-111: Exendin-3 in the islets. Immunohistochemistry confirmed that those islets were viable and produced insulin. In-111-Exendin-3 uptake was higher than uptake in the control muscle (0.27±0.06 %ID vs 0.07±0.02 %ID).

Conclusion: In-Exendin-3 accumulated efficiently in transplanted islets. Transplanted islets could be clearly delineated by microSPECT imaging after injection of In-Exendin-3. In-Exendin-3 could potentially be used for non-invasive beta-cell mass determination of transplanted islets. Supported by: NIH and the FP7/2007-2013

479

Quantitative determination of the beta cell mass by SPECT imaging with 111In-DTPA-Exendin-3 in rats

M. Brom, P. Baumeister, S. Verwijnen, L. Joosten, P. Laverman, M. Bèhe, M. de Jong, W. Oyen, O. Boerman, M. Gotthardt; 1Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Netherlands, 2Department of Nuclear Medicine, University Hospital Giessen and Marburg, Marburg, Germany, 3Department of Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands, 4Department of Nuclear Medicine, University Hospital of Freiburg, Germany.

Background and aims: We have developed a non-invasive imaging technique that specifically visualizes beta-cells in vivo. This method is based on the targeting of the glucagon-like peptide 1 receptor (GLP-1R). The GLP-1R is expressed on pancreatic beta-cells. GLP-1, the natural ligand of the GLP-1R, cannot be used for in vivo GLP-1R targeting due to its low stability in plasma. Exendin-3 is a more stable analog of GLP-1 and therefore suitable for targeting of the GLP-1R. Exendin-3 was conjugated with DTPA, allowing radiolabelling with 111In. We investigated the potential of SPECT imaging with 111In-DTPA-Exendin-3 to determine the beta-cell mass in vivo.

Materials and methods: Diabetes was induced in Brown Norway rats by injecting different doses of alloxan (0, 15, 30, 45, 60 mg/kg) intravenously. Alloxan specifically destroys beta-cells in a dose-dependent manner. One week after alloxan injection, 111In-labeled Exendin-3 was injected intravenously and SPECT images were acquired 1 hour post injection. After SPECT scanning the rats were euthanized and the radioactivity in the pancreas and relevant organs was measured and specific uptake in the Langerhans islets was determined by autoradiography. The beta-cell mass was determined by quantitative analysis of pancreatic sections that were stained immunohistochemically.

Results: In untreated rats, the pancreatic uptake of 111In-DTPA-Exendin-3 was 0.15 ± 0.02 %ID/g. Treatment with 60 mg/kg alloxan resulted in a 80% reduction in the pancreatic uptake of 111In-DTPA-Exendin-3. Five weeks after treatment with 60 mg/kg alloxan the pancreata were non-detectable by SPECT. In diabetic animals without remaining beta-cells, 111In-DTPA-Exendin-3 was clearly visualized on the SPECT images acquired 1 h after injection of 111In-DTPA-Exendin-3. The uptake of tracer was significantly correlated with the beta-cell mass (r=0.83). The uptake of Exendin as determined by quantitative analysis of the SPECT images correlated with the beta-cell mass (r=0.64).

Conclusion: 111In-DTPA-Exendin-3 can be used to determine the pancreatic beta-cell mass non-invasively by SPECT. The uptake of the tracer is beta-cell specific. The uptake correlated linearly with beta-cell mass and disappeared in diabetic animals without remaining beta-cells. 111In-DTPA-Exendin-3 is a promising tracer for the determination of the beta-cell mass. Clinical trials in healthy volunteers and type 1 diabetic patients are planned. Supported by: NIH and European Community’s FP7/2007-2013

480

Autografting of BMSCs into miniature porcine pancreas for early phase of type 1 diabetes mellitus and tracing it by MRI in vivo

K. Tang, D. Liu, Y. Chen, Y. Wang, X. Yang, Y. Shen, H. Duan, H. Liang, M. Cai, J. Yan, Y. Zhu, J. Weng; 1Department of Geriatrics, Department of Endocrinology, Qilu Hospital of Shandong University, 23rd Affiliated Hospital of Shandong University; 2Department of Vascular Surgery, the 1st Affiliated Hospital of Sun Yat-sen University; 3Department of Radiology, the 1st Affiliated Hospital of Sun Yat-sen University; 4Department of Endocrinology, the 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Background and aims: Recently, several researches in rodent animals and TDM patients indicated that TDM in the early stage might be reversed by autografting BMSCs (ABMSCs). However, the potential mechanisms remain unknown. The aims of the research are to disclose the efficiency and security of autografting BMSCs labeled by super-paramagnetic iron oxide (SPIO) quantitatively into the pancreas of minipig with TDM in early stage.

Materials and methods: Nine normal, healthy, 3-month old male Tibetan miniature pigs were randomized into 3 groups, including normal controls (NC), diabetic conventional therapy (DTC) and diabetic autografting BMSCs (DMAB) group. TDM pig model were induced by streptozotocin (STZ). TDM pigs were administrated with protamine zinc INS via subcutaneous injection to control fasting plasma glucose (FBG) level less than 10.0 Mm/L. In 4-6 wks after successful modeling, DMAB pigs accepted ABMSCs labeled with SPIO into the pancreas under the guidance of digital subtraction angiography. Blood routine biochemical parameters were determined to evaluate the security of ABMSCs at 4 timepoints. At the 3rd and 6th week after ABMSCs, the pancreate of DMAB animals were scanned by 3.0T MR. IVGTT and blood routine biochemical parameters were determined to evaluate the regeneration of islets.

Results: After successful modeling, the diabetic animals’ FBG were controlled at 5.1 ± 12.5 Mm/L. DMAB group were treated with ABMSCS labeled with SPIO (7.4×10³, 6.8×10³, 7.0×10³, 10³ cells, respectively) through dorsal pancreatic artery. The biochemical parameters of DMAB group had no significant changes after ABMSCs. Comparing with pre-ABMSC, the MRI showed scat-tered low-signal area in the pancreas at the 3rd and 6th wk after ABMSCs. Before ABMSCS, the INS dosage and FBG had no significant difference be-
between DMC and DMAB group. At about 17 to 28 days after ABMSCs, FBG of DMAB group decreased progressively and waved between 2.3-7.5 Mm/L with INS free. IVGTT showed increased INS levels with a delayed peak at 10 min, and improved blood glucose tolerance gradually that had no significant difference comparing with baseline. Pathologic research showed that BMSCs labeled with SPIO differentiated into islet cells or pancreatic ductal epithelial cells in islets which showed positive response in brussian blue staining, and many small neogenic intact islets in DMAB group and caritive ones in DMC group.

Conclusion: Our data suggested the security and efficiency of quantitative ABMSC through the femoral artery intervention for early stage T1DM mini-pigs. ABMSCs could improve islet function effectively and maintain nearly normal FBG free from INS for a period of time. Autografting BMSCs could differentiate into islet cells or improve local microcirculation, and then reverse new-onset T1DM.

Supported by: the grant 20070410251 of CPDSF, 7001536 of GDPNSF, Y2007C036 of SDPNSF

PS 27 Modulating islets for transplantation

481

Rapamycin impairs proliferation of transplanted islet beta cells

G. Parnaud, D. Bosco, T. Berney;
Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital and University of Geneva, Switzerland.

Background and aims: Five years after islet transplantation, only 10 \% of patients remain insulin independent revealing a progressive islet dysfunction. The cause of this event is undefined to date but may be the result of adverse effects of immunosuppressive agents. In this study, we examined the effect of rapamycin, a key component of the immunosuppressive regimen in clinical islet transplantation, on islet cell replication in vivo.

Materials and methods: Streptozotocin (200 mg/kg i.p.) was used to induce diabetes in NOD/Scid mice at least 5 days before islet transplantation. Five hundred rat islets were transplanted under the left kidney capsule of normoglycemic or diabetic mice. Three days after transplantation, animals were randomly allocated into the experimental groups (control or rapamycin) and BrdU (5 mg/ml) was added to drinking water for 7 days. Mice were treated with rapamycin (0.3mg/kg/every day, i.p.) and control animals received appropriate vehicle treatment. An i.p. glucose tolerance test was performed on all animals at 10 days. Beta cell replication was determined by double immunofluorescence staining for insulin and BrdU. Data are expressed as \% positive BrdU beta cells and as mean ± SEM for 3 or more independent experiments.

Results: Although control and rapamycin-treated mice had similar blood glucose levels before and 2h after i.p. glucose injection, both the peak glucose levels and duration of the glucose excursion (AUC in mM of glucose over 120 min) were increased in rapamycin-treated mice when compared to control mice (830±95 vs. 284±42; rapamycin vs. control, P<0.0004). In non streptozotocin-treated mice, rapamycin decreased the \% of BrdU positive beta cells within endogenous islets (0.66±0.16 vs. 1.71±0.41; rapamycin vs. control, P=0.029). Furthermore, rapamycin reduced the \% of BrdU positive beta cell in transplanted islets (0.71±0.16 vs. 4.60±0.42; rapamycin vs. control, P<0.0001). Similar results were obtained with Ki67 staining as an alternative mean of identifying proliferating cells (0.08±0.04 vs. 0.80±0.17; rapamycin vs. control, P=0.002). When streptozotocin-treated mice were treated with rapamycin, the \% of BrdU positive beta cell in the graft was also significantly decreased (1.39±0.26 vs. 3.96±0.71; rapamycin vs. control, P=0.004). Finally, the apoptotic rate in transplanted islets was very low and no significant difference was observed between control and rapamycin-treated mice.

Conclusion: Our results indicate that rapamycin reduces the rate of pancreatic beta cell proliferation in transplanted rat islets but also in native pancreatic murine islets. It is therefore suggested that progressive graft islet dysfunction may result in part from an impairment of beta cell regeneration induced by rapamycin in transplanted patients.

Supported by: an EFSJD/Novartis grant

482

Differences in blood perfusion correlates to pancreatic islet function in vitro

J.E. Svensson, J. Lau, P.-O. Carlsson;
Medical Cell Biology, Uppsala University, Sweden.

Background and aims: The blood perfusion between different pancreatic islets varies considerably. In recent experiments we observe that this result in a markedly heterogeneous oxygenation of the islets. The present study tested the hypothesis that heterogeneity between islets with regard to vascular support is also reflected in differences in islet beta-cell function.

Materials and methods: Fluorescent microspheres (10 µm in size) were used to measure the blood perfusion of individual pancreatic islets in adult Wistar-Furth rats. Based on the microsphere distribution islets were separated into two groups, with blood flow below or above 0.4 µl/min. Functional studies of glucose-stimulated insulin release, insulin content and glucose oxidation rate were performed in vitro on freshly isolated islets. Gene expression studies were performed by RT-PCR. Vascular density quantification using two-photon confocal microscopy was performed separately for each group of islets after intravascular visualization of blood vessels by IBr isolectin.
Results: Functional studies on freshly isolated islets of the two groups reveal that islets with better blood perfusion had much higher basal and glucose-stimulated insulin release when compared to less perfused islets. No differences were observed between groups with regard to total insulin content, mitochondrial function, as assessed by studies of glucose oxidation rate, or in islet size. Vascular density quantification showed that approximately 10% of islets were composed of blood vessels in both groups, but that the vasculature in islets with lower blood perfusion had less tortuous architecture. Moreover, preliminary studies suggest that islets with better blood perfusion have higher gene expression of glucose transporter 2.

Conclusion: Our results indicate that pancreatic islets with higher blood perfusion also have better function that remains after isolation of the islets. This may partially be explained by differences in vascular structure, but need to be further investigated.

Supported by: JDBE, SRC, SDF, NNF

483

Hyposia protective effects of preconditioning in beta cells are exerted at the level of insulin biosynthesis and are mediated by inhibition of calcium inflow

A. Björklund1, Z. Ma1, V. Grill1;
1Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;
2Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.

Background and aims: Pharmacological preconditioning alleviates the impact of hypoxia in heart and brain; therefore similar procedures may also adapt beta cells to hypoxia prior to transplantation and this could be therapeutically useful. We have found that preconditioning in vitro by the K-ATP channel opener diazoxide alleviates the diminution of cellular insulin content brought about by experimental hypoxia on rat pancreatic islets. Here we report on possible mechanisms behind these beneficial effects.

Materials and methods: Rat or human islets were maintained in tissue culture (RPMI, 11 mM glucose). They were subjected to 5.5 h of hypoxia with or without a 22 h period of preconditioning with diazoxide and/or other agents.

Results: Rat islet insulin contents were reduced by 23 % after hypoxia and by 61 % after a further 22 h re-oxygenation period. Preconditioning with diazoxide (325 µmol/l) alleviated the hypoxia effect (2.7 fold increase, p < 0.001 vs. hypoxia alone). Hypoxia reduced proinsulin biosynthesis (1H-leucine incorporation into proinsulin) by 35 ± 6 % and this decrease was partially corrected by preconditioning (by 91 %, p < 0.03). Beneficial effects of diazoxide were abolished by including tolbutamide or elevated potassium (i.e. conditions which increase calcium inflow) during preconditioning.

Conclusion: Hypoxia-induced functional deficits are alleviated by prior blocking of calcium inflow, probably acting through attendant effects on mitochondrial metabolism, 2) both agents which block calcium inflow indirectly and which block directly have therapeutic potentials.

Supported by: an EFS/MSD grant

484

Composite pig islet-human endothelial progenitor cell grafts can reduce the instant blood-mediated inflammatory reaction

H. S. Jung1, H. J. Kim2, M. J. Kim2, S. H. Hong1, Y. Y. Lee1, H. C. Jang1, S. Y. Kim2, K. S. Park2;
1Seoul National University Hospital, 2Seoul National University, Republic of Korea.

Background and aims: One of obstacles in clinical islet transplantation is the islet loss in the early post-transplant period, which is as much as 50–60% of the grafts. This mainly results from intravascular islet-induced nonspecific inflammatory and coagulation pathways promoting a so-called instant blood-mediated inflammatory reaction (IBMIR). Endothelial cells are known to protect against complement-mediated lysis and activation of coagulation.

Endothelial progenitor cells (EPC) seem to have lower profile of procoagulation in some environment compared to mature endothelial cells. EPC can be isolated from peripheral blood, and be expanded ex vivo, which is important as for clinical application. In addition, EPC display a unique ability to promote angiogenesis although the underlying molecular mechanism remains poorly understood. These suggest that EPC might be a better source to protect IBMIR. Therefore, we tested effects of composite pig islet–human EPC grafts in vivo.

Materials and methods: Porcine islets were cocultured with human EPC overnight to obtain about 50% coverage. The cells were transplanted to STZ-diabetic athymic (nu/nu) nude mice through portal vein. Daily body weight and fed blood glucose were monitored, and serial harvest of liver tissues was performed for morphologic analysis.

Results: Composite pig islet-human endothelial progenitor cell grafts significantly improved blood glucose levels compared to islet grafts immediately after transplantation and then for 1 week, which suggested better graft survival from IBMIR. On morphologic examination, transplanted composite grafts showed a reduction in leukocyte infiltration and coagulation, and stained positive for insulin and human lectin demonstrating presence of both islets and EPC.

Conclusion: If optimal EPC-islet coculture method can be identified, EPC-coating has potential as a candidate that can control the strong innate immune response induced by islet grafts transplanted through the portal vein, and clinical islet transplantation would be more available and feasible strategy for the cure of diabetes.

Supported by: IRICT, the ministry of health and welfare, Republic of Korea

485

Co-transplantation with mesenchymal stem cells improves islet transplantation outcome in mice

A. J. F. King, C. Rackham, P. Chagastelles, P. M. Jones;
Diabetes Research Group, King’s College London, United Kingdom.

Background and aims: Islet transplantation is a potential cure for Type 1 diabetes, but despite recent advances most patients revert to hyperglycaemia within five years. It is thought lack of success may be partially due to beta cell death in the immediate post-transplantation period and poor revascularisation. Mesenchymal stem cells (MSCs) are adult progenitor cells which play a major role in tissue repair. The aim of the study was to investigate whether co-transplantation of MSCs with islets could improve transplantation outcomes in mice.

Materials and methods: Mesenchymal stem cells were isolated from the kidney of C57Bl/6 mice and were expanded in vitro. Islets were isolated from the pancreases of donor C57Bl/6 mice. Streptozotocin-diabetic C57Bl/6 mice were transplanted with a suboptimal graft of either 150 islets alone or 150 islets + 250,000 MSCs under the kidney capsule. Blood glucose concentrations were monitored for 28 days after which the graft-bearing kidneys of cured mice were nephrectomised. The islet grafts and endogenous pancreases were analysed histologically for insulin, glucagon and CD34 as markers for beta, alpha and endothelial cells, respectively.

Results: Prior to transplantation, blood glucose concentrations were 27.6 ± 1.8 mM and 28.2 ± 1.3 mM in the islet alone and islets + MSC groups, respectively. After transplantation, the mice that were implanted with islets + MSCs had lower blood glucose concentrations than mice implanted with islets alone (day 7: 11.6 ± 2.6 mM vs 27.5 ± 2.1 mM, day 14: 11.1 ± 2.1 mM vs 28.9 ± 2.0 mM, day 28: 8.6 ± 1.0 mM vs 19.0 ± 3.6 mM, n=9, p<0.01, 2 way RM ANOVA with Bonferroni Post-Hoc test). After 28 days, in cured mice (nonfasting blood glucose<11.1 mM: 8 of 9 mice in islets + MSC group, 3 of 9 mice in islet alone group) the graft bearing kidney was removed, after which all mice reverted to hyperglycaemia (>20 mM). The density of endothelial cells was increased in the islet + MSC grafts (978 ± 92 endothelial cells/mm²) compared to the islet alone grafts (702 ± 23 endothelial cells/mm², n=4-6, p<0.01, t-test). No differences were seen in the endogenous pancreases between the two groups with regard to size of islets and frequency of insulin and glucagon staining, with most cells in the islet remnants consisting of alpha cells.

Conclusion: Co-transplantation with MSCs improves syngeneic islet transplantation outcome in mice. This is associated with increased numbers of endothelial cells in the graft and altered islet graft morphology. There is no difference in insulin positivity in the endogenous pancreases between the groups, indicating that the positive effects of MSCs are indeed a direct effect on the graft.

Supported by: RCUK

S198
486
Gene transfer of glucagon-like peptide-1 to mouse islets improves transplantation outcome
S.-H. Ihm, M.-G. Choi, H.-J. Yoo, H.-S. Jun, J. Ihm; Internal Medicine, Hallym University, Chuncheon, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Biochemistry, Kyonggi University, Suwon, Republic of Korea.

Background and aims: Pancreatic islet transplantation (TPL) is a promising therapeutic intervention for T1DM. One of the significant obstacles to successful islet TPL is a high number of cell deaths in islet grafts during the early days after TPL, mostly from inflammatory and hypoxic damage. To overcome these obstacles and improve the outcome of islet TPL, the transfer of cytoprotective genes to isolated islets has been attempted. Because glucagon-like peptide-1 (GLP-1) was shown to stimulate beta-cell proliferation and have anti-apoptotic effects on beta cells, we examined whether adenovirus-mediated gene transfer of GLP-1 would result in cytoprotection of islets in vitro and in vivo TPL setting.

Materials and methods: Isolated mouse islets were transduced with an adenoviral vector coding for GLP-1 (rAd-GLP-1) or green fluorescent protein/beta-galactosidase (rAd-GFP/LacZ). After transfection, GLP-1 expression was assessed by RT-PCR of islet mRNA and RIA of culture media. To assess the in vitro cytoprotective effect, transduced islets were treated with H2O2 (200 microM for 30 min) and cell death and MMP were measured using AO/PI and JC-1. To assess the effect of GLP-1 expression on islet survival in vivo, suboptimal mass of transduced islets was transplanted into renal subcapsular space of syngeneic diabetic mice.

Results: Adenoviral delivery of GLP-1 to islets resulted in dose (m.o.i.)-dependent increase in synthesis and secretion of GLP-1. Islets transduced with rAd-GLP-1 were protected from H2O2-induced cell damage in vitro. Two weeks after TPL, diabetes cure rate with islets transduced with rAd-GLP-1 (81%) was significantly higher than that with islets transduced with rAd-GFP/LacZ (25%).

Conclusion: These results indicate that the overexpression of GLP-1 in islets enhances islet survival in vitro and preserves islet function in transplants. Our results suggest that GLP-1 expression in islets is one of plausible and useful strategies for ex vivo cytoprotective gene therapy in islet TPL.

Supported by: IRICT, Republic of Korea

487
The thyroid hormone T3 improves function and survival of rat pancreatic islets during in vitro culture
C. Mangialardo, C. Verga Falzacappa, A. Stigliano, V. Toscano, S. Misiti; II Faculty of Medicine, Sapienza, Università di Roma, Italy.

Background and aims: Islet cell transplantation is an alternative therapy to conventional ones for type 1 diabetic patients. However, this strategy is severely limited by the shortage of organ donors. Ex vivo islet cell culture prior to transplantation is a good alternative, but the maintenance of islets in culture is at the moment a difficult task. Therefore, stimulation of islet proliferation and differentiation in vitro remains the major scientific and clinical goal. Many growth factors have been studied, and related to intracellular signalling molecules and cell cycle regulators playing key roles in pancreatic beta cells. Among these, the kinase Akt has been indicated as a crucial intracellular mediator of beta cell growth and survival both in vitro and in vivo studies. We previously demonstrated that thyroid hormone T3 can increase beta cell function via specific activation of Akt, therefore we suggest that the addition of T3 to primary rat islets culture could preserve islets features from their physiological degradation, improving their status prior to transplantation.

Materials and methods: Rat pancreatic islets, isolated by collagenase digestion, have been cultured in the presence or not of T3 10-7M. Immunofluorescence analysis has been performed to evaluate the expression of thyroid receptor beta1 in rat islets. The islets viability has been studied by the use of two different dyes, one cell permeable green fluorescent dye and propidium iodide, and by the analysis of core cell damage upcoming. Beta cell proliferation within islets was analyzed by BrdU incorporation. Moreover, islet function has been evaluated by measuring insulin secretion. The ability of beta cells to counteract apoptosis induced by streptozocin has been analyzed by TUNEL assay, and the Akt activation by Western blotting analysis.

Results: We demonstrated that treatment of primary cultures of rat pancreatic islets with T3 results in increased beta cell vitality with an augment of their functional properties. Contemporary a sensible reduction of the core damage has been observed in T3 treated islets, showing a preservation of the beta cells integrity during the culture period. Furthermore, when BrdU incorporation was performed, a much higher number of positive nuclei in T3 treated islets indicates that T3 not only improves islet status, but also that induces beta cell proliferation. Nonetheless, the insulin secretion is sensibly augmented after T3 stimulation. All the observed effects were associated with a strong increment in Akt activation, suggesting the involvement of this kinase in T3-mediated phenomena in pancreatic islets.

Conclusion: Our observations indicate the thyroid hormone T3 as a suitable factor to optimize and stimulate recovery and subsequent function of islets during in vitro culture suggesting that thyroid hormone could play an important role in physiological function of pancreatic islets.

Supported by: IRICT, Republic of Korea
PS 28 Mitochondria in beta cells

488

Transcriptome analysis of type 2 diabetic islets: evidence of mitochondrial dysfunction
M. Bugliani1, R. Liechti1, L. Marselli1, U. Boggi1, F. Filippioni1, I. Xenarios1, P. Marchetti1;
1University of Pisa, Italy; 2Swiss Institute of Biostatistics, Vital-IT group, Lausanne, Switzerland.

Background and aims: Type 2 diabetes (T2D) is a multifactorial syndrome, with genetic and environmental factors causing a progressive beta cell dysfunction. The molecular alterations affecting T2D islets are not fully understood.

Materials and methods: We performed microarray analysis, followed by quantitative PCR of a few selected genes, of isolated islets from 6 T2D (age: 71±9 yrs; gender: 3M/3F; BMI: 24.5±2.5 Kg/m2) and 7 non-diabetic (ND, age: 58±17 yrs; gender: 4M/3F; BMI: 24.8±2.5 Kg/m2) subjects. RNA was hybridized on Affymetrix chips (HG U133A). After quality control by affy and affyPLM, gene expression intensity values were normalized by Robust Multi-array Average (RMA), whereas differential expression was assessed by limma. Functional studies were also performed with isolated islets.

Results: When T2D islets were compared to ND, the expression of 1345 probe sets resulted (p<0.01 and fold change of <0.5 and >2.0) different; of these, 59 were up-regulated and 1286 down-regulated. Overall, they identified 1230 genes, related to several beta-cell features. By using Gene Ontology and KEGG databases, we observed that those genes influenced 21 processes and 13 pathways, respectively. All the differences were confirmed by Gene Set Enrichment Analysis, which showed that, of the 1419 gene sets analyzed, 195 were positively and 42 negatively enriched in T2D samples. In all the analyses a reduction of the expression for genes involved in oxidative phosphorylation and citric acid cycle was observed. Accordingly, by qPCR a significant (p<0.02) decrease (-42%) of succinate dehydrogenase (SDH) subunit B expression was detected. When ND islets were exposed to methyl malonic acid, an inhibitor of SDE activity, a reduction (-33%) of glucose-stimulated insulin release was observed, that was accompanied by an alteration of the ADP/ATP ratio.

Conclusions: In conclusion, type 2 diabetic islets show many alterations of transcriptome, including changes of genes involved in mitochondrial ATP production; it remains to understand which alterations are cause or consequence of the diabetic condition.

Supported by: EURODIA

489

Mitochondrial proteome analysis reveals changes in expression of multiple proteins in pancreatic beta cells exposed to high glucose
S. Muhammed1, M. Ahmed1, B. Kessler1, A. Salehi2;
1Clinical Science, Lund University, Malmö, Sweden, 2Clinical Science, Oxford University, United Kingdom.

Aims: Chronic hyperglycemia leads to deterioration of insulin release from pancreatic β-cells as well as insulin action on peripheral tissues. However, the mechanism underlying β-cell dysfunction resulting from glucose toxicity has not been fully elucidated. The aim of present study was to define a set of alterations in mitochondrial profiles of pancreatic β-cell lines exposed to high glucose

Material and methods: INS1E cells were incubated in the presence of 5.5 and 20 mM glucose for 72 hrs. An aliquot of media was removed for measurement of insulin release (RIA) and the cells were subjected then either for 2-D gels; of these protein spots, 75 displayed two fold or more significant change (p<0.05) in relative abundance in the presence of 20mM glucose compared to the control. Thirty-three protein spots appear only on the control mitochondrial map. Mitochondrial proteins down regulated in glucotoxic conditions includes ATPsynthase a chain and δ chain, malate dehydrogenase, aconitase, trifunctional enzyme β subunit, NADH-cytochrome b5 reductase and VDAC2. There was up regulation of VDAC1, GPFR7, HS960 and HSP10. Protein identification revealed contamination of the mitochondrial fraction with proteins from other organelles. These differentially expressed proteins include proinsulin, calreticulin, PDIA6, PKCsubstrate60.1kDa protein ORP150, endoplasmic, HSCs and 15 kDa protein.

Results: More than 400 spots were detected on the colloidal coomassie stained 2-D gels; of these protein spots, 75 displayed two fold or more significant change (p<0.05) in relative abundance in the presence of 20mM glucose compared to the control. Thirty-three protein spots appear only on the control mitochondrial map. Mitochondrial proteins down regulated in glucotoxic conditions includes ATPsynthase a chain and δ chain, malate dehydrogenase, aconitase, trifunctional enzyme β subunit, NADH-cytochrome b5 reductase and VDAC2. There was up regulation of VDAC1, GPFR7, HS960 and HSP10. Protein identification revealed contamination of the mitochondrial fraction with proteins from other organelles. These differentially expressed proteins include proinsulin, calreticulin, PDIA6, PKCsubstrate60.1kDa protein ORP150, endoplasmic, HSCs and 15 kDa protein.

Conclusion: In conclusion, type 2 diabetic islets show many alterations of transcriptome, including changes of genes involved in mitochondrial ATP production; it remains to understand which alterations are cause or consequence of the diabetic condition.

Supported by: EURODIA

B expression was detected. When ND islets were exposed to methyl malonic acid, an inhibitor of SDE activity, a reduction (-33%) of glucose-stimulated insulin release was observed, that was accompanied by an alteration of the ADP/ATP ratio.

490

Novel islet respirometry assay reveals high levels of uncoupled respiration in rodent and human islets
J.D. Wikstrom1, A. Elorza1, E.M. Allister1, L. Stiles1, S.B. Serveda2, G. La3, M.B. Wheeler1, D.A. Ferrick1, O.S. Shirihai3;
1Medicine, Boston University, Boston, USA, 2Departamento de Biologia, Universidad Andres Bello, Santiago, Chile, 3Departments of Physiology and Medicine, University of Toronto, Canada, 4Medicine/Pharmacology, Boston University/Tufts University, Boston, USA, 5Departments of Physiology and Medicine, University of Toronto, Canada, 6Seahorse Bioscience, Billerica, USA.

Background and aims: Mitochondrial metabolism is essential for proper insulin secretion as oxidative phosphorylation produces the majority of the cells ATP required for insulin granule exocytosis. However, mitochondrial substrate oxidation is not fully coupled to ATP synthesis as part of the proton gradient across the inner mitochondrial membrane reenters the matrix through other ways than ATPsynthase; this is termed uncoupled respiration or proton leak. In this study we sought to characterize the basal proton leak of intact islets, it's regulation as well as its profile in diseased islets.

Materials and methods: To enable this study we developed a high-throughput islet respirometry approach based on the XF24 platform, originally designed to study monolayers of cells. By applying drugs that act on the respiratory chain we can estimate the level of fuel-stimulated, uncoupled, maximal as well as non-mitochondrial respiration under various conditions. Islets were derived from wildtype and high fat diet fed C57BL6/J mice as well as from human donors.

Results: When stimulated with fuels mouse islets displayed a marked increase in respiration. The basal level of islet uncoupled respiration was measured to 55%, strikingly higher than other cell types. We found that cellular fuels such as amino acids, free fatty acids and glucose significantly uncouple islet mitochondria and that this is prevented by antioxidants. Further we found that the adenine nucleotide transporter, but not the permeability transition pore, makes a significant contribution to the proton leak. In vitro incubation with palmitate did not affect the level of uncoupled respiration under low glucose, but had a significant effect when the islets were stimulated with high glucose. Further, islets from high-fat diet-fed mice exhibited higher levels of uncoupled respiration compared to islets from chow fed control animals. Islets with beta-cell specific deletion of uncoupling protein 2 (UCP2) were found to exhibit normal levels of uncoupled respiration pointing to UCP2 not being a major contributor to the measured uncoupled respiration. In addition to the studies on mouse islets, human islets from healthy as well as diabetic donors were tested. Human islets also display high levels of uncoupled respiration that is increased by high glucose.

Conclusion: Islets have relative high levels of uncoupled respiration, which is regulated by cellular fuels and reactive oxygen species. Adenine nucleotide transporter but not UCP2 or permeability transition pore appears to contribute to the observed uncoupled respiration. Interestingly levels of uncoupled respiration increase in a diabetes animal model. In principle, tuning islet mitochondrial efficiency may represent a therapeutic target.

Supported by: NIH

491

Oxidative phosphorylation-dependent insulin secretion in pancreatic beta cells: new insights by disrupting TFB1M
T. Kock1, P. Spiegel1, V.S. Sharoyko2, C. Ling3, H. Mulder4, C. S. Chalmers5, S.S. Rokita6, B. G. Las1, J. E. Madsen1, D. A. Ferrick1, O. S. Shirihai3;
1Departments of Physiology and Medicine, University of Toronto, Canada, 2Medicine/Pharmacology, Boston University/Tufts University, Boston, USA, 3Seahorse Bioscience, Billerica, USA, 4Department of Medicine, University of Toronto, Canada, 5Toronto General Hospital, University of Toronto, Canada, 6Department of Physiology, University of Toronto, Canada.

Background and aims: Oxidative phosphorylation (OXPHOS) is a mitochondrial metabolic pathway that uses energy released by the oxidation of nutrients to produce ATP. It depends on the functional status of the mitochondrial electron transport system (ETS). Disrupting the mitochondrial transcription factor B1 (TFB1M) impairs the function of the ETS complexes including the respiratory chain.
as TFB1M regulates the translation of mitochondria encoded subunits. The fact that these subunits are of different importance for the individual ETS complexes allows us to investigate the metabolic regulation of the ETS activity, OXPHOS, and therefore insulin secretion in glucose-responsive INS-1 832/13 clonal beta-cells in detail. **Materials and methods:** Knock down (KD) of TFB1M was achieved by RNA interference. Oxygen consumption rates were measured using the Seahorse Extracellular Flux Analyzer XE24. Stable isotope-labeling with amino acids in cell culture (SILAC) and immunoprecipitation were used for proteomic analysis of the ETS complexes. ATP levels were detected by luciferase assay. Insulin secretion was determined by RIA. Results: SILAC analysis and detection of TFB1M by immunoblotting confirmed its knock down by more than 50% in INS-1 cells. In intact cells, as predicted, TFB1M knock down significantly decreased the glucose-stimulated ADP-activated coupled OXPHOS capacity P (10.9 +/- 0.3 nmol O2/min/mg protein vs. 9.0 +/- 0.5 nmol O2/min/mg protein; P<0.01) and electron transport capacity E of the ETS (15.5 +/- 0.5 nmol O2/min/mg protein vs. 12.1 +/- 0.9 nmol O2/min/mg protein; P<0.05) as well as mitochondrial ATP generation and triggering pathway-dependent insulin secretion. Immunoblotting and SILAC analysis showed a decreased expression level of nucleus and mitochondria encoded ETS subunits, foremost of complex I, which also showed the most extensive decrease in activity to 40.7 +/- 2.8 % of the activity in control cells. Consistently, measurements with defined metabolic substrates supporting ETS complex I activity in permeabilized cells demonstrated that P (47.9 +/- 0.8 nmol O2/min/mg protein in control vs. 33.9 +/- 1.3 nmol O2/ min/mg protein in TFB1M KD; P<0.01) and E (75.3 +/- 5.9 nmol O2/min/mg protein in control vs. 50.4 +/- 3.5 nmol O2/min/mg protein in TFB1M KD; P<0.01) were affected significantly. However, measurements with substrates employing complex II showed no significant differences in P and E, despite pronounced TFB1M knock down-dependent decreases in complex III and IV activity to 60.1 +/- 4.7 % and 74.5 +/- 3.5 % of the activity in control cells, respectively. Conclusion: (1) ETS complex I activity is rate-limiting for the metabolism-stimulated electron transport of the ETS and therefore OXPHOS and ATP generation in beta-cells. (2) 832/13 clonal beta-cells employ significant excess capacity of complex III and IV activity (3) Mitochondrial OXPHOS is crucial for the fuel stimulation of insulin secretion. (4) In INS-1 832/13 clonal beta-cells, disruption of mitochondrial translation profoundly affects mitochondrial function, predominantly by diminished complex I stability. Thus, based on these novel findings, further studies concerning the mechanisms of metabolic regulation of ETS activity and OXPHOS and therefore mitochondria-based metabolic coupling of insulin secretion open a new avenue for research in pancreatic islet cell biology. Supported by: VR

492

Institute of Medical Biochemistry and Molecular Biology, University of Rostock, 1Department of Dermatology, Allergology and Venerology, University of Lübeck, Germany.

Background and aims: The coml p o s i t e m ous e s t r a i n 86 m t F V B carries a stable mtDNA mutation of the Atp8 gene affecting the assembly of the Fo subunit of the ATP-synthese complex. It was the aim of the study to correlate secretory responsiveness to glucose with ATP/ADP levels and mitochondrial ROS generation in comparison to the B6mtAXX control strain. **Materials and methods:** 86mtFVB and 86mtAXX were regularly monitored for glucose metabolism and tested for glucose tolerance feeding standard diet. Pancreatic islets were isolated from normoglycaemic mice (age 12 - 16 weeks) and cultured at 5 or 30 mmol/l glucose for 24 h and 48 h. Production of mitochondrial superflorescence was measured by the MitosoxTM indicator using fluorescence microscopy. Cellular ATP and ADP levels in isolated islets were measured by a lumimetric assay. Glucose stimulated insulin secretion of isolated islets was measured by ELISA.

Results: 86mtFVB as well as 86mtAXX mice showed normal blood glucose levels (5.8 ± 0.4 vs. 6.8 ± 0.6 mmol/l). Both strains showed a normal glucose tolerance when challenged with 1 g glucose/kg b.w. Exposure of isolated 86mtFVB islets to 30 mmol/l glucose for 24 h resulted in a significant decrease of glucose-stimulated insulin secretion by 80 % (p < 0.001) and 50 % (p < 0.05) in comparison to 86mtAXX islets. Basal as well as glucose-stimulated (2.8 vs. 20 mmol/l) insulin secretion were not different between the two mouse strains when the islets were pre-cultured at 5 mmol/l glucose for 24 h or 48 h. Islets from B6mtAXX mice showed a 4-fold increase of ATP levels when glucose concentrations were increased from 2.8 to 20 mmol/l. ATP levels in islets from B6mtFVB mice were insensitive to changes of glucose. The ATP/ADP ratio was 2.5-fold higher in islets from B6mtAXX mice in comparison to the B6mtFVB strain after 24 h preculture at 30 mmol/l glucose. In islets from B6mtFVB mice mitochondrial ROS generation increased significantly at 30 mmol/l glucose while there were only slight increases in islets from B6mtAXX mice. However, mitochondrial ROS generation at 5 mmol/l glucose was higher in islet cells from B6mtAXX mice than in islets from the B6mtFVB strain. Preculture of islet cells at 30 mmol/l glucose for 24 h or 48 h did not significantly affect cell viability in the B6mtFVB and B6mtAXX strain. Conclusion: The beta cell dysfunction in islets with the Atp8 gene mutation is plausibly explained by reduced ATP production through complex V of the respiratory chain. In line with metabolic stimulus-secretion coupling this resulted in reduced glucose-responsiveinsensitivity of insulin secretion. Mitochondrial ROS generation in B6mtFVB islets is more sensitive to high glucose than in B6mtAXX islets. Our data points to the idea that the in vivo expression of Atp8 gene mutations adaptive changes of mitochondrial ROS generation rather than absolute levels are important to induce cell dysfunction under conditions of nutrient stress. Supported by: German Diabetes Association (DDG)

493

Marked, but not moderate induction of uncoupling protein 2 enhances selected aspects of beta cell mitochondrial metabolism and decreases susceptibility to toxicity

I. Hals, Z. Ma, H. Ogata, A. Björklund, V. Grill

1Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway, 2Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Background and aims: The effects of uncoupling protein 2 (UCP-2) for mitochondrial metabolism, for beta cell function and for propensity of diabetes have been intensely studied. However, because of conflicting results no agreement on the role(s) of UCP-2 has been reached. Different degrees of induction or inhibition of UCP-2 between studies could be an important but unexplored reason for conflicting results. Here we investigated effects of a fourfold induction on mitochondrial, insulin and toxicity parameters and tested for regulation of positive findings at a lower level of induction.

Materials and methods: We transected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of dox induced UCP approximately fourfold (424 ± 113 %, mean ± SEM) and 0.1 μg/ml twofold (178 ± 29%, n = 3).

Results: Fourfold induced cells displayed normal mitochondrial membrane potential (by Rhodamine 123), normal mitochondrial mass (Mitotracker Green) and normal ATP levels. By immunoblotting subunits of complex 1 (ND6) and 2 (FeS) and 4 (COX I) were not changed. However, mitochondrial ROS generation at 5 mmol/l glucose was higher in islet cells from B6mtAXX mice than in islets from the B6mtFVB strain. Our data provide evidence that in islets with the Atp8 gene mutation the susceptibility to toxicity

493

Marked, but not moderate induction of uncoupling protein 2 enhances selected aspects of beta cell mitochondrial metabolism and decreases susceptibility to toxicity

1. Hals, Z. Ma, H. Ogata, A. Björklund, V. Grill

1Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway, 2Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Background and aims: The effects of uncoupling protein 2 (UCP-2) for mitochondrial metabolism, for beta cell function and for propensity of diabetes have been intensely studied. However, because of conflicting results no agreement on the role(s) of UCP-2 has been reached. Different degrees of induction or inhibition of UCP-2 between studies could be an important but unexplored reason for conflicting results. Here we investigated effects of a fourfold induction on mitochondrial, insulin and toxicity parameters and tested for regulation of positive findings at a lower level of induction.

Materials and methods: We transected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of dox induced UCP approximately fourfold (424 ± 113 %, mean ± SEM) and 0.1 μg/ml twofold (178 ± 29%, n = 3).

Results: Fourfold induced cells displayed normal mitochondrial membrane potential (by Rhodamine 123), normal mitochondrial mass (Mitotracker Green) and normal ATP levels. By immunoblotting subunits of complex 1 (ND6) and 2 (FeS) and 4 (COX I) were not changed. However, core2 for complex III was up-regulated 17 %, and a subunit for complex V by 20%. Glucose oxidation (at 11 mM glucose) was not significantly affected (+5 ± 9 %, n = 6), however, oxidation of fatty acids (13C-olette) was increased by 35 ± 15 % (p < 0.05, n = 12). Cellular insulin contents (+4 ± 7 %, n = 3) and glucose-induced insulin secretion were not affected (+27 ± 11 %, n = 5), nor insulin responses to oleate. A fourfold induction protected against H2O2-induced toxicity by 22 ± 5 % (p < 0.01, n = 8, MTT assay and flow cytometry). However, the lower (approximately two-fold) induction of UCP-2 did not reproduce mitochondrial and metabolic effects, nor protection against toxicity effects (and susceptibility towards the latter was not aggravated by UCP-2 down-regula

Conclusion: A fourfold induction of UCP-2 induces subtle but definite enhancing effects on mitochondrial metabolism and also toxicity protection. However, lack of reproducibility at lower levels of induction as well as lack of a negative effect on insulin parameters argues against an important role of UCP-2 in beta cells in diabetes.
Cytosolic phosphate, a regulator of mitochondrial function in insulin-secreting cells

K.-S. Park, X. Quan, R. Das, S. Xu, A.C. Wiederkehr, C.B. Wollheim
1Physiology, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea, 2Cell Physiology and Metabolism, University of Geneva, Switzerland.

Background and aims: Mitochondrial energy metabolism depends on the continued uptake of ADP and inorganic phosphate as substrates of the ATP synthase and the export of the product ATP from the organelle. The exchange of ADP against ATP is mediated by the adenine nucleotide translocase (ANT). Uptake of inorganic phosphate by mitochondria is linked to the net uptake of one proton per phosphate anion. Here we tested whether inorganic phosphate regulates mitochondrial energy metabolism in INS-1E cells in addition to its role as a substrate for the ATP synthase.

Materials and methods: Mitochondrial ATP synthesis was studied in staphylococcal alpha-hemolytic toxin permeabilized INS-1E cells. This treatment leaves the membranes of intracellular organelles such as mitochondria intact and allows us to distinguish between intraorganellar ATP and the ATP pool released from mitochondria. ATP was measured with a bioluminescence assay. A fluorescence microscopic imaging system was used to study the mitochondrial matrix pH and a microplate reader to record the mitochondrial membrane potential with JC-1.

Results: Permeabilised INS-1E cells showed mitochondrial membrane hyperpolarisation and matrix alkalinisation in response to substrates such as sucrose or glycerophosphate. We find that the hyperpolarisation was strongly dependent on the extramitochondrial phosphate concentration. Phosphate addition alone induced mitochondrial matrix acidification in permeabilised cells. Matrix alkalinisation induced by sucrose was less dependent on the extramitochondrial phosphate concentration than mitochondrial hyperpolarisation. ATP release from mitochondria induced by substrate but not the increase of the organellar pool of ATP was completely blocked by atraclocside, an inhibitor of the ANT. ATP release was also strictly dependent on the presence of extramitochondrial ADP, implying that ATP release from mitochondria is exclusively dependent on ANT activity. Upon stimulation with mitochondrial substrates, the amount of ATP exported from mitochondria was markedly accelerated by increased phosphate concentrations contrasting with the modest elevation of ATP inside the mitochondria.

Conclusion: We demonstrate that the cytosolic phosphate concentration has a strong impact on the mitochondrial electrochemical gradient, ATP synthesis and ATP export from the organelle. Our results suggest that inorganic phosphate affects mitochondrial energy metabolism beyond its role as a substrate for ATP synthesis. As large changes in phosphate transport across the mitochondrial membrane potential could result in opposite phenotypes. We find that the cytosolic phosphate concentration has a strong impact on the mitochondrial electrochemical gradient, ATP synthesis and ATP export from the organelle. Our results suggest that inorganic phosphate affects mitochondrial energy metabolism beyond its role as a substrate for ATP synthesis. As large changes in phosphate transport across the mitochondrial membrane potential could result in opposite phenotypes.

Background and aims: Glucokinase (GK) mutations cause disorders of glucose homeostasis. Heterozygous activating and inactivating mutations cause hyperinsulinaemia of infancy (HI) and maturity-onset diabetes of the young (MODY) respectively. Activating mutations cluster at the allosteric activator site, a target for pharmacological GK activators (GKAs) which are currently in development. This study reports 2 novel activating mutations (V389L & T103S), at residues where GK-MODY mutations (V389D & T103N) have also been reported. We hypothesised that the physicochemical properties and position of the substituted residue could result in opposite phenotypes. We functionally characterised these mutations in the presence and absence of GK regulators, providing further insight into critical residues within this important drug target.

Materials and methods: Recombinant human wild-type (WT) GK and all 4 mutants were generated. Enzyme kinetic activity was determined spectro photometrically using an NADP+-coupled assay. Kinetic characteristics and responses to the physiological inhibitor glucokinase regulatory protein (GKRP) and pharmacological GKA RO0281675 were calculated. Structural modelling and bioinformatic analysis were performed using PyMOL.

Results: Both HI mutations were kinetically activating with relative activity indices (RAI) of 6.0 and 8.4 for V389L and T103S respectively vs 1.0 for WT. This higher activity was driven by an increased affinity for glucose (glucose K_S, 3.5 ± 0.1 for V389L, 3.3 ± 0.1 for T103S, 7.5 ± 0.1 mM for WT). The MODY mutation V389D had dramatically decreased enzyme activity (RAI <0.1). Paradoxically the T103N MODY mutation was mildly kinetically activating (5.8 ± 0.1 mM, K_S, 51.5 ± 11.3 S, RAI 1.5). Inhibition assays showed a similar response to GKRP for WT and V389L (IC_50 both 1.1 ± 0.1 mM GKRP units), whilst T103S and N had decreased affinity (1.5 ± 0.1 and 1.9 ± 0.1 respectively). All mutations responded to the GKA; T103N had a similar fold increase in K_S to WT (18.0 ± 1.5 vs 14.4 ± 0.3 respectively), whilst that for T103S & V389L was lower (5.7 ± 0.5 and 7.4 ± 1.3 respectively). V389D K_S increased considerably (33.9 ± 2.1). V389 lies within an a-helix, with both mutations causing extra intra-helical bonds. T103 is in a b-sheet close to the allosteric activator site, both mutations losing an intra-strand bond whilst forming new polar interactions.

Conclusion: Different physicochemical properties of substituted residues within GK can determine clinical phenotype. V389 (or its a-helix) is integral to protein activity, with its mutation affecting glucose turnover. T103 lies in a b-sheet close to the allosteric activator site. Both T103S/N have increased GK activity, suggesting the pathogenesis for T103N may be due to catalytic instability (reflected by decreased GKRP affinity). Our study has implications for drug development, as it demonstrates a fine balance between catalytic and structural stability upon intervention at certain GK residues/areas of GK secondary structure.

Supported by: Medical Research Council

Identification of an ubiquitin-like domain as a potential new interaction partner of glucokinase in pancreatic beta cells

A. Brix, K. Kollmann, S. Langer, S. Lenzen, S. Baltrusch
1Institute of Clinical Biochemistry, Hannover Medical School, 2Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Germany.

Background and aims: In pancreatic beta cells, glucokinase (GK) acts as a glucose sensor and catalyzes the rate-limiting step for initiation of glucose-induced insulin secretion. GK is mainly regulated on the posttranslational level by protein-protein interactions. The bifunctional enzyme 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase serves as an activating GK interaction partner in both beta cells and liver. In contrast an inhibiting GK protein, the GK regulon protein is only expressed in liver, but not in beta cells. This raised the question whether unidentified beta cell specific GK interaction partners exist. Therefore the aim of this study was to identify beta cell specific GK interaction partners through a yeast two hybrid (YTHS) screening of a rat ilet library.

Materials and methods: RNA isolated from rat pancreatic islets was used to generate a cDNA library by SMART technology (Clontech). Recombination of the cDNA library with the pGADT7-R vector was performed in S. cerevisiae AH1109. Mating with the pGBK-T7-GK containing S. cerevisiae Y187 yeast strain was established resulting in analysis of 5.5 x 10^4 clones in three independent runs. Initially positive clones were characterized by histidine (His) and adenine (Ade) reporter gene assays in yeast. Therefore binding to GK was determined in MIN6 beta cells using a recently established fluorescence-based mammalian two-hybrid system (MMTHS) in a high-throughput scanR (Olympus) microscope setup.

Results: 73 positive clones were selected by His reporter gene expression in yeast, whereas four clones showed also significant Ade reporter gene expression. In YTHS experiments with the control plasmid lamin only one clone exhibited specific interaction with GK. Sequence and protein database analyses revealed a 180 amino acid containing protein fragment with homology to the N-terminal part of midolin 2 of mus musculus. Thus, no full-length protein was discovered. However, a complete sequence of an ubiquitin-like domain (UbD) consisting of 72 amino acids was identified inside of the protein fragment by NCBI-BLAST data bases and further analyzed in the MMTHS. For this the UbD was subcloned in frame with the binding domain (pBIND-ECFP-UbD), and interaction with GK subcloned in frame with the activation domain (pACT-GK) in comparison to control (pACT) was elucidated in single MIN6 beta cells. Interestingly, a specific interaction between the UbD and GK determined as an increase of the EYFP reporter gene expression in relation to the constitutively expressed ECFP fluorescence over time was elucidated.

Conclusion: We have identified an ubiquitin-like domain as a potential new GK binding partner. Recently an ubiquitin interacting motif has been discovered in GK. As the ubiquitin-proteasome pathway play an important role in the development of type 2 diabetes. Mitochondrial uncoupling protein 2 (UCP2) were measured by liquid chromatography, respectively.

Materials and methods: Using lentiviral technology, we created stable clones expressing opposite clinical phenotypes: a naturally inactivating (GK-E440G) and activating (GK-E442K) GK variant displayed significantly reduced apoptosis (12- and 6-fold, respectively) whereas the E440G only protected cells at low (2-fold) but not at high glucose as compare to GFP expressing cells. GK had no protective effect. In contrast all clones exhibited protection at 11 mM glucose (6-fold as compared to GFP), corresponding to normal culture conditions. Proliferation at 11 or 20 mM glucose was identical for all clones. Astonishingly, the E442K clone was also able to sustain proliferation even at 3 mM glucose.

Conclusion: Taken together, our results indicate that the naturally occurring activation mutation GK-E442K may convey protection and maintain proliferation of beta cells under altered glycemic conditions. Yet, the fact that activating GK may benefit the pancreatic beta cell during stress, and are currently being investigated in the context of cellular senescence, is not well understood. Thereby, our aim was to investigate the cell-specific role of PPARα on mitochondrial energy metabolism and insulin secretion in beta-cells.

848

Activation of PPARα promotes mitochondrial energy metabolism and decreases basal insulin secretion in palmitate-treated beta cells

L. Jiang, J. Wan, L.-Q. Ke, Q.-G. Liu, N.-W. Tong; Sichuan University, Chengdu, China.

Background and aims: The peroxisome proliferator-activated receptor δ (PPARδ) regulates the expression of genes involved in cellular lipid and cell energy metabolism in many metabolically active tissues, such as liver, muscle and fat and plays a role in the cellular response to stress and environmental stimuli. The particular role of PPARδ in insulin-secreting beta-cells, however, is not well understood; therefore, our aim was to investigate the cell-specific role of PPARα on mitochondrial energy metabolism and insulin secretion in beta-cells.

Materials and methods: After exposing a Syrian hamster pancreatic beta-cell line, HIT-T15, to high-concentrations of palmitate and/or the specific PPARδ agonist GW501516, we detected a decrease in the expression changes for the transcripts associated with mitochondrial biogenesis, such as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1α), nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (mtTFA), using real-time quantitative polymerase chain reaction (RTQ-PCR). The protein levels of the mitochondria uncoupling protein 2 (UCP2) were measured by western blot analysis; the insulin secretion capacity and ATP/ADP ratio were analyzed using enzyme linked immunosorbent assay (ELISA) and high performance liquid chromatography, respectively.

Results: Activation of PPARδ promoted generation of mitochondrial ATP, as well as expression levels of PGC-1α, NRF-1 and mtTFA in palmitate-treated HIT-T15 cells. Activated PPARα also decreased basal insulin secretion, but had no effect on glucose-stimulated insulin secretion (GSIS) via increased amounts of UCP2.

Conclusion: GW501516 treatment enhanced mitochondrial energy metabolism, but it also promoted a concomitant mitochondrial uncoupling and resulted in decreased basal insulin secretion and restricted GSIS. Activation of PPARα induced a reduction of basal insulin secretion, but did not appear to improve GSIS; this observation indicated the possible action of a protective mechanism responding to the alleviation of basal insulin load in lipotoxic beta-cells.

499

Role if tissue specific alterations of mitochondrial dynamics in development of type 2 diabetes

J. Schultz; S. Baltrusch; Institut of Medical Biochemistry and Molecular Biology, Rostock, Germany.

Background and aims: Mitochondrial dysfunction has been proposed to play an important role in the development of type 2 diabetes. Mitochondrial function is regulated in a tissue specific manner and in recent studies mitochondrial dynamics have been elucidated to be important to maintain cell metabolism. Mitochondria contribute to a network that continuously...
cycle through fusion and fission events. By this process dysfunctional mitochondria are segregated and their removal by autophagy is initiated. Mitofusin 1 and 2 (Mfn1 and Mfn2) and the optic atrophy 1 (Opa1) are essential for mitochondrial fusion, whereas the fission protein 1 (Fis1) and the dynamin related protein 1 (Drp1) control fission. Alterations in mitochondrial function may be evoked by obesity, and thus, crucial to explain both insulin resistance in peripheral tissue and pancreatic beta cell dysfunction resulting in impaired insulin secretion in type 2 diabetes. Therefore the aim of this study was to investigate tissue specific alterations in mitochondrial dynamics in obese ob/ob mice compared to normal weight control mice.

Materials and methods: Islets from obese ob/ob mice (B6-V-lebob) and control mice (C57BL/6J) were isolated by collagenase digestion. Furthermore liver, muscle, adipose tissue and brain were taken from ob/ob and control mice. RNA and protein were isolated and quantitative Real-Time PCR analyses and western blot analyses of Fis1, Drp1, Opa1, Mfn1 and Mfn2 were carried out, respectively. Additionally frozen sections were made for immunofluorescence analyses.

Results: Gen expression of Fis1, Drp1, Opa1, Mfn1 and Mfn2 in islets of obese ob/ob mice was significantly reduced compared to control mice and the resulting expression pattern indicated an imbalance of mitochondrial fusion and fission processes. In liver Fis1 was down regulated in ob/ob mice compared to control, while Drp1 was up regulated. As both proteins cannot replace each other, fission was disturbed in liver of ob/ob mice. Furthermore immunofluorescence analyses revealed an inhomogeneous expression pattern of fission proteins in liver of ob/ob mice. Additionally Mfn1 and Mfn2 were significantly reduced on the gene as well as protein level in liver of ob/ob mice. Interestingly Mfn2 a protein which plays a role in mitochondrial substrate oxidation was significantly down regulated in islets, liver, muscle and adipose tissue, but not in the brain of ob/ob mice compared to control. Gene and protein expression of Fis1, Drp1, Mfn1 and Mfn2 was reduced in adipose tissue and muscle of ob/ob mice compared to control, but in muscle to a much higher extent. Solely in muscle a significant down regulation of the Opa1 protein was determined.

Conclusion: We have observed tissue specific changes in mitochondrial dynamics in obese mice compared to normal weight control mice. In future experiments we will elucidate whether these alterations are a reversible adaptive process maintaining cell function or represent mitochondrial dysfunction. In conclusion, our study provides further evidence that obesity induced mitochondrial alterations contribute to the development of type 2 diabetes.

500

Implication of mitochondria in IAPP induced-beta cell toxicity
M. Soty, M. Vila, L. Cadavez, M. Carmona, A. Novials; Laboratori de Diabetes i Obesitat, IDIBAPS, Hospital Clinic, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.

Background and aims: Type 2 diabetes is characterised by islet dysfunctions that lead to the impairment of insulin secretion. The presence of islet amyloid deposition is a recognised hallmark in islets of type 2 diabetes patients. Amyloid fibrils are formed by human islet amyloid polypeptide (hIAPP). There is now very strong evidence supporting the key role of amyloidogenesis in the progressive loss of pancreatic beta-cell mass and function. Mitochondria have a central role in the regulation of insulin secretion since the latter is largely controlled by ATP production through oxidative phosphorylation (OXPHOS) taking place in the mitochondrial respiratory chain. The main objective of this project is to investigate whether mitochondria may play a role in the mechanisms by which human IAPP induces beta-cell cytotoxicity.

Materials and methods: The rat pancreatic beta-cell line INS1E was stably transfected with a hIAPP plasmid (hIAPP cells) or pcDNA3 (control cells). In order to characterise the impact of hIAPP on beta-cell function, we measured insulin and IAPP secretion and intracellular calcium mobilisation in response to glucose. Calcium levels were measured using Fura-2 labelling. Mitochondrial function was explored by monitoring cellular respiration, mitochondrial membrane potential and reactive oxygen species (ROS) production. Rhodamine 123 and CM-H2DCFCA probes were used to monitor membrane potential and ROS levels, respectively.

Results: In response to 16.7 mM glucose, insulin and IAPP secretion was strongly decreased in hIAPP compared to control cells (3.5 ± 0.7 % vs 15.6 ± 2.9 % insulin release expressed as a percentage of cellular insulin content and 2.6 ± 0.9 vs 8.7 ± 1.4 % IAPP release expressed as a percentage of cellular IAPP content, p<0.01). Consistent with these results, the study of calcium sig-
501
Mimitin overexpression protects insulin-producing INS1E cells against cytokine-induced apoptosis via prevention of MAP1S action
K. Hanzelka, S. Lenzen, E. Gurgul-Convey
Institute of Clinical Biochemistry, Hannover Medical School, Germany.

Background and aims: Mimitin is a mitochondrial protein, which was shown to be induced by cytokines in insulin-producing cells. It has been reported that in some cell types it can interact with a partner protein called MAP1S. MAP1S is a microtubule associated protein, which triggers a cytoplasmic signal for apoptosis, mainly via induction of ER stress. The aim of this study was to investigate the possible interaction of these two proteins in insulin-producing cells and the influence of mimitin overexpression on cytokine-stimulated apoptotic pathways.

Materials and methods: Insulin-producing INS1E cells and INS1E-hMim cells (overexpressing mimitin) were used. The cells were treated with IL-1 beta 600 U/ml or with a cytokine mixture (60 U/ml IL-1 beta, 175 U/ml TNF-alpha and 14 U/ml IFN-gamma) for 24 h. Cell viability was estimated by MTT assay, cell proliferation by BrDU incorporation, NF-kappa B by an SEAP reporter gene assay, nitrite accumulation by nitrate measurement by the Griess method and caspase activation was quantified by flow cytometry. Fluorescent microscopy was used to analyze mimitin and MAP1S expression.

Results: The analysis of mimitin and MAP1S expression using specific fluorescent probes revealed that mimitin resided in the mitochondria, while MAP1S was in the cytoplasm. Upon exposure to cytokines mimitin partially moved from mitochondria into the cytoplasm and interacted there with MAP1S. Overexpression of mimitin protected INS1E cells against cytokone toxicity and prevented deleterious effects of cytokines towards cell proliferation (MTT 24h: INS1E-hMim IL-1 beta 58%, cytokine mix 57%; INS1E-hMim IL-1 beta 84%, cytokine mix 57%; proliferation rate after 24h: INS1E IL-1 beta 58%, cytokine mix 28% vs. INS1E-hMim IL-1 beta 85%, cytokine mix 54%). The cytokine-induced caspase-3 activation was completely abolished in INS1E-hMim cells (24 h, INS1E: IL-1 beta 156 ± 16, cytokine mix 165 ± 19; INS1E-hMim: IL-1 beta 110 ± 11, cytokine mix 88 ± 10). The mitochondrial caspase-9 activation induced by cytokines was not affected by mimitin overexpression (24 h, INS1E: IL-1 beta 188 ± 16, cytokine mix 181 ± 16; INS1E-hMim: IL-1 beta 129 ± 5, cytokine mix 150 ± 11). Interestingly, caspase-8, triggering the extrinsic apoptotic pathway and caspase-12, associated with the ER stress response, were both downregulated by mimitin overexpression (caspase-8 after 24 h, INS1E: IL-1 beta 167 ± 14, cytokine mix 134 ± 8; INS1E-hMim IL-1 beta 110 ± 8, cytokine mix 108 ± 8; caspase-12, INS1E: IL-1 beta 151 ± 11, cytokine mix 198 ± 17; INS1E-hMim: IL-1 beta 105 ± 10, cytokine mix 116 ± 15). No significant effect of mimitin overexpression on the NF-kappa B-iNOS pathway was observed.

Conclusion: Mimitin prevents cytokine-induced death of insulin-producing cells and stimulates cell proliferation. We hypothesize that the protective effect of mimitin against cytokine-induced apoptosis occurs via prevention of cytotoxic action of the proapoptotic protein MAP1S.

502
Expression of iNOS in pancreatic islets of human type 2 diabetic patients
A. Balhuizen, S. Muhammad, R. Kumar, A. Sahel
Department of Clinical Sciences, Lund University, Malmö, Sweden.

Background and aims: Accumulating data suggest that nitric oxid (NO) islet cells (insulin, glucagon and somatostatin) of type 2 diabetic subjects and that no iNOS was detected in islets from normal human donors. iNOS mRNA and protein expression was markedly higher in diabetic vs normal human islets (p<0.001). The hormone secretory pattern of type 2 diabetic pancreatic islets incubated at normal glucose concentrations showed a reduced insulin and somatostatin response to glucose. The suppressing effect of glucose on glucagon secretion was not observed in the incubated islets of type 2 diabetic subjects.

Conclusion: Our data shows that long term hyperglycemia seen in human type 2 diabetic patients, based on their HbA1c, might result in the expression of iNOS in the pancreatic islets which consequently might disrupt the normal b-cell function.

Supported by: Swedish Science Council

503
Mcl-1 degradation by pro-inflammatory cytokines and palmitate is an early and major event for beta cell apoptosis
A.K. Cardozo1, D. Cunha1, F. Moore1, J. Vanderwinden1, L.D. Eizirik1, F. Allagat1
1Laboratory of Experimental Medicine, 2Laboratory of Neurophysiology, Université Libre de Bruxelles, Belgium.

Background and aims: Apoptosis of the insulin-secreting pancreatic beta cell is a key feature of diabetes mellitus and the mitochondrial pathway of apoptosis is a major mediator of beta cell death. The myeloid cell leukemia sequence 1 (Mcl-1) is an important anti-apoptotic protein of the Bcl-2 family, a group of proteins involved in the mitochondrial pathway of apoptosis. The aim of this study was to evaluate the role of Mcl-1 in beta cell apoptosis.

Materials and methods: We studied the effect of pro-inflammatory cytokines (IL-1β or TNF-α, in combination or not with IFN-γ), free fatty acids (palmitate or oleate), and chemical ER stressors (CPCA, thapsigargin, tunicamycin) on Mcl-1 mRNA and protein expression in INS-1E cells, and, in selected experiments, in FACS-purified rat beta cells. Using mRNA silencing and recombinant adenoviruses, we studied the effect of Mcl-1 knockdown and overexpression on beta cell function and apoptosis. Expression of Mcl-1 and key downstream genes and proteins were measured by real time RT-PCR and/or Western blot. Localisations of Bax and cytochrome c were studied by immunofluorescence in cells overexpressing Mcl-1 and treated with cytokines, palmitate or thapsigargin. Cell viability was evaluated by HO342 and propidium iodide.

Results: All cytokotic stresses described above increased Mcl-1 mRNA expression by 2 fold, but rapidly and preferentially decreased Mcl-1 protein expression by 30 to 60% (p<0.05). ER stress-induced Mcl-1 down-regulation was prevented upon PERK knock down and resulting inhibition of eIF2α phosphorylation, indicating that translation arrest contributes to Mcl-1 downregulation. Additionally, the effect of cytokines on Mcl-1 expression was also partially prevented in presence of a JNK inhibitory peptide. Knocking-down Mcl-1 using siRNAs increased by 40% apoptosis and caspase 3 cleavage induced by cytokines, palmitate or thapsigargin (p<0.01). On the other hand, Mcl-1 overexpression reduced by 50% Bax translocation to the mitochondria, cytochrome c release, caspase 3 cleavage and apoptosis induced by the beta cell death effectors (p<0.01). Neither Mcl-1 knockdown nor overexpression modified basal or glucose-stimulated insulin secretion.

Conclusion: The present data suggest that Mcl-1 downregulation is a crucial event leading to beta cell apoptosis and provide new insights in the mechanisms linking ER stress and the mitochondrial intrinsic pathway of apoptosis. Mcl-1 is therefore an attractive target for the design of new strategies in the treatment of diabetes.

Supported by: JDRF, FNRS Belgium

504
Effects of proinflammatory cytokines on the pancreatic alpha cells response to glucose, Zn2+ and insulin
M. Farrell1, M. Murphy1, P. Newsome1
1Department of Biology, I.T. Tallaght, Belgard Road, Dublin, 2School of Biomedical and Biomolecular Science, University College Dublin, Belfield, Dublin, Ireland.

Background and aims: The study of the effects of diabetogenic factors on the pancreatic α-cell are relatively limited when compared to its neighbour, the pancreatic β-cell. In recent years the regulation of glucagon secretion has attracted considerable attention from molecular biologists. The dysregulation of glucagon secretion in both type 1 and type 2 diabetes mellitus is of physiologic and pathologic importance as little has been achieved in relation...
to counteracting the dysregulation of glucagon secretion in diabetes. The effects of proinflammatory cytokines on the β-cell are well documented but little has been reported on the mechanisms of cytokine induced α-cell dysregulation. IL-1β, TNF-α and INF-γ are commonly used for initiation of dysfunc-
tion and death in the pancreatic β-cell. This investigation has determined the effects of these cytokines on the pancreatic α-cell under various incubation conditions relating to the availability of islet cell secretory products.

Materials and methods: The clonal cell line α-TC1-9 were seeded in 6 well plates under various conditions in relation to proinflammatory cytokine levels, Zn²⁺ levels, Insulin Levels and glucose levels for various time points. Metabolite consumption, Glutathione ratio and ATP levels were assessed using enzymatic methods, glucagon levels were assessed using HTRF techniques and Ca²⁺ fluctuations were assessed using flow cytometry.

Results: Addition of various concentrations of the cocktail of proinflammatory cytokines to the αTC1-9 cell line (various dilutions of the following: 5U/ml IL-1β, 1000U/ml TNF-α and 500U/ml IFN-γ) resulted in a dose dependent increase in glucagon secretion, up 527% compared to basal levels (n=6). Intracellular levels of reduced glutathione were increased by 1.2 fold, while the intracellular levels of oxidised glutathione were not increased significantly in any condition. Glucose and Glutamine consumption was also increased, dose dependently, with increases in proinflammatory cytokine cocktail concentration. Glucagon secretion was reduced by addition of Zn²⁺ and/or insulin an effect partly attenuated (34.3-69.4%) by addition of various concentrations of glucose (0-25mM). This inhibitory effect was lost in a dose dependent fashion with the addition of the proinflammatory cytokine cocktail.

Conclusion: Proinflammatory cytokines had a dose dependent effect on metabolite consumption including glucose, glutamine etc. and glucagon secretion from α-TC1-9 cells. Glucose was able to partly attenuate the negative effect of the cytokines.

Supported by: TSR, An Údáins uam Ard-Oideachas, An Roimn Oideachais agus Eolaíocht.
Expression of salivary type amylase in human pancreatic beta cells and its induction by pro-inflammatory cytokines in MIN6 beta cells

Department of Clinical Science, Lund University/CRC, Malmö, Sweden.

Background and aims: Autoantibodies against amylase (AMY) were detected at a high frequency in sera from patients with diabetes associated with autoimmune pancreatitis (DAIP) or with fulminant type 1 diabetes (FT1DM). The possible relationship between beta-cell destruction and autoimmunity against AMY is not clear. The aim of this study was to examine AMY expression in 1) the pancreatic islet-cells of autopsied patients with FT1DM and 2) mouse MIN6 beta cells exposed to Th1 cytokines.

Materials and methods: AMY expression in islet beta cells from three FT1DM patients dead 2-5 days after the onset and three non-diabetic control pancreas were analyzed by immunohistochemical staining with AMY1 (salivary type) -specific monoclonal and AMY2 (pancreatic) -specific monoclonal antibodies. Quantitative RT PCR was used to detect the expression of AMY1 and AMY2 (pancreatic type) in MIN6 beta cells incubated with Th1 cytokines. The MIN6 cells were also subjected to immunohistochemical staining using monoclonal AMY1 antibodies.

Results: Severe mononuclear cells infiltration (insulitis) was observed in islets of FT1DM patients but not in the islets of control non-diabetic subjects. An AMY1, but not AMY2, monoclonal antibody identified immunoreactivity of AMY in beta cells, but not alpha or exocrine acinar cells, of non-diabetic human. The AMY1 staining was also observed in the islets from FT1DM patients. Western blotting revealed that serum from patients with autoimmune pancreatitis had IgG detecting AMY1. AMY1 mRNA levels in MIN6 beta cells were 108-fold higher than AMY2. MIN6 beta cells cultured with either IFN-γ or TNF-α alone did not affect AMY1 expression. In contrast, simultaneous addition of IFN-γ and TNF-α induced a synergistic 5-fold increase of AMY1 but not AMY2 levels. The MIN6 beta cells cultured simultaneously with IFN-γ and TNF-α showed an increased AMY immunoreactivity compared to the cells treated with IFN-γ or TNF-α alone.

Conclusion: We conclude that human pancreatic islet beta-cells express AMY1 and its expression was also observed in islets from FT1DM patients. Infiltrating mononuclear cells in FT1DM or DAIP are known to produce Th1 cytokines. It was of interest that the expression of AMY1 gene in pancreatic MIN6 beta-cells was enhanced synergistically by Th1 cytokines. This observation suggests that islet beta-cells hyper-expressing AMY1 may be the target for beta-cell autoimmune in DAIP and FT1DM.

Siglecs are differentially expressed in pancreatic islets and regulate beta cell function and survival

G. Dharmadhikari, F. Paroni, J. Kerr-Conle, S. Kelm, K. Maedler
Centre for Biomolecular Interactions, University of Bremen, Germany.

Background and aims: In both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), local inflammation and cytokine and chemokine production within pancreatic islets has been observed and is detrimental for the beta-cell. Siglecs (Sialic-acid binding immunoglobulin like lectins) are cell surface receptors expressed on haematopoetic cells which participate in immune responses. Their prominent position, negative charge and widespread distribution make sialic acids an important component in cell-cell interactions as well as pathogen and toxin binding. Our investigations revealed a cell-type specific expression of Siglecs in pancreatic islets, which is altered in diabetic conditions, hinting towards their role in survival and function of these pancreatic cells.

Materials and methods: The expression of Siglecs 3, 5, 6, 7, 8 and 10 in pancreatic sections was analyzed by immunofluorescence in pancreatic sections from T1DM and controls as well as in isolated human islets exposed to a diabetic milieu (increasing glucose (11.1-33.3 mM), 2 nmol IL-1β alone or in combination with 1,000 U/ml IFN-γ, 100 ng/ml LPS, 0.5 mM palmitate, 50 μg/ml synthetic ds RNA analogue Poly:IC or 50 μM H₂O₂). The siglecs cellular localization was confirmed by Confocal Laser scanning microscopy. Siglec expression was evaluated by quantitative real time PCR of cDNA from human pancreases from autopsy. To investigate its role in beta-cell function, Siglec 7 over-expression by plasmid transfection was carried out followed by glucose stimulated insulin secretion (GSIS).

Results: Triple staining for Siglecs 3, 5, 6, 7, 8 and 10; glucagon and insulin in pancreatic sections of healthy controls and patients with T2DM showed cell type specific siglec expression in the human pancreas: Siglecs 3, 5 and 8 were expressed in the glucagon producing a-cells, Siglecs 7 and 10 were expressed in the insulin producing beta-cells and Siglec 6 was expressed in the exocrine pancreas. Siglec expression was not uniform in the cells but was aggregated at certain locations; this was observed independently from diabetes. This expression pattern hints towards a cell-cell interaction junction which is facilitated by these siglec. A diabetic milieu had an inductive effect on siglec expression in those cells in human islets in vitro and in vivo. Real time PCR analysis revealed that siglecs expressed in a-cells Siglec-3, 5 and -8 showed a 5.9-fold, 7.9-fold and 6.1-fold increase in its expression in patients with T2DM as compared to the non diabetic controls. In contrast, in the siglecs expressed in the beta-cells, there was an 85% decreased expression in siglec 7 and a 47% decrease in siglec 10 expression in patients with T2DM. Since Siglec 7 was markedly downregulated in T2DM in poorly functional beta-cells, we wanted to know if over-expression of siglec 7 has an opposite effect on beta-cell function. Indeed, plasmid over-expression of Siglec 7 increased GSIS 5.1-fold in human islets and prevented glucose and palmitate induced apoptosis, when compared to the lacZ transfected control islets.

Conclusion: Our data suggest that Siglecs are differentially expressed in pancreatic islets, are regulated in T2DM and influence beta-cell function and survival. Siglecs could play an important role not only in the crosstalk of beta-, a- and immune cells but also in maintaining glucose homeostasis.
PS 31 Apoptosis of beta cells

509
MST1 mediates beta cell apoptosis and impaired function
A. Ardestani1, F. Paroni1, J. Kerr-Conte1, K. Maedler1;
1Centre for Biomolecular Interactions, University of Bremen, Germany,
2Thérapie Cellulaire du Diabète, INSERM /Université de Lille, France.

Background and aims: Pancreatic β-cell death is the fundamental cause of type 1 and type 2 diabetes (T2DM). Mammalian sterile 20-like kinase 1 (MST1) is a serine threonine kinase, which mediates apoptosis in response to cytotoxic stress. MST1 is both, cleaved and activated by caspases, and also serves as an activator of caspases to amplify the apoptotic signaling pathways. In the present study, we investigated the possible patho-physiological activation of MST1 in β-cells under diabetic conditions, which may be a major common pathway of β-cell death in diabetes.

Materials and methods: Isolated human islets and the human β-cell line CM9 were exposed to a diabetic milieu (cytokine mixture IL-1β/IFNγ, oxidative stress (H2O2) or increasing glucose concentrations). Phospho-MST1 and MST1 cleavage, Phospho-JNK, Phospho-Histone2B (direct cellular substrate of MST1) and β-cell apoptosis (cleaved Caspase 3 & PARP) were analyzed by western blotting. MST1 or dominant-negative MST1 were overexpressed by plasmid transfection into human islets and CM9 cells and its direct effect on β-cell apoptosis (TUNEL assay & caspase 3 activation) and function (GSIS, PDX1 localization) analyzed. MST1 activation was isolated in islets from a patient with T2DM and from an animal model of T2DM, the high fat/ high sucrose diet fed mouse (HFD).

Results: MST1 cleavage & phosphorylation was increased in human islets and CM9 cells exposed to IL-1β/IFNγ mixture, H2O2, or increasing glucose concentrations (11.1-33.3 mM). This correlated with increased P-H2B, P-JNK, and apoptosis. We found the JK Nd pathway as a mediator of MST1-induced apoptosis, because JNK inhibition (by JNK inhibitor Sp600125) diminished caspase-mediated MST1 cleavage and apoptosis. In isolated islets from patients with T2DM as well as from HFD mice, MST1 activation was increased and correlated with JNK activation and apoptosis. Inhibition of endogenous MST1 activity by overexpression of dominant negative MST1 inhibited apoptosis induced by a diabetic milieu. In contrast, overexpression of MST1 increased β-cell apoptosis 4-fold (P<0.05) and reduced glucose stimulated insulin secretion 1.6-fold (p<0.05), indicating that MST1 alone is sufficient to promote β-cell failure. By an in vitro kinase assay using recombinant MST1 and PDX-1 as substrate we found that MST1 phosphorylates PDX-1. In line with this MST1 overexpression induced PDX-1 shuttling from the nucleus to the cytosol, providing an explanation for the impaired insulin secretion.

Conclusion: Our results suggest that MST1 is a critical mediator of impaired β-cell function and apoptosis. Inhibiting the MST1-pathway could be an important strategy to prevent β-cell apoptosis.

Keywords: Mammalian sterile 20-like kinase 1 (MST1), apoptosis, diabetes, β-cell, c-Jun N-terminal kinase (JNK) and Pancreatic Duodenal Homebox-1 (PDX-1).

510
Islet human amylamin oligomer formation is differentially correlated with beta cell death and diabetes onset between homozymous and hemizymous human amylamin transgenic mice
S. Zhang, H. Liu, X. Li, M. Au, C.-L. Chuang, G. J. S. Cooper; School of Biological Sciences, University of Auckland, New Zealand.

Background and aims: One of the pathological features of type-2 diabetes mellitus (T2DM) is the presence of islet amyloid deposits comprising mainly human amylamin (ha)/haAPP. Recent studies suggested that soluble oligomers of human amylamin may be the primary cause of β-cell damage and thus contribute to the onset/development of T2DM. However, the molecular basis of this process remains to be fully elucidated. We aimed to investigate the connection between soluble oligomers and ha cytotoxicity, and their correlation with diabetes development using a rodent model of diabetes.

Materials and methods: We performed a comparative phenotypic analysis of homozymous and hemizymous ha transgenic mice for ha in their islet β-cells. Oligomer formation was studied by detection of amylamin oligomer-like immunoreactive material (AOILM) with specific anti-oligomer antibodies using immunofluorescence techniques. A co-localization study of oligomerization was carried out wherein islet cell membranes were detected by multi-labelled immunofluorescence. Apoptosis was assessed by active-caspase-3 staining.

Results: Both homozymous and hemizymous ha transgenic mice developed spontaneous diabetes associated with different elevations in ha levels and with different time frames of disease onset and death. Abnormal β-cell function and apoptosis were detected before early onset of hyperglycaemia in homozymous animals, while β-cell function (insulin secretion) remained normal till late diabetes onset in hemizymous mice. Interestingly, intracellular and extracellular AOILM was clearly detectable before onset of diabetes in all transgenic animals with strong correlation with β-cell death in homozymous mice. However, there was no correlation between the appearance of AOILM and the time of cell death occurring in hemizymous mice, implying a difference in the size and/or the extent of cytotoxic oligomerization in these animals. We also found that rapid β-cell depletion occurs soon after appearance of cytotoxic oligomers and onset of diabetes in homozymous animals whereas apoptosis developed slowly after the late onset of diabetes in hemizymous animals, which exhibited significant β-cell loss in a much later time frame.

Conclusion: The difference in time at which oligomerization occurs in relation to cell death and diabetes onset between homozymous and hemizymous transgenic mice may suggest a dose-dependent cytotoxic effect of ha oligomers. The findings from this study will provide new insights on the cellular fate of oligomers and further enhance our understanding of amyloidosis and T2DM.

Supported by: FRST & HRC NZ.

511
Dual effect of advanced glycation end products in pancreatic islet apoptosis and the protective role of benfotiamine and MitoQ
M. Correa-Giannella1, F.L. Costal1, E.R. Oliveira1, A.R. Amaral1, A.M.S. Lima1, M. Passarelli2, D. Giannella-Neto1;
1Endocrinology - LIM25, 2Endocrinology - LIM10, 3Gastroenterology - LIM07, University of Sao Paulo Medical School, Brazil.

Background and aims: Loss of beta cell function hastens the deterioration of metabolic control in people with type 2 diabetes. Besides lipid- and glucotoxicity, advanced glycation end products (AGEs) seem to contribute to this process by promoting beta cell apoptosis. In other tissues, AGEs interact with their specific receptors (RAGEs) and elicit reactive oxygen species (ROS) generation and NF-κB activation. In order to investigate the temporal effect of AGEs on islet apoptosis as well as the potential of antioxidant compounds to decrease islet damage caused by AGEs.

Materials and methods: Rat pancreatic islets were treated for 24, 48, 72 and 96 h with either AGEs generated from co-incubation of bovine serum albumin (BSA) with D-glyceraldehyde (GAD, 5 mg/mL) or BSA (5 mg/mL, control). Apoptosis was evaluated by quantification of DNA fragmentation (ELISA), caspase-3 enzyme activity and detection of mitochondrial permeability transition (MitoProbe JC-1). The expression of the genes Bax, Bcl2 and Nfkb1 was evaluated by RT-qPCR. In the time points at which increased apoptosis was detected, the effect of two antioxidant compounds was evaluated: benfotiamine (350 μM), a liposoluble vitamin B1, and MitoQ (1 μM), a derivative of ubiquinone targeted to mitochondria.

Results: In 24 and 48 h, AGEs elicited a significant decrease in the apoptosis rate in comparison to the control condition concomitantly with a significant increase in the RNA expression of the antiapoptotic gene Bcl2 and a significant decrease in Bcl2 RNA expression and a significant increase in Nfkb1 RNA expression. Benfotiamine and Mito Q were able to decrease the apoptosis rate of islets exposed to AGEs for 72 and 96 h.

Conclusion: AGEs exerted a dual effect in cultured pancreatic islets, being protective against apoptosis after short exposition but proapoptotic after prolonged exposition. Mito Q and benfotiamine deserve further evaluation as drugs that could offer islet protection in conditions of chronic hyperglycemia.

Supported by: FAPESP.
Galectin-3 deficiency reduces immune-mediated beta cell destruction in vitro
S. Stošić-Grujičić, T. Čvetićanin, G. Timotijević, N. Zdravković, M. Lukić
Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Serbia.

Background and aims: Galectin-3 (Gal-3), a multifunctional beta-galactoside-binding lectin, affects numerous biological processes and is implicated in the pathogenesis of several inflammatory/autoimmune disorders. It has been shown that Gal-3 may increase inflammatory responses through its function in cell activation, cell migration, or inhibition of apoptosis. We have recently reported that Gal-3-deficient (Gal-3−/−) mice are relatively resistant to diabetogenesis induced by multiple low doses of streptozotocin. Little is known however, about the relevance and influence of the endogenous Gal-3 at the level of target tissue (pancreatic islets). It is established that, in Type 1 as well as in Type 2 diabetes, beta-cell function and viability are progressively disturbed through a complex process of inflammation. In addition, hyperlipidemia and inflammation, when acting in concert, may carry out a powerful attack upon pancreatic beta cells. In this context, our aim was to analyze the possible role of endogenous Gal-3 in beta cell survival and death pathways following in vitro treatment with cytokines and one of the most common free fatty acid -palmitic acid.

Materials and methods: Pancreatic islets isolated from C57BL/6 mice or Gal-3-null mice were incubated with palmitate and/or concanavalin A-stimulated spleen-cell culture supernatant containing soluble immune cell products. Alternatively, the cooperative effect of culture supernatant components was mimicked with the combination of recombinant cytokines (IL-1β+TNF-α+IFN-γ). After incubation, beta cell apoptosis was determined by MTT test, or histone-DNA ELISA. Expression profiles of various related genes were determined at mRNA and protein levels by real time PCR, and Western blot, respectively.

Results: Targeted disruption of Gal-3 gene attenuated palmitate-induced beta cell lipotoxicity. Moreover, Gal-3−/− pancreatic islets were more resistant than wild type counterparts to cytokine induced apoptosis. The transcription of anti-apoptotic Bcl-2 was up-regulated in Gal-3−/− islets only, whereas in wild type islets it was down-regulated. Although Bcl-xL mRNA was up-regulated in both groups of islets, the increase was more pronounced in Gal-3−/− islets. In contrast, the transcription of pro-apoptotic Bid was down-regulated in Gal-3−/− islets only. Interestingly, basal levels of anti-apoptotic proteins were higher in Gal-3−/− islets than in wild type islets, further suggesting favouring of cell protective over pro-apoptotic molecules in molecular regulation of Gal-3−/− beta cell survival.

Conclusion: Our findings clearly show that the absence of Gal-3 confers beta cell protection from the lethal insult of different agents, namely cytokines and saturated free fatty acids. This protection is probably mediated by differential regulation of pro- and anti-apoptotic molecules within the beta cells. The study thus provides in vitro evidence for a critical role of Gal-3 in destruction at the level of pancreatic islets and suggests a new therapeutic strategy for the treatment of diabetes based on the selective inhibition of Gal-3 activity.

Supported by: Serbian Ministry of Science

Ectopic overexpression of acute stress protein p8 reduces streptozotocin (STZ)-induced apoptosis in INS-1E (STZ) beta cells
Endocrinology / Diabetology - Labor B9, University Hospital Freiburg, Germany.

Background and aims: Protein p8 is associated with proliferation and tissue protection. p8 knock out animals display enhanced lethality after LPS treatment and enhanced pancreatitis-induced tissue damage in the excocrine pancreas. Within the endocrine pancreas own previous work characterized p8 as a glucose-dependent mediator of beta cell proliferation. Here we investigate cell protective properties of p8 in response to STZ treatment in INS-1E beta cells.

Methods and results: Exposure of native INS-1E to STZ strongly upregulates activity of the apoptosis effector molecules caspases 3 and 7 (Chemiluminescence assay) resulting in cell death with a 24 h LD50 of 0.66 mM STZ (MTS). In parallel, 0.66 mM STZ acutely induces endogenous p8 gene expression (qPCR), which peaks after 6 h and finally declines to vehicle control levels after 12 h. STZ-induced p8 gene expression (6 h) was further strictly dose-dependent up to 1 mM STZ and gets saturated at 3.3 mM. To investigate effects of high p8 levels on viability and apoptosis, we generated INS-1E beta cells with stable p8 overexpression under the control of a CMV promoter (p8-INS1) and empty plasmid control cells (mock-INS1). Under basal conditions, p8-INS1 cells as compared to mock controls demonstrate substantially enhanced viability resulting in significantly increased cell numbers after 5 days in culture. Also under tissue stress conditions, viability of p8-INS1 was substantially enhanced if exposed to 0.33 to 3.3 mM STZ for 24 h. These findings correspond to significantly lowered (about 60%) 0.33 to 1 mM STZ-induced activation of caspases 3 and 7 after 8 h.

Conclusion: These results demonstrate that, in beta cells, p8 is acutely induced by tissue stress and mediates enhanced viability and proliferation and reduces STZ-induced apoptotic cell death.

Supported by: DFG and RBFB, Germany

Paracrine signaling loops in adult pancreatic islets: Netrins modulate beta cell apoptosis via Neogenin and Unc5a
Y.H.C. Yang, B.G. Hoffman, M. Szabat, C. Bragagnini, K. Kott,
1Department of Cellular and Physiological Sciences, Department of Surgery, University of British Columbia, Vancouver, 2Child & Family Research Institute, Department of Surgery, University of British Columbia, Vancouver, 3Department of Cancer Endocrinology, BC Cancer Research Center, Vancouver, Canada.

Background and aims: Adult pancreatic islets contain multiple cell types that produce and secrete well-characterized hormones including insulin, glucagon and somatostatin. Although it is becoming increasingly apparent that islets release and respond to more secreted factors than previously thought, systematic analyses are lacking. The aims of the present study were to identify potential autocrine/paracrine islet growth factor loops and to characterize the function of a family of previously unreported islet secreted factors and their receptors.

Materials and methods: Gene expression databases, islet specific SAGE and Tag-Seq libraries, and microarray datasets of FACS purified human beta-cells were used to compile a list of secreted factors and secreted factor receptors present in mouse or human islets. The presence of Netrins and their cognate receptors were assessed using RT-PCR, western blot analysis, and immunofluorescence staining. The roles of Netrin-1 and Netrin-4 in beta-cell function, apoptosis, and proliferation were also examined.

Results: A list of 230 secreted factors and 238 secreted factor receptors (189 factor-receptor pairs) were found in islets. This genome-wide analysis led us to characterize the role of netrins in adult pancreatic beta-cell apoptosis. The presence of netrins and their cognate receptors (Neogenin, DCC, and Unc5a-D) were confirmed using RT-PCR, western blot analysis, and immunofluorescence staining. Down-regulation of caspase-3 activation was observed when MIN6 cells were exposed to exogenous Netrin-1 and Netrin-4 under hyperglycemic conditions, and the observed effects were not dependent on induction of insulin secretion. Reduction in caspase-3 cleavage was linked to the decrease in dependence receptors, Neogenin and Unc5A.

Conclusion: Together, our results highlight the large number of potential islet growth factors and point to a context-dependent pro-survival role for netrins in the adult pancreatic beta-cells. Since diabetes results from a deficiency in functional beta-cell mass, these studies are an important step towards developing novel therapies to improve beta-cell survival.

Supported by: JDRF, SCN, MSFHR, CIHR, NSERC

The fibrosis in pancreatic islets at an early stage of life involves in diabetes development in obese diabetic db/db mice
Diabetes and Endocrine Division, Kawasaki Medical School, Kurashiki-shi, Japan.

Background and aims: The db/db mice develop diabetes with severe insulin resistance and limited capacity of insulin secretion. On the other hand, the
ob/db mice with a similar genetic background do not present diabetic manifestation because of a compensatory hypersecretion of insulin. We previously reported that the ob gene, but not db gene, homozygote acquires a compensatory mechanism of beta cell protection probably through anti-oxidative stress mechanism at 12 weeks of age. In this study, to further investigate the molecular mechanism of diabetes development in db/db mice, the beta cell function and gene expression profiles specific for pancreatic islets in db/db mice were compared with those in ob/ob mice at an early stage of life, when metabolic parameters were not different between two strains of mice.

Materials and methods: Body weight (BW), fasted blood glucose (FBG), fasting insulin (FIRI), TG and FFA in db/db, ob/ob and lean littermates m/m mice were measured at 6 weeks of age. The beta cell mass and cell ratio were assessed by histological analysis of the islet tissue. In the first step of molecular analysis, we examined comprehensive gene expression profiles of isolated islets by the cDNA microarray analysis. Furthermore, gene expressions specific for the core area of pancreatic islet were analyzed by Laser Capture Microdissection (LCM) method and real time RT-PCR. Primer pairs encoding genes associated with pancreatic hormones, cell proliferation, apoptosis, cell cycle, and oxidative stress were prepared, and real-time RT-PCR with Sybr Green was applied at 6 week old mice.

Results: BW in db/db mice was significantly greater than that in m/m mice, but was lower than ob/ob mice. FBG and FIRI in db/db and ob/ob mice were significantly higher than those in m/m mice, but no difference was observed between db/db and ob/ob mice (FBG: 93.1±6.0 in db/db, 89.9±5.8 in ob/ob, 53.6±3.6 mg/dl in m/m, FIRI: 1.84±0.10, 1.58±0.12, 0.12±0.01 ng/ml at 6 weeks of age, p<0.05, respectively). TG and FFA levels in db/db and ob/ob mice were significantly higher than those in m/m mice. The beta cell mass and cell ratio in db/db was significantly lower than those in ob/ob and m/m mice at 6 weeks of age (cell mass: 1.03±0.04 in db/db, 1.16±0.02 in ob/ob, 1.12±0.06 mg in m/m, and cell ratio: 81.1±2.0, 83.0±2.5, 82.9±0.4%, respectively). The cDNA microarray analysis at 6 weeks of age demonstrated no significant difference in the islet gene expressions related to cell differentiation/proliferation and ER/oxidative stress among three groups. On the other hand, the tissue fibrosis and inflammation related genes were highly expressed in db/db mice than in ob/ob mice. The LCM and real-time PCR analysis revealed a significant increase in insulin/Illegene expression in both db/db and ob/ob mice. Nkox.1 gene related with cell differentiation was significantly increased in ob/ob compared with db/db and m/m mice. The cell proliferation, cell apoptosis and ER/oxidative related gene expressions were not different among three groups of mice. On the other hand, fibronectin and collagen type 1 gene expressions were significantly up-regulated in db/db mice compared with ob/ob and m/m mice.

Conclusion: The present results suggest that the preceding tissue fibrosis in pancreatic islets at an early stage of life may be involved in diabetes development in db/db mice.

PS 32 Beta cells under stress

516

A lipidomic screen of lipotoxic pancreatic beta cells reveals links between ceramide accumulation in the endoplasmic reticulum (ER), impaired protein trafficking, ER stress and apoptosis

E. Boslem, A.M. Preston, M. Fuller, D.R. Laybutt, P.J. Meikle, T.J. Biden; 1Diabetes and Obesity, Garvan Institute of Medical Research, Sydney; 2Children, Youth and Women’s Health Service, Adelaide; 3Baker ID Heart Research Institute, Melbourne, Australia.

Background and aims: An intrinsic effect of saturated fatty acids (FAs) on the pancreatic β-cell contributes to the β-cell death that occurs in Type 2 diabetes. The exact mechanism by which saturated FAs bring about this remains elusive, but is mediated, in part, by endoplasmic reticulum (ER) stress. This study attempts to pinpoint the toxic lipid metabolite responsible for ER stress and apoptosis and offer mechanistic insight into its action.

Materials and methods: Pancreatic β-cell line, MIN6, and their palmitate-resistant (PR) negative controls, were treated chronically (48 h) with 0.4mM palmitate/0.92% RSA, as a model of lipid oversupply. A comprehensive lipidomic screen of β-cells, was undertaken via mass spectrometry. The level of apoptosis (DNA fragmentation ELISA) was determined following palmitate treatment and in combination with genetic intervention via overexpression of glucosylceramide synthase. Western blotting to measure ER stress-induced protein, CHOP, was performed and ER-to-golgi trafficking using a VSV-G-Glo® reporter assay were measured. Subcellular fractionation was undertaken using density gradient centrifugation.

Results: Palmitate pretreatment caused only very modest increases in mass of some major neutral phospholipids (triglyceride and phosphatidylcholine). There was also a 70% increase in glucosylceramide that was manifest in most side-chain species and cellular locations. Although total ceramide levels where unchanged, there were specific increases in the ER (56%) and lysosomal compartments (23%). A selective decrease in sphingomyelin species with side chain lengths greater than 20 carbons in length was also observed, consistent with a defective vesicular trafficking of longer chain ceramide species that impacts on corresponding sphingomyelin forms. Protein trafficking was also reduced by palmitate pretreatment, and this was overcome by overexpression of glucosylceramide synthase which metabolises ceramide. ER stress and apoptosis was also reduced under these conditions. The protein chaperone, phenyl-butryric acid did not rescue the sphingolipid alterations due to palmitate, nor were they reproduced by thapsigargin or tunicamycin, showing that the alterations are upstream, not downstream, of ER stress.

Conclusion: Our data provides a mechanistic link between ceramide accumulation and ER stress in lipotoxic β-cells and thereby reconciles two previously disparate areas of prior investigation. Specifically, we demonstrate that increases in ER ceramide underlie apoptosis in even mild models of lipotoxicity. Our results also lend support to the idea that protein overload, secondary to reductions in ER-to-golgi protein trafficking caused by ceramide, contributes to the induction of ER stress.

Supported by: NHMRC

517

The decrease in insulin secretion by prednisolone involves activation of the endoplasmic reticulum stress pathway in INS-1E cells

M.L. Linssen, D.H. van Raalte, G.C.M. van der Zon, J. Kriek, J.A. Maassen, M. Diamant, B. Guigas, D.M. Ouwens; 1Molecular Cell Biology, Leiden University Medical Center, 2Department of Internal Medicine/Diabetes Center, VU University Medical Center, Amsterdam, Netherlands, 3Institute of Clinical Biochemistry and Pathobiocchemistry, German Diabetes Center, Duesseldorf, Germany.

Background and aims: The glucocorticoid prednisolone (PRED) impairs multiple aspects of beta cell function in man, resulting in a decreased insulin secretory potential. One of the possible underlying mechanisms could be induction of endoplasmic reticulum (ER) stress, which leads to inhibition of gene transcription and protein synthesis. Here, we investigated whether PRED-induced ER stress contributes to beta cell dysfunction in INS-1E cells.

Materials and methods: INS-1E cells were treated with 700mM PRED, and insulin secretion in response to glucose and KCl was determined at different time points. mRNA and protein expression of various ER stress markers...
mRNA expression analysis was performed by Af.

Chronic high glucose exposure decreases VEGF mRNA and protein expression (p=0.03; p=0.006, respectively). This increase was not modified by Losartan.

creased by 6.5 times at 16.7 mmol/l glucose compared to 5.5 mmol/l glucose insulin secretion by IRMA.

protein arrays. ROS levels were determined by measuring DCF oxidation and by Western-blot. Angiogenesis-related protein expression was measured by real-time RT-PCR, GRP78 protein expression and eIF2 α phosphorylation stress-related mRNA, INS and VEGF mRNA expressions were detected by following 96 hrs in culture in presence of 5.5 mmol/l or 16.7 mmol/l glucose beta cells.

II receptor blocker Losartan on stress induced by glucose in isolated human islets. Our present study evaluates the effects of the Angiotensin renin angiotensin system (RAS). Since RAS has been found in pancreatic islets, expressed in pancreatic islets of Langerhans and in other protein-secreting exocrine cell types (pancreatic acini, salivary glands, and seminal vesicles), a known target of ERAD, in siRNA treated INS1 cells.

Background and aims: In animal models and humans, chronic hyperglycemia is associated with alterations in beta-cell mass and function. Chronic high glucose concentrations increased glucose metabolism through oxidative phosphorylation. This causes mitochondrial dysfunction and excess production of reactive oxygen species (ROS) in beta-cells due to their low levels of ROS-detoxifying enzymes. Beta-cells present a developed ER in order to answer to high demand for synthesis of insulin. Recent data suggest that ER stress is present in human beta-cells and that this could be a common mechanism for the two major pathophysiological events in type 2 diabetes, insulin resistance and beta-cell failure. Data from prospective studies suggest a significant reduction in the risk of type 2 diabetes after blockade of the renin angiotensin system (RAS). Since RAS has been found in pancreatic islets, we hypothesized that these beneficial effects could be attributed to direct actions on islets. Our present study evaluates the effects of the Angiotensin II receptor blocker Losartan on stress induced by glucose in isolated human beta cells.

Material and methods: Human islets from 6 distinct donors were studied following 96 hrs in culture in presence of 5.5 mmol/l or 16.7 mmol/l glucose concentrations with or without 5 µmol/l Losartan during the last 48 hrs. ER stress-related mRNA, INS and VEGF mRNA expressions were detected by real-time RT-PCR, GRP78 protein expression and eIF2α phosphorylation by Western-blot. Angiogenesis-related protein expression was measured by protein arrays. ROS levels were determined by measuring DCF oxidation and insulin secretion by IRMA.

Results: Insulin gene expression and protein secretion were significantly increased by 6.5 times at 16.7 mmol/l glucose compared to 5.5 mmol/l glucose (p<0.001, x=0.006, respectively). This increase was not modified by Losartan. Chronic high glucose exposure decreases VEGF mRNA and protein expression levels (20% and 64%, p<0.05 and p=3.10-6, respectively). Protein arrays showed that high glucose reduced expression of additional factors such as IGFBP2 by 53% (p=5.10-7) and IGFBP3 by 24% (p=0.008). Losartan was able to reverse effects observed on protein expression of VEGF by 25%, p=0.05, IGFBP2 by 20%, p=0.002 and IL8 by 100%, p=0.02. Chronic high glucose up regulates ROS levels by 60% (p=0.02). This effect was half abrogated by Losartan. GRP78, spliced XBP-1 mRNA expressions increased with glucose concentration, (x2.2±p<0.012, x1.5 ±p<0.009, respectively). The expression of CHOP, an ER stress marker of apoptosis, remained the same, suggesting that this chronic glucose treatment caused mild ER stress but not cell death. Moderate increase of GRP78 protein expression (x1.4) and eIF2α phosphorylation (x1.3) was observed with high glucose concentration. Addition of Losartan to 16.5mmol/l glucose medium reduced significantly ER stress markers’ expression, GRP78 mRNA by 53% (p<0.01), XBP1 mRNA by 51% (p<0.02) as compared to high glucose condition alone.

Conclusion: Chronic high glucose exposure of human islets reduces angiogenesis and paraxially increases oxidative and ER stress. Blockade of ER stress by Losartan modulates angiogenesis and protects islet cells against ER stress-repressive effects. These data support a role of high glucose consequences both for prevention of type 2 diabetes and islet transplantation. Supported by: Centaurea Foundation 519 New players in the beta cell ER stress response: UFM1 and UFBP1 K. Lemarie1, R.F. Moura2, M. Granvik3, H.E. Holmoe1, N. Hendricks1, E. Waelkens3, C.B. Newgard1, D. Cnop1, F. Schuit1; 1Molecular Cell Biology, KU Leuven, 2Laboratory of Experimental Medicine, Université Libre de Bruxelles, Belgium, 3Sarah W. Stedman Nutrition and Metabolism Center and Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, USA.

Background and aims: To fulfil their demanding metabolic task - the regulated synthesis, storage and secretion of insulin - pancreatic beta cells possess a highly developed endoplasmic reticulum (ER). This may explain why beta cells are vulnerable for ER overload as was illustrated by heterozygous eIF2α2+/−/− mutant mice fed a high fat diet. Therefore, optimal functioning of the ER is essential for proper insulin folding and beta cell survival. Chronic imbalance between protein synthetic demands and ER folding capacity leads to ER stress and activation of the ER stress response to restore ER homeostasis. The aim of the present study was to identify new players in the ER stress response, starting from genome-wide mRNA expression analysis and genes with unknown function which are highly expressed in islets. Ubiquitin-fold modifier 1 (UFM1), the most recently identified ubiquitin-like protein with unknown function, is proposed as being a new player in the beta cell ER stress response.

Materials and methods: mRNA expression analysis was performed by Affymetrix microarrays and confirmed by RT-PCR. Using STREP-tag affinity purification and mass spectrometry we identified a new target of UFM1. The influence of UFM1 and its target on the cellular localisation of UFM1 and its target was identified via cellular fractionation and immunocytochemistry. The effect of free fatty acids and of cyclosporin acid on ER stress and on apoptosis was analysed in INS1 cells treated with Ufm1 specific siRNA. The influence of UFM1 and its target on ER associated protein degradation was analysed by overexpression of CD38, a known target of ERAD, in siRNA treated INS1 cells.

Results: Among a panel of 20 investigated organs and tissues, UFM1 is highly expressed in pancreatic islets of Langerhans and in other protein-secreting exocrine cell types (pancreatic acini, salivary glands, and seminal vesicles), both at the mRNA and protein level. We identified a highly conserved, unknown protein as a target of UFM1 and named it UFBP1 for UFM1-binding protein 1 containing a PDI domain. Both UFM1 and UFBP1 co-localised in the ER. Pharmacological induction of ER stress by cyclosporin acid (25 µM) enhanced expression of both Ufm1 and Ufbp1 (respectively 3.7-fold and 5.3-fold) in INS1 cells. This pharmacological effect was partially mimicked by addition of the free fatty acids oleate and palmitate which enhanced Ufbp1 expression (respectively 1.7-fold and 2.4-fold). siRNA-mediated reduction of Ufm1 or Ufbp1 expression enhanced apoptosis upon ER stress stimulation and diminished ERAD as evidenced by less degradation of CD38.

Conclusion: Our data show for the first time that UFM1 via its target protein UFBP1 is a new molecular player in ERAD and ER stress-induced beta cell apoptosis. Supported by: IAP, JDRF
Cell type-specific transcriptional regulation of 4E-BP1 under ER stress in MIN6 beta cells

H. Ishihara, C. Satake, R. Tominaga, S. Yamaguchi, Y. Oka; Division of Diabetes and Metabolism, Nihon University, Tokyo, Division of Molecular Metabolism and Diabetes, Tohoku University, Sendai, Japan.

Background and aims: Recent studies reveal that translational control of protein expression is activated in cells under stress conditions. We have recently identified translational control involving a transcriptional suppressor 4E-BP1 is important for beta-cell survival under ER stress and oxidative stress conditions. The Eif4ebp1 gene, encoding 4E-BP1, is also shown to be a direct target of a transcription factor ATF4, a master regulator of gene expression in stress responses, in MIN6 insulinoma cells. In the current study, we investigated 4E-BP1 expression under ER stress in various cell lines.

Materials and methods: MIN6 cells and other cell lines were treated with thapsigargin and subjected to Western blot analysis. Luciferase reporter constructs containing varying lengths of the Eif4ebp1 gene were generated and introduced into MIN6 cells and mouse embryonic fibroblasts (MEFs). Transcriptional activity of the Eif4ebp1 gene fragments were analyzed in these cells.

Results: Although ER stress increased mRNA and protein levels of 4E-BP1 in MIN6 cells, little increases in 4E-BP1 protein levels were observed in response to thapsigargin in MEFs. COS7 and NIH3T3 cells as well as other eight cell lines tested, despite marked increases in stress marker proteins, ATF4 and CHOP. Expression of 4E-BP1 mRNA levels were not significantly increased in MEFs treated with thapsigargin, suggesting that lack of 4E-BP1 induction occurred at the transcriptional level. In order to gain insight into the difference in 4E-BP1 expression between MIN6 cells and MEFs, we examined different portions of the Eif4ebp1 promoter and enhancer. An approximately 1 kb region of the Eif4ebp1 gene was found to be attributable to the different expression in response to thapsigargin treatment. Furthermore, we found that Smad signaling pathway are different between MIN6 cells and MEFs, and that lack of expression of a transcriptional coactivator of Smad might be involved in different expression of 4E-BP1 under ER stress.

Conclusion: Our results provide evidence for cell type-specific transcriptional regulation of 4E-BP1 in MIN6 cells under stress conditions.

Supported by: Grants-in-Aid for Scientific Research from Japanese Government

Metallothioneins and beta cell function during glucose or palmitate stress

N.S. Land, K. Smidt, M.G. Jensen, T. Mazel, B. Brock, M. Penkova, J. Runghøj; Department of Pharmacology, University of Aarhus, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.

Background and aims: Metallothioneins (MT) are metalloregulatory proteins partly controlling intracellular and extracellular zinc metabolism. MT I and II are low molecular weight (6-7 kDa) nonenzymatic cysteine-rich proteins. Both are important for the regulation of pathophysiological processes that depend on zinc and the processes during which oxidative stress mobilizes zinc. MTs may influence survival of cells in several organs and affect transmitter systems depending on zinc ions for optimal function. MTs are highly inducible by e.g. endotoxins and glucocorticoids as well as by heavy metals such as zinc or copper. Beta cells depend on zinc ions for storage and secretion of insulin. Zinc metabolism in beta cells is regulated by a number of proteins transporting zinc across membranes, notably ZnT8 and ZnT3. Furthermore, cell survival may be influenced by zinc levels and thus by MTs. The aim of this study was to investigate the effects of MTs on insulin secretion, gene expression of the apoptosis-regulating genes BAX and BCL2 as well as the expression of ZnT3 and ZnT8.

Materials and methods: Glucose sensitive INS-1E cells were examined after exposure to varying doses of glucose or palmitate for 24 hours. 1. Beta-cells were exposed to 3.3mM, 6.6mM or 21mM glucose with or without Zn-Metallothionein-2A (rabbit), 2. Beta-cells were exposed to palmitate 0 mM, 0.4 mM or 1.0 mM with or without Zn-Metallothionein-2A (rabbit). All experiments were performed in replicates of 6. Gene expression of BAX, BCL2, Insulin, Zinc-transporters (ZnT3, ZnT5, ZnT8) and Metallothioneins (1A and 3) were investigated by RT-PCR and insulin secretion and content were determined by ELISA.

Results: Zn-Metallothionein-2A did not change insulin gene expression. During basal conditions MT decreased insulin secretion (6.6 mM glucose) but MT increased the insulin secretion during stress (high glucose or high palmitate). The ZnT8 gene expression was decreased by Zn-Metallothionein-2A at high palmitate and glucose concentrations. The ZnT3 gene expression was increased by Zn-Metallothionein-2A after palmitate but decreased by MT at basal conditions. BAX/BCL ratio was decreased by Zn-Metallothionein-2A during glucose stress, but showed no change with palmitate stress.

Conclusion: Manipulating intracellular zinc metabolism by exogenous MTs may influence insulin secretion, the expression of zinc transporting proteins and genes related to apoptosis in a complex manner. Exogenous MTs seem to favour an enhanced insulin secretion during glucose or lipid stress and may affect the expression of apoptotic genes in a favourable direction. Induction of MTs may favourably influence beta cell function and survival, a complex mechanism of action involving also ZnTs needs clarification.

Supported by: Danish Agency for Science Technology and Innovation

Dysfunction and proliferation of pancreatic beta cells by cyclic intermittent hypoxia

Background and aims: Sleep apnea syndrome (SAS) is a highly prevalent sleep disorder characterized by cyclic intermittent hypoxia (IH). Accumulating evidence suggests that SAS is associated with glucose intolerance and insulin resistance independent of age, gender, smoking status, body mass index, and waist circumference. In addition to the development of glucose intolerance and insulin resistance, the progression to type 2 diabetes is dependent on the impairment of glucose-induced insulin secretion (GIS) from pancreatic beta cells and the compensatory replication of pancreatic beta cells to combat the presence of insulin resistance. However the direct effects of IH on GIS and beta cell replication have been observed.

Materials and methods: Hamster insulinoma HIT-T15 cells, rat insulinoma RINm5F cells, and isolated rat islets were exposed either to sustained hypoxia (SH) (1% O2), 64 cycles/24 hours of intermittent hypoxia (IH) (5 min hypoxia/10 min normoxia) or normoxia for 24 hours. After the treatment, HIT-T15 cells and rat islets were incubated in RPMI1640 medium containing 5.5 mM glucose (LG), or 22 mM glucose (HG) for 1h in normoxia. Insulin in the medium was measured by an ELISA kit. Real-time RT-PCR of insulin, CD38, glucose transporter 2, glucokinase, sulfonlurea receptor1, and L-type Ca channel1.2 was performed using normoxia- or IH-treated islet RNA as template. Cellular proliferation and apoptosis were measured by WST-8 assay and TUNEL method, respectively.

Results: The GIS of IH-treated HIT-T15 cells was attenuated, whereas GIS of the cells treated with normoxia was increased by HG (p<0.01). GIS from the isolated rat islets was also abolished by the treatment of IH. Real-time RT-PCR revealed that the level of insulin mRNA was unchanged by IH treatment. Then examined the mRNA levels of several genes involved in GIS in the islets. The mRNA levels of glucose transporter 2, glucokinase, sulfonylurea receptor1, and L-type Ca channel1.2 in IH-treated islets were similar to those in normoxia-treated islets. In contrast, the mRNA level of CD38 in IH-treated islets was significantly lower than that in normoxia-treated islets (39% of the control), indicating possible dysfunction of the CD38-cyclic ADP-ribose signal system for insulin secretion in IH-treated beta cells. By WST-8 assay, the HIT-T15 cell proliferation was significantly increased by IH (p<0.01) and decreased by SH (p<0.01) compared to that of normoxia-treated cells. The cellular proliferation of RINm5F cells was also increased by IH, whereas apoptosis in RINm5F cells and HIT-T15 cells were unchanged by IH treatment. The mRNA level of Reg I in the islets treated with normoxia was increased by HG (p<0.01). The GIS of IH-treated HIT-T15 cells was attenuated, whereas GIS of the cells treated with normoxia was increased by HG (p<0.01). GIS from the isolated rat islets was also abolished by the treatment of IH. Real-time RT-PCR revealed that the level of insulin mRNA was unchanged by IH treatment. Then examined the mRNA levels of several genes involved in GIS in the islets. The mRNA levels of glucose transporter 2, glucokinase, sulfonylurea receptor1, and L-type Ca channel1.2 in IH-treated islets were similar to those in normoxia-treated islets. In contrast, the mRNA level of CD38 in IH-treated islets was significantly lower than that in normoxia-treated islets (39% of the control), indicating possible dysfunction of the CD38-cyclic ADP-ribose signal system for insulin secretion in IH-treated beta cells. By WST-8 assay, the HIT-T15 cell proliferation was significantly increased by IH (p<0.01) and decreased by SH (p<0.01) compared to that of normoxia-treated cells. The cellular proliferation of RINm5F cells was also increased by IH, whereas apoptosis in RINm5F cells and HIT-T15 cells were unchanged by IH treatment. The mRNA level of Reg I in the islets treated with normoxia was increased by HG (p<0.01).
Pancreatic beta cell Uch1 regulates glucose homeostasis in high-fat fed mice
K. Chu1, H. Li1, K. Wada2, J.D. Johnson1; 1Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada, 2Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan.

Pancreatic beta-cells are professional secretory cells with substantial protein production and degradation demands. Defects in the production or secretion of insulin contribute to the pathogenesis of diabetes. Pancreatic beta-cells express ubiquitin C-terminal hydrolase L1 (Uch1) is a component of the ubiquitination pathway, which deubiquitinizes polyubiquitin into monomers after proteasomal degradation, but its functional role has not been studied. Our previous proteomic screen suggested that Uch1 protein was increased by the fatty acid palmitate at 5 mM glucose. Here, western blot analysis confirmed that Uch1 protein was increased by 24-hour palmitate treatment at 5 mM, but surprisingly not 25 mM, glucose. Ubiquitin levels were reduced at high glucose condition independent of palmitate treatment. Mice harbouring the gracile axonal dystrophy (gad) mutation in the Uchl1 gene were used to study the role of Uch1 in lipid-induced pancreatic beta-cell dysfunction. Gad mice exhibited normal body weight, glucose tolerance, and insulin tolerance, beta-cell mass and islet architecture on a normal chow diet. However, after 4 weeks of high fat feeding, male gad mice became glucose intolerant and without changes in insulin sensitivity. In these gad mice, the first phase of insulin secretion was impaired in both in vivo and in vitro studies. Intracellular calcium level was not affected, suggesting a specific defect in the exocytosis of insulin. Islets from Uchl1 mutant mice also exhibited an increase in ER-stress and apoptosis. Together, these data suggest that beta-cell UCHL1/gad may play a previously unappreciated role in glucose homeostasis.

Supported by: CDA

PS 33 Micro RNAs methylation and beta cell transcription

Rapid alternations in DNA methylation patterns in insulin-producing beta cells correlate with changes in ambient glucose levels
E. Wallin Öhman1, J. Staaf2, R. Nilsson1, M. Fraga2, P. Bergsten1; 1Department of Medical Cell Biology, Uppsala University, Sweden, 2Department of Immunology and Oncology, National Center for Biotechnology, Madrid, Spain.

Background and aims: Elevated levels of glucose are characteristic of individuals with type 2 diabetes mellitus. Prolonged hyperglycemia is detrimental for insulin-producing beta-cells and leads to impaired glucose-stimulated insulin secretion and apoptosis. The harmful effects have been connected with changes in transcript levels of several genes. The aim was to determine whether extended episodes of hyperglycemia and the following alternations in gene expression are connected with changes in epigenetic patterns and, if so, such patterns can be reversed following a period of normoglycemia.

Materials and methods: Insulin-secreting INS-1E cells were cultured at 16.7 mM glucose for 1, 3, 5 or 7 days. For cells cultured for 7 days, the glucose concentration was reduced from 16.7 to 11 mM glucose during the last 2 days. Cells cultured at 11 mM glucose were used as controls. Cells were harvested after 1, 3, 5 and 7 days and total DNA extracted for analysis of DNA methylation. After sodium bisulfite treatment, DNA was amplified by PCR and subsequently sequenced. DNA methylation patterns were measured at four different sites in the repetitive DNA segment Long Interspersed Nucleotide Element (LINE1). The methylation status of this segment is known to be representative of global DNA methylation patterns.

Results: INS-1E cells cultured at 16.7 mM glucose for 24 hours showed no changes in methylation of the Cpg sites within LINE1. In contrast, after 3 days a significant change in the methylation patterns was observed in cells exposed to 16.7 mM glucose. No further change was observed after 5 days of exposure to the hyperglycemic milieu. Interestingly, methylation patterns were reversed back to those observed in control cells when cells cultured at 16.7 mM glucose for 5 days were exposed to 11 mM glucose for an additional 2 days.

Conclusion: Exposure to elevated glucose levels induces global epigenetic changes in the beta-cell within only a few days. These changes can be reversed by normalization of the glucose levels. Glucose-induced epigenetic changes may thus contribute to altered transcription levels associated with hyperglycemia. These findings call for experimentation addressing epigenetic changes of specific genes. The results illustrate how environmental factors affect gene regulation and may give insight into mechanisms connected with development and reversal of hyperglycemia and thus serve as a model for disease progression and recovery in type 2 diabetes mellitus.

Supported by: Swedish Medical Research Council and Swedish Diabetes Association

A novel bioinformatics approach combining array profiling and independent component analysis identifying microRNAs with potential roles in beta cell maturation and dysfunction
T. Floyd1, C.H. Bang-Berthelsen1, L. Pedersen1, P.H. Hagedorn1, F. Pociot1, 2Hagedorn Research Institute, Gentofte, Denmark, 1Niels Bohr Institute, University of Copenhagen, Denmark, 3AstraZeneca, Lund, 4Institute for Clinical Science, University of Lund, Lund, Sweden.

Background and aims: The selective β-cell destruction taking place in type 1 diabetes (T1D) is believed to involve a sensitivity to interleukin-1β (IL-1β) that is acquired during β-cell maturation and has been associated with the transcription factor Pancreatic and duodenal homeobox 1 (Pdx1). microRNA (miRNA) repress gene expression posttranscriptionally through mRNA degradation or translation inhibition. Several miRNAs have been associated with β-cell differentiation or dysfunction. The aim of the study was to identify candidate miRNAs by using a cellular model of acquired IL-1β sensitivity and a novel bioinformatics approach.

Materials and methods: Array profiling was performed on mRNA and miRNA expression levels in a β-cell line with inducible Pdx1 expression (INSrip) in response to Pdx1 induction alone or in combination with IL-1β exposure. Independent component analysis (ICA) was applied to decompose the miRNA profiling data into independent components (ICs), thus identifying biologically coherent groups of genes. For identification of inverse co-
related microRNA and mRNA expressions Pearson correlation coefficients were calculated. Predicted miRNA targets were defined as miRNAs with a given microRNA 3′mer seed match in their 3′UTR. INS-1 cells were used to verify the expression of the identified microRNAs.

Results: Array profiling identified eight microRNAs (miR-124, miR-128, miR-192, miR-194, miR-204, miR-375, miR-672 and miR-708) with differential expression in response to Pdx1 induction and/or IL-1β exposure (Bonferroni corrected p<0.01). Four of the eight microRNAs show a significant enrichment of predicted targets among highly inverse correlated miRNAs (q<0.01), indicating miRNA-mediated repression of these microRNAs. Performing ICA on the miRNA data revealed five highly significant ICS (Bonferroni corrected p<0.0001) correlating to the experimental conditions, as shown by a significant enrichment of known Pdx1 and IL-1β regulated genes in the respective ICS (p<0.05). Interestingly, all eight microRNAs can be represented (percent variance explained >97%) by a superposition of the five ICS. Further, testing for enrichment of ICA-identified genes in KEGG-annotated pathways identified 25 pathways e.g. Type 1 Diabetes Mellitus, Maturity Onset Diabetes of the Young (MODY), and Type 2 Diabetes Mellitus. Of note, the computational analysis of miR-187 mRNAs targets showed a differential miRNAs expression profiling in DM2 vs control human islets samples.

Conclusion: The microRNA expression is influenced by a number of factors such as accessibility, transcription factor binding and mRNA repression, thus suggesting that an altered expression of miR-187 could be involved in beta-cell maturity and dysfunction. Interestingly, the microRNAs appear to directly or indirectly affect pathways of relevance to disease mechanisms in T1D.

526 MicroRNA miR-187 is reduced in human pancreatic islets from type 2 diabetic donors and in glucagon-secreting cells following palmitate treatment

G. Sebastiani, F. Purrello, F. Dotta
1University of Siena, Fondazione Umberto Di Mario, Siena, Italy
2University of Catania, University of Pisa, Italy

Background and aims: The pancreatic islet damage during type 2 diabetes (DM2) is mediated by lipotoxicity phenomena with consequent beta cell dysfunction and increased glucagon secretion. In vitro treatment with palmitate is sufficient to mimic a functional damage in pancreatic islets similarly to what observed in DM2. MicroRNAs are small endogenous RNAs, whose function is to pair mRNAs 3′UTR regions of protein-coding genes, negatively affecting their translation or stability. MicroRNAs are involved in cellular differentiation and regulation as well as in endocrine pancreas development, regulation of insulin secretion and of insulin signalling. We have previously shown a differential microRNAs expression profiling in DM2 vs control human pancreatic islets characterized by a major downregulation of miR-187 expression, which resulted virtually undetectable in DM2 islets. Consequently, the aim of the present study was to analyze the effects of palmitate treatment on the alpha cell component of the pancreatic islets in terms of miR-187 expression, in order to establish whether such treatment could mimic in vitro the scenario present in the type 2 diabetic islet.

Materials and methods: Experiments were performed employing the alphaTC1-6 cell line, which was treated with palmitate 0.5 mM for 48h. Quantitative analysis of miR-187 and of islet specific miR-375 and miR-7 expression was performed using stem loop specific primers for reverse transcription followed by real time PCR. All values were normalized to U6 endogenous RNA. **Results:** A 49±22% reduction of miR-187 (p<0.05) was observed in alphaTC1-6 cells following palmitate treatment, while islet-specific miR-375 and miR-7, whose expression was not found altered in DM2 islets, resulted unaffected. Of note, the computational analysis of miR-187 microRNAs targets with TARGETSCAN and MIRANDA algorithms revealed genes of potential interest such as glucagon, the alpha-cell transcription factor Pax6 and the insulin receptor.

Conclusion: This study demonstrates that in vitro treatment with palmitate of alphaTC1-6 cells determines a reduction in miR-187 expression that is similar to that observed in pancreatic islets from type 2 diabetic patients, thus suggesting that an altered expression of miR-187 could be involved in the islet dysfunction in DM2 and therefore may represents a potential therapeutic target.

Supported by: FORISID-Italian Diabetes Research Foundation, Italian Ministry of Research

527 MicroRNA differences in human islets and glucose-sensitive tissues

C. Bolmensen, J.L.S. Esguerra, D. Speidel, L. Eliasson, C.M. Cilio
Dep of Clinical Sciences, Lund University, Malmo, Sweden

Background and aims: We aim to identify microRNAs (miRNAs) that are expressed in the human pancreatic islets compared to other glucose-sensitive tissue such as liver and skeletal muscle. The hypothesis is that specific miRNAs expression affects the translation of messenger RNAs that are involved in glucose-stimulated insulin secretion (GSIS).

Materials and methods: We profiled 322 microRNAs in the islets of a human donor, as well as commercial liver and skeletal muscle RNA using locked nucleic acid (LNA)-based microarray. The eight most highly expressed microRNAs in islets compared to liver and skeletal muscle were selected, and expression in 16 additional human islet donors were validated using quantitative PCR. The effects of GSIS on miRNAs expression were investigated by incubating the islets for 1 hour at different glucose concentrations. Insulin release from the intact islets was determined by radioimmunnoassay. Bioinformatics predictions of miRNAs targets were filtered by available mRNA expression data, and enriched for gene ontology terms.

Results: We found a correlation between miR-375, mir-127 and mir-184 and insulin (Spearman R = 0.802, p < 0.005). Surprisingly, all these microRNAs were negatively correlated to insulin secretion. Hierarchical clustering of the global islet miRNAs profile allowed to separate islet-specific microRNAs from liver and muscle-specific microRNAs. Ten qPCR-validated microRNAs displayed expression differences in all tissues. Bioinformatic analysis revealed that the predicted miRNAs targets were enriched for genes with known role in insulin secretion.

Conclusion: In conclusion, high levels of islet miR-375, mir-127 and mir-184 may directly or indirectly affect insulin-secretion negatively. Our results also depict a role of islet-specific microRNAs in pathways of importance for type 2 diabetes and maturity onset diabetes of the young (MODY).

Supported by: Swedish Research Council

528 Glucagon stimulates glucagon gene transcription in mouse and human islets by an autocrine feedback loop

T. Moede, I.B. Leibiger, P. Vaca-Sanchez, P.-O. Berggren, B. Leibiger
Dept. Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Background and aims: The glucagon gene is expressed in pancreatic alpha-cells, intestinal L-cells and specific neurons, but only the alpha-cell produces and secretes glucagon due to different posttranslational processing. We have demonstrated that secreted glucagon positively regulates the transcription of its own gene in the pancreatic alpha-cell line alphaTC1-9. The molecular mechanism underlying this positive autocrine feedback involves the glucagon receptor, protein kinase A and C and the transcription factor CREB. Because these observations were made utilizing a cell line system, the aim of this study was to verify whether this positive feedback mechanism also exists in mouse and human pancreatic islets.

Materials and methods: Mouse islets were isolated from 4 month old BALB/C mice and cultured for 72 h in RPMI 1640 medium containing 10% fetal calf serum (FCS). Human islets were cultured in RPMI 1640 medium containing 10% FCS for 72 h after arrival prior to experiments. Islets were stimulated by either 2 mM glucose for 15 min or 200 nM glucagon for 5 min at 11 mM glucose in RPMI 1640 medium containing 10% FCS. After stimulation the islets were returned to fully supplemented RPMI 1640 medium. For inhibitor experiments the islets were incubated with the pharmacological inhibitors for 30 min prior to and during the stimulation, 60 min after the start of stimulation RNA was isolated from the islets. Changes in glucagon mRNA levels were then determined by QPCR normalized to cyclophilinA mRNA levels.

Results: Stimulation of islets with low glucose (2mM) led to a 1.4±0.1 fold increase in glucagon mRNA levels. Addition of exogenous glucagon for 5 min resulted in a 3.0±0.2 (mouse) or 2.5±0.2 (human) fold increase of glucagon mRNA. This increase was abolished in both mouse and human islets by treatment with 20 nM glucagon receptor antagonist II (Merck), a specific pharmacological inhibitor of the glucagon receptor, demonstrating the critical importance of glucagon receptor signalling. To verify the involvement of protein kinase C and protein kinase A in the stimulation of glucagon gene transcription by glucagon, we incubated islets with either a protein kinase A inhibitor (100 µM RpCAMPs) or a protein kinase C inhibitor (150 nM bisindolylamide II). Either treatment abolished the stimulatory effect of glucagon in mouse and human islets.

Conclusion: Our findings demonstrate that secreted glucagon up-regulates glucagon gene transcription in both mouse and human islets through an au
Impact of a stabilized human reg3a protein on islet neogenesis and glycemic control

1Chestnut Hill Hospital, Philadelphia, PA; 2Unit on Cognitive Neurophysiology and Imaging, National Institutes of Health, Bethesda, MD; 3Cabrini College, Rosemont, PA; 4Thomas Jefferson University School of Medicine, Philadelphia, PA; 5The University of Notre Dame, South Bend, IN, CureDM, Inc., Wynnewood, PA, USA.

Background and aims: We set forth to compare the impact of a 14 amino acid bioactive region within the human Reg3a gene protein known as Human pr-oldest Protein (HIP2) on islet neogenesis and glucose-lowering ability to a stabilized form of this protein. The Reg gene is upregulated during new onset in type 1 diabetes and among many mammalian species following acute pancreatic injury and may be a potential agent to reverse type 1 and 2 diabetes. Reg3a is hypothesized as an initiating trigger for islet neogenesis and has been shown in animal models to result in formation of new functional islets containing alpha, beta gamma and delta cells. HIP was previously shown to significantly 1) increase insulin levels in human pancreatic ductal tissue and 2) lower glucose levels and increase islet numbers in STZ-rendered diabetic mice.

Materials and methods: The half-life of native HIP2 is 1.2 minutes. We stabilized HIP2 to enhance its potential efficacy as a human drug candidate. HIP was modified by blocking the ends. EPEylation and dimerization with in vitro conducted in a PANC1 cell line. A candidate was selected based upon improved half-life (20.4 minutes) without evidence of cell damage. In-vivo trials were conducted among STZ-rendered diabetic mice. At the end of the 39 day study, mice were fasted for 12 hours.

Results: Placebo-treated mice had significantly higher fasting glucose levels of 258.00 ± 84.5 mg/dL compared to stabilized HIP2-treated animals with 106.7 ± 0.58 mg/dL (p=0.046). HIP2B treated mice had significantly lower daily random glucose levels compared to controls (Figure 1). The stabilized HIP2B group had a three-fold higher number of islets staining for insulin, glucagon and somatostatin compared to the placebo group (94.00 ± 32.74 and 31.67 ± 15.28 p<0.004). Total islet area was significantly greater in the stabilized HIP2B group compared to placebo (416,714.67 μm² ± 121,389.01 and 127,410.67 μm² ± 96930.78 p=0.032). There were no differences between in size trials between the stabilized HIP2B group and placebo (p=0.518).

Conclusion: HIP2B may address key pathological issues to reverse diabetes. For humans to maintain the success seen in mice may require lifestyle modifications among type 1 patients and concomitant usage of immune therapy among type 1 patients. Human trials with stabilized HIP2B among type 1 and 2 patients will commence in the coming year.

PS 34 Beta cell signal transduction I

530

Growth arrest specific protein 6 (gas6) and its receptors expression and signalling in beta cells

V.V. Sharoyko1, T. Koeck1, C. Ekman2, N. Wierup3, F. Sundler1, B. Dahlback1, H. Mulder1, 1Clinical Sciences, Laboratory Medicine, Lund University, Malmo, Sweden; 2Experimental Medical Science, Lund University, Lund, Sweden.

Background and aims: The growth arrest-specific protein 6 (GAS6) belongs to the family of plasma vitamin K-dependent proteins. It shows homology (~40%) to the plasma anticoagulant protein S, another gamma-carboxylated protein. GAS6 exhibits growth factor-like effects, as it interacts with receptor tyrosine kinase, such as Axl, Tyro3 and Mer. GAS6 and Axl, Tyro3 and Mer have further been implicated in inflammation, cytokine production, immune responses, hemostasis, and cancer. It was therefore of major interest to study GAS6 signalling in islets and clonal beta-cells.

Materials and methods: Glucose-responsive INS-1 832/13 insulinoma beta-cells and human pancreatic islets were used. TaqMan qRT-PCR analysis was applied to measure cytokine mRNA expressions. Immunoblotting and immunocytochemistry were used to detect GAS6 and its receptors in human pancreatic islets and INS-1 832/13 beta-cells as well as GAS6-induced phosphorylation of Axl [pY779] and Axl/PI3K [pS473]. To assess further GAS6-stimulated global post-translational protein modifications, especially tyrosin phosphorylation, in INS-1 832/13 beta-cells 2D-PAGE and immunoblotting were combined with stable isotope labeling with amino acids (13C615N1Leu) in cell culture (SILAC) to quantify the effect of GAS6 by mass spectrometry. To do so, protein samples extracted from 2D-gels were analyzed by MALDI-TOF and LC-MS/MS.

Results: Immunoblotting and immunocytochemistry showed expression of GAS6 and its receptors Axl and Tyro3 but not Mer in human pancreatic islets. Immunoblotting for Axl [pY779] and Akt/PI3K [pS473] detected phosphorylation of Axl-receptor and Akt/PI3K induced by 400 ng/ml GAS6 in INS-1 832/13 cells. Thus, treatment of INS-1 832/13 beta-cells with GAS6 leads to Axl-receptor mediated PI3-kinase/Akt signalling. Furthermore, the comparison of untreated and GAS6-stimulated INS-1 832/13 beta-cells by 2D-immunoblotting for phospho-tyrosine showed 23 modified proteins. Up to now, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose regulated protein 78 (GRP78/BIP) were identified by mass spectrometric peptide sequencing and changes in GAS6-induced protein expression and tyrosine phosphorylation quantified based on SILAC. These GAS6-induced protein modifications are associated with preventive effect of GAS6 on high glucose-induced increase in TNF-alpha mRNA expression in INS-1 832/13 beta-cells.

Conclusion: We show for the first time that GAS6 and its receptors are present in pancreatic islets and beta-cells and alter TNF-alpha production. The employed proteomic methods revealed that (i) activation Axl/PI3-kinase/Akt signalling and (ii) tyrosine phosphorylation of GAPDH and GRP78, as part of the cellular response to GAS6 stimulation downstream of PI3-kinase and Akt, might be involved in the GAS6 effects on cytokine production. These effects of GAS6 on pancreatic beta-cells demand further investigations.

Supported by: Swedish Research Council, Novo Nordisk

531

Complement receptor C5aR is expressed in pancreatic islets and affects glucose-induced insulin and glucagon secretion

V. Nagaraj1, U. Krus1, A. Blom1, E. Renstrom1, 1Department of Clinical Sciences, 2Department of Laboratory Medicine, Lund University, Malmo, Sweden.

Background and aims: Complement factors form an important part of the humoral innate immune system and have been implicated in the pathogenesis of autoimmune diseases, including type 1 diabetes. There is however accumulating evidence that the complement system can modulate pancreatic islet function and may also be an important player in the development of type 2 diabetes. For example, patients with type 2 diabetes exhibit increased neuropeptide levels of C5a. C5a is produced as a result of complement activation from complement factor C5 and exerts its effect by binding to its receptor C5aR. In this study we have detailed the expression of human complement system in normal islets, and investigated the role of the C5a and C5a receptor antagonist (C5aRant) in human islet function.

Supported by: CureDM, Inc., USA.
Materials and methods: Expression in human islets: Total RNA was isolated from pancreatic islets from 34 non-diabetic donors using the AllPrep RNA Mini Kit and analyzed using Gene 1.0 ST whole transcript based assays. Sequencing assay: Insulin and Glucagon secretion was measured by RIA using donor human islets obtained from the Nordic Network of Clinical Islet Transplantation (Prof. Olle Korsgren, Uppsala University) in collaboration with the Lund University Diabetes Center Human Tissue Lab (Dr. Jalal Taneera).

Results: Microarray analysis demonstrated the presence of transcripts of nearly all the complement genes in human pancreatic islets. Next, the effect of C5a on insulin and glucagon secretion was investigated using normal and diabetic human islets. In normal human islets, C5a failed to affect glucose-stimulated insulin secretion (16.7mM). However, addition of C5a together with the C5a receptor antagonist (C5aRant), significantly increased insulin release by (32%; P=0.003; n=38). It was ascertained that the C5aR antagonist alone did not stimulate insulin release. Interestingly, in diabetic human islets C5a and C5aR antagonist did not produce any significant effects on insulin secretion. Similar observations were made for glucagon measurements. In the normal human islets, C5a had no significant effect, whereas in the simulated presence of C5a and C5aRant an increase in the amount of glucagon released was observed (37%; P=0.003; n=37). In diabetic islets, the effects on glucagon secretion by C5a and the C5a receptor antagonist were essentially similar to normal islets; C5a alone had no clear effect, whereas addition of the C5a receptor antagonist C5aRant produced a clear increase (57%; P<0.0001; n=12) in glucagon release.

Conclusion: Human islets express all complement factors. The C5a signalling system affects both insulin and glucagon secretion. In addition, C5a signal-ling in the beta-cell may be altered in type 2 diabetes.

Supported by: Linneaus grant to Lund Univ Diabetes Center from Swedish Research Council

532

p140Cas-associated protein (Cap), expressed in beta cell, suppresses insulin secretion

M. Yamauchi1, H. Okada1, K. Fujioka1, J. Morii1, T. Hanamoto1, T. Ikeda1, Y. Uno1, H. Morita1, K. Nagata1, K. Kajita1, T. Ishizuka1,2

1General Internal Medicine, Gifu University Graduate School of Medicine, Gifu City, Japan, 2Molecular Neurobiology, Developmental Research, Aichi Hyman Service Center, Kasugai, Japan.

Background and aims: p140Cap is a multidomain adaptor protein that was first found as an interactive partner of p130Cas (Crk-associated substrates), a protein highly tyrosine phosphorylated in fibroblasts transformed with v-Src or v-Crk oncogene. In non-transformed cells, p130Cas is tyrosine phosphorylated upon ligation of integrins. p140Cap is also tyrosine phosphorylated upon integrin-dependent adhesion or epidermal growth factor factor signalling, indicating a possible role in cell matrix and in growth factor signaling. In addition, p140Cap was also identified as a synaptosome-associated protein of 25 kDa (SNAP-25)-interacting protein. SNAP-25 plays a major role in membrane docking of synaptic vesicles during neurotransmitter release. Subcellular fraction analysis suggested that p140Cap interacts with cortial cytoskeleton as well as SNAP-25, it may contribute to neuronal secretion in brain. We had identified a multidomain adaptor protein, vinexine, of which third Src-homology domain interacts with the C-terminal Pro-rich motif of p140Cap with screening study of p140Cap-binding proteins in rat brain. In this study, we examined the possibility whether p140Cap and vinexine might be expressed in the pancreas islet, since proteins involved signal transduc-ions in neurons are often shared with endocrine cells.

Materials and methods: Immunohistological studies using anti-p140Cap antibody and anti-vinexine antibody were performed in rat pancreas. To evaluate the role of p140Cap, the effect of gene silencing using the complex of Lipofectamine 2000 and shRNA on glucose-stimulated insulin secretion was examined in Ins-1 cells and cultured rat islet cells. We studied effect of progression of diabetes mellitus on the expression of p140Cap in Otsuka Long Evans Tokushima Fatty (OLETF) rats. In conclusion, p140Cap and vinexine were recognized in beta cells and alpha cells, respectively.

Conclusion: p140 Cap was expressed in beta cell, which may negatively regulate insulin secretion.

533

Expression and function of equilibrative nucleoside transporter 3 in beta cells

B. Liu1, K. Hussain2, C.C. Richardson3, P.M. Jones4, S.J. Persaud2

1Diabetes Research Group, King’s College London, 2Institute of Child Health, University College London, United Kingdom.

Background and aims: Loss of function recessive mutations in the SLC29A3 gene encoding ENT3 have been identified in a novel diabetes syndrome called “pigmented hypertrichotic dermatosis with insulin-dependent diabetes” (PHID), ENT3 is a member of the equilibrative nucleoside transporter family that function primarily as cellular mediators of nucleoside uptake. It is distinct from other ENTs due to its predominant intracellular localisation. Recently, it was reported that in human hepatocytes and placental tissues, ENT3 is expressed mainly in the mitochondria, to which it transports native nucleosides. This study aimed to investigate the expression and function of ENT3 in pancreatic beta cells.

Materials and methods: ENT3 expression was examined by RT-PCR, Western blotting and immunohistochemistry. The subcellular localisation of ENT3 was determined by exposure of MIN6 beta cells to MitoTracker red CMXRos before subsequent immunostaining with an ENT3 antibody. Cyto-toxin-induced apoptosis was quantified by flow cytometry and in MIN6 cells that had been either exposed to the ENT inhibitor dipyridamole or trans-

fected with ENT3 siRNAs.

Results: PCR amplifications using human and mouse ENT3 primers pro-duced single products of the appropriate sizes from human islet, MIN6 beta cell, mouse islet, and exocrine pancreas cDNAs. Western blotting using an ENT3 antibody detected a 52kDa protein in human islets, mouse islets and exocrine pancreas. A 65kDa protein was detected in MIN6 cells, mouse islets and exocrine pancreases, which most likely represents a post-translationally modified form of ENT3. Immunohistochemistry using archived human pancreas sections demonstrated extensive ENT3 immunostaining of beta cells, which was confirmed by co-staining with an anti-insulin antibody. Further-
more, immunostaining of MIN6 cells that had been exposed to MitoTracker with an ENT3 antibody showed co-localisation of ENT3 to beta cell mito-
chondria. Inhibition of MIN6 cell ENTs with 10 µM diprydamole resulted in significant increases in basal apoptosis (caspase 3/7 assay luminescence units; dipyriramole-treated vs. control: 47,741 ±22,499 vs. 42,550 ±5854; n=8; P<0.05) and in cytokine-induced apoptosis (725,136 ±28,919 vs. 624,147 ±24,279; n=8; P<0.05). More specifically, MIN6 cells transfected with siRNAs directed against mouse ENT3 showed significantly enhanced levels of cytokine-induced beta cell apoptosis compared to control cells transfected with scrambled siRNAs (139,634 ±6,613 vs. 106,426 ±3,001; n=8; P<0.001). Conclusion: These observations demonstrate that ENT3 is predominantly expressed by islet beta cells, with lower expression levels detected in the exocrine pancreases. Our results also indicate that ENT3 co-localises with mitochondria in MIN6 cells, suggesting a functional role in beta cell physiology. Finally, reduced ENT3 activity or expression is associated with enhanced beta cell apoptosis, which might account for the occurrence of autoantibody-neg-

ative insulin-dependent diabetes in individuals with non-functional ENT3 mutations.

534

The role of neurexins in the exocytosis of insulin granules from beta cells

M. Mossele, A.T. suckow, S. egodage, R.C. calma, S.D. chessler

Medicine, University of California, San Diego, La Jolla, USA.

Background and aims: Pancreatic β cells express many protein constituents of the neurotransmitter exocytotic machinery including a family of transmembrane, synaptic adhesion molecules called neurexins (NRXNs). In the brain, α-NRXNs help organize the neuronal exocytotic machinery via extra-cellular interactions with other synaptic proteins and via intracellular interac-

tions with the exocytotic proteins CASK, Mint, Munc18, and Syntaxin. We hypothesized that α-NRXNs play a comparable role in β cells, participating
In insulin secreting granule docking and exocytosis. The aims of this study were:

1) to characterize NRXN expression in β cells. 2) to determine if NRXN contributes to insulin granule exocytosis.

Materials and methods: Plasma membrane purification, western blot analysis, immunostaining, and absolute RT-qPCR were used to examine NRXN expression and localization in β cells. Immunoprecipitation was used to identify NRXN binding partners in the INS-1/β-cell line. To test whether NRXNs are involved in insulin secretion, we examined the effect on glucose-stimulated insulin secretion of NRXN1 knockdown using siRNA and of NRXN1 overexpression in INS-1/β cells. Knockdown and overexpression experiments were also conducted by measuring glucose-stimulated human growth hormone (hGH) secretion from cells cotransfected with hGH. Constitutively secreted hormone was measured in knockdown experiments. hGH secretion increased in knockdown cells. After 1h of glucose stimulation, NRXN1 protein levels decreased by 33% in non-transfected and 40% in NRXN1-overexpressing INS-1/β cells (p<0.05).

Conclusion: We conclude that NRXN1 is an integral component of the β-cell submembrane secretory machinery. NRXNs are involved in the exocytosis of insulin granules from β cells, possibly by organizing the exocytotic machinery and/or by contributing to the granulophil-mediated docking of granules at the β-cell surface. Increased insulin secretion after NRXN1 gene silencing and the decrease in NRXN1 levels observed during glucose stimulation suggest that NRXN1, like granulophil, contributes to the negative regulation of insulin release. Future work will determine the role of NRXNs in the docking, priming and fusion steps of insulin granule exocytosis.

Supported by: US NIH (NIGMS and NIDDK)

535

Neuroligin-2 increases insulin expression and secretion in pancreatic β-cells via extracellular binding interactions

S.D. Chessler1, I.R. Sweet2, S. Egodage1, D. Comoletti1, P. Taylor1, A.T. Suckow2

1Department of Medicine, University of California, San Diego, La Jolla, 2Department of Medicine, University of Washington School of Medicine, Seattle, 3UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, USA.

Background and aims: The pancreatic β-cell secretory apparatus is similar to that used by neurons for synaptic exocytosis. Many of the scaffolding and vesicular proteins important for neurotransmitter secretion are key components of the β-cell secretory machinery in neurons. In neurons, extracellular interactions of neural proteins with either neurexins or other synaptic proteins help drive the recruitment of the exocytotic machinery to the axonal membrane. These transmembrane, synaptic adhesion molecules are of particular interest because each subtype is expressed by β cells and because neuroligin-2 (NL-2) has been implicated by our group in the regulation of insulin secretion. These results along with previous studies demonstrating a role for neuroligins in the maintenance of the neuro-transmitter release machinery in the brain and the importance of cell-cell interactions that facilitate β cell maturation and regulated insulin secretion. These results along with previous studies demonstrating a role for neuroligins in the maintenance of the neurotransmitter release machinery in the brain and the importance of cell-cell interactions that facilitate β cell maturation and regulated insulin secretion. These results along with previous studies demonstrating a role for neuroligins in the maintenance of the neurotransmitter release machinery in the brain and the importance of cell-cell interactions that facilitate β cell maturation and regulated insulin secretion.

Materials and methods: Antibodies targeted to the NL-2 extracellular domain and recombinant soluble NL-2 were utilized to test for the presence of NL-2 protein and NL-2 binding partners on the β cell surface. The role of extracellular interactions involving NL-2 in contact-enhanced stimulus-secretion coupling and β-cell insulin expression was tested by assessing insulin secretion and content after co-culturing MIN-6 and INS-1/β-cell line. To test whether NRXNs are involved in insulin secretion, we examined the effect on glucose-stimulated insulin secretion of NL-2 overexpression in INS-1/β cells. Knockdown and overexpression experiments were also conducted by measuring glucose-stimulated human growth hormone (hGH) secretion from cells cotransfected with hGH. Constitutively secreted hormone was measured in knockdown experiments. hGH secretion increased in knockdown cells. After 1h of glucose stimulation, NRXN1 protein levels decreased by 33% in non-transfected and 40% in NRXN1-overexpressing INS-1/β cells (p<0.05).

Conclusion: We conclude that NL-2 is expressed on the β-cell surface and is not present in other islet cell types. NRXN1α and 2α are the most abundant NRXNs in theβ cell, with transcript levels comparable to those in brain. CASK, Syntaxin1 and Munc18 coimmunoprecipitated with NRXN1 from INS-1/β cells. Decreased NRXN1 expression after siRNA treatment of INS-1/β cells resulted in a 54% increase (p<0.05) in insulin secretion at high glucose but had no effect on basal insulin secretion. This result was confirmed by measuring secretion of transfected hGH, which is packaged and secreted in insulin-containing secretory granules. NRXN1 knockdown did not affect constitutive secretion. Increased levels of NRXN1 had no effect on secretion at high glucose but resulted in a slight (24%) but consistent increase in basal secretion. After 1h of glucose stimulation, NRXN1 protein levels decreased by 33% in non-transfected and 40% in NRXN1-overexpressing INS-1/β cells (p<0.05).

Conclusion: We conclude that NL-2 is expressed on the β-cell surface and binds with high affinity to another β-cell surface protein. Extracellular interactions involving NL-2 increase insulin expression and secretion by β cells. These results are consistent with the hypothesis that NL-2 promotes the development and maintenance of the insulin secretory machinery in β cells through transcellular interactions.

Supported by: U.S. NIH (NIDDK) and NSF

536

Inhibition of beta-secretase activity affects pancreatic beta cell function

P. Casini, S. Piquer, S. Casas, J. Altirriba, R. Gomis, A. Novials; Laboratori de Diabeti i Obesitat. IDIBAPS. Hospital Clinic. CIBER de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain.

Background and aims: BACE1 and BACE2 (β-site APP-cleaving enzyme 1 and 2) are proteases sharing typical structural features with type I membrane associated aspartyl proteases. Both enzymes have been found to be differently expressed in various human tissues and, in particular, BACE1 appears to be more abundant in the brain, where it is involved in the pathogenesis of Alzheimer’s disease as the β-secretase generating the β-amyloid peptide. In all amyloidogenic diseases, including Alzheimer’s Disease and Diabetes, abnormally folded and insoluble proteins accumulate within or around cells and interfere with their function. Although the β-secretases BACE1 and BACE2 have also been found in the pancreas, their functional role in this tissue still remains unknown. This report is aims to characterize the localization of BACE proteins in the human pancreas and to determine their role on pancreatic function.

Materials and methods: The enzymatic activity of BACE was detected in protein extracts of the human pancreas with a fluorometric β-secretase proteolytic activity assay. Immunoblot and immunohistochemistry with specific antibodies in paraffin sections were used to determine the human pancreatic cell types expressing BACE1. The intracellular localization of BACE1 and BACE2 was assessed by the immunocolocalization with specific intracellular markers (α/β-ATPase, clathrin, insulin, Glu130, Tbr1) in MIN-6 cell line. To study the role of BACE on MIN-6 cells, we used a selective and fast cell-permeable substrate-based inhibitor designed from the β-secretase cleavage sites (Bi-II). Real time-PCR was used for insulin transcript quantification.

Results: High levels of BACE enzymatic activity were detected in protein extracts of human pancreatic islets and exocrine tissue. In human, BACE1 is expressed by both α and β pancreatic cells population as well as in the exocrine tissue, while BACE2 is restricted to islet β-cells. The intracellular localization of BACE1 in MIN-6 cells showed BACE1 colocalization with insulin and BACE2 expression in clathrin-coated endocytic vesicles of the plasma membrane. When BACE pharmacological inhibition (Bi-II) was performed for 24h in MIN-6 cells, BACE2 content in plasma membrane and clathrin-coated vesicles was significantly increased compared to control (4.8±0.8 to 9.7±2.6%, p<0.05 and from 14.0±2.6 to 26.2±1.9%, p<0.001 respectively), suggesting a BACE2 involvement in the processes of receptor-mediated endocytosis and recycling by clathrin-coated vesicles. The analysis of insulin internalization rate after glucose stimuli is reduced in Bi-II treated MIN-6 cells compared to control (0.23±0.02 to 0.30±0.02%, p<0.05) despite of significantly increased levels of IRβ protein extracts. The immunofluorescence...
The expression levels of the isoforms of PLC in β-cells and that the BACE2 is the enzyme involved. Thus, BACE2 is here presented as a potentially essential enzyme for β-cell function.

Supported by: FIS

537

Transgenic mice expressing an intestine-specific secretory protein, IBCAP, demonstrates pancreatic beta cell augmenting activity
T. Yokoo1, K. Watanabe1, K. Tada-Iida1, H. Suzuki1, H. Shimano2, S.-E. Ishikawa1, M. Kawakami1, Y. Okazaki1, N. Yamada1, H. Toyoshima1; 1Division of Endocrinology and Metabolism, Department of Medicine, Saitama Medical University, Saitama, 2Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 3Department of Internal Medicine, Metabolism and Endocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.

Background and aims: Recent success with GLP-1 analogs and DPP IV inhibitory drugs in the clinical application for diabetic patients has highlighted the role of intestine as a hormone producing organ. Crucial roles of these hormones, including GLP-1, GIP and Ghrelin, in the control of energy metabolism and food intake, and their relation with the metabolic syndrome have been brought to worldwide attention. In the current studies, we aimed to search for secretory proteins expressed in the intestine.

Materials and methods: We have constructed and screened a mouse intestinal cDNA library to search for genes encoding secretory and membrane proteins using the Oligo-cap Signal Sequence Trap (Oligo-cap SST) method developed in our laboratory. For CF266 functional analysis in vivo, we prepared the recombinant CF266 expressing adeno virus and we analyzed the phenotype of CF266 over-expression mice model.

Results: We have identified CF266 as a novel intestine-specific secretory protein using the Oligo-cap SST strategy. We demonstrated that CF266 had insulin secretion promoting effect, and furthermore, that adenovirus-mediated expression of CF266 in STZ-treated type 1 diabetes model mice improved the blood glucose level of the animal, and showed the increased pancreatic β-cells detected by the histological analysis. Here, we have developed transgenic (Tg) mice expressing CF266 under the control of CAG-promoter. Analyses of the Tg mice have shown marked increase of pancreatic islets, confirming our former findings with the STZ-induced diabetic mice treated with CF266 expressing adeno virus. Thus, we renamed CF266 as IBCAP; intestine-derived beta-cell augmenting promoter. Further analyses have shown that blood glucose concentration and OGT T of IBCAP Tg mice are relatively normal compared with the control mice. Therefore, IBCAP seems to have promoted the augmentation of islets which are functionally normal. We are now testing beta-cell augmenting promoter. Further analyses have shown that blood glucose using the Oligo-cap SST strategy. We demonstrated that CF266 had in...
PKCδ modulates cell cycle progression and survival through the regulation of cytosolic-nuclear trafficking of p21 in insulin secreting MIN6 cells

F. Ranta, T. Theilig, J. Leveringhaus, H.-U. Häring, S. Ullrich, Internal Medicine IV and Clinical Chemistry, University Hospital Tübingen, Germany.

Background and aims: The main cause for overt type 2 diabetes mellitus, affecting cell growth and survival.

The expression of PLCα was significantly increased while INS-1 cells were stimulated by glucose, CCK8 and acetylcholine chloride; The expression of PLCδ was significantly increased while INS-1 cells were stimulated by KCl.

The analysis of cell cycle distribution pattern of MIN6 cells after insulin stimulation. GSK3β Ser9-phosphorylation was not altered by PI3K-C2α-siRNA treatment. The increase of TSC2-Thr1462- and FoxO1-Ser256-phosphorylation after insulin stimulation was abolished by PI3K-C2α-siRNA-treatment. Ser338-phosphorylation of Raf-1, a kinase of the Ras/Raf-1/ERK cascade known to be involved in cell cycle progression, rather than to its stimulation. The increased phosphorylation status of TSC2 and FoxO1 are in line with diminished inhibition of cell growth, rather than to its stimulation. The increased phosphorylation of Raf-1, a kinase of the Ras/Raf-1/ERK cascade known to be involved in cell

Supported by: National Natural Science Foundation of China

541

Knock-down of PI3K-C2α leads to increased proliferation of pancreatic beta cells

B. Leibiger, T. Moede, P.-O. Berggren, I.B. Leibiger; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Background and aims: PI3K-C2α plays an important role in controlling cell survival via the intrinsic cell death pathway. Knock-down of PI3K-C2α protein levels led to a reduction in cell proliferation and viability in a number of cancer-derived cell lines. We have recently shown that PI3K-C2α generated PI(3,4,5)P₃ in beta cells and is involved in glucose-stimulated insulin release. Knock-down of PI3K-C2α levels leads to reduced PKβ activity, AS160 phosphorylation and glucokinase protein levels. The aim of this study was to evaluate the role of PI3K-C2α in beta cell proliferation and survival.

Materials and methods: MIN6 cells and primary mouse beta cells were treated with control siRNA or siRNA against PI3K-C2α. Knock-down of protein levels of PI3K-C2α was verified by Western blotting (80% knock-down). Proliferation in MIN6 cells was measured directly by counting the number of cells and by BrdU-incorporation. Apoptosis rate of MIN6 cells after treatment with either H₂O₂ or staurosporine was determined by triple staining with Hoechst 33342, propidium iodide (PI) and AlexaFluor 488-annexinV, where AlexaFluor 488-annexinV positive PI-negative stained cells were considered apoptotic. Cell proliferation of primary mouse beta cells was determined by BrdU-incorporation. Phosphorylation of PKβ target proteins and Raf-1 in MIN6 cells was evaluated by Western blotting.

Results: To our surprise knock-down of PI3K-C2α did not lead to an inhibition of cell growth like in other cell lines, but to an increased cell proliferation. Cell count 120 h after siRNA transfection gave a 3.2 ± 0.126fold increase in cell number in PI3K-C2α siRNA-treated cells compared to control siRNA-treated MIN6 cells. BrdU incorporation was increased to 21.75 ± 2.54% in PI3K-C2α siRNA-treated MIN6 cells (9.38 ± 1.06% in control siRNA-treated cells) and to 1.67 ± 0.22% in primary mouse beta cells treated with PI3K-C2α siRNA (0.71 ± 0.067% in control siRNA-treated cells). Knock-down of PI3K-C2α led to a significant (p<0.05) protection against apoptosis induced by 20µM H₂O₂ (11.95 ± 1.86% apoptotic cells in PI3K-C2α siRNA-treated MIN6 cells versus 24.19 ± 0.89 % in control siRNA-treated cells) or by 6µM staurosporine (24.89 ± 1.37 % apoptotic cells in PI3K-C2α siRNA-treated MIN6 cells versus 34.61% ± 2.42 % in control siRNA-treated cells). Since insulin-stimulated PKβ activity was diminished in PI3K-C2α siRNA-treated cells, we evaluated the phosphorylation of PKβ target proteins (TSC2, GSK3β, FoxO1) in MIN6 cells after insulin stimulation. GSK3β Ser9-phosphorylation was not altered by PI3K-C2α-siRNA treatment. The increase of TSC2-Thr1462- and FoxO1-Ser256-phosphorylation after insulin stimulation was abolished by PI3K-C2α siRNA-treatment. Ser388-phosphorylation of Raf-1 was increased in PI3K-C2α siRNA-treated MIN6 cells after insulin stimulation (1.54 ± 0.126fold compared to control siRNA-treated cells). The observed changes in the phosphorylation status of TSC2 and FoxO1 are in line with diminished PKβ activation in response to insulin stimulation, but would lead to inhibition of cell growth, rather than to its stimulation. The increased phosphorylation of Raf-1, a kinase of the Ras/Raf-1/ERK cascade known to be involved in cell beta cell proliferation and protection against apoptosis, could explain the increased proliferation in PI3K-C2α siRNA-treated cells.

Conclusion: Knock-down of PI3K-C2α in pancreatic beta cells leads to increased cell proliferation by a pathway involving Raf-1 activation.

Supported by: EuroDiab, Novo Nordisk Foundation, Family Eirling-Persson Foundation

542

Focal adhesion remodelling is crucial for glucose-stimulated insulin secretion and involves activation of focal adhesion kinase and paxillin

D. Rondas, A. Tomas, P. Halban; Genetic Medicine and Development, University of Geneva, Switzerland.

Background and aims: Despite the numerous studies on the mechanism of pancreatic beta cell insulin secretion, many aspects of the molecular machinery remain to be elucidated. Actin cytoskeleton remodelling is well known to be positively involved in glucose-stimulated insulin secretion (GSIS). We have observed glucose-stimulated changes at the beta cell surface that are similar to focal adhesion remodelling in cell migration. This led us to study the role of two key focal adhesion proteins, Focal Adhesion Kinase (FAK) and paxillin, in glucose-stimulated beta cell focal adhesion remodelling and insulin secretion.
543

Novel aspects of female sex hormone estrogen in diabetes
R. Kumar1, A. Balhuizen2, A. Salehi3, I. Lundquist4, S. Amisten5; 1Clinical Science, Lund University Malmo, Sweden, 2Clinical Science, Oxford University, United Kingdom.

Background and aims: The lower prevalence of diabetes in females suggests that female sex steroids protect from β-cell injury. Consistent with this hypothesis, 17β-estradiol manifests antidiabetic actions in humans and rodents. Our recent findings show that the stimulatory action of 17β-estradiol on insulin secretion is mediated by the G protein coupled receptor 30 (GPR30), raising the prospect that antidiabetic action of 17β-estradiol might be due, in part, to its antiapoptotic effect on β-cells exerted through activation of GPR30. Therefore, the objective of this study was to identify expression of GPR30 in human pancreatic islets and to further clarify the role of GPR30 in pancreatic hormone secretion and beta cell survival.

Materials and methods: GPR30 expression was analyzed by confocal microscopy and qRT-PCR in human pancreatic islets from female and male donors. Hormone secretion and Ca2+ oscillation studies were performed with insulinoma cell lines (MIN6B1) in a single preliminary experiment on primary rat beta cells.

Results: GPR30 expression was confirmed in a single preliminary experiment on primary rat beta cells.

Supported by: Swiss National Foundation for Scientific Research

544

Polyamines and human pancreatic beta cells
L. Marselli1, J. Thorne2, M. Bugiani1, A. Lena1, M. Tancredi1, K. Fujiwara3, V. Gremigni1, A. Sharma2, G.C. Weir1, P. Marchetti1; 1University of Pisa, Italy, 2Harvard University, Boston, USA, 3Sojo University, Kumamoto, Japan.

Background and aims: Polymyamines (PA, in particular putrescine, spermidine and spermine) are ubiquitous chemical entities that play an important role in cell function and turnover, as well as in the synthesis of proteins and nucleic acids. Aim of the study was to assess whether PA may be of importance in affecting beta-cells in non-diabetic subjects and type 2 diabetic individuals.

Materials and methods: Pancreatic tissue obtained from 17 type 2 diabetic subjects (T2DM; age: 67±9 years; M:F=11/6; BMI: 29±5 kg/m2) and 15 non-diabetic controls (ND; age: 62±15 years; M:F=11/4; BMI: 26±2 kg/m2) was studied. The presence of PA in beta-cells was assessed on electron microscopy and by immunogold technique. Gene expression studies were performed with isoforms of spermidine and beta-cell enriched samples prepared by laser capture microdissection. Islets insulin secretion was determined in response to acute glucose stimulation after 24 h incubation with or without 2-difluoromethylornithine (DFMO, an inhibitor of ornithine decarboxylase 1, 5 mM), putrescine (50 mM) and spermidine (50 μM), alone or in combination.

Results: Putrescine and spermidine were detected in beta-cells from ND and T2DM by electron microscopy. Localization was mainly in the cytoplasm for putrescine and in both the cytoplasm and the nucleus for spermine. Microarray analyses showed that ornithine decarboxylase 1 (key enzyme in PA synthesis) was lower in beta-cells (p<0.001) and islets (p=0.03) from T2DM. Data were confirmed by qPCR studies, which detected also a lower expression of arginase II in diabetic samples. DFMO caused a decrease (p<0.05) of glucose-stimulated insulin release (-32 ± 9.5%; the same was observed in presence of spermidine (-48 ± 32%; p<0.05). Putrescine prevented the inhibitory effect of spermidine on insulin secretion.

Conclusion: This study shows that 1) PA are present in human beta-cells; 2) PA biosynthesis pathway may be different in type 2 diabetic beta-cells; and 3) PA may have a role in insulin secretion.

Supported by: Italian Society of Diabetes
P-glycoprotein. It has been suggested that the mini-P-glycoprotein might function as one of the regulatory proteins to the chloride transport protein 3 to mediate insulin granules acidification and priming. Further investigation need to be done to evaluate the underlying mechanisms.

Supported by: an EFSD research grant supported by BMS

PS 36 Receptors, secretagogues and modelling in islets

CART is overexpressed in beta cells of diabetic mice to improve insulin secretion

M. Riva, N. Wierup;
Lund University Diabetes Centre, Lund University, Sweden.

Background and aims: Cocaine- and amphetamine-regulated transcript (CART) is a novel islet regulatory peptide. CART null mutant mice exhibit impaired glucose tolerance due to islet dysfunction, and diminished expression of PDX-1. CART regulates islet hormone secretion, including augmenting GLP-1-enhanced glucose-stimulated insulin secretion (GSIS) in vitro. Moreover, CART is upregulated in the beta cells of Type-2 diabetic (T2D) rats. Although the effects of exogenously added CART on the beta cell are established, the role of endogenous beta cell CART is unknown. Furthermore, CART expression in islets of T2D mouse models has not been studied. We studied islet expression of CART in diabetic db/db and ob/ob mice using immunocytochemistry and in situ hybridization. To mimic the situation in beta cells of T2D models we overexpressed CART in clonal INS-1 (832/13) beta cells using adenovirus and measured: 1) Insulin secretion stimulated with glucose (GSIS) and an array of secretagogues. 2) Gene expression of key genes related to insulin secretion and beta cell function. 3) Regulation of CART gene and protein levels after culture in different glucose concentrations.

Materials and methods: Male db/db, ob/ob, and C57BL/6 mice were used. CART expression was examined with immunocytochemistry, in situ hybridization, immunogold labeling and transmission electron microscopy (TEM), real-time PCR and Western blot. preproCART was overexpressed in INS-1 (832/13) cells and insulin secretion after 1h static incubations was analyzed using RIA. GFP-adenovirus was used as negative control.

Results: CART was robustly upregulated in beta cells of both db/db and ob/ob mice, compared to control mice. Immunogold labeling for CART revealed that CART was located to the beta cell granules. CART overexpression in INS-1 (832/13) cells was verified using real-time PCR and western blot. Overexpression of CART resulted in a moderate and dose-dependent augmentation of GSIS. Furthermore, overexpression of CART resulted in increased forskolin-enhanced GSIS. On the other hand, overexpression of CART was without effect on GSIS in the presence of 35mM KCl. Moreover, overexpression of CART elevated mRNA expression levels of insulin, PDX-1 and syntaxin 1A. On the other hand, CART had no effect on the mRNA expression levels of GLUT2, Kir6.2, or Munc-18-1. Culturing CART-overexpressing cells for 24 h in 16.7 mM glucose provoked a decrease in CART mRNA expression and an upregulation of CART protein levels, compared to culture in 3 mM and 11.1 mM glucose.

Conclusion: We conclude that CART is upregulated in the beta cells of diabetic mice and that beta cell CART is regulated by glucose. Furthermore CART stimulates the triggering pathway of insulin secretion, as well as expression of insulin and genes important for beta cell function and insulin exocytosis. Together these data suggest that CART is upregulated in beta cells of T2D animals to improve insulin secretion and gene expression. The potential for CART-based substances for future treatment of T2D remains to be established.

Supported by: The Novo Nordisk Foundation, Swedish Medical Research Council

547

Stimulation of 5-HT1a receptor decreased insulin secretion in islets of Langerhans from mice and humans

H. Bennet1, C.L.E. Nagorny1, N. Wierup1, M. Dekker-Nitert1, Â. Lernmark1, M. Fex2;
1The unit of diabetes and celiac disease, Clinical Science, Malmö, 2Clinical science, Malmö, Sweden.

Background and aims: 5-Hydroxytryptamine, also known as serotonin, activates the receptors 5-HT1a (5-hydroxy-tryptophane receptor 1a) and 5-HT1b (5-hydroxy-tryptophane receptor 2b). 5-HT1a and 5-HT2b are both G-protein coupled receptors, 5-HT1a couples negatively to adenylate cyclase while 5-HT2b activates Gq and activates the phospholipase C pathway.
G-protein activation result in different cellular events by two distinct intracellular pathways, affecting the levels of calcium in the cell. Both receptors have previously been described in islets of Langerhan from rodents. In addition, serotonin has been shown to be present in islet cells from several different animal species. As both receptors and amines are present, serotonin may potentially regulate hormone secretion from islets of Langerhans. In the previous studies we have shown that a selective 5-HT2B agonist alpha-Methyl serotonin potentiates glucose stimulated insulin secretion from INS-1 cells, mouse, and human islets of Langerhans from healthy individuals. This has now been further investigated in human islets of Langerhans from type 2 diabetic individuals. We have also investigated the effect of a 5-HT1A receptor agonist on insulin secretion in islets of Langerhans from both mouse and humans.

Material and methods: We used RT PCR and sequence specific primers to detect expression of the receptors in the beta-cell line (INS 832/13) and in islets of Langerhans. Immuno-histochemical analysis was used to detect the receptors at the protein level in rodent and human islets. Islets from mouse were isolated by standard collagenase digestion. Human and mouse islets were incubated with glucose and Bupirone or alpha-methyl serotonin at 37 °C for 1h and assayed for insulin secretion. Insulin was measured with insulin ELISA specialized for mice and human islets.

Results: 5-HT2B mRNA was found in the 832/13 cells. We also found both 5-HT1A and 5-HT2B to be expressed in rodent and human islets, at both mRNA and protein level. Interestingly, 5-HT receptors in islets were localized to two different cell types in the islets. In rodent islets, 5-HT2B was predominantly expressed in beta-cells while 5-HT1A was more abundant in the alpha-cells. In human, islets the situation was reversed. While stimulation with alpha-methyl serotonin potentiated glucose stimulated insulin secretion in human islets of Langerhans from type 2 diabetic individuals. Bupirone showed a significant decrease of insulin secretion at stimulatory glucose concentrations in mouse and human islets.

Conclusion: Our results strongly suggest that serotonin and the 5-HT1A and 2b receptors regulate insulin secretion. As both 5-HT1A and 5-HT2B are expressed in rodent and human islets and activate two very distinct cellular pathways, these receptors may in fact modulate secretion from both alpha and beta-cells. In conclusion, pathways of serotonin and its receptors may provide exciting new insight in the regulation of islet hormone secretion.

Supported by: Novo Nordisk Foundation, Krapperup Foundation

548

Nesfatin-1 stimulates insulin secretion, inhibits glucagon secretion and is expressed in human and rodent beta cells

Background and aims: Nesfatin-1 is a recently discovered regulatory peptide with anorexigenic properties. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is highly expressed in brain areas known to regulate feeding behaviour. Outside the brain, nesfatin-1 expression has been reported in gastric endocrine cells. We studied the possibility of nesfatin-1 expression in islets of Langerhans, and the effect of this peptide on glucose homeostasis in type 2 diabetic individuals.

Materials and methods: Nesfatin-1 expression was examined using immunocytochemistry, in situ hybridization. Furthermore, we investigated potential influence of nesfatin-1 on secretion of insulin and glucagon. Effects of nesfatin-1 on Ca2+ and cAMP levels was studied in INS-1 (832/32) cells, and nesfatin-1 gene expression in human islets under glucolipotoxic conditions was examined using Affymetrix.

Results: Nesfatin-1 expression was examined using immunocytochemistry, in situ hybridization. Insulin and glucagon secretion after 1h static incubations of isolated mouse islets was analyzed with RIA or ELISA. Nesfatin-1 was found to be highly expressed in islets of Langerhans from L6 cells following 1h static incubations with NUCB2 RNA. In human, dog, and mouse (but not rat) pancreatic islets. Silencing BRS-3 with siRNA or pharmacological blockade with a BRS-3 antagonist, Bantag-1, reduced glucose-stimulated insulin secretion (GSIS) in the rat INS-1 832/32 cells. In conclusion, activation of the receptor with Bag-1, a potent, selective BRS-3 agonist, increased GSIS in the rat insulinoma cell line. The acute effects of Bag-1 on GSIS in isolated islets and on blood glucose in vivo during oral glucose tolerance tests (OGTT) were examined. Bag-1 significantly enhanced GSIS in isolated islets and reduced OGTT glucose levels in wild-type, but not Brs3 knockout mice. BRS-3 agonists also promoted GSIS in human islets isolated from a non-diabetic subject and from a patient with type 2 diabetes. These results reveal a role for BRS-3 in islet physiology, with agonism directly promoting GSIS.

Conclusion: In addition to its potential role in the regulation of body weight and energy homeostasis, BRS-3 may also regulate glucose homeostasis. Modulation of BRS-3 represents a potential new mechanism for glycemic control in type 2 diabetic patients.

550

p44/2 MAPK activation is required for receptor-operated stimulation of insulin release

J.E. Bove, A. Chandler, S.J. Persaud, P.M. Jones; King’s College London, United Kingdom.

Background and aims: We have previously shown that activation of the receptors GPR54 and CaR, by kisspeptin and the CaR agonist A568, respectively, potentiates glucose-induced insulin release via a p42/44 MAPK dependent pathway. The present study aimed to further examine the role of p42/44 MAPKs in receptor-operated potentiation of insulin release.

Materials and methods: Mouse islets were incubated for 1hr in a physiological salt solution and insulin release was measured by radioimmunoassay. Activation of p42/44 MAPK was measured by western blotting for phospho-MAPK relative to total MAPK immunoreactivity.

Results: Both the CaR agonist A568 (10µM) and kisspeptin (1µM) caused a significant potentiation of insulin secretion (214±26% and 182±19% basal respectively, n=9, p<0.05) at 20mM glucose. The stimulatory effects of both A568 and kisspeptin on insulin secretion were significantly blocked by the presence of the p42/44 MAPK inhibitor PD98059 (50µM; 131±12% and 109±18% basal respectively, p<0.05 versus absence of PD98059). However, whilst the acetyl choline analogue carbachol (500µM) also significantly potentiated glucose-induced insulin release (287±21% basal, n=9, p<0.05), the
Pancreatic beta-cells play a key role in the glucose homeostasis, secreting insulin in response to blood nutrient fluctuations. This is due to a complex relationship between metabolism and insulin secretion which comprises both triggering (ATP and Ca2+ dependent) and amplifying (mitochondrial metabolite dependent) pathways of insulin secretion. Specific amino acids can modulate beta-cell function and thus acutely and chronically regulate insulin secretion through different mechanisms of action. Alanine is known to acutely stimulate insulin secretion alone or synergistically enhance glucose-stimulated insulin secretion (GSIS) both in vivo and in vitro. This study has attempted to develop a mathematical model, validated against experimental data, of the role of alanine in enhancing glucose-stimulated insulin secretion in pancreatic beta-cells.

Materials and methods: A simplified kinetic model of the glucose-stimulated insulin secretion in pancreatic beta-cells which takes into account glycolysis, Krebs cycle, NADH shuttles and glutamate and alanine transaminase was built. The model’s input is made up of two nutrient components: glucose and alanine, while the output is constituted by NADH, ATP and glutamate. Experimental work was carried out on a functional clonal insulin-secreting cell line (BRIN-BD11). BRIN-BD11 cells were cultured for 48h prior to experiments, starved for 40 minutes at basal glucose level (1.1 mM) and then stimulated with different concentrations of only glucose (1.1, 5, 16.7, 30 mM), only alanine (10 mM) and their combinations. Samples were collected before and after 60 min incubation only in presence of alanine. Acute insulin secretion was measured as described in the experimental section. The kinetic parameters of the model were estimated using experimental data obtained in our laboratory. The model was then validated using additional experimental data obtained from different laboratories.

Results: The kinetic parameters of the model were estimated using experimental data obtained in our laboratory. The model was then validated using additional experimental data obtained from different laboratories. The model accurately predicted the observed acute insulin secretion in response to different concentrations of glucose and alanine. The predicted values were in good agreement with the experimental data obtained from different laboratories. The model was able to predict the effect of the simultaneous administration of glucose and alanine on acute insulin secretion.

Conclusion: The model accurately predicts the observed acute insulin secretion in response to different concentrations of glucose and alanine. The model was able to predict the effect of the simultaneous administration of glucose and alanine on acute insulin secretion. The model can be used to study the role of alanine in enhancing glucose-stimulated insulin secretion in pancreatic beta-cells.

Supported by: Lundbeck Foundation; EU
was biphasic and concentration dependent with respect to glucose: increasing glucose concentration from 1.1 to 30 mM increased insulin secretion by 32% from 1.12 ng/mg protein/20 min to 1.48 ng/mg protein/20 min. The addition of 10 mM alanine significantly increased (p<0.05) glucose-stimulated insulin secretion by 1.8-2.3 fold after 20 minutes incubation. Administration of 10 mM alanine exhibited a strong insulin release (1.39 ng/mg protein/20 min).

Conclusion: These results highlight the synergistic effect of Alanine in enhancing glucose metabolism. Alanine metabolism may increase ATP release increasing insulin secretion through the K⁺-ATP-dependent pathway. Alanine oxidation may also result in generation of glutamate, a putative messenger in insulin secretion, which may account for increased insulin release despite a lower ATP content.

Supported by: IRCSET funding

PS 37 Exocytosis and ion channels

554

The membrane potential response is altered in pancreatic beta cells chronically exposed to high glucose

I. Göhring1, T. Köck1, H. Mulder1, D. Nicholls1,2

1Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden, 2Buck Institute for Age Research, Novato, USA.

Background and aims: Fuel-stimulated insulin secretion is coupled to increased cellular metabolic activity and consequently an increase of the ATP/ADP ratio, thereby leading to plasma membrane depolarisation and exocytosis. Any disturbance of the metabolic processing of fuels, such as glucose, particularly in mitochondria, may consequently affect the secretory process. Frequent episodes of severe hyperglycaemia are observed during the onset of diabetes and characterise poorly- or un-controlled Type 2 Diabetes. These elevated glucose levels lead to beta-cell desensitisation, and ultimately impaired beta-cell function. It is therefore of great interest to detect potential disturbances of normal fuel-stimulated plasma membrane changes as a result of chronic exposure to elevated glucose levels.

Materials and methods: INS-1 832/13 cells were cultured in either 2.8 mM or 16.7 mM glucose for 48 h. All cells were then starved for 2 h in buffer containing 2.8 mM glucose, after which recordings of the plasma membrane potential of a monolayer of cells, using a proprietary fluorescent anion and confocal microscopy were performed at 16.7 mM glucose with subsequent additions of 1 µg/ml oligomycin and 25 mM KCl. Insulin secretion was determined by radioimmunoassay.

Results: After 48 h culture in 16.7 mM glucose, glucose-stimulated insulin secretion was significantly (p<0.05) suppressed in INS-1 832/13 cells (15.32 ± 1.6 ng/mg/h) in comparison to cells cultured at 2.8 mM glucose (41.43 ± 8.13 ng/mg/h). Concurrent, chronic high glucose levels altered the plasma membrane depolarisation response. Recordings of membrane potential activities of cells cultured at 2.8 mM glucose for 48 h showed complete hyperpolarisation before glucose stimulation (–79.5 ± 1.6 mV). Following addition of 16.7 mM glucose a mean depolarisation of all cells measured was recorded (–58.1 ± 0.4 mV) and individual cells produced rhythmic action potentials bursts, acquired in real time as oscillations in fluorescence intensity. By inhibiting the mitochondrial ATP synthase, oligomycin hyperpolarised the plasma membrane potential to basal values while high KCl produced a maximum membrane depolarisation of –41.6 ± 0.1 mV. In contrast, cells chronically cultured at 16.7 mM glucose produced rhythmic bursts of action potentials after the starvation period even before high glucose stimulation. The basal membrane potential recorded was higher (–72.1 ± 0.6 mV) than in cells cultured at 2.8 mM glucose. In addition, the mean depolarisation response of the chronic high glucose-treated cells was suppressed (–42.7 ± 0.3 mV) after new stimulation with high glucose.

Conclusion: While cells kept at low glucose responded to stimulatory glucose concentrations with elevated plasma membrane depolarisation and stimulation-induced action potential bursts, in cells under chronic high glucose conditions this depolarisation response was greatly diminished. However, action potential bursts were recorded independent of glucose stimulation due to the inability of glucose-desensitised cells to fully hyperpolarise. We suggest that, as a consequence of chronic fuel overload, multiple cellular alterations, including changed glucose metabolism, contribute to a disturbance in the fuel-dependent coordination and regulation of plasma membrane potential changes and therefore the failure of beta-cells to secrete insulin.

555

Paradoxical membrane repolarisation during onset of insulin secretion

M. Willenborg1, S. Denicke1, H. Ghaly1, U. Panten1, I. Rustenbeck1, I. Göhring1

1Institute of Pharmacology and Toxicology, 2Institute of Physical Chemistry, University of Braunschweig, Germany.

Background and aims: Plasma membrane depolarisation (typically by K_ATP channel closure), activation of voltage-dependent Ca2⁺ channels and Ca2⁺ influx are regarded as indispensable for the initiation of stimulated insulin secretion. In addition to this “triggering pathway” nutrient secretagogues like glucose or ketocaproic acid (KIC) activate an “amplifying pathway” not involving depolarization and Ca2⁺ influx. The metabolic amplification can be demonstrated by a pretreatment with a maximal sulfonylurea concentration, then adding a stimulatory concentration of a nutrient secretagogue. Surpris-
Cystic fibrosis (CF) is a monogenic autosomal recessive disease characterized by defective ciliary function due to the presence of a defective membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a chloride channel that normally regulates hydration and ion transport in the exocrine pancreas and in the lung, and its dysfunction leads to inflammation and chronic infection, which is the main cause of morbidity and mortality in patients with CF.

Materials and methods: The plasma membrane potential of normal mouse beta cells was measured in the perforated patch mode of patch-clamp technique. The cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}$]) as indicated by Fura and the NAD(P)H autofluorescence was measured by microfluorimetry of single perfused islets. NAD(P)H autofluorescence lifetime was determined by 2 photon excitation imaging. Insulin secretion was measured by batch perfusion and ELISA of the fractionated eluate.

Results: In the absence of any nutrient 2.7 μM glipizide depolarized the plasma membrane to a plateau of -45.5 ± 3.0 mV with superimposed action potentials peaking at -24.4 ± 4.0 mV (n=5). After application of 30 mM glucose or 10 mM KIC the membrane completely repolarized (~68.4 ± 2.1 mV) within 150 s (glucose) or 80 s (KIC). The repolarization phase lasted for 5.5 ± 2.0 minutes (glucose) and 6.8 ± 2.9 minutes (KIC) and then abruptly, the depolarization reappeared with the same characteristics. Concurrent with the depolarization by K$_a$ channel closure, glipizide increased the [Ca$^{2+}$], which remained elevated until the addition of nutrients. Both with glucose and with KIC the repolarization coincided with a biphasic decrease of the [Ca$^{2+}$], down to values which existed before the exposure to glipizide (n = 4 each). While the elevated [Ca$^{2+}$] completely recovered within 10 minutes in the case of glucose, there was only a partial recovery of [Ca$^{2+}$] in the presence of KIC. Under the same conditions 10 mM KIC induced a strong increase of the secretion rate by more than 10 fold within 10 min, which remained elevated for more than 30 min. In contrast, 30 mM glucose was unable to further elevate the secretion rate established by glipizide in the absence of nutrients. Both glucose and KIC elevated the NAD(P)H autofluorescence of perfused islets, the relation between the increase by glucose and that by KIC was the same as in the absence of glipizide. Since both components of NAD(P)H fluorescence lifetime were left unchanged, both glucose and KIC induce a real increase of the mass of NAD(P)H and not a change in fluorescence properties.

Conclusion: Apparently glucose and KIC differ in their mechanisms of metabolic amplification. The onset of a strong and lasting secretory response to KIC does not necessarily require the presence of a depolarized plasma membrane and an increased [Ca$^{2+}$].

In situ electrophysiological examination of alpha cells in type 1 diabetes revealing the cellular basis of glucagon hypersecretion

Y.-C. Huang, M. Rupnik, P.L. Herrera, P. Gilion, H.Y. Gaiasano; 1Medical Science, University of Toronto, Canada, 2University of Maribor, Slovenia, 3University of Geneva, Geneva, Switzerland, 4University of Louvain, Brussels, Belgium, 5University of Toronto, Canada.

Background and aims: The cellular properties of a cell in type 1 diabetes (T1D) are unknown. This is because T1D autoimmune destruction of β cells causes the islet mass to shrink in size rendering islet isolation and dispersion not technically feasible; and consequently electrophysiological characterisation of islet cells to reveal the underlying mechanisms explaining the distorted glucagon secretion in T1D could not be done. We employed Glucore ROSA26-YFP (GYY) mice, which expresses YFP in pancreatic α cells. Along with our newly developed pancreas slice preparation whereby a cell and its precise secretory physiology within intact pancreatic tissue can be examined by patch clamp technique, unperturbed by conventional islet isolation and dispersion procedures, we are able to reliably localize and directly examine a cells electrophysiological properties in situ in health and T1D. We hypothesize that T1D α cells possess perturbed ion channels properties which contribute to hyperglucagonemia in early stage of T1D.

Materials and methods: GYY mice were treated with streptozocin (STZ) to induce T1D. IPGTT and radiomunnoassay (RIA) were performed to confirm diabetes phenotype. Pancreas slices were prepared from these mice to directly examine a cell ion channel properties in healthy and diseased islets by patch clamp technique. The identities of patch-cells were further confirmed by infusing fluorescent marker (bicine) during patching, showing its co-localization with YFP by confocal microscopy.

Results: Normal GYY mice a cells in slices revealed identical electrophysiological features to those of their background C57/BL6 mice we previously characterized. These α cells are equipped with readily-activated A-type I$_{ac}$, voltage-gated I$_{k}$, small size, low resting conductance, and inducible H/LVA I$_{v}$ at 20°C. I$_{ac}$ current correlated with glucagon exocytosis as either train of depolarization or UV photo-release of intracellular-loaded caged-Ca$^{2+}$ stimulated Ca$^{2+}$ increase. 4 weeks after STZ treatment, GYY mice developed T1D, exhibiting higher fasting glucose, slower glucose clearance after a glucose challenge and higher fasting (control: 89 pg/ml vs. STZ group:122 pg/ml) and fed (control: 78 pg/ml vs. STZ group:112 pg/ml) serum glucagon levels. A cells in slices from these diabetic mice revealed augmentation of I$_{ac}$ (control: 368 ± 43 pA vs. STZ group: 480 ± 71 pA) and LVA I$_{v}$ amplitudes (control: 40 ± 5 pA vs. STZ group: 49 ± 6 pA). HVA I$_{v}$ however remained unaltered by T1D (control: 44 ± 5 pA vs. STZ group: 46 ± 6 pA). Voltage-gated K$^{+}$ current was found to be increased (STZ group: 2.13 nA vs. control:1.76 nA). a cell size was unchanged compared to control (4.7 ± 0.20 pF vs. STZ group; 4.8 ± 0.23 pF).

Conclusion: GYY mouse a cell ion channel properties examined in slices were largely consistent with our previous findings and others, validating the feasibility of using pancreas slice approach to investigate a cells in normal and diabetic subjects. We postulate that the observed upregulation of I$_{ac}$ and LVA I$_{v}$ in diabetic a cells potentially elevates membrane potential that would more readily to trigger HVA Ca$^{2+}$ channels opening, with ensuing initiation of action potential firing leading to glucagon secretion. This explains in part the observed glucagon hypersecretion in early stage of T1D.

Active CFTR channels are important for insulin- and glucagon secretion.

A. Edlund1, M. Hühn2, M. Floedström-Tullberg2, L. Elssons2; 1Clinical Sciences Malmö, CRC, Lund University Diabetes Centre, Malmö, 2Karolinska Institute, Huddinge, Center for Infectious Medicine, Stockholm, Sweden.

Background and aims: Cystic fibrosis (CF) is a monogenic autosomal recessive disease caused by mutation in the cystic fibrosis gene that encodes the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). One of the leading complications of CF is cystic fibrosis related diabetes (CFRD). The mechanism behind CFRD is unclear but the progressive inflammation in the exocrine pancreas has been suggested. Another possible mechanism is that CFTR is present in the islet cells and a mutation in CFTR interferes with hormonal secretion. The aim of this study was to investigate the presence of active CFTR channels in pancreatic alpha- and beta cells and if CFTR influence secretion and exocytosis.

Materials and methods: Patch-clamp recordings and capacitance measurements were performed on single mouse beta-cells. Detection of CFTR in islet cells was investigated using rt-PCR and confocal immunocytochemistry. Insulin- and glucagon secretion was measured using radio immunoassay (RIA).

Results: Mouse islets express CFTR mRNA as confirmed by rt-PCR (n=5) and CFTR protein was specifically detected in alpha- and beta cells using immunocytochemistry. Electrophysiological investigation of CFTR was performed using the standard whole-cell configuration and CFTR was activated by addition of forskolin (10 μM). In single mouse beta-cells, a CAMP-activated membrane conductance of 0.05 ± 0.03 nS/pF at negative potentials and 1.03 ± 0.18 nS/pF at positive potentials (n=12; P<0.001 vs in absence of forskolin) was measured. The conductance was significantly reduced (n=7; P<0.001), but the current was not affected in the presence of another CFTR-antagonist, GlyH-101 (50 μM). Cyclic AMP- amplified insulin secretion at 16.7 mM glucose was reduced by ~60% (n=8; P<0.001) in the presence of CFTR-Rh172 (40 μM) and by ~40% (n=8; P<0.01) in the presence of another CFTR-antagonist, GlyH-101 (50 μM). Cyclic AMP- amplified insulin secretion at 16.7 mM glucose was reduced by ~30% in the presence of CFTR-Rh172 (n=10; P<0.05) and by ~30% in the presence of GlyH-101 (n=11; P<0.05). Moreover, exocytosis elicited by a train of 10 membrane depolarisations and measured as an increase in membrane capacitance on single beta-cells was significantly reduced by 70 ± 10% (n=9; P<0.05) in the presence of a CAMP (100 μM) and CFTR-Rh172 (10 μM).

Conclusion: Our data indicate the presence of active CFTR in pancreatic alpha- and beta cells and the importance of this channel for glucagon- and insulin secretion. Further, CFTR inhibition reduced exocytosis in pancreatic cells. Thus, we suggest a role for CFTR in the control of the exocytic process important for release of glucagon and insulin.

Supported by: The Swedish Research Council, RFCE, Fredrik and Ingrid Thuring Foundation
Distinct roles of voltage-gated potassium channels Kv2.1 and Kv2.2 in governing the secretion islet hormones

X. Li¹, J. Herrington¹, K. Rathiff², L. Ge³, Y. Feng³, A. Petrov⁴, G. Eiermann⁴, Y. Xiong⁵, M. Jensen⁶, H.E. Hohmeier⁶, C.B. Newgard⁶, N.A. Thornberry⁷, A.D. Howard⁸, B.B. Zhang⁹, Y.-P. Zhou⁹

¹Metabolic Disorders, Merck Research Laboratories, Rahway, Biochemistry, Duke University, Durham, USA.

Background and aims: Voltage-gated potassium channel Kv2.1 has been suggested to regulate glucose stimulated insulin secretion (GSIS) in islets, yet little is known about the role of Kv2.2, the other member of the delayed rectifier K channel also expressed in islets.

Materials and methods: We studied the roles played by each of the two K channels individually in islets using siRNA mediated gene-silence, Kv2.1 knockout (Kv2.1+/−) mice and highly selective peptide and small molecule Kv2 blockers newly discovered in our laboratories.

Results: siRNA directed against Kv2.1 in INS-1 cells remarkably reduced the K current and augmented GIDAS, whereas Kv2.2 siRNA had no effect on GIDAS. Pancreatic β-cells from Kv2.1 knockout mice manifested significantly smaller K current and greater GIDAS in vitro. GxTx-1E diminished Kv2.2-stimulated then additionally diminished GIDAS dramatically in isolated mouse islets. But surprisingly, GxTx-1E only had a minimal in vivo effect to lower blood glucose levels during IPGTT (intraperitoneal glucose tolerance test) in mice. We thus examined the effects of GxTx-1E and Kv2.2; A, a small molecule blocker of Kv2.1 and Kv2.2 discovered in our laboratories, on the release of glucose and somatostatin, the other two major islet hormones. Besides promoting insulin secretion, both GxTx-1E and Kv2.1-A enhanced somatostatin (SST) release from the cultured islets or in vivo animals. The effect of GxTx-1E to promote SST secretion was still seen in islets from Kv2.1 knockout mice, and was further augmented when Kv2.2 expression was 65% ablated by adenoviral delivered siRNA, indicating that Kv2.2 but not Kv2.1 regulates SST secretion in the pancreatic islets. This was corroborated by high expression of Kv2.2 in SST secreting δ-cells of the islets revealed by in situ hybridization and immunohistochemistry.

Conclusion: Kv2.1 and Kv2.2 have distinct roles in regulating islet insulin and SST secretion. Development of selective Kv2.1 inhibitor and Kv2.2 activator may provide new avenue for novel insulin secretagogues for diabetes therapy.

Evidence of functional hemi-channels in beta cells: their opening by K+ depolarisation and/or Ca2+-omission

J. Tamarit-Rodriguez¹, I. Pizarro-Delgado¹, R. Martín-del-Rio¹

¹Biochemistry, Complutense University, ²Research Department, Hospital Ramón y Cajal, Madrid, Spain.

Background and aims: We have previously reported that islet depolarization (70 mM KCl + 0.25 mM diazoxide) induces release of GABA and taurine (Tau) and suppresses KIC-induced insulin secretion. The aim of this work is to characterize the responsible mechanism of this increased amino acid release.

Materials and methods: Insulin secretion of rat perfused islets was monitored by RIA. Iset content and release of amino acids were measured by fluorescent detection after pre-column derivatization with o-phthalaldehyde and their HPLC separation. Iset ATP and ADP contents were measured with the luciferin/luciferase system.

Results: At 5 mM glucose, Ca2+-oission (0 mM Ca2+ + 0.1 mM EGTA) stimulated islet release of GABA (438.5 ± 35.4, n=4 vs. 289.7 ± 41.2 pmol/30 islets x 60 min, n=4; p<0.03) and Tau (119.3 ± 11.5, n=4 vs. 66.7 ± 4.2 pmol/30 islets x 60 min, n=4; p<0.005) and suppressed proportionately their contents. 70 mM KCl depolarization potentiated the releasing effect of Ca2+-oission on both GABA (747.1 ± 98.7, n=4 vs. 438.5 ± 35.4 pmol/30 islets x 60 min, n=4; p<0.03) and Tau (194.1 ± 28.1, n=4 vs. 119.3 ± 11.5, n=4 pmol/30 islets x 60 min, n=4; p<0.05) and diminished proportionately their contents. Iset ATP release could not be measured due to the presence of a very efficient ecto-nucleotidase activity resistant to available inhibitors. However, at 3 mM glucose, ATP content was decreased by the combination of depolarization and Ca2+-oission (1.3 ± 0.4, n=12 vs. 2.8 ± 0.14 pmol/islet, n=18; p<0.0001) without affecting the ATP/ADP ratio (p=0.05). At physiological [Ca2+]i, islet depolarization alone suppressed ATP content at 3 mM glucose (0.9 ± 0.1, n=6 vs. 2.9 ± 0.3 pmol/islet, n=6; p<0.0001) and slightly decreased the ATP/ADP ratio (0.95 ± 0.05, n=5 vs. 1.26 ± 0.08 pmol/islet, n=5; p<0.011). 20 mM glucose prevented the loss of islet ATP by combination of depolarization and Ca2+-oission observed at 3 mM glucose (4.4 ± 0.16, n=8 vs. 4.6 ± 0.09 pmol/islet, n=12; N.S.) and preserved the elevated ATP/ADP ratio (1.8 ± 0.17, n=7 vs. 2.2 ± 0.22 pmol/islet, n=12; N.S.). Melfloquine (50 uM) did not modify islet ATP content at 3 mM glucose but counteracted the combined effects of islet depolarization + Ca2+-oission (2.1 ± 0.27, n=8 vs. 1.3 ± 0.14, n=12 pmol/islet; p<0.0006; it also partially suppressed islet amino acid release under the same experimental conditions. 20 mM glucose stimulation of insulin secretion in perfused islets (100 ± 9.3%) was dose-dependently decreased by melfloquine to 84.8 ± 11.5% (10 uM; N.S.), 53.7 ± 7.3% (25 uM; p<0.01) and 27.5 ± 5.2% (50 uM; p<0.001). At concentrations above 100 uM, it stimulated a secretion response that was independent of the glucose and calcium concentration and it decreased insulin islet content.

Conclusion: Iset amino acids and ATP are released by procedures known to open hemicannels/pannexins in other tissues. This is supported by the protective effect of melfloquine, a known connexin 36 inhibitor. Inhibition of islet secretion by melfloquine highlights the importance of beta cell communication for an optimal insulin response to glucose.

Supported by: MICINN (SAF2009-12671)

Analysis of submembrane insulin granule behaviour by TIRF microscopy during moderate and strong K+ depolarization

K. Hatlapataka¹, M. Matz², K. Baumann², I. Rustenbeck²

¹Institute of Pharmacology and Toxicology, ²Institute of Medicinal Chemistry, University of Braunschweig, Germany.

Background and aims: The release of a pool of membrane-adjacent secretory granules which are in a primed and docked state and await one final trigger, a depolarization-induced influx of Ca2+, is held responsible for the first phase of glucose-induced insulin secretion. Recently, we observed that 15 mM K+ led to a 20 mV depolarization and to a lasting increase of the cytosolic Ca2+ concentration ([Ca2+]i), but only to a modest transient increase in secretion, suggesting that the effect of depolarization on insulin secretion is only incompletely understood.

Materials and methods: Insulin secretion was measured by perfusion of mouse islets and MIN6 pseudosets and ELISA of the fractionated effluvate. The [Ca2+]i, of islets and MIN6 cells was measured with the Fura technique. Submembrane granules were visualized by transient transfection of MIN6 cells with an insulin-EGFP fusion protein and imaging by TIRF microscopy at 37°C. The images were evaluated by a purpose-made program written in Matlab to achieve a complete observer-independent quantitation.

Results: Islets perfused with 5 mM glucose showed only a transient increase in secretion when K+ was raised to 15 mM. A subsequent elevation to 40 mM K+ resulted in a prompt overshooting increase in secretion which remained increased as long as 40 mM K+ was present. In contrast, [Ca2+]i, was continuously elevated by 15 mM K+ and increased further when K+ was raised to 40 mM. The same secretion and [Ca2+]i, pattern could be observed with MIN6 pseudosets. MIN6 cells transfected with insulin-EGFP were therefore used to analyse the behavior of submembrane granules by TIRF microscopy at 5 time points: beginning, prior to high K+, one each during 15 and 40 mM K+ and one after washout of high K+. At each time point a sequence of 100 images was acquired within 12 s. Referring to the first sequence as 100%, the numbers of submembrane granules at the next time points were 109%, 76%, 50% and 56%. More than 50% of the granules were long-term resident (> 12 s). The percentage of short-term resident granules (≤ 1 s) increased slightly during 15 mM K+, then significantly during 40 mM K+ and remained so after washout. This correlated with an increase of the percentage of newly arriving granules from 1% initially to 7% during 15 mM K+ to and 15% during 40 mM K+ and washout. Very similar percentages applied for departing granules (i.e. return or release). There were no such changes in control experiments. The total and the net distances covered by the submembrane granules were not affected by high K+.

Conclusion: 40 mM K+ affects arrival, departure and residence time of insulin granules, but not movement parallel to the membrane. 15 mM K+ is moderately effective, which concurs with dynamic secretion measurements. Currently there is no indication that long-term resident granules are preferentially departing during stimulation.

560
Abnormal regulation of pancreatic beta cell Na,K-ATPase on glucose intolerant rats

A.R. Costa1,2, C.M. Antunes1,3, J. Cruz-Morais1,3; 1Chemistry, University of Évora, 2ICAAM – Institute of Mediterranean Agricultural and Environmental Sciences, Évora, 3CNC - Centre for Neurosciences and Cell Biology, Coimbra, Portugal.

Background and aims: Glucose (G) is the most important physiological insulin-sensitizing agent. It is widely accepted that, in pancreatic -cells, G evoked early ionic events such as membrane depolarization and Ca2+ influx through voltage dependent Ca2+ channels triggers insulin exocytosis. However, the role of other electrogenic systems, namely ion pumps, to these events remains essentially uninvestigated. It is known that the activity of Na,K-ATPase is modified in type 2 diabetes (T2D). The pump is responsible for maintaining Na+ and K+ gradients across the plasma membrane and generates a net outward current as a result of 3Na+→2K+ exchange. It remains elusive whether Na,K-ATPase activity is regulated by G in pancreatic β-cell and/or this current contributes to the ionic events regulating insulin secretion. The aim of this work was to assess G evoked regulation of Na,K-ATPase activity in intact β-cells of normal and G intolerant rats.

Materials and methods: Pancreatic β-cells, from normal (controls) or glucose-intolerant Wistar rats (GIR), were isolated and cultured (48h). Cell batches were pre-incubated (30min) with 2.1mM G to reach basal. Afterwards cells were challenged with [G] in the interval 0-11.1mM for 60min, for dose-dependence evaluation, or with 8.4mM G for 5-120min, for time-dependence evaluation. ATPase activity was assessed in intact cells by colorimetric quantification of Pi formed in 30min. Na,K-ATPase activity was calculated by the difference between the activities obtained in the absence and in presence of 1mM ouabain.

Results: G evoked both time- and dose-dependent regulation of Na,K-ATPase. In β-cells from controls, G induced a bimodal regulation of Na,K-ATPase. In the absence of G, Na,K-ATPase activity was 0.56±0.015U/mg. Raising [G] to 2.1mM induced a ≈3 fold increase of Na,K-ATPase activity whereas a further increase in [G] in the interval of 5.6-11.1mM evoked a significant reduction of Na,K-ATPase activity to the levels observed in the absence of the secretagogue. Compared to 2mM G, the activity was reduced in 68%, 55% and 66% when [G] was increased to 5.6, 8.4 and 11.1mM, respectively (n=3-12). GIR β-cells exhibit an altered profile of response to the secretagogue: In the absence of G, Na,K-ATPase activity was ≈4 fold the activity observed in the controls (0.202±0.036U/mg; n=3). The pump activity remained unchanged for 2.1-5.6mM G and similar to maximal activity observed in the controls (0.188±0.035 U/mg; n=4). A significant reduction of the pump activity in GIR β-cells was induced by 8.4mM G (0.118±0.018 U/mg). G (8mM) induced a time-dependent inhibition of Na,K-ATPase with a biphasic profile. Pump activity decreased to a minimum value (32%) after 20min exposure to G, showing a partial recovery to 45%, 46% and 47% for 30, 60 and 120min, respectively (n=5-12). GIR β-cells showed an attenuated response to G (59% activity after 20min) without any recovery (n=5-11).

Conclusion: This work demonstrates that Na,K-ATPase is finely regulated by G in pancreatic β-cell from normal subjects. This regulation is impaired in GIR where desensitization and an attenuation of the inhibitory action of G were observed. In summary, Na,K-ATPase contribution to G-induced ionic events and insulin secretion might be relevant in T2D development.

Supported by: ICAAM, CNC and a PhD grant from FEA.
564 Crosstalk between cAMP- and Zn²⁺ signalling in insulin secretion
O. Dyachok, O. Idevall, A. Tengholm, E. Gy°F
Department of Medical Cell Biology, Uppsala University, Sweden.

Background and aims: Glucose stimulation of β-cells evokes synchronized oscillations of the sub-membrane cytoplasmic Ca²⁺ ([Ca²⁺]ₘ) and cAMP ([cAMP]ₘ) concentrations, which underlie pulsatile insulin secretion (IS). Whereas Ca²⁺ is the principal trigger, cAMP is an important amplifier of IS. Zn²⁺ is present in high concentrations in insulin secretory vesicles and Zn²⁺-co-released with insulin has been proposed to exert a negative feedback on IS by inhibiting Ca²⁺ influx after activation of hyperpolarizing K⁺ channels. cAMP turns Ca²⁺ signals into modulated by Zn²⁺. In the present study, we investigated how glucose affects the sub-membrane Zn²⁺ concentration ([Zn²⁺]ₘ) and its influence on [Ca²⁺]ₘ, [cAMP]ₘ and insulin secretion kinetics in single β-cells.

Materials and methods: Simultaneous measurements of [Ca²⁺]ₘ and [Zn²⁺]ₘ were performed in single MIN6 β-cells co-loaded with the fluorescent indicators Fura Red and FluoZin-3. [cAMP]ₘ was detected by a fluorescent protein-based translocation biosensor. Another translocation biosensor reported phosphatidylinositol 3,4,5-trisphosphate formation in the plasma membrane ([PIP₃]ₘ) after autocrine insulin receptor activation, and this assay was used as a control for IS from single cells. Changes in [Zn²⁺]ₘ, [cAMP]ₘ and [PIP₃]ₘ were recorded with evanescent wave microscopy.

Results: Glucose stimulation of MIN6 cells induced pronounced [Ca²⁺]ₘ and [cAMP]ₘ oscillations resulting in pulsatile secretion. Glucose also elevated [Zn²⁺]ₘ and some cells showed synchronized oscillations of [Zn²⁺]ₘ and [Ca²⁺]ₘ, which were particularly prominent after addition of the K⁺ channel blocker tetraethylammonium. Blocking of voltage-dependent Ca²⁺ channels with methoxyverapamil or inhibition of Ca²⁺ influx by hyperpolarization with diazoxide prevented both [Ca²⁺]ₘ and [Zn²⁺]ₘ oscillations. Addition of exogenous Zn²⁺ to glucose-stimulated MIN6 cells resulted in amplification of the [Zn²⁺]ₘ oscillations but marked inhibition of the [cAMP]ₘ and [PIP₃]ₘ responses as well as suppressed insulin release detected by ELISA. The Zn²⁺-inhibited [PIP₃]ₘ oscillations were rescued by 8-Br-cAMP. In the absence of added Zn²⁺ the membrane permeable Zn²⁺ chelator TPEN abolished the Zn²⁺ signal and much amplified the [Ca²⁺]ₘ, [cAMP]ₘ and [PIP₃]ₘ responses to glucose stimulation.

Conclusion: These data reinforce the idea that Zn²⁺ feedback-regulates pulsatile insulin secretion by inhibiting cAMP signaling in β-cells.

565 Adenylate cyclase 8 is required for glucose-induced calcium signalling in pancreatic beta cells
M. Raoux, P. Vacher, J. Papin, B. Roger, C. Magnan, J. Lang
1 UMR CNRS 5284, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, Inserm U916, Institut Bergonié, Université de Bordeaux, 2 CNRS EAC 4413, Université Denis Diderot, Paris, France.

Background and aims: Glucose raises [Ca²⁺]ᵢ in β-cells, which is a pivotal action of the sugar. Its metabolism leads to an increase in ATP/ADP ratios and the ensuing closure of Kᵢᵥ₂₃ channels results in membrane depolarisation and Ca²⁺ influx. Glucose also stimulates cAMP generation, a second messenger considered as an amplifier of the cellular effects of Ca²⁺. We had previously observed that the Ca²⁺-activated adenylate cyclase 8 (ADCY8) mediates inositol on [Ca²⁺]ᵢ, and that glutocototoxicity strongly down-regulates ADCY8 in rat and human islets. In the present study, we addressed the role of cAMP and more specifically of ADCY8 in glucose-induced changes in [Ca²⁺]ᵢ.

Materials and methods: [Ca²⁺]ᵢ was measured using INDO-1 in clonal INS-1E and primary mouse β-cells. In addition, we used for the first time, a novel electrophysiological approach in β-cells that is the extracellular recording of electrical signals with microelectrode arrays.

Results: In INS-1E cells, glucose-induced increases in [Ca²⁺]ᵢ were significantly reduced from 339±43 (n=16) to 143±3 nM (n=20, p<0.001) by SQ22536 (100 μM), a general inhibitor of adenylyl cyclases. Similarly, the Ca²⁺ antagonist Rp-CAMPS (50 μM) reduced glucose effects to 47±12 nM (n=16, p<0.001) in INS-1E and from 258±64 to 34±9 nM in primary β-cells (n=21-25; p<0.005). In contrast, responses to KCl or thapsigargin remained unaltered. Similarly, knockdown reduced glucose-induced [Ca²⁺]ᵢ increases in islet cells from 209±36 to 32±5 nM (n=21 each; p<0.001) without altering responses to KCl. Finally, preliminary data using ADCY8 / knockout mice suggest equally a defect in glucose-induced [Ca²⁺]ᵢ, responses in β-cells and impaired glucose tolerance under normal diet.

Conclusion: Taken together, these results indicate a permissive rather than only amplifying role of cAMP and specifically of ADCY8 in the sequence of events leading from glucose exposure to increases in [Ca²⁺]ᵢ, in clonal and primary β-cells. In line with the down-regulation of this gene during glucotoxicity in rat and human islets, our data underline the pivotal importance of this enzyme in normal β-cell function and potentially in type 2 diabetes.

Supported by: SFD and AFD

566 Glucose and munc18 stimulation trigger distinct diacylglycerol signals in pancreatic beta cells
A. Wutkie, H. Emanuelsson, A. Tengholm
Medical Cell Biology, Uppsala University, Sweden.

Background and aims: Diacylglycerol (DAG) is generated in the plasma membrane via phospholipase cleavage of phospholipidoids in response to nutrients and receptor stimuli. Several DAG-activated proteins like protein kinase C, protein kinase D and Munc13 have been implicated in the regulation of insulin secretion. The aim of this study was to characterize the temporal pattern of plasma membrane DAG signaling in insulin-secreting cells exposed to different stimuli.

Materials and methods: A biosensor based on the two adjacent DAG-binding C1 domains of rat protein kinase Cγ tagged to green fluorescent protein (C1aC1b-GFP) was used to monitor DAG in individual MIN6 β-cells. The probe localizes to the plasma membrane upon DAG formation, which was monitored with confocal and evanescent wave microscopy. The cytoplasmic Ca²⁺ concentration in the immediate sub-plasma membrane space was recorded with evanescent wave microscopy in cells loaded with the fluorescent indicator Fura Red.
Results: Confocal imaging of MIN6 β-cells expressing C1aC1b-GFP showed diffuse cytoplasmic fluorescence and a slight accumulation of the probe in the nucleus under basal conditions. Addition of 1 μM of the functional DAG mimetic phospholipase C produced rapid redistribution of the fluorescence to the plasma membrane. This translocation was detected as a pronounced increase of fluorescence when imaging the plasma membrane with evanescent wave microscopy. Activation of muscarinic receptors with carbachol caused a dose-dependent and sustained, plasma membrane translocation of C1aC1b-GFP with threshold and maximal response at about 0.1 and 100 μM (130±7 μM fluorescence increase), respectively, and the half maximal effect at 7±0.7 μM (n=50). Depolarization with 30 mM K+ caused a rapid increase in the plasma membrane C1aC1b-GFP fluorescence followed by a decline and brief (3-13 s duration), irregular spikes, often originating from a slightly elevated level. This response required influx of Ca2+, since Ca2+-deficient medium containing 2 mM EGTA reversibly removed all spiking. Elevation of the glucose concentration from 3 to 11 mM induced complex changes of the plasma membrane C1aC1b-GFP fluorescence. The majority of cells (55.5%) showed brief irregular high-amplitude (60±12 % fluorescence increase, n=25) spiking like during K+ depolarization. In 15.5% of the cells, glucose triggered slow (0.31±0.2 min-1), low-amplitude (28±6 % fluorescence increase, n=7) oscillations without spikes, and in 29% of the cells the high-amplitude spikes were grouped into bursts with similar frequency as the slow oscillations. The glucose-induced DAG signaling was Ca2+-dependent and simultaneous measurements revealed that the initial increase of C1aC1b-GFP fluorescence was always preceded by an increase of the sub-plasma membrane Ca2+ concentration.

Conclusion: The plasma membrane DAG concentration shows distinct and complex changes in insulin-secreting cells exposed to receptor, nutrient and depolarizing stimuli, probably reflecting different modes of phospholipase C activation. The DAG signaling patterns may differently affect downstream effector proteins involved in the regulation of insulin secretion.

PS 39 Incretins and beta cell mass in rodents

567
Preservation of pancreatic beta cell mass in high fat-fed STZ treated mice by the Dipeptidyl peptidase-4 inhibitors Saxagliptin and Sitagliptin

S.M. Poucher1, J. Francis1, S. Vickers1, S. Cheetham2, G. Birmingham4, K. Dickinson1, B. Zinker3, A. Bellamine2, M. Kirby3
1Cardiovascular Discovery Department, AstraZeneca Pharmaceuticals, Macclesfield, United Kingdom, 2ASTL, AstraZeneca Pharmaceuticals, Charnwood, United Kingdom, 3RenaSci Consultancy, Nottingham, United Kingdom, 4Diabetes Drug Discovery, Bristol-Myers Squibb, Princeton, USA, 5CV / Metabolism US Medical Strategies, Bristol-Myers Squibb, Princeton, USA, 6Diabetes Drug Discovery, Bristol-Myers Squibb, Princeton, USA.

Background and aims: Saxagliptin is a potent, selective DPP-4 inhibitor, specifically designed for extended inhibition of the DPP-4 enzyme. DPP-4 inactivates incretins that stimulate glucose-dependent insulin secretion. A proposed mechanism of action involves protecting incretins from DPP-4 degradation, thus improving β-cell preservation in conditions of β-cell stress. In this study we investigated the β-cell preservation effects of saxagliptin and sitagliptin at similar exposures in relation to their potencies as DPP-IV inhibitors.

Materials and methods: C57BL/6J mice (12 per group) were placed on a 60% fat diet for 4 weeks prior to 50mg/kg streptozotocin (STZ, ip, daily for 3 days). All animals were randomised based on bodyweight, glucose, insulin and HbA1c. They were dosed with Vehicle (V) Sitagliptin (Sita) or Saxagliptin (Saxa) (10mg/kg/day, po) throughout the study commencing either one week prior to STZ treatment or 1 day after STZ treatment. Glycaemic control was determined by oral glucose tolerance tests (OGTT) 3 weeks post-STZ treatment and by fasting blood glucose 36 days post STZ. Automated imaging and analysis systems were used to determine β-cell mass using terminal formalin-fixed, paraffin-embedded samples taken 36 days after induction of treatment.

Results: Plasma compound concentration measured 24 hours after the final dose gave calculated unbound concentrations 7.9 and 3.1 fold above the Ki value for Saxa and Sita, respectively. Glycaemic control and β-cell mass data are given in the table.

<table>
<thead>
<tr>
<th>Glycaemic control and beta cell mass following compound treatment</th>
<th>Vehicle STZ</th>
<th>Sita Pre STZ</th>
<th>Sita Post STZ</th>
<th>Saxa Pre STZ</th>
<th>Saxa Post STZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBG (mM)</td>
<td>17.9±1.3</td>
<td>16.1±0.7</td>
<td>15.6±1.2</td>
<td>17.6±1.2</td>
<td>14.4±1.0*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.8±0.2</td>
<td>6.2±0.2*</td>
<td>6.3±0.2</td>
<td>6.5±0.2</td>
<td>6.1±0.2</td>
</tr>
<tr>
<td>OGTT Glucose AUC0-120 min (mM.min)</td>
<td>32.9±1.9</td>
<td>28.4±1.0†</td>
<td>28.4±0.8</td>
<td>28.3±1.3†</td>
<td>28.3±1.8†</td>
</tr>
<tr>
<td>OGTT Insulin AUC0-120 min (ng/ml.min)</td>
<td>-0.05±0.14</td>
<td>0.12±0.09</td>
<td>0.09±0.20</td>
<td>-0.05±0.17</td>
<td>0.19±0.17</td>
</tr>
<tr>
<td>Beta cell mass (mg)</td>
<td>0.13±0.03</td>
<td>0.16±0.02</td>
<td>0.42±0.06†</td>
<td>0.23±0.03*</td>
<td>0.28±0.05*</td>
</tr>
</tbody>
</table>

(Data are mean and sem calculated from the residuals of the SAS ROBUSTREG procedure and t-tests undertaken using two-sided tests. *, P<0.05 and †, P<0.01 compared to vehicle).

In animals treated post STZ, both saxa and Sita significantly reduced glucose AUC0-120min with no effect on insulin AUC0-120min during OGTT. Saxa induced a significant reduction in HbA1c and fasting glucose levels. Both treatments demonstrated a significant improvement in β-cell mass. Mice dosed pre STZ showed that both Saxa and Sita again reduced the glucose AUC0-120min. Saxa also demonstrated improvement in β-cell mass compared with vehicle. Saxa demonstrated improved β-cell mass preservation in a rodent model of type 2 diabetes.

Conclusion: Overall both Saxa and Sita showed similar improvements in glycaemic control and β-cell mass preservation in the high fat-fed, STZ mouse model of pancreatic β-cell degeneration. We have demonstrated for the first time that saxagliptin along with improving glycaemic control had a positive impact on β-cell preservation in a rodent model of type 2 diabetes.
568

Protective effects of DPP-4 inhibitor against increased beta cell apoptosis with multiorgan glucolipotoxicity by a combination of dietary sugar and fatty acid

J. Shirakawa, E. Takeda, Y. Terasuchi; ‘Endocrinology and Metabolism, Yokohama City University, ‘Clinical Nutrition, Tokushima University, Japan.

A composition of diet affects metabolic states in diabetes. We investigated diet-induced glucolipotoxicity and effects of des-fluoro-sitagliptin (DFS), a DPP-4 inhibitor, on in β cell-specific glucokinase haplosufficient (Gck+/−) diabetic mice. We challenged the mice with diet containing a combination of sucrose and oleic acid (SO), or sucrose and linoleic acid (SL) for 25 weeks. In Gck+/− mice, but not in the wild-type mice, SL induced impaired insulin secretion in response to glucose. Histochemical analyses revealed that, in Gck+/− mice fed SL, β cell mass and proportion of β cells to islet cells were significantly decreased, a cell were dispersed into islet, and both CHOP- and TUNEL-positive β cells were significantly increased, compared to those fed SO. Analysis of mRNA expression showed that CHOP, Bip and SREBP-1c were significantly increased and E-cadherin was significantly decreased in islets of Gck+/− mice fed SL, compared to SO. These results indicated that the SL diet induced endoplasmic reticulum (ER) stress and apoptosis in β cells, which resulted in β cell loss and abnormal islet morphology by modification of SREBP-1C and E-cadherin expression. Whereas histology and flow cytometry of epidymal fat indicated increased number of F4/80+ M1 macrophages and CD8+ T cell in SL, compared to SO. We next evaluated DFS monotherapy for increased beta cell apoptosis and glucolipotoxicity in Gck+/− mice fed SL with 1.1% DFS. Treatment with DFS improved glucose tolerance, protected against β cell apoptosis, restored β cell mass, and normalized islet morphology in Gck+/− mice fed SL. DFS normalized the changes of islet mRNA expression of CHOP, Bip, SREBP-1c and E-cadherin by SL diet. DFS also reduced CD8+ T cell and M1 macrophage infiltration to epidymal fat. Furthermore, DFS prevented liver steatosis in SL-fed mice. Liver mRNA expression of SREBP-1c and SCD-1 were decreased, and PPARα was increased in DFS treated group. Taken together, DFS protected against metabolic disorders in multiple organs induced by dietary sugar and fatty acid (multiorgan glucolipotoxicity).

569

Enhanced proliferation of islet beta cells in spontaneously diabetic GK rats treated with DPP-IV inhibitor (Vildagliptin)

S. Yagihashi, H. Mizukami, W. Inaba, K. Takahashi; Pathology and Molecular Medicine, Hiroshima University, Japan.

Background and aims: Progressive decline of beta cell mass is a hallmark of either obese or lean type 2 diabetic patients. Currently, incretins are expected to not only exert insulin secretion but to protect beta cell depletion. It is not entirely clear, however, whether DPP-IV inhibitors have a potential to maintain beta cell survival or to prevent apoptotic processes of beta cells in lean type 2 diabetes. Spontaneously diabetic GK rats are non-obese, typical of lean type 2 diabetes model. In this study, we studied the effects of DPP-IV inhibitor on the islet pathology in GK rats to explore how it can protect the development of beta cell depletion.

Materials and methods: GK rats 4 weeks of age were orally given DPP-IV inhibitor (Vildagliptin 15mg/kg) (VG) twice a day for following 18 weeks. Untreated GK rats were given saline alone. Non-diabetic Wistar rats served controls. At end, all the animals were sacrificed after glucose tolerance test (GTT) (2g/kg) and insulin tolerance test (ITT) (0.5U/kg). Then, pancreases were subjected to evaluation of islet pathology and morphometric analysis of beta cells.

Results: VG treatment significantly suppressed postprandial hyperglycemia and food intake in GK rats, but did not affect blood glucose levels in normal Wistar rats. Glucose intolerance on GTT was also significantly improved in VG-treated GK rats. Lowered insulin secretion in GK rats after meals was significantly improved by VG treatment while no effects on Wistar rats. Insulin resistance detected in GK rats on ITT was significantly improved at 30 min point in VG-treated GK rats, while there was no effect in Wistar rats. The islets in GK rats were atrophic and irregular mixed with macrophage infiltration. VG-treated GK rats exhibited marked hyperplastic islets and less inflammatory changes. Islet morphometry disclosed significant decline of islet volume (48% of Wistar) and beta cell mass (41% of Wistar) in GK rats. VG-treated GK rats recovered the islet volume (120% of Wistar) and beta cell mass (103% of Wistar). Volume density of alpha cells was also decreased in GK rats and corrected by VG treatment. Proliferation rate of beta cells as revealed by MIB-1 index was significantly reduced in GK rats (21% of Wistar) and VG-treated GK rats recovered the index (5.6 times of untreated GK rats). Apoptotic cells in the islets were not detected in any group, either diabetic or non-diabetic groups.

Conclusion: Our present study demonstrated that significant recovery of islet size and beta cell volume density was obtained in lean type 2 diabetic GK rats when treated with VG. The effects were mainly caused by enhanced proliferation of beta cells and associated with improved glucose intolerance and insulin secretion.

Supported by: Novartis Research Fund

570

GLP-1 counteracts fatty acid inducing expression of PANDER, an apoptotic cytokine secreted from pancreatic islets, through activating Akt pathway

X. Cao, S. Chen, H. Xiao, S. Chen, X. Mo, Y. Li; Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background and aims: PANDER is a novel discovered cytokine that is secreted from pancreatic islet cells. It has been demonstrated that overexpression of PANDER induces pancreatic beta-cell apoptosis and dysfunction. To better understand the role of pancreatitis on the pathophysiological role of PANDER in the islet beta-cells, we analyzed the effects of fatty acid and the counteracting effects of GLP-1 on PANDER expression and the possible mechanism.

Materials and methods: Beta-TC3 cells were cultured with or without Palmitic acid (PA), and/or GLP-1, Akt inhibitor (Akti). Cell viability was measured with MTT. Annexin-V-FITC/PI FACS was used to analyze cell apoptosis. PANDER mRNA and protein expression were measured by real-time fluorescence quantitative PCR and western blot, respectively.

Results: PA decreases cell viability of pancreatic beta-TC3 cell in a dose dependent manner as measured with MTT. Cell viability reduced one third when cells were treated with 0.8mmol/L PA, and a further decrease of 40% was observed when 1.0 mmol/L PA was used. Cell viability were increased significantly in PA + GLP-1 treated cells comparing to the PA treated cells (P<0.05). There were no significant differences between control group and PA + GLP-1 group (P>0.05). Annexin-V-FITC/PI FACS analysis has showed that the apoptotic rate of beta-TC3 cells were (18.20 ± 2.14)%, (52.73 ± 3.29)%, and (34.49 ± 1.57)% in control, cells treated with PA, and cells treated with PA + GLP-1, respectively. PA increased cell apoptosis significantly (vs control, P<0.05), and GLP-1 rescued cells from PA inducing apoptosis. Comparing to the PA treated cells, the apoptotic cells was significantly lower in cells treated with PA + GLP-1 (P<0.05). PANDER mRNA expression is presented by F value of real-time PCR. The lower of F value, the higher the mRNA expression level. The F values were (1.00 ± 0.00) %, (0.16 ± 0.16) %, and (2.01 ± 0.46) % in control cells, cells treated with PA, and cells treated with PA + GLP-1, respectively. PA increased PANDER mRNA expression significantly (vs control, P<0.05), while GLP-1 decreased PA inducing PANDER mRNA expression (vs PA, P<0.05). Western blot has showed that PA induced 1.5 fold increase of PANDER protein expression, and there is no significant difference of PANDER protein expression between the control and PA+GLP-1 treated cells. GLP-1 reduced PA inducing PANDER protein expression significant (vs PA, P<0.05). The p-Akt protein expression was increased in both of the GLP-1 and GLP-1+PA groups. When AktI was added, there are no significant differences of PANDER protein expression between PA and PA+GLP-1 treated cells were observed. The effect of GLP-1 on PA inducing PANDER expression was reduced.

Conclusion: GLP-1 counteracts PA inducing PANDER expression and rescues beta-cells from PA inducing apoptosis. This effect of GLP-1 on PA inducing PANDER expression is partially through activating the Akt pathway. Supported by: NSFC
Exendin-4 inhibits palmitate-induced apoptosis in pancreatic beta cells
A. Natalichio, R. Labaruta, M.R. Orlando, F. Tortosa, A. Leonardini, A. Cignarelli, M. Melchiore, A. Peschechera, P. Marchetti, S. Perrini, L. Laviola, F. Giorgioni

Background and aims: Type 2 diabetes is characterized by a progressive decline in the number of insulin-producing beta-cells, largely due to increased cellular apoptosis. Free fatty acids (FFA) are essential energy metabolites in the normal state, but induce beta-cell dysfunction and death when their levels are chronically increased, thus contributing to the pathogenesis of type 2 diabetes. GLP-1 and its long-acting receptor agonist exendin-4 (ex-4) increase the survival of beta-cells exposed to various pro-apoptotic stimuli, including FFA. The aim of this study was to investigate the mechanisms of FFA-induced beta-cell apoptosis and the potential protective effects of GLP-1 mimetics on this response in the rat insulin-secreting cell line INS-1 and in isolated human islets.

Materials and methods: INS-1 beta-cells and isolated human islets were exposed to 0.5 mM palmitate for several h. The effects of ex-4 were evaluated by pre-incubating INS-1 cells with 10 nM ex-4 for 16 h. Protein content and phosphorylation of intracellular signaling intermediates were evaluated by immunoprecipitation and immunoblotting techniques. Gene expression was evaluated by qRT-PCR. Beta-cell apoptosis was quantified by an ELISA assay evaluating oligosome release into the cytosol.

Results: Exposure of both INS-1 cells and isolated human islets to 0.5 mM palmitate, a saturated fatty acid, up to 48 h induced a 2.5-fold increase in cell apoptosis, measured by evaluation of cytoplasmic oligosomes (p<0.05) and cleaved caspase-3 (p<0.05). Palmitate induced a 3.5-fold increase in the phosphorylation of JNK1/2, a class of mitogen-activated protein kinases largely involved in beta-cell apoptosis, evaluated by both immunoblotting and immunofluorescence (p<0.05), and a 3.8-fold increase in the mRNA levels of the JNK substrate c-Jun (p<0.05), evaluated by qRT-PCR. Preincubation with 10 μM SP600125, a specific JNK inhibitor, for 2 h prevented palmitate-induced apoptosis (p<0.05 vs. palmitate-treated cells). Treatment with 10 nM ex-4 for 16 h inhibited both palmitate-induced activation of JNK1/2 (p<0.05 vs. palmitate-treated cells) and apoptosis (p<0.05 vs. palmitate-treated cells) in both rat insulin-secreting cells INS-1 and isolated human islets. Furthermore, ex-4 inhibited palmitate-induced phosphorylation of the upstream stress signaling kinases MKK4 and MKK7, which are implicated in JNK activation (p<0.05 vs. palmitate-treated cells), and increased the protein content of Islet-Brain 1 (IB1), a blocker of the stress-induced JNK pathway (p<0.05).

Conclusion: Palmitate induces apoptosis of human and rat beta-cells by activating JNK1/2, and the GLP-1 analog ex-4 prevents palmitate-mediated apoptosis, at least in part by interfering with the JNK activation pathway. These results provide evidence that the ability of ex-4 to prevent FFA-induced apoptosis involves inhibition of the JNK pathway, identifying an important mechanism by which GLP-1 receptor agonists may halt beta-cell death triggered by metabolic abnormalities.

Supported by: University of Bari

PEGylated PYY_3-36 has beneficial effects on glucose handling and exhibits islet sparing effects in db/db mice

Materials and methods: Acute effect of PEG-PYY (3, 10, 20 and 30 mg/kg) on fasting glucose 26 h after a single subcutaneous (sc) administration was measured in diabetic 11-week old female db/db mice (Jackson Laboratories, Bar Harbor, ME). An oral glucose tolerance test was conducted to determine the effects on glucose disposal. We next examined the effects of PEG-PYY (sc, q2d) administration for 6 weeks on glucose handling and islet morphology following sub-chronic dosing in 9-week old db/db mice. The effects of 3-week PEG-PYY treatment (q2d) on body weight and insulin sensitivity were measured in male C57Bl/6 DIO mice (Jackson laboratories).

Results: PEG-PYY exhibited high NPY2-receptor selectivity (>100-fold) against related NPY receptors. In leptin receptor deficient diabetic db/db mice, a single sc dose of PEG-PYY produced a 61% reduction in fasting blood glucose levels at 26 h post-dose. In addition, there was a significant improvement in glucose handling observed following an oral glucose challenge. Similar benefits were observed following sub-chronic dosing with PEG-PYY. In 9-week old db/db mice, PEG-PYY (20 mg/kg) injected every other day for 6-weeks improved glucose handling and had an islet sparing effect. A substantial improvement in islet morphology and insulin immunoreactivity was observed in PEG-PYY treated mice. In addition to its anti-diabetic benefits, PEG-PYY displayed robust anti-obesity effects as expected. Following sub-chronic dosing in DIO mice, a sustained reduction in body weight gain (12% @ 20 mg/kg) and an improvement in insulin sensitivity were observed. Significant improvements in levels of glucose, insulin, triglycerides and cholesterol were also noted.

Conclusion: In summary, we have observed that PEG-PYY improves glucose handling following an acute dose diabetic db/db mice. Sub-chronic treatment with PEG-PYY delayed the onset of diabetes in mildly hyperglycemic db/db mice and maintained islet health. These benefits of PEG-PYY likely involve its effects on insulin sensitivity, food intake, weight gain and lipid metabolism. Thus long acting PYY analogs have the potential to be developed as treatments for diabetes, with the added benefit of improved lipid parameters.

Supported by: Discovery Technologies, Discovery Chemistry, Non clinical Safety, Discovery Technologies, Pharmaceutical & Analytical R&D, Hoffmann-La Roche Inc., Nutley, USA

Background and aims: NPY2-receptor peptide agonists suppress appetite in animal models of obesity, and therefore show great promise as treatment for obesity. However, their anti-diabetic potential has not been fully explored. In this study we investigated the anti-diabetic potential of long acting PEGylated PYY_3-36 (PEG-PYY).
PS 40 Hypoglycaemia in type 2 diabetes

573

A basal–bolus regimen of insulin glargine and insulin glulisine results in a lower rate of hypoglycaemia relative to endpoint HbA1c versus twice-daily premixed insulin in type 2 diabetes patients

A. Fritsche, M. Larbig, H.-U. Häring. The GINGER Study Group; Fourth Medical Department and Policlinic, University Tübingen, Germany, sanofi-aventis, Berlin, Germany.

Background and aims: We recently demonstrated, in the GINGER study, that an intensified basal–bolus regimen using insulin glargine (GLAR) and insulin glulisine (GLU) provides significantly superior glycaemic control compared with premixed insulin therapy (ΔHbA1c reduction 0.5%; Table) in a population with long-standing insulin-treated type 2 diabetes mellitus (T2DM). Although a difference in rates of hypoglycaemia favouring the basal–bolus arm was present, this was not statistically significant. It is well known that greater improvements in HbA1c are associated with higher rates of hypoglycaemia. The aim of this analysis was to investigate the rate of hypoglycaemia relative to the achieved glycaemic control in terms of HbA1c.

Materials and methods: In this 52-week, open, randomized, multinational, multicentre clinical trial, mealtime GLU and once-daily GLAR (n=153) was compared with an optimized conventional therapy of twice-daily premixed insulin (n=157) in T2DM patients inadequately controlled with their previous premixed insulins. In the premixed insulin group, 63 subjects received a combination of NPH/aspart. At baseline, the characteristics of the total study population (49% female) were (mean ± standard deviation): age, 61 ± 8 years; body mass index, 30.1 ± 3.7 kg/m²; diabetes duration, 13 ± 6 years; and insulin use, 5 ± 4 years. We used negative binomial regression analysis to model hypoglycaemia outcomes by endpoint HbA1c, adjusting for baseline HbA1c and diabetes duration, taking zero inflation into account.

Results: The subjects with GLAR/GLU therapy had a 24.5% lower rate of overall hypoglycaemia (1399.17 ± 2344.24 vs 1854.31 ± 3694.83 events per patient year for GLAR/GLU and premix, respectively; unadjusted rate, Table) than the whole premix group (p=0.1211 from the adjusted model) and a 43.3% (p=0.0196) lower rate of overall hypoglycaemia than the NPH/aspart subgroup. When the analysis only included patients with at least one episode of hypoglycaemia during the study, the subjects with GLAR/GLU therapy had a 26.2% (p=0.0442) and 40.7% (p=0.0086) lower rate of overall hypoglycaemia than the whole premix group and NPH/aspart subgroup, respectively. Analyses with confirmed hypoglycaemia yielded similar results.

Conclusions: In the GINGER study, basal–bolus treatment with GLAR/GLU displayed a lower rate of hypoglycaemia in relation to endpoint HbA1c compared with premixed insulin therapy. This was more pronounced in the analysis comparing the GLAR/glulisine treatment subgroup with basal–bolus treatment. Therefore, a basal–bolus regimen with insulin analogues is safer than premixed insulin therapy in T2DM patients with long-standing diabetes, when considering endpoint HbA1c.

Table: Hypoglycaemia and HbA1c

<table>
<thead>
<tr>
<th>Insulin glargine/insulin glulisine</th>
<th>Premix</th>
<th>AI</th>
<th>NPH/aspart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoglycaemia (events per 100 patient-years; safety population)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=153</td>
<td>n=157</td>
<td>n=63</td>
<td></td>
</tr>
<tr>
<td>Overall hypoglycaemia</td>
<td>1399.17 ± 2424.24</td>
<td>1854.31 ± 3694.83</td>
<td></td>
</tr>
<tr>
<td>Confirmed hypoglycaemia</td>
<td>1129.52 ± 2286.84</td>
<td>1548.67 ± 3630.64</td>
<td></td>
</tr>
<tr>
<td>HbA1c (mean ± standard deviation; full analysis set)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=153</td>
<td>n=157</td>
<td>n=61</td>
<td></td>
</tr>
<tr>
<td>Baseline HbA1c, %</td>
<td>8.62 ± 0.83</td>
<td>8.51 ± 0.86</td>
<td>8.44 ± 0.90</td>
</tr>
<tr>
<td>Endpoint HbA1c, %</td>
<td>7.31 ± 1.16</td>
<td>7.71 ± 1.14</td>
<td>7.74 ± 1.31</td>
</tr>
<tr>
<td>Baseline to endpoint change, %</td>
<td>−1.31 ± 1.19</td>
<td>−0.80 ± 1.01</td>
<td>−0.76 ± 1.08</td>
</tr>
<tr>
<td>Adjusted mean difference in HbA1c</td>
<td>−0.476</td>
<td>−0.589</td>
<td>(−0.374, −0.933; −0.238, −0.246</td>
</tr>
</tbody>
</table>

Supported by: sanofi-aventis

574

Detection of patient-specific intra-day patterns among hypoglycaemia episodes using continuous glucose monitoring

R. Cheng, T.C. Dunn; Abbott Diabetes Care, Alameda, USA.

Background and aims: Incidence of hypoglycaemia can be affected by insulin dosing, exercise, meals and sleep. Patterns in lifestyle and treatment decisions can result in consistent hypoglycaemic patterns. Rapid computational screening of patient data can identify times of day with significant temporal patterns, which can then inform self-management adjustments that lead to improved glycaemic control. A computational method for identifying patient-specific patterns in hypoglycaemic episodes is proposed and applied to CGM data from a 40-day Freestyle Navigator System home-use study to evaluate the impact of unmasked CGM readings on hypoglycaemic patterns.

Materials and methods: 64 (T1DM=46, T2DM=18, all insulin users) subjects were selected for analysis based on high data availability and presence of at least 2 hours of hypoglycaemia (<3.89 mmol/L) over the 40 day study. Subjects had glucose data masked for the first 20 days and unmasked for the following 20 days. During the masked phase, subjects were not able to see their CGM glucose values or trends and did not have glucose threshold or projected alarms available. CGM data from each subject’s 20-day phases are divided into 2,880 ten-minute segments and categorized as hypoglycaemic or not. For each subject, the number of ten-minute hypoglycaemic segments is counted in each of six periods of the day (Early Morning: 0:00-4:00, Late Morning: 5:00-9:00, Early Afternoon: 10:00-14:00, Late Afternoon: 15:00-19:00, Early Night: 20:00- 0:00, Late Night: 0:00-4:00). Any period of the day with 30 or more hypoglycaemic segments (corresponding to an average of 1.5 segments, or 15 minutes of hypoglycaemia, in a given four hour period per day) is labeled as a persistent hypoglycaemia pattern for that subject. The proportions of subjects with such patterns during the masked and unmasked phases were compared for each period of the day using pooled-proportion z-tests.

Results: The proportion of subjects with persistent hypoglycaemia patterns differed significantly between the masked and unmasked phases in the Early Night (28%, 5%, p=0.0003) and Late Night (38%, 6%, p < 0.0001) periods. In the Early Morning (28%, 16%, p=0.0872), Late Morning (8%, 6%, p=0.7296), Early Afternoon (8%, 8%, p=1.0000) and Late Afternoon (17%, 6%, p=0.0544) periods, the proportion of subjects with persistent hypoglycaemia patterns did not differ significantly.

Conclusion: The proposed computational method is useful for identifying periods of the day with hypoglycaemia patterns on a per-subject basis. When used to compare masked and unmasked phases of a CGM home-use study, the incidence of persistent hypoglycaemia was found to be significantly lower during the Early Night and Late Night periods of the unmasked phase relative to the masked phase. The method can be extended to identify other glycemic episodes of interest (such as hyperglycaemia) over different time periods (e.g. days of the week). Prospective studies would be needed to evaluate the method’s ability to improve therapy decisions.

Supported by: Abbott Diabetes Care

575

Relationship of hypoglycaemia with medication, discontinuation and costs in type 2 diabetes mellitus patients

Background and aims: Hypoglycaemia is a common and potentially severe adverse effect of antidiabetic treatment and poses significant barrier to main-
taining tight blood glucose control. (Amiel, 2008; Cryer, 2009) This study investigates the clinical and economic effect of hypoglycemia in type 2 diabetes mellitus (T2DM) patients initiated on oral and/or insulin antidiabetic drugs (OADs). Risks of hypoglycemia, likelihood of discontinuation, medical costs and medication type are compared between patients diagnosed with hypoglycemia vs. no hypoglycemia.

Materials and methods: T2DM patients initiated on OADs were identified in the Ingenix IMPACT Database (1999-2008). Included patients were ≥18 years old and had ≥1 year of continuous eligibility following the index date (first OAD prescription). Hypoglycemia risk factors in the subsequent 6-month interval were examined with multivariate Cox PH models adjusting for demographic characteristics and time-varying covariates (diabetes treatments and co-morbidities). The effect of hypoglycemia and other factors on antidiabetic treatment discontinuation was analyzed using GEE models with repeated measures. Annual cost outcomes for hypoglycemia were analyzed using GLM regressions.

Results: A total of 212,061 T2DM patients with ≥1 OAD treatment were identified, with 4,860 (2.3%) patients having a hypoglycemia diagnosis in the first year following the index date. Use of sulfonylurea (HR=1.58, p<.0001), insulins (HR=1.77, p<.0001), meglitinides or alpha-glucosidases (HR=1.27, p<.0001) was associated with a significant increase in hypoglycemia risk in the next 6-month interval. Use of DPP-4 inhibitors (HR=0.79, p=.0141), TZDs (HR=1.06, p=.0133) or metformin (HR=0.99, p=.8203) had minimal effect on hypoglycemia risk. Hypoglycemia diagnosis in a given 6-month interval significantly increased the likelihood of treatment discontinuation (OR=1.27, 95% CI=1.23, 1.32) within the same and the next 6-month interval (OR=1.14, 95% CI=1.09, 1.19). Moreover, for patients with a hypoglycemia diagnosis, average annual total costs (medical+drug costs, $8,273 vs. $8,908, p<.0001) and diabetes-related costs ($8,969 vs. $3,220, p<.0001) were significantly higher than for those without a diagnosis.

Conclusions: Patients experiencing hypoglycemia are at a higher risk of therapy discontinuation while hypoglycemia risk varies among treatments; insulin and SUs are associated with the most risk within the short term. The cost impact is twice as high with hypoglycemia compared to no hypoglycemia due to significantly higher total medical and diabetes-related costs.

Supported by: TPNA, Inc.

Table 1. Predictors of Hypoglycemia in Patients Receiving SU

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c Level (6.5 - 6.9% as Ref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><6.5%</td>
<td>1.238</td>
<td>0.924-1.659</td>
</tr>
<tr>
<td>7.0 - 7.9%</td>
<td>1.234</td>
<td>0.926-1.645</td>
</tr>
<tr>
<td>8.0 - 8.9%</td>
<td>1.242</td>
<td>0.913-1.689</td>
</tr>
<tr>
<td>≥ 9%</td>
<td>1.472**</td>
<td>1.094-1.982</td>
</tr>
<tr>
<td>High-Dose SU</td>
<td>1.357**</td>
<td>1.152-1.598</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>1.032**</td>
<td>1.025-1.040</td>
</tr>
<tr>
<td>Male Gender</td>
<td>0.906</td>
<td>0.777-1.056</td>
</tr>
</tbody>
</table>

Supported by: TPNA, Inc.

576 Impact of HbA1c and sulfonylurea use on hypoglycaemia in type 2 diabetes mellitus

Materials and methods: A retrospective claims analysis of the I3 Innovus database was conducted on T2DM patients with at least one documented episode of symptomatic hypoglycaemia over the course of the study. Each 1 kg/m² increment in BMI at insulin initiation was associated with a 3% reduction in symptomatic hypoglycaemia over the course of the study. Each 1 kg/m² increment in BMI at initiation was associated with a 3% reduction in symptomatic hypoglycaemia. Risk of hypoglycemia was significantly lower with basal insulins (HR=1.77, p<.0001), meglitinides or alpha-glucosidases (HR=1.27, p<.0001) compared to short-acting insulins. The use of basal insulin alone was associated with a lower risk of symptomatic hypoglycaemia than other insulin regimens.

Background and aims: Hypoglycaemia has been suggested to be a potential causative factor in the development of diabetes-associated cardiovascular disease (CVD). We evaluated risk factors for symptomatic hypoglycaemia in the CREDIT study, a 314-centre, multinational, non-interventional, prospective study designed to investigate the effects of insulin initiation and long-term glycaemic control on CVD risk, with 3031 type 2 diabetes mellitus (T2DM) patients enrolled.

Materials and methods: Patients with at least one documented episode of symptomatic hypoglycaemia between 6 months and 1 year after initiating insulin were identified. Potential factors associated with hypoglycaemia (including patient demographics, medical history, CVD risk factors, glycaemic control and diabetes treatment) were described and assessed in a multivariable stepwise logistic regression. To enter and retain each factor in the model a p value of 0.20 and 0.05, respectively, was required. Multivariable analysis was adjusted for country.

Results: Of 2510 patients included in this analysis, 504 (20.1%) experienced at least one documented episode of symptomatic hypoglycaemia over the analysis period. In the final multivariable model, body mass index (BMI) at insulin initiation and HbA1c level following 1 year of treatment were inversely correlated with symptomatic hypoglycaemia (Table 1). Each 1% increment in HbA1c levels at 1 year was associated with a 25% reduction in the risk of symptomatic hypoglycaemia over the course of the study. Each 1 kg/m² increment in BMI at initiation was associated with a 3% reduction in symptomatic hypoglycaemia. Risk of hypoglycaemia was significantly lower with basal insulin alone than with other insulin strategies including premixed insulin and short-acting insulin alone. Non-intensive versus intensive insulin therapy and physical inactivity versus activity were also associated with a lower risk of symptomatic hypoglycaemia.

Conclusion: In patients with T2DM recently initiated on insulin therapy, low BMI at insulin initiation, low HbA1c and insulin regimen at 1 year, physical activity and use of intensive insulin therapy were significant risk factors for symptomatic hypoglycaemia. The use of basal insulin alone was associated with a lower risk of symptomatic hypoglycaemia than other insulin regimens.
Table: Multivariable model of risk factors for documented symptomatic hypoglycaemia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio*</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²) at insulin initiation</td>
<td>0.968</td>
<td>[0.948; 0.988]</td>
<td>0.0021</td>
</tr>
<tr>
<td>Physical activity: no vs yes</td>
<td>0.735</td>
<td>[0.589; 0.917]</td>
<td>0.0063</td>
</tr>
<tr>
<td>Normalized HbA1c, (%) at 1 year</td>
<td>0.752</td>
<td>[0.687; 0.822]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Insulin used at 1 year</td>
<td>1.972</td>
<td>[1.412; 2.755]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Basal + short-acting vs basal alone</td>
<td>1.730</td>
<td>[1.298; 2.307]</td>
<td>0.0002</td>
</tr>
<tr>
<td>Premixed insulin vs basal alone</td>
<td>1.766</td>
<td>[1.113; 2.802]</td>
<td>0.0158</td>
</tr>
<tr>
<td>Short-acting alone vs basal alone</td>
<td>2.381</td>
<td>[1.336; 4.243]</td>
<td>0.0033</td>
</tr>
<tr>
<td>Other insulin* vs basal alone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensified insulin therapy: yes vs no</td>
<td>1.424</td>
<td>[1.109; 1.830]</td>
<td>0.0057</td>
</tr>
</tbody>
</table>

*Odds ratios were adjusted for between-country differences; †Any insulin regimen not covered by the four other insulin categories; BMI=body mass index; CI=confidence interval

Supported by: sanofi-aventis

578
The average length of hospital stay for a hypoglycaemic event in patients diagnosed with type 1 diabetes mellitus and type 2 diabetes mellitus

Background and aims: Hypoglycaemia, abnormally low blood glucose levels, can occur in patients diagnosed with both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), and is often associated with intensive treatment strategies. The resulting outcomes range from hunger, dizziness and confusion, to seizure, unconsciousness and rarely, brain injury. Patients who experience a severe hypoglycaemic event are commonly hospitalized and therefore contribute to the health service burden. The aim of this study was to determine and examine the comparative length of hospital stay associated with hypoglycaemic events in patients with T1DM and T2DM.

Material and methods: Routine hospital data were obtained from the Hospital Episode Statistics (HES) data warehouse, which contains anonymized, continuously collected data from all English hospitals. All patients with a primary diagnosis of hypoglycaemia (ICD10 E162) between 1999 and 2006 were selected. Only a patient’s first hypoglycaemic event was included in the study, subsequent events were removed. Patients were subsequently categorized according to their type of diabetes using previous hospital admission definitions within the time period; T1DM (ICD10 E10) or T2DM (ICD10 E11). Patients whose history included a diagnosis of both T1DM and T2DM were removed from the study. The single outcome measure was length of hospital stay in days.

Results: The number of patients experiencing a hypoglycaemic event within the dataset was 15,995 for T1DM and 21,736 for T2DM. Patients with T2DM were associated with significantly (p<0.0001) longer mean length of hospital stay for hypoglycaemic events (6.0 days; SD 8.9), compared to those with T1DM (3.2 days; SD 11.1).

Conclusion: The mean length of hospital stay associated with hypoglycaemic events was 88% greater for those patients diagnosed with T2DM when compared to patients diagnosed with T1DM. Use of therapies for T2DM that are associated with a reduced risk of hypoglycaemia can reduce the number of hypoglycaemic events in these patients, and consequently reduce length of hospital stay, and ultimately the burden to the health service.

579
Severe sulphonylurea-induced hypoglycaemia - a problem of uncritical prescription and deficiencies of diabetes care in geriatric patients

A Holstein1, C. Hammer1, M. Hahn, N.-S. Kulamadayil1, P. Kovacs2
11st Department of Medicine, Klinikum-Lippe, Detmold, Germany, Interdisciplinary Center of Clinical Research, University of Leipzig, Germany.

Background and aims: Severe sulphonylurea-induced hypoglycaemia (SH) remains a life-threatening and underreported condition. We investigated the incidence of SH and clinical characteristics of patients with type 2 diabetes mellitus (T2DM) to demonstrate typical risk constellations.

Materials and methods: In a population based observational study, all consecutive cases of SH in the period 2000-2009 in a German area with 200,000 inhabitants were included. Severe hypoglycaemia was defined as a symptomatic event requiring treatment with intravenous glucose and was confirmed by a blood glucose measurement of ≤50 mg/dl.

Results: A total of 1.419 cases of severe hypoglycaemia, 141 (10%) of them having been treated with sulphonylureas, were registered among the 103,256 patients who attended the medical emergency department. A mean incidence of 7 episodes of SH per year and 100,000 inhabitants was registered. The 139 hypoglycaemic individuals with T2DM (mean plasma glucose level of 31±10 mg/dl) had been treated with glibenclamide (n=98), gliclazide (n=40) or glibemizole (n=1). Neither preparation showed a constant dose-effect relationship, SH occurring within a wide dose range. The patients were characterized as follows: age 77.5±9.4 years, duration of diabetes 11±7 years, BMI 26±4.9 kg/m², HbA1c 6.6±1.3%, creatinine clearance 46±24 ml/min, with renal insufficiency in 73%, comedication 7±3 drugs. 27% of patients with SH received additional drugs which were also main substrates of CYP2C9.

580
The PANORAMA pan-European Survey: impact of severe and non-severe hypoglycaemia on quality of life and other patient reported outcomes in patients with type 2 diabetes

C. Bradley1, E. Eschwege2, P. de Pablos-Velasco2, K.G. Parhofer3, M. Tafalla4, E. Pascual5, L.A. Gönder-Frederick1, Royal Holloway, University of London, United Kingdom, INSERM U-1018, Paris, France, Dr. Negrin Hospital, Las Palmas University, Spain, Klinikum der Universität, München, Germany, Hospital de la Prat / INSERM U-1018, Paris, France, AstraZeneca, Madrid, Spain, University of Virginia, Health System, USA.

Background and aims: Hypoglycaemia is a side effect of glucose-lowering treatment that can cause distress and injury, and may damage quality of life (QoL) in patients with type 2 diabetes (T2D). PANORAMA is a large pan-European cross-sectional survey (NCT00916513) aimed at assessing patient reported outcomes in patients with T2D treated with glucose-lowering therapies. The present analysis compares data on QoL, treatment satisfaction and fear of hypoglycaemia in patients with T2D in relation to their experience of hypoglycaemia.

Materials and methods: Patients with T2D were randomly or consecutively selected from physician practices (mainly in primary care) in 8 countries (Belgium, Germany, Greece, Italy, the Netherlands, Spain, Turkey, and the UK). Eligible patients were ≥40 years of age, with a diagnosis of T2D for >1 year prior to study entry and an available medical record at the clinic of ≥1 year. All patients received dietary and exercise advice. Most patients were also involved in diabetes education programs. In 31% systematic blood glucose monitoring was performed.

Conclusion: The tight glycaemic control (HbA1c 6.6%) in our patients can be regarded as highly predictive for recurrent antecedent hypoglycaemic episodes that were not perceived either by the patients themselves or by their relatives or care staff. Uncritical prescription of sulphonylureas neglecting crucial contraindications - particularly renal insufficiency - and deficiencies of diabetes care contributed substantially to the risk of SH in the mainly geriatric patients. There is a need for alternative therapeutic concepts that minimize the risk of hypoglycaemia in geriatric patients with T2DM.
caemia per month with those who experienced one or fewer episodes per month (all p<0.001).

Conclusion: The occurrence of both severe and non-severe hypoglycaemia in T2D is associated with greater negative impact of diabetes on QoL, less treatment satisfaction, and greater fear of hypoglycaemia, and may be an important barrier to optimal glycaemic control in some patients.

Mean (SD) ADDQoL average weighted impact score, DTSQ treatment satisfaction score and HFS-II deaf of hypoglycaemia score for patients who experienced ≥1 vs 0 episodes of severe hypoglycaemia, and patients who experienced >1 vs ≤1 episodes of non-severe hypoglycaemia in the last year

<table>
<thead>
<tr>
<th>Episodes of hypoglycaemia in past 12 months</th>
<th>n</th>
<th>Mean (SD) score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ADDQoL³</td>
</tr>
<tr>
<td>≥1 severe</td>
<td>313</td>
<td>-1.0 (0.6)</td>
</tr>
<tr>
<td>0 severe</td>
<td>4,831</td>
<td>-0.6 (0.5)</td>
</tr>
<tr>
<td>Difference¹</td>
<td></td>
<td>-0.22**</td>
</tr>
<tr>
<td>>1 non-severe/month</td>
<td>889</td>
<td>-0.8 (0.6)</td>
</tr>
<tr>
<td>≤1 non-severe/month</td>
<td>4,258</td>
<td>-0.6 (0.5)</td>
</tr>
<tr>
<td>Difference²</td>
<td></td>
<td>-0.18**</td>
</tr>
</tbody>
</table>

¹average weighted impact score: range -9 (most negative impact) to +3 (most positive impact of diabetes on QoL); ²range 36 (very satisfied) to 0 (very dissatisfied); ³range 72 (most fearful) to 0 (least fearful) ⁴Patients with ≥1 episode of severe hypoglycaemia - patients with 0 episodes of severe hypoglycaemia. ⁵Patients with >1 non-severe hypoglycaemic episode/month - patients with ≤1 non-severe hypoglycaemic episode/month.

Differences were calculated with mixed-effects regression models adjusting for centre.

*p≤0.004; **p≤0.001

Supported by: AZ & BMS

PS 41: Mechanisms in hypoglycaemia

581

Effect of erythropoietin on cognitive performance, symptoms and counter-regulation during hypoglycaemia in patients with type 1 diabetes

P.L. Kristensen, U. Pedersen-Bjerregaard, N.Y. Olsen², B. Thorsteinsson²

1Department of Cardiology and Endocrinology, Hillerød Hospital, 2Department of Neuroanaesthesia, Copenhagen University Hospital (Rigshospitalet), 3University of Copenhagen, Denmark.

Background and aims: The incidence of severe hypoglycaemia in type 1 diabetes has not decreased over the past decades. New treatment modalities to minimise episodes of hypoglycaemia and attenuate hypoglycaemic cognitive dysfunction are needed. We studied if treatment with the potentially neuroprotective hormone erythropoietin (EPO) enhances cognitive function during hypoglycaemia.

Materials and methods: Eleven type 1 diabetic subjects with hypoglycaemia unawareness and at least two episodes of severe hypoglycaemia in the last year underwent a double-blind, randomised, balanced, cross-over study evaluating the effect of 40,000 IU of EPO on cognitive function, hypoglycaemic symptoms and counter-regulatory response during clamped hypoglycaemia. EPO or placebo were injected intravenously six days before the two experiments which were separated by at least six weeks. Two reaction time tests (CaCalP), Stroop’s Colour and Word Test and a Trail Making Test (TMT) were used to evaluate cognitive function. The effects of EPO on cognitive function, hypoglycaemic symptoms and counter-regulatory hormones were assessed by analysis of covariance with baseline values and blood glucose during hypoglycaemia as co-variates.

Results: Mean (SD) plasma glucose concentration during hypoglycaemia was 2.2 (0.3) mmol/l on the EPO day and 2.0 (0.3) mmol/l on the placebo day (p=0.17). Compared with placebo, EPO treatment was associated with (parameter estimate (95% CI); a) reduction in the two reaction times during hypoglycaemia: 5 msec (-79 - 68; p=0.88) and 44 msec (-91 - 4; p=0.07); b) reduction in errors in the two reaction time tests: 0.3 (-1.4 - 2.1; p=0.68) and 4.1 (-7.4 - -0.9; p=0.017); c) increase in completed items in Stroop’s Word, Colour and Word-Colour Test: 2 (-6 - 11; p=0.58), 1 (-6 - 8; p=0.71), and 2 (-4 - 7; p=0.51), respectively; d) reduction in completion time in TMT: 3 sec (-45 - 40; p=0.88); and e) reduced neuroglycopenic and autonomic symptoms: -0.9 points (-3.8 - 2.0 points; p=0.46) and -0.6 points (-5.5 - 4.3; p=0.8), respectively. Peak values of adrenaline, cortisol, growth hormone and glucagon did not differ between EPO and placebo days.

Conclusion: In patients with type 1 diabetes and hypoglycaemia unawareness, treatment with EPO is associated with a beneficial effect on cognitive function in only one of six tests of cognitive function. Hypoglycaemic and counter-regulatory hormonal responses were not changed by EPO treatment. However, it cannot be ruled out that alternative timing and dosage of EPO or new non-erythropoietic EPO analogues may be more efficient in enhancing cognitive function during hypoglycaemia.

Supported by: Research foundation of Hillerød Hospital (primary donor)

582

The effect of diabetes and its control on susceptibility to learned helplessness in streptozotocin-induced diabetes rats

Y. Go¹, H. Kitaoka²

1Internal medicine, Seikeikai Hospital, Sakai City Osaka, 2Internal medicine, Seikeikai Hospital, Sakai City, Japan.

Aims: In order to examine the mechanism linking diabetes to depression, specifically whether diabetic rats in good glycemic control versus those in hyperglycemic, or subject to exposed alternative periods of hyper and hypoglycemia, are different at risk of affective disorder. We induced learned helplessness, as model of depression, is indicated the rate of cognitive processing.

Methods: Using the streptozotocin rats receiving insulin NPH or saline, totally 37 rats, were divided into 4 types of glycemic control groups, Group A (good), B (hypo-hyper) ,C (untreated), D (controls). The bodyweight, the blood glucose concentration and HbA1c were measured. And all animals were placed in a learned helplessness paradigm, Forced swimming test (FST): the scorer would rate the rat’s behavior each 5 second period, as one of the following four behaviors: immobility and another action. We examined the differences in the length of immobility (a key marker of learned helplessness) with the analysis using Tukey-Kramer multiple comparison.
Results: Glycemic control: Group A had nearly kept smaller change of blood glucose level. Group B of blood glucose showed a very steep fall from 475.8 ± 193.2 (mean ± SD) mg/dL to 42.8 ± 22.6 mg/dL within three hours after the insulin injection. Mean HbA1c of the diabetic group without insulin treatment significantly increased from 5.9 ± 1.3 to 8.7 ± 4.0 % (p < 0.0001). In diabetic groups receiving insulin injection once a day or twice a day, the level of HbA1c significantly decreased from 5.6 ± 1.0 to 3.8 ± 0.6 % and 6.4 ± 1.7 to 3.7 ± 0.5 % respectively. There was no difference in the levels of HbA1c before treatment and after treatment between the groups with one daily injection and two daily injection of insulin. The bodyweight in A and B groups was not significantly different compared with that in non diabetic control group (P = 0.001, 0.001). Group C is significantly low compared with that in Group D (p < 0.0001). FST: There were trends for counts of immobilization to be higher in all 3 diabetic groups compared to Group D, especially in Group B, the mean count of immobility is significantly high compared with Group D (<0.001). There is no significant difference between 4 groups in the mean counts of swimming. The climbing was significantly low in Group C compared with Group D.

Conclusion: The rats which had been exposed to hypoglycemia and hyperglycemia are more likely to develop learned helplessness than good glycemic control rats. These investigations are thought to be interesting to examine the relationship between diabetes and depression, and suggested that acute varieties in glycemic control could be the mechanism of susceptibility to affective disorder.

583

Physiological and performance differences between drivers with type 1 diabetes with and without a history of recurrent hypoglycaemia driving mishaps

D.J. Cox1, B.P. Kovatchev1, H. Sing1, L.K. Campbell1, L.A. Gonder-Frederick1, 1Psychiatry & Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, 1Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA.

Background and aims: In Europe and the U.S. collisions are more than twice as common among drivers with type 1 diabetes (T1DM) than spouses who do not have diabetes. This increased risk appears to be attributable to a subgroup of drivers with T1DM. The hypothesis tested is that this vulnerable subgroup is more at risk for hypoglycemia and its disruptive effects on driving ability.

Materials and methods: Thirty-eight drivers with Type 1 diabetes, 16 with (+History) and 22 without (-History) a recent history of recurrent hypoglycaemia-related driving mishaps, drove a virtual reality driving simulator and watched a videotape of someone else driving a simulator for 30 minutes periods. Driving and video testing occurred in a double-blind, randomized, cross-over manner during euglycemia (5.5 mmol/L) and progressive hypoglycaemia (3.9 down to 2.5 mmol/L). Subjects completed a brief neuropsychological test battery pre and post the euglycemia trial, and during the hypoglycaemia trial they completed the battery at euglycemia immediately before and after and at hypoglycaemic nadir. Examiners were blind to which subjects were +/-History. The study aimed to identify cognitive bias preventing them from recognizing or acting upon the cues. The biases manifest in their not being able to recognize or act on the danger in which HU places them. They realise they have HU but are not ‘appropriately’ worried about it. The cognitive biases fall into the following categories: (a) because they do not feel any symptoms, they do not act; (b) because of fear of complications they act on any high blood glucose levels; (c) they believe ‘it won’t happen again’; (d) there is a strong desire to be ‘normal’ so may not disclose HU; (e) they believe that severe hypoglycaemia is normal, part of their lives, so nothing need be done. Group 5: those who derive some secondary gain from having severe hypoglycaemia.

Conclusion: Factors underlying the known persistence of HU in a proportion of people with T1DM can be identified for individuals and fall into one of five categories. Identifying the factors operating in an individual will allow therapies to restore hypoglycaemia awareness to be tailored (eg Group 1 education; Group 3 increased monitoring technology; Group 4 a psychological intervention) to their situation and help more people with T1 regain their endogenous defences against severe hypoglycaemia.

Supported by: NIH
Support: Hyposafe

Results: Of 64 attendances for hypoglycaemia in 12 months, 3 patients (4.69%) had hypoglycaemic encephalopathy, from insulin overdose. In 2 patients, the overdose was deliberate, with no previous history of depression. The patients had mean age of 37.6 years (range 32 - 41 years), with a mean capillary glucose of 2.26mmol/l (range 1.4 - 3mmol/l) at presentation. The mean interval between presentation following insulin overdose and initiation of treatment was 4.3 hours (range 1 - 8 hours). Glucagon was administered to all 3 patients and the mean glucose infused was 17.5g (range 50g - 425g). The mean duration of mechanical ventilation was 63 hours (range 0 - 120 hours). The outcome at 6 weeks was persistent vegetative state and death in the patient requiring maximum duration of mechanical ventilation, loss of recent memory with partial recovery at 6 weeks in the second patient, and the third patient died. The most severe outcome was in the patient requiring maximum amount of glucose and mechanical ventilation. The clinical outcome was not related to the severity of hypoglycaemia at diagnosis.

Conclusion: Hypoglycaemic encephalopathy from insulin overdose is rare. The clinical outcome correlated with the interval between insulin overdose and start of treatment, amount of glucose infused and duration of mechanical ventilation. This is in keeping with existing evidence on prognostic indicators in patients with hypoglycaemic encephalopathy and may be used to predict outcomes in acute setting.

Detection of hypoglycaemia associated EEG-changes during sleep in type 1 diabetes

L. Folkestad1; R. Elbørg2; L. Remvig3; H. Beck-Nielsen3; B. Thorsteinsson3; P. Jenum4; M.D. Gjerstad1; C. Juhl1; Sydvestyys Sygehus Eidsberg, 2Hyposafe, Lyngby, Odense Universitets Hospital, Hillerod Hospital, Hillerod, Denmark, 3Glostrup Hospital, Denmark.

Background and aims: Nocturnal hypoglycaemia is a feared complication to insulin treated diabetes and is often the limiting factor for further intensification of treatment. Hypoglycaemia unawareness, being increasingly common with tight metabolic control and long diabetes regulation, increases the risk of severe hypoglycaemia. Slow wave electroencephalogram (EEG) patterns can be demonstrated during episodes of daytime hypoglycaemia, and real-time detection of specific EEG changes may constitute a novel technique for a hypoglycaemia alarm. Sleep EEG diverges significantly from daytime EEG including episodic occurrence of slow wave patterns. The present study tests the hypothesis that specific hypoglycaemia associated EEG changes also occur during sleep, and that these can be detected in time for the patient to take action.

Materials and methods: Ten type 1 diabetes patients (mean age 47 years, diabetes duration 23.7 years, HbA1c 7.5%) all suffering from hypoglycaemia unawareness, were subjected to induced hypoglycaemia by graded insulin infusion both during daytime and sleep. One patient dropped out after the first night experiment. EEG was recorded from a single electrode with three measuring steps were taken in 8.9 % of patients to prevent further episodes.

Comparison with the original audit: The original audit showed that only 58.3% of patients had their capillary blood glucose checked within fifteen minutes of commencing treatment for hypoglycaemia. Only 20% of patients received fast-acting carbohydrate as a treatment measure. Attempts took place to identify the cause of hypoglycaemia in one sixth of hypoglycaemic episodes, with just 12.5% of patients having steps taken to prevent the recurrence of hypoglycaemia. With the re-audit, there has been some improvement with 87% of CBGs checked post-treatment and the types of treatment used (31% from Hypobox).

Conclusion: Compared to the initial audit, improvements have been made with the products used to treat hypoglycaemia and the monitoring of patients post-treatment. Identifying and preventing the causes of hypoglycaemia remains problematic despite provision of the Hypobox and protocols. Staff awareness of hypoglycaemia guidelines is the crucial factor in ensuring patients receive optimal management and prevention of hypoglycaemic episodes. Further teaching with audit data is required.

Fear of hypoglycaemia - how to identify patients at risk in a routine clinical practice?

K. Kanc1; A. Kastrin1; M. Kastrin2; G. Konezioz3.

1Diabetes&Me (jazindiabetes), Private Diabetes Centre, Ljubljana, Slovenia, 2Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia, 3University of Virginia, Virginia, USA

Background and aims: Hypoglycaemia is a frequent experience in people with insulin-treated diabetes mellitus and may lead to the development of fear of hypoglycaemia (FoH). This condition may be often overlooked, causing emotional and behavioral changes that can jeopardize daily life with diabetes as well as future development of diabetes complications. The aim of the study is to explore the relation of FoH to diabetes regulation, diabetes-related
problems and the awareness of hypoglycemia in persons with type 1 (T1D) and type 2 diabetes (T2D).

Materials and methods: All insulin-treated patients (N = 140) registered with private diabetes centre at the time of study were contacted and 114 agreed to participate (56 males, 58 females). Age varied across sample from 15 to 88 years with a mean age of 53 (±19) years; mean ages of T1D (30 CSII and 23 MDI-treated) and T2D (61) patient subgroups were 39 years (±15) and 65 years (±13), respectively. Patients completed the Hypoglycaemia Fear Survey (HFS) and the Problem Areas in Diabetes (PAID) questionnaires. Hypoglycemia awareness status was assessed by Clarke’s questionnaire. We confirmed high internal consistency reliability of the translated questionnaires (Cronbach’s alphas were 0.93, 0.94, and 0.49 for HFS, PAID, and Clarke’s questionnaire, respectively). Wilcoxon test (W) was used to evaluate differences between independent groups as appropriate. Metabolic control was assessed by measuring glycated haemoglobin A1c (HbA1c).

Results: Statistically significant differences across gender were found for the HFS score (Total scale: \(W = 1179, p = 0.012 \); Worry subscale: \(W = 1122, p = 0.004 \)) and PAID score (\(W = 1106, p = 0.003 \)), indicating greater FoH and inadequate emotional response to diabetes in females. HFS score was significantly higher in T1D in comparison to T2D patients (Total scale: \(W = 2021, p = 0.022 \); Worry subscale: \(W = 2094, p = 0.007 \)). Comparing therapy regimen for T1D patients, we found significant differences for the HFS Behavior subscale score (\(W = 211, p = 0.014 \)) in MDI, implying greater behavior-related FoH in MDI-treated patients. Significant correlation between HFS and PAID scores (\(r = 0.70, p = 0.001 \)) indicate that FoH increases with more diabetic problems. In addition, significant correlation was found between HFS score and Clarke’s score in general (\(r = 0.20, p = 0.030 \)), T2D (\(r = 0.27, p = 0.036 \)), T1D (\(r = 0.17, p = 0.217 \)), meaning that patients with T2D experience an increase in FoH as their awareness decreases. Bivariate correlations with questionnaire scores and HbA1c level found significant association of HbA1c with HFS score (\(r = 0.23, p = 0.015 \)) and PAID score (\(r = 0.47, p < 0.001 \)), indicating worse glucose control with increasing FoH and diabetes problems. On the contrary, four patients had very high PAID and HFS score and low HbA1c.

Conclusion: In particular MDI-treated women with T1D, bad glycaemic regulation and lower awareness of hypoglycaemia need clinical attention, focused on hypoglycaemia. Patients with excellent glycaemic control, combined with great FoH and pronounced diabetes-related problems, should not be overlooked.

589

Nature of association between severe hypoglycaemia and risks of vascular events and death in ADVANCE

E.E. De Galan1*, S. Zoungas2, A. Patel1, Q. Li1, L. Billot1, M. Woodward1, J. Chalmers1, B.E. De Galan1, S. Zoungas2, A. Patel1, Q. Li1, L. Billot1, M. Woodward1

1The George Institute for International Health, Sydney, Australia, 2Monash University, Melbourne, Australia, 3Mount Sinai School of Medicine, New York, USA, 4Julius Centre for Health Sciences and Primary Care, Utrecht, Netherlands, 5Sheffield Teaching Hospitals National Health Service Foundation Trust, United Kingdom, 6University of Sheffield, United Kingdom.

Background and aims: The present analyses were performed to explore the risk factors for severe hypoglycaemia associated with glucose control and to examine the relationship between severe hypoglycaemia and major clinical outcomes in patients with type 2 diabetes participating in the Action in Diabetes and Vascular disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial.

Materials and methods: Baseline factors predicting severe hypoglycaemia were age, diabetes duration, history of microvascular disease, kidney dysfunction, smoking, BMI, HbA1c, education level, cognitive dysfunction, combination anti-hyperglycaemic therapy and assignment to intensive glucose control (all \(p < 0.05 \)). The median times from the first severe hypoglycaemia to first major macrovascular event, microvascular event or death were 1.56 years (IQR = 0.84, 2.41 years), 0.99 years (IQR = 0.40, 2.17 years) and 1.05 years (IQR = 0.34, 2.41 years) respectively. During follow up, adjusted risks of major macrovascular events (HR 2.88, 95% CI 2.01-4.12), major microvascular events (HR 1.81, 95% CI 1.19-2.74), cardiovascular death (HR 2.68, 95% CI 1.72-4.19) and all-cause death (HR 2.69, 95% CI 1.97-3.67) were significantly increased among those experiencing prior severe hypoglycaemia compared to those who did not (all \(p < 0.0001 \)). Similar associations were also apparent for a range of non-vascular outcomes including respiratory, digestive system and skin events (all \(p < 0.01 \)). When the analyses were performed stratified by treatment allocation, the results remained essentially unchanged.

Conclusion: Severe hypoglycaemia was strongly associated with increased risks of diverse major clinical outcomes, but not temporally related. Severe hypoglycaemia appears to be a marker of vulnerability for rather than a direct cause of adverse clinical outcomes. The complex interplay of confounding factors makes attribution of causation difficult.

Supported by: NHMRC and Servier

590

The effect of modafinil on counterregulatory and cognitive responses to experimental hypoglycaemia in type 1 diabetic patients with hypoglycaemia unawareness

P. Thomakos, M.M. Teh, Y. Samarasighe, A. Pernet, B. Wilson, P. Choudhary, S.A. Amiel

Diabetes Research Group, King’s College School of Medicine, London, United Kingdom.

Background and aims: Patients with Type 1 diabetes rely on symptoms of hypoglycaemia to detect hypoglycaemia and take corrective action before blood glucose drops low enough to impair cognitive function or consciousness. Repeated hypoglycaemia can impair hypoglycaemia awareness increasing the risk of severe hypoglycaemia 3-6 fold. Modafinil reduces the release of the inhibitory brain neurotransmitter GABA and improves adrenergic sensitivity and some aspects of cognitive function at hypoglycaemia in normal individuals. We aimed to assess the effect of modafinil on cognitive function as well as symptomatic and hormonal responses to hypoglycaemia.

Materials and methods: Eight individuals with type 1 diabetes and hypoglycaemia unawareness (mean age 47±10 years, BMI 24.3±2.5 kg/m2, HbA1c 6.6±0.9, duration of diabetes 29±12.3 years) received, in random order, two 100-mg doses of modafinil or placebo, followed by a paired hypoglycaemic clamp study in which plasma glucose was reduced stepwise to 5.0, 4.4, 3.8, 3.4, 2.8 and 2.4 mmol/L. Catecholamines, symptom scores and cognitive function were measured throughout. Subjects rated neuroglycopenic (difficulty speaking, confusion, dizziness, irritability, blurred vision and drowsiness) and autonomic symptoms (sweating, anxiety, tremor, palpitations, feeling hot and tingling) on a visual analogue scale on which patients graded the symptoms from 1 (absent) to 7 (very severe) at 20 minutes intervals. Four-choice reaction time, Digit Symbol Substitution Test, Stroop Black-White, Colour-X reading and Colour-Word interference test were administered at each step.

Results: Neuroglycopenic symptoms of hypoglycaemia were experienced at lower glucose level with modafinil (mean 2.7±0.6 vs 2.3±0.4 mmol/L; \(p = 0.025 \)), and to a greater degree [area under curve for neuroglycopenic symptoms corrected for baseline 322.5±121 vs 146.2±90; \(p = 0.001 \) (see figure)] with a higher peak score [peak-baseline neuroglycopenic symptom score 4.12±3.3 vs 2.62±2.5; \(p = 0.009 \)]. There were no differences in autonomic symptom responses. There were no differences in glucose thresholds, areas under the curve or peak levels for catecholamine responses to hypoglycaemia. Despite higher neuroglycopenic scores there was no difference in glucose thresholds or degree of deterioration in cognitive function tests.

Conclusion: The use of modafinil was associated with generation of warning symptoms of hypoglycaemia at higher glucose level and to a greater degree than placebo although there was no difference in hormonal responses or cognitive dysfunction. The data support a role for disinhibition of GABAergic neurons in the generation of neuroglycopenic symptoms in hypoglycaemia which may be reversible, but imply a different sensitivity or involvement of other pathways in other aspects of the normal counterregulatory response.
591
Risk of hypoglycaemias and hypoglycaemia prevention behaving in type 1 diabetic patients - results of continuous glucose monitoring and Gravelling’s questionnaire - a pilot study

J. Brož, J. Polák, E. Silhova, V. Donicova;
3rd medical Faculty, Charles University, Prague, Czech Republic; 2Private Department of Diabetology, Internal Medicine and Metabolism, Košice, Slovakia.

Background and aims: Hypoglycemic episode during driving could cause a fatal incident. Using a continuous glucose monitoring in type 1 diabetic patients we wanted to determine the glycemic excursions during periods of driving.

Materials and methods: We monitored 12 patients with type 1 diabetes mellitus treated with intensified insulin regimen (7 men, 5 woman), duration of disease 11.2 ± 5.2 year. Each patient wore a CGMS for 3-5 working days during his normal activity and was not allowed to see actual glycemic values. Patients were asked to record all important events (such as insulin injection, exercise, meals, working periods) including periods of a car driving. After CMGS use, continuous glucose profiles were reviewed to identify glycemic excursion during periods of car driving with a special interest in hypoglycaemic episodes (values under 3.5 mmol/l) and periods of glycemia under 4.5 mmol/l with considerable risk of hypoglycaemia. Each patient complete Gravelling’s questionnaire.

Results: We evaluated 2772 min (-46 hours 12 min) of driving, an average 77 ± 27.3 per day and patient. Patients recorded 2 symptomatic episodes while driving. We found 7 episodes of asymptomatic hypoglycaemias, all in 2 patients. Total duration of period with glycemia under 4.5 was 132 min (4.8% of total driving time). Total duration of period with glycemia under 3.5 was 22 min (0.8% of total driving time). Selected results from questionnaire: 2 patients almost never measure glycemia before or during driving, none of them stops after hypoglycemia for longer than 45 min.

Conclusion: Risk of hypoglycaemia even in well experienced patients with type 1 diabetes mellitus during driving is considerable and should be regularly focused in education.

592
Prevalence and risk factors of hypoglycaemia unawareness and severe hypoglycaemia in patients with type 1 diabetes

T. A’Campo1, B. Schouwenberg1, B. Veldman4, C.J. Tack2, P. Smits3, B.E. De Galan2;
1Departments of Pharmacology -Toxicology, Radboud University Nijmegen Medical Centre, 2Department of Internal Medicine, Canisius Wilhelmina Hospital, 3Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Netherlands.

Background and aims: Hypoglycaemia is the most frequent adverse effect of insulin therapy in patients with type 1 diabetes (T1DM). Repeated episodes of hypoglycaemia may lead to hypoglycaemia unawareness (HU), which in turn is a risk factor for severe hypoglycaemia (SH). Modern insulin analogues and insulin pump therapy, which are associated with lower rates of hypoglycaemia, are being increasingly used. We therefore aimed to assess the prevalence of HU and SH in a contemporary cohort of T1DM patients and to identify potential risk factors.

Materials and methods: We performed a cross-sectional study of a cohort of 486 T1DM patients (47% male), who visited the outpatient clinic of a Dutch University Hospital between 2006 and 2008. All patients were asked to complete a Dutch translation of the Clarke questionnaire, where a score of 3 or more (out of 5) was assumed to indicate HU. SH was assessed on the basis of the same questionnaire. Clinical data on demographics, diabetes treatment, concurrent medication and vascular complications were retrieved from medical records. Unadjusted and adjusted Odds ratios (OR) were calculated using binary logistic regression.

Results: The mean diabetes duration was 25 years, HbA1c averaged 7.9% and 89% used insulin analogues. 144 patients (30%) used insulin pumps. A total of 158 patients (33%) had a score indicating HU and 103 patients (21%) recalled SH in the year prior to the questionnaire. In unadjusted analyses, HU was associated with male sex, lower HbA1c, duration of diabetes, autonomic neuropathy and estimated GFR < 60ml/min/1.73m² (all P < 0.05). After adjustments, duration of diabetes (OR per year 1.03; 95% CI: 1.01-1.05), estimated GFR < 60ml/min/1.73m² (3.30; 1.20-9.10) and lower HbA1c (per % 1.49; 1.22-1.81) were still associated with HU. SH was independently associated with the presence of autonomic neuropathy (3.62; 1.65-7.94) and the use of benzodiazepines (4.59; 1.80-11.73), but not with HbA1c or diabetes duration. The use of insulin analogues, insulin pump therapy, ACE inhibitors or beta-blockers were not associated with either HU or SH.

Conclusion: HU is still highly prevalent in T1DM patients despite advances in insulin therapy. Diabetes duration, lower HbA1c level and kidney dysfunction were independent risk factors for HU. Autonomic neuropathy and use of benzodiazepines were risk factors for SH. Clinicians treating patients with T1DM should be aware of the still high prevalence of HU and its risk factors.

Odds ratio for hypoglycaemia unawareness and severe hypoglycaemia

<table>
<thead>
<tr>
<th></th>
<th>Hypoglycaemia unawareness (HU)</th>
<th>Hypoglycaemia unawareness (HU)</th>
<th>Severe hypoglycaemia (SH)</th>
<th>Severe hypoglycaemia (SH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted OR (95% CI)</td>
<td>Adjusted OR (95% CI)</td>
<td>Unadjusted OR (95% CI)</td>
<td>Adjusted OR (95% CI)</td>
</tr>
<tr>
<td>Sex (male vs. female)</td>
<td>1.47 (1.00-2.15)</td>
<td>1.38 (0.92-2.07)</td>
<td>1.05 (0.68-1.62)</td>
<td>1.05 (0.68-1.62)</td>
</tr>
<tr>
<td>Age (per year)</td>
<td>1.02 (1.01-1.04)</td>
<td>1.01 (0.99-1.03)</td>
<td>1.00 (0.98-1.01)</td>
<td>1.00 (0.98-1.01)</td>
</tr>
<tr>
<td>HbA1c (per 1% lower)</td>
<td>1.40 (1.16-1.68)</td>
<td>1.49 (1.22-1.81)</td>
<td>1.08 (0.89-1.30)</td>
<td>1.08 (0.89-1.30)</td>
</tr>
<tr>
<td>Diabetes duration (per year)</td>
<td>1.03 (1.02-1.05)</td>
<td>1.03 (1.01-1.05)</td>
<td>1.01 (0.99-1.02)</td>
<td>1.01 (0.99-1.02)</td>
</tr>
<tr>
<td>Autonomic Neuropathy (yes vs. no)</td>
<td>2.34 (1.10-4.97)</td>
<td>1.66 (0.72-3.84)</td>
<td>3.27 (1.52-7.05)</td>
<td>3.62 (1.65-7.94)</td>
</tr>
<tr>
<td>eGFR < 60ml/min/1.73m² (yes vs. no)</td>
<td>3.70 (1.43-9.59)</td>
<td>3.30 (1.20-9.10)</td>
<td>2.22 (0.85-5.79)</td>
<td></td>
</tr>
<tr>
<td>Peripheral arterial disease (yes vs. no)</td>
<td>1.54 (0.69-3.43)</td>
<td>2.43 (1.07-5.54)</td>
<td>1.56 (0.63-3.84)</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine use (yes vs. no)</td>
<td>2.35 (0.94-5.91)</td>
<td>4.40 (1.74-11.13)</td>
<td>4.59 (1.80-11.73)</td>
<td></td>
</tr>
</tbody>
</table>
PS 43 Metabolic effects of drugs - pilot studies

593

Effects of short-term continuous subcutaneous insulin infusion on insulin sensitivity and plasma FGF-21 levels in patients with new-onset type 2 diabetes mellitus

D. Jing, G. Yang, L. Li1
1Department of Endocrinology, 2Department of Clinical Biochemistry, Chongqing Medical University, China.

Background and aims: FGF-21 is a recently described member of the FGF family that is highly expressed in adult mouse liver and thymus. Recent data have shown that FGF-21 is a potent regulator of glucose homeostasis. In the present study, we investigate the effects of short-term continuous subcutaneous insulin infusion (CSII) on insulin sensitivity and plasma FGF-21 levels in patients with new-onset type 2 diabetes mellitus (T2DM). We also assessed the association between plasma FGF-21 body composition, and several metabolic parameters in these subjects.

Materials and methods: 30 patients with new-onset T2DM were treated with CSII for 2 weeks. A hyperinsulinemic-Euglycemic clamp was performed for determining insulin sensitivity in T2DM patients. The body composition was assessed. Blood samples were drawn after an overnight fast and Plasma insulin, FFA, HbA1c, TG, TC, LDL-C, HDL-C were measured. Plasma FGF-21 levels were measured with a radioimmunoassay. The homeostasis model assessment of insulin resistance (HOMAIR) and the homeostasis model assessment of β-cell insulin secretion (HOMAβ) were calculated. Plasma FGF-21 levels were measured by an ELISA.

Results: Fasting plasma FGF-21 levels were higher in T2DM than in controls (1.6±0.1 vs 1.1±0.4 μg/L, P<0.01). After treatment with CSII, fasting blood glucose (FBG), HbA1c, fasting plasma insulin(Fins) and HOMAIR were decreased significantly in T2DM (14.5±1.4 vs 5.5±0.5 mmol/L, 10.4±7 vs 8.6±1.2%, 16.79±3.75 vs 12.87±5.71 mU/L and 10.5±3.17 vs 3.35±1.61 respectively, P<0.05 and P<0.01), while glucose infusion rate (GIR) was increased significantly (2.99±1.3 vs 5.10±1.77 mg/kg/min, P<0.01). Fasting plasma FGF-21 levels were decreased significantly by CSII treatment (1.6±0.1 vs 1.3±0.1 μg/L, P<0.05).

Conclusion: Short-term CSII therapy can remarkably ameliorate insulin sensitivity and degrade plasma FGF-21 levels in T2DM patients. The change of plasma FGF-21 levels may be related to metabolic disturbance and insulin resistance.

Supported by: National Natural Science Foundation of China

594

Comparison of fasting apelin and visfatin levels between subjects with type 1 diabetes mellitus and controls and response after insulin administration

K. Alexiadou1, A. Kokkinos2, D. Perrea2, C. Voulgar1, S. Liatis1, N. Katulambros2, N. Tentolouris1
1Laiko General Hospital, 2Laboratory of Experimental Surgery and Surgical Research “N. S. Christea”, Athens, Greece.

Background and aims: Apelin and visfatin are two recently described adipokines. Experimental data have shown that apelin exerts important beneficial cardiovascular effects and its synthesis is stimulated by insulin. Visfatin is involved in the regulation of glucose homeostasis by binding to and activating the insulin receptor in a manner distinct from insulin. No data exist on the association between plasma apelin and visfatin concentrations with type 1 diabetes mellitus (T1DM), a condition characterized by insulin deficiency, and healthy controls and on the effect of exogenous insulin administration on plasma concentrations of these adipokines. In the present study we examined differences in plasma apelin and visfatin concentrations between healthy controls and subjects with T1DM. Additionally, we studied the effect of a bolus insulin administration on plasma apelin and visfatin levels during an oral glucose tolerance test (OGTT) in patients with T1DM.

Materials and methods: A total of 120 subjects (60 with T1DM and 60 age, gender and body mass index matched-controls) were studied. Plasma apelin, visfatin, glucose and lipids were measured in the fasting state. A total of 14 subjects with T1DM and 14 controls volunteered to participate in a second phase of the study. They were studied on two occasions (phases A and B) with a time interval of about 1 week in between and in random order. In both phases an OGTT was performed. In phase A, before the OGTT 7 units of insulin lispro (approximately 1 unit for every 10 g of glucose consumed) was administered subcutaneously in the patients with T1DM, while an equal volume of water for injection (placebo) was administered in the control group. In phase B, no insulin or placebo was administered in either patients with T1DM or controls. Plasma levels of glucose, insulin, apelin and visfatin were measured at baseline, and 10, 20, 30, 60, 90, 120, 150, and 180 min after glucose consumption.

Results: Fasting plasma apelin concentrations were significantly higher in subjects with T1DM than in controls (1.93±0.14 vs. 1.39±0.09 ng/ml, p<0.001). On the contrary fasting visfatin levels were significantly lower in subjects with T1DM than in controls (17.55±1.68 vs. 25.28±3.63 ng/ml, p<0.001). Plasma apelin and visfatin levels did not change significantly during phase A of the experiment in either the group of patients with T1DM or the controls and there was no significant difference between the two groups. The same was valid for the phase B of the study. The overall apelin and visfatin response during the experiment, expressed as the area under the curve (AUC), was not significantly different between patients with T1DM and controls during either phase A or phase B of the study.

Conclusion: Apelin levels are higher and visfatin levels are lower in the fasting state in patients with T1DM in comparison with healthy controls. Additionally, they do not change during an OGTT with or without insulin administration.

595

Valsartan improves beta cell function and insulin sensitivity in normotensive subjects with impaired fasting glucose and/or impaired glucose tolerance

N.J. Van der Zijl1, C.C.M. Moors2, G.H. Goossens3, M.H. Hermes2, E.E. Blaak2, M. Diamant1
1Endocrinology / Diabetes Centre, VU University Medical Centre, Amsterdam, 2Human Biology, Maastricht University, Netherlands.

Background and aims: Recently, the NAVIGATOR trial, a long-term intervention study performed in normotensive subjects with impaired fasting glucose metabolism (IGM), showed that treatment with the angiotensin-receptor blocker valsartan (VAL) for 5 years, resulted in a relative reduction of 14% in the incidence of T2DM. The underlying mechanisms are incompletely understood and may, besides improvement in insulin sensitivity also include a delay in beta-cell function decline.

Materials and methods: In the present study, we assessed the effect of 26-weeks VAL (320mg QD) vs. placebo (PLB) on various aspects of beta-cell function and insulin sensitivity in normotensive subjects with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). In this randomised, controlled, double-blind, two-center study, 43 IFG (51% males; mean±SE age 58±1.1 yrs; BMI 28.4±0.7 kg/m2; BP 128/82±2/1 mmHg) and 36 IGF/IGT (53% males; age 58±1.1 yrs; BMI 29.5±0.7 kg/m2; BP 131/82±2/1 mmHg) Caucasian subjects, received VAL (n=40) or PLB (n=39). Beta-cell function and insulin sensitivity were assessed at baseline and after 26 weeks treatment using a combined euglycaemic-hyperinsulinaemic and hyperglycaemic clamp with subsequent arginine-stimulation and a 2-hour 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status and gender.

Results: At week 26, VAL vs PLB, increased 1st-phase (P=0.06) and 2nd-phase glucose-stimulated insulin secretion (P=0.026). However, the enhanced arginine-stimulated insulin secretion did not differ (P=0.25). VAL vs PLB improved the disposition index (P=0.067) and insulin sensitivity (P=0.045). VAL but not PLB increased the OGTT derived insulinogenic index (HOMA-β) (GL-β), representing 1st-phase insulin secretion after an oral glucose load, (P<0.035). At 26 weeks, VAL compared to PLB treatment resulted in a significant delay in β-cell function decline.

Supported by: An Investigator-Initiated Study Grant from Novartis Pharma
596
Valsartan induced improvement of insulin sensitivity was not associated with improved microvascular function in subjects with impaired glucose metabolism
C.C.M. Moors,1 N.J. Van der Zijl,1 G.H. Goossens,1 R.G. IJzerman,2 E.E. Blaak,1 M. Diamant,1 E.H. Serne2;1Human Biology, Maastricht University,2Diabetes Centre, VU University Medical Centre, Amsterdam,2Endocrinology / Diabetes Centre, VU University Medical Centre, Amsterdam, Netherlands.

Background and aims: Microvascular dysfunction, affecting both flow resistance and perfusion, is not only important in the development of target-organ damage in the heart, kidney and eyes, but also in the development of insulin resistance. Capillary recruitment is an important mechanism by which insulin promotes uptake of glucose. Capillary rarefaction and impaired recruitment may therefore reduce glucose uptake and contribute to insulin resistance. Recently, in the NAVIGATOR trial, a long-term intervention study performed in normotensive subjects with impaired glucose metabolism (IGM), a relative risk reduction of 14% in the incidence of T2DM was reached with the angiotensin blocker valsartan (VAL). The underlying mechanisms are incompletely understood but may include enhanced peripheral insulin sensitivity and beneficial effects on microvascular function. In this study we investigated the relation between functional and structural capillary density and insulin sensitivity in subjects with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). Furthermore, we examined whether 26 weeks of VAL treatment improved insulin sensitivity and microvascular function.

Materials and methods: Caucasian subjects with IFG (n=29, 52% males; mean±SE age 57±1.4 yrs; BMI 29±1.1 kg/m²; BP 130/81±3/1 mmHg) and combined IFG/IGT (n=19, 63% males; mean±SE age 56±1.4 yrs; BMI 30±1.2 kg/m²; BP 131/84±3.2 mmHg), were treated with VAL for 26 weeks. Glucose tolerance was assessed with a 2-hour oral glucose tolerance test (OGTT). At baseline and after 26 weeks subjects underwent a) an euglycaemic-hyperinsulinemic clamp, beta-cell functions by oral glucose tolerance test (OGTT). After each treatment period, a subcutaneous fat biopsy was taken to evaluate effects at the level of the fat tissue.

Results: A total of 13 subjects (F:M = 9:4) completed all studies, 6 withdrew from the study. Most subjects experienced local injection site reactions. Average BMI at baseline was 33 ± 5 kg/m² and this did not change during the study. Anakinra had no effect on insulin sensitivity (glucose disposal rate 19.8 ± 2.3 for anakinra vs 18.6 ± 2.5 μMol/kg/min for placebo P=0.44, nor on insulin sensitivity index 0.17 ± 0.03 vs 0.14 ± 0.02 μMol/kg/min/mE P=0.15). Hba1c, fasting glucose levels and C-Peptide during OGTT were not affected. Markers of systemic inflammation HsCRP, IL-6 and IL-8 remained unchanged. IL-1Ra levels in serum and in fat were significantly higher during treatment with anakinra (serum 735 ± 86 vs 66.0 ± 0.09 μg/l P<0.001, fat 217 ± 19 vs 47.7 ± 9.0 ng/mg fat tissue P<0.001).

Histochemical analysis of biopsies showed higher numbers of CD68-positive cells, while expression of PPARγ, and FABP4 significantly decreased in adipose tissue after anakinra treatment (both P<0.05), adiponectin tended to decrease (P=0.07). No carry-over effects were found.

Conclusion: Treatment with anakinra does not result in improved insulin sensitivity in obese, insulin-resistant, non-diabetic subjects. While there was a hint towards an improved insulin secretion, no beneficial changes were found at the fat tissue level. Either the dose of anakinra is too low, the half life too short, or IL-1 plays a relatively minor role at the level of the human fat tissue.

Supported by: an EFSD/Novartis grant, NWo Vici grant for MGN

597
Effect of the interleukin-1 receptor antagonist anakinra on insulin sensitivity in obese, insulin resistant individuals: results from a double-blind placebo-controlled study
E.J.P. van Asseldonk,1 R. Stienstra, T.B. Koenen, M.G. Netea, C.J. Tack;1 General Internal Medicine, Radboud University Nijmegen Medical Centre, Netherlands.

Background and aims: The global prevalence of obesity is rapidly rising and paralleled by an increasing incidence of type 2 diabetes mellitus. Strong evidence has emerged that inflammatory changes link excess energy/fat to insulin resistance, one of the prime pathophysiological defects in type 2 diabetes. In vivo studies in mice and in vitro experiments have demonstrated that obesity activates Interleukin (IL)-1, which subsequently leads to insulin resistance. Blocking IL-1 by recombinant IL-1Receptor antagonist (Ra) thus should diminish insulin resistance. Recent findings show that blocking IL-1 by recombinant human IL-1Ra, anakinra, improves glycemic control in patients with type 2 diabetes. In the present study we investigated whether anakinra was able to improve insulin sensitivity in obese, insulin resistant but non-diabetic subjects.

Materials and methods: Non-diabetic subjects were treated with anakinra 150 mg s.c. once daily or matching placebo for 4 weeks in a double blind cross-over study. Between treatment periods there was a 4 weeks wash-out interval. Inclusion criteria: age ≥18 yrs, BMI ≥ 30 kg/m² and ≥ 3 characteristics of the metabolic syndrome (IDF definition). 19 Patients were included in the study and randomized. Power calculations revealed that 12 paired observations would provide sufficient power to detect a 20% difference in insulin sensitivity.Insulin sensitivity (primary endpoint) was evaluated using a euglycemic hyperinsulinemic clamp, beta-cell functions by oral glucose tolerance test (OGTT). After each treatment period, a subcutaneous fat biopsy was taken to evaluate effects at the level of the fat tissue.

Results: A total of 13 subjects (F:M = 9:4) completed all studies, 6 withdrew from the study. Most subjects experienced local injection site reactions. Average BMI at baseline was 33 ± 5 kg/m² and this did not change during the study. Anakinra had no effect on insulin sensitivity (glucose disposal rate 19.8 ± 2.3 for anakinra vs 18.6 ± 2.5 μMol/kg/min for placebo P=0.44, nor on insulin sensitivity index 0.17 ± 0.03 vs 0.14 ± 0.02 μMol/kg/min/mE P=0.15). Hba1c, fasting glucose levels and C-Peptide during OGTT were not affected. Markers of systemic inflammation HsCRP, IL-6 and IL-8 remained unchanged. IL-1Ra levels in serum and in fat were significantly higher during treatment with anakinra (serum 735 ± 86 vs 66.0 ± 0.09 μg/l P<0.001, fat 217 ± 19 vs 47.7 ± 9.0 ng/mg fat tissue P<0.001).

Histochemical analysis of biopsies showed higher numbers of CD68-positive cells, while expression of PPARγ, and FABP4 significantly decreased in adipose tissue after anakinra treatment (both P<0.05), adiponectin tended to decrease (P=0.07). No carry-over effects were found.

Conclusion: Treatment with anakinra does not result in improved insulin sensitivity in obese, insulin-resistant, non-diabetic subjects. While there was a hint towards an improved insulin secretion, no beneficial changes were found at the fat tissue level. Either the dose of anakinra is too low, the half life too short, or IL-1 plays a relatively minor role at the level of the human fat tissue.

Supported by: an EFSD/Novartis grant, NWo Vici grant for MGN

598
Long-term effect of anti TNF-alpha therapy on insulin resistance, body composition and adipokines
1Endocrinology Department, Hospital Universitario de Canarias (HUC), 2Rheumatology Department, HUC, 3Endocrinology and Nutrition Department, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain, 1IMETISA, HUC, La Laguna, Spain.

Background and aims: Insulin resistance (IR) is a condition associated, among others to abdominal obesity, endothelial dysfunction, hypertension, atherogenic lipid profile, type2 diabetes mellitus and cardiovascular (CV) events. Remarkably, IR has been observed in inflammatory chronic diseases, like rheumatoid arthritis (RA), which suggests that IR and systemic inflammatory response are linked events. It has been suggested that tumour necrosis factor(TNF)-α, a proinflammatory cytokine that plays a key role in the pathogenesis of several human inflammatory disease, might be a connection between inflammation and CV disease apparently through its effects on endothelial function, vascular homoeostasis, IR, as well as on production of adipokines. However, the clinical significance of this potential association has not been fully confirmed. The aim of this study was to determine whether or not chronic blockade of systemic TNF-α in humans has some influence on CV associated risk factors, such as insulin sensitivity, body fat distribution, body composition, physical activity or levels of adipokines.

Material and methods: Sixteen patients with RA (mean age 50.8±14.6 yrs, mean duration of disease 6.3±2.7 years) in whom anti-TNFα agents were added to methotrexate because active disease were followed up during a year. Sixteen patients with RA (mean age 50.8±14.6 yrs, mean duration of disease 6.3±2.7 years) in whom anti-TNFα agents were added to methotrexate because active disease were followed up during a year.

Results: A total of 13 subjects (F:M = 9:4) completed all studies, 6 withdrew from the study. Most subjects experienced local injection site reactions. Average BMI at baseline was 33 ± 5 kg/m² and this did not change during the study. Anakinra had no effect on insulin sensitivity (glucose disposal rate 19.8 ± 2.3 for anakinra vs 18.6 ± 2.5 μMol/kg/min for placebo P=0.44, nor on insulin sensitivity index 0.17 ± 0.03 vs 0.14 ± 0.02 μMol/kg/min/mE P=0.15). Hba1c, fasting glucose levels and C-Peptide during OGTT were not affected. Markers of systemic inflammation HsCRP, IL-6 and IL-8 remained unchanged. IL-1Ra levels in serum and in fat were significantly higher during treatment with anakinra (serum 735 ± 86 vs 66.0 ± 0.09 μg/l P<0.001, fat 217 ± 19 vs 47.7 ± 9.0 ng/mg fat tissue P<0.001).

Histochemical analysis of biopsies showed higher numbers of CD68-positive cells, while expression of PPARγ, and FABP4 significantly decreased in adipose tissue after anakinra treatment (both P<0.05), adiponectin tended to decrease (P=0.07). No carry-over effects were found.

Conclusion: Treatment with anakinra does not result in improved insulin sensitivity in obese, insulin-resistant, non-diabetic subjects. While there was a hint towards an improved insulin secretion, no beneficial changes were found at the fat tissue level. Either the dose of anakinra is too low, the half life too short, or IL-1 plays a relatively minor role at the level of the human fat tissue.

Supported by: an EFSD/Novartis grant, NWo Vici grant for MGN
trubution (subcutaneous and intraabdominal) by magnetic resonance (MR) imaging and serum level of several key adipokines by ELISA. None patient used steroids a month before the start or during the study.

Results: In spite of a significant improvement in DAS28, patients' physical activity remains stable during the follow up. The body mass index showed a significant increase after one year (25.7±3.2 vs 28.06±4.5 kg/m², p=0.02) of treatment with anti-TNFα. The body composition (impedance) in terms of fat and fat-free mass showed no difference between visits except for a significant
cancellation of body cell mass (25.5±4.6 vs 26.6±3.1 kg, p=0.02). Values of visceral intraabdominal and subcutaneous abdominal adipose tissue by MR were not modified because of treatment. HOMA-2 values showed not changes in β-cell function or IR index but a significant increase (110/94-138 vs 118/107-156%), p=0.045) in insulin sensitivity after 3 months was observed.

Basal levels of adiponectin, visfatin, leptin, ghrelin, resistin, and apelin did not change in response to anti-TNFα treatment; only retinol binding protein 4 showed a significant change (51.7±32.7 vs 64.9±28.4 μg/mL, p=0.03) at the end of the study.

Conclusions: Adipocyte composition, body composition and adipokines are not significantly affected by 1 year blockade of TNFα in RA patients. More studies with longer period of follow-up must be done to further clarify the real beneficial role of chronic anti-TNFα treatments in cardiovascular risk factors.

Supported by: FUNCIS 31/2007

599

In type 2 diabetic patients the improvement in insulin sensitivity is associated with a decrease in plasma C-peptide levels and an improvement in intra media thickness

C. Hohberg, A. Plützner, J. Kleine, M. Löbog, W. Fuchs, T. Forst

1Institute for Clinical Research and Development, Mainz, Germany, 2Takeda Pharma, Aachen, Germany.

Background and aims: There is increasing evidence that in type 2 diabetic patients increased C-Peptide levels might predict vascular inflammation and the progression atherosclerotic plaques. The aim of this study was to investigate a potential relationship between the decrease in plasma C-peptide levels and an improvement in intra media thickness (IMT) during treatment with Pioglitazone.

Materials and methods: The Pioneer Study investigated the change in IMT over 6 months in 89 type 2 diabetic patients treated with pioglitazone (PIO: age 62.2±8.4 years; duration of diabetes 89.8 months) and in 84 type 2 diabetic patients treated with glimepiride (GLM: age: 63.0±7.4 years; duration of diabetes 82.5±77.5 months). At baseline and after 6 months the IMT was measured at the common carotid artery and fasting blood samples were taken for the measurement of glucose, insulin, C-peptide, and HbA1c. The HOMA_{IR} Score was calculated as a measure of insulin resistance.

Results: Both treatments resulted in a comparable improvement in HbA1c levels (PIO: from 7.52±0.85 to 6.71±0.89; GLM: from 7.44±0.89 to 6.83±0.85 %, p=0.05). Treatment with pioglitazone significantly decreased HbA1c from 0.94%±0.14% to 0.89%±0.144 mm (p=0.05), while no significant change in IMT could be observed in the GLM group (from 0.921±0.150 to 0.911±0.158 mm (n.s.)). Pioglitazone treatment decreased the HOMA_{IR} Score from 6.2±4.1 to 3.9±1.9 (P=0.05), and C-peptide levels from 2.03±0.94 to 1.69±0.75 ng/mL (P=0.05). During GLM treatment, HOMA_{IR} changed from 5.8±3.7 to 6.0±4.7 (n.s.), and C-peptide changed from 1.95±0.85 to 1.94±0.96 ng/mL (n.s.). A linear correlation could be observed in between the decrease in IMT and the HOMA_{IR} Score (r=0.29; p=0.05), and a decrease in plasma C-peptide (r=0.28; p=0.05).

Conclusion: This study confirmed a linear association between the decrease in IMT and an improvement in insulin sensitivity, as well as a decline in plasma C-peptide levels. The study further emphasizes the complex interrelationship in between Insulin and C-peptide secretion and vascular pathology in patients with diabetes mellitus type 2.

Supported by: Takeda Pharma
PS 44 Tolerate to correlate

601

The relationship of serum A-FABP, retinol binding protein 4, and adiponectin levels to the development of metabolic syndrome in children: a 3-year prospective cohort study

Background and aims: Adipocyte-fatty acid binding protein (A-FABP) and retinol binding protein 4 (RPB4) has been reported to be associated with metabolic syndrome in adults. We evaluated the prospective association of A-FABP, RBP4, and adiponectin with metabolic syndrome as defined by pediatric adaption of the National Cholesterol Education Program criteria.

Materials and methods: In this prospective cohort study, 159 boys from the school-based Metabolic disorders & Obesity Study in Elementary School children (MOSES) study, were followed up for 3 years.

Results: At baseline, A-FABP levels (12.8 ± 5.1 µg/L vs. 23.6 ± 8.2 µg/L, P <0.001) and RBP4 levels (59.7 ± 15.3 vs. 69.3 ± 17.1, P = 0.001) were significantly higher, whereas adiponectin levels (18.1 ± 8.4 µg/mL vs. 11.5 ± 5.4 µg/mL, P <0.001) were significantly lower in overweight children compared to normal control. During 3 year of follow-up, in addition to their association with change of weight, A-FABP levels were positively associated with change of waist circumference and adiponectin levels were negatively associated with change of triglyceride. Although both baseline A-FABP and adiponectin were associated with the development of metabolic syndrome, multiple logistic regression analysis showed that only A-FABP was the independent predictor of the development of metabolic syndrome after adjustment for Tanner stage, insulin resistance, and BMI during 3 year of follow-up (odds ratio, 12.0; 95% CI, 1.3 to 107.4); highest versus lowest tertile.

Conclusion: A-FABP predicts the development of metabolic syndrome independently of adiposity and insulin resistance in Korean boys.

Table 1. Logistic regression analysis of baseline adipokines in the prediction of the development of metabolic syndrome at 3 years later

<table>
<thead>
<tr>
<th>Model</th>
<th>Adiponectin</th>
<th>A-FABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>2.22-11.04</td>
<td>12.0-17.0</td>
</tr>
<tr>
<td>Q2</td>
<td>11.19-18.47</td>
<td>17.0-24.0</td>
</tr>
<tr>
<td>Q3</td>
<td>18.66-41.08</td>
<td>24.0-48.0</td>
</tr>
</tbody>
</table>

Model 1: adjusted for Tanner stage
Model 2: adjusted for model 1 plus HOMA-IR at baseline
Model 3: adjusted for model 2 plus BMI at baseline

602

The relationship between liver fat content and insulin resistance and beta cell function in individuals with different status of glucose metabolism

H. Bian1, H. Lin2, X. Yao3, M. Zeng1, J. Zhou1, W. Jia1, J. Evans4, J. Dave1, N.S. Levitt1, E.V. Lambert1, S.E. Kahn1, T. Olsson5; 1Department of Radiology, Zhong Shan Hospital, Fudan University, 2Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 3Department of Radiology, Zhong Shan Hospital, Fudan University, 4Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China.

Aims: Nonalcoholic fatty liver disease (NAFLD) is commonly associated with type 2 diabetes, dyslipidemia, and insulin resistance. Many studies have shown NAFLD was a predictor of type 2 diabetes and metabolic syndrome. Excess deposition of liver fat may be affect the glucose by deteriorating the β-cell function and increasing the insulin resistance. This study aims to study the relationship between liver fat content(LFC), insulin resistance and β-cell function in individuals with different status of glucose metabolism in China.

Materials and methods: 109 subjects including 31 impaired glucose regulation (IGR), 31 newly diagnosed type 2 diabetes (NT2DM) and 47 normal control (NC) with normal metabolic parameters were involved in the study by measuring the LFC using Proton magnetic resonance spectroscopy, evaluating the insulin resistance and β-cell function using C peptide and insulin from oral 75g glucose tolerance test.

Results: (1) LFC was 3.83%, (inter-quartile range, 2.35-7.59%);12.82% (inter-quartile range, 8.10-21.37%);21.99% (inter-quartile range, 11.89-34.01%); in NC, IGR, NT2DM and groups was and elevated in turn(P<0.01)(2) The subjects were divided into four subgroups by LFC quartile named Quartile 1-4 associated with the increasing LFC_HOMA-IR were elevated from Quartile 2 by turns(P<0.01);(3) Insulin from 0 to 30 min (ΔI30) the ratio of change of insulin from 0 to 30 min to that in glucose from 0 to 30 min (ΔI30/ΔBG30) and C peptide from 0 to 30 min (ΔCP30) increased in Quartile 2,then decrease in Quartile 3 but without statistical significance. In Quartile 4 ΔI30/ΔBG30 and ΔCP30 sharply decreased(P<0.01 and P<0.001). The ratio of C peptide from 0 to 30 min to that in glucose from 0 to 30 min (ΔCP30/ΔBG30) began to decrease from Quartile 3(P<0.05). The ratio of area under curve of C peptide to area under curve of glucose (CP AUC/ BG AUC) were significantly decreased from Quartile 3(P<0.05). From Quartile 3,glycemic ability abnormally elevated to the diagnosis value of IGR(P<0.01)(Tab 1)(4) LFC was positively correlated with HOMA-IR(r=0.618)(P<0.01), but was negatively correlated with ΔCP30(r=-0.282),ΔCPf30/ΔBG30(r=-0.404),CP AUC/ BG AUC(r=-0.308)(P<0.001)(5)Stepwise regression analysis demonstrated LFC was the strongest predictor of HOMA-IR. But LFC failed to enter all models about β-cell function.

Conclusion: LFC was an independent risk factor of insulin resistance. When LFC moderate increased, the early phase of insulin secretion also compensatively increased, but as the LFC further deposition, both the early phase and whole β-cell function were deteriorated, and hyperglycemia developed. These suggest that deposition of LFC participates in the pathogenesis of type 2 diabetes.

Table 1 Comparison of Insulin Resistance and β-cell function among quartile of LFC values

<table>
<thead>
<tr>
<th>Quartile</th>
<th>ΔCP30/ΔBG30</th>
<th>ΔI30/ΔBG30</th>
<th>CP AUC/BG AUC</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.69±0.4</td>
<td>2.01±0.4</td>
<td>0.94±0.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Q2</td>
<td>0.69±0.4</td>
<td>2.01±0.4</td>
<td>0.94±0.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Q3</td>
<td>0.69±0.4</td>
<td>2.01±0.4</td>
<td>0.94±0.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Q4</td>
<td>0.69±0.4</td>
<td>2.01±0.4</td>
<td>0.94±0.3</td>
<td><0.01</td>
</tr>
</tbody>
</table>

603

Defects in glucose adipogenesis are associated with obesity-related insulin resistance in black South African women

J.H. Goedecke1,2; K. Adams3, P. Hayes4, J. Evans5, J. Dave1, N.S. Levitt1, E.V. Lambert1, S.E. Kahn1, T. Olsson5; 1Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, USA, 2Department of Medicine, Umeå University, Sweden.

Background and aims: It has been proposed that defects in the ability to store fat in subcutaneous adipose tissue (SAT) depots may be associated with increased visceral adipose tissue (VAT) accumulation and decreased insulin sensitivity (SI). The aims of the study were to measure the expression of genes involved in adipogenesis in abdominal SAT and gluteal depots, and determined their relationship with VAT and SI, in black and white South African women who differed in body fat distribution and SI.

Materials and methods: VAT (computed tomography scan), SI (frequently sampled intravenous glucose tolerance test), and abdominal and gluteal SAT gene expression were measured in 14 normal-weight (BMI <25 kg/m2) black, 14 normal-weight-white, 15 obese (BMI >30 kg/m2) black and 13 obese white South African women.

Results: With increasing BMI, black women accumulated less VAT (P<0.03) and more abdominal SAT (P<0.017), but had lower SI (P<0.01) than white women. After adjusting for differences in VAT and SI, abdominal SAT adipogenic gene expression did not differ by ethnicity. However, gluteal SAT expression of adipogenic transcription factors (CEBPβ and STAT5a) were
higher in black than white women (P<0.05). In contrast, gluteal expression of adipogenic (PPARY), lipogenic (FASN, PEPCK) and lipolytic (HSL, FABP) genes were down regulated in obese black women (P<0.05). Further, CEBPα (r=0.53, P=0.007), FASN (r=0.50, P=0.011), PEPCK (r=0.45, P=0.024), LPL (0.52, P=0.008), HSL (r=0.59, P=0.002) and FABP (r=0.61, P=0.001) mRNA levels in gluteal SAT, but not abdominal SAT, correlated with Sβ in black women, independent of % body fat. In white women, FASN expression in both gluteal and superficial SAT depots correlated equally with Sβ (r=0.47, P=0.025). VAT correlated negatively with mRNA levels of adipogenic transcription factors (CEBPα (r=-0.47, P=0.025), CEBPβ (r=-0.44, P=0.037) and SREBFs (r=-0.46, P=0.028)) in white women, whereas in black women, no associations with VAT were found.

Conclusion: Obese black women have impaired expression of gluteal SAT adipogenic genes compared to white women, which associates with reduced Sβ. These findings therefore refute the hypothesis that black South African women display ‘healthy obesity’ due to their greater peripheral fat distribution, but rather suggests that obesity in black women impairs gluteal SAT adipocyte function, leading to insulin resistance, which increases the risk for type 2 diabetes.

Supported by: South African NRF, MRC and UCT

604
Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells
A. Hammarstedt, U. Smith;
Molecular and Clinical Medicine, Medicine, Göteborg, Sweden.

Background and aims: Obesity promotes type 2 diabetes through induction of insulin resistance. Insulin resistance in the adipose tissue is, however, seen long before type 2 diabetes develops and is associated with a dysfunctional adipose tissue including an impaired ability to recruit pre-adipocytes and, thus, promoting adipocyte hypertrophy. Animal studies have shown that expansion of the adipose tissue does not necessarily affect the metabolic phenotype as long as the adipose tissue is not dysfunctional. In order to examine this in man, we here investigated GLUT4 expression and other markers of insulin resistance in the adipose tissue, including adipose cell size as a marker of impaired pre-adipocyte differentiation in non-obese, first-degree relatives to type 2 diabetic patients in relation to the whole-body phenotype.

Materials and methods: 34 non-obese, first-degree relatives to type 2 diabetic patients were recruited through advertisement in a local newspaper. Anthropometric measures were recorded, blood samples collected for quantification of circulating factors and insulin sensitivity measured by the hyperinsulinaemic-euglycaemic clamp method. Abdominal subcutaneous adipose tissue biopsies were obtained, adipocyte cell size and gene and protein expression were measured.

Results: Our findings show that these individuals, although non-obese, exhibit clear signs of a dysfunctional adipose tissue, characterized by low expression of GLUT4, altered adipokine profile, and enlarged adipocyte size that correlate with the clinical phenotype and insulin sensitivity. In summary, cell size, in these non-obese individuals, is correlated with WHR (r=0.42, p=0.014), f-glucose (R=0.30, p=0.085), f-insulin (R=0.38, p=0.001), HbA1c (R=-0.33, p=0.058), GIR (R=-0.41, p=0.016), TG (R=0.44, p=0.009), s-HDL cholesterol (R=-0.41, p=0.017), ΔAdiponectin (r=0.56, p=0.001), GLUT4 mRNA (R=0.45, p=0.007) and GLUT4 protein (R=-0.29, p=0.095). In addition, GLUT4 expression in the adipose tissue and circulating adiponectin, which is secreted from the adipose tissue, was closely related (mRNA: R=0.42, p=0.013; protein: R=0.36, p=0.037) and show a similar association with clinical parameters.

Conclusion: In conclusion, these findings support the concept that it is not obesity per se, but rather the presence of a dysregulated adipose tissue which relates to whole-body insulin sensitivity and the associated phenotype.

Supported by: SRC Novo Nordisk SDF SSF Söderberg Bergvall VAMC and NCCR

605
Retinol binding protein-4, insulin sensitivity and intima media thickness in non diabetic subjects with normal glucose tolerance
E. Muscelli, A. Solini, C. Morizzo, B.D. Astiarraga, C. Palombo, A. Casaloro, M. Kozakova;
Department of Internal Medicine, University of Pisa, Italy.

Background and aims: Retinol binding protein-4 (RBP4) is a novel adipokine able to modulate the action of insulin in several tissues; its role in humans is controversial. Preclinical data has been associated in increase in carotid intima media thickness (IMT) in hyperactive women as its association with early atherosclerotic changes in normoreactive subjects was not studied. Thus, the aim of the present study was to evaluate the relationship between RBP4, insulin sensitivity and IMT in lean obese and non-diabetic normotensive subjects.

Materials and methods: Insulin sensitivity (euglycemic hyperinsulinemic clamp, IMT in common carotid artery (high-resolution B-mode ultrasound) and serum RBP4 levels were assessed in 72 subjects (39 males, 43.9 ± 8.3 years, BMI 27.1 ± 4.6 kg/m² [range 19.1 to 30.3 kg/m²]). Study subjects were divided in lean (L, n=29), overweight (OW, n=17) and obese (OB, n=26).

Results: Insulin sensitivity (M value) ranged from 11.9 to 81.2 μmol/kg FFM/min (mean±SD = 50.01±14.0 μmol/kg FFM/min) and was lower in OB (L = 60.0±12.7; OW = 45.7±11.1 and OB = 43.3±12.4 μmol/kg FFM/min, p<0.0001). IMT was higher in OB and OW, as compared to L (OW = 0.601 ± 0.81 and OB = 0.658 ± 0.092mm vs. L = 0.589 ± 0.074, p=0.01). RBP4 levels were similar between genders, BMI subgroups and between the lowest and highest M quartile (56.2 ± 32 vs. 55.8 ± 28.3 μg/ml, p=NS). In the whole study no relationship was observed between RBP4 and BMI, blood pressure, M value, IMT, plasma adiponectin and glucose and insulin plasma levels during OGTT. IMT was independently correlated only with age and weight (r=0.35; p=0.0001).

Conclusion: In non-diabetic normotensive subjects, RBP4 levels are neither related to the degree of obesity and of insulin sensitivity nor to blood pressure and to IMT. In this healthy population increase in IMT seems to reflect physiologic aging and adaptation to body size.
PS 45 Cardiometabolic risk assessment

607

Insulin resistance, rather than BMI, predicts metabolic severity in anorexia nervosa
A. Priolletta, G. Muscogiuri, C. Cipolla, E. Salomone, G. Sorice, T. Mezza, S. Della Casa, A. Giacardi; Endocrinology, Catholic University, Rome, Italy.

Introduction: Anorexia nervosa (AN) is a psychiatric eating disorder, characterized by self-induced weight loss and body image distortion. The prolonged starvation causes changes in body composition as loss of fat and lean masses while nutritional recovery results in significant changes in body composition, especially in fat mass distribution as well as in FT3 normalization. It is well known that changes in body composition may modify insulin-sensitivity (IS) nevertheless, the determination of insulin sensitivity in AN has provided conflicting results.

Aim: In our study we aimed to examine IS, measured by hyperinsulinemic euglycemic clamp (HEC), in patients affected by AN. The second aim was to evaluate the relationship between IS and the usual clinical parameters of recovery from AN, including FT3 and body fat mass.

Subjects and methods: 26 women with restrictive AN (age 24.4±6.0 years; disease duration 66.4±7.8 months), were enrolled. We measured BMI, hormones (FT3, FT4, TSH, serum and urinary free cortisol, GH and IGF-1), and performed OGTT and HEC. Body composition was determined by dual energy X-ray absorptiometry (DEXA). Fat body mass was calculated for the total body and for trunk and leg regions. We considered patients in partial recovery if FT3 was within normal range (≥2 pg/ml).

Results: All studied subjects were normo-tolerant. After dividing the cohort based on FT3 levels, the two groups were similar in age and disease duration although subjects with normal FT3 levels had higher BMI, total fat mass, trunk fat mass and ratio trunk fat mass/total fat mass (p<0.05). No differences in the levels of plasma and urinary cortisol, GH, TSH, FT4 were present. The group with low FT3 had lower IGF1 (p<0.05). A linear negative correlation was observed between glucose uptake during HEC and trunk fat mass (R=−0.72; p=0.01), while no correlation between glucose uptake and BMI (R=−0.08; p=0.82) was found. A linear negative correlation was shown between FT3 and glucose uptake (R=−0.75; p=0.01) and (positive) with abdominal fat (R=0.901; p=0.003).

Discussion: The inverse correlation found between body fat mass (trunk and total) and glucose uptake and the absence of any correlation between BMI and glucose uptake allow us to hypothesize that, in patients with anorexia nervosa, BMI is not a reliable index of metabolic status, in opposite to what was observed in patients with metabolic syndrome or diabetes. The measurement of body fat by DEXA seems to be more reliable than BMI. Our study also showed that the metabolic alterations and the body composition were correlated with indices of disease that per se could constitute a marker of the metabolic state in these patients, offering a reliable prognostic indications. In perspective, although AN patients in partial recovery were still with an extremely reduced fat mass, we hypothesize that the reappearance of fat exclusively in the abdomen induces insulin resistance and may contribute to the usual difficulty to reach normal weight in these patients.

608

Does insulin resistance or insulin secretion predict weight changes in non-diabetic subjects?
E. Rebello, E. Muscelli, M. Nannipieri, S. Camastra, E. Ferrannini, on behalf of the RISC Study investigators; Department of Internal Medicine, University of Pisa, Italy.

Background and aims: Previous studies using the euglycemic insulin clamp technique have reported that a high degree of insulin sensitivity predicts weight gain. This association, however, has not been confirmed in other studies using other surrogate measures of insulin sensitivity. Likewise, both increased and decreased insulin secretion have been linked with weight gain. We therefore undertook to systematically analyse the relationship between insulin sensitivity/secretion and spontaneous weight changes in non-diabetic subjects.

Materials and methods: In 1,048 subjects from the RISC cohort (561 women and 467 men, mean age 44 years) followed up for 3 years, we measured baseline insulin sensitivity (by a 240 pmol/min·m-2 insulin clamp) and β-cell function (i.e., fasting insulin secretion rate, total insulin output and β-cell glucose sensitivity, by mathematical modelling of the C-peptide response to oral glucose).

Results: In the whole cohort, both men and women gained weight over 3 years (0.9 [4.6] and 0.9 [4.6] kg, respectively, median [IQR], p<0.001 vs zero). Baseline BMI was significantly higher in both weight gainers (top 20% of the distribution of BMI changes, +6 [3] kg) and weight losers (bottom 20%, -4 [3] kg) as compared to weight stable subjects (25.7 [5.0] and 26.3 [4.6] kg·m-2, respectively, vs 24.3 [4.6] kg·m-2, p<0.001 for both). In contrast, insulin sensitivity (as the M or M/I index) was not associated with either weight gain or weight loss across quartiles of baseline BMI. By multiple logistic or linear regression analyses adjusting for centre, age and sex, baseline waist circumference (or BMI or body weight) was the only significant, independent predictor of both weight gain and weight loss. In none of these models did any parameter of β-cell function show an independent association with weight changes; this was also the case for baseline glucose tolerance status (NGT, IGT or IFG).

Conclusion: In a large cohort of non-diabetic Caucasian subjects, neither insulin sensitivity nor insulin secretion predicts spontaneous weight changes. As compared to lean subjects, heavier individuals are prone to either gaining or losing weight regardless of their degree of insulin sensitivity.

Supported by: EU; AstraZeneca and Merck Serono

609

A multi-marker risk score predicts insulin sensitivity and beta cell function-driven type 2 diabetes from a fasted sample
S.M. Watkins1, M.W. Rowe1, J.A. Kolberg1, R.N. Bergman2, L.E. Wagenknecht3

1Research, Tethys Bioscience, Emeryville, 'Keck School of Medicine, University of Southern California, Los Angeles, 'School of Medicine, Wake Forest University, Winston-Salem, USA.

Background and aims: The Insulin Resistance in Atherosclerosis (IRAS) Study demonstrated that insulin sensitivity (SI), acute insulin response (AIR) and the disposition index (DI) as measured by fasted intravenous glucose tolerance tests (FSGT) were each predictive of future diabetes in a multi-ethnic population. While such careful measurements of glucose homeostasis provide useful prognostic information, the FSGT test itself is impractical for standard clinical practice. The PreDx™ Diabetes Risk Score (DRS) is a prognostic test that combines the fasting concentrations of glucose, insulin, hemoglobin A1c, adiponectin, C-reactive protein, ferritin and interleukin-2 receptor alpha into an absolute risk for conversion to diabetes within five years (as defined by the WHO 1999 criteria).

Materials and methods: We measured the DRS in baseline IRAS samples from 722 subjects (including 127 that subsequently converted to diabetes) and evaluated the correlation of the DRS and its individual components with SI, AIR and DI. To further evaluate the relationship of the DRS to insulin sensitivity, insulin secretion or β-cell function, we determined the incremental performance of logistic models combining SI and AIR or DI with the fixed DRS score in predicting incident diabetes.

Results: The DRS was strongly and significantly correlated with both SI (r = -0.52, p < 0.01) and DI (r = -0.54, p < 0.01), and weakly correlated with AIR (r = -0.20, p < 0.01). Additionally, each of the individual components of the DRS except IL-2 receptor alpha correlated significantly with SI and DI. The DRS, SI, AIR and DI were each significant predictors of the onset of diabetes (p < 0.01) with C-statistics of 0.75, 0.68, 0.69 and 0.79, respectively. Adding SI to DRS did not significantly improve the prediction of incident diabetes, indicating that the DRS captures the biological basis of SI-induced diabetes. Conversely, adding DRS increased the C-statistics of SI by 0.07 (p < 0.01) and AIR by 0.10 (p < 0.01), but did not improve the performance of the DI.

Conclusion: The DRS correlates strongly and significantly with SI and the DI. In addition to this correlation the DRS substitutes for, and exceeds, the capacity of SI to predict incident diabetes (p < 0.01), and it can be performed from a fasted sample. The DRS represents a simple and practical approach to identifying patients at risk for SI or DI-driven type 2 diabetes.
610
Screening for insulin resistance in persons with increased diabetes risk by EZSCAN

Background and aims: Prevalence of type 2 diabetes and pre-diabetes are increasing globally. Early identification and intervention even in persons with pre-diabetes will reduce/delay progression to diabetes and related complications. There is a lack of simple, fast, reproducible and cheap methods for early diagnosis and screening of people at risk for diabetes. EZSCAN was recently developed to measure sweat gland function through measurement of electro skin conductance (ESC) based on reverse iontophoresis. The aim of the study was to evaluate the ability of EZSCAN to predict insulin resistance in subjects at high risk of diabetes.

Materials and methods: 230 subjects with a family history of type 2 diabetes, obesity or dyslipoproteinemia from the city of Dresden and adjoining area (37% male, mean age 56.4±13.9yrs, mean BMI 27.8±5.0kg/m2) were involved in the study and had an oral glucose tolerance test (OGTT) with measurement of plasma glucose, pro-insulin, insulin and C-peptide at 0, 30, 60, 90 and 120 minutes. EZSCAN results are given in colour codes based on the values of ESC on feet, hands and forehead: Green = Normal; Yellow = Borderline; Orange-Red = High risk.

Results: Based on ESC values measured by EZSCAN 56 subjects were classified as green, 115 as yellow and 54 as orange-red. Results of glucose, pro-insulin, insulin and C-peptide at OGTT according to EZSCAN classification are displayed on Figure. Patients classified as green on EZSCAN had significantly lower values for glucose and insulin at 60, 90 and 120 min. and for C-peptide at 90 and 120 min. when compared to patients of yellow or orange-red groups.

Conclusion: EZSCAN is a new simple and non invasive method for identifying subjects at high risk for diabetes.

611
Serum advanced glycation end products is associated with insulin resistance independent of adiponectin
K.C.B. Tan, S.W.M. Shiu, Y. Wong, X. Tam; Department of Medicine, The University of Hong Kong, Hong Kong.

Background and aims: Recent in vitro experimental data have suggested that advanced glycation end products (AGEs) may play a significant role in the development of insulin resistance by interfering with the molecular pathways of insulin signaling. We have investigated whether the degree of insulin resistance in human subjects is associated with circulating level of AGEs.

Materials and methods: 165 healthy non-diabetic subjects (77 male and 88 female) were recruited from the community. Serum levels of AGEs and adiponectin were measured by ELISA. Insulin resistance was determined by using the homeostasis model assessment index (HOMA-IR).

Results: Serum AGEs was higher in male than female subjects (3.91 ± 1.18 vs 3.49 ± 1.22, p<0.03). There was no significant difference in age between male and female subjects but male subjects had higher body mass index (25.5 ± 2.6 kg/m2 vs 23.6 ± 3.3, p<0.01) and waist circumference (86.4 ± 7.1 cm vs 76.4 ± 8.6, p<0.01). Male subjects were more insulin resistant, HOMA-IR (median 1.37 (interquartile range 0.81 - 2.19) vs 1.12 (0.64 - 1.78), p<0.05), Insulin and had lower serum adiponectin level (6.14 mg/ml (5.90 - 8.98) vs 10.67 (7.92 - 15.12), p<0.01). In both male and female subjects, serum AGEs correlated with HOMA-IR (r=0.37, p< 0.01; r=0.26, p=0.02 respectively). Serum AGEs remained an independent determinant of HOMA-IR even after adjusting for age, gender, waist, smoking and adiponectin level on multiple linear regression analysis.

Conclusion: Formation and accumulation of AGEs progress during normal aging. We have demonstrated that circulating level of AGEs is associated with insulin resistance in non-diabetic subjects independent of adiponectin.

612
Alzheimer’s disease in normoglycaemic patients: an association with decreased insulin sensitivity and atherogenic profile of lipid abnormalities
M. Macesic1, N.M. Lalic2, V.S. Kostic2, A. Jotic1, E. Stefanova2, K. Lalic1, T. Milicic1, L. Lukic1, N. Rajkovic3, J. Seferovic-Mitrovic2, S. Aleksić2; 1Institute for endocrinology, 2Institution for neurology, Belgrade, Serbia.

Background and aims: Previous studies have suggested that insulin resistance might play an important role in pathogenesis of Alzheimer’s disease (AD), but the relevant mechanisms of this influence have not yet been clarified. The study was aimed to analyze in patients with AD the levels of (a) insulin sensitivity (IS), (b) plasma insulin (PI) and (c) lipid parameters comprising total cholesterol (Ch), low-density (LDL) and high density (HDL) Ch, triglycerides and apolipoproteins (apoA1, apoAI, apoB, lp(a) and apoE) potentially involved in the pathogenesis of the disease.

Materials and methods: In the study we included 57 normoglycemic patients with AD (group A; BMI: 23.95 ± 0.81 kg/m2, mean age of 72.34±/−8.60 years) and 25 matched controls (group B; BMI: 25.43 ± 0.66 kg/m2, mean age of 61.33+/−6.75 years). IS was evaluated by using euglycemic hyperinsulinemic clamp technique with insulin infusion rate of 1 mU/kgbw/min during 120 min and glucose infusion adjusted manually, at 5 min intervals, to maintain target euglycemia. Total glucose uptake (M value) was calculated on the basis of the amount of glucose infused during steady state period (80-120 min). PI levels were determined by radioimmunossay and PG levels by glucose oxidase method. Total cholesterol, HDL-Ch, and triglycerides levels were determined by using enzymatic method, and LDL-Ch was calculated using the formula of Friedewald. Apolipoproteins apoAI, apoAII, lp(a) and apoE were determined by using nephelometry method.

Results: We found that total glucose uptake was significantly lower in group A compared to group B (6.41+/−/−0.60 vs 8.13+/−0.33 mg/min/kg, p<0.01). In addition, basal PI levels were higher in group A compared to group B (15.57+/−/−2.01 vs 7.34+/−0.98 mmol/L, p<0.05), while basal PG levels did not differ between the groups. Moreover, the levels of total Ch and LDL-Ch were significantly higher in group A in comparison to group B (6.47+/−/−0.23 vs 5.71+/−/−0.19; 4.40+/−/−0.19 vs 3.58+/−/−0.17 mmol/L, respectivley, p<0.01), while the HDL-Ch levels were significantly lower in group A than in group B (1.21+/−/−0.04 vs 1.48+/−/−0.32 mmol/L, p<0.01). The levels of triglycerides did not differ significantly between the groups (1.58+/−/−0.14 vs 1.58+/−/−0.13 mmol/L, p=NS). In addition, the levels of ApoAI were significantly lower in group A in comparison to group B (1.493+/−/0.058 vs 2.02+/−/−0.37 g/L, p<0.01), while the
levels of other apolipoproteins, ApoAI, ApoAII, ApoB, Lp(a) and ApoE did not differ significantly between the groups (p>0.05). Peak all insulin levels were 10.57 ± 33.51 vs 12.07 mg/L; 1.135 ± 0.056 vs 1.06 ± 0.28 g/L; 0.264±0.053 vs 0.24±0.07 g/L; 42.63±1.89 vs 40.40±1.15 mg/L, respectively, p<NS).

Conclusion: Our results have demonstrated that the presence of AD in normoglycemic patients was associated with decreased IS and increases in peripheral insulin levels. Our results imply that decreased IS levels might exert, at least partly, their pathogenic influence through the lipid abnormalities especially the decreases in HDL-Ch and ApoAI levels.

613

Relationship between insulin resistance and puberty in obese children with increased cardiometabolic risk

B. Tobisch; L. Blatniczky; L. Barka

St. John’s and North-Buda United Hospitals of Budapest Municipality, Budapest, Postgraduate Institute of Pediatrics, University of Debrecen Medical and Health Science Center, Miskolc, Hungary.

Background and aims: Epidemiology data provide evidences that the frequency of obesity and cardiometabolic risk factors shows an increasing tendency in childhood. Insulin resistance plays a central role in the pathogenesis of cardiovascular and metabolic consequences of obesity. Transient decrease in the insulin sensitivity during puberty is a well-known physiological process, however the feature of this phenomenon is not clear in obese children with increased cardiometabolic risk. The aim of present study was to assess the effect of puberty on insulin resistance and metabolic parameters in obese children with and without increased cardiometabolic risk.

Materials and methods: Anthropometry data, insulin levels during OGGT and lipid status were analyzed of 161 obese children aged 10-18 years. Sinsulin/glucose ratio obtained during glucose load and HOMA index were used to assess insulin resistance. Children were sorted into prepubertal (T1), pubertal (T2-4) and postpubertal (T5) cohorts according to Tanner staging criteria and metabolic and insulin resistance parameters were evaluated. Increased cardiometabolic risk (CMR) was defined as the presence of any two factors (elevated FPG, BP, TG or decreased HDL-C) in addition to obesity.

Results: Out of 161 obese subjects, 43 (26.7%) had CMR. Decreased HDL and/or elevated TG was observed in 92 (57.1% cases). IGT and/or IFG was found in 25 (15.5%) cases. In subjects without CMR, the Sinsulin/glucose ratio in T1 stage was significantly lower than in T2-4 and T5 stages (p=0.01). In children with CMR, the Sinsulin/glucose ratio was similar in T1, T2-4 and T5 stages, however it was significantly higher in T1 stage as compared to subjects without CMR (p=0.04). In T2-4 and T5 stages, the Sinsulin/glucose ratio did not differ between children with and without CMR. No difference was found in HOMA index between groups with and without CMR in T1 stage, however significantly higher levels were observed in CMR subjects in T2-4 stages (p=0.01), indicating the presence of fasting hyperinsulinemia in this cohort. Elevated HbA1c (>6.0%) was found in 13 (12.6%) out of 81 children investigated, of whom only two cases had abnormal OGGT results. In cases having normal HbA1c, OGGT showed IGT in 2 cases, IFG in 2 cases and/or elevated TG was observed in 92 (57.1%) cases. IGT and/or IFG was assessed in parallel.

In obese children with CMR, substantial insulin resistance occurs in prepuberty and it is present in similar level throughout puberty. Fast- ing insulin levels are elevated in obese CMR subjects as compared to those without CMR. To reveal T2DM cases, HbA1c and OGGT results should be assessed in parallel.

614

PS 46 At home with HOMA?

L.F. Clark; M.C. Thivierge; S.C. McGrath; P. Abraham; D.W.M. Pearson; G.E. Llobley

Rowett Institute of Nutrition and Health, University of Aberdeen, Department of Diabetes, Aberdeen Royal Infirmary, United Kingdom.

Background and aims: Insulin is central to control of glycaemia but also regulates tissue protein metabolism including skeletal muscle, a major contributor to post-prandial glucose disposal. Hypothesis: A dysregulation in insulin sensitivity to glucose will be accompanied by a comparable change in sensitivity of protein metabolism in subjects with impaired glucose regulation (IGR) as has been shown in healthy volunteers by Chevalier et al. This change in insulin sensitivity may occur through suppression of endogenous glucose production (EGP) and protein breakdown and/or altered disposal of glucose and amino acids (AA).

Materials and methods: Twenty-four volunteers (16 men, 8 women; mean age 60.3 years (52-68 years)) with IGR had assessment of basal EGP and whole body protein breakdown determined with stable isotope tracer. This was followed immediately by a 3h hyperinsulinaemia-euglycaemic-euamino acid clamp (40 mU/m²/min) to assess insulin sensitivity. During the clamp, suppression of EGP and whole body protein breakdown were determined with the stable isotopes. The relationship between basal metabolic parameters and both glucose and AA disposal with other variables were investigated using regression analyses.

Results: Mean pre-clamp EGP was 2.80mg/kgFFM/min (2.08-4.40 mg/kgFFM/min) with a mean suppression of 78.8% (63.6-98.2%) during the clamp and mean protein breakdown was 5.20 mg/kgFFM/min (4.20-8.06 mg/kgFFM/min) with suppression of 30.1% (15.0-30.7%) during the clamp. Mean disposal of exogenous glucose was 5.63 mg/kgFFM/min (Range: 1.85-13.30 mg/kgFFM/min) and mean disposal of total glucose (exogenous glucose and residual EGP) was 6.12 mg/kgFFM/min (Range: 2.34-14.07 mg/kgFFM/min). Mean disposal of exogenous AA was 1.13 mg/kgFFM/min (Range: 0.49-1.76 mg/kgFFM/min) and mean disposal of total AA (exogenous and non-suppressed protein breakdown) was 4.72mg/kgFFM/min (Range: 3.05-5.94 mg/kgFFM/min). Exogenous glucose disposal (EGD) did not show a strong relationship with exogenous AA disposal (R²=0.14, NS), nor was there a relationship between total glucose and AA disposal. EGD and total glucose disposal showed inverse relationships with HOMA-IR (R²=0.38, P=0.008; R²=0.35, P=0.01), weight (R²=0.37, P=0.002; R²=0.34, P=0.003), 2 hour venous glucose (75g OGGT) (R²=0.35, P=0.009; R²=0.32, P=0.004) and fasting insulin (R²=0.40, P=0.007; R²=0.37, P=0.009). A relationship was demonstrated between total AA disposal and HOMA-IR (R²=0.34, P=0.008). AA disposal (total or exogenous) was not related to other variables studied.

Conclusion: The hyperinsulinaemia-euglycaemic clamp is a well recognised tool in the assessment of insulin sensitivity; use of an AA clamp is less common. Pereira et al found that HOMA-IR predicted 44% of the variance in the AA clamp in men with type 2 diabetes. Whilst we found similar results between total AA disposal and HOMA-IR, on direct comparison during the insulin clamp no relationship was seen between AA disposal and glucose disposal. These findings in subjects with IGR contrast with Chevalier et al who found a correlation between glucose and AA disposal during the hyperinsulinaemia-euglycaemic-euaminoacidic clamp in healthy volunteers.

615

Mesenteric fat thickness explains the inconsistent relationships between central obesity and insulin resistance

G.T. Ko; W.-Y. So; E. Lui; R.C.W. Ma; R. Ozaki; A.P.S. Kong; W. Chu; J.C.N. Chan

Department of Medicine and Therapeutics, Department of Diagnostic Radiology and Organ Imaging, the Chinese University of Hong Kong, Hong Kong, China.

Background and aims: Waist circumference is a screening tool to identify high risk individuals for insulin resistance. However, some obese subjects are insulin sensitive while some non-obese subjects exhibit features of insulin resistance. We previously reported that mesenteric fat thickness (MFT) measured by ultrasound scan explained most of the variance of cardiometabolic

S247
We established all-cause mortality through Re

Supported by: Italian Minister of Health MURST Cofin, an EFSD Clinical Re

previously thought and in contrast with the obese insulin resistant subjects,

Conclusion: HR: 1.40; 95% CI: 1.08-1.81; P=0.01) but not in the metabolically healthy obese (HR: 0.99; 95% CI: 0.79 ± 0.37 groups (p-value for trend = 0.036). On multivariate analysis, the independent predi

metabolically healthy obese phenotype is less frequent than

Conclusion: The heterogeneous relationships between IR and CO are largely attributed to MFT which can be used to identify non-obese but insulin resist

BMI had no impact on the behaviour of glucose. HOMA-B rose gently from 5-13y among children in the lowest quartile for insulin (panel 1), consistent with a progressive rise in demand, but fell steeply from 5-7y - despite rising glucose - among those in the highest quartile (consistent with a primary loss of beta cell function in those most beta cell stressed). Outcome: mean glu

cose at 13y lay in HOMA-B (panel 3), which was substantially lower in Q4 (7.22 μ/l, p=0.16). The difference between Q1 and Q4 children for glucose at 13y was considerably higher in Q4 (5.5 mmol/l) than Q1 (4.7 mmol/l, p<0.001), and had been higher throughout (panel 2). Fasting insulin levels, on the other hand, were similar (at 5y Q1 4.10, Q4 3.42 μl/l, p=0.13; at 13y, Q1 6.11, Q4 7.22 μl/l, p=0.16). The difference between Q1 and Q4 children for glucose at 13y lay in HOMA-B (panel 3), which was substantially lower in Q4 than Q1 (83.1% v 102.5% at 13y, p=0.005) Gender, physical activity (acceleromet

The heterogeneous relationships between IR and CO are largely attributed to MFT which can be used to identify non-obese but insulin resist

Materials and methods: We established all-cause mortality through Regional Health Registry files in 2,074 Caucasian middle-aged (57±11 years), individuals of the population survey carried out in 1990-1991 in Lombardy, Italy (Cremona Study) 15 years after the baseline assessment. Study subjects were divided in four categories based on BMI (non-obese: < 30 kg/m²; obese; ≥ 30 kg/m²) and estimated insulin resistance (insulin-sensitive: HOMA-IR < 2.5; insulin-resistant ≥ 2.5).

Results: Data for 2,011 individuals were available. 43 of the 380 obese individu

Background and aims: Some obese individuals have normal insulin sensitivi

Materials and methods: We established all-cause mortality through Regional Health Registry files in 2,074 Caucasian middle-aged (57±11 years), individuals of the population survey carried out in 1990-1991 in Lombardy, Italy (Cremona Study) 15 years after the baseline assessment. Study subjects were divided in four categories based on BMI (non-obese: < 30 kg/m²; obese; ≥ 30 kg/m²) and estimated insulin resistance (insulin-sensitive: HOMA-IR < 2.5; insulin-resistant ≥ 2.5).

Results: Data for 2,011 individuals were available. 43 of the 380 obese individu

Background and aims: Some obese individuals have normal insulin sensitivi

Materials and methods: We established all-cause mortality through Regional Health Registry files in 2,074 Caucasian middle-aged (57±11 years), individuals of the population survey carried out in 1990-1991 in Lombardy, Italy (Cremona Study) 15 years after the baseline assessment. Study subjects were divided in four categories based on BMI (non-obese: < 30 kg/m²; obese; ≥ 30 kg/m²) and estimated insulin resistance (insulin-sensitive: HOMA-IR < 2.5; insulin-resistant ≥ 2.5).

Results: Data for 2,011 individuals were available. 43 of the 380 obese individu
618

Insulin resistance and increased PAI-1 as factors of non-alcoholic fat liver disease in children, adolescents and youth metabolic syndrome
V.S. Dimitrijevic-Sreckovic, B.M. Sreckovic, P.B. Djordjevic, D.M. Gostiljac, M. Civcic, I. Soldatic, H.S. Petrovic; 1Diabetology; Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 2Cardiology, Clinical Center Bezanijska Kosa, 3Statistics, Institute for Medical Statistics and Informatics, Clinical Center of Serbia, Belgrade, Serbia.

Background and aims: In metabolic syndrome (MS) patients, abdominal obesity accompanied with hyperinsulinism and insulin resistance is related to hypertension and lipid status disturbance where thrombogenic and inflammatory factors and low antioxidant status and tendency to early atherosclerosis are present. Hepatic fat accumulation in childhood obesity is associated with increased visceral fat and insulin resistance (IR). IR results in fat deposition in the liver and occurrence of non-alcoholic fat liver disease (NAFLD). The study was aiming at determining NAFLD and its most important provoking factors in MS and pre-Metabolic Syndrome (pre-MS) syndrome patients.

Materials and methods: The study included 173 obese individuals aged 7 to 30 classified into 3 groups: I-children (7-15), II-adolescents (16-20) and III-youth (20-30). Three of the following five criteria were used for metabolic syndrome (MS) diagnosis in adolescents: waist circumference >90 percentile; triglycerides >1.7 mmol/l; HDL-cholesterol <0.9 mmol/l; hypertension >90 percentile, glycemia >6.0 mmol/l. ATP III classification was applied for youth. Patients with less than three afore mentioned criteria were considered patients with pre-MS. OGTT was used to evaluate the extent of disorder. Insulin sensitivity was determined by HOMA-IR. PAI-1 was determined by plasminogen substrate assay. SGOT, SGPT and γ-GT were considered liver function parameters. Liver ultrasonography was used to diagnose NAFLD.

Results: NAFLD, increasing considerably with age, was found in 7.3% children, 18.9% adolescents and 29.0% youth (p<0.05). NAFLD existed in 17.5% pre-MS and 29.0% MS patients. NAFLD found by groups: pre-MS patients - I-11.5%, II-17.7%, III-20.4%; MS patients - II-20.4%, III-40.0%. Logistic regression analysis indicated the most important NAFLD factors: body weight - odds ratio (OR) 1.039, p<0.001; LDL-cholesterol OR 1.55, p<0.05; creatinine clearance OR 1.01, p<0.05; uric acid OR 1.00, p<0.05; insulin - 0min OR 1.012, p=0.002, 120min OR 1.008, p<0.001; HOMA-IR OR 1.059, p<0.001; PAI-1 OR 2.79, p<0.001; SGPT OR 1.27, p<0.001. Patients with NAFLD had increased WC (110.7±11.9cm), LDL-cholesterol (3.3±1.00mmol/l), triglycerides (1.81±1.15mmol/l), uric acid (383.8±86.3), insulin 0min (61.1±81.3U/l) and 120min (93.1±108.4U/l), HOMA IR (14.7±4.4±19.3μmol/mU/ml), SGPT (56.7±20.9U/l), γ-GT (44.1±22.8U/l). Patients without NAFLD had normal SGPT, γ-GT, uric acid and increased WC (98.6±16.7cm), insulin 0min (21.6±31.3U/l) and 120 min (44.3±49.5U/l), HOMA IR (6.2±3.4μmol/mU/ml), triglycerides (1.74±1.63mmol/l), PAI-1 (6.0±1.4U/ml) but lower than NAFLD patients.

Conclusion: Obesity, hyperinsulinemia with IR (characterized by increased uric acid and PAI-1), SGOT and LDL-cholesterol are the most frequent risk factors for NAFLD. NAFLD may be the liver sign of pre-MS and MS children, adolescents and youth associated with visceral obesity, IR, lipid status disturbance, thrombogenic and inflammatory factors.

619

Steatohepatitis is closely associated with insulin resistance and the metabolic syndrome from early stages of their development
Y. Mori1, K. Ura2, K. Matsuura2, Y. Itoh1, Y. Yokoyama1, N. Tajima2; 1Department of Internal Medicine, Jikei University School of Medicine, Tokyo, 2Department of Internal Medicine, Utsunomiya Memorial Hospital, Utsunomiya, Japan.

Background and aims: Non-alcoholic fatty liver disease (NAFLD), insulin resistance, and the metabolic syndrome were examined for correlation in individuals undergoing elaborate health checkup programs with the influence of abdominal obesity being ruled out.

Materials and methods: Of the 909 subjects undergoing the health checkups, 626 individuals who underwent a 75 g OGTT and were evaluated by abdominal ultrasound for fatty liver and the metabolic syndrome were enrolled in the study, and 130 individuals each with fatty liver (fatty liver group; FLG) and without fatty liver (non-fatty liver group; NFLG), who were matched for gender, age, BMI, and waist circumference, were compared for relevant biochemical parameters, insulin resistance, number of risk factors implicated per individual, and frequency of the metabolic syndrome detected.

Results: There was no significant difference between the FLG and the NFLG in the male to female ratio (%), age, BMI (24.8 ± 2.9 and 24.2 ± 1.8, respectively), and waist circumference (85.8 ± 6.6 and 84.5 ± 5.8, respectively). In contrast, significantly higher values were noted in the FLG than in the NFLG with regard to the area under the glucose curve at 75 g OGTT (363.0 ± 81.3 versus 319.0 ± 70.6; P<0.001), area under the insulin curve (109.0 ± 80.4 versus 76.1 ± 45.1; P<0.001), HOMA-IR index (1.73 ± 1.24 versus 1.17 ± 0.56; P<0.001), HbA1c, AST, ALT, TG, and LDL-C, while HDL-C was significantly lower in the FLG than in the NFLG. Additionally, significantly higher values were noted in the FLG than in the NFLG with regard to the number of risk factors implicated per individual (1.83 ± 1.15 versus 1.37 ± 1.09; P<0.001), frequency of the metabolic syndrome detected (30/130, 23.1% versus 14/130, 10.8%; P<0.05).

Conclusion: Study results suggested that NAFLD is closely associated with insulin resistance and the metabolic syndrome even when the influence of abdominal obesity is excluded. It was further suggested that, given the BMI of >25 kg/m2 and the waist circumference of no more than 85 cm in the subjects, NAFLD appears to be implicated in the pathogenesis of insulin resistance and the metabolic syndrome from quite early stages of their development.

620

Distinctive metabolic signature in subjects with early onset type 2 diabetes
K. Wanic1, A. Pazderska1, S. Shah1, D. O’Hanlon1, J.R. Bain2, R.D. Stevens2, C.B. Newgard2, J.J. Nolan1; 1St. James’s Hospital, Trinity College Dublin, Metabolic Research Unit, Ireland, 2Duke University, Durham, USA.

Subjects with early onset type 2 diabetes have severe insulin resistance, reduced VO2 max response to exercise, and abnormal mitochondrial function relative to equally obese insulin resistant control subjects. Having previously used a metabolomics approach to demonstrate that obese insulin resistant subjects have a distinct metabolic profile compared to lean controls, we have now studied subjects with early-onset type 2 diabetes. We used targeted MS/MS and GC/MS-based metabolomics to measure fasting plasma concentrations of amino acids and total and free fatty acids in 24 subjects with early onset type 2 diabetes (mean age 26.1, BMI 35.6 kg/m2), 17 obese controls (mean age 22.8, BMI 32.4 kg/m2) and 28 lean controls (mean age 24.7, BMI 22.4 kg/m2). Confirming previous studies, the obese subjects had increased levels of branched-chain and other amino acids, total non-esterified fatty acids (NEFA), and several individual fatty acid species compared to lean controls. Interestingly, subjects with type 2 diabetes exhibited additional increases in levels of valine, leucine/iso-leucine, glutamate/glutamine, and aspartate/asparagine, as well as NEFA and individual fatty acids compared to obese controls. Insulin resistance, measured by HOMA-IR correlated with concentrations of valine, leucine, histidine and glutamate.
We conclude that subjects with early-onset type 2 diabetes have a metabolic profile distinguishing them from BMI-matched insulin resistant individuals with normal glucose tolerance. Further studies are needed to assess whether these changes are a reflection of altered mitochondrial function in these subjects.

Supported by: an EFSD/Novo Nordisk grant

621

Insulin resistance is associated with metabolic syndrome but not with angiographically determined coronary artery disease in female patients

Background and aims: Insulin resistance (IR) is the key feature of the metabolic syndrome (MetS) and in prospective studies predicts atherothrombotic events. Its association with directly visualised coronary atherosclerosis, especially in female patients, is unclear. We hypothesised that IR is associated with both angiographically determined coronary artery disease (CAD) and with the MetS.

Material and methods: We enrolled 354 consecutive female patients undergoing coronary angiography for the evaluation of suspected or established stable CAD; significant CAD was diagnosed in the presence of significant coronary stenoses with lumen narrowing ≥50%. IR was determined by the HOMA index; the MetS was defined according to ATPIII criteria.

Results: Data were presented as mean ± SD or median (interquartile range) for parametric and nonparametric data respectively. 22 out of 30 subjects (73%) with diabetes had OSA (AHI > or =10). AHI in the OSA group was 21 (16-30) and 5 (3-8) in controls (p < 0.001). BMI was higher in OSA (33.8 ±/− 5.8) vs. controls (29.4 ±/− 3.1) (p = NS). Patients with OSA had higher HbA1c (9.72 ±/− 0.9) vs. (8.94 ±/− 0.8)(p = 0.03), TG (210 ±/− 55.2) vs. (140.2 ±/− 41.9) (p = 0.046), HOMA-IR (2.35 ±/− 1.6) vs. (1.93 ±/− 1.5)(p = 0.046) and hsCRP (4.2 ±/− 0.9) vs. (2.89 ±/− 1.4)(p = 0.01). HDL-cholesterol was lower in OSA group compared to control (30.8 ±/− 6.1 vs. 40.3 ±/− 11.4) (p = 0.02). Hba1c correlated best with AHI(p < 0.001, r = 0.39).

Conclusion: Identifying the possibility of previously unrecognized OSA amongst patients with diabetes is important for treating physicians even in the absence of specific symptoms. The high prevalence of OSA in obese patients with type 2 diabetes is also associated with more severe metabolic derangements and its treatment along with adjustment of antidiabetic therapy may ameliorate some of the associated morbidity and mortality.

622

Obstructive sleep apnoea and metabolic abnormalities in type 2 diabetes

Background and aims: The burgeoning load of type 2 diabetes is a major public health concern in our part of the world with high morbidity, mortality, and health-care costs. Recent reports have indicated that the majority of patients with type 2 diabetes also have obstructive sleep apnoea (OSA). There is compelling evidence that OSA is a significant risk factor for cardiovascular disease and mortality. Because both diabetes and OSA are associated with increased cardiovascular morbidity and mortality, it is possible that the presence of both conditions results in additive or even synergistic health risks. The aim of this study was to evaluate the prevalence of OSA in the study population and its effect on the metabolic profile.

PS 47 Liver metabolism

623

High dietary fat consumption decreases hepatic glucokinase activity and net hepatic glucose uptake in the absence of impaired insulin signalling in dogs

K.C. Coate, G. Kraft, B. Farmer, M. Smith, M. Shiota, A.D. Cherrington;
Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA.

Background and aims: High dietary fat consumption has been associated with a reduction in insulin’s ability to suppress hepatic glucose production during euglycemia, but its impact on net hepatic glucose uptake (NHGU) and disposition during hyperglycemia (HG) has not been determined. The purpose of the present study was to elucidate the effect of high fat feeding on the ability of the liver to take up glucose in the presence of hyperinsulinemia (HI), HG and the portal glucose signal (PS).

Materials and methods: Adult male dogs were fed either a high fat diet (HFD, % kcal: 53% fat, 21% protein, 26% carbohydrate; n=4) or a chow control diet (CTR, % kcal: 26% fat, 31% protein, 43% carbohydrate; n=5) for 4 weeks. Dogs underwent hepatic/portal vein catheterization at 2 weeks and an HHIG clamp 2 weeks later. Somatostatin was infused peripherally (Pe) to disable the endocrine pancreas while glucagon (basal) and insulin (4x basal) were replaced intraportally (Po). The glucose load to the liver was doubled first by infusing glucose Pe (Period 1; P1), then by infusing glucose Po (Period 2; P2).

Results: When challenged with HI and HG (P1), NHGU (µmol/kg/min) was significantly lower in the HFD group (0.0±0.5) compared to the CTR group (9.4±1.1, P<0.01). Consistent with this finding, glycogen synthesis (µmol/kg/min; HFD: -1.4±0.3 [breakdown], CTR: 4.0±1.7, P<0.01) and net hepatic lactate output (µmol/kg/min; HFD: 2.9±0.4, CTR: 6.8±0.9, P<0.01) were also significantly lower in the HFD group compared to the CTR group. On the other hand, Po glucose delivery (PS, P2), elicited a comparable increase in NHGU (API-P2, µmol/kg/min; HFD: 8.2±1.7, CTR: 9.0±2.6, P=0.7) and glycogen synthesis (API-P2, µmol/kg/min; HFD: 9.0±2.7, CTR: 10.9±2.5, P=0.8) in both groups, suggesting that the portal glucose signal was still effective in the HFD group. Terminal liver biopsies revealed a reduction (~20%) in glucokinase (GK) total protein content coincident with a significant decrease (~48%, P<0.01) in GK activity (U/g liver) in the HFD group (2.3±0.4) compared to the CTR group (4.4±0.5). Surprisingly, the decrease in GK protein was not the consequence of attenuation in insulin signal transduction given that phosphorylation of IRS1-Y1222 and Akt-S473 was similar between the HFD and CTR groups.

Conclusion: Four weeks of HFD consumption impaired the effect of hyperinsulinemia and hyperglycemia on NHGU and glycogen synthesis; however, it did not alter the response of either to the portal glucose signal. Although the HFD was associated with a decrease in hepatic GK activity, this was not due to a reduction in the activation of either IRS1 or Akt. These data suggest that alternative control mechanisms are involved in the regulation of hepatic GK activity; these may have a significant impact on the ability of the liver to take up glucose.

Supported by: NIH

624

Hepatic glycogen supercompensation reduces glycogen synthesis without altering net hepatic glucose uptake in dogs

J.I. Winnick, Z. An, M. Smith, W. Snead, A.D. Cherrington;
Molecular Physiology & Biophysics, Vanderbilt University, Nashville, USA.

Background and aims: A hallmark characteristic of diabetes mellitus is glucose intolerance, which is manifest by postprandial hyperglycemia. Because one-third of an oral glucose load is taken up and metabolized by the liver, efforts are underway by pharmaceutical companies to create medications that would increase liver glucose uptake and glycogen synthesis during the postprandial state. While both hyperinsulinemia and portal vein glucose infusion have been shown to stimulate hepatic glucose uptake, little is known about how an increase in hepatic glycogen content could affect the function of the liver to these stimuli. Thus, the purpose of this study was to determine how an acute increase in hepatic glycogen affects the liver’s ability to take up and metabolize glucose in response to hyperglycemic/hyperinsulinemia or portal glucose infusion.

Materials and methods: During the first 4h of each study, all dogs received somatostatin and basal amounts of intraportal insulin and glucagon. Glucose infusion was doubled by glucose infusion into a peripheral vein and either saline (SAL; n=13) or fructose (5.5 µmol/kg/min; FRU; n=13) was infused intraportally; the latter to trigger liver glycogen loading. The glycogen loading period was followed by a 2h control period, during which basal replacement of hormones was continued but fructose was not infused. A 2h experimental period followed, during which hyperglycemia was maintained. To assess the effect of the hepatic glycogen content on the net hepatic glucose uptake (NHGU) and disposition.

Results: Fructose infusion led to marked differences in hepatic glycogen (345±17 and 538±24 µmol/g liver in SAL and FRU, respectively). The large difference in glycogen had no effect on NHGU (µmol/kg/min) seen in response to hyperinsulinemia (16.4±3 and 15.8±3 in SAL-INS and FRU-INS, respectively) or portal vein glucose infusion (19.2±2 and 17.5±2 in SAL-PG and FRU-PG, respectively). On the other hand, the percentage of NHGU that was directed to glycogen was reduced (p<0.04) by hepatic glycogen supercompensation during hyperinsulinemia (70±3 and 58±10% in SAL-INS and FRU-INS, respectively) and during portal vein glucose infusion (70±6 and 54±3% in SAL-PG and FRU-PG, respectively). Furthermore, these reductions in glycogen synthesis were accounted for primarily by an increase in liver lactate output (p<0.05) during both hyperinsulinemia (16±3 and 33±8% in SAL-INS and FRU-INS, respectively) and in response to portal vein glucose infusion (27±6 and 38±4% in SAL-PG and FRU-PG, respectively).

Conclusion: Our data show that acutely increasing the glycogen level from 345±17 to 538±24 µmol/g had no observable effect upon NHGU, although it caused a reduction in hepatic glycogen synthesis and a compensatory increase in liver lactate output. Since the reduction in glycogen synthesis seen in response to hyperinsulinemia vs. portal vein glucose infusion were similar, altered activity of glycogenic enzymes is likely responsible for the diminished glycogen synthesis associated with glycogen supercompensation. Thus, as medications are developed to increase postprandial hepatic glucose disposal it should be remembered that although high glycogen levels will not inhibit NHGU, they will increase carbon flux through non-glycogenic pathways.

Supported by: NIDDK

625

Per2 plays a major role in the control of liver glycogen metabolism and fasting glycemia

E. Zani1, B. Becattini1, A. Provenzanii, A. Stauffer2, J.-P. Montani3, U. Albrecht4, G. Solinas5;
1 physiology, University of Fribourg, Switzerland, 2 University of Trento, Italy, 3 Biochemistry, University of Fribourg, Switzerland.

Background and aims: Recent evidence suggests that obesity-induced derangements of the expression of molecular components of the circadian clock may be implicated in the development of glucose intolerance. The aim of this study was to investigate the role of the clock protein period 2 (Per2), a key component of the circadian clock whose expression is deranged during obesity, in glucose homeostasis in lean and obese mice.

Materials and methods: To investigate the role of Per2 in glucose metabolism in vivo we used mice bearing a targeted gene mutation in the Per2 gene (Per2-2bmd) and thus unable to express a functional Per2 protein. Mice were hosted in our standard mouse facility in a 12-hour light and 12-hour dark cycle. Wild type (WT) and Per2-2bmd mice were fed with either standard chow diet or high-fat diet for 24 weeks and analyzed for glucose homeostasis. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed on mice fed a high-fat diet for 7 hours. For GTT and ITT the mice were fasted for 14 hours. Glucose levels were measured over 12 hours starvation time courses during the light and the dark phase. Fed and fasting blood glucose and hepatic glycogen content were measured over different circadian time points. To investigate the role of Per2 in the control of liver gene expression we performed DNA-microarray analysis of RNA preparations from liver of Per2-2bmd and WT mice. Results were validated by QPCR.

Results: Our results suggest that Per2 loss of function is not a basic requirement for the development of obesity-induced insulin resistance. Per2-2bmd mice show similar glucose tolerance compared to WT mice when placed on chow diet, and Per2 loss of function does not predispose to high-fat diet induced insulin resistance. However, we have identified an important role for Per2 in the control of fasting glycemia and hepatic glycogen metabolism. Per2-2bmd mice show a decreased fasting glycemia compared to WT controls.
during the light phase. This difference is observed after 4 hours of food deprivation, is maximal at 7-8 hours of starvation, and disappears after about 12 hours of starvation. Gene expression-signature analysis from the microarray data indicates decreased expression of genes involved in gluconeogenesis and glycogen metabolism in livers from Per2brdm mice compared to livers from WT mice. PTT was performed to evaluate whole body gluconeogenesis and glycogen metabolism. The results show that WT and Per2brdm mice display similar gluconeogenic potential in a PTT test. To evaluate the role of Per2 in gluconeogenesis we measured hepatic glycogen content in fed or 8 hours fasted WT and Per2brdm mice. The results show that fed Per2brdm mice display lower liver glycogen content during the light phase compared to WT controls. This difference is more pronounced in mice that were starved for 8 hours with Per2brdm mice displaying less than a third of the hepatic glycogen content compared to control WT mice (p-value < 0.005).

Conclusion: Our data suggest that Per2 loss of function is not a major cause or a predisposition factor to impaired glucose tolerance. Nonetheless our results suggest that Per2 plays an important role in the control of fasting glycogen and hepatic metabolism.

Supported by: Swiss National Science Foundation

626

Evidence for a key role of hepatic mitochondrial phosphoenolpyruvate carboxykinase in glucose homeostasis in vivo

R. Stark, C.N. Ferrioli, X. Zhao, J. Dong, S. Bhanot, M. Roden, G.L. Shulman, R.G. Kibbe

1, Internal Medicine/Endocrinology, Yale University School of Medicine, New Haven, USA, 2,Internal Medicine/Endocrinology, Isis Pharmaceuticals, Carlsbad, USA, 3,German Diabetes Center, Dusseldorf, Germany.

Background and aims: The cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C) is generally regarded as the primary enzyme that provides PEP for gluconeogenesis and glycogenolysis. The metabolic role of the mitochondrial isoform, PEPCK-M, however, has not been established. In contrast to PEPCK-C whose transcription is strongly inhibited by insulin, we hypothesized that the constitutively expressed PEPCK-M isoform, might instead be regulated in response to fuel supply by mitochondrial GTP - a known sensor of mitochondrial metabolic flux in the pancreatic beta-cells.

Materials and methods: To assess its role, PEPCK-M was silenced using siRNA in primary rat hepatocytes and in vivo with antisense oligonucleotides in young, weight-matched Sprague Dawley rats. Gluconeogenesis rates in hepatocytes were assessed using 3H-labeled substrates with analysis by mass spectroscopy. Live awake rats were studied by euglycemic hyperinsulinemic clamps and a 36-hour fast.

Results: An 80% reduction of PEPCK-M mRNA in hepatocytes reduced gluconeogenesis by 80% (P<0.001). Similar reductions in gluconeogenesis with PEPCK-M silencing were observed regardless of the presence of glucose, glucagon, or insulin. PEPCK-M message was silenced 80% in liver and the plasma glycogen was significantly reduced in fed rats (160±4 vs. 146±5 mg/dl, P<0.05) but was equivalent following a 36 hour fast (115±2 vs. 116±2 mg/dl, P=0.88). Similarly, fed insulin was reduced (576±2 vs. 357±6, P=0.002) but not with fasting (19±2 vs. 18±3 μU/ml, P=0.87). Euglycemic hyperinsulinemic clamps identified significantly increased insulin sensitivity when PEPCK-M was silenced (GINF: 20±1 vs. 26±1 mg/kg/min, P=0.003) that could not be accounted for by differences in endogenous glucose production nor uptake in the muscle or adipose. Interestingly, post-absorptive hepatic glycogen was 82% lower and plasma triglycerides 42% lower along with a 25% reduction in WAT suggesting a constitutive defect in PEP production.

Conclusion: These data from silenced PEPCK-M both in primary hepatocytes and in vivo support an important role for PEPCK-M in glucose homeostasis via gluconeogenesis and possibly glycogenolysis. Because of the beneficial effects of lowering glucose, insulin, triglycerides and fat mass with a concomitant increase in insulin sensitivity but without hypoglycemia following a prolonged fast, PEPCK-M may be an attractive target for the treatment of type-2 diabetes.

Supported by: ADA, NIH

627

Farnesoid X Receptor inhibitor inhibits glucose-induced LPK gene expression by interfering with Carbohydrate Response Element Binding Protein (ChREBP) activity

C. Huaman, S. Caron, H. Dehondt, F. Lien, O. Briand, P. Lefebvre, B. Staels; InsERM u1011, Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Lille, France.

Background and aims: Carbohydrate response element binding protein (ChREBP) is a transcription factor which can be activated in response to glucose to induce the expression of the glycolytic gene Liver Pyruvate Kinase (LPK) as well as some lipogenic genes such as Fatty Acid Synthase (FAS) and Acetyl CoA Carboxylase (ACC1). Previous works in our team have shown that the activation of nuclear receptor FXR (Farnesoid X Receptor) inhibits the glucose-mediated induction of these genes. Our aim is to unravel the molecular mechanisms underlying the negative effect of FXR on the expression of glycolytic and lipogenic genes.

Materials and methods: Two human hepatocyte cell lines, IHH and Hep-RG, were treated with different glucose concentrations and with FXR agonist GW4064. Real-time PCR experiments were performed to analyse the expression of the LPK gene. Western blot analysis was used to study the nuclear localization of ChREBP. Chromatin immunopreprecitation (ChIP) experiments were performed to follow the binding of ChREBP and FXR to the LPK promoter under different experimental conditions.

Results: We show that FXR activation inhibits the glucose-mediated induction of the LPK gene expression. Our hypothesis is that this inhibition could be due to an interference of FXR with ChREBP transcriptional activity. Our results show that the nuclear receptor FXR interacts physically with the transcription factor ChREBP but this interaction does not interfere with the nuclear translocation of ChREBP or its binding to the LPK promoter. Recent results suggest that the activation of FXR leads to a recruitment of Histone Deacetylases (HDAC) to the LPK promoter since a treatment with Trichostatin A blocks the FXR effect on the LPK gene expression.

Conclusion: These results demonstrate that FXR plays an important role in regulating the glucose-mediated induction of glycolysis and lipogenesis by interfering with ChREBP transcriptional activity.

628

Comparison of direct and indirect pathways of hepatic glycogen synthesis using the [1-13C]glucose and deuterated water methods in fed and healthy subjects

C. Barosa, A. Fagulha, L. Barros, M. Caldeira, M. Carvalheiro, J. Jones;

1, Center for Neurosciences and Cell Biology, Coimbra, 2,Department of Endocrinology, University Hospital of Coimbra, 3,Department of Chemistry, University of Coimbra, Portugal.

Background and aims: Hepatic glycogen is synthesized by two distinct processes: the classical direct pathway from intact glucose units, and the indirect pathway involving 3-carbon intermediates. It is now well established that the direct pathway is the major route of hepatic glycogen synthesis in healthy subjects but its contribution is significantly reduced in both type 1 and type 2 diabetes. Direct and indirect pathway activities can be safely and noninvasively measured using stable isotope tracers to label the glycogen precursors and gluconeorenation probes such as Paracetamol to sample the enrichment of UDP-glucose from these tracers. The analysis can be applied in a routine clinical setting and could potentially be a diagnostic tool for assessing hepatic glycogen and glycogen metabolism. [1-13C]glucose is the most widely used tracer to quantify the contribution of the direct and indirect pathways to the glycogen synthesis but it is relatively expensive. Moreover, both plasma and urine need to be collected and analyzed for 13C-enrichment analysis thus incurring a significant analytical burden. Deuterated water (2H2O) has advantages over [1-13C]glucose since it is less expensive and the analysis only requires a single urine sample. To date, the two tracers have not been verified against each other. Therefore, we administered both [1-13C]glucose and 2H2O to healthy subjects and compared the direct/indirect pathway contributions from both tracers for each subject.

Materials and methods: Six overnight-fasted healthy young subjects took a breakfast, were the CHO portion included 10 grams of [1-13C] glucose. A 2H2O load was ingested to attain body water 2H-enrichment of 0.3%. This enrichment was maintained throughout the study by providing drinking water enriched with 0.3% 2H2O. Paracetamol was taken for UDPG sampling as urinary Paracetamol glucuronicide and a blood sample was also collected.
Paracetamol glucuronide and blood glucose were derivatized to MAG for 1H, 2H and 13C NMR analysis. Body water 2H enrichment was also quantified by 2H NMR. Direct pathway from [1-13C] glucose ingestion was calculated by the analysis of excess 13C enrichment of C1 and C6 of MAG obtained from both glucuronide and plasma. Direct pathway from 2H2O was obtained from the 2H5/body water ratio.

Results: Direct pathway measured by 13C and 2H was 59% ± 7.34 and 61% ± 1.88 respectively while indirect pathway was 41% ± 7.34 and 39% ± 1.88. Data are presented as means ± standard errors.

Conclusion: In conclusion, direct and indirect pathway measured by 13C analysis after ingestion of [1-13C] glucose in the postprandial state, matches the data obtained by 2H NMR analysis of 2H enrichment from 2H2O under the same conditions.

Supported by: JDRF

629

New aspects of hepatic glucose phosphorylation by intracellular glucokinase localisation

M. T. Kaminski1, S. Lenzen, S. Baltrusch1;

1Institute of Clinical Biochemistry, Hannover Medical School, 2Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Germany.

Background and aims: Coupling of millimolar glucose concentrations to liver metabolism is mediated by the glucose phosphorylating enzyme glucokinase (GK) and vital to maintain glucose homeostasis. Only in liver a specific glucokinase regulatory protein (GRP) inhibits GK activity and mediates the GK nuclear import at low glucose. It is poorly understood so far whether GRP affects GK nuclear export at high glucose concentrations. Therefore one aim of this study was to elucidate the role of the GRP in GK nuclear export. Furthermore, a function of GK in the nucleus has not yet been ascertained. Recently we could establish a fluorescence resonance energy transfer (FRET) based glucose specific nanosensor (FLIPglu) to monitor intracellular glucose flux. Thus a second aim of this study was to characterize glucose uptake and metabolism in hepatocytes with respect to the cytoplasmic and nuclear compartments.

Materials and methods: Localization and translocation of GK and GRP were analyzed in primary rat hepatocytes in comparison to MIN6 beta cells by ECFP and EYFP fluorescent fusion proteins and through fluorescence distribution after photoconversion of a Dendra2 or PA-GFP fusion protein, respectively. Dynamic changes in the nuclear and cytoplasmic glucose concentration were determined in perifusion experiments in primary hepatocytes, COS cells and MIN6 cells expressing either the cytoplasmic FLIPglu or the nuclear FLIPglu-muc.

Results: In hepatocytes a higher portion of the GRP has been identified in the nucleus compared to the cytoplasm. The nuclear/cytoplasmic ratio of the GRP was only marginally affected by glucose. In contrast the nuclear/cytoplasmic ratio of glucokinase was significantly higher at low as compared to high glucose. In MIN6 cells endogenously expressing GK but not GRP, comparison to ECFP and EYFP fluorescent fusion proteins and through fluorescence distribution after photoconversion of a Dendra2 or PA-GFP fusion protein, respectively. Dynamic changes in the nuclear and cytoplasmic glucose concentration were determined in perifusion experiments in primary hepatocytes, COS cells and MIN6 cells expressing either the cytoplasmic FLIPglu or the nuclear FLIPglu-muc.

Conclusion: In hepatocytes a higher portion of the GRP has been identified in the nucleus compared to the cytoplasm. The nuclear/cytoplasmic ratio of the GRP was only marginally affected by glucose. In contrast the nuclear/cytoplasmic ratio of glucokinase was significantly higher at low as compared to high glucose. In MIN6 cells endogenously expressing GK but not GRP, comparison to ECFP and EYFP fluorescent fusion proteins and through fluorescence distribution after photoconversion of a Dendra2 or PA-GFP fusion protein, respectively. Dynamic changes in the nuclear and cytoplasmic glucose concentration were determined in perifusion experiments in primary hepatocytes, COS cells and MIN6 cells expressing either the cytoplasmic FLIPglu or the nuclear FLIPglu-muc.

PS 48 Clinical insulin resistance - effect of interventions

630

Insulin resistance alters post-prandial haemodynamic parameters: an impedance cardiography approach

S. Vigili de Kreutenberg, F. Boscari, E. Rossi, G. Fadini, G. Ceolotto, S. Guerra2, G. Sparacio3, M. Bottero1, A. Avogaro2;

1Clinical and Experimental Medicine, Padova University; 2Information Engineering, Padova University; 3Cardiology Unit, SS Giovanni e Paolo Hospital, Venezia, Italy.

Background and aims: In postprandial state insulin regulates both metabolic and cardiovascular responses. In insulin resistance (IR) states, insulin action is impaired at both levels. However, the hemodynamic responses of postprandial phase in IR patients are poorly characterized. Impedance Cardiography (ICG), a relatively easy-to-use technique, allows a reliable beat-to-beat non invasive haemodynamic evaluation. We investigated cardiac/vascular hemodynamic response by ICG technique in fasting and postprandial state, in subjects with and without IR.

Materials and methods: In 66 volunteers (50 male, 16 female, age 48±8 years), without subclinical atherosclerosis, a mixed meal (10 kcal/kg; 55% carbohydrate, 15% proteins, 5% fats) was administered while baseline was measured. A mixed meal (180 min) continuous ICG monitoring was performed. Insulin sensitivity (Si) was determined by the minimal model analysis, and the following haemodynamic parameters were recorded: systolic and diastolic arterial blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac index (CI), systemic vascular resistance index (SVRI), left cardiac work index (LCWI).

Results: According to the median value of Si (7.27±10·di·kg⁻¹·min⁻¹ per μU/ml) subjects were divided in insulin-resistant (IR; n=33) and insulin sensitive (IS; n=33). In fasting condition, IR showed higher values of systolic (p=0.003) and diastolic (p=0.002) BP and SVRI (p=0.011), compared to IS. In postprandial state vasodilatation was comparable and synchronous (at 30 min) in IR versus IS (SVRI respectively -12.7±2.5% and -3.6±2.5%; p=MANOVA 0.209), but the subsequent recovery (30-180 min) was significantly impaired in IR (M-ANOVA 0.018). In post-prandial state haemodynamic parameters linked to cardiac function were not statistically different in IR vs IS.

Conclusion: IR subjects show a worse cardiovascular performance compared to IS in fasting condition. In post-prandial phase, IR associates with a shorter duration of vasodilatation in the absence of an altered cardiac performance. Hemodynamic alterations in both fasting and postprandial states are important features of insulin resistance.

631

Assessment of insulin signalling in isolated circulating leukocytes is feasible and parallels whole-body insulin resistance in prednisolone-treated healthy men

D.H. van Raalte1, M.M.L. Linssen2, E.B.M. Nascimento3, M. Diamant1, D.M. Ouwens1,2;

1Department of Internal Medicine / Diabetes Centre, VU University Medical Centre, Amsterdam, Netherlands; 2Department of Molecular Cell Biology, Leiden University Medical Centre, Netherlands; 3Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Centre, Duesseldorf, Germany.

Background and aims: Invasive haemodynamic evaluation. We investigated cardiac/vascular hemodynamic alterations in both fasting and postprandial states. In prednisolone-treated healthy men, insulin action is impaired at both levels. However, the hemodynamic responses of postprandial phase in IR patients are poorly characterized. Impedance Cardiography (ICG), a relatively easy-to-use technique, allows a reliable beat-to-beat non invasive haemodynamic evaluation. We investigated cardiac/vascular hemodynamic response by ICG technique in fasting and postprandial state, in subjects with and without IR.

Materials and methods: In 66 volunteers (50 male, 16 female, age 48±8 years), without subclinical atherosclerosis, a mixed meal (10 kcal/kg; 55% carbohydrate, 15% proteins, 5% fats) was administered while baseline was measured. A mixed meal (180 min) continuous ICG monitoring was performed. Insulin sensitivity (Si) was determined by the minimal model analysis, and the following haemodynamic parameters were recorded: systolic and diastolic arterial blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac index (CI), systemic vascular resistance index (SVRI), left cardiac work index (LCWI).

Results: According to the median value of Si (7.27±10·di·kg⁻¹·min⁻¹ per μU/ml) subjects were divided in insulin-resistant (IR; n=33) and insulin sensitive (IS; n=33). In fasting condition, IR showed higher values of systolic (p=0.003) and diastolic (p=0.002) BP and SVRI (p=0.011), compared to IS. In postprandial state vasodilatation was comparable and synchronous (at 30 min) in IR versus IS (SVRI respectively -12.7±2.5% and -3.6±2.5%; p=MANOVA 0.209), but the subsequent recovery (30-180 min) was significantly impaired in IR (M-ANOVA 0.018). In post-prandial state haemodynamic parameters linked to cardiac function were not statistically different in IR vs IS.

Conclusion: IR subjects show a worse cardiovascular performance compared to IS in fasting condition. In post-prandial phase, IR associates with a shorter duration of vasodilatation in the absence of an altered cardiac performance. Hemodynamic alterations in both fasting and postprandial states are important features of insulin resistance.
proline-rich Akt substrate of 40 kDa (PRS-A40), a marker of the insulin-signalling cascade, was assessed by immunoblotting and densitometry analysis. Insulin sensitivity was quantified as the M-value, obtained during 90-120 min of insulin infusion.

Results: Both PRED7.5 and PRED30 vs. PLB decreased insulin sensitivity (mean difference: -2.8±1.0 mg/kg/min, P<0.03 and -4.5±0.9 mg/kg/min, P<0.01 respectively). Insulin infusion increased phosphorylated PRAS40 (P<0.001)/total PRAS40 ratio at t=5 min, t=10 min and t=20 min as compared to t=0 min by 35% (P<0.05 for all). During treatment, P-PRAS40/total PRAS ratio during treatment correlated with the change in M-value (R=0.447, P=0.042).

Conclusion: Molecular aspects of insulin signalling and changes thereof can be measured in peripheral leukocytes and correlate with whole-body insulin sensitivity. Although the physiological role of these assessments in leukocytes requires further study, this method may provide an alternative, less-invasive tool to monitor changes in insulin signalling in health and disease.

632

Meal-related increases in microvascular vasomotion are impaired in obese individuals

A.J.H. Houben1, A.M. Jonk1, N.C. Schapert1, P.W. de Leeuw1, E.H. Sernet2, Y.M. Snijders3, C.D.A. Sehouwer1

1Dept of Internal Medicine, Maastricht University Medical Centre, Maastricht, 2Dept of Internal Medicine, VU Medical Center, Amsterdam, Netherlands.

Background and aims: Steady state hyperinsulinaemia during a hyperinsulinaemic euglycaemic clamp stimulates endothelium-dependent vasomotion as well as capillary recruitment, which contribute to increased glucose uptake; these phenomena have been shown to be blunted in obesity. If insulin’s effects on microcirculatory function indeed play a physiological role in regulating insulin-mediated glucose uptake, such effects should be demonstrable not only during steady-state hyperinsulinaemia, but also after meal ingestion. The aim of the present study was to investigate the effects of an oral glucose load and a liquid mixed meal on cutaneous microvascular vasomotion in lean and obese subjects.

Materials and methods: A randomised, placebo-controlled trial was performed in 18 lean (BMI 22.5±1.7 kg/m²) and 13 obese (BMI 34.0±3.5 kg/m²) subjects, to examine the effects of a glucose drink (75 g glucose), a 495-kcal liquid mixed meal (60% carbohydrates, 25% proteins, 15% fat) or placebo (tap water) on microvascular function. Skin blood flow was measured by laser Doppler flowmetry (LDF). Vasomotion was examined by Fourier analysis of the LDF signal.

Results: Both the glucose drink and the liquid mixed meal, but not the water drink, induced hyperinsulinaemia. The levels of hyperinsulinaemia were higher in obese compared to healthy subjects (glucose drink: 98.1±82.5 vs. 39.2±17.0 mU/L, P<0.05; mixed meal: 99.8±78.9 vs. 52.7±20.5 mU/L, P=0.07). Water intake did not alter the energy density of any of the five frequency components in either the lean and obese group. Intake of the glucose drink increased the endothelial component of vasomotion (P<0.05 in lean subjects).

Conclusion: Increased meal intake increased the energy density of all five frequency components (P<0.01, P<0.01, P<0.01, and P>0.05, respectively), and the total energy density of the entire spectrum (P<0.01). In obese individuals, neither the glucose nor the mixed meal drink had any effect on the energy density of the five frequency bands or the total energy density. The increase in the energy density of the endothelial, neurogenic, and respiratory frequency components and the total energy density in lean individuals in response to the mixed meal drink was significantly different from the response to the mixed meal drink in obese individuals (P<0.01, P<0.05, P<0.05, and P<0.01, respectively).

Conclusion: Our data demonstrate that ingestion of a meal increases microvascular vasomotion in lean individuals. In addition, we found that the increase in microvascular vasomotion with meal ingestion was impaired in obese individuals and that this lack of meal-induced stimulation of microvascular vasomotion paralleled blunted insulin-stimulated glucose disposal after meal feeding in these subjects. Thus, these data are consistent with a physiological role for insulin-stimulated microvascular vasomotion in insulin-mediated glucose uptake in the postprandial state.

633

Effects of starvation on insulin sensitivity and glucose metabolism in obese patients with type 1 diabetes mellitus

E. Misl1, A. Smahelová1, A. Ticha1, R. Hyspler1, J. Lesna1, V. Blaha1, L. Sobotka2; 1Department of Metabolic Care and Gerontology, Charles University and University Hospital, Hradec Králové, Czech Republic.

Background and aims: At present time obesity is more frequently connected with type 1 diabetes mellitus (T1DM) in western population. The effect of reduced energy intake and several days of fasting is not fully known in this group of diabetic patients. The aim of our work was to study the influence of seven days of starvation on insulin sensitivity and glucose metabolism in obese patients with T1DM.

Materials and methods: We studied 14 obese patients with T1DM (42.6±9.4 years, BMI 32.4±2.1 kg/m²) and 13 non-obese control patients with T1DM (36.9±13.9 years, BMI 22.6±2.1 kg/m²). The insulin sensitivity and glucose oxidation were measured in obese T1DM patients before starvation, immediately after 7 days of starvation and 21 days thereafter. Control group was studied only after overnight starvation. Insulin sensitivity was measured using hyperinsulinaemic euglycaemic clamp (the 2-step hyperinsulinaemic euglycaemic clamp lasting 6 hours, period 1: 0 to 120 minutes 1 IU/kg/min of insulin and period 2: 120 to 360 minutes 10 mU/kg/min of insulin - Humulin R, Eli-Lilly, USA). Glucose oxidation and non-oxidative glucose disposal were measured before and during the clamp by indirect calorimetry - ventilated canopy system (VMAX, Sensormedics, Anaheim, USA). Evaluations of urinary urea nitrogen excretion was made to calculate protein oxidation. Mixed model, T-test, ANOVA were used for statistical evaluation.

Results: All patients tolerated the period of starvation. Obese T1DM patients lost 6.1±1.1 kg. Glycaemia during starvation was maintained at 5 mmol/l by adjustment of basal insulin dose. Starvation reduced insulin-mediated glucose disposal in both phases of clamp (P<0.001). This was caused mainly by reduced glucose oxidation after starvation period (P<0.001). Non-oxidative glucose disposal was not changed.

Conclusion: One week of starvation transiently decreased insulin mediated glucose disposal in obese T1DM patients. This was namely caused by reduced glucose oxidation. To our best knowledge we are the first who described this effect.

Insulin infusion rate 10mU/kg/min, *P<0.001 obese vs controls

Obese T1DM (n=14) Before starvation After starvation 21 days after starvation Controls (n=13)

Glucose disposal 9.69±1.48# 6.78±2.11 9.31±1.16 12.02±2.16 (mg/min/kg)

Glucose oxidation 2.81±0.52 0.88±0.98 2.80±0.67 3.54±1.17 (mg/min/kg)

Non-oxidative glucose 6.88±1.44 5.94±0.87 6.51±1.03 8.48±1.58 disposable (mg/min/kg)

Supported by: Research projects MSM0021620820, MZO 00179906, IG A MZ CR No.NT/11351

634

Adipocyte fatty acid binding protein in diabetes mellitus - effects of hyperinsulinaemia and acute angiotensin II type 1 receptor blockade

E. Švehlíková1, M. Klementová1, S. Kratofilová1, I. Kopecký1, P. Wohl1, L. Kazdová2, P. Mlejněk2, M. Pravenec3, M. Hill1, T. Pelikánová3

1Diabetes Center, Institute for Clinical and Experimental Medicine, 2Institute of Physiology, Academy of Sciences of the Czech Republic, 3Institute of Endocrinology, Prague, Czech Republic.

Background and aims: Beside of its regulatory role in lipid metabolism, adipocyte fatty acid binding protein (A-FABP) has been suggested to be involved in the development of insulin resistance. We investigated: a) plasma concentrations of A-FABP in parallel with its expressions in subcutaneous adipose tissue (SAT) and b) their response to acute hyperinsulinaemia and acute angiotensin II type 1 receptor blockade (ARB) in type 2 diabetes.

Materials and methods: 11 patients with type 2 diabetes (D) and 12 healthy age-matched control subjects (C) underwent: 1) hyperinsulinaemic-euglycaemic clamp (HEC); 2) HEC after acute ARB (losartan 200 mg) (AT-HEC) and 3) saline infusion (SAL) as a volume control examination. At 9 min and
240 min of the interventions blood sampling for assessment of plasma A-FABP and needle biopsies of abdominal SAT were performed. Adipose tissue samples were processed for real-time PCR method to quantify gene expressions of A-FABP, E-FABP (epidermal FABP), a minor FABP-isofrom of adipose tissue) and PPAR-γ. For statistical analysis ANOVA with repeated measures was used (significances in Table: * Treatment effect p<0.05 - difference between interventions: HEC vs. AT-HEC vs. SAL; † Time effect p<0.05 - changes between time points 0 min vs. 240 min).

Results: Plasma A-FABP was 1.6-fold higher in D relative to C (p<0.001). In D, a comparable decrease in plasma A-FABP was detected during both clamps, whereas no changes were observed during SAL. In C, time profiles of A-FABP differed between the clamps, showing an increase in basal concentrations in AT-HEC. A-FABP expression in SAT was 3.0-fold higher in D (p<0.001) without any dynamic changes during all interventions. Plasma A-FABP correlated positively with its expression (r=+0.59; p<0.001). Both A-FABP plasma concentrations and mRNA expressions were independently associated with BMI, waist circumference, glycemia, insulinemia and glucose disposal. E-FABP showed higher expressions in C (p<0.001). A-FABP/E-FABP mRNA ratio was 3.0-fold higher in D compared to C (p<0.001) without any changes within and between clamps. PPAR-γ expressions were lower in D compared to C (p<0.01), no dynamic changes were shown.

Conclusion: A-FABP plasma concentrations as well as expressions are increased in type 2 diabetes and they are closely associated with parameters of obesity, insulin resistance and hyperglycaemia. On the contrary, the expressions of E-FABP and PPAR-γ are decreased in diabetes. Hyperinsulinaemia differentially regulates A-FABP in D compared to C. In C but not in D, losartan stimulates basal A-FABP plasma concentrations without any effect on its expressions.

A-FABP plasma concentrations and expressions of selected genes in SAT. Data shown as mean (95% CI).

<table>
<thead>
<tr>
<th>Variable</th>
<th>D (n=11)</th>
<th>C (n=12)</th>
<th>Group effect (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-FABP plasma concentrations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC 21.31 (19.3-23.45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-HEC 23.4 (21.2-25.77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAL 22.42 (20.23-24.86)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-FABP mRNA / Cyclophilin mRNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC 1937 (1686-2314)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-HEC 2004 (1732-2422)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-FABP mRNA / Cyclophilin mRNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC 196.5 (181.0-214.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-HEC 198.1 (182.4-216.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAR-γ mRNA / Cyclophilin mRNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC 139.6 (112.4-166.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-HEC 137.0 (109.8-163.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported by: Grant IGA MH CZ

635

Fasting and postprandial hepatic glycogen content is not altered by systemic insulin delivery in type 1 diabetic patients after successful pancreas kidney transplantation

3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria, *Endocrinology and Metabolism, Medical University Vienna, Austria, *Metabolic Unit, ISIB-CNRS, Padova, Italy, *Krankenhaus der Elisabethinen, Vienna, Austria, *Department of Surgery, Medical University Vienna, Austria.

Background and aims: Insulin replacement in Type 1 diabetes mellitus (T1DM) is usually performed via a systemic (subcutaneous) instead of the physislogic portal route. So far it is unclear whether this systemic route of insulin delivery might contribute to metabolic defects in these patients. Successful pancreas kidney transplantation (PKT) with systemic venous drainage is an ideal model of optimized systemic insulin therapy. Therefore, the aim of the present study was to investigate the effects of PKT on fasting and postprandial liver glycogen content.

Materials and methods: Using 13C-nuclear magnetic resonance spectroscopy (13C-NMR), liver glycogen concentrations were assessed in 9 T1DM patients after successful PKT (24±1kg/m², 47±3yrs, 3f/6m, fasting glucose 8.4±3mg/dl, HbA1c 5.1±0.2%) with systemic venous drainage and in 9 matching nondiabetic controls (CON) (24±1 kg/m², 47±3yrs, 3f/6m, fasting glucose 7.5±0.6mg/dl, 5.4±0.1%) at fasting and after two standardized mixed meals.

Results: Liver glycogen concentrations at fasting (PKT:195±12, CON:209±10mg/M), after breakfast (PKT:216±12, CON:233±11mg/M) and after lunch (PKT:230±13 vs. CON:171±15mg/M), as well as the increment of liver glycogen content after the meals were comparable in PKT and CON. Mean and fasting concentrations of glucose, insulin, C-peptide and glucagon were similar in PKT vs. CON.

Conclusion: Despite systemic insulin secretion, T1DM after successful PKT exhibit unchanged fasting and postprandial liver glycogen stores in comparison with age-and BMI-matched non-diabetic controls. Thus, this study indicates that systemic insulin substitution does not cause alterations of hepatic glycogen storage.

Supported by: Austrian Diabetes Association; Austrian National Bank to M.K.
PS 49 GLP-1 effects in animal models and cells

636

The effect of liraglutide on metabolism in ApoE-/- mice with RNAi-mediated adiponectin gene inhibition
Z. Zhang1, G. Yang1, L. Li2
1Department of Endocrinology, the Second Affiliated Hospital, 2Department of Clinical Biochemistry, Chongqing Medical University, Chongqing, China.

Background and aims: Liraglutide is an analogue of Glucagon-like peptide-1(GLP-1), researched and developed by Novonordisk. It can bind with the GLP-1 specific receptor, which belongs to the Islets of Langerhans β cells, promote the expression and biosynthesis of the pre-insulin gene, and facilitate the secretion of insulin in the genetic level. But its specific mechanism retains unknown. In our study, we have investigated the effects of Liraglutide on insulin sensitivity and glucose-lipid metabolism in ApoE-/- mice with RNAi-mediated adiponectin gene inhibition.

Materials and methods: High-fat diet fed male apoe-/- mice were randomly divided into adiponectin shRNA adenovirus injection group (ADI group, n=8), Liraglutide co-injection of adiponectin shRNA adenovirus group (HEA group, n=8) and adenovirus control group (GP group, n=6). The hyperinsulinemic-euglycemic clamp and oral glucose (3.3[H] glucose) was used as a tracer to assess the insulin sensitivity. Plasma FFA, insulin concentrations (Pins), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), TG and TC concentrations were measured.

Results: In the IVGTT, the group with 1mg·kg⁻¹ Liraglutide, BID, at time points, 15 to 40 min after glucose challenge, presented lower significantly than other groups in the blood glucose(P<0.01), with a significant increase in the plasma insulin at the points of 5 and 15 min(P<0.01). Fasting blood glucose (FBG), body weight, Free fatty acids (FFA),TC,TG,LDL-C,HDL-C and fasting plasma Insuls (Pins) in ApoE-/- mice with Liraglutide and adiponectin shRNA adenovirus (HEA group) co-injection of were significantly lower than those with high-fat diet and adiponectin shRNA adenovirus injection (ADI group) (P<0.01). However, HDL-C showed a significant elevation, compared HEA with ADI group (P<0.05). During the steady-state of clamp, plasma insulin in ADI group was significantly higher than that in HEA group (P<0.01). Although FFA, TC and TG were suppressed in all groups, they were still higher in ADI group than those in HEA group (P<0.05). Glucose infusion rate(GIR) in HEA group were significantly higher than ADI group (P<0.01). In the end of clamp, glucose disappearance rate (GDR) was significantly lower, and HGP significantly higher in ADI group than HEA group (P<0.01).

Conclusion: Liraglutide administration can improve insulin resistance by increasing plasma adiponectin level in ApoE-/- mice with RNAi-mediated adiponectin gene inhibition.

Supported by: National Natural Science Foundation of China

637

Normalising effect of GLP-1 and Exendin-4 on the deleterious hepatic metabolism of an obesity model

Background and aims: Obesity is often related with several metabolic alterations that can drive to insulin resistance and finally diabetes. GLP-1 and its structurally homologous peptide, exendin-4 (Ex-4), both have insulinotropic and antiadipogenic actions and stimulatory effects on the glucose metabolism of extrapancreatic tissues such as liver and muscle. Here, we have studied the GLP-1 and Exendin-4 effects in animal models of N and O (N: 5 rats, O: 4 rats) group were treated (3 days), through an osmotic pump, with saline (control), GLP-1 (0.86 nmol/kg/h) or Ex-4 (0.1nmol/kg/h). Blood samples were taken before and by the end of treatment for plasma measurements. In liver, we analyzed Glut-2 expression -protein- by Western blot, and mRNA, by RT-PCR- and also glycohen content -antrona method-. In Ob rats, liver Glut-2 mRNA was much lower than that in N animals (0.41±0.02 times N-control, n=10 rats, p<0.001), while Glut-2 protein was higher (123±10% N-control, n=14, p<0.05). GLP-1 treatment reduced the Glut-2 protein levels (64±4% Ob-control, n=7, p<0.001), without altering the mRNA value (0.96±0.04 times Ob-control, n=5); treatment with Ex-4 lowered the Glut-2 protein (60±4% Ob-control, n=7, p=0.001) to a value close to that in N (84±7% N-control), without modifying the mRNA expression (1.02±0.06 times Ob-control, n=5). The liver glycochen content in Ob rats (902±52 μg/g protein, n=6), compared to than in that in N animals (395±34 μg/mg protein, n=8), was much higher (228±13% N-control, n=6, p<0.001). Liraglutide administration can improve insulin resistance by normalizing plasma glucose and insulin levels, reducing liver glycogen content and possibly preventing the development of diabetes in Ob rats. Clinical significant effects of GLP-1 on blood glucose and insulin were also observed in Ob rats,

Conclusion: Both, GLP-1 and Ex-4 have a normalizing effect on the high hepatic glycochen accumulation in this obesity model, perhaps through their lowering action upon the higher than normal liver Glut-2 expression, mainly at the translational process, and by reducing also the higher than normal circulating triglycerides.

Supported by: ISF and Cibadem

638

Enhanced GIP and attenuated GLP-1 incretin effects during IVGTT in Wistar rats under DPP-4 inhibition
E.-J. Freyse, S. Berg, P. Henke, K.-D. Kohnert, E. Salzsieder, Institut für Diabetes, Karlsburg, Germany.

Background and aims: DPP-4 (dipeptidyl peptidase-4) inhibition has been reported to increase incretin effects of GIP as well as GLP-1 by prolonging their half-life. DPP-4 cleaves GIP into dipeptide and the GIP metabolite GIP (3-42), whereas the GLP-1 (7-36) amide is cleaved to GLP-1 (9-36) amide. Based on studies in man, pig and rat, these peptides are involved in various glucoregulatory processes. We have recently developed a test to differentiate the insulinotropic effects of both peptides in rats. In the present study, we compared the incretin effects of the intact GIP and the GLP-1 (7-36) amide during IVGTT following DPP4 inhibitor administration.

Materials and methods: Groups of catheterized Wistar rats were tested: placebo (P; 0.1 % BSA), DPP4 inhibitor (INH; 30 μmol/kg P32/98, p.o.), incretin in the absence (+P) and presence of INH (+INH) three days apart in a random order: 4.0 nmol/kg GLP-1 (7-36) amide; Neo MPS, Strasbourg, France) or 2.0 nmol/kg GIP (Probiodrug AG, Halle/Saale, Germany) were injected. Samples for blood glucose (BG) and insulin (I) were taken (-5, 0 min and at 1, 2, 3, 5, 7, 10, 15, 25, 40 and 60 min). INH was given at -20 min, the incretin at -5 min and the IVGTT (0.4 g glucose/kg) commenced at 0 min. G- and I- AUC (0-25min) were calculated from IVGTT curves. Groups were compared with two-tailed t-test with Bonferroni-Holm correction.

Results: INH significantly increased the effects of GIP - G-AUC (P<0.20) and the INH significantly increased the effects of GLP-1 - I-AUC (P<0.20) and the INH significantly increased the effects of GLP-1 - I-AUC (P<0.20).

Conclusion: Both, GLP-1 and Ex-4 have a normalizing effect on the high hepatic glycochen accumulation in this obesity model, perhaps through their lowering action upon the higher than normal liver Glut-2 expression, mainly at the translational process, and by reducing also the higher than normal circulating triglycerides.

Supported by: ISF and Cibadem

Results: Treatment of differentiated human adipocytes with GIP from 10pM to 100nM for 1h induced IL-6, IL-1ß and IL-1Ra mRNA expression. Treatment with 1nM GIP maximally increased IL-6 to 4.21±0.28 fold (p<0.001 vs. control) and IL-1ß to 1.64±0.13 fold (p<0.05 vs. control). IL-1Ra mRNA expression was induced to a maximum of 23.5±3.94 fold (p<0.001 vs. control) with 100nM GIP. During time-course experiments with 1nM GIP, IL-6 mRNA expression was acutely increased to 2.53±0.5 fold (p<0.001 vs. control) after 1h. IL-1ß gene expression was constantly increased during 24h with a maximum expression of 1.64±0.13 fold (p<0.001 vs. control) after 4h of 1nM GIP treatment. IL-1Ra mRNA expression was upregulated by 4.77±3.5 fold (p<0.001 vs. control) after 2h and reached a maximal increase by 5.24±0.53 fold (p<0.001 vs. control) at 4h. Preincubation with sc-514 (100µM) for 1h inhibited GIP-induced IL-6 expression by 57% (p<0.05 vs. GIP 1nM 1h) and GIP induced IL-1ß expression by 78% (p<0.01 vs. GIP 1nM 1h), while GIP-induced IL-16 expression was not inhibited. Preincubation with rhL-1RA 1µg/ml inhibited GIP-induced IL-6 expression by 68% (p<0.01 vs. GIP 1nM 1h). Treatment with 1nM GIP for 6h in serum free conditions revealed a 1.64±1.37 fold (p<0.01 vs. control) increase of basal glycerol release (p<0.001 vs. control) and IL-1ß to 1.64±0.13 fold (p<0.05 vs. control). IL-1Ra mRNA expression and lipolysis seems to involve the classical NF-κB pathway and suggests the involvement of an autocrine IL-1ß effect.

Effects of glucagon like Peptide-1 and metformin on the proliferation, apoptosis and function of glucagon like Peptide-1-secreting cells

C. Kappe1, I. Holst1, C. Patron1, Q. Zhang1, Å. Sjöholm1
1Department of Clinical Research and Education, Stockholm, Sweden, 2The Panum Institute, Department of Biomedical Science, Copenhagen, Denmark.

Background and aims: Glucagon-like peptide-1 (GLP-1) is an incretin hormone, secreted from gut L-cells upon nutrient intake, and forms the basis for novel drugs against type 2 diabetes. Secretion of GLP-1 is impaired in type 2 diabetes. Little is known about the influence of antidiabetic drugs on L-cell function and regeneration. The aim of this study was to investigate the effects of GLP-1 and metformin on the proliferation, apoptosis and function of the GLP-1-secreting cells and the mechanisms underlying such effects.

Materials and methods: The GLP-1-secreting cell line GLUTag was cultured in DMEM media. Cell proliferation was evaluated by 3H-thymidine incorporation, MITT-assay and Ki67 staining after a 48 h-incubation with the anti-diabetic agents, leading to lipoapoptosis noted here suggests a novel beneficial long term effect of these antidiabetic drugs in clinical practice, i.e. by restoring GLP-1 deficiency through enhanced L-cell mass. Supported by: an EFSID/Amlyn grant
GLP-1 inhibits glucagon secretion from human alpha cells by a direct effect

R.D. Ramacheva, C. Ward, F. Abdulkader, M. Shigeto, A. Clark, P. Johnson, M. Braun, P. Rorsman;
OCDEM, University of Oxford, United Kingdom.

Background and aims: Glucagon is secreted from the alpha-cells of the pancreatic islets. Both intrinsic and paracrine mechanisms are involved in the metabolic regulation of glucagon release. Glucagon secretion is also under hormonal control, one of which is glucagon-like peptide 1 (GLP-1). GLP-1 enhances insulin release but most importantly its hypoglycaemic action is amplified by a concomitant suppression of glucagon secretion. Oversecretion of glucagon occurs in type-2 diabetes, exacerbating the hyperglycaemia resulting from the lack of insulin and this constitutes a valuable feature of GLP-1 action. However, the mechanism by which GLP-1 modulates islet glucagon secretion remains unclear. Here we have examined the effects of GLP-1 on glucagon secretion in human pancreatic islets.

Materials and methods: Immunocytochemistry was used to examine expression of GLP-1 receptors in human islet cells. Islet hormone release was measured from intact islets by static incubation experiments using intact mouse pancreatic islet alpha-cells. Glucagon secretion was measured by patch-clamp measurements in alpha-cells within intact mouse islets. In membrane potential recordings, alpha-cells were identified by its active electrical activity when islets were exposed to 1 mM glucose. In voltage clamp experiments, cells were infused with biocytin and later identified by immunocytochemistry.

Results: Glucagon secretion was inhibited by 6 mM/mglucose by ~50%. GLP-1 exerted similar effect while adrenaline stimulated the secretion of glucagon by ~2-fold. Mouse alpha-cells exposed to 1 mM glucose fire overshooting APs starting at ~51 mV with a peak of ~5 mV. Glucose (6 mM/mglucose) depolarises the interspike voltage by ~4 mV/m and reduced the peak voltage by 6 mV. GLP-1 (100 mM/mglucose) did not detectably affect the interspike voltage but reduced spike height by ~2 mV/m. GLP-1 inhibited N-type Ca2+-channels by a PKA-dependent mechanism. Inhibition of N-type Ca2+-channels using u-conotoxin mimicked the effects of glucose and GLP-1 on glucagon secretion. Inhibition of N-type Ca2+-channels by u-conotoxin or GLP-1 inhibited alpha-cell exocytosis. Blockade of N-type Ca2+-channels reduced action potential amplitude by ~2 mV/m without affecting the interspike voltage. Adrenaline (10 mM/mglucose) depolarised the alpha-cell by ~10 mV/m and lowered the amplitude of APs by 20 mV/m. Glucagon secretion enhanced by adrenaline involved L-type Ca2+-channels and the cyclic AMP sensor Epac2.

Conclusion: We propose that glucose and GLP-1-induced suppression of glucagon secretion by inhibition of N-type Ca2+-channel activity. In the case of glucose, this effect is secondary to membrane depolarisation and voltage-dependent inactivation of the N-type Ca2+-channels. GLP-1 directly affects N-type Ca2+-channel gating by an effect not mediated by membrane depolarisation. In both cases, the resultant inhibition of N-type Ca2+-channel activity results in suppression of depolarisation-evoked exocytosis. Adrenaline by-passes this inhibitory effect by activation of Epac2 and L-type Ca2+-channels.

Supported by: Wellcome Trust

644

PPAR delta positively regulates GLP-1 production by intestinal endocrine L cells and improves the oral glucose-induced insulin secretion in diabetic obese mice

S. Lestavel1, M. Daoudi1,2, N. Hennuyer1,2, M.G. Borland1, J.M. Peters3, B. Staal1,2;
1Inserm U1011, Lille, France, Université Lille Nord de France, France;
2Department Veterinary and Biomedical Sciences, The Pennsylvania State University, USA.

Background and aims: GLP-1 (Glucagon-Like Peptide-1) is an incretin hormone derived from the proglucagon gene transcription product and secreted by the intestinal L cells in response to dietary nutrients. GLP-1 stimulates glucose-dependent insulin secretion and insulin biosynthesis, inhibits glucagon secretion and gastric emptying and reduces food intake. In this study, we examined the regulation of GLP-1 production by PPARdelta/beta (Peroxisome Proliferator-Activated Receptor delta/beta) which is a nuclear receptor reported to improve islet function and to prevent weight gain.

Materials and methods: We used murine and human L cell lines (respectively GLUTag and NCI-H716) activated or not with the synthetic PPARdelta ligands (GW501516 and GW0742). Wild type and diabetic ob/ob mice were also treated with these compounds.

Results: We show in the L cell lines that in vitro PPARdelta activation induces proglucagon gene expression in a dose and time dependent manner (up to 3 fold with 1uM of GW501516 at 24h) and increases to the same extent glucose and bile acid-induced GLP-1 release. Interestingly, we show that a 15 day oral treatment of wild type and ob/ob mice with GW501516 (once per day at 10 mg/kg) increases (3-fold increase compared to vehicle) GLP-1 secretion at 15 min after orally glucose tolerance test (O-GTT) but not after IP-GTT and that is correlated with the up-regulation of proglucagon gene expression in the ileum (2 fold increase) and the up-regulation of GLP-1 receptor expression in pancreas. In addition, we also observed in vivo and in vitro the positive effect of PPARdelta activation by another agonist GW0742. Moreover, GW501516 treatment in ob/ob mice decreases the basal insulin mRNA expression in the pancreas and basal insulin concentration in the plasma which could reflect the improvement of the glycemic control.

Conclusion: Altogether, these data suggest that the PPARdelta/beta activation potentiates the incretin system that is crucial in regulating postprandial glycaemia and that pharmacological targeting of PPARdelta/beta may constitute a promising incretin-based strategy for the treatment of insulin resistance, diabetes and associated metabolic disorders.

Supported by: AMIDiab

S258

Effects of enterically coated, nutrient-containing pellets on glycaemia and incretin hormone release in patients with type 2 diabetes

C.K. Rayner1,2, J. Ma1,2, H.L. Checklin1,2, J.M. Wishart1,2, J.E. Stevens1,2, K.L. Jones1,2, M. Horowitz1,2, J.H. Meyer1,2;
1Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Australia, 2Centre of Clinical Research Excellence in Nutritional Physiology, University of Adelaide, Australia. 2Meyer Nutriceuticals, Santa Monica, USA.

Background and aims: In principle, delivery of a small amount of nutrient to a long length of distal gut could be a potent stimulus for release of glucagon-like peptide-1 (GLP-1), with consequent improvements in glycaemic responses to subsequent meals. We evaluated the effects of enteric coated pellets designed for continuing release of small amounts of lauric acid along ileum and colon, on GLP-1 secretion and the glycaemic response, after both breakfast and a subsequent lunch.

Materials and methods: Ten patients with well controlled type 2 diabetes (glycated haemoglobin 5.9 ± 0.2 %), managed by diet alone, were studied on two separate days. On each study day, they ingested either 10 g active pellets (47 % lauric acid by weight, or ~40 kcal) or placebo pellets at T = 0 min during breakfast (71 g carbohydrate, 4.5 g protein, 12 g fat, 415 kcal). A second meal (lunch; 89 g carbohydrate, 29 g protein, 26 g fat, 708 kcal) was consumed at T = 240 min. Blood was sampled for measurement of blood glucose, serum insulin, and plasma total GLP-1 and glucose-dependent insulinotropic polypeptide (GIP).

Results: Data are shown as mean ± standard error. After active pellets, blood glucose concentrations were lower, and plasma GLP-1 concentrations higher, than after placebo, following both breakfast and lunch (*P < 0.05 in the figure). In contrast, the rises in insulin and GIP after breakfast and lunch did not differ between active pellets and placebo.

Conclusion: Enteric coated pellets which sustain release of lauric acid along distal small intestine and colon diminish the glycaemic response to both breakfast and lunch in type 2 diabetes, associated with stimulation of GLP-1, establishing that exposure of the distal gut to a small quantity of nutrient can have substantial effects on GLP-1 release and hence glycaemic control.

Degradation of GIP but not of GLP-1 is reduced after protein ingestion in obese subjects

O. Lindgren1, J. Vikman1, C.F. Deacon2, R.D. Carr2, J.J. Holst3, B. Ahrén1;
1Department of clinical sciences, Lund University, Sweden, 2Department of Biomedical Sciences, Copenhagen University, Denmark, 3Novo Nordisk A/S, Bagsvaerd, Denmark.

Background and aims: The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released after meal ingestion and potentiate glucose-stimulated insulin secretion. Both hormones are rapidly degraded by the enzyme DPP-4 (dipeptidyl peptidase 4). This major site of degradation is thought to be the gut wall, where we previously showed in animal studies that DPP-4 activity varies depending on macronutrient ingestion, being reduced by protein. We previously showed that secretion and metabolism of the incretin hormones after mixed meal and oral glucose is different in obese versus lean subjects. Thus, GLP-1 but not GIP secretion is lower in obesity after meal ingestion and oral glucose, whereas GIP but not GLP-1 metabolism is increased in obesity after meal ingestion. In this study, we have proceeded and examined GIP and GLP-1 secretion and metabolism after oral ingestion of pure protein in lean versus obese subjects.

Materials and methods: The study was undertaken in healthy male human volunteers that were either lean (BMI 20-25kg/m²; n=12) or obese (BMI 30-35kg/m²; n=12). After an overnight fast, the subjects at three different occasions consumed 2.22g protein mix (Promax protein 85%)/kg b wt. Blood samples were collected before and up to five hours after intake of each macronutrient for measurements of total(t) and intact(i) GLP-1 and GIP. Hormone responses were assessed as suprabasal AUC300 over the entire 300 minutes study period.

Results: Both GIP and GLP-1 secretion increased following ingestion of protein, as reflected by increased concentrations of tGLP-1 and tGIP. Whereas the secretion of GIP was markedly lower in the obese subjects (AUCt,tGLP-1 10.0±2.8 vs. 18.4±2.7 pmol/l; P=0.046), there was no difference between obese and lean subjects in AUCt,iGLP-1. This suggests that degradation of GIP is reduced after protein ingestion in obese subjects. In contrast, GLP-1 did not show any differences between lean and obese after protein ingestion for either
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) has been proposed as a link between consumption of high fat diets and the development of obesity, insulin resistance, hyperinsulinaemia and type 2 diabetes mellitus (T2DM). In obese subjects the GIP response to a mixed meal is reported to be increased perhaps contributing to postprandial hyperinsulinaemia. Additionally GIP has been shown to stimulate glucagon secretion. Postprandial responses of the other incretin hormone glucagon-like-peptide-1 (GLP-1) has been reported to be decreased in obese individuals as well as in patients with T2DM. In the present study we evaluated the impact of disruption of insulin sensitivity on postprandial GIP, GLP-1 and glucagon responses in healthy young male subjects without any risk factors for diabetes.

Materials and methods: Postprandial GIP, GLP-1 and glucagon responses were measured using a 520 kcal-liquid meal test (58 g carbohydrate, 28 g fat and 10 g protein) in 10 healthy Caucasian male subjects without family history of diabetes (age: 23.9±3.1 years (mean±SD); BMI: 24.1±1.7 kg/m²; fasting plasma glucose: 4.9±0.3 mM, HbA₁c: 5.4±0.1%) before and after induction of insulin resistance using high calorie diet, relative physical inactivity and administration of prednisolone (37.5 mg/day) for 10 days.

Results: The intervention had a significant impact on insulin resistance according to the homeostatic model assessment (1.4±0.1 vs. 2.5±0.4, p=0.02) without affecting body weight. In line with this, fasting insulin levels (36±3 vs. 61±6 μM, p=0.03) and insulin responses (as assessed by AUC) increased following the intervention (30±6 vs. 59±16 nM·4h, p=0.02). The impaired insulin sensitivity had no impact on postprandial GLP-1 responses (1.5±1 vs. 2.0±1 nM·4h, p=0.56), but postprandial GIP responses rose significantly following induction of insulin resistance (10.6±1.3 vs. 14.1±1.5 nM·4h, p=0.03) as well as postprandial glucagon responses (1.6±1.5 vs. 2.4±3.2 nM·4h, p=0.03).

Conclusion: Our data show that induction of insulin resistance using prednisolone, high calorie diet and relative physical inactivity results in increased postprandial GIP responses suggesting that increased GIP secretion observed in conditions characterised by insulin resistance may occur as a consequence of insulin resistance rather than being a primary pathogenetic trait. Additionally, our data suggest that hyperglucagonaemia (observed in obese individuals with type 2 diabetes) may be a consequence of insulin resistance, while insulin resistance does not seems to be directly responsible for the reduced postprandial GLP-1 responses observed in individuals with type 2 diabetes.

Supported by: an EFSID/Novartis grant

The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) has been proposed as a link between consumption of high fat diets and the development of obesity, insulin resistance, hyperinsulinaemia and type 2 diabetes mellitus (T2DM). In obese subjects the GIP response to a mixed meal is reported to be increased perhaps contributing to postprandial hyperinsulinaemia. Additionally GIP has been shown to stimulate glucagon secretion. Postprandial responses of the other incretin hormone glucagon-like-peptide-1 (GLP-1) has been reported to be decreased in obese individuals as well as in patients with T2DM. In the present study we evaluated the impact of disruption of insulin sensitivity on postprandial GIP, GLP-1 and glucagon responses in healthy young male subjects without any risk factors for diabetes.

Materials and methods: Postprandial GIP, GLP-1 and glucagon responses were measured using a 520 kcal-liquid meal test (58 g carbohydrate, 28 g fat and 10 g protein) in 10 healthy Caucasian male subjects without family history of diabetes (age: 23.9±3.1 years (mean±SD); BMI: 24.1±1.7 kg/m²; fasting plasma glucose: 4.9±0.3 mM, HbA₁c: 5.4±0.1%) before and after induction of insulin resistance using high calorie diet, relative physical inactivity and administration of prednisolone (37.5 mg/day) for 10 days.

Results: The intervention had a significant impact on insulin resistance according to the homeostatic model assessment (1.4±0.1 vs. 2.5±0.4, p=0.02) without affecting body weight. In line with this, fasting insulin levels (36±3 vs. 61±6 μM, p=0.03) and insulin responses (as assessed by AUC) increased following the intervention (30±6 vs. 59±16 nM·4h, p=0.02). The impaired insulin sensitivity had no impact on postprandial GLP-1 responses (1.5±1 vs. 2.0±1 nM·4h, p=0.56), but postprandial GIP responses rose significantly following induction of insulin resistance (10.6±1.3 vs. 14.1±1.5 nM·4h, p=0.03) as well as postprandial glucagon responses (1.6±1.5 vs. 2.4±3.2 nM·4h, p=0.03).

Conclusion: Our data show that induction of insulin resistance using prednisolone, high calorie diet and relative physical inactivity results in increased postprandial GIP responses suggesting that increased GIP secretion observed in conditions characterised by insulin resistance may occur as a consequence of insulin resistance rather than being a primary pathogenetic trait. Additionally, our data suggest that hyperglucagonaemia (observed in obese individuals with type 2 diabetes) may be a consequence of insulin resistance, while insulin resistance does not seems to be directly responsible for the reduced postprandial GLP-1 responses observed in individuals with type 2 diabetes.

Supported by: an EFSID/Novartis grant

The incretin effect is apparent after lipid challenge in healthy humans

B. Ahren, O. Lindgren, J. Vikman, C.F. Deacon, J.J. Holst, G. Pacini, A. Mani

Background and aims: It is well known that oral glucose gives rise to a greater insulin response than an isoglycaemic intravenous (iv) glucose infusion, due to the incretin effect. We examined whether an incretin effect exists also after lipid ingestion.

Materials and methods: After an overnight fast, 12 healthy male volunteers (age 20-30 years; BMI 20-25 kg/m²) received lipids (intralipid® orally (0.6 g/kg) or iv (infusion rate min 0-30 0.15g/min, min 30-60 0.30g/min and min 60-90 0.45g/min, designed to mimic plasma triglyceride (TG) responses to the oral load). Blood samples were taken over 300 min for analysis of TG, glucose, insulin, C-peptide and intact and total concentrations of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinoptropic polypeptide (GIP).

Results: Plasma glucose did not rise during lipid administration, whereas plasma TG levels rose similarly during and oral iv lipid (peak at 180 min of 1.0±0.2 mmol/l for both). Plasma insulin and C-peptide were unchanged during iv lipid but rose after oral lipid, the difference being largest during the first 60 min. Suprabasal 0-60 min AUC for insulin was 0.46±0.10 nmol/lx60 min after oral lipid vs. -0.11±0.14 after iv lipid (P=0.03); corresponding values for C-peptide were 2.45±0.45 vs. 0.43±0.32 nmol/lx60 min (P=0.001). Figure (left panel) shows the insulin secretory rate (ISR) during the 300 min tests and (right panel) the ratio of ISR after oral vs. iv lipid as estimated from C-peptide data, illustrating the larger insulin secretory response to oral vs iv lipid with matching TG levels. Plasma insulin and total GLP-1 and GIP were unchanged during iv but rose after oral lipid. Suprabasal 0-60 min intact GLP-1 was 243±53 pmol/lx60 min after oral lipid vs. 9±5 after iv lipid (P=0.001); corresponding values for intact GIP were 302±138 vs. 9±53 pmol/lx60 min; P=0.031). Suprabasal 60 min AUC for ISR correlated to corresponding AUC for both intact GLP-1 (r=0.42; P=0.043) and intact GIP (r=0.42; P=0.047).

Conclusion: Oral vs iv lipid administration to matching TG levels reveals that oral lipid elicits a clear incretin effect with a pronounced stimulation of insulin secretion during the first 60 min. Since oral lipid as well stimulates the release of the two incretins and the increase in intact (insulinoptropic) GLP-1 and GIP correlates with insulin secretion, we conclude that an incretin effect induced by the classical incretin hormones also exists after oral lipid ingestion in healthy humans.
649

Effect of GLP-1 and exenatide on glucose and fat metabolism, in obese state

Background and aims: Obesity is often associated with hypertension, cardiovascular disease and diabetes. GLP-1, incretin with insulin-independent antidiabetic actions, and its homologous exenatide, both have shown positive effects upon the glucose metabolism of extrapancreatic tissues participating in the hexose homeostasis. Here we studied the effect of GLP-1 and Ex-4 on GLUT-4 expression and other parameters, in fat and muscle of an obesity (Ob) rat model, compared to normal (N).

Materials and methods: Ob was developed in male Wistar rats by chronic feeding -5 weeks- with a daily intake of standard chow combined with a "cafeteria diet" (65% energy from lipids). The N group was fed with standard chow and water ad libitum (8% energy as fat). Although weight was not different between N and Ob, the Ob model showed fasting plasma glucose, triglycerides (153±13 mg/dl, n=11) and cholesterol (92±4 mg/dl, n=12) higher than normal (overall mean: 37±5% Δ N-rats, p<0.02); no significant differences with N were detected in insulin or GLP-1 -by RIA-. Ob and N were 3 days treated -through an osmotic pump- with saline (control), GLP-1 (0.86 nmol/kg/h) or Ex-4 (0.1nmol/kg/h). Blood samples were taken before and by the end of the treatment for plasma measurements. In epididimal fat and soleus muscles, we studied: GLUT-4 expression -mRNA by RT-PCR- and protein by Western blot.; isolated adipocytes glucose transport (GT) -2-deoxi-D-[1,2-3H]glucose uptake- and muscle glycogen synthase activity (GSa) -UDP-glucose into glycogen-.

Results: In muscle of Ob (n=5-7 rats), GLUT-4 protein was lower than in N (75±6% Ob-control, p<0.01) while mRNA was higher (1.81±0.04 times N-control, p<0.001). GLP-1 did not modify mRNA, but increased the protein, to a value (180±14% Ob-control, p<0.01) even higher (128±7% N-control, p<0.02) than that in N (100±13% N-control, n=6); Ex-4, like GLP-1, failed to modify mRNA, but stimulated the GLUT-4 protein (129±6%Ob-control, p<0.05) to N levels (92±4% N-control). GSa in Ob (1.30±0.16 U/g protein) was lower (p<0.001) than in N; GLP-1 did not affect the GSa, while Ex-4 induced a clear increase (175±20 Ob-control, p<0.02) toward normalization; no apparent effect was detected in N after GLP-1 or Ex-4. In fat of Ob (n=5-9), GLUT-4 mRNA was lower than normal (0.39±0.05 times N-control, p<0.001), without differences in the protein; either GLP-1 or Ex-4 reduced GLUT-4 mRNA even further (GEP-1:0.29±0.05 times Ob-control; Ex-4:0.65±0.15, both p<0.01), as previously observed in N rats; both GLP-1 and Ex-4 exerted a slight but clear increase in GLUT-4 protein (137±9% Ob-control and 118±5%, respectively, both p<0.02). GT in Ob (6.7±0.7 fmol/10⁶ cells) was lower (p<0.001) than in N (15.1±1.6 fmol/10⁶ cells); GLP-1 and Ex-4 increased the value (159±10% Ob-control and 178±18%, respectively, both p<0.01) toward normalization (overall mean: 74±8% N-control). In Ob, Ex-4 highly reduced to normalization the triglycerides (86±3 mg/dl, p<0.01 vs Ob-control) and cholesterol values (75±3 mg/dl, p<0.01 vs Ob-control), while GLP-1 only decreased triglycerides to normalization (103±9 mg/dl, p<0.05 vs Ob-control).

Conclusion: In obese state, both GLP-1 and Ex-4 could exert a beneficial effect on its deleterious glucose metabolism, perhaps by their increasing action upon the muscle and fat gluco transporter translation process, together with a normalizing effect on the impaired lipid metabolism.

Supported by: FIS, CIBERDEM

650

The separate and combined impact of the intestinal hormones GIP, GLP-1 and GIP-2 on glucagon secretion in type 2 diabetes
A. Lund1,2, T. Vilsbøll1, J.I. Bagger1, J.J. Hoh2, F.K. Knop3; 1Department of Internal Medicine I, Gentofte Hospital, University of Copenhagen, Hellerup; 2Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark.

Background and aims: Type 2 diabetes mellitus (T2DM) is associated with reduced suppression of glucagon during oral glucose tolerance test (OGTT) whereas as isoglycaemic intravenous (iv) glucose infusion (IGI) results in normal glucagon suppression in these patients. We aimed to evaluate the role of the intestinal hormones glucose-dependent insulomotoric polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) in this discrepancy.

Materials and methods: Glucagon responses were measured during a 3-hour 50-g OGTT (day a) and a corresponding IIGI (day b) in 10 patients with T2DM (age (mean±SEM): 51±3 years; BMI: 33±2 kg/m²; HbA1c 6.5±0.2%). During four additional IIGIs, GIP (day c), GLP-1 (day d), GLP-2 (day e) and a combination of the three intestinal hormones (day f), respectively, were infused intravenously to mimic postprandial responses.

Results: Isoglycaemia during all six study days was obtained. As expected, no suppression of glucagon occurred during the initial phase of the OGTT, whereas significant (p<0.05) suppression of glucagon during the first 30 minutes of the IIGI (day b) was observed. As illustrated in Fig. 1, the glucagon response during the IIGI+GIP+GLP-1+GLP-2 (day f) equaled the inappropriate glucagon response to OGTT (p=NS). The separate GIP infusion (day d) elicited significant hypersecretion of glucagon, whereas GLP-1 infusion (day d) resulted in potentiation of glucagon suppression during IIGI. IIGI+GLP-2 infusion resulted in a glucagon response in the mid-range between the inappropriate glucagon response to OGTT and the preserved suppression during IIGI.

Conclusion: Our results indicate that the intestinal hormones, GIP, GLP-1 and GLP-2, may play a role in the inappropriate glucagon response to orally ingested glucose in T2DM with GIP acting as a strong glucagonotropic substance.

Figure 1. Initial glucagon responses following OGTT and IIGIs in patients with T2DM expressed as incremental AUCs (mean±SEM); asterisks indicate significant difference (p<0.05) from 0.

Supported by: Danish Diabetes Association and The Novo Nordisk Foundation

651

The contribution of GLP-1 to the enteroinsular axis in type 2 diabetes mellitus
J. Schirra, L. Carneiro, M. Nicolaus, A. Derani, B. Aulinger, B. Goke; Department of Internal Medicine II, Campus Großhadern, University of Munich, Germany.

Background: The gut born hormones GLP-1 and GIP augment glucose-dependently the postprandial (PP) insulin release from the pancreatic B-cell, mediating the so-called incretin effect which constitutes the difference between the postprandial (PP) and the isoglycemic fasting insulin response. In addition, GLP-1 reduces glucagon. In T2DM, the incretin effect is reduced and plasma glucagon increased. A defect of the GIP action has been suggested in T2DM. However, the contribution of either hormone in T2DM is not known.

Aim: To analyze the contribution of endogenous GLP-1, we examined the effect of a duodenally perfused meal on pancreatic insulin and glucagon secretion using the specific GLP-1 receptor antagonist exendin(9-39) (Ex-9).

Methods: 12 patients with T2DM (age 60±2, BMI 28±1.2, HbA1c 6.4±0.3) and 12 healthy subjects (HS) participated in 3 study days in random order. Plasma insulin and glucagon concentrations were measured during a 3 hour hyperglycemic clamp at 180mg/dl using IV glucose. 30 min prior the clamps, a duodenal meal perfusion (2.03 kcal/min, 77% lipid, 23% glucose) was initiated and continued throughout the study on 2 days. This was accompanied by IV infusion of Ex-9 (600 pmol/kg/min) or saline, respectively. A third day with duodenal perfusion of saline served as isoglycemic fasting control (IF) to calculate the incretin effect. The acute insulin response (AIR) to hyperglycemia and the sustained responses of plasma insulin (SIR) and glucagon (SGR) were calculated during the first 10 min and between 60 and 120min of the hyperglycemic clamp as incremental AUC (see table). In HS, AIR and SIR during the duodenal meal (PM) were markedly increased compared to isoglycemic fasting conditions (IF) corresponding to an incretin effect of 0.34±0.1 and 5.1±0.8 mU/ml/min, respectively. In T2DM,
both AIR and SIR were significantly lower compared to HS and the incretin effect was significantly reduced (0.13±0.04 and 1.9±0.7 μU/ml·min, p<0.05 vs HS). Ex-9 reduced PP AIR and SIR both in HS and T2DM. Also with Ex-9, PP AIR and SIR remained significantly elevated compared to IF both in HS and T2DM corresponding to a GLP-1 independent incretin effect in T2DM of 0.08±0.03 (AIR) and 0.60±0.25 (SIR) μU/ml·min, thus representing 79% and 51% of PP insulin response, respectively. Plasma glucagon concentrations were markedly elevated in T2DM. Ex-9 significantly increased SGR in both, HS and T2DM.

Conclusion: Both the acute and sustained postprandial response to hyperglycemia is largely mediated by gut hormones. This incretin effect is clearly reduced in T2DM compared to HS. However, GLP-1 and non-GLP-1 incretins contribute equally to the incretin effect both in HS and T2DM. We suggest GIP to account for the remaining incretin effect also in T2DM. As in HS endogenous GLP-1 contributes largely to the postprandial suppression of plasma glucagon. We conclude that although pancreatic islet cell secretion is disturbed in T2DM, the enteroinsulinar axis seems to be intact also in T2DM.

652

Insulin resistance and glucose intolerance independently reduce the incretin effect via a beta cell defect

D.H. Jensen¹, K. Aabo³, A. Voelund³, J.E. Henriksen¹, J.J. Holst¹, S. Madsbad¹, T. Krarup¹; ¹Endocrinology, Bispebjerg University Hospital, Copenhagen, ²Endocrinology, Herlev University Hospital, ³Endocrinology, Bispebjerg Hospital, Copenhagen, ⁴Endocrinology, Odense University Hospital, ⁵Department of Biomedical Sciences, Panum Institute, Copenhagen, ⁶Endocrinology, Hvidovre University Hospital, Denmark.

Background and aims: The incretin effect is impaired in type 2 diabetes. We wanted to evaluate the separate impact of insulin resistance and glucose intolerance on the incretin effect and whether changes in the incretin effect were associated with β-cell defects.

Materials and methods: 21 healthy 1st degree relatives to type 2 diabetes patients with normal glucose tolerance underwent a 75g OGTT on day 1 and an isoglycemic i.v. glucose test on day 2. The two tests were performed before and after 6 days treatment with 2mg dexamethasone bid. Insulin, C-peptide, GIP and GLP-1 were measured during the 4 tests. The incretin effect was estimated by relating the incremental insulin response during the OGTT to the incremental insulin response during the i.v. glucose infusion. Furthermore, the insulin secretion rates during the i.v. glucose infusions were plotted against ambient P-glucose, and the slopes of these linear relations were used as an index of the β-cell glucose sensitivity, which is known to be impaired already in the early stages of type 2 diabetes. To relate the β-cell glucose sensitivity to the ambient insulin resistance the disposition index was calculated by multiplying β-cell glucose sensitivity with 1/HOMA."/

Results: The dexamethasone treatment increased insulin resistance in all 21 subjects, and 11 subjects in addition to insulin resistance also developed glucose intolerance (IGT) (10 subjects remained glucose tolerant (NGT)). The incretin effect was in the NGT and IGT group 7.1±3.2 and 67±4.6% before and 58±5.2 and 32±5.8% after treatment, respectively. There was no difference in the incretin effect between groups at baseline but a significant difference after treatment (P < 0.05). A multiple regression analysis of pooled data from the two groups related the changes in incretin effect (Δincretin effect) to changes in insulin resistance (ΔHOMA$_\text{IR}$) and glucose tolerance (Δ(2-hour P-glucose during OGTT, ΔGTT)). ΔGTT and ΔHOMA$_\text{IR}$ were negatively and independently correlated with Δincretin effect (P < 0.05), and accounted for 45% of the overall variation in Δincretin effect. The disposition index was 1.7±0.20 and 1.4±0.17 pmol kg⁻¹ min⁻¹·mM⁻¹ in the NGT and IGT groups, respectively (P = NS). After the dexamethasone treatment this index was 1.5±0.19 in the NGT group and 0.9±0.12 pmol kg⁻¹ min⁻¹·mM⁻¹ in the IGT group, respectively (P < 0.05). The reduction in the disposition index in the NGT group was not significant (P = NS). Responses of GLP-1 and GIP did not differ between groups before or after dexamethasone during the OGTT.

Conclusion: Insulin resistance and glucose intolerance contribute independently to the reduced incretin effect seen in type 2 diabetes. In addition we find that the incretin effect is reduced very early in NGT insulin resistant people, before the β-cell sensitivity to i.v. glucose is affected, and deteriorates further when β-cell function declines in people with IGT. This points to an early, specific β-cell defect in the action of the incretin hormones before the development of overt type 2 diabetes.

Supported by: The Novo Nordisk Foundation

653

GIP controls human core circadian genes indicating an integrative role in food-regulated metabolism

Ö. Gögebakan¹, M.A. Osterholm², F. Isken¹, N.N. Rudovich¹, K.-N. Fernandez¹, M. Nauck¹, A.E.H. Pfeiffer¹;¹Clinical Nutrition, DIFE, Rehbrücke, ²Diabetescentrum, Bad Lauterburg, Germany.

Background and aims: Adaptation of metabolism to circadian rhythms is crucial for its proper function. Rhythmically expressed peripheral clock genes are regulated by food intake but detailed mechanisms are unknown. We investigated the role of the food induced hormones, GIP, insulin and glucose on expression of core circadian genes in human adipose tissue.

Materials and methods: 17 overweight healthy humans (BMI: 28-40 kg/m², age: 30-65 y) with normal glucose tolerance were infused with placebo or GIP in physiological doses for 4h i.e. either alone, or during euglycemic or hyperglycemic hyperinsulinemic clamps. Biopsies were taken from subcutaneous adipose tissue before and after treatment. Total RNA was isolated from all biopsies and transcribed into cDNA. Expression patterns of circadian genes were analysed by hybridisation to a total number 100 Agilent 60-mer Whole Human Genome (4×4K) single-color DNA microarrays and results confirmed by quantitative RT-PCR. Statistical analysis of microarray data was performed with Agilent GeneSpring GX software.

Results: The expression of REV ERBalpha (NR1D1) was regulated during the 4 h treatment even under placebo conditions and decreased significantly about 4 fold. The expression of other circadian genes like PER2, PER3, TEF and DBP did not change significantly. Neither insulin nor glucose affected clock gene expression in euglycemic or hyperglycemic hyperinsulinemic clamps. However, GIP either alone or combined with insulin and glucose, significantly enhanced the circadian decrease of the core clock genes REV ERBalpha 6.5 - 9 fold as well as PER2, PER3 and the clock output genes TEF and DBP between 1.5 - 2.5 fold. These genes were among the most significantly GIP-regulated genes even after correction for multiple testing (Benjamini Hochberg). Additional correlation analysis showed a disintegration of clock gene correlations among each other as a result to GIP administration. The decrease was not reproduced in a mouse model upon treatment with GIP at different circadian time points pointing to species specific differences.

Conclusion: We identify GIP as a powerful regulator of the core clock gene machinery in human adipose tissue in vivo which provides the missing link from food intake to peripheral clock gene regulation. Since i.e. REV ERBalpa is involved in regulation of glucose, lipid and cholesterol metabolism, fat cell differentiation and inflammatory processes, the disruption of circadian rhythms by GIP may explain its obesogenic and fatty liver inducing properties.

Supported by: DFG
PS 51 Clinical insulin secretion - methods and associations

654 Dynamic beta cell function in young type 2 diabetes patients (15-34 years) in the Diabetes Incidence Study in Sweden register M. Sjostrand1, H.J. Arnerström2, W. Eriksson3, S. Gudbjornsdottir4, S. Lindmark5, M. Landin-Olsson6, I. Lyström7, M.K. Svensson8, P. Adolfsson9, K. Arneklev5, J. Bolinder10; 1Early Phase Development, R&D, AstraZeneca, Mölndal, 2Linköping University Hospital, Sahlgrenska University Hospital, Göteborg, 3Umeå University, 4Lund University Hospital, 5Karolinska University Hospital, Stockholm, Sweden.

Background and aims: Simple methods for evaluation of dynamic beta-cell function in epidemiological and clinical studies of type 2 diabetic patients (T2D) are needed. The first phase insulin response after intravenous (iv) glucose is diminished whereas the insulin response after non-glucose stimulation, i.e. iv arginine is less dependent on prevailing glucose levels. The objective of this study was to compare these methods for assessment of dynamic beta-cell function in young T2D with different disease duration and treatments.

Materials and methods: 54 T2D patients from the Diabetes Incidence Study in Sweden (DIS) and 23 healthy controls; group-wise matched for age (35±5.4 vs 40±5.8 years), sex (M/F 33/21 vs. 12/11) and BMI (33±5.7 vs. 33±4.5 kg/m²) were included in a cross-sectional study. Beta-cell function was assessed by iv pulses of arginine 5g followed after 30 min by iv glucose 0.3g/kg. The acute insulin and c-peptide response to arginine (AIRₜₐᵢᵢ and Aₕᵢᵢ) and to glucose (AIRₜₐᵢᵢ and Aₕᵢᵢ) was calculated as the mean of the three highest levels of insulin and c-peptide obtained during 5 minutes minus the plasma level of insulin and c-peptide at baseline.

Results: Fasting p-glucose at baseline was 7.5 mmol/L in T2D and 5.5 mmol/L in healthy controls. AIRₜₐᵢᵢ and Aₕᵢᵢ were reduced approx 90% in T2D and AIRₜₐᵢᵢ and Aₕᵢᵢ were reduced approx 30% in T2D (7.6±24 vs 93±60, p<0.05, 0.5±1.3 vs 4.2±2.4, p<0.05 and 51±45 vs 72±43, p=0.07 and 2.4±1.6 vs 3.2±1.4, p=0.06) compared to the healthy controls. AIRₜₐᵢᵢ and Aₕᵢᵢ responses was negatively correlated with fasting p-glucose at baseline (r=-0.52, r=-0.48 p<0.05 and r=0.10 and r=0.15, ns). AIRₜₐᵢᵢ and Aₕᵢᵢ discriminated patients with different disease duration better than AIRₜₐᵢᵢ and Aₕᵢᵢ as displayed in Table. In addition, AIRₜₐᵢᵢ and Aₕᵢᵢ was higher in the diet-treated group compared to other treatments, while AIRₜₐᵢᵢ and Aₕᵢᵢ were decreased in insulin-treated patients compared to other treatments groups (see Table).

Conclusion: AIRₜₐᵢᵢ and Aₕᵢᵢ were less reduced than AIRₜₐᵢᵢ and Aₕᵢᵢ in young type 2 diabetic patients and discriminated better between groups with different disease duration. AIRₜₐᵢᵢ and Aₕᵢᵢ was also less dependent on baseline plasma glucose levels. AIRₜₐᵢᵢ and Aₕᵢᵢ may be used epidemiological and clinical studies to select patients suitable for drugs affecting dynamic beta-cell function.
A novel tool to measure changes in glucose-dependent insulin secretion in healthy subjects

Background and aims: The Meal Tolerance Test (MTT) can detect changes in prandial glucose-dependent insulin secretion (GDIS) in Type 2 Diabetes Mellitus (T2DM) subjects; however, it is less suitable as a tool in healthy volunteers (HV), where effect sizes are small, and variability high. We hypothesized that changes in GDIS can be detected in HV, if the MTT is conducted in a milieu simulating the hyperglycemia of T2DM. We tested the hypothesis by performing a randomized, double-blind, placebo controlled, crossover study that measured GDIS effects of the DPP4 inhibitor sitagliptin, in the setting of a MTT superimposed on stable hyperglycemia achieved by a hyperglycemic clamp (HGC).

Materials and methods: Following an overnight fast, and a single dose of sitagliptin 100mg or matched placebo, 12 healthy non-obese subjects (age 27 ± 6 yrs, BMI 20.5 ± 1.3 kg/m²) underwent a HGC at target glycemia of 8.9 mmol/L for 370 minutes (mins); a standardized liquid meal was administered at 180 mins, and consumed over 10 mins.

Results: Data are presented as Mean ± SEM, sitagliptin vs placebo. Pre-meal (120-180mins): At matched plasma glucose (8.79 ± 0.05 vs 8.95 ± 0.06 mmol/L), significant (p<0.001 for all between group comparisons) differences were observed in glucose infusion rates (GIR) (0.72 ± 0.03 vs 0.58 ± 0.03 mmol/kg/min), active GLP-1 (1.7 ± 0.1 vs 1.2 ± 0.1 pmol/L), plasma insulin (1279.26 ± 228.49 vs 752.84 ± 231.96 pmol/L) and insulin secretion rates (ISR) (1598.4 ± 133.2 vs 1065.6 ± 133.2 pmol/min). Post-meal (190-340mins): At matched plasma glucose (9.34 ± 0.03 vs 9.26 ± 0.04 mmol/L), further significant (p<0.001 for all parameters) increments over pre-meal were seen in all parameters in both groups, and significant (p<0.001 for all between group comparisons) differences were observed in GIR (0.83 ± 0.02 vs 0.76 ± 0.02 mmol/kg/min), active GLP-1 (6.4 ± 0.6 vs 3.1 ± 0.7 pmol/L), plasma insulin (5809.49 ± 988.97 vs 3833.64 ± 993.13 pmol/L) and ISR (3230.1 ± 266.4 vs 2664.0 ± 266.4 pmol/min).

Conclusion: Our data demonstrate for the first time in HV that the GLP-1 stimulating property of sitagliptin has significant GDIS effects in the preprandial state, with further significant augmentation in the prandial state. The HGC-MTT appears to be a novel reliable tool for measurement of prandial and prandial GDIS in a single experiment in a single dose setting in HV.

658

The aging type 2 diabetes. Differential effects of aging and diabetes on insulin sensitivity, beta cell function and incretin production

B. Geloneze1,2, A.C.J. Vasques1, M.S. Oliveira1, F.S. Novais2, J.C. Pareja2, M.J.A. Saad3, M.A. Tambascia2

1Laboratory of Investigation on Metabolism and Diabetes - LIMED, University of Campinas, 2National Institute of Science and Technology on Obesity and Diabetes, Campinas, 3Laboratory of Clinical Investigation on Insulin Resistance, University of Campinas, Brazil.

Background and aims: Diabetic physiopathology is a combination of insulin resistance, beta cell dysfunction, and impaired incretin action or production. Aging is related to increased prevalence of T2DM. The aim of the present study is to quantify the separate impact of aging and diabetes on the diabetic physiopathology [i.e., insulin sensitivity (IS), beta cell function and incretin production].

Materials and methods: Hyperglycemic clamp (HC) and meal tolerance test (515 Kcal) were performed in 48 subjects divided in 24 with normal glucose tolerance [NGT], and 24 with type 2 diabetes (DM) with less than 5 years of disease and taking OADs. Both NGT and DM groups were composed by 12 middle-age (35 to 50 y) and 12 aging subjects (> 65 y), with a BMI below 30 kg/m². IS and insulin production were evaluated by HC. During the 180 minutes MTT, both incretins: GLP-1 and GIP were evaluated.

Results: The IS (Clamp-derived insulin sensitivity index - ISI, and glucose infusion rate - GIR) were reduced in DM compared with NGT (p < 0.01). These results were also affected by aging, but in a less intense manner when subjects were stratified by aging category (p < 0.05). Beta cell function (Clamp-derived derived first and second phase insulin secretion in relation to ISI - First and Second phase Disposition Indexes - DI) were reduced in DM compared to NGT (p<0.05). Aging did not affect DI in NGT, but exacerbates the difference between DM groups (p<0.01). The 180min total GIP production were similar among groups. GIP incremental area under the curve (AUC(0-60 min)) were greater in DM groups (p<0.05), but not affected by aging. The 180min GLP-1 production were reduced in aging groups (p<0.05), but independent of the
presence of DM. In middle age group, total GLP-1 production was reduced in DM compared to NGT (p<0.05). GIU incremental area under the curve (AUC(-60 min)) were reduced in aging groups independent of the presence of DM (p<0.05).

Conclusion: In non-obese subjects, diabetic state and aging impair insulin sensitivity and incretin production independently of one another. Insulin production is affected by the DM itself, and aging exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, in special regarding incretin production. The knowledge of complex relationship of aging and glucose homeostasis in diabetic and non-diabetic subjects could support the development of physiopathological-based diabetic therapies.

Supported by: Merck Sharp & Dohme

659

Risk factors for the development of diabetes after acute beta cell mass reduction

G. Muscogiuri1, G. Sorice2, L. Marselli1, A. Priololetta1, T. Mezza1, M. Tancredi1, A. Lassandro3, P. Marchetti1, A. Giaccari2
1Department of Endocrinology, Rome, 2Department of Endocrinology and Metabolism, Pisa, Italy.

Background and aims: Insulin secretion (IS) defects and insulin resistance (IR) contribute to the onset and progression of type 2 diabetes (T2D), though the relative contribution of each factor is still unknown. In our series we studied the role of β cell in the pathogenesis of type 2 diabetes by analyzing patients undergoing acute β-cells mass reduction after duodeno-pancreatectomy (DP).

Methods: Eight patients were evaluated for glucose tolerance (OGTT), IS (hyperglycemic clamp), β-cell mass (arginine bolus) and insulin sensitivity (hyperinsulinemic euglycemic clamp: 40 mU/m2) before and after DP. Abdominal-CT was performed to quantify visceral adipose tissue (VAT) and subcutaneous adipose tissue volumes (SAT). During surgery we collected pancreas specimens on which we performed positive insulin area measurements (PIA) by a computer assisted system.

Results: there were 4 women and 4 men aged (mean ± SD) 56.7 ± 21.9 years, BMI (mean ± SD) 29.6 ± 6.1 kg/m2. At the enrollment no patient reported history of type 2 diabetes. Before surgery 5 patients resulted IGT. After DP, 4/8 developed diabetes, 3/8 IGT and 1/8 preserved normal glucose tolerance.

There were not significative changes in whole body glucose uptake (4.3±1.1 vs. 3.8±1.1 mg/kg/min before and after surgery respectively; p=NS) following DP. A significant reduction of β-cell mass calculated as AUC of insulin after arginine bolus (AUC Arg) was detected after surgery (before 7485.8 ± 363.5 vs. after surgery 2312.2 ± 239.5 μUI/ml/min; P=0.001) as well as the I and II phase of IS (AUC I: 186.5 ± 17.4 vs. 95.0 ± 10.9 μUI/ml/min, P=0.04; AUC II: 3124.1 ± 194.3 vs. 1409.7 ± 162.4 μUI/ml/min, P=0.001).

PIA was 1.67±1.43%. When AUC I and II were adjusted for beta cell mass (AUC Arg), we found a significative increase in the AUCI/AUCArg after surgery (before 570 1669 ± 628 vs. 3825 ± 1283, respectively, p < 0.05 for both doses vs. control). Furthermore, both the 0.6 pmol/kg/h dose decreased AIRg (569.6 ± 187.0 vs. 861.2 ± 288.5 min. Kg) and Sg (0.015 ± 0.002 vs. 0.023 ± 0.002 min⁻¹) significantly compared to the early post-operative levels (p = 0.02) and in the tumour/adenoma patients (1.2 ± 0.3, 0.8 ± 0.2, 1.4 ± 0.3 pmM⁻¹, respectively; p = 0.03).

Conclusion: These findings demonstrate a capacity for recovery of glucose control after partial pancreatectomy and suggest that beta-cell function can improve significantly over time even in adult humans. Whether this is due to increases in beta-cell mass or function cannot be clarified from this study, but given the limited capacity for beta-cell regeneration in adult humans, functional improvements in insulin secretion are most likely.

Supported by: DFG

661

Ghrelin suppresses insulin secretion and compromises beta cell function in healthy humans

J. Tong1, R.L. Prigo2, H.W. Davis1, M.H. Tschöp1, D. D’Alessio2; 1Internal Medicine, University of Cincinnati, 3School of Medicine, University of Maryland, Baltimore, USA.

Background and aims: The orexigenic gut hormone ghrelin and its receptor, the growth hormone secretagogue receptor 1a, are present in pancreatic islets. While ghrelin reduces insulin secretion in rodents, its effect on insulin secretion in humans has not been established. Our objective was to test the hypothesis that circulating ghrelin suppresses glucose-stimulated insulin secretion in healthy subjects.

Materials and methods: Acyl ghrelin (0.2 and 0.6 pmol/kg/h) or saline was infused in 10 healthy subjects (4M/6F; age 29.5 ± 5.2 y; BMI 22.8 ± 3.0 kg/m², fasting plasma glucose 5.2 ± 0.1 mmol/L, mean ± SEM) on 3 separate occasions in a balanced counterbalanced fashion. The ghrelin was infused for 45 minutes to achieve steady-state levels and continued through a 180-minute frequently sampled intravenous (IV) glucose tolerance test (FSIGT). The acute (first phase) insulin response to IV glucose (AIRg) was calculated from plasma insulin concentrations between 2 and 10 min after the glucose bolus. Insulin sensitivity index (S) and glucose effectiveness at basal insulin (Sg) were quantified using the minimal model of glucose kinetics. Disposition index (DI), a measure of β-cell function, was a product of AIRg and Sg, IV glucose tolerance was measured by the glucose disappearance constant (Kg) from 10 to 20 min.

Results: Ghrelin infusion did not alter fasting plasma insulin or glucose, but the 0.6 pmol/kg/h dose decreased AIRg (569.6 ± 187.0 vs. 861.2 ± 288.5 mmol/L·min⁻¹ and Sg (0.015 ± 0.002 vs. 0.023 ± 0.002 min⁻¹) significantly compared to the saline control (p < 0.05 for ghrelin vs. control). Furthermore, both the 0.2 and 0.6 pmol/kg/h ghrelin infusions decreased DI significantly (1940 ± 570, 1669 ± 628 vs. 3825 ± 1283, respectively, p < 0.05 for both doses vs. control). Ghrelin administration did not alter IV glucose tolerance as measured by Kg.

Conclusion: Exogenous ghrelin reduces the first-phase insulin response to IV glucose and lowers β-cell function in healthy humans. These findings raise the possibility that endogenous ghrelin has a role in regulation of
NEFA kinetics during an OGTT after islet transplantation

G. Ward, Islet Tx Study Group; Endocrinology & Diabetes, St. Vincent’s Health Melbourne, Australia.

Background and aims: In addition to its effects on carbohydrate metabolism, insulin inhibits lipolysis and promotes lipogenesis/fat storage. Abnormal NEFA kinetics are a feature of both type 1 & 2 diabetes but have not been studied in type 1 diabetes patients after intra-portal allogenic islet transplantation. The liver is an important site of NEFA synthesis and islet recipients are known to develop perportal steatosis secondary to paracrine effects of high local concentrations of insulin. In view of the transplanted islets’ heterotopic location in close proximity to hepatocytes, we aimed to evaluate NEFA dynamics in response to an oral glucose challenge in islet recipients who achieved insulin-independence.

Materials and methods: A 4-hour 75g OGTT was performed in 2 insulin-independent islet recipients, 3 patients with type 2 diabetes (T2Dm) on oral medications (withheld 1 week pre-study) and 5 controls. Plasma glucose, insulin and NEFA were assayed at 0,30,60,90,120,150,180 and 240min.

Results: Mean age of islet recipients, T2DM patients and controls was 56 ± 4.55, 1.49 ± 0.5 SEM years respectively; mean BMI was 19.4 ± 1.3, 37.5 ± 4.2 and 25.1 ± 1.4 SEM kg/m²; mean HbA1c was 5.7 ± 0.3, 7.0 ± 0.3 and 5.5 ± 0.1 SEM %. Although recipients had diabetic profiles (mean glucose: fasting 6.3 ± 0.2, after 2 hours 13.0 ± 1.4 SEM mmol/l), they were insulin-independent maintaining HbA1c ≤ 6% without oral hypoglycaemics. Insulin secretion (AUCins corrected for glucose) during OGTT was lower in islet recipients and T2DM subjects when compared with controls (14.7%, 14.1%, 100% respectively). When corrected for prevailing insulin sensitivity, as measured by homeostasis model assessment, IAUCtGIP was positively correlated with β-cell function (r = 0.418, P = 0.011) while IAUCiGLP-1/IAUCglucose, from 0.73 ± 0.14 to 0.91 ± 0.13), although they were still significantly lower when compared to wDM group. IAUCiGLP-1 was negatively correlated with the index of insulin resistance. These findings indicate the importance of ameliorating glucotoxicity and lowering the degree of insulin resistance to improve incretin secretion in patients with type 2 diabetes. The associated factors with incretin secretion were also investigated.

Materials and methods: Meal tolerance test (MTT) was performed in eighteen poorly-controlled diabetic (pDM) patients and fifteen well-controlled diabetic (wDM) patients. Fourteen patients in pDM group underwent follow-up MTT after mean 2.4 months of insulin treatment. Plasma concentrations of glucose, insulin, C-peptide, glucagon, intact glucagon-like peptide 1 (IGLP-1) and total glucose-dependent insulinotropic polypeptide (IGIP) were measured and their secretions during MTT were calculated by total and incremental area under the curve (TAUC and IAUC) values.

Results: Post-treatment HbA1c level was significantly improved in pDM group (from 11.2 ± 0.9 to 7.9 ± 0.9%). The relative secretion of incretin hormones adjusted by glucose levels were mildly but significantly increased in pDM group after treatment (TAUCiGLP-1/TAUCglucose, from 0.07 ± 0.01 to 0.08 ± 0.01; IAUCiGLP-1/IAUCglucose, from 0.19 ± 0.03 to 0.24 ± 0.03; IAUCiGLP-1/IAUCglucose, from 0.73 ± 0.14 to 0.91 ± 0.13), although they were still significantly lower when compared to wDM group. IAUCiGLP-1 was positively correlated with β-cell function (r = 0.418, P = 0.016) assessed by homeostasis model assessment.

Conclusion: Intensive insulin treatment increased the relative secretory capacity of incretin hormones adjusted by glucose levels. GLP-1 secretion showed negative correlation with the index of insulin resistance. These findings indicate the importance of ameliorating glucotoxicity and lowering the degree of insulin resistance to improve incretin secretion in patients with type 2 diabetes.

Supported by: Korean Diabetes Association

662

NEFA kinetics during an OGTT after islet transplantation

S.-H. Ko1; S.-H. Lee2; K.-H. Yoon1; Y.-B. Ahn1;1Internal Medicine, St. Vincent's Hospital, Suwon, 2Internal Medicine, Seoul St. Mary’s Hospital, Republic of Korea.

Background and aims: The condition of type 2 diabetes and accompanying hyperglycemia and insulin resistance leads to the impairment in secretion or action of the incretin hormones. In this study, we aimed to determine whether reversal of hyperglycemia and insulin resistance can affect incretin secretion in patients with type 2 diabetes. The associated factors with incretin secretion were also investigated.

Materials and methods: Meal tolerance test (MTT) was performed in eighteen poorly-controlled diabetic (pDM) patients and fifteen well-controlled diabetic (wDM) patients. Fourteen patients in pDM group underwent follow-up MTT after mean 2.4 months of insulin treatment. Plasma concentrations of glucose, insulin, C-peptide, glucagon, intact glucagon-like peptide 1 (IGLP-1) and total glucose-dependent insulinotropic polypeptide (IGIP) were measured and their secretions during MTT were calculated by total and incremental area under the curve (TAUC and IAUC) values.

Results: Post-treatment HbA1c level was significantly improved in pDM group (from 11.2 ± 0.9 to 7.9 ± 0.9%). The relative secretion of incretin hormones adjusted by glucose levels were mildly but significantly increased in pDM group after treatment (TAUCiGLP-1/TAUCglucose, from 0.07 ± 0.01 to 0.08 ± 0.01; IAUCiGLP-1/IAUCglucose, from 0.19 ± 0.03 to 0.24 ± 0.03; IAUCiGLP-1/IAUCglucose, from 0.73 ± 0.14 to 0.91 ± 0.13), although they were still significantly lower when compared to wDM group. IAUCiGLP-1 was negatively correlated with the index of insulin resistance (r = -0.446, P = 0.011) while IAUCiGLP-1 was positively correlated with β-cell function (r = 0.418, P = 0.016) assessed by homeostasis model assessment.

Conclusion: Intensive insulin treatment increased the relative secretory capacity of incretin hormones adjusted by glucose levels. GLP-1 secretion showed negative correlation with the index of insulin resistance. These findings indicate the importance of ameliorating glucotoxicity and lowering the degree of insulin resistance to improve incretin secretion in patients with type 2 diabetes.

Supported by: Korean Diabetes Association

663

Effect of ameliorating glucotoxicity on incretin secretion in patients with type 2 diabetes

S.-H. Ko1; S.-H. Lee1; K.-H. Yoon1; Y.-B. Ahn1;1Internal Medicine, St. Vincent's Hospital, Suwon, 2Internal Medicine, Seoul St. Mary’s Hospital, Republic of Korea.

Background and aims: The condition of type 2 diabetes and accompanying hyperglycemia and insulin resistance leads to the impairment in secretion or action of the incretin hormones. In this study, we aimed to determine whether reversal of hyperglycemia and insulin resistance can affect incretin secretion in patients with type 2 diabetes. The associated factors with incretin secretion were also investigated.

Materials and methods: Meal tolerance test (MTT) was performed in eighteen poorly-controlled diabetic (pDM) patients and fifteen well-controlled diabetic (wDM) patients. Fourteen patients in pDM group underwent follow-up MTT after mean 2.4 months of insulin treatment. Plasma concentrations of glucose, insulin, C-peptide, glucagon, intact glucagon-like peptide 1 (IGLP-1) and total glucose-dependent insulinotropic polypeptide (IGIP) were measured and their secretions during MTT were calculated by total and incremental area under the curve (TAUC and IAUC) values.

Results: Post-treatment HbA1c level was significantly improved in pDM group (from 11.2 ± 0.9 to 7.9 ± 0.9%). The relative secretion of incretin hormones adjusted by glucose levels were mildly but significantly increased in pDM group after treatment (TAUCiGLP-1/TAUCglucose, from 0.07 ± 0.01 to 0.08 ± 0.01; IAUCiGLP-1/IAUCglucose, from 0.19 ± 0.03 to 0.24 ± 0.03; IAUCiGLP-1/IAUCglucose, from 0.73 ± 0.14 to 0.91 ± 0.13), although they were still significantly lower when compared to wDM group. IAUCiGLP-1 was negatively correlated with the index of insulin resistance (r = -0.446, P = 0.011) while IAUCiGLP-1 was positively correlated with β-cell function (r = 0.418, P = 0.016) assessed by homeostasis model assessment.

Conclusion: Intensive insulin treatment increased the relative secretory capacity of incretin hormones adjusted by glucose levels. GLP-1 secretion showed negative correlation with the index of insulin resistance. These findings indicate the importance of ameliorating glucotoxicity and lowering the degree of insulin resistance to improve incretin secretion in patients with type 2 diabetes.

Supported by: Korean Diabetes Association
Acute exposure to palmitate induces endoplasmic reticulum stress and impairs insulin action in isolated human skeletal muscle strips

P.A. Skrobuk1, J. Kärkkäinen1,2, H.A. Koistinen1,2;1Minerva Institute, Helsinki, 2Department of Medicine, Helsinki University Central Hospital, Finland.

Background and aims: Obesity and high fat diet have been linked to insulin resistance, which may involve endoplasmic reticulum (ER) stress. Here, we studied the effect of acute palmitate exposure on insulin action on glucose transport (GT), glyceroneogenesis, insulin signaling and ER stress.

Materials and methods: We studied 18 men (47±3 years, BMI 26.2±0.8 kg/m², IP-gluk 5.5±0.1 mM). Open muscle biopsy was obtained from m. vastus lateralis, and small muscle strips were incubated for 4 h with or without (w/o) palmitate (1 mM), and with or w/o insulin (1.2 nM).

Results: Insulin increased GT (in nmol/mg/20 min) 1.9-fold (from 0.6±0.05 to 1.2±0.1, p<0.01). With palmitate, basal GT tended to be increased (0.9±0.1, p=0.062), insulin-stimulated GT was unchanged (1.2±0.1), and insulin action on GT (insulin-stimulated minus basal) reduced by 49 % (p=0.068). Palmitate reduced insulin-stimulated glyceroneogenesis 18 % (70±13, vs 85±15 nmol/g/h, p<0.02), but did not affect AKT-Ser473 phosphorylation. When men were divided by BMI, insulin increased GT with palmitate in lean, but not in overweight men. Palmitate induced ER stress (1.3-fold increased phosphorylation of eIF2α) in overweight but not in lean men.

Conclusion: Acute exposure to palmitate impairs insulin action in human muscle strips. This effect is more pronounced in men with overweight, and may involve activation of ER stress.

Supported by: NNF, SFR, HF, FAS

ER Stress in adipocytes inhibits insulin signalling, represses lipolysis and alters the secretion of adipokines without inhibiting glucose transport

L. Xu, G.A. Spinias, M. Niessen; Endocrinology, Pathology & Clinical Nutrition, University Hospital of Zurich, Switzerland.

Background and aims: ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK) which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signalling and the biological function of adipocytes.

Materials and methods: ER stress was induced with either thapsigargin or tunicamycin. Activation of insulin signal transduction and of the unfolded protein response (UPR) were assessed by Western blotting. The function of IRS3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E β-cells dependent on the degree of ER stress.

Results: In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. c-jun N-terminal kinase phosphorylates IRS proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signalling and the biological function of adipocytes.

Conclusion: Our results suggest chronic exposure of liver cells to low-level palmitate induces mild ER stress and an adaptive response that enhances insulin signalling and confers protection against acute palmitate-induced ER stress. However, more severe ER stress induced by chronically elevated palmitate overwhelms the adaptive response leading to IR. Thus, ER stress could contribute to both the adaptive and deleterious effects of lipid on insulin signalling in liver cells.

Endoplasmic reticulum stress plays a role in both the adaptive and deleterious effects of lipid on insulin signalling in liver cells

C.S. Achard, D.R. Laybutt; Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia.

Background and aims: Insulin resistance (IR) in peripheral tissues including liver, combined with β-cell failure, leads to type 2 diabetes. Obesity and associated lipids oversupply is a likely cause of IR in liver but the mechanisms responsible remain unknown. The endoplasmic reticulum (ER) stress response has emerged as a potential signalling pathway involved in obesity-associated IR. Furthermore, high levels of fatty acids, particularly saturated forms such as palmitate, can induce ER stress in liver cells, but its necessary contribution to IR has not been elucidated. We therefore investigated whether ER stress was necessary for palmitate-induced hepatic IR. Moreover, as the ER stress response has also been described as a protective signalling pathway required for cell adaptation, we investigated the consequences of chronic mild ER stress on hepatic insulin signalling.

Materials and methods: To examine the role of ER stress in lipid-induced IR, human hepatoma HepG2 cells or mouse primary hepatocytes were exposed for 1-24 h to BSA-coupled palmitate (100-750 µmol/l) in presence or not of chemical chaperones trimethylamine N-oxide (TMAO) or tauroursodeoxycholic acid (TUDCA). To investigate the effects of prolonged mild ER stress activation on insulin signalling, HepG2 cells were exposed to low level of thapsigargin (2-2.5 nmol/l) or tunicamycin (0.1 µg/ml) for 3-6 days (two passages), or to palmitate (100-200 µmol/l) for 6-12 days (three passages). Activation of the ER stress response and insulin signalling pathway were examined using Western blot analysis and glycogen synthesis assay.

Results: In HepG2 cells, exposure to palmitate dose- (250-750 µmol/l) and time- (1-24 h) dependently led to activation of two arms of the ER stress response as evidenced by increased eIF2α phosphorylation, XBP1 splicing and CHOP expression. In HepG2 cells and primary hepatocytes, this is associated with defective insulin signalling (decreased insulin-stimulated Akt phosphorylation) and reduced insulin action (insulin-stimulated glyceroneogenesis). Treatment of HepG2 cells or primary hepatocytes with TMAO (100 µmol/l) or TUDCA (500 µg/ml), respectively, attenuated palmitate-induced ER stress and partially reversed the defect in insulin signalling, demonstrating that ER stress makes a necessary contribution to lipid-induced IR in liver cells. However, strikingly distinct effects were observed following exposure to mild ER stress. Chronic exposure of HepG2 cells to low level thapsigargin, tunicamycin or palmitate led to enhanced insulin signalling (increased insulin-stimulated Akt phosphorylation) and reduced insulin action (insulin-stimulated glyceroneogenesis). Treatment of HepG2 cells or primary hepatocytes with TMAO (100 µmol/l) or TUDCA (500 µg/ml), respectively, attenuated palmitate-induced ER stress and partially reversed the defect in insulin signalling, demonstrating that ER stress makes a necessary contribution to lipid-induced IR in liver cells. However, strikingly distinct effects were observed following exposure to mild ER stress. Chronic exposure of HepG2 cells to low level thapsigargin, tunicamycin or palmitate led to enhanced insulin signalling (increased insulin-stimulated Akt phosphorylation) and reduced insulin action (insulin-stimulated glyceroneogenesis). Treatment of HepG2 cells or primary hepatocytes with TMAO (100 µmol/l) or TUDCA (500 µg/ml), respectively, attenuated palmitate-induced ER stress and partially reversed the defect in insulin signalling, demonstrating that ER stress makes a necessary contribution to lipid-induced IR in liver cells. However, strikingly distinct effects were observed following exposure to mild ER stress. Chronic exposure of HepG2 cells to low level thapsigargin, tunicamycin or palmitate led to enhanced insulin signalling (increased insulin-stimulated Akt phosphorylation) and reduced insulin action (insulin-stimulated glyceroneogenesis). Treatment of HepG2 cells or primary hepatocytes with TMAO (100 µmol/l) or TUDCA (500 µg/ml), respectively, attenuated palmitate-induced ER stress and partially reversed the defect in insulin signalling, demonstrating that ER stress makes a necessary contribution to lipid-induced IR in liver cells. However, strikingly distinct effects were observed following exposure to mild ER stress. Chronic exposure of HepG2 cells to low level thapsigargin, tunicamycin or palmitate led to enhanced insulin signalling (increased insulin-stimulated Akt phosphorylation) and reduced insulin action (insulin-stimulated glyceroneogenesis). Treatment of HepG2 cells or primary hepatocytes with TMAO (100 µmol/l) or TUDCA (500 µg/ml), respectively, attenuated palmitate-induced ER stress and partially reversed the defect in insulin stimulation, demonstrating that ER stress makes a necessary contribution to lipid-induced IR in liver cells.

Conclusion: Our results suggest chronic exposure of liver cells to low-level palmitate induces mild ER stress and an adaptive response that enhances insulin signalling and confers protection against acute palmitate-induced ER stress. However, more severe ER stress induced by chronically elevated palmitate overwhelms the adaptive response leading to IR. Thus, ER stress could contribute to both the adaptive and deleterious effects of lipid on insulin signalling in liver cells.
unfolded protein response (UPR) to restore functional integrity which, leads to upregulation of master regulators of ER, PERK-like ER-regulated kinase (PERK), inositol requiring enzyme1α (IRE1α) and activating transcription factor6 (ATF6) and protein chaperones. Factors acknowledged to elicit cellular stresses are hyperglycaemia, hyperlipidaemia, viral infections and increased protein synthesis; the majority of which are features of obesity and T2D. Therefore, our aims were to determine the existence and causes of ER stress in human adipocytes.

Methods: Human abdominal subcutaneous (AbSc) adipose tissue (AT) was obtained from a Caucasian non-diabetic population (BMI: 27.9±7.3 kg/m²; age 36-49 yrs; n=40; all female subjects) that underwent elective liposuction surgery, as part of the well established AT collection program. The human preadipocytes were isolated from stromal fraction, grown and fully differentiated into human adipocytes (n=5). Well differentiated adipocytes were then treated with tunicamycin (750ng/ml), high glucose (HG) (25 mM) and saturated fatty acids (SFA) (2 mM) and in combination with 20mM salicylate, salicylate alone and controls. To characterise protein expression of the key markers relevant to ER stress, inflammation and insulin signalling pathway, total protein and RNA was extracted from adipose tissue and cultured adipocytes using standard protocol. Western blots and Real-Time RT-PCR were performed to examine protein and RNA expression levels.

Results: The expression of ER stress proteins Calnexin1, glucose regulated protein (Grp78)/BiP1, Ero-1α, protein disulfide isomerase (PDI), IRE1α and Phospho-PERK were significantly increased in AbSc AT from obese compared to lean subjects (n=4; p<0.05 to p<0.001). PERK activated phospho-eIF2α (n=5; p<0.005) was significantly induced by tunicamycin, HG and SFA (p<0.001) proving the existence of ER stress in differentiated human adipocytes. ATF6 mRNA expression was also significantly induced by tunicamycin and HG but not SFA. Grp78/Bip was also significantly induced by tunicamycin and SFA. Down-stream targets Calnexin, PDI, Ero-1α and Chop were also significantly induced by all three treatments (p<0.05 to p<0.001). In the same adipocytes ER stress was significantly reduced when treated with anti-inflammatory compound salicylate. Similarly, phospho-Akt (S473) (n=5; p<0.002), was also activated when ER stress was down-regulated by salicylate.

Conclusion: Our results demonstrate that hyperglycaemia (HG) and SFA induce ER stress in human adipocytes and therefore could cause increased inflammation and insulin resistance in human adipose tissue. We also demonstrate that salicylate alleviates this stress and also activates Akt which could lead to increased insulin sensitivity.

Supported by: Research Councils UK

S 269

cose) was performed before and after MS, as well as in 30 nondiabetic control (CO) subjects (mean BMI 28.4 ± 1.4 kg/m²) with similar age and sex. Insulin sensitivity was evaluated at fasting with QUICKI and during the OGTT with dynamic OGIS; 8-cell function was assessed with the insulinogenic index (IGI) as the ratio of the area under the insulin to that of glucose, representing the ability of the beta cell to respond to the glucose stimulation.

Results: The characteristics of the subjects and metabolic parameters are shown in Table 1. In the pre-operative (pre-op) state MO patients, compared to CO, showed low insulin sensitivity, both QUICKI and OGIS, and high insulin secretion (IGI). DM and non-DM only differ for the glucose pattern (p=0.003), but no difference was found for OGIS (307±55 vs. 303±19) and IGI (75±6 vs. 88±19). After surgery, OGIS and QUICKI increased till normalization (440±15 and 0.44±1.01, respectively), being similar to those of CO in all subjects (p=0.35). IGI (68±7), though markedly reduced was still higher than in CO (p=0.006). Out of the 16 MO who were diabetic pre-surgery, only 4 remained diabetic after surgery. No specific parameter, assessed pre-surgery, seems to predict the post-surgery status of the DM.

Conclusion: A one-year effect of gastric bypass and lifestyle intervention resulted in significant improvements in insulin secretion, sensitivity and β-cell function in morbidly obese patients with T2D. These changes were associated with significant reductions in BMI, waist circumference, MAP, heart rate, and HbA1c levels.

761 Early and long-term effects of Roux-en-Y gastric bypass on tissue insulin-resistance in type 2 diabetic and non-diabetic morbidly obese subjects

S. Camasta1, A. Gastaldelli1, E. Muscelli1, S. Bonuccelli1, B.D. Astiarraga1, G. Scartabelli2, S. Frascella2, E. Buzzigoli3, S. Baldi3, D. Cioccaro3, E. Santini4, M. Anselmino5, E. Ferrannini6
1Department of Internal Medicine, University of Pisa, 2Institute of Clinical Physiology, CNR, Pisa, 3Department of Endocrinology, University of Pisa, 4Bariatric Division, IV Surgery, S. Chiara Hospital, Pisa, Italy.

Background and aims: Weight loss after bariatric surgery is associated with a marked improvement of insulin resistance (IR), but the tissues involved in this effect have not been determined. Roux-en-Y gastric bypass (RYGB, a predominantly restrictive procedure) has been shown to improve IR in proportion to the weight loss in the long term; whether RYGB also has acute, weight-independent effects is controversial. Aim of our work was to measure the early and long-term effect of RYGB on IR at the level of muscle, liver and adipose tissue in morbidly obese non-diabetic and diabetic subjects.

Materials and methods: In 11 diabetic (T2D) (BMI=49±2 kg/m²) and 8 non-diabetic patients (OB) (BMI=55±2 kg/m²) matched by sex and age, we performed an euglycaemic hyperinsulinaemic clamp combined with tracers infusion (6.6-H2-glucose and 1-H-glycerol to measure hepatic glucose production (HGP) and lipolysis (Ra-Gly), respectively) at baseline, week 2 and 1 year following RYGB. Muscle insulin sensitivity (M-IS=IR×steady state plasma insulin), hepatic insulin sensitivity (H-IS=HGP x fasting insulin) and adipose tissue insulin sensitivity (AT-IS=Ra-Gly x fasting insulin) were measured.

Results: Two weeks after RYGB, body weight was reduced minimally (7±1% in T2D and 4±1% in OB, p=0.01 for both); at 1 year, weight was reduced by 35±1% in T2D and 34±4% in OB (p<0.0001). Baseline fasting plasma glucose was reduced at two weeks and 1 year in both groups (7.9±0.6 vs. 6.8±0.4 in T2D and 5.7±0.1 vs. 4.8±0.1 in OB, p<0.0001) as was fasting insulin (165±96 vs 92±11 vs 50±9 pMol/l in T2D and 125±22 vs 103±19 vs 40±5 in OB, p<0.0001). At 2 weeks, M-IS was marginally improved only in T2D (31±6 vs 43±6 pMol/min·kgFFM−1·pM−1, p=0.05; in OB, 38±10 vs 36±5, p=ns), while at 1 year M-IS was doubled in OB and tripled in T2D (79±6 and 86±10 pMol/min·kgF 1·pM−1, respectively, p<0.0001). At both 2 weeks and 1 year, H-IS was significantly reduced (2.0±0.3 vs 1.1±0.1 vs 0.7±0.1 pMol/min·kgF FFM−1·pM−1 in T2D and 1.6±0.3 vs 1.2±0.3 vs 0.5±0.1 in OB, p<0.0001). At 2 weeks, AT-IS was modestly decreased only in T2D (7.1±2 vs 35±2 pMol/min·kgF FFM−1·pM−1, p=0.003; in OB 47±11 vs 39±6, p=ns), while at 1 year the improvement was statistically significant in both groups (11±13 and 11±2 pMol/min·kgF FFM−1·pM−1, respectively in OB and T2D, p<0.0001). One year after surgery, both H-IS and AT-IS were fully normalised as compared to a normal-weight control group (p=ns).

Conclusion: One year after RYGB and in concomitance with major weight loss, IR is improved in the principal target tissues (muscle, liver, adipose tissue) both in type 2 diabetic and non-diabetic subjects. In T2D patients, some improvement of tissue IR is evident acutely after surgery, in particular for liver and adipose tissue, and is likely responsible for the early amelioration of glycemic control.

762 One year effect of gastric bypass and intensive lifestyle on insulin secretion in morbidly obese patients: a controlled clinical trial

D. Hoilo1, T. Jensen2, K. Godang2, R. Sandbu3, J. Helmesraths4, 1Morbid Obesity Centre, Vestfolds Hospital Trust, Tønsberg, 2Department of Medicine, Oslo University Hospital Rikshospitalet, Norway.

Background and aims: The effect of bariatric surgery on insulin secretion has been incompletely explained. The objective of this study was to compare the effect of bariatric surgery and lifestyle intervention on various measures of beta-cell function.
Materials and methods: The study population included 119 morbidly obese patients (mean age 44 years, mean BMI 45.5 kg/m²; 84 women) without known diabetes classified into normal glucose tolerance (NGT, fasting glucose < 6.1 mmol/l and 2 hour glucose < 7.8 mmol/l) or abnormal glucose tolerance (AGT, fasting glucose ≥ 6.1 mmol/l and/or 2 hour glucose ≥ 7.8 mmol/l), and 29 normal weight controls with NGT. The morbidly obese subjects participated in a one year non-randomised controlled clinical trial (The MOBIL study, ClinicalTrials.gov identifier: NCT00273104) and were treated with either Roux-en-Y gastric bypass (RYGB) surgery (n=64) or intensive lifestyle intervention (ILI) at a rehabilitation centre (n=55). An oral glucose tolerance test (0, 30, and 120 min sampling) was conducted at baseline and after one year, and indices for insulin secretion (Stumvoll first phase) and insulin sensitivity (HOMA S) were calculated from glucose and insulin concentrations. Disposition index (DI), calculated as the product of Stumvoll first phase insulin secretion index and HOMA S, provided a measure of insulin secretion adjusted for insulin sensitivity. Stimulated plasma proinsulin-to-insulin ratio represented an estimate of the efficiency of proinsulin processing in beta-cells.

Results: Mean (SD) weight reduction was 30 (0) % in the RYGB group and 9 (10) % in the ILI group (p < 0.001). The figure shows: 1) the hyperbolic imaging of the DI in the subjects with NGT at baseline [curved line; log(HOMA S) = constant + b* log(Stumvoll first phase)] with b (95% CI) = -0.869 (-0.971 to -0.766)]; 2) higher insulin sensitivity after RYGB (dashed line) compared to ILI (solid line) (both p ≤ 0.001) 3) a more substantial increase in the DI in the RYGB groups than in the ILI groups (both p < 0.001); and 4) that the DI in the RYGB NGT group was significantly higher than in the NGT control group (p < 0.001). The reduction in mean (SD) proinsulin-to-insulin ratio at 30 minutes was also more pronounced in the RYGB than in the ILI groups: NGT: -1.7 (1.9) % vs. -0.1 (2.1) % (p < 0.001); and AGT: -4.3 (3.4) % vs. -1.7 (4.6) % (p = 0.024).

Conclusion: The improvement in beta-cell function was greater after RYGB than ILI. Post surgery, insulin secretion in the NGT group was when related to insulin sensitivity, even higher than in normal weight NGT controls.

Plasma FGF21 is increased in response to an oral glucose load post operative in obese subjects undergoing Roux-en-Y gastric bypass

B. Andersen1, S.H. Jacobsen1, S. Madsbad1, D. Worm1, L.E. Hvolris1, L. Naver1, T. Almdal1, J.J. Holst1, D.L. Hansen1, T.R. Clausen1, 1Novo Nordisk A/S, Gentofte, 2Hvidovre Hospital, 3University of Copenhagen, 4Novo Nordisk A/S, Måløv, Denmark.

Background and aims: Fibroblast growth factor 21 (FGF21) is an endocrine hormone involved in regulation of energy homeostasis. Treatment of diabetic mice and diabetic rhesus monkeys with rFGF21 has been shown to lower blood glucose, correct dyslipidaemia and increase energy expenditure. The physiological role of FGF21 in humans is not well understood, but FGF21 seems to be increased in states where fat oxidation is required. FGF21 has also been shown to be increased in patients with type 2 Diabetes and in obese sub-

jects. FGF21 is highly expressed in the liver, and to a lower extent in skeletal muscle, pancreas and fat tissue. The basal level of FGF21 seems to be highly controlled by the liver, while FGF21 from the skeletal muscle is increased in response to insulin. In this study, we investigate the fasting levels of FGF21 before and after bariatric surgery, as well as the effect of an oral glucose load (25g and 50g) on plasma FGF21 and insulin before and after the surgery.

Materials and methods: 9 obese, non-diabetics patients (2 males and 7 females, average BMI 46.4; age 26 to 56) underwent Roux-en-Y Gastric Bypass. Fasting plasma FGF21 was measured on three different days before and after surgery. Furthermore, on two different days before surgery and on two different days after surgery, the subjects were given an oral glucose load (25g and 50g glucose) and blood samples were taken starting 30 min before the glucose load followed by 15 min intervals until 180 min after the oral glucose load. Statistics: Student’s t-test (paired).

Results: FGF21 in plasma varied in the fasted state from 30 to 1118 pg/ml (258 ± 105 pg/ml) before surgery and from 38 to 1792 pg/ml (599 ± 170 pg/ml) after surgery. In average there was no significant change in fasting plasma FGF21. However, three subjects had a significant (p=0.024, p = 0.013 and p=0.035) increase in fasting plasma FGF21. Furthermore, after the surgery there was a significant (p=0.0002) increase in the total plasma insulin concentration during the time course, determined as the area under the curve (AUC) in response to 25g glucose, while there was no change in insulin AUC when 50g glucose was orally administered. The AUC of FGF21 was also significantly increased in response to 25g glucose (p=0.039), while the AUC of FGF21 in response to 50g glucose was only borderline significant (p=0.076). Plasma FGF21 level peaked at t=120 min and at this time point the plasma levels of FGF21 were significantly increased post surgery, in response to both 25g and 50g glucose. However, a significant increase in insulin sensitivity was observed in all patients. In conclusion, the increase in plasma FGF21 in response to glucose post surgery could play an important role in the positive metabolic outcome of a Roux-en-Y Gastric Bypass.

674

Mechanisms of early diabetes improvement after biliopancreatic diversion in non-morbidly obese diabetic subjects

B.D. Astiarraga1, E. Muscilli1, S. Camastra2, M. Nannipieri3, F. Papadia4, G. Adami2, N. Scopinaro5, E. Ferrannini6, 1Department of Internal Medicine, University of Pisa, 2DIEC - Department of surgical sciences and diagnostics, University of Genova, Italy.

Background and aims: A strong improvement or resolution of diabetes has been reported after biliopancreatic diversion (BPD) in diabetic obese patients. On long-term follow up, insulin sensitivity in morbidly obese subjects with or without type 2 diabetes is completely normalised after BPD despite persisting obesity. The early effect of BPD in less obese (BMI 27-35 kg/m2) diabetic subjects is not known. The aim of this study was to assess diabetes control and measure insulin sensitivity early after BPD in diabetic non-morbidly obese patients.

Materials and methods: We studied 12 patients (6 men and 6 women; 56 ± 4 years, BMI range 26.9-33.1 kg/m2) before and 59 ± 24 days after BPD (range 29-101 days). At baseline and following surgery, insulin sensitivity was measured by a 3-hour euglycaemic hyperinsulinaemic (240 pmol.m⁻².min⁻¹) clamp. Results: After surgery, BMI decreased by 13 ± 4% (mean ± SD, from 28.8 ± 1.9 to 25.0 ± 2.1 kg/m², p = 0.002). Before BPD, all patients were on oral anti-diabetic agents and/or insulin. After surgery, fasting plasma glucose dropped from 12.6 ± 3.1 to 8.3 ± 2.2 mmol/l (p=0.002) and HbA1c from 7.93 ± 1.10 to 6.42 ± 0.86%, p=0.002. Six patients could be taken off pharmacological treatment. Insulin sensitivity (as the M value) increased from 19.5 ± 3.4 to 34.8 ± 12.0 µmol.min⁻¹.kgFMM⁻¹, p=0.002. By simple regression analysis, the improvement in insulin sensitivity was not related to the decrease in BMI or to the time since surgery (p=ns for both).

Conclusion: In diabetic non-morbidly obese patients, biliopancreatic diversion is followed by an early improvement in glycaemic control and insulin sensitivity loss is modest. These findings are compatible with the notion that this type of bariatric surgery impacts on glucose homeostasis by mechanisms at least partly independent of weight loss.
PS 54 Carbohydrate metabolism

675

Triple tracer (TT) and double tracer (DT) techniques are reliable methods to estimate glucose appearance in type 1 diabetes

A. Haidar1, D. Eller1, J.M. Allen1, J. Harris1, K. Kumareswaran1, M. Nodale1, C.L. Acrerini2, M.E.Wilinska2, N. Jackson1, A.M. Umpleby1, M.L. Evans1, D.B. Dunger1, R. Hovorka1;
1Institute of Metabolic Science, University of Cambridge, 2Department of Paediatrics, University of Cambridge, 3Postgraduate Medical School, University of Surrey, Guilford, United Kingdom.

Background and aims: Measurement of physiological postprandial glucose fluxes in type 1 diabetes could potentially facilitate improvements in modern insulin therapy regimens. TT technique has been proposed to be the gold standard technique to measure postprandial glucose appearance. We validated TT technique and compared it against DT technique in type 1 diabetes.

Materials and methods: Eight young subjects with type 1 diabetes (age 20.8±3.3yrs, BMI 24.0±1.5kg/m2, HbA1c 8.7±1.5%, diabetes duration 10.7±8.9yrs, total daily insulin 0.8±0.2U/kg/day; mean±SD) were studied. From 1800 to 0200 next day, primed iv [6,6-2H2]glucose was infused at a variable rate mimicking meal-derived glucose production. From 1800 to 0200, iv [U-13C]glucose was infused at a variable rate mimicking meal-derived glucose appearance while iv insulin was administered to achieve basal and postprandial insulin concentration. From 1530 to 0200, primed iv [6,6-2H2]glucose was infused in a manner that mimicked the expected endogenous glucose production. From 1800 to 0200, iv [U-13C; 1,2,3,4,5,6,7,2H]glucose was infused in a manner that mimicked the expected glucose appearance from a standard meal. The iv dextrose infusion was reconstructed using TT and DT techniques utilizing a modified stochastic Mar model. Plasma glucose was measured every 10-15min. Glucose enrichment was measured by gas chromatography - mass spectrometry every 10 - 30min.

Results: Figure shows actual and reconstructed dextrose infusion rates. The difference between individual actual and individual reconstructed dextrose infusion rates as assessed by the root mean square error (RMSE) was identical for the two methods (8.1±2.1 vs. 10.6±4.5 µmol/kg/min; TT vs. DT; P = NS, paired t-test). RMSE associated with mean dextrose infusion was 3.0 and 4.2 µmol/kg/min. Overall, 98 ± 9% and 93 ± 16% (P = NS) of the dextrose infusion was recovered.

Conclusion: TT and DT techniques combined with advanced computational methods can measure reliably postprandial glucose appearance in type 1 diabetes. TT tends to outperform slightly DT but the latter benefits from reduced experimental and analytical complexity.

676

Effects of impaired fasting glucose on the rate of transaldolase exchange

R. Basu1, C. Barosa2, V. Patton3, P. Reichi1, A. Saad1, J. Jones3, A. Basu1, R. Rizza4;
1Endocrinology, Mayo Clinic College of Medicine, Rochester, USA, 2Dept of Zoology, University of Coimbra, Portugal.

Background and aims: The deuterated water (H2O) method is extensively used to measure gluconeogenesis in humans. One of the premises of this method is that there is negligible exchange of the lower three carbons of fructose-6-phosphate and glyceraldehyde-3-phosphate (GAP-3-P) via transaldolase exchange. When this exchange is active, then glucose is labeled on the fifth carbon via simple exchange with labeled GAP-3-P without net gluconeogenic flux. We have recently shown that transaldolase exchange is active in healthy non-diabetic humans and ~30% of the 2H on the fifth carbon of glucose is derived by this mechanism resulting in an overestimation of gluconeogenesis.

Materials and methods: To eliminate possible isotope effects associated with 2H, we assessed the extent of transaldolase exchange with a 13C-tracer where isotope effects are negligible. [1-13C]acetate was infused in 9 subjects with impaired fasting glucose (IFG) and 11 age and BMI matched normal fasting glucose (NFG) subjects. UDP-glucone enrichment was measured following an overnight fast and during a 0.35 μg/kgFFM/min insulin infusion. Somatostatin, glucagon and growth hormone also were infused during the clamp to ensure comparable and equal portal concentrations in both groups. NMR spectroscopy was utilized to measure the ratio of [3-13C]UDP-glucose and [4-13C]UDP-glucose in plasma. In the absence of transaldolase exchange, carbon 4 and carbon-3 are equally labeled resulting in a C3/C4 ratio of 1.0. Transaldolase exchange selectively enriches labeling of carbon 4 resulting in a C3/C4 ratio of < 1.0.

Results: Glucose concentrations in IFG were significantly higher than NFG (5.9 ± 0.1 vs. 5.4 ± 0.1mmol/L; p<0.005) but matched (6.3 ± 0.0 vs.6.1 ± 0.0mmol/L; p=ns) during the clamp. Insulin concentrations followed a similar trend being higher in the IFG subjects before (49 ± 5.2 vs.34 ± 3.8 pmol/L; p<0.005) but matched (109 ± 6 vs.106 ± 4) the clamp. C-peptide concentrations remained suppressed during the clamp and glucagon concentrations similar in both groups before and during clamp. The ratio of [3-13C] UDP-glucose/[4-13C] UDP-glucose was <1.0 in all subjects but did not differ in the IFG and NFG subjects either in the fasting state (0.68 ± 0.03 vs.0.66 ± 0.04) or during the hyperinsulinemic clamp (0.62 ± 0.04 vs.0.59 ± 0.05).

Conclusions: Transaldolase exchange a) occurs in people with NFG and IFG; b) it is not altered by an insulin infusion; and c) does not differ in NFG and IFG. Thus transaldolase exchange can account for ~35-40% of the deuterium that is present on the carbon 5 following ingestion of H2O resulting in a proportionate overestimation of gluconeogenesis. Future studies will be required to determine whether the impact of these processes on the measurement of gluconeogenesis differs in other disease states (e.g. diabetes or obesity) or changes with varying amounts of fast and/or insulin.

Supported by: NIDDK

677

Protein and fat modify the glycaemic and insulinaemic responses of a mashed potato-based meal

K.A. Hätönen1, J. Virtano2, J.G. Eriksson1, J.E. Sundvall1, L.M. Valsta1;
1Department of Lifestyle and Participation, 2Department of Chronic Disease Prevention, National Institute for Health and Welfare, 3Department of General Practise and Primary Health Care, University of Helsinki, Finland.

Background and aims: Potatoes, especially mashed potatoes, are known to result in high glycaemic and insulinaemic responses. In most meals, however, potatoes are accompanied by other foods. The objectives of the present study were to investigate how glycaemic and insulinaemic responses to mashed potato meal changed when fat, protein or/and salad were added to the meal and to assess how precise the estimate of GI of the mixed meal by using individual GI values of the components of the meal.

Materials and methods: Eleven healthy subjects (age 36.2±14.1 yrs, BMI 21.3±1.7 kg/m2) were served the six different mashed potato-based meals (mashed potato alone; with oil; with chicken breast; with salad; with oil, chicken breast and salad; and with oil, chicken breast, salad and rye bread) containing 50-54 g of available carbohydrates once and the reference food (glucose solution) twice in a random order at one-week intervals. Capillary
Glucose appearance of large slowly-absorbed evening meal containing complex carbohydrates (CHO) in type 1 diabetes (T1D)

Material and methods: Eight subjects with T1D (age 20.8±3.3yrs, BMI 24.0±1.5kg/m², A1c 8.7±1.3%, diabetes duration 10.7±8.9yrs, total daily insulin 0.8±0.2U/kg/day; mean±SD) were studied on 2 separate visits at a clinical research facility. On both visits, from 1000 until 1730, variable insulin 0.8±0.2U/kg/day; mean±SD) were studied on 2 separate visits at a clinical research facility. On both visits, from 1000 until 1730, variable insulin was infused to achieve normoglycaemia. On Visit 1 the subjects fasted until 1800 when they consumed a slowly absorbed pasta meal (CHO:protein:fat 121:30:35g; sugars:starch 13:107g; glycaemic load 54) enriched with [U-13C]glucose and until 0200 next day iv insulin was infused to mimic prandial bolus of rapid-acting insulin (14±2U) and basal insulin delivery (0.9±0.3U/h). On Visit 2 identical iv insulin was given but, instead of the meal, variable iv 20%dextrose enriched with [U-13C] glucose was infused to reproduce the plasma glucose profile observed on Visit 1. Iv infusion of [6,6-3H] glucose and [U-13C]C1:2:3:4,5,6,6-H2 glucose were given on both visits in a fashion to mimic endogenous glucose production (EGP) and glucose appearance of simple and complex CHO from the meal (Ra_meal), respectively. Plasma glucose enrichment with the 3 tracers was measured by gas chromatography mass spectrometry. Total glucose appearance (Ra_total) on Visit 1 was estimated by double tracer approach. Ra_meal on Visit 1 was calculated as “Ra_total - EGP”, where EGP was obtained from Visit 2 and estimated by double tracer approach. Glucose appearance of simple CHO (Ra_meal_simple) on Visit 1 was estimated by triple tracer approach.

Results: Ra_meal extended over 8 hours with a sustained plateau of 30µmol/ kg/min over the first 3 hours, see Figure; 25% of the Ra_meal appeared 88±21 min after meal consumption, 50% at 175±39 min, and 75% at 270±54 min. Ra_meal_simple was significantly faster with 25, 50 and 75% of the total appearance at 39±13, 84±30 and 159±42 min respectively (p<0.0001, paired t-test). Bioavailability of simple CHO did not differ from that of complex CHO (108±25 vs 101±14%, p=0.30).

Conclusions: Glucose appearance after consumption of a large slowly-absorbed evening meal is sustained over 1-3hours and may extend up to 8hours. This finding may have implications on prandial insulin dosing in T1D suggesting a need for dual and/or delayed insulin doses.

Glucose appearance after consumption of a large slowly-absorbed evening meal containing complex carbohydrates (CHO) in type 1 diabetes (T1D)

Materials and methods: Eight subjects with T1D (age 20.8±3.3yrs, BMI 24.0±1.5kg/m², A1c 8.7±1.3%, diabetes duration 10.7±8.9yrs, total daily insulin 0.8±0.2U/kg/day; mean±SD) were studied on 2 separate visits at a clinical research facility. On both visits, from 1000 until 1730, variable iv 20%dextrose enriched with [U-13C] glucose was infused to achieve normoglycaemia. On Visit 1 the subjects fasted until 1800 when they consumed a slowly absorbed pasta meal (CHO:protein:fat 121:35:30g; sugars:starch 13:107g; glycaemic load 54) enriched with [U-13C]glucose and until 0200 next day iv insulin was infused to mimic prandial bolus of rapid-acting insulin (14±2U) and basal insulin delivery (0.9±0.3U/h). On Visit 2 identical iv insulin was given but, instead of the meal, variable iv 20%dextrose enriched with [U-13C] glucose was infused to reproduce the plasma glucose profile observed on Visit 1. Iv infusion of [6,6-3H] glucose and [U-13C]C1:2:3:4,5,6,6-H2 glucose were given on both visits in a fashion to mimic endogenous glucose production (EGP) and glucose appearance of simple and complex CHO from the meal (Ra_meal), respectively. Plasma glucose enrichment with the 3 tracers was measured by gas chromatography mass spectrometry. Total glucose appearance (Ra_total) on Visit 1 was estimated by triple tracer approach. Ra_meal on Visit 1 was calculated as “Ra_total - EGP”, where EGP was obtained from Visit 2 and estimated by double tracer approach. Glucose appearance of simple CHO (Ra_meal_simple) on Visit 1 was estimated by triple tracer approach.

Results: Ra_meal extended over 8 hours with a sustained plateau of 30µmol/ kg/min over the first 3 hours, see Figure; 25% of the Ra_meal appeared 88±21 min after meal consumption, 50% at 175±39 min, and 75% at 270±54 min. Ra_meal_simple was significantly faster with 25, 50 and 75% of the total appearance at 39±13, 84±30 and 159±42 min respectively (p<0.0001, paired t-test). Bioavailability of simple CHO did not differ from that of complex CHO (108±25 vs 101±14%, p=0.30).

Conclusions: Glucose appearance after consumption of a large slowly-absorbed evening meal is sustained over 1-3hours and may extend up to 8hours. This finding may have implications on prandial insulin dosing in T1D suggesting a need for dual and/or delayed insulin doses.
Bottom: Glucose levels as a function of time, age, BMI and HbA1c around the main meals of the day for the 4 clinical patient groups. The dotted line illustrates meal time.

Top: The variability (SD) of the peak glucose level within and between persons.

Supported by: ADA, EFSD, Abbott, Merck&Co, Bayer, Lifescan, GSK, Medtronic, sanofi-aventis
683

Objectively measured sedentary behaviour and physical activity in relation to adiposity in a multi-ethnic population at risk of developing diabetes

V.E. Kumar1, T. Yates1, M.J. Davies1, E.G. Wilmot1, K. Khunti2;
1Cardiovascular Sciences, University of Leicester, Health Sciences, University of Leicester, United Kingdom.

Background and aims: Sedentary behaviour (SB), typically measured indirectly (e.g. through self-reported TV viewing), is increasingly reported to be an independent risk factor to chronic diseases. However data using objective measures of sedentary behaviour are lacking in high-risk populations. We aim to test the hypotheses that in a population identified with a high risk of diabetes, SB and light-intensity physical activity (LPA) are more important determinants of obesity than moderate-vigorous physical activity (MVPA).

Methods and materials: Participants with a high risk of diabetes, identified with the validated Leicester risk score, were recruited from primary care, Leicester, UK. SB, LPA and MVPA were measured objectively using validated accelerometers (GT3X, Actigraph), worn for 7 consecutive days. Freedson’s validated cut-off points were used to calculate SB (<100 counts/min), LPA (100-1,951 counts/min) and MVPA (1,951 counts/min). Basic anthropometric measurements were conducted using standardized methods. Following best practice, total (non-sleeping) sedentary time was calculated by deducting non-wear time estimated using standardized criteria. Linear regression analysis models examined the effects of SB, LPA and MVPA on waist circumference and BMI.

Results: 89 participants were used in the analysis; median age was 62.7 years (S.D. 9.3), Mean BMI = 33.5 kg/m² (S.D. 5.6), mean waist circumference = 105.5 cm (S.D. 11.8). Mean daily sedentary time = 550min (S.D. 115), mean daily LPA = 248min (S.D. 73) and mean MVPA = 19min (S.D 16). After adjusting for confounders, sedentary time had the greatest effect on both waist circumference and BMI with standardised beta coefficients of 0.40 (SE = 0.18; p = 0.03) and 0.31 (SE = 0.15; p = 0.04) respectively (see Table 1).

Table 1 - association between different categories of activity and adiposity

<table>
<thead>
<tr>
<th>Sedentary time</th>
<th>Waist circumference</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1*</td>
<td>Standardised β</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>coefficient ± S.E.</td>
<td></td>
</tr>
<tr>
<td>Model 2*</td>
<td>0.57 ± 0.16</td>
<td>0.001</td>
</tr>
<tr>
<td>Light intensity physical activity</td>
<td>P value</td>
<td>P value</td>
</tr>
<tr>
<td>Model 1*</td>
<td>-0.32 ± 0.12</td>
<td>0.008</td>
</tr>
<tr>
<td>Model 2*</td>
<td>-0.24 ± 0.17</td>
<td>0.048</td>
</tr>
</tbody>
</table>

*adjusted for wear time, gender, age, ethnic origin & smoking status

Conclusion: Our findings conclude that in a population with high risk of diabetes, identified through a validated risk score, adiposity is more strongly linked with time engaged in SB than MVPA. Hence, diabetes prevention programmes aimed at weight loss may be more effective if the emphasis is shifted from traditional MVPA goals to reducing SB, such as sitting. If these findings are confirmed by appropriately designed intervention studies, they could have dramatic implications on future public health recommendations.

684

Situation of exercise therapy for patients with diabetes mellitus in Japan - a joint project with the Japan Medical Association

Y. Sato1, H. Sone1, M. Kobayashi1, R. Kawamori2, Y. Tamura2, Y. Atsumi3, Y. Oshida4, S. Tanaka1, S. Suzuki1, S. Makita1, I. Ohsawa1, Research Committee for the Establishment of Therapeutic Exercise for Diabetes of the Japan Diabetes, S. Inamur4, T. Watanabe5, A. Gakui Univ, Nishin, 1Univ. of Iwakura, Mito, 2Univ. of Toyama, 3Juntendo Univ, Tokyo, 4Saiseiki Central Hosp, Tokyo, 5Nagoya Univ, 6Osaka Sangyo Univ., Daito, 7Ohta General Hosp., Koriyama, 8Saitama Medical Univ., Hidaka, 9Japan Medical Association, Tokyo, Japan.

Background and aims: Regardless of the well-known health-promoting benefits of exercise, it is actually less prescribed than diet and drug therapy in the clinical practice. In addition, up till now a national survey on the present situation of exercise therapy for patients with diabetes mellitus has not been conducted in Japan. Therefore, our committee in the Japan Diabetes Society joined the Japan Medical Association to conduct the first nationwide survey that aimed to investigate the actual situation of exercise therapy for diabetic patients in Japan.

Materials and methods: Questionnaires concerning the practice and adopted systems of exercise guidance for diabetic patients were mailed to randomly selected diabetologists (n = 600) and non-specialist physicians (n = 600). Responses were obtained from a total of 403 doctors (response rate of 33.6%), 275 diabetologists (50.3 ± 10.6 years of age; mean ± SD) and 128 non-specialist physicians (52.4 ± 9.8 years of age). Collected data were analyzed using the chi-square test, the Fisher’s exact test, and the Student’s t-test.

Results: While only 18% of the non-specialist physicians were found to carry out special clinic for diabetic patients, this rate was 64% among diabetologists (p < 0.001). Diabetologists (78%) and non-specialist physicians (67%) were found to provide dietary guidance to almost all patients at the initial visit to the clinic; however, exercise guidance to the patients at their initial visit was performed by only about 40% of both categories of doctors. In addition, 10% of the diabetologists and 18% of the non-specialist physicians did not provide exercise guidance to their patients. On the other hand, while about 60% of the diabetologists provided exercise prescription and group or personal guidance to the patients, the rate among non-specialist physicians was about 30%. Less than 20% of the diabetologists answered to have physical exercise educators among their clinics; however, exercise prescription and group or personal guidance to the patients by the other doctor was performed by about 60% of the non-specialist physicians. Among those patients who received this guidance, 46% of the diabetologists and 40% of the non-specialist physicians had no appropriate guidelines for exercise therapy of diabetic patients. Taking into consideration the main problems related with the implemented exercise therapy by the doctors (i.e., no additional consultation fee for exercise guidance, lack of time to provide guidance, absence of specialized physical educators), it becomes clear that an early improvement of this situation is challenging.

Conclusion: The present nationwide survey on the situation of exercise therapy for diabetic patients revealed that, in Japan, (1) the proportion of dietary guidance is markedly higher than the proportion of exercise guidance and (2) significant differences between diabetologists and non-specialist physicians do exist. These results suggest that, as exercise guidelines are more realistic and effective than other demands of doctors, preparation of proper exercise guidelines for exercise therapy of diabetic patients is necessary.

685

Associations between cardio-respiratory fitness and glycaemic indices in a Danish population at high diabetes risk

A.-L.S. Hansen1, D. Vistisen2, J.W. Helge3, M. Aadahl4, A. Sandbaek3, D.R. Witte6; 1Epidemiology Group, Steno Diabetes Center A/S, Gentofte, 2Department of Biomedical Sciences, University of Copenhagen, Research Centre for Prevention and Health, Glostrup, 3Department of General Practice, Institute of Public Health, Aarhus, Denmark.

Background and aims: High cardio-respiratory fitness is known to be associated with several health-outcomes such as low risk of cardiovascular diseases and all cause mortality. Furthermore, studies have shown that cardio-respira-
Diabetes is positively related to insulin sensitivity. The aim of this study was to compare the strength of the association between cardio-respiratory fitness and multiple glycaemic indices in a population at high diabetes risk, taking into account obesity.

Materials and methods: Data from participants of the ADDITION-PRO study (cross-sectional study, subjects at high diabetes risk identified by a stepwise screening programme) are included in the analysis. Associations between fitness level and glycaemic indices are examined using linear regression models. Fitness levels were derived from estimated maximal oxygen consumption, VO2 max (mlO2 x kg\(^{-1}\) x min\(^{-1}\)), based on the relationship between heart rate and physical activity intensity during an 8 minutes sub-maximal step test. Homeostatic model of assessment (HOMA2) was used to calculate insulin resistance (HOMA2-IR) and beta cell function (HOMA2-B). Insulin sensitivity was estimated by the Insulin Sensitivity Index (0.120). Pancreatic response was estimated by disposition index. The analyses were adjusted for sex, age, and waist circumference, WC.

Results: Data from the first 87 subjects, aged 52-77 years, 63% men, were included in the analyses. Mean VO2 max was: 32 (men) and 27 (women) mlO2 x kg\(^{-1}\) x min\(^{-1}\). The changes in standardized estimates of glycaemic markers per one standard deviation (SD) change in the estimated VO2 max (partial correlation coefficients) are presented in Table 1.

Conclusion: In this high diabetes risk population with low fitness levels, higher cardio-respiratory fitness was associated with better insulin sensitivity. In an age- and sex-adjusted model estimated VO2 max showed a positive association with Insulin Sensitivity Index and a negative association with HOMA2-IR reflecting the association of fitness and peripheral insulin sensitivity and hepatic insulin resistance, respectively. WC abolished these associations. However, this may be due to over-adjustment. Pancreatic response determined by disposition index and beta-cell function estimated by HOMA2-beta showed no associations with fitness level.

| Table 1. Associations between estimated VO2max and glycaemic indices |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | HOMA1c | HOMA2-IR | HOMA2-B | Insulin sensitivity index (0.120) | Disposition index |
| Estimated VO2max | -0.19 (-0.36, 0.11) | -0.32 (-0.50, -0.15) | -0.19 (-0.40, 0.04) | 0.23 (0.10, 0.36) | 0.12 (-0.10, 0.27) |
| adjusted for age, sex | | | | | |
| Estimated VO2max | -0.02 (-0.26, 0.22) | -0.08 (-0.26, 0.11) | -0.06 (-0.26, 0.16) | 0.08 (-0.10, 0.26) | -0.05 (-0.30, 0.30) |
| adjusted for age, sex, WC, waist circumference | | | | | |

Supported by: an EFSD/Pfizer grant, DSF, SDC

PS 56 Exercise: intervention

686

Different responses of adipocytokine, free fatty acid, and insulin sensitivity to diet or exercise induced weight loss and maintenance in type 2 diabetes

K.A. Han, K. Pak, K.W. Min, H.K. Lee; Department of Internal Medicine, Eulji University, Seoul, Republic of Korea.

Background and aims: The aim of the study was to compare the effects of diet or exercise induced weight loss and maintenance trial on free fatty acid, adipokine, and inflammatory cytokines in type 2 diabetes.

Materials and methods: Total 39 women with type 2 diabetes were randomly assigned to control (C, N=14), diet (D, N=11), exercise (E, N=14) and completed the 3 month weight loss program, and then followed by body weight (BW) maintenance for 3 months. The restriction of calorie intake (<1400 kcal/day) was done for D, walking for 60 minutes at moderate intensity (3.6 to 5.2 METs) five times a week for E. Diet was monitored with 3 day dietary record, and physical activity with accelerometer. We assessed anthropometric parameters, free fatty acid (FFA), high-sensitive C-reactive protein(hsCRP) and intrleukin 6(IL6) and adiponectin (ALr) and homeostasis model assessment of insulin resistance (HOMA-IR) at baseline, 3 months, and 6 months.

Results: At baseline, the participants’ age was 54.9±7.4 years and BMI was 27.2±3.4kg/m² (BW: 66.8±8.7kg) without the differences across 3 groups. Body weight (BW) decreased from baseline by 4.9±1.5kg in D, and by 1.4±1.6 kg in E during weight loss program (p=0.001, p=0.008), and didn’t change significantly during following maintenance in both intervention groups period. Increased ALr and decreased HOMA-IR were found only in D at 3 months (p=0.004, p=0.006 respectively), which didn’t sustain until 6 months. HOMA-IR decreased gradually and made significant difference only at 6 months in E(p=0.04). ALr changed with BW and HOMA-IR during 3 months(r=-0.748, p<0.001; r=-0.432, p=0.006, respectively). Within group analysis showed that FFA did not change from baseline at 3 months and decreased at 6 months in D, but decreased at 3 month and sustained until 6 month in E. FFA changed with relation to hsCRP at 3 months, and to IL6 at 6 months in all subjects(r=0.428, p=0.007; r=0.323, P=0.045, respectively).

Conclusion: These results suggest that diet induced weight loss resulted in favorable effects on insulin resistance and adipokines which were not prominent during weight maintenance. Exercise induced the improvement of insulin resistance slower than diet without relation to adipokines and body weight. On the other hand, FFA improved earlier in exercise than in diet. The lifestyle modification for 6 months was not sufficient to change the inflammatory cytokines in type 2 diabetes.
Pioglitazone increases the aerobic capacity with improved skeletal muscle energetics in patients with insulin resistance

T. Yokota1, S. Kinugawa, K. Hirabayashi, T. Sugita, T. Ono, M. Takahashi, S.A. Mochamad, N. Morita, K. Okita, H. Tsutsui; 1Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, 2Hokkaido University of Education, Iwamizawa, 3Hokkaido University, Ebitu, Japan.

Background and aims: Low aerobic capacity is a strong predictor for cardiovascular morbidity and mortality in insulin resistance and type 2 diabetes. Recent study reported that pioglitazone, known as peroxisome proliferator-activated receptors (PPARs)-γ agonist, enhances the expression of genes involved in mitochondrial function and fatty acid oxidation in patients with type 2 diabetes. Skeletal muscle energy metabolism is an important determinant of aerobic capacity. Therefore, the aim of the study was to investigate the effect of pioglitazone on aerobic body (whole-body oxidative capacity) in relation to alteration in skeletal muscle energy metabolism.

Materials and methods: Fourteen male insulin-resistant subjects with no habitual exercise participated in the study before and after 3 months of 15 mg/day pioglitazone treatment. Blood was corrected in after 10 hrs fasting. To assess the aerobic capacity, peak oxygen uptake (peak VO2) and anaerobic threshold (AT) during incremental exercise testing with cycle ergometer were directly measured using indirect calorimetry and doubly-labeled water, respectively, from which physical activity energy expenditure (PAEE) was calculated. Heart rate measured with the Actiheart (CNT Ltd, Papworth, UK) was used to calculate time spent in moderate-to-vigorous physical activity and also to estimate sedentary time (min/day). Associations between gestational PAEE, sedentary time and insulin sensitivity or secretion were determined using generalized linear regression (SAS v9.1, Cary, NC).

Results: Total daily PAEE was positively associated with DI after adjustment for maternal age, height, and weight. Time spent in moderate-to-vigorous activity was not associated with any of the estimates of insulin sensitivity or secretion, but sedentary time was negatively associated with EIR.

Conclusions: Insulin resistance typically increases during pregnancy and raises the risk of gestational diabetes mellitus. These data indicate that this may be ameliorated by maintaining high levels of physical activity. Specifically, our findings suggest that minimizing time spent in sedentary behaviors might be the focus of future interventions aimed at preventing gestational diabetes mellitus.

Table 1. Tests of association between physical activity and estimates of insulinemia during pregnancy (28-32 weeks gestation)

<table>
<thead>
<tr>
<th>Women</th>
<th>Partial r² β</th>
<th>Partial r² β</th>
<th>Partial r² β</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAEE (kcal/day)</td>
<td>Sedentary time (minutes/day)</td>
<td>Moderate - Vigorous time (minutes/day)</td>
<td></td>
</tr>
<tr>
<td>(n = 32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.009</td>
<td>-0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>EIR</td>
<td>0.002</td>
<td>-0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>DIₘ</td>
<td>0.14</td>
<td>0.38</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Adjusted *p < 0.05. Multiple testing was adjusted for using the Holm procedure; Partial r² = variance in outcome explained by physical activity variable; β = standardized beta coefficient; PAEE = Physical activity energy expenditure; HOMA-IR = Homeostasis model assessment of insulin resistance; EIR = Early Insulin Response; DIₘ = Oral disposition index; a. Corrected for maternal age, height, weight.

Supported by: Foundation of: T, R Söderbergs, F, I Thorings, Västerbotten RHA
Exercise is a risk factor for hypoglycemia in type 1 diabetes patients >14 years of age on insulin pump therapy

A.M. Gomez, C.M. Gomez, A. Veloza, O. Muñoz, C.P. Rubio; Endocrinology, Hospital Universitario San Ignacio, Bogotá, Colombia.

Background and aims: Exercise is a risk factor for hypoglycemia in type 1 diabetes, but the relationship between exercise intensity and duration to the onset and severity of hypoglycemia is unclear. Here we compared the impact of standardized morning and afternoon exercise on glyemic control for 36 h post-exercise using a continuous glucose monitoring (CGM) system in type 1 diabetes patients >14 years old.

Materials and Methods: Thirty-two subjects on CGM sensor-augmented pump therapy (Paradigm REAL-Time System, Medtronic Diabetes, Northridge, CA, USA) were evaluated at the Diabetes Clinic of Hospital San Ignacio, Bogotá, Colombia. They participated in morning and afternoon exercise sessions maintaining a heart rate of 50-70% of maximum, for 4-15 min bouts of treadmill walking with 5-min breaks between the bouts. Capillary blood glucose values were measured 4 times during exercise and 8 times in the next 24 h; CGM readings were collected every 5 min in the 24 h before and after exercise. The primary outcomes was the incidence of hypoglycemia (<70 mg/dl) and hyperglycemia (>200 mg/dl) per 100 patient-hours during and after exercise. Secondary outcomes were the per-centage of time of goal (70-200 mg/dl) according to the time before and after exercise and the precision of the data obtained from CGMS during exercise.

Results: Among the 32 patients exercising in the morning, there were 180 events of hypoglycemia detected by CGMS (5.6 per patient) and 39 events detected by SMBG (mean 3.3 ± 3.5 per patient). The highest risk of hypoglycemia was between 15 and 24 h post-exercise (ie, between 10 pm and 7 am). Of the 30 patients exercising in the afternoon, 322 events were detected by CGMS (10.7 per patient) and 62 events were detected by SMBG (incidence rate 29.0 per 100 patient-hours), and the highest risk of hypoglycemia was between 15 and 21 h after exercise (ie, between 7 am and 2 pm). The rates of hypoglycemia following morning and afternoon exercise were significantly different (incidence rate ratio: 0.52, 95% CI (0.43-0.63) P <0.001), but there was no between-groups difference in the risk of hyperglycemia. On the day after exercise, subjects who exercised in the morning spent 20% more time with CGM readings between 70 and 200 mg/dl (P=0.003); there was no such benefit in the afternoon exercise group, but there was an increase in percent of time with CGM readings <70 mg/dl (P=0.011). The accuracy of the data of the CGMS was evaluated by the mean absolute difference between CGM and capillary blood measurements; this was found to be 18.5% and was not affected by exercise.

Conclusions: In type 1 diabetes, exercising in the morning carries a lower risk of subsequent hypoglycemia than does equivalent afternoon exercise. The highest risk of post-exercise hypoglycemia is between 15 and 24 h after cessation of exercise. Morning exercise improves metabolic control on day after exercising. The use of continuous glucose monitoring during and after exercise detects a higher number of glycemic excursions than does capillary glucose measurement. CGM precision is not influenced by physical exercise.

Supported by: Medtronic, Abbott

Impact of exercise on continuously-monitored glucose levels in type 1 diabetes patients >14 years of age on insulin pump therapy

690

Examination of timing of pre-exercise administration of low GI carbohydrates on blood glucose after running in type 1 diabetes mellitus

D.J. West, R.D. Morton, R. Davies, I.W. Stephens, S. Rain, R.M. Bracken; Sports and Exercise Science Research Centre, Swansea University, United Kingdom.

Background and aims: Good glycemic control in people with type 1 diabetes is achieved by the right balance of calorie intake, exogenous insulin administration and physical activity energy expenditure (PAEE). Few trials have studied the continuous relationship between PAEE and glucose concentrations in free-living individuals during normal daily living. Most studies to date have studied fit adults in a controlled environment while following an exercise protocol. The aim of our study was to investigate the relationship between a continuous read out of glucose concentrations and daily physical activity energy expenditure in a free-living environment.

Patients and methods: 15 adults (9 female) with type 1 diabetes have been studied (age=37±10y; BMI=26.1±6kg.m-2; diabetes duration=17±11y; HbA1c =8.2±1.3%; mean±SD). Participants with clinical evidence of diabetic neuropathy were excluded. The participants wore a SenseWear Pro armband (BodyMedia Inc., USA) and a Guardian Real-Time Continuous Glucose Monitoring System (CGMS) (Medtronic MiniMed Inc., USA) continuously for up to 15 days. The armband is worn on the right triceps muscle and is only removed prior to water-based activities. The SenseWear Pro utilises five sensors (two accelerometers, heat flux, galvanic skin response, skin and near-body temperature sensors) to provide an estimate of overall physical activity energy expenditure. The Guardian CGMS monitors interstitial glucose concentrations from which a blood glucose value is estimated every 5mins using a proprietary algorithm. The participants were asked to perform normal daily activities and not to change their usual behaviour.

Results: Both devices were worn for 93±3days (mean±SD) and a total of 139 days of data were analysed. There was no association between mean daily PAEE, measured as area under curve for metabolic equivalent (AUC(tot)), and mean daily glucose concentrations, measured as area under curve for blood glucose (AUC(blood)) (r=0.10, p=0.26), although there was a correlation between the variance in blood glucose and the variance in METs (r=0.26, p=0.002). Interestingly, there was also an association between AUC(tot) and area under curve for heat flux (AUC(heat)) (r=0.26, p=0.002), even though AUC(tot) and AUC(heat) are strongly correlated (r=0.40, p=0.0001).

Conclusion: We show for the first time a strong inverse relationship between heat flux and a measure of glycemic control and a positive relationship between variance in glucose concentrations and variance in physical activity levels in free living people. The data shows that greater fluctuations in physical activity are associated with greater variation in blood glucose levels throughout the day. Since heat energy (measured as heat flux) is a by-product of ATP generation in mitochondria, these data suggest that higher levels of mitochondrial activity are related to lower levels of glucose concentrations. We suggest that further work is needed to explore the relationship between ATP generation and glycemic control and to determine whether heat flux could potentially be used as a novel non-invasive measure of glycemic variability.

Supported by: Diabetes UK

691

Heat flux is inversely associated with glucose concentrations in free living subjects with type 1 diabetes

J.J. Valletta, A.J. Chipperfield, G.F. Clough, C.D. Byrne; 1Institute of Developmental Sciences, Endocrinology and Metabolism Unit, 2Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton, United Kingdom.

Background and aims: Good glycemic control in people with type 1 diabetes is achieved by the right balance of calorie intake, exogenous insulin administration and physical activity energy expenditure (PAEE). Few trials have studied the continuous relationship between PAEE and glucose concentrations in free-living individuals during normal daily living. Most studies to date have studied fit adults in a controlled environment while following an exercise protocol. The aim of our study was to investigate the relationship between a continuous read out of glucose concentrations and daily physical activity energy expenditure in a free-living environment.

Materials and Methods: Seven T1DM (31±2 years; BMI 26±0.3 kg/m²; HbA1c 8.3±0.1%; attended the laboratory on four occasions, each time consuming 75 g of isomaltulose and administering a 75% reduced insulin dose, in a randomised fashion. TIDM then remained at rest for 120 (120min), 90 (90min), 60 (60min) or 30 (30min) min before completing 45 min of running at 71±1% VO2peak. Blood glucose concentrations (BG) were measured before and 3 hours after exercise. Substrate oxidation was calculated from respiratory exchange ratio and during and after exercising. Data (mean±SE) were analysed using repeated measures ANOVA and expressed as changes from rest.

Results: Fasting BG was similar between conditions. Immediate pre-exercise BG under 30min (+2.8±0.2 mmol/l) tended to be lower than 60min (+3.9±0.2 mmol/l) and 90min (+4.3±0.2 mmol/l) and 120min (+4.1±0.6 mmol/l), (P<0.1). BG dropped less with exercise under 30min compared to 120min (30min 4.6±0.3 vs. 120min 6.4±0.5 mmol/l P<0.05). In the 60 min post-exercise period BG was different under 30min when compared to 60min and 120min (30min 7.8±0.5 vs. 60min 10.1±0.7, 120min 9.5±0.9 mmol/l P<0.05). The greatest incidence of hypoglycaemia (BG ≤3.5 mmol/l) occurred under 120min from 60 min onwards following exercise (120min, n=5; 90min, n=2; 60min, n=1 and 30min n=0). Substrate oxidation rates during exercise displayed a strong tendency for greater lipid (30min 0.13±0.01 vs. 120min 0.07±0.01 g.min-1) and lower CHO oxidation (30min 3.88±0.08 vs. 120min 4.38±0.05 g.min-1) rates under 30min compared with 120min (P<0.10).

Conclusion: BG concentrations are best preserved after consumption of the further work is needed to explore the relationship between ATP generation and glycemic control and to determine whether heat flux could potentially be used as a novel non-invasive measure of glycemic variability.

Supported by: The Welsh Office of Research and Development
Glucose regulation of STIM1 translocation reflecting store-operated channel modulation in pancreatic islet cells

G. Tian1, A.V. Tepikin1, A. Tengholm1, E. Gyffle2,
1Department of Medical Cell Biology, Uppsala University, Sweden, 2The Physiological Laboratory, University of Liverpool, United Kingdom.

Background and aims: Store-operated calcium channels (SOCs) are proposed important both for the regulation of insulin and glucagon secretion. Recent studies have identified STIM1 as a Ca2+ sensor in the ER. This protein oligomerizes upon Ca2+ store depletion and translocates to plasma membrane (PM)-adjacent regions of the ER where it interacts with the channel-forming PM molecule Orai1 that participates in the formation of SOCs. The aim of the present study was to clarify the movements of STIM1 in pancreatic islet cells under conditions known to modulate insulin and glucagon secretion.

Materials and methods: Islets isolated from C57/Bl mice were infected with adenovirus expressing STIM1 protein fused with enhanced yellow fluorescent protein (EYFP). STIM1-EYFP translocation in peripherally located islet cells was studied with confocal and total internal reflection fluorescence (TIRF) microscopy. Glucagon-releasing α- and insulin-secreting β-cells were identified by immunostaining, cell size and their different responses to adrenaline.

Results: In 3 mM glucose there was diffuse STIM1-EYFP fluorescence in peripheral islet cells with confocal microscopy, but some PM-associated fluorescence puncta were observed in TIRF microscopy. Depletion of the ER Ca2+ stores by inhibitors of the ER Ca2+-ATPase with cyclopiazonic acid (CPA), which activates SOCs in α- and β-cells, induced after a delay of 118 ± 21 s pronounced formation of STIM1-EYFP puncta that preferentially associated with the PM. Less pronounced PM translocation was observed after islet exposure to Ca2+-deficient medium containing EGTA. In the presence of 5 mM glucose about 70% of the islet cells reacted to 5 μM adrenaline with a loss of PM-associated STIM1-EYFP fluorescence indicating dissociation from the PM. These cells were larger than other cells and stained for insulin. In about 10% of the cells, that were smaller and stained for glucagon, adrenaline instead triggered pronounced translocation of STIM1-EYFP to the PM with formation of distinct puncta. When the glucose concentration was raised from 3 to 20 mM, there was a 248 ± 32 s delayed reduction of PM-associated STIM1-EYFP fluorescence in β-cells that only partially recovered after reintroduction of 3 mM glucose but the PM STIM1-EYFP fluorescence was rapidly restored in glucose-deficient medium. Stepwise increase of the glucose concentration from 0 to 3, 7, 11 and 20 mM induced graded reduction of PM STIM1-EYFP fluorescence with maximal effects at 3 and 11 mM in adrenaline-identified α- and β-cells, respectively.

Conclusions: The effects of CPA, glucose, and adrenaline on STIM1 localization are consistent with their stimulatory and inhibitory effects on SOCs in α- and β-cells. The glucose sensitivity of STIM1 translocation is considerably higher in α- than in β-cells, consistent with a proposed role of SOC inactivation in glucose inhibition of glucagon secretion.

Supported by: Swedish Research Council

Glucose inhibits glucagon secretion from mouse pancreatic islets independently from ZnT8 or somatostatin, and from an action on KATP channels

R. Cheng-Xue1, L. Noel1, M.A. Ravier1, F. Chimenti2, F. Schuit1, P. Gilon1,
1Université Catholique de Louvain, Brussels, Belgium, 2Mellitch, Grenoble, France, 3Katholieke Universiteit Leuven, Belgium.

Background and aims: The mechanisms by which glucose (G) inhibits glucagon secretion are still unknown. The role of KATP channels in the G-induced suppression of glucagon secretion (GSSG) is unclear and has been assessed here using NMR1 mice and KATP channel modulators, or SUR1 knockout mice (SUR1<−/−), contributed by the Bryan Lab. Several hypotheses suggest that a paracrine factor, i.e. zinc released from β-cells or somatostatin released from α-cells, is responsible for GSSG. Zinc is specifically accumulated within granules of insulin by the ZnT8 transporter since no zinc exocytosis is observed in ZnT8 KO mice. In the present study, we have evaluated the role of zinc and somatostatin in GSSG by using ZnT8 KO (ZnT8<−/−) and C57BL/6J mice (ZnT8<+/−, used as control), and somatostatin KO (SST<−/−) and CBA/Ca x C57BL/6F1 mice (SST<−/−, used as control).

Materials and methods: Mouse islets were isolated by collagenase digestion of the pancreas and cultured overnight in RPMI 1640 medium containing 7 mM G. Glucagon secretion from islets was measured either in perfusion experiments in the continuous presence of a 6 mM mixture of amino-acids (2 mM alanine, 2 mM glutamine, 2 mM arginine) or in incubation experiments (only for the experiments with ZnT8<−/− and SST<−/− islets) in the continuous presence of 20 mM arginine.

Results: Increasing the [G] of the perfusion medium from 1 to 7 mM reversibly inhibited glucagon secretion from NMRI islets. Addition of 500 μM of the KATP channel closer, tolbutamide, to a medium containing 1 mM G did not reproduce the inhibitory effect of 7 mM G, whereas the KATP channel opener diazoxide (250 μM) strongly inhibited glucagon secretion. These effects of tolbutamide or diazoxide were specific for KATP channels since they were not observed with SUR1<−/− islets. Increasing the [G] of the perfusion medium from 1 to 7 mM in the continuous presence of 500 μM tolbutamide inhibited glucagon secretion from NMRI islets, but to a much lesser extent than in the absence of the sulfonylurea. 7 mM G also decreased glucagon secretion from SUR1<−/− islets, but again to a lesser extent than from WT islets. In the continuous presence of 250 μM diazoxide, increasing [G] from 1 to 7 mM reversibly suppressed the already low glucagon secretion. Perfusion experiments performed with SST<−/− and SST<−/− islets showed that glucagon secretion elicited by 1 mM G was higher with SST<−/− than SST<−/− islets, and that G inhibited glucagon secretion of both types of islets. Incubation experiments performed with ZnT8<−/− and SST<−/− islets demonstrated that G decreased glucagon secretion to the same extent in both types of islets.

Conclusion: The observations that tolbutamide did not reproduce the inhibitory effect of G, and that G could inhibit glucagon secretion in the presence of tolbutamide or diazoxide and in SUR1<−/− islets suggest that G can modulate glucagon secretion independently from KATP channels. However, an involvement of these channels cannot entirely be ruled out because GSSG was blunted by tolbutamide or in SUR1<−/− mice. Somatostatin exerts a tonic inhibitory effect on glucagon secretion. However, neither somatostatin nor zinc are the paracrine factor responsible for GSSG.

Supported by: IDDRF

Glucagon normalises disposition index by increasing acute insulin response to intravenous glucose: comparison with incretins

G. Pacini1, B. Ahren2,
1Metabolic Unit, ISIB-CNR, Padova, Italy, 2Department of Medicine, Lund University, Sweden.

Background and aims: Besides insulin resistance and defective insulin secretion, impaired glucose tolerance and type 2 diabetes are also associated with hyperglucagonemia due to inadequate suppression of glucagon production. While it is known that insulin resistance is compensated by increased insulin secretion to maintain normoglycemia, the consequence of the hyperglucagonemia as an adaptive response is not known. The model of glucose intolerance in mice given high-fat feeding is associated with markedly reduced glucose elimination after intravenous glucose, because of insufficient hyperinsulinemia. We examined whether the defective adaptations can be normalized by glucagon, as previously was documented for the incretins GIP and GLP-1.

Materials and methods: C57BL/6 mice were fed a normal chow (ND, 11%) or a diet with 60% fat for 8 weeks (HF). After baseline blood sample, a bolus injection of 35 g/kg glucose with or without addition of synthetic GIP or GLP-1 (at 3 nmol/kg) and glucagon (at 1 and 10 μg/kg) was given intravenously followed by six blood samples in 50 min with glucose and insulin measurements. The insulin sensitivity index (SI) was estimated with the minimal model. Insulin secretion (early phase) was assessed as the increase in insulin levels within 5 min after injection (dAIR); glucose elimination (Kg) was the percent reduction of log-transformed glucose during the first 20 min; Early insulin adaptation was calculated as Sd/dAIR (disposition index, DI) and total B-cell sensitivity as the ratio of the area under the curve of insulin to that of glucose.

Results: Metabolic parameters are shown in Table 1. Kg was lower in HF fed mice (P<0.0002), normalized with incretins, but even worsened with glucagon (P<0.0006). Kg was reduced in HF (P<0.0006) but neither incretins nor glucagon were able to restore a normal sensitivity. On the other hand, both incretins and glucagon yielded a marked increase of the first phase response (dAIR, P<0.00001): higher with glucagon, as also reflected by an elevated to-
Preserved ability to slow gastric emptying in response to increasing concentrations of orally ingested glucose solutions in patients with type 2 diabetes

T. Vildeboll1, J.L. Bagger1, A. Lund1, J.J. Holst1, F.K. Knop1, 2, J.I. Bagger1, A. Lund1, J.L. Bagger1, A. Lund1, J.J. Holst1, F.K. Knop1
1Diabetes Research Division, Department of Internal Medicine, Gentofte Hospital, Copenhagen, 2Department of Biomedical Sciences, The Panum Institute, Copenhagen, Denmark.

Background and aims: The rate of gastric emptying (GE) of carbohydrate is a major determinant for postprandial plasma glucose (PG) excursions. It is well established that GE during OGTTs in healthy subjects decreases the greater the glucose amount ingested. This mechanism contributes to keep postprandial PG concentrations within a narrow range averting hyperglycaemia. It is unknown whether patients with type 2 diabetes mellitus (T2DM) are able to reduce their GE rate in response to increasing orally administered glucose loads. Therefore, we aimed to investigate the GE rates in patients with T2DM ingesting ‘isovolumic’ glucose solutions of increasing concentrations.

Materials and methods: GE rate was measured during three 4-hour OGTTs performed to evaluate the regulation of GS activity. Multivariate analyses adjusted for age, sex, VO2max, total fat percentage and basal glycogen content were performed to evaluate the regulation of GS activity. A similar model was employed to evaluate the differences among groups in GS activity.

Results: We demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Materials and methods: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Background and aims: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Materials and methods: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Background and aims: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Background and aims: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Results: We demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Background and aims: Type 2 diabetes is characterized by reduced non-oxidative glucose metabolism. Although studies have investigated the regulation of the key enzyme in this process, glycogen synthase (GS), the nature of the link between proximal insulin signaling and GS activity is still debated. We previously demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Results: We demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Results: We demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.

Results: We demonstrated that phosphorylation of residue threonine-308 of Akt (Akt-308phos) and Akt2 activity as well as GS activity in muscle were associated with insulin sensitivity in the present study population. Now, we aimed to evaluate the significance of each step in proximal insulin signaling on GS activity.
interrelated (all r≥0.75, p<0.0001). Furthermore, PPARdelta was, independ-
p>0.5). Unexpectedly, the expression levels of the four receptors were closely
associated with the donors' insulin sensitivity (adjusted for sex, age, and BMI; all
Cadherin markedly varied between the individual donors, but were not asso-
Results:

Background and aims: Loss of muscle mass and de-differentiation occur in a
variety of disease, including cancer, chronic heart failure, acquired immuno-

Results: Western blot and qRT-PCR analysis revealed that in L6 skeletal muscle
cells, TGF beta1 stimulation increased the expression of PED/PEA-15, a
gene overexpressed in type 2 diabetic patients. Moreover, Tgbeta1 led to LC3
I/II conversion, increased expression of beclin-1 and enhanced the forma-
tion of autophagosomes in L6 cells, peculiar features of autophagy activa-
tion. These molecular events paralleled an impairment of L6 myotubes dif-
erentiation, as revealed by morphological analysis and reduction of myoD1,
myogenin and glut4 gene expression. Importantly, silencing of PED/PEA-15
by specific shRNA restored the expression of myoD1, myogenin, and glut4
and L6 and differentiation upon TGF beta1 stimulation. Interestingly, silencing
of PED/PEA-15 also partially reverted the LC3 I/II conversion, beclin-1 lev-
els and autophagosome formation. Furthermore, FACS analysis showed that
the transfection of PED/PEA-15 cDNA in L6 cells, which we have previously
described to induce insulin-resistance, activated autophagy and impaired the
myotubes formation. The block of autophagy in L6PED by using 3-Methylad-
enine, restored myotubes formation and recovered the expression of differen-
tiation markers. These data indicate that Tgf beta is an important negative modulator of myogenesis. However, its role in adulthood is not fully understood. Recently, it has been shown that
the insulin sensitivity-associated adipokine adiponectin. Therefore, we asked whether myocyte expression of PPARdelta and the adiponectin receptors AdipoR1, AdipoR2, and T-cadherin reflects these different insulin sensitivity states.

Materials and methods: Skeletal myoblasts from 39 non-diabetic human

Results: Myocyte mRNA contents of PPARdelta, AdipoR1, AdipoR2, and T-
cadherin markedly varied between the individual donors, but were not asso-
ciated with the donors' insulin sensitivity (adjusted for sex, age, and BMI; all
pp>0.05). Unexpectedly, the expression levels of the four receptors were closely
interrelated (all r≥0.75, p<0.0001). Furthermore, PPARdelta was, independ-
ently of the other genes, a significant determinant of T-cadherin (p=0.0002),
but not of AdipoR1 or AdipoR2 (both p>0.05), suggesting T-cadherin as a
PPARdelta target gene. However, GW501516 treatment did not increase T-
cadherin expression (p=0.8, n=16). After adjustment for sex, age, and BMI,
fasting plasma triglycerides were inversely associated with myocyte AdipoR1
and T-cadherin expression (both p<0.03) and tended to inversely associate
with AdiopopR2 and PPARdelta expression (both p=0.1).

Conclusion: Human myocyte expression of PPARdelta or the adiponectin
receptors AdipoR1, AdipoR2, and T-cadherin does not reflect the donors' insulin sensitivity. This lack of association might be due to these receptors' coordinated expression. Even though the physiological meaning of this inte-
tegration of different pathways is currently unclear, the inverse association
between myocyte receptor contents and the donors' plasma triglyceride con-
centrations point to its relevance for human lipid metabolism.

698

TGF beta impairs muscle differentiation and induces autophagy by PED/
PEA-15-mediated pathway

S. Iovino, F. Oriente, G. Botta, S. Cabaro, C. Miele, G. Portella, F. Beguinot,

Support: Danish Agency for Science and Technology

697

Coordinated myocyte expression of PPARdelta and adiponectin
receptors reflects lipid metabolism, but not insulin sensitivity, of the
myocyte donors

H. Staiger, F. Machico, H.-U. Häring;

Background and aims: Muscle lipid oxidation can be stimulated via peroxi-
some proliferator-activated receptor (PPAR) delta or adiponectin receptors.
Both kinds of receptors sense different signals from adipose tissue: PPARde-
ta senses insulin resistance-associated long-chain fatty acids, adiponectin re-
ceptors the insulin sensitivity-associated adipokine adiponectin. Therefore,
we asked whether myocyte expression of PPARdelta and the adiponectin receptors AdipoR1, AdipoR2, and T-cadherin reflects these different insulin sensitivity states.

Materials and methods: Skeletal myoblasts from 39 non-diabetic human
donors with a broad range of insulin sensitivity were differentiated into myo-
tubes. mRNA and 28S-rRNA contents were quantified by qPCR. Blood glu-
cose, insulin, free fatty acids, and triglycerides were measured using standard
laboratory methods. Insulin sensitivity was calculated from hyperinsuline-
mic-euglycemic clamp.

Results: Myocyte mRNA contents of PPARdelta, AdipoR1, AdipoR2, and T-
cadherin markedly varied between the individual donors, but were not asso-
ciated with the donors' insulin sensitivity (adjusted for sex, age, and BMI; all
p≤0.05). Unexpectedly, the expression levels of the four receptors were closely
interrelated (all r≥0.75, p<0.0001). Furthermore, PPARdelta was, independ-
ently of the other genes, a significant determinant of T-cadherin (p=0.0002),
but not of AdipoR1 or AdipoR2 (both p>0.05), suggesting T-cadherin as a
PPARdelta target gene. However, GW501516 treatment did not increase T-
cadherin expression (p=0.8, n=16). After adjustment for sex, age, and BMI,
fasting plasma triglycerides were inversely associated with myocyte AdipoR1
and T-cadherin expression (both p<0.03) and tended to inversely associate
with AdiopopR2 and PPARdelta expression (both p=0.1).

Conclusion: Human myocyte expression of PPARdelta or the adiponectin
receptors AdipoR1, AdipoR2, and T-cadherin does not reflect the donors' insulin sensitivity. This lack of association might be due to these receptors' coordinated expression. Even though the physiological meaning of this inte-
tegration of different pathways is currently unclear, the inverse association
between myocyte receptor contents and the donors' plasma triglyceride con-
centrations point to its relevance for human lipid metabolism.

699

Cyclin G2: a downstream cellular marker for the mitogenicity of insulin,
insulin-like growth factors and insulin analogues?
P. De Meyts1, A.M. Svendsen1, C.B. Warzecha1, W. Sajid1, J. Hald1, J. Nøhr1;

Background and aims: The cellular and molecular mechanisms whereby
some insulin analogues may cause enhanced stimulation of cell proliferation
through either the insulin receptor (IR) or the IGF-I receptor (IGF-IR) are in-
completely understood. Previous research in our laboratory has demonstrat-
ed differential metabolic and mitogenic signalling with some ligands in L6
rat myoblasts overexpressing the human IR (L6-IR). While insulin was very
potent in stimulating thymidine incorporation, the insulin mimetic peptide
S597 had a poor mitogenic response and unlike insulin, caused a poor stimu-
lation of the ERK/MAPK pathway. Gene expression profiling showed that
the gene most downregulated (30-fold) by insulin (but 10 times less by S597)
was cccng2, the gene coding for cyclin G2, an atypical cyclin downstream of FOXO1 that blocks the cell cycle at the G1/S transition. Our hypothesis is that cyclin G2 may be a key downstream effector of the mitogenicity of insulin and IGFs, and therefore may be a useful cellular biomarker of mitogenicity.

Materials and methods: L6 myoblasts (WT and h-IR), were stimulated with insulin, Asp B10-insulin (X10), or insulin-like growth factor-1 (IGF-I), in the absence or presence of the PI3-K inhibitors Wortmannin and LY294002 and the MAPK inhibitors PD98059 or U0126. Clinically relevant analogues were also tested. The human beta cell line INS-1 was stimulated with insulin, X10, IGF-1 and GLP-1. The cells were lysed using TRI Reagent and RNA was extracted. Gene expression was measured in a two-step qRT-PCR. The C, values were normalized to 18S RNA and fold changes were calculated.

Results: In wild type L6 cells, expressing no IRS and 135,000 IGF-IRs, insulin was less potent than IGF-1 in downregulating cccng2 (3-fold vs 10-fold at 10 nM). Glargine, glulisine and aspart insulin had effects comparable to insulin while detemir had no significant effect on cccng2. In L6-IR cells, expressing 275,000 IRS and 230,000 IGF-IRs (or hybrids), insulin, IGF-1 and X10 insulin were all very potent downregulators of cccng2. IGF-1 had the highest response, downregulating the expression of cccng2 50-fold after 3 hours of stimulation with 10 nM. Both insulin and X10 insulin downregulated gene expression 25-fold after 3 and 8 hours respectively. Inhibitors showed that both the MAPK and PI3-K pathways are involved in the regulation of cccng2. A 2 to 3-fold downregulation of cccng2 was seen in INS-1 cells with insulin, X10 and IGF-1, as well as with GLP-1, all at 10 nM.

Conclusion: X10 and IGF-1, both having a higher mitogenic potency than insulin, have a higher effect on the expression of the cell cycle inhibitor cccng2 than insulin has, making this gene a possible candidate as a cellular biomarker for mitogenicity.

700 Essential but not diabetogenic fatty acids of skeletal muscle structural and neutral lipids are associated

S.B. Haugaard1, S. Madsbad1, H. Mu1, A.A. Vaag1;
1Dept. of Internal Medicine, University Hospital of Copenhagen, Hvidovre,
2Dept. of Endocrinology, University Hospital of Copenhagen, Hvidovre
Dept. of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen,
3Steno Diabetes Center, Gentofte, Denmark.

Background and aims: Fatty acid (FA) composition of structural membrane phospholipids and/or is associated with intramyocellular triglyceride FA composition. In particular, the association between structural and intramyocellular lipids for essential FA of marine origin facilitating insulin action and the saturated FA palmitic acid, respectively, is of interest to study due to their different effects on health including insulin action.

Materials and methods: Vastus lateralis skeletal muscle biopsies were obtained from 59 weight-stable sedentary subjects, i.e. 27 obese women (7 diabetic), 20 obese men (6 diabetic), and 12 lean healthy normal-weight subjects (7 women). FA composition of neutral and structural fat was determined by thin-layer and gas-liquid chromatography.

Results: In structural versus intramyocellular lipids, the concentration of essential FA of dietary origin including linoleic (C18:2n-6) and linolenic (C18:3n-3) FA correlated significantly (r=0.34, P<0.01; r=0.62, P<0.001). Similarly, the concentration of polyunsaturated FA of marine origin (r=0.51, P<0.001) including the ratio of n-3/n-6 (r=0.56, P<0.001) polyunsaturated FA was also significantly correlated between structural and intramyocellular lipids. The correlations remained virtually unaffected after correction for gender, percentage of body fat mass and insulin resistance (partial correlations, r=0.32; r=0.66; r=0.51; r=0.56, respectively). Total monounsaturated FA (r=0.43, P=0.001; r=0.36, P=0.011) and trans FA (r=0.33, P=0.01; r=0.32, P=0.02) correlated between the two types of lipids used both univariate as well as corrected analyses. In contrast, total saturated fat (r=0.01, P=ns), including the potentially “diabetogenic” palmitic acid (C16:0, r=0.10, P=ns), did not correlate between structural and intramyocellular FA composition.

Conclusion: Dietary essential FA ingestion may influence the intramyocellular lipid composition. However, the levels of saturated FA including palmitic acid may differ substantially between structural phospholipids versus intramyocellular lipids. Understanding the underlying differential mechanisms regulating structural versus intramyocellular fat metabolism may have implications for health including insulin action.

701 Suppression of the 5 nucleotidase NT5C2 promotes AMPK phosphorylation and lipid oxidation in human skeletal muscle

Objective: The 5′Nucleotidases (NT5) family of enzymes dephosphorylate non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of 5′Nucleotidases to increase the intracellular availability of AMP would increase AMPK activity and metabolism.

Research design and methods: The present study was designed to determine the role of the cytosolic 5′ nucleotidases in the metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes.

Results: miRNA expression of NT5C1A and NT5C2 were elevated in extensor digitorum longus (EDL) and soleus muscle of ob/ob mice compared to wild-type litter mates, respectively. NT5C1A miRNA was increased in vastus lateralis skeletal muscle obtained from type 2 diabetic patients, compared to normal glucose tolerant subjects. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in AMPK phosphorylation (Thr172) and a 4-fold increase in phosphorylation of its downstream target ACC (Ser79) (p<0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation 2-fold in the absence and 8-fold in the presence of AICAR. This response was paralleled by an increase in glucose transport.
and a decrease in glucose oxidation and incorporation into glycogen and lactate release from NT5C2 depleted myotubes.

Conclusion: Our results provide evidence to suggest that endogenous NT5C2 inhibits basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5′Nucleotidase expression or activity may be one potential avenue to promote metabolic flexibility in type 2 diabetes.

Supported by: ERC-ICEBERG, EXGENESIS, Swedish Research Council

702

Bombesin receptor subtype-3 signalling and its role on glucose transport in human myocytes

N. Gonzalez1, I. Ramos-Alvarez2, A. Martin-Duce1, P. Moreno1, B. Nuche-Berenguer1, R. Sana1, S. Portal-Nuñez2, R.T. Jensen1, M.L. Villanueva-Pérez Carrillo2; 1IIS-Fundación Jiménez Díaz, Madrid, Spain, 2Universidad de Alcalá de Henares, Madrid, Spain, 3National Institutes of Health, Bethesda, USA.

Background and aims: Bombesin Receptor Subtype-3 (BRS-3) is one of the candidate genes of obesity; in fact, BRS-3 knock-out mice is characterized by hypertension, insulin resistance, mild obesity, impaired GLUT-4 translocation in adipocytes and unbalanced glucose metabolism, suggesting a role of BRS-3 in glucose homeostasis. Previously, it was shown not only that human skeletal muscle expresses functional BRS-3, but also a lower than normal levels of its gene expression in muscle tissue from Type-1, Type-2 and obese patients. The aim of this study was to gain insight into the BRS-3 signalling pathways in normal human myocytes, by using the BRS-3 agonist peptide [D-Tyr(6),βAla(11),Phe(13),Nle(14)](6-14)] (BRS-3-AP), and to explore the action of BRS-3-AP on glucose transport (GT).

Materials and methods: Primary culture myocytes were established from skeletal muscle pieces (=400 mg), obtained, previous informed consent given, from five normal subjects (5F; age: 49±9 yr; fasting plasma glucose: 96±6 mg/dl) undergoing surgery. PKB and p42/44 MAPKs activity - phosphorylation degree- was measured by immunoblotting, in cells after 3 min incubation in the absence (control) and presence of BRS-3-AP (10−10 M). GT was examined as ΔH2-deoxy-D-glucose incorporation, in the absence and presence BRS-3-AP (10−10 M) and without and with 10−6 M wortmannin or 2.5x10−5 M PD-98059, respective inhibitors of PI3K/PKB and MAPKs activity; insulin was also included in all assays as positive control.

Results: BRS-3-AP, at 10−6 and 10−7 M, clearly increased (p<0.05) PKB phosphorylation (168±17% control and 192±42% control, respectively) to the same level as that reached by 10−6 M insulin (175±28%, p<0.05); however, while at 10−8 M and 10−9 M BRS-3-AP failed to modify the global MAP kinases activity (overall mean value: 101±7% control), a clear increase (p<0.05) in the phosphorylation level of p42/44 MAPKs occurred when 10−6 M insulin (159±13%, p<0.05) and maintained thereafter up to 10−7 M BRS-3-AP (133±11% control, p<0.05), values of the same magnitude as those by 10−6 M insulin (p-p42: 131±2% control; p-p44: 142±14%); GT was caused a concentration-related stimulation of GT, which was already detected at 10−6 M of the peptide (133±11% control, p<0.05), maximal at 10−5 M (159±13%, p<0.01) and maintained thereafter up to 10−4 M BRS-3-AP (10−5 M: 158±18% control; p-p42: 142±14%, p<0.05), effect which was similar to that induced by insulin. Wortmannin abolished the stimulatory action of 10−5 M BRS-3-AP on GT (102±7% control), and the same blocking effect was observed in the additional presence of PD-98059 (94±4%).

Conclusion: These results implicate human BRS-3 in the glucose homeostasis process, and open the possibility that this receptor could be used as a molecular target, and/or its agonist peptide, in the therapy of diabetes and obesity.

Supported by: FIS and CIBERDEM

703

The role of phospholemman in the regulation of glucose uptake in insulin sensitive tissues

Background and aims: Phospholemman (PLM, FXYD1) is a phosphoprotein expressed in the cell plasma membrane in different tissues including adipose tissue, liver, heart and skeletal muscle. Phospholemman of PLM leads to an increase in Na+/K+ pump activity and thus regulates active ion transport. In adipocytes PLM is reported to be involved in insulin-induced GLUT4 translocation to the plasma membrane. The aim of this study was to determine the role of PLM in insulin-induced glucose uptake in skeletal muscle and adipocytes.

Materials and methods: L6 myoblasts, which have a intrinsically low PLM expression, were transfected with plasmids encoding either wild-type PLM, phosphomutation-mutant Ser68Ala-PLM or double-mutant Ser63Ala/Ser68Ala-PLM. Thereafter, insulin-stimulated glucose uptake was measured. Interaction of GLUT4 and PLM was assessed by co-immunoprecipitation. 3T3-L1 fibroblasts were induced to differentiation into adipocytes. In differentiated adipocytes, siRNA PLM silencing was performed and insulin-stimulated glucose uptake was measured.

Results: PLM overexpression increased insulin-stimulated glucose uptake in comparison with mock transfected cells, whereas overexpression of mutant Ser63 and/or Ser68 had no effect on insulin-stimulated glucose uptake. Basal glucose uptake was unaltered by overexpression of PLM. PLM co-immunoprecipitates with GLUT4 in rat epicardial muscle and this interaction is increased after insulin stimulation. In 3T3-L1 cells the induction of PLM by db/db follows GLUT4 expression during differentiation into adipocytes. The silencing of PLM in 3T3-L1 adipocytes leads to decrease in insulin-stimulated glucose uptake.

Conclusion: PLM over-expression enhances insulin-stimulated glucose uptake in L6 myoblasts, and the effect is dependant upon PLM phosphorylation on Ser63 and/or Ser68 residues. Increased co-immunoprecipitation of PLM and GLUT4 after insulin stimulation provides evidence to suggest that an interaction between PLM and GLUT4 may be involved in regulation of the glucose uptake. Furthermore, the expression level and phosphorylation status of PLM appears to be important for the regulation of insulin-stimulated glucose uptake in insulin sensitive tissues.

Supported by: Swedish Research Council, Novo Nordisk Foundation

704

The beneficial effect of electro-acupuncture on insulin resistance
d.

Koy2, F. Liang3

2Endocrinology & Metabolism, Kanazawa Medical University, Kahokugun, Ishikawa, Japan; 3Department of Traditional Chinese Medicine, University of Science and Technology, Wuhan, China.

Background and aims: Electro-acupuncture (EA) improves insulin resistance, although the biochemical mechanism underlying this effect remains unclear. This study investigated the effect of low-frequency EA on metabolic action in genetically insulin-resistant diabetic db/db mice.

Materials and methods: Nine-week-old db/m and db/db mice were randomly divided into four groups: db/m, db/m+EA, db/db, and db/db+EA. Db/m+EA and db/db+EA mice received 3-Hz EA five times/wk for 8 weeks. Results: The EA reduced fasting blood glucose and maintained insulin levels without significant alteration of food intake or body weight in db/db mice. Improved insulin sensitivity was established in EA-treated db/db mice by intraperitoneal insulin tolerance test. EA also decreased free fatty acid levels in the db/db mice and increased skeletal muscle sirtuin 1 (SIRT1) protein expression. These effects induced concurrent upregulation of the genes related to mitochondrial biogenesis such as peroxisome proliferator-activated receptor (PPARy) coactivator 1alp (PGC-1alp) and nuclear respiratory factor 1 (NRF1). Furthermore, EA treatment activated AMP-activated protein kinase (AMPK) and increased Akt phosphorylation in skeletal muscle in db/db mice.

Conclusion: These findings suggest that EA has a beneficial effect on insulin resistance, at least partly via stimulating SIRT1/PGC-1alpa and AMPK activity, resulting in improved insulin signal defect.

705

A mRNA marker for glycolytic muscle fibres may be used to determine fibre type composition in human skeletal muscle

Background and aims: Human skeletal muscle contains three major fibre types distinguished by their myosin heavy chain (MHC) isoforms. The mitochondrial content and oxidative capacity is the highest in slow oxidative type I fibres, lower in fast oxidative type IIa fibres, and lowest in fast glycolytic type IIx/d fibres. The amount of oxidative type I fibres is reduced and...
glycolytic type IIa/d fibres is increased in muscle from patients with type 2 diabetes. We have previously shown that mRNA expression level of markers for oxidative fibres were positively related to insulin-stimulated glucose uptake and VO2max, meanwhile mRNA expression level of markers for glycolytic fibres were negatively related to these metabolic factors. The aim of the present study was to investigate whether mRNA expression levels of fibre type markers can be used as a proxy to determine fibre type composition in human skeletal muscle.

Materials and methods: Human skeletal muscle biopsies were analysed from two different cohorts (cohort 1 n=36 and cohort 2 n=37). An ATPase staining method was used to determine the fibre types. The expression levels of three fibre type markers; MHCII (slow oxidative), MHCIIa (fast oxidative) and MHCIIx/d (fast glycolytic), were measured using microarrays and the mRNA expression was correlated with muscle fibre type.

Results: By using bivariate non-parametric correlation tests, we found that MHCIIx/d mRNA expression was positively correlated to the level of type IIa/d muscle fibres in both cohorts (cohort 1: r = 0.39 and p = 0.020; cohort 2: r = 0.59 and p = 0.0023), meanwhile mRNA expression of MHCII and MHCIIa did not significant correlate with levels of its respective fibre type in neither cohort. When using regression analysis corrected for BMI, age and diabetes status, the same results were obtained. MHCIIx/d mRNA expression was positively related to type IIa/d fibres in both cohorts (cohort 1: beta = 0.04 ± 0.002 and p = 0.016; cohort 2: beta= 7.99 ± 2.92 and p = 0.020), meanwhile no significant relationship was found between MHCII mRNA expression and amount of type I fibres or between MHCIIa mRNA expression and amount of type IIa fibres in neither cohort. Interestingly, mRNA expression of MHCIIx/d was negatively correlated to both amount of type I and type IIa fibres in cohort 2 (r = -0.41 and p = 0.012, respectively, r = -0.38 and p = 0.028).

Conclusion: Fibre type composition has been shown to be of importance in the pathogenesis of type 2 diabetes and a practical marker is needed. Here we show that the mRNA expression level of MHCIIx/d, may be used as such a marker for fast glycolytic muscle fibres in human skeletal muscle.

PS 59 Insulin action and metabolism in adipose cells

706

Microfluidic technology for multi-parametric studies on patient-derived three-dimensional human adipose tissue model

M. Flabbi, A. Zambon, E. Cimetta, E. Magnafuco, N. Elvassore;
Dep. Chemical Engineering Principle and Practice, University of Padova, Italy.

Background and aims: Type 2 Diabetes Mellitus is a complex disease affecting many pathways in different tissues. The complexity of this disease led to the use of several classes of drugs acting with different mechanisms and targets and with effects which often change between patients. The screening of all these anti-diabetic drugs with animal models is not economically and time-consuming and often not giving reliable results for human. On the other hand, specific study on human patients are possible but are tremendously expensive and require a huge effort in term of ethical approval and safety issues. Within this scenario we aim at developing a microfluidic platform allowing to perform in vitro high throughput patient-specific tests of anti-diabetic drugs on patient-derived three-dimensional human adipose tissue. In particular, the first step is the realization of a microfluidic system for culturing human adipose tissue able to control the temporal evolution of culture conditions in terms of concentration of oxygen, metabolites, and insulin and able to perform multi-parametric analyses of the adipose tissue behaviour.

Materials and methods: Biopsies of subcutaneous and visceral adipose tissues were obtained from both patients affected by Type 2 Diabetes and insulin-sensitive individuals. 1cm² biopsy was minced right after surgery into 10-20mg tissues. Each piece was placed in a 24well plate with 1ml medium for 24h. Then the tissue was either cultured for additional time in the 24well plate with fresh medium or placed into the microfluidic system. A microfluidic platform including micro-valves, injectors, pumps, mixers was realized by soft lithographic technique and its design, development, and application was assisted by mathematic modeling. In line measurements of tissue metabolic activity were performed using micro-biosensors placed downstream the culture chambers and able to detect glucose, lactate and oxygen concentration. The tissue responses to insulin were investigated also through analyses of free fatty acids and glycerol. Viability and histological analyses were performed at the end of the cultures.

Results: Microscale adipose tissues were cultured within the microfluidic platform for up to 4 days. MTT assay at the end of the culture showed high tissue viability and no significant differences with controls in 24well plates. On the other hand, the microfluidic system allowed a two times higher glucose uptake then the controls by reducing the glucose diffusive resistance. We then investigated the effect of different insulin concentrations (20, 40 and 100nM). Preliminary results obtained with tissues of insulin-sensitive individuals showed an high variability between biopsies and between cultures from the same biopsy. However, we observed an enhancement of glucose uptake for increasing insulin concentration when using 25mM glucose medium. We also investigated the difference on glucose uptake between insulin-sensitive individuals and patients affected by Type 2 Diabetes.

Conclusion: We developed a microfluidic platform for culturing small-scale human adipose tissue and allowing to accurately control the temporal evolution of the culture conditions in terms of concentration of metabolites, oxygen, and insulin concentration. This system with in line biosensors open important perspectives towards the realization of high-throughput dynamic screening of anti-diabetic drugs on human adipose tissue.

Supported by: an EFSD/Roche grant

707

Effects of different commercial insulins on adipogenesis and adipocyte metabolism

1Servicio de Endocrinología y Nutrición, Hospital Civil de Malaga; CIBERDEM CB07/08/0019 of the Instituto de Salud Carlos III, Malaga.
2Facultad de Medicina, Departamento de Fisiología, Santiago de Compostela, CIBER of the Pathophysiology of Obesity and Nutrition (CB06/03/0018) of the Instituto de Salud Carlos III, Santiago de Compostela, Spain.

Background and aims: Insulin has several roles in metabolism, so the use of exogenous insulins could be modifying metabolic process related with adipose tissue?
We used isolated primary rat adipocytes and differentiated 3T3-L1 cells were induced to differentiate with 6-Orexin A (OXA) plays a role in the regulation of adiponectin, as well as lipogenesis through PPARgamma-dependent mechanism. The effects of OXA on the function of adipocytes may be of clinical relevance in the pathophysiology of obesity and in peripheral insulin resistance, the hallmark of type 2 diabetes mellitus.

Materials and methods: 3T3-L1 cells were differentiated to adipocytes and lipolysis was measured by measuring the release of glycerol. This was done at day 6 (D6) and at day 10 (D10) after differentiation induction.

Results: The highest values of cell differentiation and lipolysis were found at D10 for all the insulins tested (p<0.001). Preadipocyte differentiation was different according to the insulin used at both moments (p<0.0001), Detemir insulin being the least adipogenic. PPARγ mRNA expression was increased and expression in the insulin group was higher than that in the non-insulin group. After pre-incubation with nelfinavir, the response to PEI-PIP3 was greatly blunted, suggesting that PEI-PIP3 cannot bypass the signaling defect induced by nelfinavir. In contrast, L6 cells exposed for 18h to high (25 mM) glucose-high (100mM) insulin exhibited a 2-fold increase in basal Ser473 phosphorylation of Akt, along with 40% diminished insulin-stimulated Akt phosphorylation. In this system, control cells treated with PEI-PIP3 exhibited 70% of the 10-fold increase in pS-Akt induced by insulin, and after high-glucose-high insulin treatment the response to PEI-PIP3 was fully intact. Moreover, pS-Akt was higher after high-glucose-high insulin in response to PEI-PIP3 than in response to insulin.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defects of endogenous PIP3 downstream of endogenous PIP3.

Results: 3T3-L1 adipocytes treated with 18h with the HIV protease inhibitor nelfinavir exhibited marked attenuation of insulin-stimulated translocation and plasma membrane fusion of a GFP-GLUT4-myrc reporter. PEI-PIP3, complexes induced in control cells a nearly full response of GLUT4 translocation compared to that observed with insulin. Yet, after pre-incubation with nelfinavir, the response to PEI-PIP3, was greatly blunted, suggesting that PEI-PIP3 cannot bypass the signaling defect induced by nelfinavir. In contrast, L6 cells exposed for 18h to high (25 mM) glucose-high (100mM) insulin exhibited a 2-fold increase in basal Ser473 phosphorylation of Akt, along with 40% diminished insulin-stimulated Akt phosphorylation. In this system, control cells treated with PEI-PIP3, exhibited 70% of the 10-fold increase in pS-Akt induced by insulin, and after high-glucose-high insulin treatment the response to PEI-PIP3, was fully intact. Moreover, pS-Akt was higher after high-glucose-high insulin in response to PEI-PIP3 than in response to insulin.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation can not be bypassed by introducing exogenous PIP3. However, PEI-PIP3 retains its ability to elicit insulin signaling events in muscle cells rendered resistant to the effects of the hormone when the signal defect is upstream of PIP3 generation, constituting a proof-of-concept for "second messenger therapeutics" for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defect, and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Results: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.

Conclusion: We show that efficient carrier-mediated delivery of PIP3 can elicit biologically relevant insulin-like responses in adipocytes and muscle cells. Insulin resistance resulting from signaling defects downstream of endogenous PIP3 generation results in reduced glucose-stimulated Akt phosphorylation, the effects of PEI-PIP3, generation, constituting a proof-of-concept for second messenger therapeutics for some forms of insulin resistance.

Supported by: Israel Science Foundation

Materials and methods: We utilized chronic exposure of L6 muscle cells to high glucose-high insulin to induce an insulin resistance state characterized by early signalling defects and 3T3-L1 adipocytes treated with nelfinavir as a cellular model for insulin resistance emanating from signalling defect(s) downstream of endogenous PIP3.
711

Metabolic endotoxemia as a mediator of mitochondrial dysfunction in human adipose tissue, alleviated by salicylate
K.C. McGee1, G. Tripathi1, S.J. Creevy1, A.L. Harte1, M. Langovska1, N.F. Da Silva2, A. Brown3, J. Oscarsson1, J. Clapham1, S. Kumar1, P.G. McKernan4

1Unit for Diabetes and Metabolism, University of Warwick Medical School, Coventry, CV3 4PW, UK; 2Institute of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; 3AstraZeneca R&D, Macclesfield, United Kingdom

Background and aims: The pathogenesis of obesity and type 2 diabetes (T2DM) mediates mitochondrial dysfunction which, in part, may arise from a chronic low level inflammatory response due to gut derived endotoxemia. Our previous studies have shown that changes in diabetic status increase circulating endotoxin levels. Furthermore our current studies have shown that serum endotoxin levels correlate positively with BMI (r=0.281, p=0.016) as well as serum insulin levels (r=0.34, p=0.009) and HOMA index (r=0.331, p=0.004) suggesting a positive association between circulating endotoxin levels and insulin resistance. As previous studies in muscle from patients with severe IR have highlighted decreased mitochondrial function, we undertook studies to investigate whether endotoxin may, in part, influence mitochondrial dysfunction in human adipose tissue (AT).

Materials and methods: Abdominal subcutaneous (Abd Sc) omental (Oms) and subcutaneous (Abd Sc) AT from subjects undergoing elective surgery with ethical approval. Gene expression was assessed by qRT-PCR.

Results: In Abd Sc AT, increasing adiposity significantly reduced FAS (p=0.05), COX4 and UCPI2 mRNA (p<0.001), whilst PGC1α mRNA was increased (p=0.01). No significant difference in expression was observed in Abd Sc AT from T2DM subjects vs. Abd Sc AT from obese ND subjects. In Oms AT, FAS, PGC1α, COX4 and UCPI2 mRNA were reduced (p<0.001). No significant difference in expression was observed in Abd Sc AT from T2DM subjects vs. Abd Sc AT from obese ND subjects. Therefore we investigated the direct effect of endotoxin (lipopolysaccharide (LPS)) treatment on mitochondrial encoded genes and the therapeutic potential of Salicylate (Sal) in human differentiated adipocytes. Differenitated pre-adipocytes were treated for 24 hr with LPS (100ng/ml) with or without Sal (20mM) and assessed by qRT-PCR. Treatment with LPS+Sal led to a significant up-regulation of NRF1, FAS, UCPI2 and UCPI3 (p<0.05) compared with adipocytes treated with LPS alone.

Conclusion: In summary, these studies highlight significant changes in mitochondrial properties in response to conditions of obesity and T2DM. Such dysregulation in mitochondrial gene expression may, in part, arise due to the effects of inflammation imposed by LPS which appears negated by Sal treatment. Taken together, these data indicate therapeutics to reduce LPS may alleviate mitochondrial dysfunction and its pathogenic consequences.

Supported by: AstraZeneca

712

The effect of ligand activated LXR-alpha on the PPAR-y target genes in mature adipocytes
F. Zheng, H. Li, W. Lu, F. Wu, J. Zhou

Endocrinology, Zhejiang University, Hangzhou, China

Backgrounds and aims: A selective activation of peroxisome proliferator-activated receptor gamma (PPAR-y) in adipocytes plays an important role in insulin sensitivity and inflammation. Like PPAR-y, Liver X receptor alpha (LXR-a), which is another ligand-activated transcription factor in adipocytes, also forms a heterodimer with retinoid X receptor alpha (RXR-a). Whether the activation of LXR-a interferes with the PPAR-y signaling in adipocytes is unknown. To explore potential interactions between LXR-a and PPAR-y in adipocytes and investigate the effect of LXR-a activation on the expressions of PPAR-y target genes.

Methods: Differentiation of pre-adipocytes 3T3-L1 into mature adipocytes were induced by addition of differentiation cocktail for 12 days, and cells were harvested every 2 days for LXR-a or PPAR-y mRNA analysis. T0901317 was used to activate LXR-a or Pioglitazone to activate PPAR-y respectively. Differentiated adipocytes (at day 8) were treated with (1) different concentrations of T0901317 (0, 0.3, 1, 3, 6 and 10μM) for 24 h; (2) different concentrations of T0901317 with 3μM Pioglitazone for 24 h; (3) LXR-a silence (or non-silencing control) for 48 h followed by different concentrations of T0901317 for 24 h; (4) LXR-a silence (or non-silencing control) for 48 h followed by different concentrations of T0901317 with 3μM Pioglitazone for 24 h. Expressions of the PPAR-y target genes in harvested adipocytes, including adiponectin, resistin, TNF-α and IRS2, were determined by Real time RT-PCR, and western blot.

Results: (1) LXR-a mRNA level increased dramatically 4 days after the initiation of the differentiation program, reached the peak at day 8 (16.3 times of that in pre-adipocytes 3T3-L1) and gradually declined at day 10 and day 12. (2) Adiponectin, a representative gene product positively regulated by PPAR-y, was suppressed dose dependently by T0901317 in both the mRNA and the protein levels. mRNA levels of TNF-α and resistin produced by genes negatively regulated by PPAR-y were increased dose dependently by T0901317. Addition of pioglitazone at a concentration of 3μM partly reversed the expressions of adiponectin, resistin and TNF-α at each concentration of T0901317. However, the dose dependent suppressions of adiponectin and up-regulations of TNF-α and resistin transcriptions by T0901317 were still observed in the presence of pioglitazone. (3) Treated with shRNA specific for LXR-a for 48 h, the differentiated adipocytes were down-regulated by 60-70% in LXR-a protein level. mRNA level of adiponectin was moderately increased, while TNF-α and resistin mRNA levels were decreased by LXR-a silencing at each concentration of T0901317. More significant increase in adiponectin, as well as decrease in TNF-α and resistin mRNA levels were found in presence of 3μM Pioglitazone, as compared with those treated with non-silencing control shRNA and different concentrations of T0901317. However, the absolute increase in adiponectin mRNA and reduction in resistin and TNF-α mRNA levels by LXR-a silencing were decreased consistently with the increasing concentration of T0901317, regardless of the presence of 3μM Pioglitazone.

Conclusion: These observations suggest that LXR-a activation interferes with the expressions of PPAR-y target genes, indicating a possible role of LXR-a in insulin action by counteracting PPAR-y signaling in adipocytes.

713

PPARγ-sparing thiazolidinediones: stimulation of mitochondrial biogenesis by a PGC1α-independent pathway

1Metabolic Solutions Development Co, Kalamoso, 2Washington University, St. Louis, 3Western Michigan University, Kalamazo, USA.

Background and aims: It is well established that mitochondrial content and capacity are decreased in some tissues in insulin-resistant states and type 2 diabetes. Therapeutic agents such as the thiazolidinediones (TZDs) have shown promise in restoring mitochondrial capacity in both experimental models and clinical studies. However, the TZDs have well established side effects which can be traced back to activation of the PPARY transcription factor. Therefore, we have sought to identify and develop experimental drugs of the TZD class that spare this receptor (PPARY-sparing thiazolidinediones, PTZDs) but retain the desirable pharmacology, including stimulation of mitochondrial biogenesis.

Materials and methods: We have used the PPARγ clinical candidate, MSDC-0160, to examine mitochondrial biogenesis in cells derived from brown ad}-
ipose tissue (BAT). In this model system, BAT precursor cells are isolated from CD1 mice and maintained in tissue culture.

Results: Treatment of cells with MSDC-0160 elicited the differentiated BAT cellular phenotype after 96 hours of drug treatment. During this timeframe, a robust increase in mitochondrial content was observed by fluorescent dye staining, light microscopy and confirmed by transmission electron microscopy. Expression of the mitochondrial uncoupling protein, UCP1 (mRNA, protein) was first detected following 96 hours of drug treatment and maximum expression was observed after 168 hours. Citrate synthase was monitored as an index of mitochondrial mass and a detailed time course of expression after drug treatment revealed progressive, dose-dependent increases (4 to 5-fold). We assumed that the nuclear transcription factor, PGC1α (peroxisomal proliferator activator receptor γ coactivator 1α), was driving the increased mitochondrial content through expression of nuclear and mitochondrial genes involved in mitochondrial biogenesis. However, analysis of PGC1α mRNA expression as a function of time of drug treatment revealed that there was no detectable increase. We then examined the ability of the PsTZDs to elicit differentiation and mitochondrial biogenesis in BAT precursor cells isolated from mice in which the PGC1α gene had been ablated. We found that cellular differentiation, UCP1 protein expression and mitochondrial biogenesis as measured by citrate synthase activity were robust and similar to that seen in the control animals.

Conclusion: Therefore, we conclude that the PsTZDs are fully capable of stimulating mitochondrial biogenesis through a pathway that does not include PGC1α. This pathway may synergize with the epinephrine/PGC1α stimulating mitochondrial biogenesis through a pathway that does not involve PGC1α. The definition of this PsTZD-stimulated, PGC1α-independent pathway may have important implications for understanding the mechanism of action of insulin sensitizing agents.

PS 60 Glucose and lipid metabolism in animal models

714

Insights into the mechanism of FATP1 activating effect on pyruvate dehydrogenase

M. Guitart1, C. García-Martínez2, A.M. Gómez-Foix2;
1Dep. Biologia Molecular, CIBERDEM, Universitat de Barcelona, 2Dep. Patologia i Terapèutica Experimental, CIBERDEM, Universitat de Barcelona, Hospital de Llobregat, Spain.

Background and aims: FATP1 is a membrane-bound fatty acid (FA)-binding protein that has acyl-CoA synthetase activity. FATP1 gene expression is highest in skeletal muscle, heart and fat. FATP1 is a metabolic regulator. FATP1-null mice are protected against diet-induced obesity and insulin resistance. In cultured skeletal muscle cells, FATP1 overexpression enhances FA uptake and storage as triacylglyceride, whereas FA oxidation is either not stimulated or only moderately enhanced. FATP1 strongly stimulates glucose oxidation and raises the activity of the pyruvate dehydrogenase (PDH) complex and pyruvate decarboxylase PDH-E1 catalytic subunit. FATP1 is immunolocalized in internal membranes and mitochondria, although the suborganellar compartment is unknown. We examined the mechanism of effect of FATP1 on PDH activity and submitochondrial localization of FATP1 in cultured skeletal muscle cells.

Materials and methods: FATP1 effects on PDH activity were analyzed after adenosine-mediated transfer of the mouse FATP1 cDNA into cultured muscle cells. PDH complex and PDH-E1 subunit activities were determined by measuring the 14CO2 production from [1-14C]pyruvate. Western blotting was used to assess PDH complex protein content and phosphorylated PDH-E1a at site 1 and site 2 using specific antibodies (kindly provided by Dr. H. Pilegaard). Subcellular and suborganellar immunolocalization was assessed in cells expressing FATP1 fused at the C terminus to EGFP using anti-GFP antibodies and electron microscopy.

Results: Overexpression of FATP1 in cultured myotubes raised the levels of the active form of the PDH complex and the PDH-E1 catalytic subunit, whereas no differences in the phosphorylation of PDH-E1a at site 1 or site 2 were observed. The levels of the active form of the PDH complex and the PDH-E1 catalytic subunit were not altered by incubation of myotubes with palmitate, oleate or their mixture. Palmitate partially counteracted the activation of the PDH complex and PDH-E1 catalytic subunit by FATP1, whereas oleate or the mixture of palmitate with oleate did not. Immuno-electron microscopy showed that FATP1-EGFP was localized inside the mitochondria, within the inner membrane-matrix compartment, whereas GFP was localized intracytoplasmically and in the nucleus.

Conclusion: In cultured skeletal muscle cells FATP1 activates the PDH complex and PDH-E1 catalytic subunit, without affecting the phosphorylation of PDH-E1a at site 1 or site 2. This activation is counteracted by palmitate. FATP1-EGFP is localized in skeletal muscle cells inside the mitochondria, where the PDH complex lies. These data provide insight into how FATP1 activates the PDH complex.

Supported by: SAF2009-07559 MCI, Spain

715

Adipose tissue-specific cholesteryl ester transfer protein expression in mice: impact on glucose metabolism

H. Zhou1, Q. Cui1, X. Ju1, W. Wang1, I. Jiang1, T. Yang1, X.-C. Jiang1;
1Endocrinology and Metabolism, the first affiliated hospital of Nanjing Medical University, China, 2Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, USA.

Background and aims: Cholesteryl ester transfer protein mediates HDL cholesteryl ester delivery to the liver cells. Adipose tissue is a highly conserved site of cholesteryl ester transfer protein (CETP) expression across species, adipose tissue CETP makes a major contribution to CETP in the circulation. To investigate the impact of adipose CETP expression on adipocyte function and metabolism of glucose and lipid, we set up adipose tissue-specific CETP transgenic (CETPTg) mice.

Materials and methods: We created adipose tissue-specific CETP transgenic (CETPTg) mice successfully, using the αP2 promoter. HE-stained sections of adipose tissue from CETPTg mice and WT mice, in order to know the
Loss of pigment epithelium-derived factor deteriorates lipid and glucose metabolism

Materials and methods: PEDF deficient (PEDF ko) and age-matched control (WT) mice (n=8/group) were studied in metabolic cages on a regular chow diet, and an IPGTT (1 mg/kg) was performed after an overnight fast.

Results: Compared to WT mice, energy expenditure was reduced 25% (p<0.001) in PEDF ko mice with a 30% decrease in food consumption (P<0.01) and total activity (P<0.001). Body weight was increased by 10% (P<0.01), and fat mass, as measured by 1H magnetic resonance spectroscopy, was more than two-fold higher (P<0.001) in PEDF deficient mice. PEDF ko mice had higher fasting glucose concentrations (156±8 vs 103±8 mg/dL, P<0.001), and marked hyperinsulinemia (56±2 vs 14±3 µU/mL, P=0.02), suggesting severe insulin resistance. During the IPGTT, the glycemic excursion was higher in the PEDF ko mice with an 80% increase in the AUC glucose, but without additional glucose stimulated insulin secretion.

Conclusion: Loss of PEDF promotes obesity and insulin resistance in mice.

diabetes mellitus. In OLETF rats and Long-Evans Tokushima Otsuka(LETO) rats, liver PGC-1 mRNA and blood glucose levels were investigated at 1, 2, and 3 weeks after the beginning of 30% caloric restriction(CR). siRNAs of G6Pase and PGC-1 were constructed to siRNA-pDNA. Each siRNA-pDNA was injected to alloxan-diabetic mice by tail vein and monitored for glucose level. The levels of G6Pase and PGC-1 mRNA in liver of mice were measured by real time PCR.

Results: The liver PGC-1 mRNA expression were increased to 19% in LETO rats but significant change was not observed in OLETF rats by 30% CR. Post-prandial blood glucose level was not changed between control and siRNA-pDNA(G6Pase, PGC-1) treated alloxan-diabetic mice. After 12 hour fasting, the blood glucose levels of control were 235±27 mg/dL. Each glucose levels of G6Pase and PGC-1 siRNA-pDNA injected alloxan-diabetic mice were 115±16 and 127±10 mg/dL at the same time. There were significant differences between control and experimental groups after 12 hour fasting. G6Pase and PGC-1 mRNA levels in liver of mice were decreased by injection of siRNA-pDNA.

Conclusion: Glucagonoeic gene such as G6Pase and PGC-1 depletion by siRNA-pDNA treatment leads to lowering fasting blood glucose levels in diabetic mice. This represents the potential of G6Pase and PGC-1 as a therapeutic target of type 2 diabetes.
of INSIG2 and SCAP was significantly up-regulated (P<0.01) and INSIG2 protein level in liver was also increased in HF group (P<0.05). The mRNA expression of SREBP-2, HMGCR and LDLr was down-regulated in liver of HF group (P<0.05 and P<0.01). In adipose tissue, mRNA expression of INSIG1, INSIG2 and SCAP, and protein levels of INSIG2 were no differences between the two groups. The mRNA expression of SREBP-1, ATGL and PPARγ in liver and adipose tissues were significantly down-regulated in HF group than in NC group (P<0.05 and P<0.01). But FAS mRNA and HSL levels were no differences in two groups.

Conclusion: Hyperglycemia, dyslipidosis and hyperinsulinemia in this animal model might result from, at least in part, the changes of these key enzymes and transcription factors. Our findings might also account for the characteristics of glucose and lipid metabolism in diet-induced insulin resistance.

Supported by: National Natural Science Foundation of China

719

The lack of beta 2 adrenoceptors in mice results in glucose intolerance and impaired insulin secretion

A. Lombardi1, G. Santulli1, D. Sorrentino1, A. Anastasio1, S. Iovino1, C. Del Giudice1, B. Trimarco1, F. Beguinot1, P. Formisano1, C. Miele1, G. Iaccarino1, D'Bmpcm & ioe-cnr, “Federico II” University - Dpt. Cellular and Molecular Biology and Pathology, “DMCSCI, “Federico II” University - Dpt. Clinical Medicine, Cardiovascular & Immunologic Sciences, Naples, Italy.

Background: The reciprocal regulation of Sympathetic Nervous System and Insulin relays on molecular mechanisms that are not fully understood. Beta 2 adrenergic receptors (beta 2 ARs), in particular, are known to be involved in insulin production and in peripheral glucose uptake, but their role in development of diabetes is not clear.

Methods and results: We characterized the metabolic phenotype of mice (age 6 months) with deletion of the beta 2 AR gene (KO, n=21), performing tolerance tests to glucose (GTT, 1mg/Kg), insulin (ITT, 0.75 IU/Kg) and sodium pyruvate (PTT 2g/Kg) and hyperinsulinemic euglycemic clamps. As control we used C57BL/6 mice (WT, n=18). KO mice exhibited decreased glucose tolerance compared to WT mice (AUC GTT KO: 4098±0.6890 vs AUC GTT WT 19290±2120, p<0.01, ANOVA). However, ITTs showed that KO mice did not feature peripheral insulin resistance compared to WT mice (AUC ITT KO: 8280±1250 vs AUC ITT IT WT 13950±1815, p>0.01, ANOVA). Clamp studies in KO mice revealed a lower Glucose Insulation Rate (KO vs WT: 14.61±8 vs 30.9 mg/Kg/min), an increased endogenous glucose production (79.8±4 vs 36.1±3 mg/Kg/min) and an increased rate of glucose disappearance (96.6±5 vs 63.2±3.4 mg/Kg/min; p<0.05), suggesting that insulin resistance develops at the hepatic level in KO mice compared to WT mice. KO mice showed impaired insulin response to hyperglycemia compared to WT mice. Histological analysis of pancreatic tissues displayed a normal architecture of the islets in both KO and WT mice. Also total insulin content (insulin KO: 4.93±0.87 ng/g of pancreas vs WT: 4.19±1.82 ng/g of pancreas) and glucagon content (glucagon KO: 577.8±106.5 pg/g of pancreas vs WT: 636.17±112.8 pg/g of pancreas) were comparable in both KO and WT mice. However, whilst in islets isolated from WT mice glucose induced insulin secretion by 3-fold, islets from the KO mice exhibited a blunted response to glucose. Glucagon secretion was not different in KO and WT mice. Increasing beta 2 AR expression in KO mice isolated islets by the infection of an adenoviral construct bearing the beta 2 AR cDNA, restored the ability of KO islets to secrete insulin in response to glucose.

Conclusion: Our results suggest that beta 2 AR plays a critical role in the regulation of glucose metabolism and insulin secretion both in vivo and ex vivo. These findings open new fields of investigation for the development of strategies to produce drugs with potential therapeutic applications in diabetes.

PS 61 Animal models insulin resistance

720

Folate deficiency increases adipose tissue and muscle insulin resistance in spontaneously hypertensive rats

M. Mazova1, M. Pravenec2, L. Kozdova1, D. Sorriento1, M. Ledin1, A. Anastasio1, S. Iovino1, C. Del Giudice1, B. Trimarco1, F. Beguinot1, P. Formisano1, C. Miele1, G. Iaccarino1, D’Bmpcm & ioe-cnr, “Federico II” University - Dpt. Cellular and Molecular Biology and Pathology, “DMCSCI, “Federico II” University - Dpt. Clinical Medicine, Cardiovascular & Immunologic Sciences, Naples, Italy.

Background and aims: Controversial clinical data and a few studies in animal models have been reported on the association between insulin resistance and plasma folate levels. The aim of this work was to compare the influence of the folate-deficient diet and high-fructose diet on insulin resistance parameters in spontaneously hypertensive rats (SHR), which are commonly used as a model of a metabolic syndrome.

Materials and methods: One group of adult male SHR rats (n=9) were fed a folate-deficient diet (Harlan Teklad, Netherlands) ad libitum for 4 weeks, the second group (n=9) were fed a high-fructose diet (70 cal.%). Triglycerides, glucose and free fatty acids concentrations were determined with commercially available kits (Pliva Lachema, Czech Republic; Roche Diagnostic GmbH, Germany, resp.). Serum folate levels were estimated by folate test AsYM (Abbott Laboratories). Tissue insulin sensitivity was measured in vitro without or with insulin (250 µg/ml) according to basal and insulin-stimulated 14C-U-glucose incorporation into muscle glycogen or adipose tissue lipids.

Results: After 4 weeks, the rats fed the folate-deficient diet had lower serum folate concentration in comparison with rats fed a high-fructose diet (11.07±0.47 nmol/l vs 75.96±3.46 nmol/l; p<0.00001). Animals fed with folate-deficient diet showed increased body weight (381±4.9 g vs 351±6.1 g; p<0.001), whereas epididymal fat pads weight when related to body weight were not different between groups. Nonfasting serum glucose levels were increased in the folate deficient rats (5.8±0.1 vs 4.99±0.2 mmol/l; p<0.0004). Surprisingly folate-deficient diet markedly decreased serum triglycerides concentrations (0.77±0.03 vs 2.1±0.17 mmol/l; p<0.00001) whereas free fatty acids were not different. There were found no significant differences in liver and muscles triglycerides concentrations between folate-deficient or fructose fed rats, however both groups showed hepatic steatosis as a results of increased triglycerides accumulation (17.69±1.30 vs 15.46±0.98 µmol/l, N.S.). The rats fed on the folate-deficient diet exhibited significantly decreased glucose incorporation into adipose tissue lipids and into muscle glycogen in comparison with fructose fed animals (Tab). The ability of insulin to stimulate glucose incorporation was lower in folate-deficient rats than in fructose fed rats.

Conclusion: Our results show that folate-deficiency impaired glucose sensitivity of peripheral tissues and stimulated hepatic steatosis similarly as fructose feeding and support hypothesis that folate deficiency may contribute to the pathogenesis of metabolic syndrome.

<table>
<thead>
<tr>
<th>Folate-deficiency</th>
<th>High-fructose</th>
<th>p<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-insulin</td>
<td>338 ± 42</td>
<td>467 ± 46</td>
</tr>
<tr>
<td>(nmol glucose/g/2h)</td>
<td>+insulin</td>
<td>738 ± 89</td>
</tr>
<tr>
<td>Glycogenesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-insulin</td>
<td>39 ± 5.7</td>
<td>299 ± 60</td>
</tr>
<tr>
<td>(nmol glucose/g/2h)</td>
<td>+insulin</td>
<td>68 ± 8.7</td>
</tr>
</tbody>
</table>

Supported by: IGA Ministry of Health of the Czech Republic.

721

Enhanced neuronal NO Synthase breakdown through the ubiquitin-proteasome pathway in skeletal muscle of insulin resistant Zucker fa/fa rats

Background and aims: In type 2 diabetes, due to a decrease in insulin sensitivity, glucose uptake is impaired in skeletal muscle. The latter is well known to express a splice variant of the neuronal isoform of NO Synthase (nNOS), nNOSµ. Because nNOSµ exerts a physiological role in the control of skeletal
muscle contractility and glucose uptake, we were prompted to investigate whether alterations of muscle nNOSα could occur in prediabetic states and in the early phases of type 2 diabetes.

Materials and methods: We performed our study using Zucker fa/fa rats, characterized by a strong insulin resistance and hyperinsulinemia, two important features of prediabetic states. Zucker fa/+ lean rats were used as controls. nNOSα catalytic activity was evaluated by measuring citrulline production from labelled arginine. nNOSα expression was measured by quantitative PCR and western blotting. MG132 was used as an inhibitor of proteasomal function. Subcellular localization of nNOSα was determined in immunofluorescence studies with specific antibodies.

Results: In skeletal muscle extracts from Zucker fa/fa rats, we found a 41% decrease in nNOSα catalytic activity when compared to control fa/+ extracts (p<0.01). This decrease correlates with a significant 42% reduction in the enzyme proteic level (p<0.05) with no change in nNOSα mRNA, which argues for the occurrence of an increased proteasomal breakdown. Use of the proteasomal function inhibitor MG132 in isolated skeletal muscle enabled us to bring the catalytic activity closer to its normal level (p<0.05). In addition, inhibition of the ubiquitin-proteasome pathway resulted into a significant recovery of both nNOSα proteic expression and catalytic activity, to levels similar to those recorded in fa/+ controls. In immunofluorescence studies, we could confirm the decrease in expression nNOSα protein in skeletal muscle of fa/fa rats; interestingly this decrease was found associated to a disturbance of the enzyme sub-membrane distribution.

Conclusion: In Zucker fa/fa obese insulin resistant rats, skeletal muscle displays a decreased nNOSα catalytic activity resulting from an increased breakdown of the enzyme through the ubiquitin-proteasome pathway. These abnormalities, associated to a disturbed nNOSα sub-membrane distribution, could be involved in the impaired skeletal muscle glucose uptake in the early phases of type 2 diabetes.

Analysis of insulin sensitivity in p66ShcA KO mice by hyperinsulinaemic euglycaemic clamp

G. Sorice1, S. Chiariotto Ranieri2, G. Muscogiuri2, A. Giaccardi2, G. Pani2; 1Endocrinology, 2General Pathology, Catholic University, Rome, Italy.

Introduction and aim: Emerging clinical and experimental evidence point to a major role of tissue oxidative stress in linking ageing and excess body weight with insulin resistance; molecular mechanism underlying this connection are however still elusive. The signaling adaptor protein p66Shcα promotes mitochondrial generation of oxidant species in several models of age-related disease, and p66KO mice live 30% longer than their WT littermates; thus, this protein may represent a critical determinant of the intracellular redox-state imbalance associated with diabetes and metabolic syndrome. We have previously shown that genetically obese, hyperinsulinemic (Lep/o/o) mice lacking p66ShcA are partially protected from glucose intolerance observed in their p66Shc proficient littermates (Chiariotto et al., submitted), demonstrating that p66Shc promotes insulin resistance in this setting. However, no major effect of adipose homestasis was detected in normal, lean mice by standard Intraportaline glucose tolerance test (ipGTT, 1g glucose/Kg BW) and insulin tolerance test (ITT, 0.75 U/Kg BW).

Methods and Results: Prompted by this discrepancy we have set up and performed hyperinsulinaemic euglycaemic clamp (18 mU/kg·min⁻¹) on lean mice of the two genotypes. This more reliable assay clearly demonstrated an enhanced insulin sensitivity in p66Shc-A-/- mice in comparison to WT animals (M, as mg of glucose metabolized per kg of BW per minute, and SEM: respectively 161 mg/kg·min⁻¹±3.35; 66 mg/kg·min⁻¹±4.35; p<0.02). In keeping with this finding, biochemical analysis of the insulin signalling pathway in the adipose tissue of p66Shc-/- mice demonstrated reduced serine phosphorylation (serine 307+serine 636-639) of the insulin substrate IRS-1, an hallmark of insulin desensitization.

Conclusions: These findings confirm and extend our observation that p66Shc participates in the regulation of insulin action in an hyperinsulinemic setting, as it occurs in ageing-associated metabolic disorders including obesity and metabolic syndrome. While the possible connection between p66-dependent oxidative stress and insulin resistance needs to be further investigated, our data strongly encourage pharmacological research aimed at blocking the deleterious effect of the p66Shcα protein to improve glucose homeostasis and prevent type 2 diabetes.

723

Lack of inducible nitric oxide synthase prevents lipid infusion-induced insulin resistance in mice

S.-Y. Park1, H.-N. Cha1, Y.-W. Kim1, J.-Y. Kim1, K.-C. Won1, J.-M. Dan2; 1College of Medicine, Yeungnam University, Daegu, 2School of Medicine, Chonbuk University, Gumi, Republic of Korea.

Background and aims: The role of inducible nitric oxide synthase (iNOS) on lipid-induced insulin resistance was examined in iNOS knockout (KO) mice and wild-type litter mate using hyperinsulinemic-euglycemic clamp technique.

Materials and methods: Four days before clamp, chronic catheter was inserted into jugular vein and connected to three-way to infuse insulin (15 pmol·kg⁻¹·min⁻¹) and 20% glucose on the day of clamp. After overnight fasting, 20% of intralipid and 33 U/ml of heparin were infused for 2 hours before and during clamp in lipid group, and saline was infused in saline group.

Results: Body weight was not different between wild-type and iNOS KO mice but epidydimal fat mass was significantly elevated in iNOS KO mice. Glucose infusion rate (GIR) to maintain euglycemia was significantly reduced by lipid infusion in wild-type mice but GIR was not reduced by lipid infusion in iNOS KO mice. Lipid infusion produced whole body insulin resistance in wild-type mice but lack of iNOS prevented development of lipid infusion-induced insulin resistance. Whole body insulin resistance was contributed by 30% decrease in skeletal muscle glucose uptake in wild-type mice, whereas lipid infusion had no effect on glucose uptake of skeletal muscle in iNOS KO mice. Skeletal muscle insulin resistance was accompanied with decrease in glycogenolysis in lipid-infused wild-type mice. Plasma level of tumor necrosis factor-α was increased by lipid infusion in both iNOS KO and wild type mice. Proinflammatory cytokines in skeletal muscle and adipose tissue were also increased by lipid infusion in both groups. While nitrotyrosine level in skeletal muscle was increased by lipid infusion in wild-type mice, it was significantly lower in lipid-infused iNOS KO mice compared with lipid-infused wild-type mice.

Conclusion: These results suggest that lack of iNOS prevents whole body and skeletal muscle insulin resistance induced by lipid infusion, which may be contributed by reduced nitroative stress.

Supported by: KOSEF

724

Inhibition of PSLG-1-selectin pathway ameliorates obesity-related insulin resistance in db/db mice

Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Japan.

Background and aims: There have been accumulating evidences that inflammation in adipose tissue is involved in the mechanism of obesity-related insulin resistance. Macrophages and proinflammatory cytokines are increased in visceral adipose tissues of obese people and animal models. Infiltration of monocyte/macrophage is mediated by the interaction of cell adhesion molecules expressed on monocytes and endothelial cells. We previously screened the gene expression profiles in adipose tissues from obese mice using DNA microarray and found that P-selectin glycoprotein ligand-1 (PSGL-1) is up-regulated in both db/db mice and high-fat diet (HFD) fed mice. PSGL-1 is expressed on both leucocytes and endothelial cells and binds to P-, L- and E-selectin. We found PSGL-1 is expressed on both endothelial cells and macrophages in adipose tissues of obese mice. Furthermore, we demonstrated that PSGL-1 deficient mice fed with HFD revealed decreased macrophage infiltration into adipose tissues, improved adipocyte hypertrophy and insulin resistance as compared with wild type mice fed with HFD. The aim of this study is to identify the inhibitory effect of the PSGL-1-selectin pathway using anti-PSGL-1 monoclonal antibody.

Materials and methods: Anti-PSGL-1 monoclonal antibody or normal rat IgG was administered by intraperitoneal injection to six week-old male db/db mice. An intraperitoneal insulin tolerance test (IPITT) and an intraperitoneal glucose tolerance test (IPGTT) were performed at 7 weeks old. We measured serum lipids, insulin, HbA1c and adipokynes. We also examined the gene expression of proinflammatory cytokines, chemokines, adhesion molecules, adipokynes and infiltration of macrophages in epidymaly white adipose tissues (WAT). The size of adipocytes was measured and analyzed by morphometry.
Hypothalamic inflammation and dysfunction have been studied in young (age: 25.15±5.16 years), adipose tissue. Significant reductions were observed in fasting blood glucose (104.5 vs 138.5 mg/dl) and LDL cholesterol (6.25 vs 10.5mg/dl) in treated group (treated group vs control group, p<0.05). The average values of triglyceride and fasting IRI were decreased in treated group as compared with control group. The size of adipocytes in epididymal WAT was also significantly decreased in treated group as compared with control group. Glucose tolerance and insulin sensitivity were significantly improved in treated group in IPITT and in IPGTT. The expressions of MCP-1 and CD68 were decreased in treated group as compared with control group.

Conclusion: The administration with anti-PSGL-1 antibody revealed decreased macrophage infiltration in adipose tissues, improved adipocyte hypertrophy and insulin resistance in db/db mice. These results provide the direct evidence that PSGL-1-selectin pathway promotes the recruitment of macrophages into adipose tissue. PSGL-1 might be a novel target for the prevention of insulin resistance in obesity.

Supported by: Grant-in Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

725

Decreased serum brain-derived neurotrophic factor concentration in young nonobese subjects with low insulin sensitivity

M. Karzewska-Kupczewska, A. Adamska, A. Nikolajuk, E. Otziomek, M. Gorska, M. Straczkowski, I. Kowalska; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.

Background and aims: Insulin resistance and type 2 diabetes are associated with an increased risk of neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) regulates neuronal differentiation and synaptic plasticity and its decreased levels are supposed to play a role in the pathogenesis of Alzheimer disease and other disorders. Decreased circulating BDNF levels in obesity and type 2 diabetes were reported, however, it is unclear, whether BDNF might be associated with insulin resistance in young, nonobese population. The aim of the present study was to estimate serum BDNF concentration in apparently healthy, nonobese women divided into subgroups according to their insulin sensitivity.

Materials and methods: We studied 46 young (age: 25.15±5.16 years), apparently healthy, nonobese (BMI: 24.02±2.84 kg x m^2) women with normal glucose tolerance. Anthropometric and biochemical parameters and serum concentrations of BDNF and adiponectin were measured. Insulin sensitivity was estimated with the euglycemic hyperinsulinemic clamp technique. Then, participants were divided into subgroups of high insulin sensitivity (high IS, above median from the clamp study, n=23) and low insulin sensitivity (low IS, below median, n=23).

Results: The difference in BMI and waist circumference between the groups did not reach the level of significance, whereas the percent of body fat was higher in the low IS group (p=0.024). We observed decreased serum BDNF concentration in women with low IS (p=0.001), which remained significant after adjustment for the difference in the percent of body fat. In the entire study population, serum BDNF was positively related to insulin sensitivity (r=0.43, p<0.003). In multiple regression analysis, this correlation remained significant after adjustment for other estimated parameters. In the low IS group, relationship between serum BDNF and adiponectin was also observed (r=0.52, p=0.027).

Conclusions: Our data show that serum BDNF is decreased in young nonobese women with low IS. Thus, early detection and prevention of insulin resistance might be useful in the prevention of neurodegenerative disorders. Supported by: Poland’s Ministry of Science and Higher Education.

726

Hypothalamic dysfunction in obesity as evaluated by functional magnetic resonance image

S.S. Lee, F.R.S. Pereira, D.E. Cintra, L.M. Li, F. Cendes, L.A. Velloso; Unicamp, Campinas, Brazil.

Background and aims: Hypothalamic inflammation and dysfunction have emerged as important factors determining the loss of the coordinated control of caloric intake and energy expenditure in animal models of obesity. Here we use functional magnetic resonance image (fMRI) to explore the hypothesis that obese humans also present some degree of dysfunctional hypothalamic activity.

Materials and methods: Functional images were acquired during a resting state paradigm before and after an oral glucose load. The BOLD signal was recorded for five minutes before and 25 minutes after glucose ingestion, and the Kendall’s coefficient of concordance was estimated.

Results: Twelve obese patients undergoing bariatric surgery were submitted to fMRI before surgical procedure and approximately eight months after surgery. When absolute body mass was reduced by 29±4%. Eight age-matched lean controls were evaluated by the same method. Nutritional evaluation at enrolment revealed a mean caloric intake of 5,600±5,400 kcal/day, with high consumption of saturated fat. After surgery, mean caloric intake dropped to 805±350 kcal/day, with substantial reduction of the consumption of saturated fat. Caloric intake of lean subjects was 2,380±850 kcal/day. Reduction of body mass was accompanied by significant reductions of blood insulin and leptin and by the increase of adiponectin. In addition inflammatory markers such as C-reactive protein and blood leukocyte counts were significantly reduced. The comparison of obese patients before surgery with lean controls...
Male Wistar rats were fed a sucrose-enriched diet revealing a significantly reduced loss of local homogeneity (t-score -8.71, p<0.05) in the hypothalamus (a representative image showing areas with loss of homogeneity in color is depicted in the accompanying figure). After surgery this loss of homogeneity was not so pronounced but still significant (t-score -7.30, p<0.05). Finally, when comparing obese patients before and after surgery a significant change in the loss of homogeneity was detected with a higher score in the post-surgical acquisition (t-score -4.64, p<0.05).

Conclusion: Although the loss of homogeneity in the hypothalamus was still smaller in the post-surgical group than in lean subjects, it is clear that the reduction of body mass was somehow correlated with a modification in the functional pattern of the hypothalamus towards the lean subjects standard. Thus, hypothalamic function, as determined by fMRI differs obese and lean subjects, and massive body mass loss produced by bariatric surgery leads to significant change in this parameter. fMRI may become an attractive, non-invasive method to study central nervous system function in metabolic diseases.

Background and aims: We have previously shown that schizophrenic drug-naïve patients display hepatic insulin resistance, suggesting that central dopaminergic signaling is involved in the regulation of endogenous glucose production (EGP). As a first step to test this hypothesis in an experimental setting, we studied whether deep brain stimulation (DBS) in the subthalamic nucleus of patients with Parkinson’s disease results in a change in basal EGP or hepatic insulin sensitivity.

Materials and methods: We included 6 men (age 60 [44-65] years and BMI 28.2 [22.6-33.1] kg/m²). REE was not significantly different between the on and the off-situation. UPPDRS was significantly higher when DBS was switched off. There was no significant difference in glucoregulatory hormones in either state. Basal plasma glucose and EGP (after 15 hrs of fasting) did not differ when DBS was switched on or off (EGP on 8.32 ± 0.73 and off 8.22 ± 1.09 μmol/kg·min, p=0.68). Hepatic insulin sensitivity did not significantly change (EGP on 3.15 ± 1.07 and off 2.8 ± 0.91 μmol/kg·min, p=0.36).

Conclusion: Deep brain stimulation of the subthalamic nucleus in patients with Parkinson’s disease does not influence basal endogenous glucose production or hepatic insulin sensitivity.

277 Deep brain stimulation in patients with Parkinson’s disease: involvement of local brain regions in systemic glucose metabolism? N.M. Lammers1, B.M. Sondermeijer1, T.B. Twickler1, R.M.A. de Bie1, M.T. Ackermans1, E. Flies1, S.E. la Fleur1, M.J.M. Serlie1, 1Endocrinology & Metabolism, Vascular Medicine, 2Vascular Medicine, 3Neurology, Clinical Chemistry, Laboratory of Endocrinology, AMC, Amsterdam, Netherlands.

Background and aims: We have previously shown that schizophrenic drug-naïve patients display hepatic insulin resistance, suggesting that central dopaminergic signaling is involved in the regulation of endogenous glucose production (EGP). As a first step to test this hypothesis in an experimental setting, we studied whether deep brain stimulation (DBS) in the subthalamic nucleus of patients with Parkinson’s disease results in a change in basal EGP or hepatic insulin sensitivity.

Materials and methods: We included 6 men (age 60 [44-65] years and BMI 28.2 [22.6-33.1] kg/m²). REE was not significantly different between the on and the off-situation. UPPDRS was significantly higher when DBS was switched off. There was no significant difference in glucoregulatory hormones in either state. Basal plasma glucose and EGP (after 15 hrs of fasting) did not differ when DBS was switched on or off (EGP on 8.32 ± 0.73 and off 8.22 ± 1.09 μmol/kg·min, p=0.68). Hepatic insulin sensitivity did not significantly change (EGP on 3.15 ± 1.07 and off 2.8 ± 0.91 μmol/kg·min, p=0.36).

Conclusion: Deep brain stimulation of the subthalamic nucleus in patients with Parkinson’s disease does not influence basal endogenous glucose production or hepatic insulin sensitivity.

728 Reduced hypothalamic insulin receptor expression and insulin-dependent Akt phosphorylation in a type 2 diabetes model associated with a defect in serotonergic system K. Gerozissis1, F. Berthou1, C. Rouch2, N. Vicarie1, I. Papazoglou3, D. Bulbe3, B. Porthe3, M. Tourou3, 1Neuroendocrinologie Moléculaire de la Prise Alimentaire,University Paris 11, CNRS CNPS UMR 8195, Orsay, ‘Unité BFA, Université Paris 7, 2B2PE Unité BFA - Equipe 1, Université Paris 7, France.

Background and aims: Insulin resistance both in the periphery and the brain act synergistically in the induction of metabolic diseases (MD) and co-morbidities. Previous own studies and literature suggest a cross-talk between insulin and the neurotransmitter serotonin (5HT), a regulator of energy and glucose homeostasis, key element in depressive syndromes. In the present study, using a T2D model, the Goto Kakizaki (GK) rat, we focused on hypothalamic and liver insulin signalling and on the impact of 5HT.

Materials and methods: Male Wistar (W) or GK, 8-12 weeks old rats. Insulin receptor (IR) and Phospho-Tyrosine Phosphatase 1B (PTP-1B) protein expression or phosphorylation of Akt (a downstream protein kinase in IR/IRS/PDK signalling pathway), following ip injection of either insulin (1 U/kg) or dexfenfluramine (stimulator of 5HT, 5 mg/kg) 30 min before euthanasia, was assessed by western blot. Endocrine and metabolic parameters were determined with appropriate methods. Statistical significance was set at p<0.05. N= 5-10.

Results: Compared to age matched W, glycemia, insulinemia and leptinemia were increased in GK rats. In W and GK rats, dexfenfluramine increased insulinemia and glycemia but did not alter leptinemia. Glycemia was increased more in GK as compared to W. IR protein expression was lower in GK liver and hypothalamus. In the hypothalamus, insulin injection induced Akt phosphorylation only in W rats. In liver, GK exhibits higher expression of PTP-1B associated to a lower insulin-dependent Akt phosphorylation, as compared to W. Finally, dexfenfluramine stimulated Akt phosphorylation only in the hypothalamus of W rats.

Conclusion: In diabetes, tissue specific alterations in insulin signalling occur within peripheral tissues. Here, were observed important alterations in hypothalamic and hepatic insulin signalling. In spite of inefficient insulin-induced Akt phosphorylation in GK probably due to altered IR and higher expression level of PTPIB, insulin lowered glycaemia, confirming that insulin resistance is not yet totally established in young adult GK. The effect of serotonin on central insulin signalling in W, reported for the first time, extends previous own work shown central insulin-serotonin interaction. The impact of the serotonergic system in GK was altered. In fact, it failed to phosphorylate hypothalamic Akt and increased glycemia in diabetic rats in higher levels than in Wistar, suggesting an exaggerated counter-regulatory effect. This study points out the complexity of insulin-serotonin cross-talk on molecular mechanisms potentially linking depressive disorders and diabetes. KG and FB, participated equally.

729 Sucrose-induced insulin resistance is accompanied by morphologic and functional changes in the adrenal cortex of the rat C. Martinez Calejman1, F. Astort1, E.M. Repetto1, R. Sanchez1, J.M. Di Gruccio1, C.R. Cymering1, P. Arias2, 1Human Biochemistry Department, University of Buenos Aires - School of Medicine - CEFYBO- CONICET, 2Psychology and Biophysics Department, University of Buenos Aires -School of Medicine, Argentina.

Background and aims: Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis has been widely described in both human and animals showing insulin resistance (IR). However, a direct effect of the biochemical abnormalities that characterize this syndrome (e.g. elevated plasma glucose, serum insulin and free fatty acid levels, hypertiglyceridemia and oxidative stress) on adrenal function has not been elucidated yet. In this study we assessed the effect of a sucrose-enriched diet (SED) on adrenocortical structure and function (corticosterone secretion) in rats.

Materials and methods: Male Wistar rats were fed a sucrose-enriched diet (SED, drinking water containing 30% w/v sucrose) up to 12 weeks. Rosiglitazone (4mg/kg, orally and daily) was administered throughout the duration of the sucrose treatment to a group of animals. Protein levels of different isoforms of nitric oxide synthase (NOS), phosphorylated Akt and cyclooxygenase 2 (COX-2) were analyzed by immunoblot while mRNA levels of steroidogenic
Cognitive function in older adults with type 2 diabetes
E. Lopez Gonzalez, A. Luongo, A. Garcia, S. Milrad, M. Varela, M. Ruiz Morosini, DECOyDI;
Sociedad Argentina de Diabetes, Buenos Aires, Argentina.

Background and aims: Several studies have reported increased risk of Cognitive Dysfunction (CD) and dementia in people with Type 2 Diabetes (DM2). The outcome of these research efforts indicate that several causes may affect CD, include many pathophysiologic mechanisms and risk factors. We investigated DM2 as a risk factor for CD when compared with control group. Describe the frequency of DC in patients with DM2 and its relationship to education, income, physical activity, alcohol consumption, cardiovascular risk factors and depression.

Materials and methods: Cognitive function was assessed using the test Mini Mental State Examination (MMSE) and defined by scores (normal 28-30, mild cognitive dysfunction (MCD) between 27 to 24, and severe cognitive dysfunction (SCD) 9 points and pathological 65 years old and control group. The study was carried out by 17 Argentinean doctors specialized in Diabetes from the provinces of Buenos Aires, Salta and Buenos Aires City (Argentina). The evaluation included the following items: anthropometric measures, laboratory, level of education, life style and income. Ch2, Wilcoxon test and Multiple Logistic Regression were the tools used for the statistical analysis.

Results: 748 patients were included: DM2 (DMG) n=433 and control group (CG) n=315. Mean age=71.83 ± 5.58 in DMG and 71.79 ± 5.51 years in CG (p<0.92). In DMG the duration of diabetes 11.78 ± 9.17 years, the average HbA1c was 7.15 ± 2.73. The alcohol consumption was 48.73% in the DMG and 46.98% in CG. Education under 7 years was 40.8% in DMG vs. 35.67% in CG (p=0.39). The monthly income < 300 euros was 27.48% in DMG and 27.94% in CG (p=0.87). Depression was present in 18.2% of DMG and 12.4% of CG. SCD was present in 21.3% of DMG and 14.6% of CG and MCD in 35.3% of DMG and 31.7% of CG (p=0.0018). In women, diabetes acted as a risk factor for cognitive dysfunction (crude OR=2.13, 95% CI=1.46-3.11, p<0.0001). In men the mentioned above relation was not statistically significant (crude OR=1.14, 95% CI=0.71-1.85; p=0.57). In multivariate analysis, cognitive dysfunction in women was related with the presence of DM2 (adjusted OR=1.91; CI=1.26-2.90; p=0.002), low level education (OR=3.96; CI=2.55-6.13, p<0.0001), low-income (OR=2.06; CI=1.29-3.26; p=0.002), depression (OR=1.83; CI=1.08-3.04; p=0.026) and alcohol use (OR=1.57; CI=1.01-1.45; p=0.04). In multivariate analysis, independent predictors of cognitive decline in men were low education (OR=4.49; CI=2.28-6.88; p<0.0001), low-income (OR=2.33; CI=1.14-4.58; p=0.01) and age (OR=2.25; CI=1.08-3.20; p=0.02).

Conclusion: The outcomes of our study indicate that DM2 in women increased the risk of CD. The low level education, low income, presence of depression and alcohol consumption were independent risk predictors. DM2 in men was not a predictor of CD in this sample. Low education, low income, and age were independent risk predictors of CD in men.

Supported by: Argentine Society of Diabetes
Furthermore, T1DM is associated with cognitive impairment, most pronounced in patients with microangiopathy. Here, we hypothesized that brain volume loss would be most marked in T1DM patients with microangiopathy and would be associated with impaired cognitive functions. Using magnetic-resonance imaging (MRI), we quantified grey and white matter volume and total brain volume and performed a neuropsychological assessment in 155 T1DM patients with and without microangiopathy and matched healthy controls.

Materials and Methods: Fifty-one T1DM patients with and 53 without microangiopathy, and 51 matched healthy controls underwent a detailed neuropsychological assessment including the domains of general cognitive ability, memory, information processing speed, executive functions, attention, motor and psychomotor speed and a MRI-scan. This MRI-scan consisted of 10 different sequences to detect differences in cerebral structure and function among which was a T1 Magnetization Prepared Rapid Gradient Echo (MP-RAGE) for the estimation of both grey and white matter volume and total brain volume. Volumes were estimated using the Structural Image Evaluation, using Normalisation, of Atrophy (SIENAX) tool in the FMRI Software Library (FSL4.1). This tool enables reliable estimation of brain volume by controlling for differences in brain size.

Results: Both grey matter volume and total brain volume were significantly decreased in T1DM patients with microangiopathy, compared to T1DM patients without microangiopathy and healthy controls (both P < 0.05). However, these differences were lost when controlling for age. In T1DM patients with microangiopathy a moderate positive correlations between motor speed and both white matter volume and total brain volume was found. T1DM patients without microangiopathy demonstrated a small positive correlation between motor speed and white matter volume (P < 0.05). In controls no correlations were found between brain volumes and cognitive function domains.

Conclusion: After correction of age, no differences in brain volume could be detected between T1DM patients with and without microangiopathy and healthy controls. Nevertheless, in T1DM patients positive correlations of MRI-measured brain volumes and motor speed could be demonstrated. These data may suggest that loss of brain volume is associated with poorer cognitive performance in this domain, although no causal relationships can be established. Longitudinal studies are warranted to confirm and expand these findings, to further detail the underlying mechanisms and to define their impact on patients, in terms of clinical consequences and quality of life.

Supported by: Dutch Diabetes Research Foundation

733

Cerebral functioning is associated with carotid intima media thickness in uncomplicated type 1 diabetes mellitus

R.G. IJzerman1, E. van Dunkenkerken2, M. Klein2, E.H. Serné2, N.S.M. Schoonenboom3, J. Boerop1, F.J. Snoek, C.J. Stam2, M. Diamant3, 1Diabetes Centre / Department of Internal Medicine, 2Department of Medical Psychology, 3Department of Internal Medicine, Department of Clinical Neurophysiology / MEG Centre, VU University Medical Centre, Amsterdam, Netherlands.

Background and aims: Measures of subclinical atherosclerosis, including carotid intima media thickness (cIMT), have shown to negatively affect brain function and structure in the general population. In type 1 diabetes (T1DM), an increased cIMT has been reported, but it is unknown whether cIMT is associated with cerebral function and activity in these patients and whether this association is affected by the additional presence of microvascular complications.

Materials and methods: We investigated 51 T1DM patients with proliferative diabetic retinopathy or other microvascular complications, as a marker of microangiopathy (DRP), 54 without microangiopathy (non-DRP), and 51 gender-matched controls. We measured cIMT using ultrasonography and neuropsychological functions like memory, information processing speed, executive functions, attention, motor and psychomotor speed and general cognitive ability. Functional brain connectivity, an estimate of cerebral communication, was assessed using magnetoencephalography. Linear regression was used to determine the association between cIMT, cognitive functions and functional connectivity.

Results: In the non-DRP group, but not in DRP patients, cIMT was negatively associated with general cognitive ability, information processing speed and attention (all P<0.05). Also, in non-DRP patients a positive association of cIMT and functional connectivity for the delta band, representing communication within both hemispheres and a negative association for the upper gamma-band, regarding interhemispheric communication were found (both P<0.05).Exception for information processing speed all associations were independent of age, gender, diabetes duration and onset.

Conclusion: In uncomplicated T1DM patients, but not in patients with microangiopathy, cIMT was inversely associated with cognitive functioning and related to aspects of functional connectivity, previously linked to cerebral pathology and changes in cognitive functions. Taken together, these findings suggest that, in T1DM patients without microangiopathy, subclinical atherosclerosis may exert a negative effect on the brain, whereas in T1DM with microangiopathy the impact of cIMT seems subordinate to other factors.

Supported by: Dutch Diabetes Research Foundation

734

Comprehensive neuropsychological assessment of patients with longstanding type 1 diabetes mellitus with and without microangiopathy

M. Klein1, E. van Dunkenkerken1, M. Diamant1, E.H. Serné1, R.G. IJzerman1, F.J. Snoek1, 1Department of Medical Psychology; 2Diabetes Centre / Department of Internal Medicine, 3Department of Internal Medicine, VU University Medical Centre, Amsterdam, Netherlands.

Background and aims: Type 1 diabetes (T1DM) is associated with mild cognitive decrements, and more so in the presence of proliferative retinopathy (DRP) as was shown in a small study comparing DRP patients with patients without DRP (non-DRP) and controls. In the present study, we hypothesized that T1DM patients with DRP would show cognitive decrements compared to T1DM patients without DRP and other microvascular complications and controls.

Materials and methods: Fifty-one DRP patients, 54 non-DRP patients and 51 controls underwent a comprehensive neuropsychological assessment, covering the domains general cognitive ability, memory, information processing speed, executive functions, attention, motor and psychomotor speed. Prior to assessment, blood glucose level of T1DM patients had to be in the range of 4-15 mmol/l and hypoglycaemic events 24 hours prior to assessment resulted in rescheduling the assessment. MANCOVA corrected for age, depressive symptoms and multiple comparisons was used to determine group differences and regression analysis to identify determinants of cognitive decrements.

Results: T1DM patients as one group compared to controls showed decrements in general cognitive ability, memory, information processing speed, motor and psychomotor speed. Prior to assessment, blood glucose level of T1DM patients had to be in the range of 4-15 mmol/l and hypoglycaemic events 24 hours prior to assessment resulted in rescheduling the assessment. MANCOVA corrected for age, depressive symptoms and multiple comparisons was used to determine group differences and regression analysis to identify determinants of cognitive decrements.

Conclusion: T1DM patients as one group compared to controls showed decrements in general cognitive ability, memory, information processing speed, motor and psychomotor speed. Prior to assessment, blood glucose level of T1DM patients had to be in the range of 4-15 mmol/l and hypoglycaemic events 24 hours prior to assessment resulted in rescheduling the assessment. MANCOVA corrected for age, depressive symptoms and multiple comparisons was used to determine group differences and regression analysis to identify determinants of cognitive decrements.
PS 63 Novel targets in insulin resistance

735
Apical sodium-dependent bile transport inhibitors is identified as potential anti-diabetic agents: parallels with metformin
B.R. Gedulin, G. Gedulin, E.K. Austin, A.A. Young; Physiology, Satiogen Pharmaceuticals Inc., San Diego, USA.

Background and aims: The presence of bile acids (BAs) in the distal gut powerfully stimulates secretion of GLP-1 and other peptides from enterodocrine L-cells. An effect of metformin is the inhibition of bile acid reuptake, which is mediated by apical sodium-dependent bile transporters (ASBT) in the ileum. Especially in the presence of dipeptidyl peptidase-IV inhibition (DPP4i), metformin stimulates secretion of L-cell products, including GLP-1.

Materials and methods: To probe the hypothesis that metformin’s therapeutic effects are mediated via ASBT inhibition, we compared the dose-dependence of secretion of active GLP-1 in fasted normal rats pre-treated with a DPP4i (sitagliptin) and orally administered metformin (0, 30, 100, 300 mg/kg) or a non-absorbable ASBT (SC-435; doses 0, 30, 100 mg/kg). In db/db mice we tested the effects of orally administered metformin (0, 3, 30, 100, 300 mg/kg, n=5-12/group) and SC-435 (0, 3, 100 mg/kg, n=9-12/group) on glucose level and 48 hour body weight.

Results: SC-435 dose-dependently increased 5-hour integrated GLP-1 concentration 2.5 to 3.2 fold (+/– DPP4i, respectively) vs vehicle, and metformin evoked 3.3 to 4.3 fold increases. SC-435 was ~1.6 fold more potent than metformin. Peak GLP-1 of 30-36 pm observed 4.5 hours after metformin or SC-435 in the present studies may promote anti-diabetic and weight-loss effects otherwise only attainable with injected GLP-1 agonists. In db/db mice, a 7.9 mg/dl reduction in 24-hour plasma glucose invoked by 30 mg/kg valine- pyroglutamide (a DPP4i) was amplified up to 3.8 fold by the addition of SC-435. This dose-dependently increased the antidiabetic effect of metformin in this model. Both SC-435 and metformin (+DPP4i) dose-dependently reduced body weight (by up to 5.2%, 4.3% respectively) over 48 hours in db/db mice, SC-435 being 10.5 fold more potent.

Conclusion: In summary, the parallel behavior of metformin and a non-re sorbable bile salt transport inhibitor to stimulate GLP-1 secretion, to lower plasma glucose, to lower body weight, and to elevate BAs in the distal bowel, are consistent with their actions being via indirect-L-cell stimulation with BAs. These studies further identify ASBT’s, including those without systemic exposure, as a potentially new class of oral anti-diabetic antiobesity agent.

736
Effects of angiotensin II on receptor mediated insulin transcytosis in bovine aortic endothelial cells
W.C. Ha1, S.J. Oh1, J.L. Lee1, J.H. Kim1, S.A. Chang1, O.K. Hong1, B.Y. Cha1, H.W. Lee1, H.S. Son*1; 1The Catholic University of Korea, Seoul, 2Yunngnam University Medical Center, Daegu-si, Republic of Korea

Background and aims: Angiotensin II (ATII) is involved in the pathogenesis of hypertension and increases insulin resistance. It is known that the main role of insulin receptor in endothelial cells is to deliver insulin to target tissue by a series of process - binding of insulin on insulin receptor, internalization of insulin-insulin receptor complex and releasing of insulin around target tissue - called receptor mediated transcytosis. We investigated the effects of ATII on receptor mediated insulin transcytosis in endothelial cell.

Materials and methods: After treating with (insulin alone), (insulin and ATII), insulin receptor blocker(ARB) on bovine aortic endothelial cells, we observed the change of the total amount of insulin receptor, the amount of insulin receptor on membrane and in cytosol, binding of insulin on insulin receptor and internalization of insulin-insulin receptor complex, time dependently.

Results: 1) Insulin increased the total amounts of insulin receptor, binding of insulin on insulin receptor and internalization of insulin-insulin receptor complex. 2) ATII decreased the total amount of insulin receptor, and it decreased the binding of insulin on insulin receptor up to 70 %. 3) After treating with ATII, the amount of insulin receptor on cell membrane was decreased but the amount of insulin receptor in cytosol was increased, time dependently. 4) ATII decreased the internalization of insulin-insulin receptor complex, but the difference is imperceptible. 5) ARB improved the ATII-induced reduction of binding of insulin on insulin receptor, and ARB improves this inhibitory effect. We think that this inhibitory effect is due to reduction of the amount of insulin receptor on cell membrane by reduction of the expression of insulin receptor and increase of the translocation of insulin receptor from cell membrane to cytosol. As a result, the delivery of insulin around target tissue is decreased, and this may explain partial insulin resistance by ATII.

737
Insulin improves hepatic insulin resistance induced by free fatty acid through inhibiting c-Jun NH2-terminal kinase 1 (JNK1) pathway and improving insulin signalling
N. Wu, P. Han, S. Zhao, L. Zhou, Y. Li; Department of Endocrinology, Shengying Hospital of China Medical University, China.

Background and aims: It is well established that elevated circulating free fatty acids (FFA) can induce hepatic insulin resistance, which is the primary contributor to increased hepatic glucose production and overt hyperglycemia in type 2 diabetes. However, the exact mechanism by which FFAs cause insulin resistance in the liver is not completely known, but may involve oxidative stress. Intralipid plus heparin (IH) infusion is a standard nontoxic method to elevate FFA levels in vivo. Therefore, we established an in vivo model of insulin resistance by prolonged (48h) IH infusion in wistar rats. And co-infusion with taurine (an antioxidant) was designed to investigate the effect of taurine on hepatic insulin resistance, and to explore the potential mechanism of IH-induced hepatic insulin resistance in prolonged lipid infusion model.

Materials and methods: Cannulated rats (n=12-14/group) were infused for 48h intravenously with saline(SAL), or intralipid plus heparin (IH), or IH plus taurine (HT), or taurine (TAU). Half of each group rats were randomly assigned to either the basal group or a clamp group. During the last 2h of the 48h infusion, hyperinsulinemic-euglycemic clamps with [6-H] glucose infusion (20μCi bolus followed by constant infusion at 0.4 μCi/min) were performed to assess hepatic insulin sensitivity. Oxidative stress measured as the concentration of 8-Isoprostaglandin F2α (8-iso-PGF2α) in liver was analyzed using an enzyme-linked immunosassay (ELISA) commercial kit. We evaluated JNK1 activation, insulin-stimulated IRS-1 tyrosine phosphorylation and insulin-stimulated IRS-2 tyrosine phosphorylation in the liver by immunoprecipitation and immunoblotting.

Results: The results showed during hyperinsulinemic-euglycemic clamp, IH infusion induced hepatic insulin resistance as indicated by elevation of HGP compared with SAL. Taurine prevented the elevation of HGP induced by IH infusion (HGP in umol/kg.min, SAL: 25±4, IH: 71±6, IHT: 30±7, TAU: 26±4, p<0.05 IH vs. other treatment groups). This indicates that IH-induced hepatic insulin resistance was abolished with taurine co-infusion. Furthermore, taurine co-infusion reversed IH-induced 1) increase in 8-iso-PGF2α, 2) increase in JNK1 activity, 3) decrease in insulin-stimulated tyrosine phosphorylation of IRS-2 in liver. Insulin-stimulated tyrosine phosphorylation of IRS-1 in liver did not differ among the four groups in this study. Conclusion: In summary, prolonged IH-infusion induced the impairment of hepatic insulin sensitivity probably by activating JNK1 pathway and reducing the insulin-stimulated tyrosine phosphorylation of IRS-2 in liver. Taurine, as an antioxidant, prevented hepatic insulin resistance might also associated with inhibiting JNK1 and increasing insulin-stimulated tyrosine phosphorylation of IRS-2 in vivo.

Supported by: Education Bureau of Liaoning Province, China

738
Probiotic Bifidobacterium lactis 420 reverses diabetic status in mice under high-fat diet by reducing plasma endotoxin and tissue inflammation
R. Burcelin1, S. Lahtinen1, A. Waget2, P. Klopp1, C. Vachoux2, O.K. Hong1, D. Carcano1, J. Amar1, N. Rautou3; 1Functional Genomics, Inserm U858, Toulouse, France, 2Health & Nutrition, Danisco Bioactives, kantivik, Finland, 3Danisco Bioactives, Paris, France, Department of Therapeutics, Toulouse, France.

Background and aims: It has been proposed that alterations in the intestinal microbiota may be causally involved in high-fat diet (HFD)-induced meta-
We here daily treated insulin resistant HFD mice with 10-8 to 10-10 Bifidobacterium lactis 420 daily for 6 weeks.

Results: The probiotic treatment dose dependently reduced glucose intolerance. The treatment with 10^9 cells daily reduced the impact of HFD on body fat mass, mesenteric adipose tissue mass, fasting hyperinsulinemia, and insulin resistance as assessed by the euglycemic clamp technique. Conversely, fed insulin secretion was improved. This improved glucose metabolism was associated with a lowering of plasma LPS concentration i.e. metabolic endotoxemia. Similarly, liver and adipose tissue cytokine mRNA expression (Il6, TNFα, IL1, PAI-1) were reduced. Interestingly, we detected bacteria in the mesenteric adipose depot of HFD mice when compared with normal chow whereas the subcutaneous fat was mostly unaffected. Among these bacteria, the Enterobacteriaceae (LPS containing bacteria) were mainly increased. The probiotic treatment reduced this enrichment. We then explored that a change in intestinal epithelial cells permeability could be at the origin of the translocation of bacteria towards the adipose tissue in response to a HFD.

Our data show that the probiotic extract or supernatant regulates the trans-epithelial electrical resistance in vitro on Caco2 cells.

Conclusion: Altogether our data suggest that Bifidobacterium lactis 420 treatment improved glucose metabolism of HFD-induced diabetic mice by reducing intestinal bacterial translocation, metabolic endotoxemia, and adipose tissue inflammation.

AT1-receptor blockade and insulin sensitivity in hypertensive subjects: the role of capillary recruitment

A.M. Jonk1, A.H.H. Houwen1, N.C. Schaper1, P.W. de Leeuw1, E.H. Serne1, W.M. Smulders2, C.D.A. Stehouwer1
1Dept of Internal Medicine, Maastricht University Medical Centre, Netherlands, 2Dept of Internal Medicine, VU Medical Center, Amsterdam, Netherlands.

Background and aims: Blocking the renin-angiotensin system (RAS) improves insulin sensitivity in hypertensive subjects. However, the underlying mechanisms are undefined. An effect of insulin that is crucial for stimulating glucose uptake is the ability of insulin to regulate its own delivery, and that of glucose, to muscle cells via recruitment of the microvasculature. This study was designed to investigate the effect of acute angiotensin II AT1-receptor blockade (ARB) on insulin-mediated microvascular function and insulin-mediated glucose uptake in hypertensive subjects.

Materials and methods: A randomised, double-blind placebo-controlled trial was performed in 15 untreated mildly hypertensive subjects (BMI 26.9±2 kg/m²; BP 150/92 mmHg), to examine the effects of acute ARB treatment (irbesartan, 600mg, oral single dose) or Ca²⁺-blockade (felodipine, 10mg idem) as a pressor control on insulin-induced microvascular function and on insulin-mediated whole body glucose uptake (WBGU, mg/kg/min) during a hyperinsulinaemic euglycaemic clamp (50mU/kg/h). Effects of irbesartan and felodipine were compared to placebo. Skin capillary density (n/mm²) and capillary recruitment (peak n/mm²) during post-occlusive reactive hyperaemia (PRH) were measured with capillaroscopy. All subjects were tested on a low sodium diet (100 mmol/day).

Results: Compared to the basal state, hyperinsulinaemia increased baseline capillary density (56.8±7.1 vs. 60.2±8.3 n/mm², P<0.02). Relative to placebo, irbesartan, but not felodipine, increased insulin-induced capillary density (Δ cap density (median (interquartile range)) +3.5 (-1.3 - +5.0) n/mm², P<0.02). Insulin-induced capillary recruitment was not altered by either treatment. Neither irbesartan nor felodipine enhanced WBGU.

Conclusion: Our data demonstrate that acute AT1-receptor blockade augments insulin-induced capillary density in mildly hypertensive subjects. Although glucose uptake did not increase significantly, the increased insulin-induced microvascular function found with ARB might point to improved insulin and glucose delivery as the underlying mechanism for the improved insulin sensitivity with longer-term ARB treatment.
PS 64 Other hormones and endogenous factors

Ciliary neurotrophic factor increases plasmatic insulin half-life and improves metabolic profile in a non-insulin resistant type 2 diabetes mellitus model

G.J. Santos, C.A.M. Oliveira, E.M. Carneiro, A.C. Boscherio, L.F. Rezende; Department of Anatomy, Cell Biology and Physiology and Biophysics, State University of Campinas, Brazil.

Background and aims: Type 2 diabetes mellitus (DM2) is characterized by impaired insulin sensitivity and secretion, leading to hyperglycaemia. CNTF is a cytokine that improves metabolic profile in obesity-induced and insulin resistant DM2 models, allegedly through an increase in insulin sensitivity. Besides that, CNTF promotes in vitro pancreatic islet survival. Given that, we decided to evaluate the role of functional beta cell mass maintenance by CNTF in a non-insulin resistant DM2 model. Insulin clearance is an important process that plays a role in controlling insulin action, usually evaluated as plasmatic insulin half-life. Abnormalities in this process are involved in many metabolic disorders, particularly in DM2.

Materials and methods: Neonate Swiss mice received intra-peritoneal injection of Citrate buffer (CTL), CNTF 0.1mg/Kg (CNTF), Alloxan 250mg/Kg (ALOX) or a combination of both (CNTF+ALOX). We performed an intraperitonal glucose tolerance test (ipGTT) in p26 and an intraperitoneal insulin tolerance test (ipITT) in p28. Plasma glycaemia was assessed by a Roche Accu-Chek II Glucometer. Plasma insulin was assessed by Radioimmunoassay (RIA). Data are expressed as mean +/- SEM, and p<0.05.

Results: Alloxan-treated mice were hyperglycaemic and glucose intolerant, indicating that they are diabetic (DM2). Nevertheless glycaemia decrease after ipITT was similar to CTL, therefore they were not insulin resistance. CNTF+ALOX mice had lower fasting and similar fed glycaemia than CTL. Besides the glycaemia decreased after ipITT was similar to CTL, CNTF increased plasmatic insulin half-life in both CNTF and CNTF+ALOX groups (Figs.3-4), despite the fact that its impairs pancreatic islet glucose-stimulated insulin secretion.

Conclusion: The results indicate that CNTF improved metabolic profile in non-insulin resistant DM2 model, similarly to other insulin resistant models, such as obesity, suggesting that CNTF protective effects might involve mechanisms other than just increased insulin sensitivity, specially by increased plasmatic insulin half-life, and supposedly also through functional beta cell mass maintenance.
variety of metabolic activities like the regulation of bile acid, carbohydrate and lipid metabolism as well as phosphate, calcium and vitamin D homeostasis via binding to and activation of FGF receptors (FGFR) in presence of α-Klotho (KL) or β-Klotho (KLβ). Aim of the present study was to characterize the activation of FGFR1 and FGFR4 in presence or absence of KL or KLβ by FGF19, FGF21, and FGF23.

Materials and methods: The FGF induced FGF autophosphorylation was measured via in-cell western (ICW) in CHO cells overexpressing either human FGFR1c short or long form, or FGFR4 in presence or absence of KL or KLβ. ERK phosphorylation as a downstream signalling readout for FGF activation was analysed by ICW in human primary visceral adipocytes. Time dependent in vivo signalling of FGF21 in WAT and liver of C57Bl/6j mice was analysed using ELISA after s.c. injection of 0.6 mg/kg FGF21.

Results: We established a specific and highly sensitive ICW assay for direct analysis of the FGF induced FGF autophosphorylation in CHO cells over-expressing different human FGFR ± KL/KLB. EC50 values were obtained from dose-response curves and are summarized in table 1. In these CHO cells FGF1 and FGF2 activated either FGFR1 or -4 independent of KL/KLB. FGF19 activated only FGFR4 in presence of KL or KLβ. In contrast FGF21 activated the long and short form of FGFR1c efficiently only in complex with KL. FGF21 was also able to stimulate FGFR4-KLB but was 4 times less potent than FGF19. FGF23 needed the co-receptor KL for an efficient activation of FGFR1 and -4. The analysis of ERK phosphorylation in human primary visceral adipocytes which express mainly FGFR1 and KLβ demonstrated that in addition to FGF2 only FGFR1c was able to activate FGF signalling. After s.c. injection of FGF21 in mice a comparable ERK activation was found in fat tissue. No ERK activation was detectable in liver where predominantly FGFR4 is expressed. Contrary to this in WAT FGF21 stimulated a fast increase, reaching a maximum after about 30-60 minutes. The decreasing signal was detectable even up to 8 hours.

Conclusion: Using cell lines overexpressing FGFR and co-receptors we could demonstrate that all members of the FGFR9-family require the presence of KL or KLβ for an efficient signalling through a particular FGFR isoform, e.g. FGF21 only activates FGF signalling in adipocytes that primarily express FGFR1c, not FGFR1 or FGFR2. We conclude that the expression of KL and KLB, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of the FGFR9-family.

Summarized in vitro data for FGF induced FGF phosphorylation in CHO cells & in human adipocytes

<table>
<thead>
<tr>
<th>Cell line</th>
<th>CHO R1cS</th>
<th>CHO R1cS+KL</th>
<th>CHO R1cS+KL</th>
<th>CHO R1cS+KL</th>
<th>CHO R1cS+KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGFR1</td>
<td>7.6±4.2</td>
<td>2.4±0.8</td>
<td>1.6±0.5</td>
<td>15.6±10.4</td>
<td>19.0±11.2</td>
</tr>
<tr>
<td>FGFR2</td>
<td>2.2±0.8</td>
<td>2.2±0.8</td>
<td>2.2±0.8</td>
<td>2.2±0.8</td>
<td>2.2±0.8</td>
</tr>
<tr>
<td>FGFR19</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
</tr>
<tr>
<td>FGFR21</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
</tr>
<tr>
<td>FGFR23</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
</tr>
</tbody>
</table>

474 Effects of short-term continuous subcutaneous insulin infusion on fasting plasma Vasin levels in patients with new-onset type 2 diabetes mellitus

L. Ling1,2, G. Yang1, K. Li1
1Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, 2Department of Clinical Biochemistry, Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, China.

Background and aims: Visceral adipose tissue-derived serine protease inhibitor (Vasin) has recently been characterized as an insulin-sensitizing adipokine. However, the role of this factor in humans remains unknown. This study was aimed to investigate the effects of short-term continuous subcutaneous insulin infusion (CSIH) on plasma vasin levels in patients with severe newly diagnosed type 2 diabetes.

Materials and methods: Thirty patients with severe newly diagnosed type 2 diabetes (T2DM), 37 subjects with impaired glucose regulation (IGT) and 38 sex-, age- and BMI-matched normal controls (NGT) participated in the study. T2DM group was treated with CSIH for 2 weeks. Euglycemic-hyperinsulinemic clamps (EHC) were performed in 16 subjects of T2DM group. Plasma vasin concentrations were measured with a commercial ELISA kit. The relationship between plasma vasin levels and metabolic parameters was also analyzed.

Results: Fasting plasma vasin levels were higher in T2DM than in IGT and NGT groups (1.83±0.55 vs. 0.43±0.21 vs. 0.56±0.26μg/L, P<0.05), but there was no difference between IGT and NGT groups. Fasting plasma vasin concentrations were decreased significantly in T2DM group after two-week CSIH treatment (1.83±0.55 vs. 1.19±0.57μg/L, P<0.05) accompanied with significant amelioration of insulin sensitivity and glucose control. Changes in circulating vasin concentrations were correlated positively with those of insulin sensitivity.

Conclusion: In T2DM patients, plasma vasin levels are elevated, but significantly decreased after CSIH treatment. These data suggest that vasin play may role in insulin sensitivity of diabetic humans.

Supported by: National Natural Science Foundation of China (30370671, 30771037, 30971388)

745 Omentin, a novel visceral fat depot-specific secretory protein, enhances insulin-stimulated glucose uptake, in peripheral monocytes, in patients with type 2 diabetes

E. Maratou1, E. Bountai2, M. Pappas2, V. Lambadari2, P. Mitrou1, F. Spanoudi1, G. Dimitriadis2, S.A. Raptis1,2
1Hellenic National Diabetes Center, 22nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, “Attikon” University Hospital, Greece.

Background and aims: Omentin is an adipokine, selectively expressed and secreted from visceral adipose tissue. Its biological action is not clear, but it is speculated that it has a beneficial effect on insulin action, since it has been shown to increase insulin signal transduction and to enhance insulin-stimulated glucose transport. Omentin plasma levels have been inversely correlated with indicators of metabolic risk, such as body mass index and HOMA. The present study investigates the effect of omentin on glucose uptake in peripheral monocytes from patients with type 2 diabetes (DM) and normoglycemic subjects (NG).

Materials and methods: Blood (2ml) was withdrawn from 10 treatment-naive patients with type 2 diabetes (BMI 23±2kg/m2, age 52±5years), and 8 healthy volunteers (BMI 22±2kg/m2, age 50±6years). Circulating monocytes were incubated for 1 hour with insulin (0, 25 and 100U/L) or/and omentin (100, 300ng/ml) to determine the abundance of GLUT4 on the plasma membrane. Cells were stained with antiGLUT4 antisera. Glucose uptake was assayed in vivo with 2-[14C]glucose in presence of insulin-stimulated glucose uptake. Omentin plasma levels have been inversely correlated with indicators of metabolic risk, such as body mass index and HOMA. The present study investigates the effect of omentin on glucose uptake in peripheral monocytes from patients with type 2 diabetes (DM) and normoglycemic subjects (NG).

Results: Fasting plasma vasin levels were higher in T2DM than in IGT and NGT groups (1.83±0.55 vs. 0.43±0.21 vs. 0.56±0.26μg/L, P<0.05), but there was no difference between IGT and NGT groups. Fasting plasma vasin concentrations were decreased significantly in T2DM group after two-week CSIH treatment (1.83±0.55 vs. 1.19±0.57μg/L, P<0.05) accompanied with significant amelioration of insulin sensitivity and glucose control. Changes in circulating vasin concentrations were correlated positively with those of insulin sensitivity.

Conclusion: In T2DM patients, plasma vasin levels are elevated, but significantly decreased after CSIH treatment. These data suggest that vasin play may role in insulin sensitivity of diabetic humans.

Supported by: National Natural Science Foundation of China (30370671, 30771037, 30971388)

745
Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss

M. Sabater1, J.M. Moreno-Navarrete1, F.J. Ortega1, G. Pardo1, W. Ricart1, G. Frühbeck1, J.M. Fernández-Real2,
1Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona, 2Department of Endocrinology and Metabolic Research Laboratory, Clínica Universitaria, University of Navarra, Pamplona, Spain.

Background and aims: Pigment Epithelium-Derived factor (PEDF) is a 50-kDa protein with anti-inflammatory activity. We aimed to study PEDF in vivo in association with insulin resistance and in vitro in human adipocytes.

Materials and methods: Circulating PEDF (ELISA) and metabolic profile were assessed in 125 Caucasian men. PEDF levels were also assessed in an independent cohort of subjects (n = 33) to study the effects of changing insulin action. PEDF gene expression and PEDF secretion were also measured during differentiation of human preadipocytes.

Results: In all subjects, PEDF were positively associated with BMI (r = 0.326, p < 0.0001), waist-to-hip ratio (r = 0.380, p < 0.0001), glycated hemoglobin and fasting triglycerides; and negatively with insulin sensitivity (r = 0.320, p < 0.0001). Circulating PEDF levels was significantly increased in subjects with lower PEDF levels.

747

Differential role of testosterone and estradiol on glucose and lipid metabolism in human skeletal muscle cells

E. Salehzadeh, L. Al-Khalil

Molecular medicine and surgery, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Testosterone and estradiol ratio differs between sexes, where changes in sex hormones homeostasis may cause different pathological response. We have previously shown that human skeletal muscle cell culture obtained from elderly female and male healthy subjects showed no intrinsic sex differences on glucose and lipid metabolism. Aim of the study is to determine whether testosterone or estradiol treatment have different role on lipid and glucose metabolism in human skeletal muscle cell culture.

Materials and methods: Myotubes obtained from women and men donors were treated with 10 nM testosterone or estradiol for 4 days. Insulin-stimulated glycogen synthesis and palmitate oxidation were assessed and samples were collected for immunoblot analysis to assess AMPK, AKT, ERK1/2 and p38 MAPK phosphorylation and total protein. mRNA levels of different metabolic genes were also determined using real-time PCR analysis.

Results: Testosterone enhanced glucagon incorporation to glycogen and insulin-stimulated Akt phosphorylation specifically in myotubes from women, but not from men, donors, indicating sex specific role of testosterone on glycogen synthesis in skeletal muscle. Testosterone enhanced both AMPK phosphorylation and lipid oxidation in myotubes obtained from both sexes. mRNA expression showed a differential response to either sex hormone treatment with no sex differences. Testosterone increased the glycogen synthase I (GYS1), while estradiol altered the mRNA expression of stearoyl-CoA desaturase (SCD) and Pyruvate dehydrogenase kinase 4 (PDK4).

Conclusion: Only testosterone treatment showed an effect on lipid metabolism while, both sex hormones changed the mRNA expression of some genes involved in lipid oxidation. In this study, we are able to suggest an important role of testosterone on glucose and lipid metabolism in human skeletal muscle cells, with no clear effect of estradiol on metabolism and there is a sexual difference on cellular metabolism with sex hormones treatment.

748

Acute effects of estrogen receptor agonists on vascular reactivity of diabetic ovariectomised rats

G. Ozansoy, T. Akhayeva, N. Arı

Department of Pharmacology, Ankara University, Faculty of Pharmacy, Turkey.

Background and aims: Estrogen protects against cardiovascular disease in premenopausal women. These cardioprotective effects are absent in diabetic and postmenopausal women. But the relative role of estrogen receptors (ER-alpha; ER-beta) is not clear in estrogen-induced vasoconstriction of these situations. The aim of the study was to determine how individual estrogen receptor isoforms modulate vascular activity in diabetic ovariectomized rats.

Materials and methods: 4 groups of Wistar rats have been used in this study. Control group (C;n=8), ovariectomized group (OVX; n=13), diabetic group (DIA;n=5), diabetic ovariectomized group (DIA+OVX; n=7). Bovine ovariectomized rats had been performed to anesthetized (ketamine+xylasine) animals. Diabetes induced by a single i.v. injection of streptozotocin (45 mg/kg) a week after the operation. After 8 weeks, thoracic aortae were removed and mounted in organ baths for measuring isometric relaxations. Experiments were carried out on rings precontracted with phenylephrine (PE) to 60% of maximal contraction. Cumulative concentration-response curves for 17-beta estradiol (E2; nonselective agonist), 4,4’-((4-propyl-1H)-pyrazole-1,5- triyl) diphenol (PPT; ER-alpha selective agonist) and diarylpropionitrile (DPN; ER-beta selective agonist) were obtained with (10^-13 - 10^-6 M) concentration range.

Results: An increase in body weight was observed in OVX group (p<0.001 vs C group) but not in the diabetic groups. Blood glucose levels were increased in the DIA and OVX+DIA group compared with the C group (p<0.001). Plasma estradiol levels and the ratio of uterine weight/body weight were reduced in O VX+DIA group compared C group respectively (p=0.001;p<0.001) The vasorelaxation responses to estrogenic agonists E2 and PPT were reduced in OVX, DIA and OVX+DIA however these responses to DPN were reduced both OVX groups (p<0.001).The ratios % of the maximum relaxations with E2, PPT and DPN of PE-precontracted aortic rings were shown in Table(*p<0.05 vs 100 uU/ml Insulin

Conclusion: These findings suggest that ER-alpha has still play a vital role in diabetes or ovariectomized vessels. This study also support that the estrogenic vasodilatation is abolished under diabetic ovariectomized condition which may be contribute to diabetic postmenopausal vascular dysfunction.

The % of the maximum relaxations with E2, PPT and DPN of PE-precontracted aortic rings

<table>
<thead>
<tr>
<th>Groups</th>
<th>E2</th>
<th>PPT</th>
<th>DPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>24.0 ± 0.1</td>
<td>29.6 ± 1.0</td>
<td>17.0 ± 0.4</td>
</tr>
<tr>
<td>O VX</td>
<td>16.6 ± 0.4***</td>
<td>18.0 ± 6.3***</td>
<td>6.9 ± 1.0***</td>
</tr>
<tr>
<td>DIA</td>
<td>16.1 ± 1.1***</td>
<td>19.6 ± 1.2***</td>
<td>12.0 ± 1.4</td>
</tr>
<tr>
<td>O VX+DIA</td>
<td>8.3 ± 0.5***</td>
<td>9.0 ± 0.6***</td>
<td>8.0 ± 1.3***</td>
</tr>
</tbody>
</table>

Supported by: Ankara University 20070803004 HP
with altered glucose tolerance and type 2 diabetes. Of the inflammatory markers measured, circulating PDE levels were positively associated with serum sTNFR1 and IL-10 in obese subjects. Interestingly, weight loss led to significantly decreased of PDEF concentration from 34.8±19.3 µg/ml to 22.5±14.2 µg/ml (p<0.0001). Multiple linear regression analyses revealed that insulin sensitivity contributed independently to explain 14% of the variance in circulating PDEF levels, after controlling for the effects of BMI, age, and log fasting triglycerides. Differences in circulating total PDEF observed after weight loss were strongly related to changes in obesity and insulin resistance measures. PDEF gene expression and PDEF secretion increased during differentiation of human pre-adipocytes.

Conclusion: Circulating PDEF is strongly associated with insulin sensitivity. The findings show, for the first time in humans, that circulating PEDF concentrations decrease significantly after weight loss in association with improvement of insulin action. PDEF seems to be involved in human adipocyte biology.

Supported by: the Ministerio de Educaci6n y Ciencia (SAF2008-0273)

749

Osteocalcin and its effect on metabolic control in type 1 diabetes

N. Napoli1, C. Bizzarri2, D. Pitoio1, C. Suraci1, M. Altomare1, E. Sacchetti1, L. Valente1, P. Pozzilli1; 1Campus Bio-Medico di Roma, 2Unit of Endocrinology and Diabetes, Bambino Gesù Children’s Hospital, 3Università Cattolica del Sacro Cuore, 4Ospedale S. Donato Bartolo, Rome, Italy.

Background and aims: Osteocalcin (OC), produced by osteoblasts, is considered a predictor of fractures and its elevated levels are associated with both high bone formation and turnover. Recent animal studies have shown that OC acts also as a hormone regulating glucose metabolism and fat mass. Few studies have explored this relationship in humans showing an inverse correlation with fasting plasma glucose, HbA1c and fat mass in type 2 diabetic patients. However, no data are available in type 1 diabetes (T1D). Aim of this study was to investigate the relationship between OC, HbA1c and fasting serum C-peptide in patients with recent onset T1D. Moreover, we tested in T1D patients the effect of 1 year calcitriol administration on OC, residual β-cell function and metabolic control (HbA1c and insulin requirement).

Material and methods: 34 subjects (mean age 22.2±1.7 SE) with recent-onset T1D and baseline C-peptide > 0.25 nM were enrolled in this study. Intensive insulin therapy was implemented with three daily injections of regular insulin + bedtime insulin in these patients. Osteocalcin was analyzed at the time of diagnosis and one year after treatment with either 0.25 µg daily calcitriol or placebo. OC was evaluated by ECLIA method (modular E170, Roche Diagnostics, Mannheim, Germany) in relation to C-peptide.

Results: At T1D diagnosis, OC levels were significantly lower in female than in male patients (17.8±3.1 ng/ml vs 43.9±6.9 ng/ml; p<0.01) while no other metabolic parameters as HbA1c, C-peptide differed between gender. Analyzing the whole group of patients, OC levels were positively associated with insulin requirement (r=0.48, p<0.01), while no significant correlation were found in relation to HbA1c and C-peptide. At 1 year follow-up, OC levels were increased (11%) in the placebo group while dropped by 25% in the calcitriol group, but their levels were not significantly different compared to diagnosis due to high variability. No significant differences were observed between calcitriol and placebo groups for OC (37.2±11.8 ng/ml vs 25.8±7.4 ng/ml; p=NS), C-peptide (1.05±0.25 nM vs 25.8±7.4 nM; p=NS), HbA1c (6.8±1.13% vs 7.14±1.1%; p=NS) and insulin requirement (0.48±0.2 vs 0.58±0.21; p=NS).

Conclusion: In contrast to what expected, OC was not associated with residual pancreatic β-cell function or metabolic control in recently diagnosed T1D patients. Calcitriol had no effect on residual β function, insulin dose or the overall metabolic control. Further studies with a larger group of patients are needed to confirm these data.

750

The relationship between vitamin D status and markers of oxidation and inflammation in subjects with the metabolic syndrome

K.I. Birkeland1, H.L. Gulseth1, I.M.F. Gjelstad1,2, J.A. Lovegrove3, C. Defoort1, E.E. Blaak1, J. Lopez-Miranda4, A. Dembinska-Kiec5, U. Riséns7, H.M. Roche6, C.A. Drevon2; 1Department of Endocrinology, Oslo University Hospital Aker, Norway, 2Department of Nutrition, University of Oslo, Norway, 3University of Reading, Reading, United Kingdom, 4Department of Endocrinology, INSERM, Marseille, France, 5NUTRIM, Maastricht University, Netherlands, 6University of Cordoba, Spain, 7Jagiellonian Medical College, Krakow, Poland, 1University College Dublin, Ireland.

Background and aims: Low levels of vitamin D may increase the risk of developing type 2 diabetes, and inflammation and oxidative stress may participate in the pathogenesis of diabetes. We have evaluated the relationship between serum 25-hydroxyvitamin D (25(OH)D) and markers of inflammation and oxidative stress in subjects with the metabolic syndrome (MetS).

Material and methods: 25(OH)D was measured with HPLC-MS in subjects with the MetS in the LIPGENE dietary intervention study. CRP was measured by ELISA and urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) and 15-keto-dihydro-prostaglandin F2α (15-keto PGF2α) were determined by RIAs and adjusted for urinary creatinine. Subjects (n = 446, 45% males) were from eight European centres. Mean (SD) age was 54.7 (9.0) years and BMI 32.3 (4.1) kg/m2.

Results: The mean (SD) concentration of 25(OH)D was 57.1 (26.0) nmol/L. Subjects were grouped according to their vitamin D status; severely deficient (<25 nmol/L, n=20), deficient (25-49.9 nmol/L, n=189), insufficient (50-74.9 nmol/L, n=146) and sufficient (> 75nmol/L, n=91). Markers of oxidative stress (8-iso-PGF2α p=0.022) and inflammation (15-keto PGF2α p=0.022 and CRP p=0.05) differed significantly across categories of 25(OH)D. Plasma concentrations of 25(OH)D were significantly negatively associated with BMI (r=-0.23, p<0.001), CRP (r=-0.11, p=0.02) and 15-keto PGF2α (r=-0.10, p=0.039), but not with 8-iso-PGF2α (r=-0.08, p=0.09).

Conclusion: In a large sample of subjects with the metabolic syndrome low plasma concentrations of 25(OH)D were associated with enhanced markers of inflammation and oxidative stress. Supported by: EU 6 FP (FOOD- CT-2003-505944)
PS 65 Herbology in diabetology

751

Arab herbal medicine-based combination of four anti-diabetes plants stabilizes a physiological blood glucose level
H. Zaid, O. Saed, B. Saad;
Qasemi Research Center, Al-Qasemi Academic College, Baqa El-Gharbia, Israel.

Background and aims: Medicinal plant-based drug discovery provides important leads against various pharmacological targets including diabetes, which represents a worldwide predominant public health concern. Several drugs are used to treat this disease. Based on our traditional knowledge,

Ing- lana regia, *Elae europea*, *Urtica dioica*, and *Atiprplea hulmum*. L. exhibit favorable effects on blood glucose levels. This study was aimed at investigating safety and efficacy of a fixed mixture of these plants.

Materials and methods: In the present study we assessed safety and anti-diabetic effects of the combination of the four plants leave extracts using in vivo (human type 2 diabetic volunteers and Streptozotocin-induced diabetic rats) and in vitro (human fibroblasts and skeletal muscle cells treated with increasing concentrations of plant mixture).

Results: No sign of toxic effects were seen in cultured human fibroblasts and skeletal muscle cells treated with increasing concentrations of Plant mixture. Anti-diabetic effects were evidenced by inhibition of glucose intestinal absorption (~49%) in a rat gut-segment. Furthermore, treatment with these plant combined extracts of Streptozotocin-induced diabetic rats for 2-3 weeks showed a significant reduction in glucose levels [above 400±50 mg/dl to 210±22 mg/dl (P=0.001)] and significantly improved uptake during the glucose tolerance test, compared with positive control. In addition, glucose levels were tested in sixteen human volunteers, with the recent onset of type 2 diabetes mellitus, who received the plants mixture tablets 1X3 daily for a period of 4 weeks. Within the first week of the tablets consumption, baseline glucose levels were significantly reduced from 290±40 to 210±20 mg/dl. At baseline, a subgroup of eleven of these subjects had glucose levels below 300mg/dl and the other subgroup had levels ≥300 mg/dl. Clinically acceptable glucose levels were achieved during the 2-3 weeks of therapy in the former subgroup and during the 4th week of therapy in the latter subgroup. No side effect was reported.

Conclusion: Results demonstrate safety, tolerability and efficacy of herbal combinations of four plants that seem to act differently but synergistically to regulate glucose homeostasis.

752

Effects of Mongolian traditional medicinal plant extract of Gentianaceae on in vivo insulin action in streptozotocin-induced diabetic rats
O. Khoo khoor, Y. Sayar;
Department of Health Science, Aichi Gakuin University, Nagoya, Japan.

Background and aims: Lomatogonium rotatum (L) Fries ex Fern and Gentiana acuta Michaux of the family Gentianaceae have been documented as traditional plant treatments for liver diseases. We firstly performed a preliminary investigation on the acute effect of Mongolian medicinal plant extracts Lomatogonium rotatum and Gentiana acuta , Gentianaceae on the blood glucose tolerance in rats, evaluated by an oral glucose tolerance test (OGTT). Then, investigated the effects of the same extracts on in vivo insulin action in streptozotocin (50mg.kg-1BW.p.o.; 7 days effect: non-diabetic control: 15:2± 0.8 ml kg-1min-1, diabetic control: 7.6± 0.7ml kg-1min-1. versus plant extract 1: 14.1 ± 1.4 ml kg-1min-1, and versus plant extract 2: 13.2 ± 1.2 ml kg-1min-1, P<0.001, respectively).

Conclusion: These results suggest that a 7 days administration of the Mongolian plant extracts Gentianaceae can improve glucose utilization and insulin resistance in diabetic rats.

Supported by: MEXT of Japan (1650402)

753

Chronic caffeine intake reverses age-induced insulin resistance in the rat
S.V. Conde, E.C. Monteiro, M. Noto-Carmo, M.P. Guarnizo;
1Pharmacology, 2Pathophysiology, CEDOC, Faculty of Medical Sciences, Lisboa, Portugal.

Background and aims: Aging is known to be associated with increasing insulin resistance and declining glucose tolerance. Insulin resistance is one of the core metabolic abnormalities in type 2 diabetes and metabolic syndrome. One of the lifestyle changes advised in these diseases is coffee withdrawal, based on several studies describing that caffeine can acutely lower insulin sensitivity. However, the benefits of coffee withdrawal have been questioned by several studies that suggest no association between long-term coffee consumption and diabetes which seems to indicate that acute and chronic intake have opposite effects. In the present work we tested the hypothesis that chronic caffeine intake reverses age-induced insulin resistance in the rat and investigated if the mechanism by which caffeine restores insulin sensitivity is due to a decrease in visceral fat or oxidative stress.

Materials and methods: Six groups of rats were used: 3 months old (control), 3 months caffeine-treated, 12 months old, 12 months caffeine-treated, 24 months old and 24 months caffeine-treated. Caffeine was administered in drinking water (1g/l) during 15 days. Insulin sensitivity was assessed by means of an insulin tolerance test. Blood pressure, weight, visceral and total fat, basal glycemia, insulinema and plasma total antioxidant capacity were also measured.

Results: Insulin sensitivity diminished in 12 and 24 months rats as the constant of the insulin tolerance test (K) decreased significantly to 2.77±0.17 and 2.4±0.18 compared to the control value 4.69±0.42 (3 months rats). Chronic caffeine intake restored insulin sensitivity to control values both in 12 and 24 months rats. Basal glycemia was 100.53±3.32 mg/dL, 96.87±3.43 mg/dL and 96.63±3.10 mg/dL in 3, 12 and 24 months rats. Caffeine did not modify basal glycemia in any of the groups tested. Both 12 and 24 months rats were hyperinsulinemic, as insulin levels increased significantly by 169 and 282%, respectively from a control value of 2.05±0.4 µg/L. Chronic caffeine intake significantly decreased plasma insulin levels (p<0.05) both in 12 and 24 months rats, although without restoring plasma insulin to control values. Visceral and total fat were significantly increased both in 12 and 24 months rats when compared with 3 months rats, however no correlations were found between visceral fat and the K in both 12 and 24 months rats (p=0.06 and r=0.88; p = 0.77 and r = 0.13, respectively). Caffeine intake significantly decreased visceral and total fat in 12 but not in 24 months rats. Also, no correlations were found between visceral fat and the K in 12 and 24 months old caffeine treated rats (p=0.35 and r=0.35; p = 0.57 and r = 0.24, respectively). Additionally, chronic caffeine intake did not significantly modify the weight of the animals within the groups. Total antioxidant capacity (TAC) was decreased in 12 and 24 months rats. Caffeine intake did not modify significantly TAC in any of the groups tested.

Conclusion: Chronic caffeine intake reverses age-induced insulin resistance in rats, an effect that were independent of weight loss, visceral fat and oxidative stress.

Supported by: 2009 L'Oreal Medals and by Soc Portuguesa de Diabetologia/ Lilly Portugal

754

Shikonin improves blood glucose levels in diabetic GK rats and increases glucose uptake in adipocyte and muscle cells. Independent of its effect on NADPH oxidase

K. Yassin1, A. Öberg1, R.I. Csikasz2, M. Wilcke3, C.-G. Östenson1, T. Bengtsson1; 1Department of Molecular Medicine and Surgery, Karolinska Institutet, 2Department of Physiology, Arhennius Laboratories, The Wenner-Gren Institute, Stockholm University, 3Glucos Biotech AB, Stockholm, Sweden.

Background and aims: Shikonin is a naphtoquinone derivative from the Chinese plant Lithospermum erythrorhizon. It has been reported to inhibit the formation of the NADPH oxidase, an enzyme complex that catalyses the formation of highly reactive superoxide anions. Shikonin has been shown to stimulate glucose-uptake, and potentiate insulin-induced glucose-uptake in 3T3-L1 adipocytes. The diabetic state is associated with excess superoxide production that may contribute to failure of insulin to stimulate glucose uptake in fat and muscle. Hence, our aim was to investigate the effect of shikonin, administered intraperitoneally (i.p.), on blood glucose levels and insulin sensitivity in the spontaneously diabetic Goto-Kakizaki (GK) rats. Having found that shikonin improved glucose homeostasis in GK rats, we further studied its mechanism of action in vitro.

Materials and methods: Shikonin was given i.p. to GK rats (n=6) once daily (10 mg/kg) for 4 days and compared with placebo (vehicle DMSO/oil (9:1)) injected i.p. during 4 days in the same animals. Plasma glucose (PG) levels were measured daily before and 6 h after i.p. injections. At the 4th day, an insulin sensitivity test was performed, where glucose responses were measured after s.c. injection of 0.5 U/kg insulin. L6 muscle cells and 3T3-L1 cells were used as model systems to study how shikonin regulates glucose uptake. Glucose uptake was measured using the 2-deoxy-[3H]-D-glucose method. AMPK and Akt phosphorylation were determined by Western blot. Oxygen consumption was monitored with a Clark-type oxygen electrode.

Results: Shikonin significantly lowered morning PG on 2nd, 3rd and 4th days compared to day 1 (p < 0.01 for all days compared to the first day); the total area under the glucose curve was lower in shikonin treated rats vs control rats (p=0.014). In the insulin sensitivity test, PG levels were more reduced in the shikonin treated rats; 30-240 min after injection of insulin, the areas under the PG curves (AUCs) being 39.3±105.9 and 536.4 ±144.0 mM/210 min, respectively (p<0.02). Shikonin increased basal and insulin-stimulated glucose uptake in L6 cells and 3T3-L1, which does not express all subunits of NADPH oxidase. Shikonin did not mimic the effect of AMPK activator AICAR on AMPK phosphorylation, i.e. AMPK was not phosphorylated by shikonin. Furthermore, shikonin did not induce any change in AMP-to-ATP ratio and Akt phosphorylation in L6 cell lines, nor did it increase oxygen consumption in skeletal muscle mitochondria. However the cell-permeable calcium chelator, BAPTA-AM (5 μM), blocked shikonin-stimulated glucose uptake in L6 cell lines.

Conclusion: We conclude that shikonin treatment in GK rats decreases PG levels and improve insulin sensitivity. Since shikonin increased glucose uptake in cell lines devoid of NADPH oxidase, this enzyme cannot be involved in shikonin-mediated effects on glucose metabolism. Our present findings suggest that shikonin exerts its effect on glucose uptake by a calcium related pathway.

755

Effect of resveratrol on insulin sensitivity, oxidative stress and Akt pathway in humans

P. Brasnyó1, G.A. Molnár1, M. Mohás1, L. Markó1, B. Lacy2, J. Cseh3, E. Mikolás4, I.A. Szijártó1, Á. Merei1, R. Halmi1, L.G. Mézáros1, B. Szemegi3, I. Wittmann1; 1Second Department of Medicine and Nephrological Center, University of Pécs, Medical Faculty, Hungary; 2Life Sciences Foundation Theoretical Biochemistry Group, Augusta, USA, 3Department of Biochemistry and Medical Chemistry, University of Pécs, Medical Faculty, Hungary.

Background and aims: To examine whether the red wine polyphenol, resveratrol, improves insulin sensitivity in type 2 diabetic patients, and to gain insight into the mechanism of its action.

Materials and methods: After an initial general examination (including blood chemistry), 19 patients enrolled in the 4-week long study were randomly assigned into two groups: a resveratrol group receiving oral 2 x 5 mg resveratrol and a respective control group receiving placebo. Before, after two weeks and at the end of the trial insulin resistance/sensitivity, creatinine-normalized ortho-tyrosine level in urine samples (as a measure of oxidative stress), incretin levels and pAkt/Akt ratio in platelets were assessed and statistically analyzed.

Results: After 4 weeks, resveratrol significantly decreased insulin resistance (HOMAIR) and urinary ortho-tyrosine excretion, while it increased pAkt/Akt levels in platelets. On the other hand, it had no effect on parameters characterizing beta cell function.

Conclusion: This study shows the first time that resveratrol improves insulin sensitivity in humans, which might be due to a resveratrol-induced decrease in oxidative stress that leads to a more efficient insulin signaling via the Akt pathway.
PS 66 Liver, hepatic steatosis and metabolism

756
An analysis of liver enzymes in type 1 and type 2 diabetes and their associations with glycaemic status independent of total adiposity

N. Sattar, Scottish Diabetes Research Network Epidemiology Group, The Scottish-Southampton Diabetes and Liver Disease Collaboration; BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom.

Background and aims: Robust evidence indicates hepatic fat and related liver enzymes, alanine transaminase [ALT] and gamma glutamyl transferase [GGT], predict type 2 diabetes. However, the association of these enzymes with glycemic control in people with diabetes is less well studied. We therefore investigated whether there is an association between liver enzymes and glycemic control independently of age, sex, adiposity and smoking status in type 1 and type 2 diabetes

Materials and methods: We used population-based diabetes register data for 2008 linked to laboratory data for 3862 people with type 1 and 25075 people with type 2 diabetes in south-east Scotland. Regression analyses were used to examine associations between ALT or GGT and Hba1c in people with type 1 and type 2 diabetes controlling for age, sex, current smoking status and body mass index (BMI). After excluding people with ALT and GGT values more than twice the upper limit of normal (≥2ULN) and people with Hba1c>10% (associations were not linear beyond these values). Data on alcohol intake were not available.

Results: Data were available for ALT and GGT on 27258 (94%) and 25840 (89%) people respectively. There were 1447 people (5.3%) whose ALT was ≥2ULN (≥100U/L), 4662 people (18.0%) whose GGT was >2ULN (≥110U/L) and 1972 (6.9%) people whose Hba1c was >10% leaving data available for analysis of 2416 people with type 1 and 19058 people with type 2 diabetes. ALT was 9.9 U/l higher (p=0.0001) and GGT was 10.5 U/l higher (p=0.0001) in type 2 compared to type 1 diabetes after adjustment as described above. BMI>30kg/m2 was associated with higher levels of ALT (2.63 U/l, p=0.0001) and GGT (4.65 U/L, p<0.001) when compared to BMI<30kg/m2. Current smoking compared to non-current smoking status was associated with lower ALT levels (by 1.84 U/L, p<0.001) and higher GGT levels (by 1.94 U/L, p<0.001). In fully adjusted analyses, each 1% increase in Hba1c was associated with: a) no significant change in ALT in type 1 diabetes but a 0.90 U/l increase in type 2 diabetes (p=0.0001); and b) a 0.73 U/l increase in GGT (p=0.04) in type 1 diabetes, and a 1.23U/L (p=0.0001) increase in type 2. There was a significant (p<0.001) interaction between obesity (BMI>30kg/m2) and GGT with Hba1c as the outcome for people with type 2 diabetes in adjusted analyses.

Conclusion: The relationship between glycemic control and either ALT or GGT differs by diabetes type. The data provide strong, albeit indirect, evidence associations between ALT or GGT and Hba1c in people with type 2 diabetes controlling for age, sex, smoking status and BMI. IMCL content was greater in the TA muscle in PCOS vs. control (77 ± 13% vs. 67 ± 8%; p=0.0001). IMCL was significantly correlated with BMI (r=0.662, p=0.027). Finally, expression of IL1RN in liver and visceral fat correlated positively with serum IL-1RA levels and liver steatosis (r=0.352 and 0.462, respectively, p<0.05).

Conclusion: IL-1RA serum levels correlate with serum ALT independent of obesity, alcohol consumption and insulin resistance, most likely reflecting an association between serum IL-1RA and NASH. Supported by: Academy of Finland, Finnish Diabetes Research Foundation

758
Increased intramyocellular lipid but normal intrahepatocellular lipid content characteristics polycystic ovary syndrome compared with age- and BMI-matched healthy controls

H. Jones1, V.S. Sprung2, C.J. Pugh1, A. Irwin2, N. Aziz3, G.J. Kemp1, V.A. Adams4, W.E. Bimson5, D.J. Cuthbertson6; 1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 2Department of Diabetes and Endocrinology, University Hospital Aintree, 3Department of Gynaecology, Liverpool Women’s Hospital, 4Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, United Kingdom.

Background and aims: It has been suggested that there is a high prevalence of non-alcoholic fatty liver disease (NAFLD) in women with Polycystic Ovary Syndrome (PCOS) as both are associated with obesity and insulin resistance (IR). Furthermore, the mechanism for the peripheral insulin resistance observed in PCOS remains unclear. The aim of this study was to determine whether PCOS women have higher liver fat (intrahepatocellular lipid, IHCL) or skeletal muscle fat (intramyocellular lipid, IMCL), compared with age- and body mass index-matched controls, and to determine whether higher tissue fat content may explain IR.

Materials and methods: 20 PCOS women and 9 healthy controls were recruited. Fasting glucose, lipids, AST and ALT were measured and all subjects underwent whole body magnetic resonance imaging with proton magnetic resonance spectroscopy to determine IHCL and IMCL (soleus, SOL and tibialis anterior, TA) levels.

Results: PCOS women and healthy controls were similar with respect to BMI and age (32 ± 8 vs. 28 ± 5 kg/m²; 26 ± 4y vs. 28 ± 7y). PCOS women had higher fasting triglycerides but similar liver transaminases and similar IHCL (8 ± 13% vs. 3 ± 4%; p=0.09). IHCL was significantly correlated with BMI and waist size (WHR) in PCOS and control women. At any given BMI or WHR, PCOS women and control women had similar IHCL. IHCL was related to serum triglycerides. There was also a close correlation between IMCL and IHCL. IMCL content was greater in the TA muscle in PCOS vs. control (77 ± 56% vs. 41 ± 30%; p<0.05) but not in soleus (54 ± 38% vs. 34 ±24; p=0.1).

Conclusion: Despite the reported high prevalence of NAFLD in PCOS we found that IHCL was elevated similarly in proportion to the BMI in both PCOS and healthy controls unlike IMCL which was higher in women with PCOS and may potentially explain peripheral insulin resistance.

759
Proteasome dysfunction contributes to endoplasmic reticulum stress and insulin resistance in type 2 diabetic liver

T. Otoda1, H. Misu2, S. Kurita3, M. Yamamoto1, T. Ota1, K.R. Shima1, S. Iseki1, S. Murata2, K. Tanaka3, S. Kaneko4, T. Takamura2; 1Research Institute and Homeostasis, Kanazawa University Graduate School of Medical Science, 2Histology and Embryology, Kanazawa University Graduate School of Medical Science, 3Frontier Science Organization, Kanazawa University, 4Laboratory of Protein Metabolism, Department of Integrated Biology, Graduate School of Pharmaceutica, The University of Tokyo, 5Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Japan.

Background and aims: Insulin resistance is a key feature of people with type 2 diabetes (T2D). Growing evidence has suggested that accumulation
of endoplasmic reticulum (ER) stress in liver is a major contributor to insulin resistance; however, the molecular mechanisms linking diabetes and ER stress are not fully understood. We have previously reported that the hepatic expression of genes involved in proteasomal degradation pathway are coordinately up-regulated in people with obesity and T2D (Obesity 2008). Specifically, the expression levels of proteasome activator (PA) 28a-subunit gene was significantly higher in people with obesity than in non-obese individuals. The proteasome is an important multicatalytic enzyme complex that degrades misfolded and oxidized proteins, signal transduction factors, and antigenic peptides for presentation. Indeed, NEFA or oxidative stress have been reported to induce proteasome dysregulation in hepatocyte. The aim of this study is to clarify the role of proteasome function for insulin resistance in obesity and T2D using PA 28a, β, and γ triple knockout (KO) mice.

Materials and methods: We assessed the metabolic phenotype of PA28αβγ KO mice. After sacrifice, blood sample, liver and femoris muscle were collected and proteasome activity was measured by the chymotrypsin-like protease activity. Livers were observed by electron microscope. Gene and protein expression of markers associated with ER stress was analyzed by realtime-PCR and Western blot.

Results: 1) Proteasome activity was inhibited in livers of both genetically diabetic db/db mice and C57BL/6 mice fed a high-fat diet (HFD) (p<0.05; p=0.083, n=4), whereas gene expression levels involved in proteasomal degradation pathway were up-regulated in livers of mice fed a HFD. 2) Proteasome activity in livers of PA28αβγ KO mice was inhibited by 35% compared with control mice (p=0.05, n=3). 3) PA28αβγ KO mice showed glucose intolerance in glucose loading test. 4) Insulin-stimulated phosphorylation of Akt was impaired in livers of PA28αβγ KO mice, but not in skeletal muscle. 5) Western blot analysis displayed an accumulation of polyubiquitinated proteins in the liver of PA28αβγ KO mice. 6) Electron microscopic examination detects a massive expansion of endoplasmic reticulum and double-membrane and multilamellar structures of large autophagosomes in hepatocytes from PA28αβγ KO mice. 7) CHOP and spliced XBP-1 mRNA level were increased in livers from PA28αβγ KO mice (p<0.05; p=0.077, n=3-5). 8) GRP78, pPERK, p-eIF2a, pIRE-1, CHOP, and p-p53 protein levels were up-regulated in livers obtained from PA28αβγ KO mice (p<0.05, n=5).

Conclusion: Proteasome dysfunction induces ER stress and subsequent insulin resistance in the liver with obesity and T2D. Our study demonstrates a previously unrecognized role of ubiquitin-proteasome pathway for the development of insulin resistance in the liver and suggests that this pathway is a novel target for the treatment of T2D.

Berberine reduces hepatic fat content in SD rats with a high-fat diet by increasing hepatic MTTP function

X. Chang1, X. Gao1, M. Liu1, H. Yan1, Y. Liu1, Q. Wang1, 1Endocrinology & Metabolism, Zhongshan Hospital, 2Laboratory of Inflammation, Cellular Stress and Metabolic Regulation, The Institute for nutritional science, Shanghai, China.

Background and aims: Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity, insulin resistance, and type 2 diabetes. Hepatic fat content plays a key role in these disorders, so reducing hepatic fat accumulation can be an effective strategy to prevent type 2 diabetes. In our previous study, we found that berberine (BBR) can reduce hepatic triglyceride content and decline the DNA methylation level of hepatic microsomal triglyceride transfer protein (MTTP) promoter to upregulate MTTP expression. MTTP is necessary for the assembly and secretion of apoB-containing lipoproteins (e.g. VLDL, LDL), whereby lipids are normally exported from the liver. Hypermethylation of MTTP promoter reversed by BBR treatment, but it is unclear whether BBR improve hepatic MTTP function. So we further explored the mechanism of BBR reducing liver fat content by regulating MTTP.

Materials and methods: After Sprague-Dawley (SD) rats (n=16) were fed with 8 weeks of high-fat diet (HFD, 51% energy from fat, 4.64 kcal/g), NAFLD model was successfully established. Then rats with NAFLD were randomly divided into two groups, one of which were treated with BBR orally at 200mg/(kg d) (n=8, BBR+HFD group) and another group fed with vehicle (0.5% methylcellulose) as HFD control (n=8, ND group). At the end of the experiment, all rats were sacrificed and samples of liver tissue were taken for quantitative real-time PCR analysis and hepatic fat content measurement after overnight fasting. Total blood samples were also collected for serum lipoprotein profiles.

Results: Liver triglyceride content is significantly lower in BBR treatment group than in HFD group (p<0.05, Fig A), although it was higher than in the normal control. The results of quantitative real-time PCR showed that treated with BBR for 16 weeks upregulated hepatic MTTP mRNA level approaching that of normal control (p<0.05, Fig B), and MTTP gene expression declined by 70% in livers from rats in the HFD group in contrast to ND group. Accordingly, the protein levels of MTTP were higher in BBR-treated group than in HFD group (Fig C). Serum lipoproteins were separated using fast protein liquid chromatography (FPLC) (Fig D). The contents of apoB100 and apoB48, in the fractions were visualized by Western blotting. These results showed that TG-rich VLDL particles were significantly higher in BBR-treated group than HFD group according to area under the curve (AUC) (Fig E) and the levels of apolipoprotein B (apoB) -100 and -48 in isolated VLDL fractions were higher in BBR-treated group than HFD group (Fig F).

Conclusion: BBR can improve fatty liver by upregulating MTTP expression to increase hepatic VLDL-TG secretion in SD rats induced by a high-fat diet.
ER-bound transcription factor, cAMP response element binding protein H (CREBH), in the regulation of hepatic lipogenesis.

Materials and methods: To demonstrate that CREBH expression is influenced by insulin, we determined hepatic CREBH expression during fasting and after the refeeding of control and streptozotocin-induced diabetic rats. We next examined whether CREBH decreased hepatic lipogenesis and SREBP-1c expression in high fat diet fed mice, using tail vein injection of adenovirus encoding the active form CREBH. Finally, we examined the mechanism by which CREBH inhibits hepatic SREBP-1c expression.

Results: We found that fasting induced but feeding suppressed CREBH expression. However, feeding did not suppress its expression when endogenous insulin was eliminated by treatment with streptozotocin. Insulin treatment decreased CREBH expression in cultured hepatocytes, suggesting that the refeeding-suppression of CREBH expression is mainly induced by insulin.

Adenovirus-mediated overexpression of CREBH inhibited insulin- and LXR agonist, TO901317-mediated SREBP-1c mRNA expression in cultured hepatocytes. Moreover, adenovirus-mediated overexpression of CREBH inhibited hepatic lipogenesis in an insulin-dependent manner. Transient transfection and gel shift assays showed that CREBH inhibited the activities of LXR and Sp1, known mediators of insulin-dependent SREBP-1c expression.

Conclusion: Collectively, these data suggest that CREBH could be a novel negative regulator of hepatic lipogenesis. This raises the possibility that CREBH can be therapeutic target to prevent the development of fatty liver disease in patients with insulin resistance.

762

The effect of metformin on liver mitochondria and lipid metabolism in NAFLD

M. Cahova1, Z. Drahotova1, O. Oliarnyk2, Z. Cervinkova1, O. Kucera1, H. Dankova1, L. Kazdova1,2,3

1Department of Diabetes and Metabolism, Institute for Clinical and Experimental Medicine, Prague, 2Department of Bioenergetics, Institute of Physiology AV CR, Prague, Faculty of Medicine Charles University, Hradec Kralove, Czech Republic.

Background and aims: Metformin is a weak inhibitor of complex I of mitochondrial respiratory chain (MRC) which may negatively influence the cellular energy balance. Our study was designed to determine the effect of long-term high-fat diet administration in combination with metformin treatment on the lipid metabolism in liver, oxidative capacity of liver mitochondria and sensitivity of the liver to the ischemia reperfusion injury.

Material and methods: Male Wistar rats were fed standard (SD) or high-fat diet (HFD) 60% of calories derived from lard) for 10 weeks. Half of the HFD group was administered metformin in food (150 mg/kg b.wt.) for the last 5 weeks of the feeding period. In a separate experiment, animals were subjected to the liver ischemia, the activity of liver lysosomal lipase (LAL) in HFD group suggests the enhanced glycolysis and lipogenesis. PNPLA3 expression is positively controlled by central transcription factor, cAMP response element binding protein H (CREBH) which is induced by insulin. CREBH expression during fast and after the refeeding of control and streptozotocin-induced diabetic rats. We next examined whether CREBH decreased hepatic lipogenesis and SREBP-1c expression in high fat diet fed mice, using tail vein injection of adenovirus encoding the active form CREBH. Finally, we examined the mechanism by which CREBH inhibits hepatic SREBP-1c expression.

Results: We found that fasting induced but feeding suppressed CREBH expression. However, feeding did not suppress its expression when endogenous insulin was eliminated by treatment with streptozotocin. Insulin treatment decreased CREBH expression in cultured hepatocytes, suggesting that the refeeding-suppression of CREBH expression is mainly induced by insulin.

Adenovirus-mediated overexpression of CREBH inhibited insulin- and LXR agonist, TO901317-mediated SREBP-1c mRNA expression in cultured hepatocytes. Moreover, adenovirus-mediated overexpression of CREBH inhibited hepatic lipogenesis in an insulin-dependent manner. Transient transfection and gel shift assays showed that CREBH inhibited the activities of LXR and Sp1, known mediators of insulin-dependent SREBP-1c expression.

Conclusion: Collectively, these data suggest that CREBH could be a novel negative regulator of hepatic lipogenesis. This raises the possibility that CREBH can be therapeutic target to prevent the development of fatty liver disease in patients with insulin resistance.

762

The effect of metformin on liver mitochondria and lipid metabolism in NAFLD

M. Cahova1, Z. Drahotova1, O. Oliarnyk2, Z. Cervinkova1, O. Kucera1, H. Dankova1, L. Kazdova1,2,3

1Department of Diabetes and Metabolism, Institute for Clinical and Experimental Medicine, Prague, 2Department of Bioenergetics, Institute of Physiology AV CR, Prague, Faculty of Medicine Charles University, Hradec Kralove, Czech Republic.

Background and aims: Metformin is a weak inhibitor of complex I of mitochondrial respiratory chain (MRC) which may negatively influence the cellular energy balance. Our study was designed to determine the effect of long-term high-fat diet administration in combination with metformin treatment on the lipid metabolism in liver, oxidative capacity of liver mitochondria and sensitivity of the liver to the ischemia reperfusion injury.

Material and methods: Male Wistar rats were fed standard (SD) or high-fat diet (HFD) 60% of calories derived from lard) for 10 weeks. Half of the HFD group was administered metformin in food (150 mg/kg b.wt.) for the last 5 weeks of the feeding period. In a separate experiment, animals were subjected to the liver ischemia, the activity of liver lysosomal lipase (LAL) in HFD group suggests the enhanced breakdown of endogenous TAG. Concomitantly, an increased expression of diacylglycerol acyltransferase-1 (DGAT-1) was found which stimulates the increased FA reesterification. Metformin in combination with HFD further increased both LAL activity and DGAT-1 expression compared with HFD alone. The stimulatory effect of metformin on endogenous TAG degradation is supported by the elevated ketogenesis in HFD+Met group. HFD decreased the oxidative capacity of liver mitochondria on all tested substrates (glucone + malate + pyruvate + malate + ADP + 0.05; palmitoyl carnitine p=0.043; succinate p=0.051). Metformin potentiated the deleterious effect of HFD on mitochondria but only in animals that underwent liver ischemia (HFD+Met vs HFD: glucone + malate + malate + ADP + 0.042; palmitoyl carnitine p=0.025). We proved 40% decrease of in vitro activity of ADH:cytochrome c oxidoreductase in HFD+Met vs HFD alone. Liver ischemia resulted in the increased formation of lipid peroxidation products (HFD > SD). Metformin had no additional effect. In animals subjected to the liver ischemia, the activity of antioxidant enzymes (SOD, GSH-Px, catalase) were significantly lower in HFD vs SD group. Metformin treatment of HFD animals resulted in 70% decrease of activity of all tested enzymes.

Conclusion: The administration of metformin in combination with HFD worsened hepatic steatosis but it was not associated with the impairment of TAG degradation. On the contrary, the activity of hypolipid enzyme (LAL) was increased. Metformin also potentiated HFD-induced impairment of mitochondria what deteriorated their ability to utilize released FA by mitochondrial oxidation and re-directed them into ketogenesis. TAG accumulation in liver significantly worsened the oxidative stress in liver ischemia/reperfusion. Metformin stimulated the activity of antioxidant enzymes but this was NOT accompanied by concomitant decrease in lipoperoxide formation. This fact could be interpreted as the adaptive response of the cell to the increased reactive oxygen species formation due to the impairment of MRC.

Supported by: grants No.: NS 10504-3 IG A MH CR, MSM 0021620820 and AV0Z5010

763

Adiponutrin, a lipid droplet surface enzyme - evidence for regulation by ChREBP, SREBP1c and FXR in human hepatocytes

J. Perttilä1, S. Karon-Houde2, B. Stae1a, H. Yki-Jarvinen1, V. M. Olkkonen1, 3

1Minerva Medical Research Institute, Helsinki, Finland, 2Institut Pasteur de Lille, INSEER UMR 545, Lille, France, 3Department of Medicine, Division of Diabetes, University of Helsinki and Minerva Medical Research Institute, Helsinki, Finland.

Background and aims: Adiponutrin, encoded by the PNPLA3 gene, belongs to the family of patatin-like domain containing enzymes. A non-synonymous sequence variation, encoding an isoleucine to methionine substitution at amino acid 148 (rs738409; I148M), has been consistently associated with a markedly increased hepatic fat content in humans with non-alcoholic fatty liver disease. Adiponutrin is reported to show in vitro triglyceride lipase and acyltransferase activities, but its physiologic function and regulation are poorly known. We aim to elucidate (i) transcriptional regulation of PNPLA3, (ii) its subcellular localization in human hepatocytes, and (iii) expression pattern of adiponutrin in human tissues.

Materials and methods: PNPLA3 regulation was studied in a new cell line, immortalized human hepatocytes (HHL). The cells were treated for 24 h with agonists/antagonists of LXR, FXR, PXR, SREBP, PPARα, or PPARγ, followed by qPCR quantification of PNPLA3 mRNA. Human PNPLA3 cDNA was isolated, and the I148M variant was generated by site-directed mutagenesis. Wild-type and I148M cDNAs were expressed in HHL and visualized by confocal microscopy. Expression of adiponutrin protein in human subcutaneous adipose tissue and liver was studied by Western blotting.

Results: PNPLA3 mRNA was induced by high glucose, dependent on ChREBP. The oxysterols 25- and 22(R)-hydroxycholesterol suppressed the mRNA, in the absence of effect by the LXR agonist TO901317, suggesting regulation of PNPLA3 by SREBP1c. Furthermore, stimulation of FXR by chenodeoxycholic acid or GW4064 suppressed PNPLA3. Both wild-type adiponutrin and the I148M variant were found to localize extensively on lipid droplets in HHL cells. Western analysis demonstrated abundant presence of adiponutrin protein in both human subcutaneous adipose tissue and liver.

Conclusion: The results are consistent with a function of adiponutrin associated with up-regulation of hepatic lipogenesis by carbohydrate feeding. PNPLA3 expression is positively controlled by central transcription factor systems responsive to glucose and insulin, ChREBP and SREBP1c, which enhance glycolysis and lipogenesis. PNPLA3 is suppressed by FXR, an effect possibly mediated via SREBP1c. Location of adiponutrin on lipid droplets suggests its intimate involvement in neutral lipid metabolism on the droplet surface.

764

Discovery of a novel in vivo active heterocyclic inhibitor of stearoyl-CoA desaturase

Background and aims: Stearoyl-CoA desaturase (SCD1) is linked to the pathogenesis of obesity, dyslipidemia and type 2 diabetes. SCD1 is rate-limiting in the synthesis of monounsaturated 16:1 n-7 and 18:1 n-9 fatty acyl-CoAs and catalyses an essential part of lipogenesis. Here, we describe the identification, in vitro properties and in vivo efficacy of a novel heterocyclic small molecule SCD1 inhibitor.

Materials and methods: SCD1, cytochrome b5 reductase, FADS1 and FADS2 activities were determined in rat liver microsomes. Cellular human
HEK293 cells were transfected with human wild
and enzyme activities were measured in HepG2 and H4IIE hepatoma cell
cell line, respectively. Metabolic stability was determined in liver microsomes, cell
permeability in CaCo-2 cells. Male specific ZDF rats were used to assess in
effects on serum desaturation indices, body weight, blood glucose and
triglycerides in a 4 weeks multiple dose study. All clinical blood parameters
were determined by commercially available diagnostic kits on a Hitachi 912
device, serum fatty acid desaturation indices were analysed by LCAMS.
Results: Hexahydropyrolyprolyr SC'l inhibitors were discovered and a
compound representative of the series was optimised to an IC50 of 7nM in
rat liver microsomes and a cellular IC50 of 56 nM in rat H4IIE hepatoma
cells. The compound is highly selective towards fatty acid desaturases 1 and
2 (D5 and 6 desaturases) and cytochrome b5 reductase (> 400-fold). Low
metabolic lability in liver microsomal fractions (4%) and high cell permeabil-
ity (401x10(-5) cm/s) allowed an in vivo assessment in ZDF rats. After 5 days
aging at 20mg/kg per os serum C16:1 levels reached 4520 ng/ml and a plasma
half life of 14 hrs could be determined. After 28 days of treatment at 20mg/
kg, the compound significantly decreased body weight (-8.1±0.5%), serum
triacylglycerides (-22.9±3.4%) and plasma glucose (-28.0±3.4%) compared to
vehicle in the obese animals. In parallel, serum fatty acid desaturation indices were decreased (-94.±11.6%). However, fissions of the eye lid, alopecia and inflammation of the skin were observed from day 14 on in all animals treated with the same metabolically active dose.
Conclusion: In summary, we described in vitro and in vivo properties of a
novel, potent and selective SCD1 inhibitor that improved body weight, blood
glucose and triglycerides in an animal model of obesity, type 2 diabetes and
dyslipidemia. However, the favourable in vivo features of systemic SCD1 in-
hibition shown in this study were accompanied by adverse target-related ef-
fects observed in skin. Thus, systemic SCD1 inhibition by small molecules
might therefore not represent a feasible approach for the treatment of chronic
metabolic diseases.

765
Expression of nonalcoholic fatty liver disease associated adiponutrin
variant I148M causes triglyceride accumulation
H.A. Jones, C. Fernandez, S. Larsson, C. Holm;
Experimental Medical Sciences, Lund University, Lund, Sweden.

Background and aims: The strong association between adiponutrin variant
I148M and hepatic steatosis has recently highlighted adiponutrin as an im-
portant putative enzyme involved in lipid metabolism. Based on structural
similarities to patatin domain-containing proteins, adiponutrin has been
proposed to have both lipolytic and lipogenic capabilities, but its function
and physiological relevance in lipid homeostasis are still unknown. Despite
efforts, the biological role of adiponutrin and the mechanisms underlying the
association between the I148M adiponutrin variant and elevated hep-
atic triacylglycerol levels remain elusive. Here we examine the impact of the
polymorphism encoding I148M in adiponutrin on lipid storage in HEK293
cells.

Materials and methods: HEK293 cells were transfected with human wild
type (WT), I148M and K434G variants of adiponutrin. 36h post transfection
the cells were analyzed with regard to lipid content, profile of extracted lipids
and lipid accumulation by imaging of stained cells.

Results: Overexpression of wild type or the I148M variant of adiponutrin leads to significant increases in triglyceride content [50% (p<0.05) or 2-fold
(p=0.001), respectively] compared to control transfected cells. Interestingly, the I148M variant caused a significantly greater [50% (p<0.001)] lipid ac-
cumulation compared to wild type adiponutrin. Thin layer chromatography of
extracted lipids from parallel experiments confirmed that both wildtype and
the I148M variant of adiponutrin cause accumulation of triacylglycerol in
cells, leaving monoaaclylglycerol and diacylglycerol content unaffected, and
that I148M more effectively promotes triglyceride formation compared to
wild type. Imaging experiments of fixed cells revealed increased neutral lipids
contained in visibly larger lipid droplets in wild type and I148M transfected
cells compared to control. The control variants C99G and K434G behaved
similarly to wild type adiponutrin in all experiments.

Conclusion: The presented data where expression of human recombinant
adiponutrin promotes lipid storage suggests a primarily lipogenic rather than
a lipolytic role for adiponutrin. Our data showing an increased lipogenic po-
tential of the I148M variant of adiponutrin, compared to wild type, corrobo-
rates the strong association between I148M and liver steatosis in patients.
Supported by: Lund University Diabetes Centre

PS 67 Obesity, diabetes and cancer

766
Adipocyte control of cancer cell growth
V. D’Esposito 1, F. Passaretti 2, A. Hammarstedt 2, R. Valentino 1, G. Perruolo 1,
P. Mirra 1, C. Miele 1, U. Smith 1, F. Beguinot 1, P. Formisano 1,
1 DBPCM e IEO/CSR, Università degli studi di Napoli, Napoli, Italy;
2 Department of Molecular and Clinical Medicine/Diabetes, Institute of
Medicine, Sahlgrenska Universitetssjukhuset, Göteborg, Sweden.

Obesity is one of the most challenging and growing health problems, world-
wide. Epidemiologic studies now provide compelling evidence that obesity
is a risk factor for both cancer incidence and mortality. In particular, obesity
increases rates of breast cancer in postmenopausal women and is associated
with a more poor survival and increased recurrence of disease, regardless the
menopausal status. It is now becoming clear that adipocytes, which represent
very abundant cell types surrounding cancer cells, particularly in the mam-
mary gland, could influence several aspects of tumorigenesis, from promot-
ng local invasion to angiogenesis and metastasis. However, the molecular
mechanisms involved in the adipocyte control of the malignant phenotype
remain poorly understood. We have studied the mechanisms by which adi-
ocytes may affect breast cancer cell phenotypes. We have obtained evidence
that conditioned medium (CM) of adipocytes derived from human mam-
mary adipose tissue and from subcutaneous abdominal fat biopsies was capa-
tle to elicit growth of MCF7 breast cancer cells. This was also observed when
mature adipocytes were obtained from undifferentiated precursors isolated
from the stromal-vascular fraction (SVF). Similarly, CM from 3T3-L1 cells
induced growth of MCF7 cells, in a time-dependent manner. In particular, CM
from fully differentiated adipocytes was 2-fold more effective than CM
from pre-adipocytes in inducing MCF7 growth. Cell cycle analysis by flow
cytometry revealed that these changes are due to reduced apoptosis instead of
increased proliferation. Multiplex screening for growth factors in the CM
revealed that VEGF, FGF and PIGF secretion is higher by SVF cells than by
adipocytes, suggesting a major involvement of SVF in promoting angiogen-
esis. In contrast, the content of IGF-1 produced by adipocytes is two-fold
higher than that released by pre-adipocytes. Thus, IGF-1 could be a good
candidate in mediating survival effect of adipocyte CM. Moreover, treatment
of MCF7 with the IGF-1R inhibitor AG1024 reverted the adipocyte CM ef-
cect on cell growth. In conclusion, adipocyte-derived factors promote breast
cancer cell growth by inhibiting apoptosis. This effect is more evident for fac-
tors released by adipocytes than by pre-adipocytes and is, at least in part,
mediated by IGF-1.

767
High dose detemir inhibits proliferation of a human bladder cancer T24
cell line independent of Akt and ERK pathway
S. Liu 1, Y. Li 1, Y. Liang 1, T. Lin 2;
1 Research Center of Medicine, 2 Department of Endocrinology, The Second
Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.

Background and aims: Growing evidence indicated the involvement of mi-
notogenicity of insulin and insulin analogues in the increased risk of carcino-
genesis in diabetes subjects. This study was aimed to investigate the effect
of insulin detemir in comparison to regular human insulin on proliferation of
a human bladder cancer T24 cell line and the role of Akt and ERK in the
process.

Materials and methods: T24 cells were cultured and treated with detemir
or insulin at the indicated concentrations for different time courses. A specific
inhibitor for ERK1/2 (PD98059) or Akt (LY294002) was used either alone or
in combination with detemir or insulin to test the involvement of Akt and
ERK pathway in detemir or insulin-induced cell proliferation as evaluated
using cell counting kit-8 reagents. Protein levels of Akt, pAkt, ERK, pERK
were detected by Western blotting.

Results: Human insulin time- and dose-dependently enhanced proliferation
of T24 cell at the concentrations of 10 and 100IU/L after treatment for 48, 72
and 96 hours. However, detemir inhibited T24 cell growth at 100IU/L. Both
insulin and detemir promoted phosphorylation of ERK and Akt at 15, 30,
and 60 min of treatment. Although ERK inhibition significantly enhanced
while Akt inhibition reduced T24 cell proliferation, insulin still promoted
while detemir inhibited T24 cell growth in the presence of either Akt or ERK
inhibitor.
B10 cells were grown in serum-containing media

C57BL/6J mice by real-time quantitative PCR (SYBR Green I); Expression levels were significantly higher than control cells after transfected 48 h. The mRNA levels of HSL was increased obviously (P<0.05) in JAZF1 transfection group compared with negative control and empty vector group, and the relative expression of FAS, ACC, SREBP1 mRNA were decreased significantly (all P<0.001). However, the mRNA levels of GLUT1, GLUT4 were not changed (all P>0.05). Intercellular lipid accumulation was decreased obviously (P<0.05) by Oil Red O staining and colorimetric in JAZF1-transfected cells compared with negative control and empty vector group.

Conclusion: There were a widely expression of JAZF1 in various organization of C57BL/6J mice, it indicated that JAZF1 might play a role in maintaining normal physiological function. These results show that overexpression of JAZF1 in 3T3-L1 cells can reduce lipid synthesis, increase lipolysis and improve lipid accumulation. We speculate that JAZF1 might provide a new potential therapeutic target for obesity and diabetes.

Supported by: National Natural Science Foundation of China (30370671, 30771037, 30971388)

Anti-apoptotic activities of insulin and insulin-like growth factor (IGF) 1 in human osteosarcoma Saos-2/B10 cells

C. Schmid, C. Ghirlanda, M. Niessen; University Hospital of Zurich, Switzerland.

Background and aims: Obesity, insulin resistance and hyperinsulinemia are associated with an increased risk of growth progression of some cancer types and possibly also with enhanced survival of tumour cells. We studied anti-apoptotic effects of insulin and IGF 1 in a cell line which is critically dependent on IGF- or insulin-like signals for proliferation and survival in vitro.

Materials and methods: B10 cells were grown in serum-containing media and then exposed to serum-free test media. DNA synthesis was measured as 3H-thymidine incorporation during a pulse given 18-21 h following exposure to test media, and apoptosis was assessed after 4 h by an ELISA detecting cytosolic oligonucleosomes. Insulin/IGF 1 signalling was analysed by Western blotting.

Results: Effects of insulin and IGF 1 were dose-dependent: 0.4 nM IGF 1 or 20 nM insulin was required for half-maximal stimulation of DNA synthesis whereas 0.04 nM IGF 1 or 1 nM insulin resulted in half-maximal inhibition of apoptosis. Effects of insulin and IGF 1 were time-dependent: 1 nM IGF 1 or 100 nM insulin prevented apoptosis half-maximally when added for the last 1-2 (of a total of 4) h whereas sequestering IGF 1 (but not of insulin) by adding IGF-binding protein (IGFBP)-3 led to a half-maximal loss of protection from apoptosis within the last 1-2 (of 4) h. Insulin and IGF 1 both activated Akt/PKB to similar levels, but activation of ERK1/2 was higher in the presence of insulin (after stimulation for 4 h). Insulin or IGF 1 did not protect against apoptosis in the continuous presence of 100 nM wortmannin (4 h) which was associated with reduced phosphorylation of PKB but more than half-maximal protection was still found when wortmannin was added only for the last 3 h.

Conclusion: Continuous exposure to IGF 1 (suppressible by IGFBP-3) or to insulin (not suppressible by IGFBP-3) prevents B10 cell apoptosis, possibly dependent on Akt/PKB. Apoptosis appears to be more sensitive to regulation by IGF 1 and insulin than mitogenesis.

The role of juxtaposed with another zinc finger gene 1 on glucose-lipid metabolism and related genes in vitro

L. Du1, L. Li2, G. Yang1;
1The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, 2Department of Clinical Biochemistry, 3Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, China.

Background and aims: Epidemiologic studies have shown the association of Diabetes Mellitus (DM) with either increased or decreased risk of developing malignant tumors. Recently, a genome-wide association studies have suggested the association of JAZF1 (juxtaposed with another zinc finger gene 1) with DM and prostate cancer. JAZF1 encodes a 27 kDa nuclear protein containing three putative zinc finger motifs, and is expressed in a variety of tissues of mouse, with highest expression in adipose tissue and testis. However, little is known about the functions in regulating metabolism. In our study, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells which represent target tissue for diabetes and insulin resistance.

Materials and methods: To survey the tissue distribution of JAZF1 in healthy C57BL/6 mice by real-time quantitative PCR (SYBR Green I); Expression vector for JAZF1 gene was constructed and transient transfected into 3T3-L1 preadipocytes and hepatoma carcinoma Hepa1-6 cells, respectively. Oil Red O staining for 3T3-L1 preadipocytes was carried out. The mRNA levels of JAZF1, GLUT1, GLUT4, FAS (fatty acid synthetase), ACC (acetyl-CoA carboxylase), SREBP1 (Sterol Regulatory Element Binding Protein 1), and HSL (Hormone Sensitive lipase) implicated in glucose and lipid metabolism were determined by RT-QPCR; JAZF1 protein levels were measured by western blot.

Conclusion: Insulin promotes proliferation of T24 cells. Detemir inhibits T24 cell proliferation at high dose independent of Akt or ERK activation.

Supported by: China NSFC grant 30671974, GDSF grants 0409408 and 06021329

Springer
PS 68 Obesity: mechanisms and therapies I

770

Induction of HSP72, a potential novel therapeutic approach for metabolic syndrome and type 2 diabetes
T. Kondo1, R. Matsuyama2, K. Sasaki1, S. Morino-Koga2, M.A. Suico3, J. Kawashima1, H. Motoshima1, N. Furukawa1, K. Isuzu2, N. Miyamura2, H. Kai2, E. Araki3;
1Metabolic Medicine, 2Molecular Medicine, Kumamoto University, Kumamoto, Japan.

Background and aims: Life-style related diseases, such as type 2 diabetes and metabolic syndrome (MS) are associated with reduction of heat shock protein (Hsp) 72 levels, and activation of Hsp72 expression may improve insulin resistance and visceral adiposity. The present study investigated whether Hsp72 induction using an apparatus which provides Mild Electrical stimulation with Thermotherapy (MET) could reduce visceral adiposity and improve glucose homeostasis in mice models of type 2 diabetes and in human with MS.

Materials and methods: C57/BL6 mice fed with high-fat feeding and db/db mice were treated with MET (12V, 55 pulses per second, 10 min at 42°C, twice a week for 8~10 weeks) or sham-treatment. High-fat fed mice were also treated with Hsp72 inducer geranylgeranylacetone (GGA), 200 mg/kg once, or 4 weeks. Forty eligible male M5 subjects were randomly assigned to two groups, each containing 20 subjects. Group I was subjected to a 12-week intervention period of MET (12V, 55 pps, 60 min at 42°C, 4 times a week) followed by 12 weeks with no treatment. The order was reversed in Group II.

Results: High-fat fed mice and db/db mice presented following favorable changes upon treatment with either MET or GGA administration. 1) Reduction of visceral (-34%) and subcutaneous (-44%) fat mass, 2) Reduction of fasting glucose (-20%) and insulin levels (-38%), 3) Improvement of glucose homeostasis and insulin resistance, 4) Upregulation of serum adiponectin levels (+94%), 5) Improvement of insulin signaling in liver. We observed following results upon MET treatment in male subjects with MS. 1) Reduction of visceral fat (-5.8%) and total abdominal fat (-3.3%) area, but not subcutaneous fat area, 2) Decrease of waist circumference (-0.7%), but not body weight, 3) Reduction of both systolic (-4.2%) and diastolic blood pressure (-2.7%), 3) Improvement of fasting plasma glucose (-4.9%) and insulin levels (-8.5%) as well as HOMA-IR (-11.7%), QUICKI (+2.4%) and composite WBISI (+17.2%), 4) Trend of reduction in HbA1c (-1.2%, P=0.065), 5) Decrease of insulinogenic index (-10.2%), 6) Amelioration of inflammatory cytokines or adipokines, such as hs-CRP (-27.4%), adiponectin (+9.3%), leptin (-8.3%) and TNF-α (-10.2%), 7) Decrease of WBC (-5.4%) and LDL-C (-5.3%) levels.

Conclusion: Hyperthermia with mild electrical stimulation improved glucose homeostasis and insulin resistance in mice models of type 2 diabetes and human with MS. Therefore, this treatment could have beneficial impacts on body composition and metabolic abnormalities in life-style related diseases. Type 2 diabetes could be one of the other targets for the treatment. Supported by: the Ministry of Economy, Trade and Industry of Japan.

PS 68 Obesity: mechanisms and therapies II

771

Taurocholate delivered to the distal gut suppresses food intake and causes weight loss in rats
A.A. Young, G. Gedulin, M. Tryon, B.R. Gedulin; Physiology, Satiogen Pharmaceuticals Inc., San Diego, USA.

Background and aims: Bile acids (BAs), the endogenous ligands for TGR5 receptors located on enteroendocrine L-cells, stimulate the secretion of the anorexigenic hormones GLP-1, PYY and oxyntomodulin, as well as GLP 2. Several orally administered TGR5 agonists do not evoke robust anorectic effects, perhaps by failing to reach colon and rectum, wherein the peptide content and secretory response of L cells can be over 2 orders of magnitude higher than in more accessible stomach and duodenum.

Materials and methods: Effects of rectal BAs on food intake were studied in [male] Sprague Dawley rats via an intraperitoneally implanted osmotic minipump (Alza) and intraluminal catheter at a rate of 6 µmol/hour (n=6) for 7days; control group minipump delivered saline only (n=6).

Results: Cumulative food intake measured up to 24 hours after rectal delivery of TCA was dose dependently decreased. Relative to controls, food intake in TCA treated rats was reduced by 32%, 43%, and 70% by 0.15, 0.45 and 1.5 mmol doses, respectively (P<0.05, 1-way ANOVA). The ED50 for TCA-induced reduction in cumulative food intake at 1 hour was 1.6 mmol. For 24 hour intake, the value was 7.2 mmol. In the second study 10% weight loss induced by taurocholate delivered for 7days was greater than the 5% observed in surgical controls (P<0.05).

Conclusion: In conclusion, we have demonstrated an effect of rectally administered taurocholate to dose-dependently inhibit food intake in normal rats for up to 24 hours, and for sustained taurocholate delivery to the lower bowel to induce weight loss.
tive energy balance. During the period of the negative energy balance, plasma adiponectin, MCP-1 levels and resistin returned to baseline, while leptin levels decreased below baseline levels. In AT expression of adiponectin and a trend for decreased GLUT4 expression compared to baseline was observed. Interest-

ingly, the expression of CD68, CD163 and MR increased in the HYPO state, indicating that there was a higher content of alternatively activated macrophages after the negative energy balance. In conclusion, in the early phase of a posi-
tive energy balance resulting in modest weight gain, a limited pro-inflamma-
tory response in plasma is present. GLUT 4 expression is increased facilitating triglyceride formation. During a negative energy balance, alternatively activated macrophages are present in AT indicating an anti-inflammatory response which may be important in tissue remodelling.

773
Phentermine/topiramate combination therapy significantly improves glucose impairment in overweight/obese patients
1Antwerp University Hospital, Antwerp, Belgium, 2University of Alabama; Birmingham VA Medical Center, Birmingham, 3VIVUS, Inc, Mountain View, USA.

Background and aims: Obesity, which is strongly linked to type 2 diabetes mellitus (T2DM), is on the rise. Impaired fasting glucose/impaired glucose tolerance (IFG/IGT) are prediabetic glycemic states associated with insulin resistance and increased risk of cardiovascular disease. A 56-week Phase 3 study (CONQUER) was performed to confirm the efficacy and safety of once-daily, low-dose, controlled-release phentermine/topiramate (PHEN/TPM CR) in overweight/obese patients with at least 2 comorbidities such as prediabetes or T2DM. In addition, this study evaluated the effects of PHEN/TPM CR on various glycemic parameters in a subgroup of patients with IFG/IGT.

Materials and methods: All subjects underwent oral glucose tolerance testing (OGTT) at baseline, Week 4, and Week 56. From this, a subgroup of subjects with IFG/IGT at baseline was defined using fasting serum glucose >5.55 mmol/L, or serum glucose >7.77 mmol/L 2 hours after a 75 g glucose load.

Results: Out of 2487 patients enrolled, 1635 (66%) were identified as having IFG/IGT. Patients were randomized to either placebo (n=655), PHEN/TPM CR 7.5/46 mg (7.5/46 [n=335]), or PHEN/TPM CR 15/92 mg (15/92 [n=645]); treatment with both doses of PHEN/TPM CR resulted in a significantly greater percent weight loss than placebo. For subjects with IGT/IFG, the mean percent weight loss at Week 56 with LOCF was 2.3% for placebo, 8.3% for 7.5/46, and 10.5% for 15/92. The table presents the results for change in HbA1c and fasting serum glucose from baseline to Week 56 (ITT-LOCF). Both PHEN/TPM CR doses led to significantly greater improvement vs placebo in HbA1c and fasting serum glucose.

Conclusion: In this study, patients with T2DM experienced significant weight loss with PHEN/TPM CR, which was well tolerated with the majority of adverse events (AEs) being mild in severity. The most common AEs were tingling, dry mouth, constipation, altered taste, and insomnia.

774
Once-daily, low-dose, controlled-release phentermine/topiramate results in significant clinical improvements in overweight/obese patients with type 2 diabetes
W.T. Garvey1, B. Troupin2, W.W. Day3;
1University of Alabama; Birmingham VA Medical Center, Birmingham, 2VIVUS, Inc, Mountain View, USA.

Background and aims: Weight loss can delay progression to type 2 diabetes mellitus (T2DM) and improve glycemic control in patients with T2DM. A 56-week Phase 3 trial (CONQUER) was conducted to evaluate efficacy and safety of low-dose, controlled-release phentermine/topiramate (PHEN/TPM CR) for weight loss in overweight/obese patients with and without T2DM, and effects on glycemic control and medication load in T2DM patients.

Materials and methods: In this randomized, double-blind trial, 2487 obese subjects meeting at least 2 criteria for the metabolic syndrome received placebo (n=994), PHEN 7.5 mg/TPM CR 46 mg (7.5/46 [n=498]), or PHEN 15 mg/TPM CR 92 mg (15/92 [n=995]). At baseline, T2DM subjects were treated with lifestyle intervention or metformin; they were managed to ADA standards of care. This T2DM subpopulation was further analyzed.

Results: At baseline, the mean weight of all randomized subjects was 103.1 kg, mean BMI was 36.6 kg/m², and mean HbA1c was 5.9%. In total, 338 (15.8%) patients had a previous diagnosis of T2DM or an elevated fasting glucose (FG) (>6.94 mmol/L) at baseline. Mean baseline HbA1c for the T2DM subpopulation was 6.8%; mean FG was 7.43 mmol/L. At Week 56, the least squares (LS) mean weight loss for placebo, 7.5/46, and 15/92 was 1.2%, 7.8%, and 9.8%, respectively, for the overall ITT-LOCF population (P<0.0001 for PHEN/TPM CR vs placebo). Those subjects completing 56 weeks of treatment on drug also experienced significant weight loss vs placebo (P<0.0001): 1.6%, 9.6%, and 12.4% for placebo, 7.5/46, and 15/92, respectively. Among ITT-LOCF subjects with T2DM at baseline, LS mean weight loss was signifi-
cant vs placebo at Week 56 (P<0.0001) 1.9%, 6.8%, and 8.8% for placebo, 7.5/46, and 15/92, respectively. During the study, a greater proportion of subjects with T2DM in the placebo group required an increase in concomitant antidiabetic medications than those in the PHEN/TPM CR groups (Table). LS mean decrease in HbA1c from baseline to Week 56 in subjects with T2DM (ITT-LOCF) was significantly greater with both doses of PHEN/TPM CR vs placebo (0.4%, 0.4% vs 0.1%; P<0.05). LS mean decrease from baseline in FG (mmol/L) were also greater in the PHEN/TPM CR groups vs placebo: 0.31, 0.54, and 0.66 for placebo, 7.5/46, and 15/92, respectively (P=0.0356 for 15/92 versus placebo; P=0.3325 for 7.5/46 vs placebo). PHEN/TPM CR was well tolerated with the majority of adverse events (AEs) being mild in severity. The most common AEs were tingling, dry mouth, constipation, altered taste, and insomnia.

Conclusion: In this study, patients with T2DM experienced significant weight loss with PHEN/TPM CR therapy. These results were associated with clini-
cally meaningful improvements in glycemia through 56 weeks compared to placebo, despite increased use of diabetes medications in the placebo group. Thus, PHEN/TPM CR can enhance glycemic control in overweight/obese patients with T2DM.

Changes in Number of Antidiabetic Medications, Baseline to Week 56: Diabetic Population (ITT-LOCF)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Subjects With Decrease n (%)</th>
<th>Subjects With No Change n (%)</th>
<th>Subjects With Increase n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>157</td>
<td>4 (2.5)</td>
<td>130 (82.8)</td>
<td>23 (14.6)</td>
</tr>
<tr>
<td>PHEN/TPM CR 7.5/46</td>
<td>67</td>
<td>2 (3.0)</td>
<td>62 (92.5)</td>
<td>3 (4.5)</td>
</tr>
<tr>
<td>PHEN/TPM CR 15/92</td>
<td>164</td>
<td>6 (3.7)</td>
<td>151 (92.1)</td>
<td>7 (4.3)</td>
</tr>
</tbody>
</table>

Supported by: VIVUS, Inc
Restoration of beta cell function in severely obese type 2 diabetic patients after gastric bypass surgery

B. Schultes, B. Ernst, B. Wilms, M. Thurnheer, E. Svehlikova, B.M. Obermayer-Pietsch, T.R. Pieber, Interdisciplinary Obesity Center, Kantonsspital St. Gallen, Rorschach, Switzerland, Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Austria.

Background and aims: Gastric bypass surgery has been shown to frequently resolve type 2 diabetes but the mechanism underlying are incompletely understood. Here we report preliminary results on a systematic assessment of beta-cell function along with insulin sensitivity before and shortly after gastric bypass surgery in the first 6 type 2 diabetic patients of an ongoing study.

Materials and methods: Before and 8 to 21 days after the operation, patients were subjected to an OGTT as well as to a botnia clamp which combines an IVGTT with a subsequent hyperinsulinemic-euglycemic clamp. Established models were used to calculate various indices of glucose metabolism. Known diabetes duration in our patients ranged from 1 to 14 years (mean ± SEM: 8.2 ± 2.0 years).

Results: Body weight decreased from 121.4 ± 9.2 to 113.7 ± 8.4 kg and BMI from 45.3 ± 6.2 to 40.0 ± 5.7 kg/m² (both P < 0.005) and diabetes resolution was markedly reduced after the operation (before: 4 patients short- and long-acting insulin, average dose 56.5 ± 12.1 U/day and 51.5 ± 10.0 U/day, respectively, 6 patients metformin, one patients glinidia; after: 4 patients long-acting insulin, average dose 21.5 ± 5.9 U/day, no short-acting insulin, no oral antihyperglycemic agents). Concentrations of HbA1c, fasting glucose, and 2 h glucose response to the OGTT were significantly reduced after surgery (all P < 0.05). None of the calculated indices of insulin secretion, e.g. acute insulin response (AIR), pointed to a significant improvement of beta-cell function (all P > 0.5) while indices of insulin sensitivity tended to increase (e.g. M-value) by 3.67 ± 0.52; P = 0.07).

Conclusion: In contrast to previous studies in type 2 diabetic patients not treated with insulin with disease duration less than 6 years, we did not find an improvement in beta-cell function shortly after gastric bypass surgery. Thus, improved glucose metabolism soon after the operation appears to rely primarily on enhanced insulin sensitivity. However, these preliminary observations do not exclude a restoration of beta-cell function later after gastric bypass surgery.

Supported by: an ESFS/MSD grant

Sleeve gastrectomy, only a restrictive surgical procedure?

Background and aims: Bariatric Surgery (BS) offers new therapeutic possibilities for subjects with morbid obesity (MO) and type 2 diabetes mellitus (DM2). Several studies suggest that the malabsorptive surgical procedures are more effective than restrictive techniques (Gastric Banding and Vertical Y de Roux Gastric By-pass (LYRGB) in the normalization of glucose metabolism and IR. EGDR negatively correlates with IR improvement after the BS. And 32.1 % a LSG. Baseline characteristics of DM2 patients in both surgical interventions were comparable in terms of age, sex, need of hypoglycemic drugs, DM2 duration, glucose levels and HbA1c. Clinical outcomes were assessed in 12 months follow-up in both surgical groups as follows: 1) 80.6% DM2 remission, 2) 89.5% IFG remission, 3) IR remission was achieved in 79.2 % of the DM2 patients, in 95.9 % of IFG subjects and in 97.7 % of the nonDM subjects. Independent predictors for a significant decrease in HOMA-IR at 12 months were EGDR and BMI (R²=0.44) . No predictive factors for DM2 or IFG resolution were identified.

Conclusion: A restrictive surgical procedure like LSG is equally effective as malabsorptive techniques in terms of weight loss, improvement of glucose metabolism and IR. EGDR negatively correlates with IR improvement after the BS.

Respiratory function in massive obesity: effects of surgically induced weight loss

J. Aron-Wisniewsky, C. Minville, A. Basdevant, J. Gonzalez, P. Clermont, J.-L. Pepin, Nutrition and Endocrinology Department and CRNH-Ile de France, 75006, UMR S 872, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, INSERM ER1 17, HP2 laboratory (Hypoxia: Pathophysiology), Joseph Fourier University, Grenoble, Rehabilitation and Physiology Department, Grenoble University, Pulmonary Medicine and Intensive care unit, Paris, France.

Background and aims: In obese patients, adipose tissue around the rib cage and abdomen and in the visceral cavity loads respiratory system, increases work of breathing and reduces lung volumes particularly functional residual capacity (FCR) and expiratory reserve volume (ERV). Obesity also affects airway caliber with a slight reduction in expiratory flows. To date, limited data are available on the effects of bariatric surgery on respiratory function. We aimed to systematically investigate respiratory function of obese patients at baseline (T0) and 6 months (T6) after surgically induced weight loss.

Materials and methods: We conducted a retrospective analysis of a single center observational cohort of 77 obese patients (BMI = 47.8 ±6.7 kg/m²) who underwent laparoscopic bariatric surgery (63 Roux-en-Y gastric bypass; 14 gastropasty). Arterial blood gazes and respiratory function tests including lung volume and flow measurements were assessed at T0 and T6.

Results: Patient’s characteristics at baseline were as follows: 74% women, mean age = 43 ± 11 years, mean PaO2 = 82.9 ± 9.2 mmHg, mean PaCO2= 40.2 ± 6.2 mmHg. Mean values of forced expiratory volume in 1 second (FEV1), vital capacity (VC), FVC and total lung capacity (TLC) as expressed in % predicted values were in the normal range. FRC and EFR were significantly reduced (absolute values and % of predicted: 2.0 ± 0.6 L; 65 ± 16% and 0.33 ± 0.24; 44 ± 25% respectively). On flow volume loops, expiratory flows at 25% of VC was also decreased (3.5 ± 0.9 L/min; 52 ± 26%). After bariatric surgery (T6), we observed a significant weight loss (Δ-30.6 ± 13kg; -22.4 % of the initial BMI, P<0.0001) along with a significant improvement from baseline in VRE (absolute values and % of variation from baseline: Δ0.4 ± 0.3L; +44 ± 95%; p<0.0001), expiratory flows at 25% of VC (Δ0.4 ± 0.3L/min; +9 ± 33%; p=0.03), FRC (Δ0.4 ± 0.16 ± 18% Vs. P<0.0001), FEV1 (Δ0.2 ± 0.2L/min; +7 ± 9%; P=0.004) and FVC (Δ0.2 ± 0.3L; +6 ± 8%; P=0.007). Moreover, we found an inverse association between BMI reduction and increases in expiratory flows at 25% and 50% of VC (P=0.0035; P=0.037, respectively). Changes in PaO2 and PaCO2 were close to a statistically significant improvement (ΔPaO2 = 7.3 ± 22 mmHg, P<0.06, ΔPaCO2 = 3.9 ± 9

S.309
Massive body mass loss leads to reduced endoplasmic reticulum stress and activation of autophagy in adipose tissue

University of Campinas, Brazil.

Background and aims: Endoplasmic reticulum stress (ER-stress) has emerged as an important link between nutritional overload and insulin resistance. High consumption of nutrients, especially saturated fats, induces the activation of ER-stress, which promotes inflammatory gene transcription and eventually the activation of pro-apoptotic signaling. The inflammatory proteins induced by this process mediate the activation of serine/threonine kinases in insulin sensitive tissues, contributing for the impairment of the insulin signal transduction. Body mass loss is one of the most efficient means for correcting glucose intolerance. The reduction of the adipose tissue production of inflammatory factors plays a central role in this process. However, the molecular and cellular mechanisms behind this outcome are poorly understood. Here, we explore the hypothesis that massive body mass loss is accompanied by reduced ER-stress in the adipose tissue.

Materials and methods: Ten obese patients were submitted to subcutaneous adipose tissue biopsy before and 6-8 months after bariatric surgery. Ten, age matched lean subjects were employed as controls. Samples were used for evaluation of protein and mRNA expression of markers of ER-stress, inflammation and autophagy. Metabolic parameters were evaluated at the same time-points as biopsies.

Results: Body mass index dropped from 48±4 to 37±4 (controls, 24±2), which was accompanied by the reduction of blood insulin, leptin, TNP-a, IL-6 and C-reactive protein and by the increase in the blood levels of adiponectin. Significant reductions in protein (amount/activity) and/or mRNA levels of the ER-markers, PERK, eIF2α, IRE1α, spliced XBP1 and JNK were observed. The inflammatory proteins TNF-a, IL-1β, IL-6, IKK and SOCS-3 were also negatively modulated by body mass loss. Interestingly, markers of autophagy, such as beclin, LC3 and CHOP increased after body mass loss.

Conclusion: The reduction of ER-stress may be an important molecular/cellular mechanism linking the loss of body mass with reduced adipose-tissue-driven inflammation. The induction of autophagy in this setting may contribute to prolonged adipocyte survival during catabolism and may play an important role in body mass regain, which is commonly seen in patients undergoing restrictive dieting programs.

Supported by: FAPESP
PS 69 Obesity: mechanisms and therapies II

780

Fatty acid oxidation rate is higher in obese women than obese men

F. Shojae-Moradi1, K. Backhouse1, J. Sara1, M. Stolinski1, D. Robertson1, J.D. Beff2, E.L. Thomas2, D. Russell-Jones2, M. Umpleby1

1Diabetes and Endocrinology, University of Surrey, Guildford, UK, 2Metabolic and Molecular Imaging Group, Imperial College London, United Kingdom.

Background and aims: Excess plasma fatty acids have been associated with insulin resistance, increased hepatic triglyceride production and cardiovascular risk. Women have been shown to produce more fatty acids than men relative to their resting energy expenditure. This study investigated whether the oxidation rate of circulating fatty acids is also greater relative to resting energy expenditure in obese women compared to men matched for age and BMI.

Materials and methods: 12 obese men (58 ± 2y, BMI 31 ± 1 kg/m²)(mean ± SEM) and 12 postmenopausal obese women (59 ± 1y, BMI 32 ± 1 kg/m²) were studied. Resting energy expenditure (REE) and total lipid oxidation was measured by indirect calorimetry. An iv infusion of [U-13C] palmitate was administered with measurements of plasma palmitate enrichment and 13CO2 production rate to calculate palmitate metabolic clearance (MCR) and oxidation rate. On a separate day an iv infusion of [1,2-13C]acetate was given with measurements of 13CO2 production rate to correct palmitate oxidation for the loss of label in the Krebs cycle. Whole body fat mass was measured by MRI. Statistical analysis was by unpaired t test.

Results: Palmitate turnover rate (Ra), MCR and oxidation rate (Ox) expressed as kg fat free mass (FFM) were significantly higher in obese women than in obese men (Ra: 4.5 ± 0.3 vs. 2.8 ± 0.2 umol/min/kgFFM, p<0.001); MCR 31.2 ± 5.1 vs. 20.7 ± 4.1 ml/min/kgFFM, p<0.001; Ox 1.6 ± 0.1 vs 1.2 ± 0.1 umol/min/kgFFM, p<0.002). Palmitate Ra expressed as kg fat mass was not significantly different between genders. Plasma palmitate concentrations and total lipid oxidation expressed as kg FFM, measured by indirect calorimetry, were not different in the women and men. When corrected for REE both palmitate Ra, MCR and Ox remained significantly greater in women than men (p<0.003, p<0.006, p<0.03 respectively). When subset of subjects (7men, 7 women) were matched for adiposity (men: 38 ± 3 kg fat, women 38 ± 1 kg fat), these measurements remained significantly greater in women than in men (p=0.003, p<0.01 and p<0.002 respectively).

Conclusion: This study shows that when adjusted for FFM and REE, palmitate oxidation rate was higher in women than men suggesting that women oxidise more circulating fatty acids than men. Since total lipid oxidation adjusted for FFM did not differ between men and women this suggests that men oxidise more non-plasma lipids.

Supported by: an ESF/Sanofi-aventis grant

781 Metabolomics reveals differential metabolic regulation at the catabolic-anabolic switchpoint during oral glucose challenge testing in women after recent gestational diabetes

W. Peissner1, M. Wallner1, M. Bunk1, A.-G. Ziegler1, B. Koletzkó2

1Div. Metabolism and Nutrition, LMU Munich University, Dr. von Hauner Children's Hospital, Research Group Diabetes at the Helmholtz Centre Munich, Diabetes Research Institute, Germany.

Background and aims: Insulin-mediated postprandial suppression of non-esterified fatty acid release from adipose tissue is acknowledged as an important physiological function to protect non-adipose tissues from lipotoxic effects. Functional metabolic characterization of the catabolic-anabolic transtation in the early postprandial state is supposed to provide valuable insight into. The PINGUIN trial is a randomized intervention trial assessing the protective potential of Vildagliptin medication for the prevention of diabetes transition in short-chain acylcarnitines that represent the decreasing production and utilization of ketone bodies and organic acids. Similarly, levels of medium- and long-chain acylcarnitines and distinct long-chain sphingomyelins dropped rapidly, representing the suppression of fatty acid release from adipose tissue. Reaction profiles of amino acids were divided, prominent postprandial decrease was seen in all branched-chain and urea cycle-related amino acids, mirroring the halting of protein catabolism. Interestingly, fasting levels of several closely related acylcarnitines and amino acids were strikingly different in women with recent history of gestational diabetes as compared to healthy young volunteers. Some of the women showed an increase in metabolite changes over time, in contrast to the general decreasing trend. The significance of this finding has to be further evaluated by extending the study to include more subjects.

Conclusion: Assessment of dynamic metabolic changes during oral challenge testing reveals consistent pattern of metabolic regulation. Functional phenotyping by metabolomics techniques may be able to improve stratification of preventive intervention in populations at high risk for diabetes and metabolic syndrome.

Supported by: BMBF

782 Serum concentrations and tissue expression of components of insulin-like growth factor-axis in patients with type 2 diabetes mellitus and obesity: the influence of very low calorie diet

M. Haluzik, J. Krizova, M. Mraz, D. Haluzikova, M. Bartlova, P. Kavalkova, J. Drapalova, P. Trachta, V. Hanusova, M. Matoulek, Z. Lacinova, S. Svacina; 3rd Department of Medicine, Charles University, Prague, Czech Republic.

Background and aims: Insulin-like growth factor (IGF)-axis plays a complex role in glucose homeostasis, insulin sensitivity and pathogenesis of diabetes mellitus. The aim of the present study was to measure serum levels and tissue expression of selected components of the IGF-axis in type 2 diabetic patients at baseline and after dietary intervention.

Materials and methods: 12 obese females with type 2 diabetes mellitus (T2DM) and 10 healthy lean, sex- and age-matched controls (C) were included into the study. Serum concentrations of selected biochemical and hormonal parameters were measured by commercial ELISA and RIA kits. The expression analysis of genes for IGF-I and -II, insulin-like growth factor binding protein(IGFBP)-1 and -3 and insulin-like growth factor-receptor (IGF-R) in subcutaneous adipose tissue (SCAT) and isolated peripheral monocytes was performed by RT PCR at baseline and after 2 weeks of very low calorie diet (VLCD, energy intake 2500 KJ/day). The study was approved by the Ethical Committee of General University Hospital in Prague.

Results: Compared to C group, T2DM group had significantly increased fasting glucose, insulin and leptin concentrations and mRNA expression of IGF-R and IGFBP-3 in peripheral monocytes. Serum levels of IGF-I and adiponectin and mRNA expression of IGF-I, IGFBP-3 and IGF-R in SCAT were significantly reduced in T2DM group. IGF-II expression did not differ between the groups. mRNA expression of IGFBP-1 was not detected in either SCAT or peripheral monocytes. mRNA expression of IGF-I and IGF-II was not detected in peripheral monocytes. In SCAT, the mRNA expression of IGF-I, IGFBP-3 and IGF-R negatively correlated with BMI, insulin, glucose and HOMA index. IGF-R mRNA expression in peripheral monocytes positively correlated with BMI, insulin and HOMA index, while IGFBP-3 mRNA expression positively correlated only with BMI. Two weeks of VLCD significantly decreased body weight, and improved glycaemia, insulin resistance and lipid profile. VLCD further significantly decreased serum IGF-1 levels and increased IGF-1 mRNA expression in SCAT. mRNA expression of other studied parameters was not influenced by VLCD.

Conclusion: Our results suggest that decreased mRNA expression of IGF-1 in SCAT and increased expression of IGFBP-3 in peripheral monocytes may induce local metabolic disturbances in adipose tissue contributing to development of insulin resistance and type 2 diabetes mellitus.

Supported by: MZOVPN2005 and IGA NS10024-4
Visceral fat reduction is associated with increased IL-10 levels in obese subjects that underwent caloric restriction

G. Formoso,1 M.P.A. Baldassarre,2 M. Taraborrelli,1 M. D’Adamo3, P. Di Fulvi1, N. Di Pietro1, A. Nicollucci,1 A. Tartaro1, A. Pandolﬁ1, A. Consoli2,3
1Department of Internal Medicine, University of Rome, 2Biomedical Sciences, University of Chieti, Chieti Scalo, 3Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 4Department of Clinical Sciences and Bio-imaging, University of Chieti, Chieti Scalo, Italy.

Background and aims: Obese subjects are characterized by a low grade inflammatory state that may contribute in predisposing them to develop atherosclerosis. An excess of adipose tissue, particularly in intra-abdominal depots, is thought to play a role in the pathophysiology of the metabolic syndrome, closely linked to insulin resistance, and to increase the risk of cardiovascular disease. Although circulating levels of proinflammatory cytokines as well as other inﬂammation markers have been shown to be elevated in human obesity, little is known about the role of anti-inﬂammatory cytokines in this setting. IL-10 is a major inhibitor of cytokines synthesis; it suppresses macrophage function and inhibits the production of proinflammatory cytokines. Recent studies have shown an increase in IL-10 levels after caloric restriction. However, scant data exist about the effects on plasma IL-10 levels of the loss of visceral and/or subcutaneous fat tissue (VF and SF respectively). Aim of the present study was to verify whether changes in insulin sensitivity and in plasma levels of IL-10 together with several adipokines such as TNFa, IL-6 and Leptin speciﬁcally correlate with changes in VF or SF.

Materials and methods: We measured VF and SF by Magnetic Resonance (MRI), plasma levels of glucose, insulin, IL-10, TNFa, IL-6 and Leptin before and after a caloric restriction induced weight loss of at least 5% of the original body weight, in 14 (4 men, 10 women) obese subjects (BMI 34.2±6.5 Kg/m2).

Results: As we expected, weight loss improved insulin sensitivity (Quicki index= 0.35±0.03 vs 0.37±0.04, p<0.05), increased IL-10 levels (3.41±1.98 pg/ml vs 4.63±1.30 pg/ml, p<0.05) and reduced TNFa , IL-6 e leptin levels (2.52±1.32 pg/ml vs 1.60±1.52 pg/ml, 2.32±0.42 pg/ml vs 1.64±0.64 pg/ml; 56.1±30.2 ng/ml vs 37.2±29.3 ng/ml respectively, p<0.05 for all). Moreover we observed a signiﬁcant correlation between the amount of VF loss and the improvement in insulin sensitivity (r=0.44, p<0.05) and between the percent reduction in VF and the percent reduction in both TNFa (r=0.56, p<0.05) and IL6 (r=0.19, P<0.05) plasma levels. On the contrary, no correlation was observed between the investigated parameters and either the amount or the percentage of SF lost. Furthermore, in a multiple regression analysis, the amount of VF loss independently correlated with the increase in IL-10 levels.

Conclusion: These data suggest that the reduction in visceral but not in subcutaneous adipose tissue is associated with an improvement in the inﬂammatory pattern characterizing obesity and, specifically, that a loss in VF is associated with increased plasma levels of the anti-inﬂammatory adipokine IL-10.
Thirty-six Sprague-Dawley rats were ovariectomized (OVX) and divided into several groups: non-treated OVX (OVX), OVX treated with LP50 (LP50), OVX treated with estrogen replacement therapy (ERT), OVX treated with LP50 plus ERT (LP50 + ERT), and OVX treated with 1,2 dihydroxyvitamin D3 (D3). The LP50 dosage was 50 mg/kg/day, and ERT was administered at 0.625 mg/kg/day. The results showed that the weight gain of the OVX group was significantly reduced compared to the SHAM group (74.5 ± 25.5 g, p < 0.05). Treatment of OVX with LP50 or ERT significantly reduced the weight gain by 16.8% and 25.5%, respectively (p < 0.05 for both). Furthermore, treatment with LP50 or ERT significantly reduced the CORT levels in the OVX group (53 ± 22 ng/ml, p < 0.05) compared to SHAM (55 ± 23 ng/ml, p < 0.05). The levels decreased in all LP10, LP20 and LP50 (55 ± 20 ng/ml, 53 ± 15 ng/ml and 52 ± 20 ng/ml respectively, p < 0.05 for all) and in the ERT-treated rats. The CORT levels decreased in the LP50 + ERT group (52 ± 15 ng/ml, p < 0.05). The results indicate that LP50 and ERT could reduce the CORT levels in the OVX group, suggesting that anti-obesity effects of LP50 are attributed, at least in part, to the inhibition of Hsd11b1 expression in adipose tissue and liver. Based on our results, we hypothesize that anti-obesity effects of LP50 are attributed, at least in part, to the inhibition of Hsd11b1 expression in adipose tissue and liver. These changes suggest the use of LP50 for a postmenopausal treatment and possibly, in other conditions related to metabolic syndrome. Supported by: ALFEDIAM Novo Nordisk 2008 and INSERM.

876

Labisia pumila var alata extract down-regulates 11-beta hydroxysteroid dehydrogenase type-1 and corticosterone levels in overweight ovariectomized rats

M. Fazliana, W. W. Wan Nazaimoon, H. E. Guı̇, C. G. Östenson

Materials and methods: Labisia pumila var. alata (LPva), a Malaysian plant with phytoestrogen effects, was used in this study. Ovariectomized rats were divided into four groups: SHAM, OVX, OVX treated with LP50 (LP50), and OVX treated with LP50 plus estrogen replacement therapy (ERT). The LP50 dosage was 50 mg/kg/day, and ERT was administered at 0.625 mg/kg/day. The results showed that the weight gain of the OVX group was significantly reduced compared to the SHAM group (74.5 ± 25.5 g, p < 0.05). Treatment of OVX with LP50 or ERT significantly reduced the weight gain by 16.8% and 25.5%, respectively (p < 0.05 for both). Further, the CORT levels in the OVX group increased significantly (135 ± 25 ng/ml, p < 0.05) compared to the SHAM group (53 ± 22 ng/ml, p < 0.05). The levels decreased in all LP10, LP20 and LP50 (55 ± 20 ng/ml, 53 ± 15 ng/ml and 52 ± 20 ng/ml respectively, p < 0.05 for all) and in the ERT-treated rats. The CORT levels decreased in the LP50 + ERT group (52 ± 15 ng/ml, p < 0.05). The results indicate that LP50 and ERT could reduce the CORT levels in the OVX group, suggesting that anti-obesity effects of LP50 are attributed, at least in part, to the inhibition of Hsd11b1 expression in adipose tissue and liver. Based on our results, we hypothesize that anti-obesity effects of LP50 are attributed, at least in part, to the inhibition of Hsd11b1 expression in adipose tissue and liver. These changes suggest the use of LP50 for a postmenopausal treatment and possibly, in other conditions related to metabolic syndrome. Supported by: MOSTI, Swedish Research Council and Swedish Diabetes Association.

877

Transgenerational non-genomic inheritance of glucose intolerance by neonatal overfeeding in mice

J.C. Jimenez-Chillaron, T. Pentinat, J. Cebria, M. Ramon-Krauel, R. Diaz

Materials and methods: Neonatal overfeeding in mice might have long-term consequences, such as increased body weight, increased obesity, and diabetes risk. Here, we aimed to explore whether neonatal overnutrition may influence glucose intolerance in subsequent generations, even when the environmental triggers are not present anymore (transgenerational effects). We have previously generated a model of neonatal over-nutrition (ON-F1) and studied the effects of ON-F1 pups on the development of metabolic syndrome in adult mice, by age 6 months: i.e. obesity, dyslipidemia, hyperglycaemia, hyperinsulinaemia, insulin resistance and glucose intolerance. Here we aimed to explore whether neonatal over-nutrition may influence metabolism of successive generations, F1 and F2.

Materials and methods: Control and ON males from the F0 generation were mated with non-sibling control females to generate the first generation of offspring, F1. At birth, all litters are adjusted to 8 pups per dam. Thus, contrary to the parental generation, ON-F1 pups are not neonatally overfed as compared to the parental generation, ON-F1 pups are not neonatally overfed as compared to the parental generation.
pared to their matched controls. We next repeated the breeding protocol, by using C-F1 and ON-F1 males, to obtain the second-generation offspring, F2. Likewise, all litters are equalized to 8 pups per dam to match normal nutrition during the neonatal period. Thus, an important consideration for the experimental design is that ON-F1 and ON-F2 male mice are not themselves overfed during lactation.

Results: We show that ON-F1 and ON-F2 male mice also develop several features of the metabolic syndrome, including fasting hyperinsulinemia (C= 0.22± 0.01 ng/ml; ON-F1= 0.44± 0.06**; ON-F2= 0.31± 0.05*; **p< 0.05, **p< 0.01), mild insulin resistance (HOMA-IR, C= 0.5± 0.04; ON-F1= 1.4± 0.21**; ON-F2= 0.7± 0.23; p< 0.1; **p< 0.01) and glucose intolerance by age 4 months. Impaired glucose tolerance in ON-F1 and ON-F2 mice appears to be accounted for primarily by peripheral insulin resistance, since beta-cell function remains normal in these cohorts. Thus, here we show, for the first time, that neonatal overfeeding programs adult diabetes-related phenotypes not only to exposed individuals, but also to their offspring and grand-offspring.

To note, transgenerational inheritance of insulin resistance occurs through the paternal lineage. Thus, transgenerational inheritance of the diabetic phenotypes must occur through, nutritionally-induced, modifications in cells of the germ line. It has been proposed that trans-paternal inheritance of such environmentally-acquired phenotypes might be mediated, in part, by epigenetic mechanisms.

Conclusion: In summary, nutritional challenges occurring during sensitive periods of development may have adverse metabolic consequences well beyond the lifespan of affected individuals and manifest in subsequent generations. Transgenerational progression of metabolic phenotypes through the male lineage supports a potential role for epigenetic mechanisms in mediating these effects.

Supported by: MICINN to JCJ-CH and Fundacion2000 to RD

788

Paradoxical response in feeding in short-term fasted rAAV-leptin treated mice

N. Ueno1, A. Inui2;
1Department of Internal Medicine, Kobe Seaside Hospital, 2Department of Behavioral Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, Japan.

Background and aims: Leptin plays an important role in body weight regulation. Administration of leptin reduces food intake and body weight. However, we have shown that food intake did not decrease in rAAV-leptin treated wt mice.

Methods: rAAV-leptin and rAAV-GFP as a control was injected icv in wild type mice and daily (24 hours) food intake was measured. They were fasted for 3 hours and re-fed for 3 hours. Food intake was measured during the re-feeding period. Blood samples were collected before and after 3 hours fasting and blood glucose, plasma insulin, ghrelin and leptin levels were measured. Another set of mice (rAAV-leptin and rAAV-GFP treated) was fasted for 3 hours and ghrelin (1g/kg) was injected ip. The same blood samples were collected before glucose injection and 1 hour after glucose injection. Blood parameters same as above were measured in the same way.

Results: There was no change in total daily food intake in rAAV-leptin treated and control mice (control: 3.69±0.21, rAAV-leptin: 3.56±0.07 g). Food intake in rAAV-leptin treated mice during the re-feeding period was significantly increased compared to control mice (control: 0.19±0.04, rAAV-leptin: 0.38±0.05 g, p< 0.05). After fasting, blood glucose levels decreased (3.36±0.50 to 2.40±0.29 mmol/l, p< 0.01) in rAAV-leptin treated mice but not in control mice. Plasma ghrelin levels increased (1.32±0.32 to 3.92±0.75 ng/ml, p< 0.01) in rAAV-leptin treated mice but not in control mice. Plasma leptin levels decreased in control mice (5.45±0.79 to 3.81±0.45 ng/ml, p< 0.05) but stayed very low with no change in rAAV-leptin treated mice (0.36±0.07 to 0.29±0.04 ng/ml). Glucose injection decreased circulating ghrelin levels (11.10±1.21 to 2.42±0.28 ng/ml, p< 0.001) and increased leptin levels (0.42±0.12 to 0.77±0.15 ng/ml, p< 0.05) in rAAV-leptin treated mice. No change was seen in the control group.

Conclusion: These results suggest that there was increased food intake when rAAV-leptin treated mice were fasted. Decrease in blood glucose or increase in circulating ghrelin in even short-term fasting periods may contribute to increased food intake in rAAV-leptin treated wt mice. This may explain, at least in part, the lack of difference in feeding behavior in rAAV-leptin treated wt mice and control mice. After glucose injection, reduction in circulating ghrelin and elevation in leptin levels may inhibit their increased food intake result in the normal daily food intake as if there is a feedback system.

789

Reduced insulin gene dosage prevents diet-induced obesity

A.E. Mehran, X. Hu, J.D. Johnson;
Cellular and physiological sciences, University of British Columbia, Vancouver, Canada.

Background and aims: Obesity has become a worldwide epidemic and can often lead to insulin resistance, hyperinsulinemia and type 2 diabetes, but the relationship amongst these phenomena remains enigmatic. Although insulin is a potent adipogenic hormone, it is thus far unclear whether hyperinsulinemia itself can be a causal factor in the pathogenesis of obesity and/or type 2 diabetes. Unlike humans, mice possess two non-allelic insulin genes. It has been previously established that mice lacking one of their two insulin genes are phenotypically normal. Furthermore, it is reported that only Insulin 1 (Ins1) is exclusively expressed in the pancreatic beta cells whereas Insulin 2 (Ins2) is also expressed in extra-pancreatic tissues where it can have non-endocrine functions. We therefore hypothesized that mice with only one active Ins1 allele would be protected from diet-induced obesity and associated pathologies.

Materials and methods: To test hyperinsulinemia as an endocrine pathology, we used Ins2 knockout mice. We compared mice with only a single copy of Ins1 (Ins1+/+-Ins2-/-) with those with two copies of Ins1 (Ins1+/+Ins2-/-) with respect to the adverse effects of high-fat feeding. We studied body weight, glucose- and insulin- tolerance, insulin mRNA levels, islet insulin content, total body lipid content by NMR, epididymal fat pad weight, lipid accumulation in multiple tissues, and pancreatic beta cell mass by immunofluorescence microscopy.

Result: Ins1+/+Ins2-/- mice were protected from adult-onset diet-induced weight gain compared with Ins1+/+Ins2-/- controls (P< 0.001). High-fat fed mice with one or two active Ins1 gene allele showed early elevated levels of circulating insulin when compared to chow fed mice of either of the genotypes. This was positively correlated with a slight increased overall body growth as per measured by tibial length at one year of age. However, one year old high-fat fed Ins1+/+Ins2-/- mice had significantly reduced basal circulating insulin levels (P< 0.01), reduced insulin response to glucose stimulation, lower beta cell mass, lower whole-body fat ratio (P< 0.05), smaller epididymal fat pads (P< 0.01), smaller adipocytes, and no hepatic steatosis when compared with Ins1+/+Ins2-/- mice on the same diet. Mice of either genotypes on the chow diet showed comparable phenotypes and were similar to that of observed in the high-fat fed Ins1+/+Ins2-/- mice. Mice across all groups showed normal and comparable glucose tolerance and insulin sensitivity.

Conclusion: We have shown that prevention of diet-induced hyperinsulinemia through partial ablation of insulin gene can protect mice from obesity and its associated complications. Hyperinsulinemia may not just simply be an adaptive response to obesity-induced insulin resistance and may play a causal role in the pathogenesis of obesity and/or diabetes. Therapeutic interventions that reduce circulating insulin may be worth exploring in the context of obesity and pre-diabetes.

Supported by: IDRF, CDA, CIHR
PS 70 Adipocyte biology: new kids on the block

790

Micro-ribonucleic acid expression profiling and expression quantitative trait loci analysis in human gluteal and abdominal adipose tissue

M. Talabi1, D. Herrera1, G. Nicholson2, Q.F. Willy3, R. Bode1, M.J. Neville1, I.C. Randolf1, A. Barrett1, M. Allen1, M.I. McCarthy1, K.T. Zondervan1, F. Karpe1, C.C. Holmes1, C.M. Lindgren1, K. Vleugels1

Background and aims: Obesity is a large and growing public health problem associated with increased risks of type 2 diabetes, cardiovascular disease, hypertension and increased mortality. Adipose tissue distribution relates to morbidity with increased levels of abdominal adipose tissue associated with metabolic deregulation and related disease. Hence, characterization of the molecular phenotypes in these two adipose tissues is an essential starting point when attempting to understand molecular mechanisms associated with obesity and related disease. Here we characterise micro-RNA (miRNA) expression and how it contributes to the molecular phenotype in gluteal and abdominal adipose deposits, which are known to affect risk of obesity-related disorders.

Materials and methods: The expression of 1131 miRNAs was profiled in these two fat depots in 70 human subjects using the Illumina DASL miRNA beadarray. The study includes male and female subjects diagnosed with metabolic-syndrome as well as healthy controls. Here we focus on investigating tissue-specific miRNA expression. All subjects were genotyped using the Illumina HumanHap317 Beadchip, enabling assessment of whether there are individual genetic variants driving miRNA expression levels, by miRNA expression quantitative trait loci (eQTL) analysis. Tissue-differential expression was analysed using a linear mixed effects model with miRNA expression as response; tissue type, batch, gender, metabolic-syndrome status and age included as fixed effects; and a subject identifier included as random effect. Significance of the tissue effect was assessed by a permutation test of the likelihood-ratio statistic. A similar model and test was used for eQTL analysis, with the genotype included as an additive fixed effect. eQTL models were fitted separately for each tissue type.

Results: We found that 154 miRNAs were differentially expressed between gluteal and abdominal fat tissue (FDR corrected (Benjamini and Hochberg's method) p-value < 0.05). These miRNAs include has-miR-211 (p-value=0.006), has-miR-27b (p-value=0.006), has-miR-27a (p-value=0.011), has-miR-34a (p-value=0.020) and has-miR-143 (p-value=0.020), which have previously been reported to be associated with adipose tissue development, obesity and metabolic disorders. We detected 10 miRNA-eQTL candidates in gluteal adipose tissue and 23 miRNA-eQTL candidates in abdominal adipose tissue (nominal p-values < 0.002). Currently we are undertaking a confirmation study in 40 additional subjects, with the objective of replicating the current findings.

Conclusion: The results indicate a substantial difference in miRNA expression patterns between gluteal and abdominal adipose tissues, which may indicate an important role of miRNAs in contributing to the molecular phenotype of these two tissue types. Presence of miRNA-eQTLs indicate a direct genetic influence on the expression of specific miRNAs, and consequently also indirectly on the general molecular phenotype of gluteal and abdominal adipose tissue.

Supported by: MolPAGE(EU/FP6), MRC, Welcome Trust

791

Human adipose tissue - a novel source of eotaxin-3

K. Vleugels1, S. Glund2, U. Buro1, S.R. Bornstein1, M. Ehrhart-Bornstein1, G. Nicholson2, Q.F. Willy3, R. Bode1

Background and aims: Obesity and overweight are major risk factors for chronic diseases, including type 2 diabetes, cardiovascular disease, hypertension and stroke, as well as certain forms of cancer. Obesity is characterized by a chronic, systemic low-grade state of inflammation. Adipose tissue secretes a multitude of factors, e.g. adipokines and cytokines that are involved in the body’s homeostasis and metabolism. A causal relationship of obesity associated inflammation with metabolic disorders is indicated. We aimed at identifying cytokines released from human adipocytes and identified eotaxin-3 (CCL26). Eotaxin-3 is a member of the CC chemokine family, known to be expressed in several tissues, e.g. heart and lung, and is an important effector chemokine in allergic conditions. Eotaxin-3 acts mainly via the CCR3 receptor and is a potent chemottractant for eosinophils. Additionally, evidence exists that eotaxin-3 acts as an antagonist on chemokine receptors CCR1, CCR2 and CCR5, suggesting a modulatory function of eotaxin-3 in inflammation. No data, however, exists so far on the expression in and/or secretion of eotaxin-3 from adipose tissue.

Materials and methods: Mature adipocytes and preadipocytes were isolated from white human adipose tissue obtained from healthy women undergoing surgical mammary reduction or liposuction. Preadipocytes and in vitro differentiated adipocytes were stimulated with IL-4, TNFa, and/or IFNy. Visceral and subcutaneous fat tissue was obtained from patients undergoing abdominal surgery. Eotaxin-3 gene expression was determined with quantitative PCR. Eotaxin-3 secretion was measured with a specific RIA.

Results: In the present study, eotaxin-3 was expressed in most samples of human adipocytes and secreted constitutively. Intracellular comparison of eotaxin-3 gene expression from subcutaneous and visceral fat depots showed higher eotaxin-3 levels in subcutaneous fat tissue. The eotaxin-3 expression in subcutaneous fat tissue is correlated to donor BMI. Furthermore, its expression was higher in adipose tissue than in isolated adipocytes. Preadipocytes and in vitro differentiated adipocytes expressed and secreted eotaxin-3 at low levels; its expression and secretion, however, was strongly induced by stimulation with IL-4, via STAT6 pathway, but not TNFa or IFNy. Co-stimulation of preadipocytes with IL-4 and IFNy decreased IL-4 induced eotaxin-3 expression; pretreatment with IFNy decreased IL-4 induced eotaxin-3 expression in a dose-dependent manner.

Conclusion: We could identify human adipocytes as a novel source of eotaxin-3. Eotaxin-3 expression in subcutaneous fat tissue was positively correlated with BMI. Its expression is inducible by IL-4, an anti-inflammatory cytokine produced e.g. by adipose tissue. IFNy inhibits IL-4 induced eotaxin-3 expression. A possible role of eotaxin-3 in obesity-associated disorders needs to be elucidated.

792

Human adipocytes express P2X7 receptors able to modulate some inflammatory responses in subjects with metabolic syndrome

A. Solini1, S. Madec1, C. Rossi1, M. Chiarugi3, E. Santini1, A. Salvati1, E. Ferrannini3, S. Glund1, F. Karpe2, U. Buro1, M. Ehrhart-Bornstein1

Background and aims: No information is available on the presence of P2X7 receptor in human adipocytes and their potential involvement in the chronic inflammation associated with metabolic syndrome (MS). Adipocytes were isolated from samples of visceral (VAT) and subcutaneous (SAT) adipose tissue of 40 patients with MS (defined as by ATP-III criteria) and 20 controls (CLT), recruited among patients undergoing laparoscopic cholecystectomy. Other data on the presence of P2X7 receptor in human adipocytes and their potential involvement in the chronic inflammation associated with metabolic syndrome (MS) are lacking. Adipocytes were isolated from samples of visceral (VAT) and subcutaneous (SAT) adipose tissue of 40 patients with MS (defined as by ATP-III criteria) and 20 controls (CLT), recruited among patients undergoing laparoscopic cholecystectomy.

Materials and methods: We measured adipocyte gene expression of TNFα, IL-6 and PAI-1 (by real-time-PCR) and their plasma concentrations (ELISA), as well as gene and protein expression of P2X7 (using real-time-PCR, Western blot and immunocytochemistry). In a subgroup of 15 MS and 10 CLT we also evaluated P2X7 functional activity by measuring the effect of benzoyl-benzoyl-ATP (BzATP) a P2X7 specific agonist and KN62 (a selective P2X7 blocker) on intracellular calcium fluxes ([Ca2+]i, by fluorimetry) and adipokine release (by ELISA).

Results: In VAT, TNFa, IL-6 and PAI-1 were more expressed in MS than in CLT (T/R ratio: 3.29±1.17 vs 1.79±1.19, 8.99±2.4 vs 5.65±4.03, 6.06±2.32 vs 2.91±0.34, p =0.005-0.0001). These differences were confirmed in SAT for IL-6 (3.56±1.56 vs 1.98±1.49, p=0.0004) and PAI-1 (3.78±1.87 vs 2.25±1.16, p=0.01), but not for TNFa (1.49±0.83 vs 1.24±0.67, p=0.2). In MS IL-6 and PAI-1 levels were higher in MS (IL-6: 2.81±1.55 vs 3.42±2.67 pg/ml, p=0.002; PAI-1: 3.20±1.11 vs 42.6±1.16 ng/ml, p=0.002). TNFa levels were higher in MS (3.22±1.6 vs 2.51±0.88 pg/ml, p=0.05). P2X7 mRNA, found both in VAT and SAT, was more abundant in MS than in CLT (T/R ratio: 2.13±0.68 vs 1.56±0.49 in VAT, p=0.0013 and 1.76±0.34 vs 1.46±0.41 in SAT, p=0.03). P2X7 protein expression confirmed this observation, with the typical “ring-like” arrangement of P2X7 receptor at the plasma membrane. BzATP 0.5 mM raised [Ca2+]i in VAT and SAT, without differences between MS and CLT (VAT:...
FASN, Last year, we reported that mature adipocytes have found that an increase in cell number and the cell cycle analyzed with flow cytometry was less active in subcutaneous adipocytes than visceral ones. Treatment with PPARγ ligands, 10 μM Pio and 10 μM 15-deoxy-12,14-prostaglandin J2 increased adipocytes proliferation. In this study, we screened genes regulated by Pio, and we took note of PLF as a growth factor in adipocytes. PLF also termed mitogen-regulated proteins, is a member of the prolactin/GH family is involved in angiogenesis of placenta. PLF, secreted as a paracrine agent, binds to the insulin-like growth factor II (IGF-II)/cation-independent mannose 6-phosphate (M6P) receptor which can couple with Gπ protein. We clarify the role of PLF in adipocytes replication.

Materials and methods: Effects of PLF knockdown with siRNA and treatment with anti-PLF antibody (PLF-Ab) on 3T3-L1 adipocytes were examined. Expression of PLF in adipocytes isolated from rats during treatment with or without Pio was measured. In addition, effect of PLF-Ab administration on adipocytes growth was evaluated.

Results: Treatment with Pio increased PLF mRNA levels and protein levels in cell lysate and medium in 3T3-L1 adipocytes. Both PLF knockdown and an addition of PLF-Ab reduced adipocytes proliferation evaluated by cell counting and the formation of lipid droplets and AMPK activity. These results indicated that PPARγ-induced PLF positively regulates cell replication in 3T3-L1 adipocytes. And that involvement of IGF-II/cation-independent M6P receptor was also suggested. PLF was more abundantly expressed in visceral adipocytes than subcutaneous ones, while treatment with Pio increased subcutaneous adipocytes, but not visceral ones, which closely correlated to the extent of BrdU incorporation in each adipose tissue. PLF-Ab injection resulted in decreased BrdU incorporation in adipocytes. These results strongly supported the notion that PLF is actually involved in mature adipocyte replication in vivo.

Conclusion: PLF was suggested to be involved in cell replication as a PPARγ-induced growth factor in mature adipocytes.

795

Mammalian Ste20 kinase stimulates adipogenesis by activation of PPARγ
T. Ok1, B. Park2, S. Park2, Y. Lee2
1Internal Medicine, Chungbuk National University, Cheongju, 2Biochemistry, Chungbuk National University, Cheongju, Republic of Korea.

Background and aims: Recent studies have shown that mammalian ste20 kinase (MST) signaling pathway plays an important role in the regulation of apoptosis and cell cycle control and is thus emerging as a novel tumor suppressor pathway. MST pathway, originally identified as hippo pathway in Drosophila, involves several participating proteins including a scaffold protein Salvador (SAV1). The idea of MST signaling pathway functioning in cell differentiation seems plausible but needs investigation. Based on our finding that MST2 interacts with PPARγ, a key regulator of adipogenesis, we sought to understand the novel role of the MST signaling pathway in adipocyte differentiation.

Materials and methods: Proteins of interest were overexpressed or knocked down by siRNA in cell cultures of HEK293 cells and 3T3-L1 adipocytes. We employed various protein analysis methods and Oil red staining to analyze the MST signaling pathway.

Results: We found that MST2 bound to PPARγ through SAV1 and stabilized PPARγ protein. Interaction was dependent on the N-terminal portion of SAV1 including WW domains and the N-terminal portion of PPARγ including PPXY motif. We could not find the evidence that PPARγ is a direct substrate of MST2. Coexpression of MST2 and SAV1 resulted in a profound induction of PPARγ activity even in the absence of stimulation by an agonist rosiglitazone. During the differentiation period of 3T3-L1 cells, the protein expression of MST2 and SAV1 showed increases preceding that of PPARγ and the protein complex of endogenous SAV1 and PPARγ could be detected. Finally, adipocyte differentiation of 3T3-L1 cells was increased by overexpression of MST2 and SAV1 while it was decreased by knockdown of SAV1 using siRNA.

Conclusion: From the results, we propose that the activation of PPARγ by the MST signaling pathway may be a novel and important regulatory mechanism of adipocyte differentiation.

794

The role of proliferin (PLF) in adipose tissue
Department of General Internal Medicine, Gifu University Graduate School of Medicine, Japan.

Background and aims: Last year, we reported that mature adipocytes have the ability to proliferate, which is enhanced with pioglitazone (Pio) treatment. We demonstrated that 5-Bromo-2’-Deoxyuridine (BrdU), a thymidine analog, incorporation into mature adipocytes was observed in BrdU-pretreated rats. Quantified results showed that amount of BrdU incorporation was equal in adipocytes and total stromal vascular fraction cells, and that BrdU incorporation was less active in subcutaneous adipocytes than visceral ones. Treatment with 0.005% Pio containing food for 2w increased BrdU incorporation predominantly in subcutaneous, but not visceral adipocytes. Moreover, we found that an increase in cell number and the cell cycle analyzed with Bow cytomtery were recognized in fully differentiated 3T3-L1 adipocytes. Treatment with PPARγ ligands, 10 μM Pio and 10 μM 15-deoxy-12,14-prostaglandin J2 increased adipocytes proliferation. In this study, we screened genes regulated by Pio, and we took note of PLF as a growth factor in adipocytes. PLF also termed mitogen-regulated proteins, is a member of the prolactin/GH family is involved in angiogenesis of placenta. PLF, secreted as a paracrine agent, binds to the insulin-like growth factor II (IGF-II)/cation-independent mannose 6-phosphate (M6P) receptor which can couple with Gπ protein.

Conclusion: Human adipocytes express functionally active P2X7 receptors, which modulate the release of some inflammatory cytokines. Adipocytes from MS patients show an enhanced P2X7 receptor expression, which might contribute to the subclinical inflammatory status characterising these patients.
Association of human obesity with altered adipose PTX3 gene expression and protein plasma levels

A.M. Gómez-Foix1, O. Osorio1, M. Guitar1, M.R. Chacon1, E. Maymó-Masip1, J.M. Moreno1, M. Montori3, J.M. Fernández-Real4, J. Vendrell5,1
1Dep. Bioquímica i Biologia Molecular, CIBERDEM, Universitat de Barcelona, 2Joan XXIII University Hospital, CIBERDEM, Rovira i Virgili University ISIPV, Tarragona, 3Unit of Diabete, Endocrinology and Nutrition, Hospital de Girona, Spain.

Background and aims: PTX3 is a secreted acute-phase long pentraxin that is believed to mediate innate immunity and inflammation. PTX3 gene is mainly expressed in adipose tissue, and smooth and cardiac muscle in humans. Plasma PTX3 protein concentration has been negatively correlated with human obesity, and positively with atherosclerotic inflammation, and is a risk marker for myocardial infarction. The PTX3 gene expression is stimulated by TNFa and IL-1β in cultured human fibroblasts and endothelial cells. We examine the relationship between plasma PTX3 protein and adipocyte PTX3 gene expression levels with human obesity. We also aim to provide insight into the mechanisms of PTX3 alterations.

Materials and methods: Subjects: Two different cohorts were included in the study. 1. vAT and scAT gene expression: 43 obese and 19 lean age- and gender-matched subjects were selected. A second cohort of 75 apparently healthy men (mean age 50.7 ± 11.2 years) was selected for the study of insulin sensitivity and insulin secretion using the minimal model approach. Methods: Paired subcutaneous (sc) and visceral (v) adipose tissue (AT) biopsies and isolated adipocytes. PTX3 gene expression was assessed by quantitative real time PCR. PTX3 protein plasma levels were measured by ELISA. Human pre-adipocyte SGBS cell line was differentiated in vitro to mature adipocytes and subjected to various stimuli.

Results: A negative correlation between plasma PTX3 protein levels, body weight (r=-0.32; p=0.016) and waist-hip ratio (r=-0.37; p=0.006) was observed. We also found a negative correlation between plasma PTX3 protein and total triglyceride levels (r=-0.33; p=0.004), and insulin secretion after intravenous glucose administration (acutie insulin response to glucose) (r=-0.34; p=0.006) and oral glucose administration (measured as serum insulin at 30 minutes of the oral glucose tolerance test) (r=-0.25; p=0.04). Total PTX3 gene expression was similar in vAT and scAT, regardless of obesity. Expression in vAT was significantly lower in non-obese (BMI ≤ 25 Kg/m²) than in obese (BMI > 25 Kg/m²) subjects (p=0.039). The PTX3 gene expression was higher in adipocytes isolated from vAT than from scAT (p=0.034). Likewise, in vAT, the PTX3 gene was more strongly expressed in the isolated adipocytes than in the stromovascular fraction (p=0.028). In cultured SGBS adipocytes, PTX3 gene expression was enhanced by TNFa and IL-1β, whereas IL-6, insulin, hypoxia, antimycin A and H₂O₂ had no significant effect.

Conclusion: Plasma PTX3 protein levels correlate negatively with obesity markers and insulin secretion in human subjects. In contrast, the PTX3 gene expression is upregulated in VAT depots of obese subjects and it is enhanced in cultured human adipocytes by proinflammatory cytokines. These data indicate that PTX3 may have a role in the inflammatory process that drives obesity.

Supported by: SA2609-07559 MCI, P08/0733 and CP06/00119 ISCIII, Spain

TNF-like inducer of apoptosis prevents TNF-alpha-induced insulin resistance in human visceral adipocytes

A. Vazquez-Carballo1, M.R. Chacon1, R. Vila-Bedmar1, M. Lorenzo1, J. Vendrell1, S. Fernandez-Veledo2
1Biochemistry and Molecular Biology II, Complutense University, Madrid, 2Research Department, Pere Virgili Institute. University Hospital of Tarragona Joan XXIII, Spain.

Background and aims: Insulin resistance is an important contributor to the pathogenesis of type 2 diabetes (T2D) and obesity is a risk factor for its development. In the obese state an altered secretion pattern, with increase in pro-inflammatory and decrease in anti-inflammatory factors is found. In fact, obesity is considered a low-grade inflammatory state. Several mediators released from adipocytes and macrophages, including TNF family members, have been suggested to impair insulin action in peripheral tissues. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a relatively recently identified pro-inflammatory cytokine that regulates multiple cellular responses. Tweak could be involved in the pathogenesis of chronic inflammatory diseases but its physiological role in adipose tissue is still not known. The objective of the present study was to dissect the differential effects of Tweak vs. TNF-α on human visceral adipocytes.

Materials and methods: We utilized novel differentiated depot-specific pre-adipocyte cell lines, which we have demonstrated to retain various depot-specific characteristics to study phosphorylation- and expression-mediated regulation of Ask1 by Western blot and qRT-PCR analyses, respectively. Findings were also determined in human omental and subcutaneous (SC) adipose tissue.

Results: Intra-abdominal (IA) adipocytes exhibited larger increase in Thr845 phosphorylation than subcutaneous (SC) adipocytes in response to TNFa. In contrast, TNF-induced phosphorylation on the inhibitory Ser83 site was lower in IA adipocytes and peaked later than the activatory site. Like p-Ser83, Thr966 phosphorylation also peaked later than Thr845 in both cell lines. Ask1 mRNA levels increased approximately 2-fold in response to TNFa (at 4 and 24h), FasL and oxidative stress (at 24h), but no activation was observed with the ER stress inducer tunicamycin. Intriguingly, in human omental compared to SC fat despite elevated p-Thr845, different levels of the inhibitory phosphorylation sites could be observed, suggesting that activity is influenced by a combinatorial phosphorylation input. With regards to gene expression, we assessed members of the E2F family of transcription factors, since they have been implicated in the regulation of Ask1 expression in vitro. Human omental fat displayed increased mRNA and protein expression of members of the transcription factors members E2F1 and E2F4 in omental versus SC fat, and in obesity compared to lean persons.

Conclusion: Ask1 in intra-abdominal adipocytes may be regulated in a complex manner: i. by a combinatorial input of Ask1 kinases acting on activatory and inhibitory phosphorylation sites. ii. by changes in gene regulation, potentially mediated by changes in E2F family of transcription factors in response to inflammatory and oxidative stress.

Supported by: German-Israeli Foundation for Scientific Research and Development (41-2008)
Adipose reduction in the activity of the repressor ICER is responsible for insulin resistance elicited by the transcriptional factors CREB in obesity

D. Favre, E. Legouill, C. Verduno, D. Fahmi, R. Regazzi, P. Vollenweider, V. Guasti, G. Waeber, A. Abderrahmani
1Service of Endocrinology and Diabetology, University Hospital of Lausanne (CHUV), 2Department of Cell Biology and Morphology, University of Lausanne, Switzerland.

Background and aims: Sustained adipose activation of the transcriptional activators cAMP response binding proteins (CREB) in obesity leads to impaired expression of the glucose transporter GLUT4 and adiponectin (adipoq) in mice model of obesity. Diminution of GLUT4 and adipok caused by CREB is indirect and relies on the increased repressive activity of the CREB target gene activating transcription factor 3 (ATF3). Specific inactivation of CREB in adipocytes decreases ATF3 production and improves whole-body insulin sensitivity of mice in the context of diet-induced obesity. Thus, elevation of CREB activity is a key mechanism responsible for adipocyte dysfunction and systemic insulin resistance. The inducible cAMP early repressor (ICER) is a negative regulator of the CREB activity. In fact, ICER antagonizes the CREB factor by competing for the regulation of similar target genes. The goal of the study was to investigate whether loss of ICER expression in adipocytes could be responsible for increased CREB activity in obesity.

Materials and methods: Mice C57BL6 were fed with a high fat diet (HFD) for 12 weeks to increase body weight and generate insulin resistance. Biopsies of visceral adipose tissues (VAT) were prepared from human lean (BMI=24±0.5 Kg/m2) obese subjects (BMI=35 Kg/m2). Total RNA and protein were prepared from white adipose tissues (WAT) of Chow- or HFD-fed mice and VAT of lean and obese subjects. Activities of CREBs and ICER were monitored by electromobility shift assays (EMSA). The role of ICER on CREB activity was confirmed in 3T3-L1 adipocytes cells. Briefly after differentiation, the cells were electroporated with the plasmid coding for ICER cDNA. Gene expression was quantified by quantitative real-time PCR and western blotting experiments.

Results: The expression of ICER is reduced in VAT of HFD-induced obese mice when compared to Chow mice as measured by real-time PCR and EMSA. Similar result was found in human tissues. Reduction in ICER expression was associated with increased ATF3 expression and decreased adipok and GLUT4 contents. Diminution in ICER levels was observed in adipocytes fraction whereas its expression was unchanged in stroma vascular fraction of VAT. Overexpression of ICER in 3T3-L1 adipocytes silenced the expression of ATF3, confirming the regulation of the factor by ICER. The expression of ICER is regulated by histone deacetylases activity (HDAC). Inhibition of HDACs in 3T3-L1 adipocytes cells using trichostatin inhibited the production of ICER. The whole activity of HDAC was reduced in VAT and VAT of obese mice and human obese subjects.

Conclusion: Impaired adipose expression of ICER is responsible of increased CREB activity in adipocytes in obesity. This mechanism relies on reduction of the HDAC activity.

PS 71 Adipose tissue inflammation

800

IL-1β is a putative mediator in disturbed adipocyte-hepatocyte crosstalk that is induced by adipose inflammation

1Department of Clinical Biochemistry, Ben Gurion University, Beer Sheva, Israel, 2Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland, 3Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Israel.

Background and aims: Although the role of IL-1β in (auto)inflammatory cascades is well established, its involvement as an endocrine mediator of adipose tissue-liver crosstalk in obesity is still debated. Here we hypothesized that secreted IL-1β by adipose tissue plays a role in mediating hepatic insulin resistance in response to adipose inflammation.

Materials and methods: We utilized primary rat hepatocytes or human and rat hepatoma cell lines, and tested direct modulation of proximal and distal insulin signalling by IL-1β. In addition, we used conditioned medium from human omental fat explants. Furthermore, we measured systemic and portal IL-1β levels and mRNA expression in different fat depots in mice.

Results: The release of IL-1β from human omental fat explants ranged between 0.15 and 1.5 ng/gr tissue per 24h, and correlated with BMI (R²=0.639, p<0.01). Human hepatoma cells (HepG2) incubated with omental fat conditioned medium exhibited impaired insulin-stimulated phosphorylation of IR, IRS, PKB and GSK3. This effect has been strongly attenuated (p<0.05) by co-incubation with human recombinant IL-1- receptor antagonist (IL-1Ra). Mice fed high fat diet for 8 weeks (i.e., before marked infiltration by macrophages occur) exhibited no detectable increase in IL-1β mRNA in the systemically-drained peripépiplidyl fat pad, but a 1.8-fold increase in IL-1β expression in portal-drained mesenteric fat. Consistently, whereas no increase in systemic circulating IL-1β levels was observed in these mice, portal blood levels of the cytokine were 2.4-fold elevated (p<0.05). The potential of IL-1β to induce insulin resistance was further demonstrated utilizing rat primary hepatocytes, and in the Fao hepatoma cells could be shown to engage impaired insulin-stimulated tyrosine phosphorylation of both IRS1 and IRS2.

Conclusion: While clear pathophysiological role for IL-1β as a mediator of hepatic insulin resistance in response to adipose inflammation still awaits appropriate in-vivo models, this study provides compelling in-vitro support for this notion. Reported beneficial effects of IL-1Ra or neutralizing anti-IL-1β Ab may therefore prove to be at least partly contributed by interference with a dysfunctional visceral fat-liver communication.

Supported by: ISF and Israeli Ministry of Health.

801

The role of IL-1RI mediated T cell accumulation in adipose tissue - insights to the development of obesity-induced insulin resistance

1Nutrigenomics, UCD Conway Institute, Dublin, 2School of Biochemistry and Immunology, Trinity College Dublin, Ireland.

Background and aims: Immune cell infiltration into adipose tissue during high-fat feeding has recently been characterised with T cell recruitment evident prior to macrophage recruitment. Immune cell-derived cytokines are hypothesized to augment adipose tissue inflammation and insulin resistance. Cytotoxic T cells are effector T cells that have been implicated in adipose tissue macrophage differentiation, activation and migration. Helper T cells are a sub-group of T cells involved in the activation and direction of other immune cells. y8 T cell receptor (TCR) expressing cells represent a small subset of T cells that possess a distinct y8 TCR on their surface and play a key role in amplifying the immune response bridging the innate with the adaptive immune system. IL-1 plays a key role in activation of y8 TCR expressing cells and thus in this study we hypothesized that lack of IL-1 signalling may alter T cell subset recruitment into obese adipose tissue, in particular affecting y8 TCR expressing cell recruitment.

Materials and methods: C57BL/6 WT and IL-1RI- mice were fed a high-fat diet (HFD) (45 % palm oil) for 16 weeks. At weeks 0, 6, 12 and 16, glucose tolerance tests (GTT) were performed (1.5g/kg glucose, ip) and epidydimal
802

Human adipose tissue macrophage activation and impairment of adipocyte functions by osteopontin

M. Zeyda1, K. Gollinger1, J. Todoric, O. Aszmann2, G. Prager2, T.M. Stuhlinger1

1Dept. of Medicine III, 2Dept. of Surgery, Medical University of Vienna, Austria.

Background and aims: Osteopontin (OPN) is highly upregulated in adipose tissue in human and murine obesity and has been recently shown to be functionally involved in the pathogenesis of obesity-induced adipose tissue inflammation and associated insulin resistance in mice. OPN is a protein with multiple functions and acts as a chemokine and an inflammatory cytokine through a variety of different receptors (CD44, integrins). It is expressed in many cell types including adipocyte tissue macrophages (ATM). However, the target cells of OPN action in obese adipose tissue are still elusive. Here, we investigated expression of OPN receptors and the impact of OPN on ATM, adipocytes and other cells of human adipose tissue.

Materials and methods: Receptor expression was assessed by immunostaining of human and murine adipose tissue sections and mRNA expression in fractionated subcutaneous adipose tissue. Human in vitro differentiated macrophages and primary adipose tissue macrophages isolated by flow-cytometry were stimulated with OPN. Human adipocytes differentiated from primary preadipocytes were pretreated or not with OPN prior to insulin stimulation.

Results: We found broad expression of OPN receptors in different adipose tissue cell types including adipocytes. OPN stimulated phosphorylation of Akt and MAP kinases, degradation of IkBα, as well as secretion of MCP-1, TNFα, and IL-10 in model macrophages and isolated human ATM. Moreover, OPN impaired differentiation and function of primary adipocytes as determined by PPARγ and adiponectin gene expression and insulin-stimulated glucose uptake.

Conclusion: OPN activates adipose tissue macrophages and interferes with adipocyte function thereby underlining the potential use of OPN as a theraeutic target for obesity-induced complications.

Supported by: Austrian FWF

803

High-fat diet induced insulin resistance triggers infiltration of dendritic cells into adipose tissue and primes the inflammatory response of bone marrow dendritic cells

C.M. Reynolds1, FC. McGillicuddy1, K.A. Harford1, K.H.G. Mills1, H.M. Roche2

1Conway Institute, University College Dublin, 2Immune Regulation Research Group, Trinity College Dublin, Ireland.

Background and aims: Dendritic cells (DC) provide the first line of defence against invading pathogens and play a key role in facilitating cross-talk between the innate and adaptive immune systems. High-fat diet (HFD) induced obesity and insulin resistance (IR) is associated with a heightened inflammatory state and infiltration of macrophages and T-cells into adipose tissue. In this study we hypothesized that a HFD would result in recruitment of DC into adipose tissue, activate the DC immune response, with functional effects on adipocyte insulin sensitivity.

Materials and methods: C57BL/6J mice were fed a FFD (45% palm oil) for 16 weeks, glucose tolerance was monitored pre- and post-HFD. Stomal vascular fraction (SVF) cells were isolated from adipose by flow cytometry for CD11c+CD11b+F4/80 DC. Bone-marrow DC (BMDC) were isolated and stimulated ± LPS (100ng/ml) for 24h and cytokine release measured by ELISA. To characterize the effects of DC on adipocyte biology 3T3-L1 adipocytes were co-cultured with DC ± LPS stimulation, then insulin-stimulated 1H-glucose uptake and insulin signaling was monitored.

Results: Mice developed overt insulin resistance after 16 wks HFD with marked delay in clearance of plasma glucose during GTT compared with Chow-fed and week 0 control mice. DC infiltration into adipose tissue was evident after high fat feeding. BMDC derived from HFD-fed mice exhibited a much more pronounced inflammatory response, with greater IL-12p70, IL-10, and IL-1β secretion, in response to LPS compared to age-matched chow-fed control cells. BMDC TLR4 mRNA and protein expression was enhanced in these cells pre-LPS stimulation. Co-culture of BMDC with 3T3-L1 adipocytes induced marked insulin resistance in adipocytes with marked reduction in insulin-stimulated 1H-glucose uptake.

Conclusion: HFD induces IR which is associated with infiltration of DC into adipose. BMDC from these HFD fed animals are primed to be more responsive to inflammatory stimuli and can block insulin mediated glucose uptake in adipocytes.

Supported by: SFI (Principal Investigator Programme)
All ASCs were isolated from paired abdominal AbdSc AT (age 45±3.3 yrs; BMI: 21.9±2.4 kg/m²) and ASC-B and ASC-C from SC and V fat depots were homogenous or genetrical depending on the adipocyte maturation state, NFκB activation is largely independent of the maturation state of the cells. Our findings will contribute to identify components of the intracellular signalling cascades as potential targets for the modulation of diabetes-associated inflammatory adipocyte activities induced by endogenous stress signals.

Supported by: DFG, DDG

805

Short chain fatty acid regulation of inflammatory response in human primary macrophages

O. Pivovarova1, S. Weinert1, A-E.H. Pfeiffer2;
1Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutenthal, 1Department of Endocrinology, Diabetes and Nutrition, CBF, Charité University Medicine, Berlin, Germany.

Background and aims: Insulin resistance in adiposity and type 2 diabetes is associated with low grade system inflammation characterized by macrophage infiltration of adipose tissue. Short chain fatty acids (SCFA) produced by intestinal microbiota modulate inflammatory responses. This effect have been demonstrated in various immune cells (neutrophiles, monocytes, PBMC fraction), tumor cell lines, tissue culture and animal studies, but not in mature human macrophages. The aim of this study was to investigate SCFA effects on the cytokine expression in human primary macrophages of proinflammatory M1- and antiinflammatory M2-subtypes.

Materials and methods: For the culture of human primary macrophages, monocytes were isolated from the whole blood and differentiated in RPMI medium supplemented with 50 ng/ml GM-CSF (M1-macrophages) or M-CSF (M2-macrophages) and 10% foetal bovine serum for 7 days. For the experiment, mature cells were incubated in the medium with acetate or propionate (2, 20 mM) for two hours with following LPS treatment (100 ng/ml) for 22 hours. The expression of cytokines (MCP1, IL-1β, IL-6, IL-10, TNF-α) and SCFA receptors was assessed by quantitative real-time PCR.

Results: The low level of mRNA expression of SCFA receptors GPR41 and GPR43 activated by acetate and propionate was detected in both studied subtypes of human primary macrophages. Interestingly, LPS treatment significantly increased the expression of both receptors with this effect being more apparent in M2-macrophages (219-fold for GPR41 and 46-fold for GPR43). Acetate (20 mM) and propionate (2, 20 mM) treatment considerably attenuated LPS-induced receptor expression. SCFA effects on the basal and LPS-induced cytokine expression were studied. Propionate at high concentration (20 mM) corresponding to the concentration in human colon demonstrates antiinflammatory effect due to significantly decrease of the LPS-induced cytokine expression. Interestingly, the same propionate treatment increased cytokine expression in macrophages incubated without LPS stimulation. These effects were detected both in M1- and in M2-cell subtypes. For acetate, no influence on the cytokine expression was found.

Conclusion: Propionate demonstrates modulatory effects on the inflammatory response in the culture of human primary macrophages which are possibly mediated by metabolic, rather than receptor-coupled mechanism. Thus, propionate produced by intestinal microbiota may contribute to the regulation of inflammatory responses of tissue macrophages in adiposity and type 2 diabetes.

Supported by: DFG

806

Acute and chronic saturated fatty acid treatment as a key instigator of the TLR mediated inflammatory response in human adipose tissue in vitro

A.L. Harte1, E.M. Youssef-El-Elbidi1, K.C. McGee2, G. Tripathi1, M.S. Abdalla1, H.M. Sharda1, E. Ashour2, A.I. Amin1, J.P. O’Hur1, S. Kumar3, P.G. McTernan4
1Unit for Diabetes and Metabolism, University of Warwick, United Kingdom, 2Biochemistry Dept, National Research Centre, Dokki, Giza, Egypt, 3Chemistry Dept, Helwan University, Egypt, 4Clinical Pathology Dept, National Institute of Diabetes & Endocrinology, Cairo, Egypt.

Background and aims: Chronic elevation of saturated fatty acids (SFAs) and glucose (Glc) appears to activate an inflammatory response; compounded by habitual feeding. Restoration of physiological SFAs and Glc levels post-prandially may not attenuate the original insult; a concept termed ‘metabolic memory’. Therefore we investigated (1) the effect of chronic and oscillating SFAs and Glc on the inflammatory pathway in human abdominal subcutaneous (AbdScs) adipose tissue (AT) and adipocytes (Ads) (2) whether there is a sustained inflammatory response in absence of treatment.

Materials and methods: AbdSc AT (age 45±3.3 yrs; BMI: 21.9±2.4 kg/m²; n=6) was obtained with ethics approval. Explants and Ads were treated with (1) low glucose (L-Glc): 5.5 mM and high glucose (H-Glc): 7.5 mM, with low (0.2 mM) and high (2 mM) doses of a palmitate-stearic tri-mix (SFAs) for 48 hrs. Further, AbdSc AT explants and Ads were also exposed to the afore-mentioned treatment regimen for 12hrs periods, with alternating rest periods of 12hr in L-Glc. Western blot and ELISAs were utilised to examine components of the NFκB pathway.

Results: Chronic treatment with H-Glc and high SFAs up-regulated key proteins of the NFκB pathway in AbdSc AT explants and Ads (TLR4, NFκB, p<0.05) whilst down-regulating MyD88 protein levels. Oscillating treatment with Glc and SFAs increased TLR4, NFκB, IKKβ and MYD88 in explants and Ads (p<0.05). Downstream TNFα and IL-6 (p<0.05) secretion were markedly increased in chronically treated explants and Ads whilst, with oscillating treatments, a sustained inflammatory effect was noted in absence of treatment.

Conclusion: In summary, this study implicates elevated SFAs as a key instigator of the inflammatory response in both AT and Ads, via NFκB, and suggests that short-term exposure of cells to uncontrolled levels of SFAs and Glc leads to a longer-term inflammatory insult within the Ads. As such, these findings highlight a potential molecular mechanism linking high SFA dietary intake and an adverse inflammatory response in patients with obesity and T2DM.

Supported by: BHF

807

Distinct gene expression and cytokine release profiles identify three different adipose tissue progenitor cells in human abdominal subcutaneous and visceral adipose tissue

Petretti1, R. Ficarella, A. Cigarelli, A. Peschchera, M. Barbaro, P. Negro1, A. Conserva, M.C. Carreira, A. Natalichio, L. Laviola, F. Giorgiorno, Endocrinology & Metabolic Diseases, D.E.T.O., University of Bari, Italy.

Background and aims: Adipose-derived stem cells (ASCs) can be isolated from the stromal-vascular fraction (SVF) of adipose tissue (AT) (ASC-SVF). ASCs can be also isolated both from a pre-adipocyte fraction present in the fat cake at the top of the supernatant not previously collected together with the ASC-SVF (ASC-B), and from mature adipocytes through in vitro de-differentiation (ASC-C). The aim of this study was to investigate the biological features of these three different ASCs.

Materials and methods: ASCs were isolated from paired abdominal subcutaneous (SC) and visceral (V) AT biopsies obtained from 16 subjects (8F/8M, age 65±1 yrs, BMI 24.9±1.4). A genome-wide differential gene expression analysis followed by quantitative RT-PCR was performed on each SC and V ASC population. Cytokine secretion was analysed by Bioplex protein array of the ASC conditioned medium.

Results: The six distinct ASCs were positive for the adipogenic lineage markers CD105, CD144, and CD49d, and were able to differentiate into adipocytes, chondrocytes, and osteocytes, respectively. To investigate whether ASC-SVF, ASC-B and ASC-C from SC and V fat depots were homogenous or genetically heterogeneous, a genome-wide analysis was performed using a GeneChip Gene 1.0 ST array with 764,885 probe sets, representing 28,869 annotated genes. Of these, we identified 367 and 984 genes that differed among ASC-SVF, ASC-B and ASC-C in SC and V, respectively. These genes were identi-
only a few studies have investigated the in vivo expression of metabolic genes were inversely correlated with plasma glucose levels. In visceral adipose tissue expression levels of a set of genes that have expression levels which are correlated with plasma glucose levels (GO-terms). The genes that constitute this module were recently reported to be specifically expressed in adipose tissue. In subcutaneous adipose tissue one module - consisting of 103 genes - is significantly negatively correlated to plasma glucose levels (p = 7.0 x 10^-12). One module related to diabetes, revealed that in subcutaneous adipose tissue one module with several genes that are differentially expressed in subcutaneous and visceral adipose tissue of morbidly obese individuals also significantly different among the 6 SC and V ASCs. In addition, no gene was found to have a conjoint differential expression in both SC and V ASCs, which may add to the complexity and specificity of SC and V AT in humans.

808 Plasma glucose levels are associated with gene expression levels in subcutaneous and visceral adipose tissue of morbidly obese individuals

Background and aims: Morbid obesity (BMI>35) dramatically increases the risk to develop type 2 diabetes. The biological mechanisms that drive this increased risk are largely unclear. In this study we aimed to identify genes that are differentially expressed in subcutaneous and visceral adipose tissue of diabetic and non-diabetic obese individuals in order to get insight in the pathologic changes related to diabetes.

Materials and methods: We determined whole-transcriptome gene expression levels in subcutaneous adipose tissue and visceral adipose tissue of 70 morbidly obese individuals by using microarrays (Illumina HumanHT12 BeadChips). From these data we extracted modules of highly coexpressed genes and we tested for each tissue whether these modules correlate with traits that are relevant to diabetes (plasma levels of glucose, insulin, and HbA1c). These modules are driven by the phenotypic differences in our study group, which range from metabolically normal to diabetic.

Results: In both tissues we detected several modules of highly coexpressed genes. Gene Set Enrichment Analysis of the genes within all separate modules showed that the genes within most modules are functionally related. This indicates that our approach yields a biologically meaningful gene classification. Assessment of the correlation between each module and metabolic traits related to diabetes, revealed that in subcutaneous adipose tissue one module is significantly negatively correlated to plasma glucose levels (p = 7.0 x 10^-12). This module consists of 28 genes of which most are involved in metabolism. In visceral adipose tissue one module - consisting of 103 genes - is significantly correlated to plasma glucose levels (p = 2.1 x 10^-3). Some genes that constitute this module were recently reported to be specifically expressed in macrophages, and are highly enriched in genes related to innate immunity (GO-terms).

Conclusion: In both subcutaneous and visceral adipose tissue we identified several genes that have expression levels which are correlated with plasma glucose levels. In subcutaneous adipose tissue expression levels of a set of metabolic genes were inversely correlated with plasma glucose levels. In visceral adipose tissue expression levels of a set of genes related to innate immunity were positively correlated to plasma glucose levels. In particular, these genes play a role in the complement system (C1QA, C1QB, C1QC, C1R, C1S, C3AR1), Toll-like receptor signaling (TLR7, CD14), inflammmasome (PYCARD), autophagy (ATG7), and lysosomal function (CTSB, CTSC, CTSZ, FCU1G, GUSB, LGMN). In conclusion, our data indicate that both metabolic and innate immunity related processes in subcutaneous and visceral adipose tissue, bridge the gap between diabetes and obesity.

Supported by: MZO
PS 72 Animal models of obesity and/or insulin resistance

810

Absence of the NLPR3 inflammasome protects against the development of obesity and insulin resistance

R. Stoenescu,1,2 J. A. van Denpen,1, C. J. Tack1, P. C. N. Rensen1, L. A. B. Joosten2, M. G. Netea2, T. Devi Kanevičant2; 1General Internal Medicine, Nijmegen, Netherlands, 2Department of Immunology, St Jude Children's Research Hospital, Memphis, USA.

Background and aims: The innate immune system is part of the host defense and responds to invading pathogens by inducing an inflammatory reaction. Recognition of pathogens depends on PRRs that are present both on the outer membrane and intracellular components. The nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein NLPR3 responds to microbial ligands and endogenous danger signals present in the cytosol and triggers the formation of a protein complex including the eminent adaptor molecule ASC. The protein complex is named the NLPR3 inflammasome and, upon formation, it enables the activation of Caspase-1, a cysteine protease that controls release of the pro-inflammatory cytokines IL-1β and IL-18. Obesity is characterized by elevated secretion of numerous cytokines including IL-1β and IL-18 that contribute to the development of insulin resistance and type 2 diabetes. Previously we have shown that Caspase-1 is activated in adipose tissue of obese and insulin resistant animals, which suggests that the innate immune system is involved in the development of metabolic abnormalities associated with obesity. In the present study we tested whether NLPR3 inflammasome-deficient Caspase-1 activation mediates high fat diet-induced obesity and insulin resistance.

Materials and methods: To induce obesity and insulin resistance, Wildtype (Wt), NLPR3-/-, ASC-/- and Caspase-1-/- animals were fed a high fat diet (HFD) or low fat diet (LFD) for 16 weeks.

Results: Despite a similar daily food intake, HFD-fed NLPR3-/-, ASC-/- and Caspase-1-/- animals were protected against the development of high fat diet induced obesity. Whereas HFD-feeding of wildtype mice led to significantly elevated plasma insulin, leptin and resistin levels, animals lacking the NLPR3 inflammasome were protected against the harmful effects of chronic overfeeding. Importantly, ASC-/- and Caspase-1-/- animals were resistant to the development of high-fat diet induced insulin resistance. In addition to a decrease in total adipose tissue mass, adipocyte cell size was reduced in HFD-fed HFD-fed ASC-/- and Caspase-1-/- animals compared to Wt mice. Detailed analysis of HFD-fed Caspase-1-/- mice using immunohistochemical localization of adipose tissue-resident macrophages revealed a robust reduction of macrophage influx into the adipose tissue. Using microarray analyses of white adipose tissue from HFD-fed Wt vs. Caspase-1-/- animals, we established that over 500 genes involved in immune response, signal transduction and metabolism were differentially expressed. Finally, metabolic cage studies of HFD-fed Wt and Caspase-1-/- animals revealed an enhancement in total energy expenditure in the absence of Caspase-1.

Conclusion: Our results show that NLPR3-3 inflammasome-mediated caspase-1 activity is involved in the development of obesity, insulin sensitivity, adipogenic gene expression and energy expenditure during chronic overfeeding and suggest that inhibition of inflammasome-dependent caspase-1 activation may be a useful therapeutic strategy for treatment of obesity-induced insulin resistance.

Supported by: The Dutch Diabetes Research Foundation

811

Deletion of macrophage migration inhibitory factor promotes obesity-associated insulin resistance while attenuating inflammation in mice fed a high-fat diet

I. Stojačanovic,1 T. Cyjeticic2, S. Sandler2, S. Stolić-Grujić2; 1Immunology, Institute for Biotechnological Research “Simina Stanković”, Belgrade, Serbia, 2Medical Cell Biology, Biomedical Centre, Uppsala University, Sweden.

Background and aims: Macrophage migration inhibitory factor (MIF) is a multifunctional molecule generally described as pro-inflammatory and glucocorticoid-induced regulator involved in both innate and adaptive immune. MIF is produced by various immune and non-immune cells including pancreatic β cells. Elevated MIF concentration and MIF mRNA expression was found in the mononuclear cells of obese individuals and serum MIF concentrations are highly increased in individuals with impaired glucose tolerance and type 2 diabetes. Furthermore, an increased expression of MIF mRNA and its protein in pancreatic islets isolated from high-fat diet (HFD)-fed C57Bl/6 mice (B6) compared to control diet (CD)-fed mice has been seen (unpublished). Also, increased MIF levels were found in serum of starved animals on HFD. Since obesity is characterized as a state of low grade inflammation, the aim of this study was to investigate the effect of MIF gene deletion on development of obesity, insulin resistance and inflammatory state in HFD-fed mice.

Materials and methods: Knock-out mice for mif gene (MIF-KO) and their wild type counterparts B6 mice were fed a HFD containing 60% fat and control groups were fed a control diet (CD - 10% fat). The weight of mice was measured weekly, triglyceride levels in non-fasting mice were determined spectrophotometrically, while serum markers of inflammation and insulin were measured by ELISA. Glucose and insulin tolerance tests were performed on fasting animals by intraperitoneal injection of D-glucose (2 mg/g b.w) or insulin (0.75 mU/g), respectively. Glucose concentration was determined from blood drawn from tail vein by Glucometer.

Results: Even on standard chow MIF-KO mice gained more weight than B6 mice on the same diet. Furthermore, body mass increment of MIF-KO on HFD was higher compared to HFD-fed B6 mice. As for triglyceride levels, they were similar between MIF-KO and B6 when mice were on CD. Interest-ingly, although MIF-KO on HFD diet weighed more than B6 on the same diet, their triglycerides were lower, at least at some time points tested. On the other hand, leptin levels corresponded to the weight increase of HFD-fed MIF-KO. Similar values of hyperglycemia were found in both HFD-fed B6 and MIF-KO mice. Although MIF-KO mice on CD were euglycemic, they showed slightly impaired glucose and insulin tolerance. Moreover, marked insulin resistance (judged by both glucose and insulin tolerance test) was evi-dent in HFD-fed MIF-KO mice and was significantly altered compared to B6 mice on HFD. Serum insulin in MIF-KO on HFD was higher compared to CD-fed mice and similar to B6 mice on HFD. Finally, at the end of observation period (11 weeks), inflammatory markers such as CRP and IL-6 were down-regulated in HFD-fed MIF-KO compared to B6, while anti-inflamma-tory cytokine TGF-β was moderately increased.

Conclusion: These results implicate that in vivo MIF deletion exacerbates obesity-induced insulin resistance, but reduces an underlying inflammation during high nutrient intake.

Supported by: EFSD/AstraZeneca Young Investigator Award

812

Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet

U.C. Bridlé1, M. Becker1, K. Rabe1, C. Lebherz1, J. Zugwurst1, B. Göke1, K.G. Parhofer2, M. Lehrke2; 1Department of Internal Medicine I, 2Department of Internal Medicine I, University of Munich, Germany.

Background and aims: Chemerin is a recently discovered hepatoadipokine that regulates adipocyte differentiation as well as chemokinesis and activation of dendritic cells and macrophages. Chemerin was reported to modulate insulin sensitivity in adipocytes and skeletal muscle cells in vitro. In humans, chemerin was shown to be associated with multiple components of the metabolic syndrome including body mass index, triglycerides, HDL-cholesterol and hypertension. So far, however, the effect of chemerin on these various metabolic parameters has not been studied in vivo.

Materials and methods: To investigate the effect of chemerin on weight, glucose and lipid metabolism as well as atherosclerosis in vivo, we used recombinant adeno-associated virus to express human chemerin in LDL receptor knockout mice on high fat diet.

Results: Expression of chemerin did not significantly alter weight, lipid levels and extent of atherosclerosis. Chemerin, however, significantly increased glucose levels during both intraperitoneal glucose tolerance test and insulin tolerance test. Chemerin reduced insulinstimulated Akt1 phosphorylation and activation of 5 AMP activated protein kinase (AMPK) in the skeletal muscle, but had no effect on insulin signaling and AMPK activation in the liver and gonadal adipose tissue.

Conclusion: Chemerin induces insulin resistance in the skeletal muscle in vivo. Chemerin is involved in the cross talk between liver, adipose tissue and skeletal muscle.
813
Adipose tissue-specific activation of polyamine catabolism improves energy homeostasis in mice
T.E. Koponen1, E. Pirinen1, A. Uimar1, S. Vuohelainen1, S. Pirinen-Karhu1, E. Hohitola1, M. Laakso2, L. Alhonen1;
1A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 2Department of Biology, University of Oulu, 3Department of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.

Background and aims: Polyamines are cationic and water-soluble compounds found in all eukaryotic cells. A well-known function of polyamines is their ability to promote cell growth but all their functions are not known. Our previous study in transgenic mice having whole-body overexpression of the key enzyme in polyamine catabolism, spermidine/spermine-N1-acetyltransferase (SSAT), showed that enhanced polyamine catabolism regulates glucose and energy metabolism. The aim of this study was to investigate the effect of adipose tissue-specific activation of polyamine catabolism on glucose and energy metabolism in mice.

Materials and methods: We generated a transgenic mouse line (aP2-SSAT mice) overexpressing SSAT under an adipose tissue specific aP2 promoter. The SSAT activity was analyzed in a reaction where [14C]-acetyl-CoA was incorporated into polyamines. Basal metabolic rate was determined by indirect calorimetry. Both aP2-SSAT and wild type mice were challenged with high-fat diet providing 42 % calories from fat for three months. AMPK (AMP kinase) and PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) levels in WAT were determined by western blotting. Glucose metabolism in wild type (wt) and transgenic (tg) mice was studied using intraperitoneal glucose and insulin tolerance tests (GTT and ITT). Plasma glucose levels were determined microfluorometrically and plasma insulin levels with a commercial insulin kit.

Results: SSAT enzyme activity was significantly higher in white (wt: 0.19 ± 0.03 pmol/µg DNA/10 min, p<0.005) and brown (wt: 0.08 ± 0.05 vs. tg: 1.84 ± 0.46 pmol/µg DNA/10 min, p<0.005) adipose tissues in aP2-SSAT mice than in wt mice. aP2-SSAT mice had significantly reduced perigonadal WAT mass (wt: 2.28 ± 0.16 vs. tg: 1.65 ± 0.15 % of body weight, p<0.005), and white adipocytes had an increased amount of mitochondria. In addition, aP2-SSAT mice had significantly greater oxygen consumption in comparison with wt mice (wt: 1.81 ± 0.05 vs. tg: 2.02 ± 0.06 VO2 ml/min/100g, p<0.05) implicating that energy expenditure is enhanced in aP2-SSAT mice. When challenged with high-fat diet (HFD), aP2-SSAT mice were resistant to HFD-induced body weight gain (wt control vs. wt HFD body weight p<0.005; tg control vs. tg HFD body weight p<0.05). These findings were explained by increased protein levels of the key regulators of energy metabolism, PGC-1α (wt: 0.68 ± 0.27 vs. tg: 1.86 ± 0.22, p<0.05) and AMPK (wt: 0.94 ± 0.17 vs. tg: 1.94 ± 0.25) in WAT of aP2-SSAT mice. Based on glucose and insulin tolerance tests, no changes in glucose metabolism were observed (GTT; wt: 11230 ± 114.00 vs. tg: 1237.00 ± 69.48 area under the curve for plasma glucose, p<0.05). However, compared to wild type mice, aP2-SSAT mice had significantly reduced AMPK (wt: 0.94 ± 0.17 vs. tg: 1.86 ± 0.22, p<0.05) and PPAR-α (wt: 0.9 ± 0.1 vs. tg: 1.0 ± 0.25) protein levels in WAT.

Conclusion: Our results suggest that adipose tissue-specific activation of polyamine catabolism does not improve glucose homeostasis but causes beneficial changes in energy metabolism.

Supported by: Academy of Finland

814
Anti-diabetic effect of sodium tungstate in IRS2-deficient mice model
J. Oliveira2,3, S. Rebullat1, A. Garcia2, R. Gomis1,2; 1IDIBAPS, 2CIBERDEM, Barcelona, Spain.

Background and aims: The insulin receptor substrate-2 (IRS2) branch of the insulin/IGF signalling mediates peripheral insulin action and plays an essential role in pancreatic β-cell function and survival. In fact, IRS-2 is a key molecule in the control of beta cell mass and is directly phosphorylated by the insulin receptor after insulin binds the latter, leading to the recruitment and activation of additional signalling proteins. Ablation of the IRS-2 gene in mice results in a phenotype with characteristics of human type-2 diabetes—they progress toward diabetes as beta cell mass decreases and insulin secretion fails. Sodium Tungstate could be involved in the reversion of the diabetic phenotype observed by acting independently of the insulin signalling pathway. In the present work, we used IRS2 knockout mice and examined the effects of tungstate administration in order to check for its potential targets as well as its therapeutic potential.

Materials and methods: 10 weeks wild type and knockout IRS2 C57Bl/6 mice were divided into two groups, untreated and treated with a solution of 2mg/ml of sodium tungstate in distilled water. After 21 days metabolic studies such as glucose tolerance tests and morphometric analysis of pancreatic sections by immunofluorescence techniques were performed in order to identify the effects of a tungstate treatment.

Results: Our results illustrated that tungstate administered orally normalized blood glucose concentration in IRS2 knockout, despite the initial high glycaemic values (fasting initial values: 221±26 mg/dl compared to 139±23 mg/dl at day 21). This was accompanied by an improvement of glucose tolerance of IRS-2 /− treated versus untreated group, assessed by an intraperitoneal glucose tolerance test performed both before and after treatment (figure). Morphometric analysis of pancreatic sections of these animals revealed an expected reduced total islet and beta cell area in the untreated IRS-2 −/− mice (4529±57293 and 3840±25014 respectively) when compared to wild-type animals (14572±78299 and 13735±77630); however, treated knockout mice showed comparable values (14021±84245 and 10282±77630).

Conclusion: Our results indicate that sodium tungstate may have an anti-diabetic effect in IRS-2 knockout mice and could help us understand the molecular mechanisms underlying the regulation of glucose homeostasis and endothelial plasticity.

815
The effects of mildronate and metformin on energy metabolism pathways in experimental model of obesity
E. Liepin1, E. Skapare2, I. Konrade3, M. Dambrouva3; 1Estonian Institute of Organic Synthesis, 2Riga Stradins University, Riga, Latvia.

Background and aims: Mildronate is a cardioprotective drug, which mechanism of action is based on the regulation of carnitine concentration. In addition to its cardioprotective effects mildronate lowers blood glucose concentration and protects against diabetes complications in Goto-Kakizaki rats. The present study was carried out to investigate the metabolic effects of mildronate, metformin and a combination of the two in the experimental Zucker rat model of obesity and impaired glucose tolerance.

Materials and methods: Zucker (fa/+/fa/−) rats were perorally (p.o.) treated daily with mildronate (200 mg/kg, metformin (300 mg/kg), and a combination of both drugs for 4 weeks. Weight gain and plasma metabolites reflecting glucose and lipid metabolism were measured by commercially available kits. The amounts of PPAR-alpha and PPAR-gamma as well as their target gene expression in heart and liver tissues were detected by Western blot and qRT-PCR analysis, respectively.

Results: Both tested drugs and the combination similarly decreased fed and fasted state blood glucose by 1-2 mmol/L. In addition, mildronate, metformin and the combination significantly decreased fed state plasma insulin concentration by 31%, 29% and 47%, respectively. Mildronate significantly stimulated the expression of PPAR-alpha in the heart and PPAR-gamma in the heart and liver. Also the increased expression of PPAR-alpha target genes in the heart, but not in liver tissues was observed. In contrast to monotherapy, treatment with the combination of mildronate and metformin significantly decreased the weight gain for 19%, while it did not affect food intake.

Conclusion: In conclusion, our results demonstrate that mildronate, an inhibitor of L-carnitine biosynthesis, enhances the anti-diabetic activity of metformin, mediates PPAR-alpha and PPAR-gamma activation and improves the adaptive responses against hyperglycemia- and hyperlipidaemia-induced metabolic disturbances.

Supported by: 1EEA Financial Mechanism, European Social Fund
816
Analysis of spontaneous obese and diabetic mice induced by selective breeding with high fat diet

Division of Endocrinology and Metabolism, Department of Medicine, Nippon Medical School, Tokyo, Japan.

Background and aims: Diabetes and obesity become more common due to modern lifestyle as environmental factor, and familial clustering as genetic factor is indicated in such a dysmetabolism. To elucidate the influence of present lifestyle to the next generation, we performed selective breeding of mice that had glucose dysmetabolism induced by high fat diet (HFD).

Materials and methods: Hybrid mice with male C57BL/6J, female C3H/HeJ and female AKR were used in this study. At first, male C57BL/6J mice were crossed with female C3H/HeJ mice, and mice were fed with 25% HFD for 10 weeks (5-15 weeks of age). Then casual blood glucose was checked and mice with higher blood glucose level were selected for breeding. At the 3rd generation, birth rate was reduced, so we crossed these male mice with female AKR mice, and fed these mice with 13.5% HFD for 10 weeks. From the 4th generation to date, oral glucose tolerance test (OGTT) was performed around 11 weeks old, and mice with higher blood glucose levels at 2 hours (2hr BG) were selected and bred as high glucose colony, H-strain. In the present protocol, mice were fed with 13.5% HFD from 5 to 10 weeks old to keep the normal birth rate. Despite HFD feeding, some of mice showed normal GTT pattern. These mice were also selected and bred as control (normal glucose colony, C-strain). Messenger RNA expression of several genes in liver, skeletal muscle, and fat tissues, which influence glucose metabolism and body weight, was evaluated by real time quantitative PCR at 5 weeks old before HFD feeding.

Results: Now we have maintained the 12th generation of H-strain and the 19th of C-strain. At 10 weeks old (after HFD feeding), the frequency of IGT and DM (2hr BG level is 140-199 mg/dl, and over 200 mg/dl, respectively) was significantly higher in H10 (96.4% in male and 45.0% in female) than C9 (91.1% and 0%, respectively) by chi-square test. Body weight gain after HFD feeding was accelerated in H-strain compared to C-strain, and increased to 32.3±3.1 vs 29.2±2.4 g (male, P=0.0003) and 24.0±1.9 vs 20.7±1.4 g (female, P=0.0001), respectively. There was no difference in food intake between the two groups. At 5 weeks old (before HFD feeding), 2hr BG level of OGTT was 161±42.6 vs 105±25.3 mg/dl (H vs C-strain of male, P=0.042) and 112±34.1 vs 67±12.2 mg/dl (H vs C-strain of female, P=0.046), therefore H-strain already had abnormal glucose metabolism before fat load. Real time PCR analysis of 5 weeks old male mice showed that UCP-2 expression of liver and muscle was significantly elevated, and UCP-1/-3 expressions of BAT were significantly decreased in H-strain compared to C-strain.

Conclusion: Abnormal glucose metabolism and obesity induced by HFD were accelerated by selective breeding, thus the susceptibility to HFD was transmitted to next generation. It is concluded that the new strain of obese and diabetic mice was established. Additionally, further analysis of these mice could reveal the genetic factors that regulate sensitivity to HFD.

817
In vivo efficient gene transfer to murine white adipose tissue using adeno-associated viral vectors

V. Jimenez1,2, S. Muñoz1,2, E. Ayuso1,2, X. Leon1,2, M. Molas1,2, M. Moya1,2, I. Elias3, T. Ferre1,2, S. Franchi1,2, F. Bosch1,2;
1CRAT, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain; 2ICIBER of Diabetes and Associated Metabolic Disorders, Barcelona, Spain.

Background and aims: Obesity is a worldwide growing health problem and this alteration of the metabolic and endocrine functions of adipose tissue is frequently associated with insulin resistance and type 2 diabetes. In order to increase our knowledge about the molecular mechanisms that underlie obesity, the overexpression or knockdown/silencing of specific genes in adipose tissue may offer great potential. However efficient gene transfer postnatally into adipocytes in vivo has not been achieved. Therefore, this study was designed to test the ability of adeno-associated viral vectors (AAV) serotypes 1, 2, 4, 5, 6, 7, 8 and 9 to achieve broad, efficient and persistent gene transfer to murine white adipose tissue in vivo.

Materials and methods: AAV vectors coding GFP as a marker gene or the enzyme Hexokinase II (HKII) were generated by triple transfection in 293 cells and were purified by double cesium chloride gradient. AAV vectors were injected into the epididymal white adipose tissue of mice.

Results: To assess the in vivo transduction efficiency of the adipose tissue with adeno-associated viral vectors, AAV serotypes 1, 2, 4, 5, 6, 7, 8 and 9 encoding the marker protein GFP were injected into the epididymal white adipose tissue (eWAT) of mice. Two weeks after the injection, fat pads treated with AAV8 and AAV9 presented the highest GFP content that paralleled the highest numbers of transduced adipocytes indicating that these two serotypes were the most efficient transducing adipocytes in vivo. In addition, to examine whether in vivo AAV-transduced adipocytes may be a viable model to study adipose function, differentiation and metabolism, gene transfer of key metabolic genes such as HKII into eWAT was also evaluated. Two weeks after injection, isolated adipocytes from mice injected with AAV9 vectors coding HKII presented a 3-fold overexpression of HKII mRNA compared with adipocytes from AAV9 null-injected mice. In AAV9 HKII-transduced adipocytes, insulin produced a marked increased in the 2-[1-3H]deoxy-D-glucose uptake compared to AAV9 null-transduced adipocytes at low and maximal insulin concentrations in a dose dependent manner.

Conclusion: All together, these results show that AAV vectors may be very useful for genetic modification of adipose cells in vivo to analyze adipocyte function or to assay new gene therapy approaches targeting the adipose tissue.

Supported by: SAF2008-00962 and the EC.
PS 73 DPP IV inhibitors

818

Sitagliptin and metformin increase active GLP-1 by complementary mechanisms in treatment-naïve patients with type 2 diabetes
E.M. Migoya1, J. Miller1, W.-L. Luo1, O. E’Neill1, L. Morrow1, M.J. Gutierrez2, A. Stoch3, J.A. Wagner2, 1Merck Sharp & Dohme Corp, Rahway, USA.

Background and aims: Sitagliptin (SITA) and metformin (MET) are oral antihyperglycemic agents with different, complementary mechanisms-of-action. Because treatment of type 2 diabetes mellitus (T2DM) usually requires combination therapy we assessed the potential combination effects of SITA and MET on GLP-1 in patients with T2DM.

Materials and methods: This was a randomized, placebo (PBO)-controlled, double-blind, 4-period crossover study in 18 treatment-naïve patients with T2DM. In each 2-day period, subjects received either SITA 100 mg in AM on Days 1 and 2, MET 500 mg in AM and PM on Day 1 and 1000 mg in AM on Day 2, co-administration of SITA+MET on Days 1 and 2 or PBO on Days 1 and 2. On Day 2, at 2 hrs post-AM dose, patients ate a standard meal. Blood samples were collected pre- and at specified times post-meal.

Results: Compared with PBO, SITA, MET, and SITA+MET reduced 2-hr post-meal glucose by 31, 40, and 74 mg/dL, respectively. Compared with PBO, MET alone increased cumulative 4-hr post-meal weighted mean (WM) total GLP-1 levels by 1.5-times while SITA slightly decreased levels by ~10%, consistent with feedback inhibition of GLP-1 release by increased active GLP-1. SITA or MET alone each increased cumulative 4-hr post-meal active GLP-1 levels by 2.2- and 1.7-times, respectively, and in combination by 3.4-times. MET increased active GLP-1 in proportion to the increase in total GLP-1, suggesting that the increase in active was primarily due to the increase in total GLP-1. In contrast, SITA increased active, but not total GLP-1, consistent with stabilization of the active peptide. These data are similar to previously reported results in healthy non-diabetic subjects.

Conclusion: Co-administration of SITA and MET enhances reductions in glucose and increases in active GLP-1, and may provide a unique benefit to patients with T2DM as a result of these complementary mechanisms-of-action.

820

Efficacy and safety of sitagliptin and the fixed-dose combination of sitagliptin and metformin versus pioglitazone in drug-naïve patients with type 2 diabetes
A. Pérez-Monteverde1, T. Seck1, L. Xu2, G. Liu1, M.A. Lee2, C. McCrary2, D.E. Williams-Herman1, K.D. Kaufman1, B.J. Goldstein2, 1Centro Médico Docente La Trinidad, Caracas, Bolivarian Republic of Venezuela, 2Merck Sharp & Dohme Corp, Rahway, USA.

Background and aims: Combination therapy has been recommended for patients with type 2 diabetes mellitus (T2DM) who have greater degrees of hyperglycemia. The DPP-4 inhibitor sitagliptin (SITA) and the fixed-dose combination of sitagliptin + metformin (SITA/MET) are recent additions to the treatment options for patients with T2DM. This study assessed the efficacy and safety of SITA/MET mono and compared the efficacy and safety of SITA/MET with pioglitazone (PIO) monotherapy in patients with T2DM and moderate to severe hyperglycemia.

Materials and methods: After a 2-wk single-blind placebo run-in period 492 eligible patients (18-78 yr of age, HbA1c 7.5-12%, not on an antihyperglycemic agent) were randomized 1:1 to SITA 100 mg once daily (qd) or PIO 15 mg qd (up-titrated to 30 mg after 6 wk). After the initial 12-wk double-blind active treatment period (Phase A) with SITA or PIO monotherapy, patients entered a 28-wk double-blind active treatment period (Phase B). At the beginning of Phase B, patients receiving SITA during Phase A were switched to SITA/MET (up-titrated to 50/1000 mg twice daily over 4 wk) and patients receiving PIO 30 mg qd at the end of Phase A were up-titrated to PIO 45 mg qd at the beginning of Phase B. No inferential testing for between-group differences (SITA vs. PIO) in HbA1c change from baseline was done at the end of Phase A, since maximum glycemic efficacy of PIO was likely not achieved at this time point.

Conclusion: Mean baseline HbA1c was 9.0%. At the end of Phase A, SITA and PIO resulted in significant LS mean changes from baseline in HbA1c (-1.0% SITA, -0.9% PIO), fasting plasma glucose (FGP; -1.5 mmol/L SITA, -1.6 mmol/L PIO) and 2-h post-meal glucose (-2.9 mmol/L SITA, -2.8 mmol/L PIO). At the end of Phase B, the LS mean changes from baseline in HbA1c were -1.8% and -1.4% for SITA/MET and PIO, respectively (between-group difference -0.4%, p>0.002). A significantly greater proportion of patients had HbA1c <7% in the SITA/MET group vs. the PIO group (55.0% vs. 40.5%, respectively; p=0.004). Significantly larger LS mean reductions at the end of Phase B were
Linagliptin is an oral dipeptidyl peptidase (DPP-4) inhibitor under development for the treatment of type 2 diabetes (T2D). This 18-week (wk) multi-centre, randomised, double-blind, placebo-controlled parallel group study investigated the efficacy, safety and tolerability of linagliptin administered with sulphonylurea (SU) background therapy in patients with T2D and insufficient glycemic control.

Materials and methods: Before being randomised to linagliptin (5 mg qd) (n=161), or placebo (n=84), all participants had a 2-wk placebo run-in. Any oral anti-diabetic (OAD) agent other than SU was withdrawn at the beginning of a 4-wk washout period prior to run-in. The SU drug was administered in an unchanged dosage throughout the entire trial duration (including washout and placebo run-in periods). The primary endpoint for the trial was the change in HbA1c from baseline (BL) after 18 wks of treatment evaluated with an analysis of covariance (ANCOVA) adjusted for treatment, prior OAD(s) and BL HbA1c.

Results: Mean BL characteristics (HbA1c, 8.6% [SD 0.8]; fasting plasma glucose [FPG] 179.6 [50.9] mg/dL; age 56.9 [9.9] yrs; BMI 28.3 [5.0] kg/m²) were similar between the groups. At Wk 18, the adjusted mean change in HbA1c from BL was -0.47%, showing superiority of linagliptin over placebo (p=0.0001). Statistically significant differences between linagliptin and placebo for HbA1c were sustained at all post-BL visits (wks 6, 12 and 18, all p<0.01) and persisted with a BL HbA1c of >7.0% (i.e. those receiving placebo (3.7%) (odds ratio (OR) 6.47, p=0.006). The odds of achieving a HbA1c reduction of ≥0.5% at 18 wks was greater for participants treated with linagliptin than in participants treated with placebo (OR 5.12, p<0.0001). At 18 wks, the improvements in glycemic control were reflected in the difference in adjusted mean change in FPG of -6.4 mg/dL (p=0.024) in favour of linagliptin. The proportion of participants requiring rescue therapy was twice as great for placebo (15.9%) compared to linagliptin (7.6%). Overall, the frequency of reported adverse events (AEs) was similar for the groups (42.2% in the linagliptin group and 42.9% in the placebo group). Of these AEs, 13/161 (8.1%) and 8/84 (9.5%) in the linagliptin and placebo groups, respectively, were considered drug-related by the investigator. AEs of severe intensity were reported for 4 participants (2.5%) in the linagliptin group and none in the placebo group; all other AEs were of mild or moderate intensity. None of the severe AEs was considered as drug-related. Investigator-defined cases of hypoglycaemia occurred in 5.6% and 4.8% of participants in the linagliptin and placebo groups, respectively. No changes in body weight or waist circumference were recorded.

Conclusion: Linagliptin treatment in combination with SU was well tolerated and produced statistically significant and clinically relevant reductions in HbA1c. The safety results were comparable between linagliptin and placebo and, importantly, the addition of linagliptin did not result in a significant increase in hypoglycaemia. Linagliptin may provide an alternative option to up titrating SU in participants failing on therapy with SU alone or in combination.

Supported by: Boehringer Ingelheim Pharma GmbH & Co. KG
823
Linaagliptin monotherapy improves glycaemic control in type 2 diabetes patients for whom metformin therapy is inappropriate
A.H. Barnett1, R. Harper2, R. Toorawa3, S. Patel1, H.-J. Woerle4; 1University of Birmingham and Heart of England NHS Foundation Trust, United Kingdom, 2Boehringer Ingelheim, Bracknell, United Kingdom, 3Boehringer Ingelheim, Biberach, Germany.

Background and aims: Dose-related adverse events, such as diarrhoea, nausea and abdominal bloating, and a potential risk for lactic acidosis in subjects with renal impairment, may limit metformin use in patients (pts) with type 2 diabetes (T2D). This multi-centre, 18-wk, randomised, double-blind, placebo (PBO)-controlled, parallel group study (followed by an ongoing 34-wk double-blind extension period in which PBO pts were switched to glinipride) assessed the efficacy, safety and tolerability of the oral DPP-4 inhibitor linagliptin (LI) (3 mg qd) in pts with inadequately controlled T2D for whom metformin therapy is inappropriate due to intolerability or contraindication.

Materials and methods: Hyperglycaemic T2D pts who were treatment-naïve (HbA1c ≥7.0 to ≤10.0%, or HbA1c ≥7.0 to ≤9.0% in Canada) or pre-treated with 1 oral anti-diabetes agent (OAD) (HbA1c ≥6.5 to ≤9.0% after a 6-wk washout period) were randomised to LI (n=151) or PBO (n=76) followed a 2-wk PBO run-in (previously treated pts went without medication for 4 wks prior to this). The primary endpoint for the trial was the change in HbA1c from baseline (BL) after 18 wks of treatment evaluated with an analysis of covariance (ANCOVA) adjusted for prior OAD(s), BL HbA1c, and reason for metformin ineligibility. This interim analysis was conducted after all pts had completed 18 wks of treatment.

Results: There were no differences between the LI and PBO groups for mean BL characteristics (overall HbA1c, 8.09% [SD, 0.93]; fasting plasma glucose (FPG), 10.12 [2.54] mmol/L; age, 56.5 [10.3] yrs; BMI, 29.5 [5.4] kg/m2). Most of the pts (61.2%) were female. The majority of pts had either normal renal function (55.9%) or mild renal impairment (34.4%). Metformin was inapposite due to intolerance from gastrointestinal adverse events (AEs) in 93% of the randomised pts, with the remainder of cases due to raised creatinine. After 18 wks of treatment, the adjusted mean difference between LI and PBO was -0.57% with 95% confidence interval (-0.86, -0.29) (p<0.001) in favour of LI for change in HbA1c (%). Statistically significant differences between LI and PBO for HbA1c were seen by Wk 6 and were sustained through Wk 18. Among pts with BL HbA1c ≥7.0%, 11.8% of pts in the PBO group and 23.5% of the pts in the LI group achieved HbA1c <7.0% at Wk 18. At Wk 18, linaagliptin was superior to placebo in reducing the mean FPG from BL (adjusted mean difference -1.14 mmol/L with 95% confidence interval (-31.1, -9.9); p=0.00002). The percentage of pts requiring rescue therapy was higher in the PBO group (17.8%) compared with the LI group (11.6%). The proportion of pts experiencing ≥1 AE classed as drug-related within the LI and PBO groups was 66.6% and 1.3%, respectively. Hypoglycaemia was rare, occurring in 2 pts (1.3%) in the LI group and none in the PBO group and there were no severe cases in either group. No difference in weight was seen between groups.

Conclusion: LI showed superiority, with clinically relevant reduction in HbA1c from BL to Wk 18 compared to PBO. LI was well tolerated, with comparable safety results between LI and PBO. The incidence of hypoglycaemic events during treatment with LI was very low, with no episodes of severe hypoglycaemia, and there was no weight difference between groups. This study shows that LI would be a valuable treatment option for pts with T2D for whom metformin therapy was inappropriate.

Supported by: Boehringer Ingelheim Pharma GmbH & Co. KG

824
Diabetes duration and its impact on the effect of dutogliptin, a novel DPP4 inhibitor, on HbA1c and fasting plasma glucose in type 2 diabetes mellitus
N. Rosenberg, L. Xie1, H. Schneider, A. Genovesi, H.-P. Guler; 1Forest Research Institute, Inc., Jersey City, 2Phenomix Corporation, San Diego, USA.

Background and aims: Type 2 diabetes mellitus (T2DM) is characterized by a progressive decline in glycemic control, and disease duration may impact patient therapeutic response to medication. Dutogliptin is a novel and potent dipeptidyl peptidase-4 (DPP4) inhibitor currently in Phase III development for the treatment of T2DM. This post-hoc analysis of a 12-week, multicenter, randomized, double-blind, placebo-controlled trial evaluated the effect of diabetes duration on glycemic response to dutogliptin treatment vs. placebo in patients whose T2DM was not optimally controlled with metformin and/or thiazolidinediones (TZD).

Materials and methods: Patients with HbA1c ≥7.3% currently receiving metformin (≥1500 mg/day or maximally tolerated dose for at least 4 weeks prior to study entry) and/or TZD (at any labeled dose) were stratified by diabetes duration at study entry (< and ≥5 years). Patients were randomized to receive oral doses of dutogliptin 200 mg, 400 mg or placebo once daily. Changes from baseline in HbA1c and fasting plasma glucose (FPG) were assessed after 12 weeks of treatment.

Results: Overall, absolute LS mean reductions from baseline in HbA1c were significantly greater in both the dutogliptin 200 mg (-0.64%) and 400 mg (-0.82%) arms compared to placebo (-0.30%, p<0.01) at week 12. Similarly, the LS mean change from baseline in fasting plasma glucose (FPG, mmol/L) was significantly reduced compared to placebo in the dutogliptin 200 mg (-0.88; p=0.003) and 400 mg (-1.00; p<0.001) groups. However, in patients with <5 years of diabetes duration, reductions in HbA1c and FPG were greater than in patients with ≥5 years of diabetes duration compared to placebo. Patients with diabetes duration <5 years experienced the greatest absolute decrease from baseline in HbA1c in both the dutogliptin 200 mg (-0.778%) and 400 mg (-0.991%) groups compared to placebo (p<0.05). Patients in the dutogliptin 400 mg group with diabetes duration ≥5 years also had statistically significant improvements in both HbA1c (-0.641%) and FPG (-0.976 mmol/L) compared to placebo (p<0.05).

Conclusion: These results demonstrate the positive effects of dutogliptin in early diabetes and support earlier treatment of T2D with dutogliptin.

<table>
<thead>
<tr>
<th>Diabetes Duration</th>
<th>Placebo</th>
<th>Dutogliptin 200 mg</th>
<th>Dutogliptin 400 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td>53</td>
<td>56</td>
<td>112</td>
</tr>
<tr>
<td>≥5 years</td>
<td>53</td>
<td>56</td>
<td>112</td>
</tr>
</tbody>
</table>

Baseline Mean HbA1c
- Placebo: 8.439 ± 0.821
- Dutogliptin 200 mg: 8.240 ± 0.859
- Dutogliptin 400 mg: 8.477 ± 0.874

Baseline Mean FPG, mmol/L
- Placebo: 8.633 ± 0.956
- Dutogliptin 200 mg: 9.273 ± 0.987
- Dutogliptin 400 mg: 9.416 ± 1.018

*p<0.05 compared to placebo

Supported by: Phenomix Corporation

825
Efficacy of saxagliptin in relation to baseline HbA1c in a pooled analysis of 3 add-on-pivotal randomised phase 3 clinical trials
P. Maheux1, M. Donovan1, E. Allen2, N. Berglund2, H. Bouzamondo2; 1AstraZeneca, Brussels, Belgium, 2Bristol-Myers Squibb, Princeton, USA, 3Bristol-Myers Squibb, Paris, France.

Background and aims: Saxagliptin (SAXA) is a potent, selective dipeptidyl peptidase-4 (DPP4) inhibitor, approved in Europe for treatment of type 2 diabetes (T2D) in combination with metformin, a sulphonylurea, or a thiazolidinedione (TZD). In the phase 3 programme, SAXA improved control of the glucose triad (HbA1c, PPG and FPG) via a physiological pathway, with weight neutrality and a low incidence of hypoglycaemia. This analysis examines 2 key relationships within the pooled efficacy database with SAXA: 5 mg dose, between (1) HbA1c reduction and baseline HbA1c levels, and (2) the proportion of patients reaching HbA1c target (<7.0%) without hypoglycaemia and baseline HbA1c levels, particularly the subgroup of T2D patients slightly above HbA1c target.

Materials and methods: T2D patients (>18y) recruited into the studies, with HbA1c ≥7% and on stable doses of metformin (CV181-014; NCT00121667), submaximal glibenclamide (CV181-040; NCT00313313), or TZD (CV181-013; NCT00295633). Following a placebo (PBO) run-in period, patients were randomised to SAXA (2.5 or 5 mg od - CV181-040 and CV181- 013) or SAXA (2.5, 5 or 10 mg once daily - CV181-014) or (PBO) in addition to ongoing antihyperglycaemic agent. In CV181-040, blinded up-titration of glibenclamide was allowed for patients on PBO. The primary endpoint in all studies was change from baseline HbA1c at week 24. The analysis was carried...
out on all patients with a baseline HbA1c value randomised to SAXA 5 mg (n=628) or PBO (n=630) in the 3 studies. Subgroups defined by baseline HbA1c <7.5% (SAXA n=126, PBO n=134); 7.5−<8% (SAXA n=116, PBO n=135); ≥8.5−<9% (SAXA n=129, PBO n=113); ≥8.5% (SAXA n=102, PBO n=100); ≥9% (SAXA n=155, PBO n=148). Hypoglycaemia was considered to be all symptomatic episodes including confirmed hypoglycaemia (fingerstick glucose <2.8 mmol/L + symptoms). Patients missing data at week 24 were counted as not achieving target HbA1c.

Results: Treatment groups were well balanced for baseline characteristics. SAXA 5 mg od resulted in reduction from baseline to week 24 in mean PBO-corrected HbA1c, in all subgroups; greater reductions were seen with increasing HbA1c at baseline (Fig). Percentage of patients reaching target HbA1c <7.0% without hypoglycaemia with SAXA 5 mg od and PBO in each subgroup are also shown.

Conclusion: Add-on therapy with SAXA 5 mg od for 24 wks provided clinically relevant reductions in HbA1c vs PBO in patients with inadequately controlled T2D. Pooled subgroup analysis showed that HbA1c reductions were greatest in those with higher baseline HbA1c values. The proportion of patients who achieved target HbA1c without associated hypoglycaemic episodes was highest in those with lower baseline HbA1c. Among patients who were close to target HbA1c at baseline (eg <7.5%), >50% achieved target HbA1c without associated hypoglycaemic episodes over 24 wks, reinforcing the potential role of SAXA as an early add-on therapeutic option.

Mean (95% CI) PBO-corrected change from baseline in HbA1c, to week 24 and percentage of patients who achieved target HbA1c, without hypoglycaemia for baseline HbA1c subgroups in the SAXA 5 mg od treatment group

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>PBO</th>
<th>SAXA 5 mg od</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>300</td>
<td>296</td>
</tr>
<tr>
<td>Female</td>
<td>310</td>
<td>324</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤25</td>
<td>388</td>
<td>341</td>
</tr>
<tr>
<td>>25</td>
<td>221</td>
<td>279</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤65</td>
<td>651</td>
<td>623</td>
</tr>
<tr>
<td>>65</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>HbA1c duration (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>111</td>
<td>113</td>
</tr>
<tr>
<td>>2</td>
<td>205</td>
<td>201</td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤80</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>>80</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Creatinine clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤80</td>
<td>135</td>
<td>136</td>
</tr>
<tr>
<td>>80</td>
<td>498</td>
<td>498</td>
</tr>
<tr>
<td>HOMA-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤58.6</td>
<td>315</td>
<td>301</td>
</tr>
<tr>
<td>>58.6</td>
<td>254</td>
<td>251</td>
</tr>
</tbody>
</table>

Supported by: BMS & AZ

Efficacy of saxagliptin according to patient baseline characteristics: a pooled analysis of three add-on pivotal randomised phase 3 clinical trials

Background and aims: Saxagliptin (SAXA) is a potent, selective dipeptidyl peptidase-4 (DPP-4) inhibitor, approved in Europe for the treatment of type 2 diabetes (T2D) in combination with metformin, a sulphonylurea or a thiazolidinedione (TZD). In phase 3 trials, SAXA demonstrated comprehensive glycaemic control with improvements in all components of the glucose triad (HbA1c, postprandial plasma glucose, fasting plasma glucose) and was associated with weight neutrality and a low incidence of hypoglycaemia. The present analysis, using pooled data from the pivotal phase 3 studies, was conducted to evaluate any potentially important relationships between patient characteristics at baseline and the efficacy of SAXA.

Materials and methods: Patients with T2D recruited into the studies were aged ≥18 years, HbA1c ≥7%, and were on stable doses of metformin (study CV181-014; NCT00121667), submaximal glibenclamide (CV181-040; NCT00313313), or TZD (CV181-013; NCT00295633). Following a placebo run-in period, patients were randomised to SAXA (2.5 or 5 mg once daily - CV181-040 and CV181-013) or PBO (2.5, 5 or 10 mg once daily - CV181-014) or placebo in addition to their ongoing antihyperglycaemic agent. In CV181-040, blinded up-titration of the glibenclamide dose was allowed for patients randomised to placebo. The primary endpoint in all studies was change from baseline HbA1c at week 24. This analysis was conducted using placebo-corrected pooled data from all patients randomised to SAXA 5 mg/day in the 3 studies. The following subgroups were defined according to baseline characteristics: gender (male, female); body mass index (BMI; <30, ≥30); age (<65, ≥65); T2D duration (≥1.5, ≤3, ≥3−<5, ≥5, ≥10); creatinine clearance (≥80, ≥60−<80, ≥30−<60, ≤30); homeostasis model assessment 2 β-cell function (HOMA-2B ≤5 and >5.86 baseline study median). The efficacy of SAXA (mean change from baseline in HbA1c at placebo at week 24) was determined for each subgroup category.

Results: Overall, 630 patients were treated with SAXA 5 mg/day in the 3 studies. Baseline characteristics were well balanced across treatment groups within each study (data not shown). Adjusted mean decreases in HbA1c with SAXA 5 mg/day, relative to placebo, were observed for each of the subgroups (figure). Numerically, these mean decreases ranged from -0.52 to -0.93 with relatively larger mean decreases in patients with longer duration of T2D, lower baseline creatinine clearance, and lower baseline HOMA-2B.

Conclusion: This analysis demonstrates that HbA1c lowering from baseline was greater than placebo across diverse demographic and diabetes subgroups over a 24-week period. It supports the use of SAXA 5 mg once daily, as an add-on therapy, in a broad range of patient types.

Mean (95% CI) change from baseline in HbA1c at week 24 by patient characteristic subgroup

Supported by: BMS & AZ

827

Addition of alogliptin vs up titration of pioglitazone dose in type 2 diabetes mellitus patients on metformin plus pioglitazone therapy

Background and aims: Maintaining target HbA1c levels in type 2 diabetes mellitus (T2DM) usually necessitates escalation of drug doses and use of combination therapies. In this study, the efficacy of adding alogliptin, an investigational dipeptidyl peptidase 4 inhibitor, was compared with that of increasing the pioglitazone dose in patients experiencing inadequate glycemic control on a regimen of metformin plus pioglitazone.

Materials and methods: The addition of alogliptin 25mg (A25) vs the titration of pioglitazone 30 (P30) to 45mg (P45) was evaluated in 803 randomized patients with inadequately controlled T2DM currently treated with metformin (M; ≥1500mg or maximum tolerated dose) plus P30. The primary endpoint was glycosylated hemoglobin A1c (HbA1c) changes from Baseline (CFB) at Weeks 26 and 52, and the primary analysis involved sequential testing for non-inferiority at Weeks 26 and 52 and superiority at Week 52 only.

Results: The addition of alogliptin (A25+MET+P30) demonstrated superior glycemic control vs the titration of pioglitazone to 45mg (MET+P45), as measured by HbA1c least square mean CFB at Week 52 (-0.89% vs -0.56%, 95% CI -0.99% to -0.78%, P<0.001). On efficacy vs MET+P30 (primary end point), there were statistically significant (P<0.001) higher proportions of patients taking A25+MET+P30 vs MET+P45 achieved target HbA1c ≤7.0% (33.2% vs 21.3%) and ≤6.5% (8.7% vs 4.3%) at Week 52. A25+MET+P30 also was significantly more effective than MET+P45 in decreasing FPG (LS mean CFB at Week 52 were -14.6 vs -3.7 mg/dL; P<0.001).

Conclusion: The addition of A25 to an existing T2DM regimen of MET+P30 provided superior glycemic control and potentially improved β-cell function.
when compared with MET+P45, with no clinically important differences in safety.

Figure

![Graph showing HbA1c changes over time](image)

*P<0.001 vs MET+P45.
†Non-inferior to MET+P45.
††Non-inferior and superior to MET+P45.

Measure of β-cell function significantly (P<0.001) improved with A25+MET+P30 vs MET+P45, as shown by LS mean CFB to Week 52 in pro-insulin/insulin ratio (-0.048 vs -0.007) and HOMA β-cell function (15.02 vs 2.06), while effects on insulin sensitivity were similar (HOMA insulin resistance was 0.35 vs 0.54). Overall, 3.0% of patients reported hypoglycemia.

Supported by: TGRD

828

Efficacy and safety of alogliptin, a potent and highly selective DPP-4 inhibitor, in Japanese patients with type 2 diabetes mellitus

Y. Seino¹, K. Kaku²;
¹Kansai Electric Power Hospital, ²Kawasaki Medical School, Okayama, Japan.

Background and aims: Alogliptin (ALO) is a potent and highly selective DPP-4 inhibitor used for treatment of type 2 diabetes mellitus (T2DM). We investigated the efficacy and safety of ALO used alone and in combination with an α-glucosidase inhibitor (Voglibose : VOG), a thiazolidinedione (Pioglitazone : PIO), a sulfonylurea (Glimpiride : GLIM), or a biguanide (Metformin : MET) in Japanese patients with T2DM.

Materials and methods: Efficacy (decrease in HbA1c, fasting plasma glucose, 2-hr postprandial glucose) and safety (adverse events) of ALO were evaluated after 12-week treatment in five randomized, placebo-controlled, double-blind studies in Japanese patients with T2DM. In addition, long-term efficacy and safety were evaluated in 40-week, open-label extension studies in subjects who had completed the corresponding 12-week study (total treatment duration: 52 weeks). HbA1c was measured by HPLC method according to the Japanese Diabetes Society standard.

Results: A total of 1649 patients were randomized into one of five studies: a monotherapy study (N=480; mean baseline HbA1c 7.53%), a combination study with VOG (N=230; mean baseline HbA1c 7.62%), a combination study with PIO (N=339; mean baseline HbA1c 7.50%), a combination study with GLIM (N=312; mean baseline HbA1c 8.17%), or a combination study with MET (N=288; mean baseline HbA1c 7.57%). At week 12, patients treated with ALO in monotherapy or in combination with VOG, PIO, GLIM, or MET showed statistically significant decreases in HbA1c (Figure), fasting plasma glucose and 2-hr postprandial glucose from baseline compared to placebo. In all 12-week studies, incidences of adverse events, serious adverse events, drug-related adverse events, and hypoglycemia were similar between ALO and placebo. In the open-label extension studies, ALO as monotherapy or in combination therapies provided substantial improvement in glycemic control over 52 weeks without weight gain or increased incidence of hypoglycemia.

Conclusion: Treatment with ALO, whether as monotherapy and in combination with VOG, PIO, GLIM, or MET, significantly improved glycemic control and was well tolerated in Japanese patients with T2DM.

Supported by: Takeda Pharmaceutical Company Limited
PS 74 GLP-1 analogues: clinical benefits

829

Efficacy and safety of liraglutide compared with glimepiride, both combined with metformin, in an Asian population

Y. Wenying1, L. Chen2, Q. Ji3, L. Chongb, H.A. Bhattacharyya1, K.-W. Kim4, K.-H. Yoon5, H. Xie6, A. Shinde7, N. Tandon7
1China-Japan Friendship Hospital, Beijing, China, 2Endocrinology, Wuhan Union Hospital, Hubei, China, 3Xijing Hospital, Shaanxi, China, 4Manipal Hospital, Bangalore, India, 5Samsung Medical Centre, Seoul, Republic of Korea, 6Endocrinology and Metabolism, Seoul St Mary’s Hospital, Seoul, Korea, 7Republic of South Africa, 8Novo Nordisk Pharmaceuticals Ltd, Beijing, China, 9Novo Nordisk Private Ltd, Bangalore, India, 10All India Institute of Medical Sciences, New Delhi, India.

Background and aims: Liraglutide has been investigated for the treatment of type 2 diabetes in Caucasian, African-American and Hispanic populations as part of the LEAD programme. This study aimed to compare liraglutide with glimepiride, both added to metformin, in an Asian population from China, South Korea and India.

Materials and methods: In this 16-week, randomised, double-blind, active-controlled trial, 292 patients were randomised to receive either liraglutide (0.6, 1.2 or 1.8 mg once daily; OD) or glimepiride (4 mg OD), both in combination with metformin (1 g twice daily; BD).

Results: Substantial reductions in HbA1c were observed in all treatment groups (Table). Improvements in HbA1c observed with liraglutide 1.2 and 1.8 mg were non-inferior to those reported for glimepiride. Both treatments led to greater improvements in HbA1c in patients previously treated with oral antidiabetic drug (OAD) monotherapy. The proportion of patients reaching HbA1c <7.0% was 36%, 45% and 47% for liraglutide 0.6, 1.2 and 1.8 mg, respectively, compared to 44% for glimepiride. Reductions in fasting plasma glucose were comparable across treatment groups. Liraglutide treatment led to weight loss of 1.8-2.4 kg, while glimepiride treatment resulted in 0.08kg weight gain. Greater reductions in systolic blood pressure (SBP) were observed for liraglutide than glimepiride. Liraglutide was associated with a -16-fold lower incidence of minor hypoglycaemia than glimepiride. No major hypoglycaemia was reported for liraglutide. The composite endpoint ‘HbA1c <7.0%, no weight gain, no hypoglycaemia’ was achieved by 29%, 39% and 41% of patients treated with liraglutide 0.6, 1.2 and 1.8 mg, respectively, compared with 17% of patients treated with glimepiride. The most common adverse effects associated with liraglutide were gastrointestinal disorders; however, these were transient in nature and led to very few withdrawals.

Conclusion: These results suggest that treatment with once-daily liraglutide leads to similar improvements in glycaemic control to glimepiride with additional benefits on body weight and SBP and a lower risk of hypoglycaemia. Patients treated with liraglutide are more likely to achieve HbA1c target <7.0% without weight gain and hypoglycaemia. Both liraglutide and glimepiride appear to be efficacious when used early on in patients inadequately controlled with OAD monotherapy. These results from an Asian population are similar to those reported for Caucasian, African-American and Hispanic populations.

Table. Mean baseline and 12-week changes in glycaemic efficacy variables

<table>
<thead>
<tr>
<th>Liraglutide (%)</th>
<th>Placebo</th>
<th>2-step titration</th>
<th>1-step titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline HbA1c</td>
<td>-1.14% (p<0.001)</td>
<td>-1.45% (p<0.001)</td>
<td>-1.39% (p<0.001)</td>
</tr>
<tr>
<td>% HbA1c <7.0%</td>
<td>35.8%</td>
<td>45.0%</td>
<td>46.6%</td>
</tr>
<tr>
<td>Change in SBP, mmHg</td>
<td>-1.80% (0.16%)</td>
<td>-2.44% (0.16%)</td>
<td>-0.08% (0.16%)</td>
</tr>
<tr>
<td>Minor hypoglycaemia, 0.091***</td>
<td>0</td>
<td>0.084***</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Data are mean (SE). ***p<0.0001, **p<0.05 vs glimepiride

Supported by: Novo Nordisk

830

Monotherapy with GLP-1 receptor agonist, Lixisenatide, significantly improves glycaemic control in type 2 diabetic patients

J.E. Gerich1, V.A. Fonseca2, R. Alvarado-Ruiz1, D. Raccah3, I. Zieleniuk4, G. Boka5, P. Miossec6
1University of Rochester School of Medicine, Rochester, USA, 2Tulane University Health Sciences Center, New Orleans, USA, 3Clinica Cardioprevent, Durango, Mexico, 4University Hospital Sainte Marguerite, Marseille, France, 5sanofi-aventis, Antony, France.

Background and aims: This 12-week, randomised, double-blind, placebo-controlled, parallel-group, multicentre, Phase III study assessed the efficacy and safety of lixisenatide (AVE0010; a GLP-1 receptor agonist) as monotherapy in type 2 diabetic patients.

Materials and methods: A total of 361 patients with type 2 diabetes (mean age 53.7 yrs, mean diabetes duration 2.5 yrs) not currently receiving glucose-lowering therapy (HbA1c 7-10%) were randomised to one of four once-daily treatment regimens: lixisenatide 2-step titration (10 mg for 1 week, 15 mg for 1 week then 20 mg; n=120), lixisenatide 1-step titration (10 mg for 2 weeks then 20 mg; n=119), placebo 2-step titration (n=61) or placebo 1-step titration (n=61). A 1-week, single-blind placebo run-in was followed by a 12-week, double-blind, placebo-controlled treatment period. The study was double-blind for active and placebo treatments, and not blinded for drug volume and titration regimens. The primary endpoint was change in HbA1c from baseline to Week 12, analysed using ANCOVA with treatment group, screening strata for HbA1c (>8.0, >8.0% and BMI (>30, ≥30 kg/m²)), and country as fixed effects, and baseline HbA1c as covariate. A step-down testing procedure was applied. The two placebo groups were combined in all analyses.

Results: There were significant improvements in HbA1c in both lixisenatide titration groups vs placebo (p<0.0001) (Table). Significantly more patients in the lixisenatide groups achieved HbA1c <7.0% (31.9% 2-step, 25.4% 1-step) vs <7.0% (52.2% 2-step, 46.5% 1-step) vs placebo (12.5% and 26.8%, respectively; p<0.01). There were also significant improvements in 2-h post-prandial and fasting plasma glucose in the lixisenatide groups vs placebo (Table). Mean decreases in body weight were observed in all groups. There was only one (0.4%) serious treatment-emergent adverse event (TEAE) in the lixisenatide-treated patient (2-step group) compared with five (4.1%) in the placebo group. Nine patients discontinued due to a TEAE; five (4.2%) in the lixisenatide 2-step group, three (2.5%) in the lixisenatide 1-step group and one (0.8%) in the placebo group. The most common TEAEs were gastrointestinal: nausea was the most frequent (24.2% for lixisenatide 2-step, 20.2% for lixisenatide 1-step, 4.1% for placebo). Symptomatic hypoglycaemia occurred in three patients (2.5%) in the lixisenatide 2-step group, one (0.8%) in the lixisenatide 1-step group and two (1.6%) in the placebo group, with no cases of severe hypoglycaemia.

Conclusion: Lixisenatide monotherapy administered once daily significantly improved glycaemic control with a pronounced postprandial effect. Lixisenatide monotherapy was safe and well tolerated in patients with type 2 diabetes.

Table. Mean baseline and 12-week changes in glycaemic efficacy variables

<table>
<thead>
<tr>
<th>Lixisenatide (%)</th>
<th>Placebo</th>
<th>2-step titration</th>
<th>1-step titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline HbA1c</td>
<td>-2.89%</td>
<td>-4.25%</td>
<td>-3.04%</td>
</tr>
<tr>
<td>% HbA1c <7.0%</td>
<td>55.8%</td>
<td>58.8%</td>
<td>60.6%</td>
</tr>
<tr>
<td>LS mmol/L diff vs placebo</td>
<td>-0.57%</td>
<td>-0.65%</td>
<td>-0.64%</td>
</tr>
<tr>
<td>95% CI</td>
<td>-1.32% to 0.74%</td>
<td>-1.42% to 0.76%</td>
<td>-1.35% to 0.67%</td>
</tr>
<tr>
<td>2-h FPG (mmol/L)</td>
<td>Baseline</td>
<td>7.13 ± 3.65</td>
<td>7.13 ± 3.65</td>
</tr>
<tr>
<td>LS mmol/L diff vs placebo</td>
<td>-0.57%</td>
<td>-0.65%</td>
<td>-0.64%</td>
</tr>
<tr>
<td>95% CI</td>
<td>-1.32% to 0.74%</td>
<td>-1.42% to 0.76%</td>
<td>-1.35% to 0.67%</td>
</tr>
<tr>
<td>Uric acid (mmol/L)</td>
<td>Baseline</td>
<td>4.23 ± 2.07</td>
<td>4.23 ± 2.07</td>
</tr>
<tr>
<td>LS mmol/L diff vs placebo</td>
<td>-0.57%</td>
<td>-0.65%</td>
<td>-0.64%</td>
</tr>
<tr>
<td>95% CI</td>
<td>-1.32% to 0.74%</td>
<td>-1.42% to 0.76%</td>
<td>-1.35% to 0.67%</td>
</tr>
</tbody>
</table>

Supported by: sanofi-aventis
Exenatide significantly improved 24-hour average glucose compared to sitagliptin in patients with type 2 diabetes

S.K. Shenouda1, I.H. Holcombe1, C.R. Heilmann1, R. Cuddihy3, R. Pratley4, M. Hammer2, A. Thomsen1, M.J. Davies3
1Global Medical Communications, Eli Lilly and Company, Indianapolis, USA; 2Lilly USA, LLC, Indianapolis, USA; 3Lilly and Company, Indianapolis, USA.

Background and aims: This study compared exenatide, a GLP-1 receptor agonist, and sitagliptin, a DPP-4 inhibitor, with respect to average 24-hour glucose (primary objective) and 2-hour postprandial glucose (PPG), insulin, glucagon, and active GLP-1 (aGLP-1) concentrations and caloric intake in patients with type 2 diabetes.

Materials and methods: This double-blind, double-dummy, randomized crossover study was conducted in 166 metformin or TZD-treated patients: 58% female; BMI 35±5 kg/m²; A1C 8.3±1.0%. Patients received either exenatide (5μg twice a day (BID) for 1 week, then 10μg BID for 3 weeks) or sitagliptin (100mg one every morning) for 4 weeks. After 4 weeks, each group crossed to the other therapy for 4 weeks. At baseline and the end of each period, patients underwent 24-hour inpatient assessment with hourly or more frequent blood sampling for glucose, insulin, glucagon and aGLP-1. Based on gender and weight, each patient received the same individualized meals across the three 24-hour inpatient periods. 64 patients completed the study.

Results: The figure represents the 24-hour blood glucose profiles for exenatide and sitagliptin at baseline (BL) and endpoint (EP). Both treatments decreased average 24-hour glucose [exenatide 175±30 (BL) to 133±28 (EP) mg/dL; sitagliptin 175±39 (BL) to 146±33 (EP) mg/dL] and 2-hour PPG [exenatide 233±57 (BL) to 186±51 (EP) mg/dL] from baseline (p<0.001), with the differences favoring exenatide (p<0.001). Both drugs decreased postprandial glucagon and improved the insulinogenic index from BL (p<0.05), but the improvements with exenatide were greater (p<0.001). Sitagliptin increased fasting and postprandial aGLP-1 from BL (p<0.001), while exenatide decreased postprandial aGLP-1 (p<0.05). There was no severe hypoglycaemia during the study and no dropouts due to an adverse event. Adverse events were mild to moderate in intensity and gastrointestinal in nature.

Conclusion: In conclusion, while exenatide and sitagliptin are both incretin-based therapies, exenatide demonstrated significantly better clinical effects compared to sitagliptin on average 24-hour glucose, PPG, insulinogenic index, and glucagon suppression.

Supported by: Eli Lilly and Company and Amylin Pharmaceuticals

L,S-mean difference in DTSQ score (week 0–26)

Supported by: Eli Lilly and Company and Amylin Pharmaceuticals

832

Treatment satisfaction in patients with type 2 diabetes is significantly improved with liraglutide, the once-daily GLP-1 analogue versus sitagliptin, both combined with metformin

E. Montanya Mias1, R. Cuddihy1, R. Pratley1, M. Hammer2, A. Thomsen1, M.J. Davies3
1IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain; 2International Diabetes Center, Minneapolis, USA; 3University of Vermont, Burlington, United States, 4Novo Nordisk, Seborg, Denmark, 5Leicester University, United Kingdom.

Background and aims: Patient-reported outcomes (PRO) from clinical trials provide information on the impact of a disease on patients’ health status, and may identify the extent to which treatments meet patients’ needs and expectations. In a 26-week randomised, open-label study (n=665), the injectable once-daily human GLP-1 analogue liraglutide (1.2 or 1.8 mg), led to superior HbA1c reduction vs oral-

Materials and methods: Treatment satisfaction (TS) was assessed using the Diabetes Treatment Satisfaction Questionnaire (DTSQ) at baseline and 26 weeks. Overall TS was calculated by adding satisfaction scores for ‘current treatment’, ‘convenience’, ‘flexibility’, ‘understanding’, ‘recommend’, and ‘continue’. Higher scores indicate improved TS. For evaluation of perceived frequency of hyper- and hypoglycaemia, higher negative scores indicate improvement. TS scores were analysed by ANCOVA with treatment and country as fixed effects and baseline value as covariate.

Results: 505 subjects were included in the PRO analysis (liraglutide 1.2 mg, n=164; liraglutide 1.8 mg, n=171; sitagliptin, n=170). Baseline characteristics of the PRO subpopulation treatment groups were well balanced. Overall TS was similar between two groups at baseline and improved in all groups after 26 weeks. Improvement in overall TS was significantly greater with liraglutide 1.8 mg (4.35) than sitagliptin (2.96) (difference=1.39; 95%CI 0.13; 2.64; p=0.03) (Figure). Patients also reported significantly greater improvement in TS with liraglutide 1.8 mg than sitagliptin on three sub-items: ‘current treatment’ (difference=0.35; p=0.01), ‘recommend’ (difference=0.41; p=0.03) and ‘continue’ (difference=0.44; p=0.01). Patients perceived themselves to be hyperglycaemic significantly less frequently with liraglutide 1.8 mg than sitagliptin (difference=0.49; p=0.01), and the same was found with the 1.2 mg dose (difference=0.49; p=0.01). ‘Convenience’, ‘flexibility’, ‘understanding’ and ‘perceived hypoglycaemia’ were not statistically different between groups.

Conclusion: Injectable liraglutide leads to greater TS than oral sitagliptin, potentially by facilitating greater improvements in glycaemic control, weight loss and/or perception of superior treatment efficacy.
Exenatide added to a thiazolidinedione with or without metformin resulted in superior glycaemic control versus placebo after 26 weeks of treatment.

Background and aims: Exenatide, thiazolidinediones (TZDs), and metformin regulate blood glucose through unique and potentially complementary mechanisms. The objective of this 26-week study was to investigate the efficacy and safety of exenatide added to a TZD with or without metformin.

Materials and methods: A 26-week, multicountry, randomised, double-blind placebo-controlled study compared exenatide twice-daily vs. placebo, in 165 subjects with type 2 diabetes suboptimally controlled (HbA1c >7.0%) with a TZD or metformin + TZD (mean HbA1c 8.2% [SD 0.9], fasting glucose 9.1 [2.6] mmol/L, weight 93.9 [17.8] kg, diabetes duration 6.4 [4.3] years). After a 2-week, single-blind, placebo lead-in period, subjects were randomly assigned (2:1) to add exenatide or placebo to their current regimens. The primary endpoint was the change in HbA1c from baseline to endpoint (Week 26 or last-observation-carried-forward), using an analysis of covariance model with change in HbA1c from baseline to endpoint as the response variable and treatment, TZD stratum, country, and baseline HbA1c as explanatory variables.

Results: Approximately 95% (157/165) of the subjects were being treated with a TZD and metformin. At endpoint, exenatide reduced HbA1c significantly more than placebo (-0.84% [SE 0.20] vs. -0.10% [0.23], p<0.001; mean treatment difference, -0.74; 95% CI: -1.06% to -0.41%). Reduction in mean fasting glucose was also significantly greater with exenatide (-0.65 mmol/L [SE 0.46] vs. +0.37 mmol/L [0.52], p=0.009). More subjects achieved HbA1c targets with exenatide (HbA1c ≤7.0%: 49% vs. 37%, p=NS; HbA1c ≤6.5%: 34% vs. 13%, p=0.004). Mean reductions in body weight were -1.4 [SE 0.6] kg with exenatide and -0.8 [0.7] kg with placebo; the between-treatment difference was not significant. Exenatide-treated subjects demonstrated a higher homeostasis model assessment of beta-cell function (HOMA-B index, geometric mean ratio of endpoint to baseline, 1.08 [0.12] vs. 0.84 [0.11]; p=0.009).

Conclusion: Adverse events were similar to those previously reported with exenatide with more gastrointestinal symptoms compared to placebo and a low risk of hypoglycaemia. Exenatide added to a TZD, with or without metformin, significantly improved HOMA-B glycemic control compared with placebo.

Supported by: Eli Lilly and Company and Amylin Pharmaceuticals, Inc.

Liraglutide treatment provides greater weight loss with improved glycemic control than sitagliptin, both combined with metformin.

Background and aims: Many standard diabetes treatments are associated with weight gain. Recently, incretin-based therapies have become available to regulate blood glucose through unique and potentially complementary mechanisms. The objective of this study was to investigate the impact of >3% weight reduction on the decrease in HbA1c with liraglutide 1.2 mg (n=215), liraglutide 1.8 mg (n=214) and sitagliptin (n=215).

Results: This analysis demonstrated that treatment with liraglutide 1.2 mg and 1.8 mg led to significantly more patients losing >3% body weight (BW) than sitagliptin (51% [1.8 mg: p=0.0001] vs. 21%). Also, weight reductions in the >3% BW change group were significantly greater for liraglutide 1.2 and 1.8 mg than sitagliptin (-5.75 kg and -6.30 kg vs. -5.3 kg, respectively), while weight changes in the ≤3% BW change group were 0.02 kg, -0.17 kg and -0.38 kg, respectively for liraglutide 1.2 mg, liraglutide 1.8 mg, and sitagliptin. Weight loss categories compared with sitagliptin.

Conclusion: This analysis demonstrated that treatment with liraglutide 1.2 mg and 1.8 mg led to significantly more patients losing >3% body weight (BW) than sitagliptin (51% [1.8 mg: p=0.0001] vs. 21%). Also, weight reductions in the >3% BW change group were significantly greater for liraglutide 1.2 and 1.8 mg than sitagliptin (-5.75 kg and -6.30 kg vs. -5.3 kg, respectively), while weight changes in the ≤3% BW change group were 0.02 kg, -0.17 kg and -0.38 kg, respectively for liraglutide 1.2 mg, liraglutide 1.8 mg, and sitagliptin. Weight loss categories compared with sitagliptin.

Supported by: Novo Nordisk
impact on eating habits and therefore caloric intake; our data explore whether these symptoms alone explain weight loss in patients taking liraglutide.

Materials and methods: This meta-analysis pools data from 6 phase 3 trials conducted in patients (n=2783) with T2DM treated with once-daily liraglutide or placebo for 26 weeks. Our aim was to explore the relationship between weight reduction and the occurrence of NVD. Changes in weight (kg) from baseline were analysed in patients with or without NVD in the different treatment arms using ANCOVA. The analysis included randomised treatment effect, previous anti-diabetes treatment effect, interaction between treatment and NVD, and correction for baseline body weight as covariates.

Results: Weight decrease from baseline to 26 weeks was significant for all groups, except those patients without NVD who were randomised to placebo, and numerical, but non-significant differences in weight loss were seen for the individual liraglutide doses (1.2 vs 1.8 mg) (Figure). The majority of patients taking liraglutide lost weight without NVD (75%). NVD symptoms were reported by 29%, 28% and 10% of patients treated with 1.8 mg liraglutide, 1.2 mg liraglutide and placebo, respectively. Symptoms were generally transient, whereas the weight-loss effect was sustained throughout the studies. No overall interaction was found between the effect of treatment and presence of NVD (p=0.26); however, patients with NVD lost more weight than those without (p<0.0001 and p=0.0365) for liraglutide 1.8 mg and 1.2 mg, respectively.

Conclusion: Over 2/3 of patients included in the meta-analysis lost significant amounts of weight with liraglutide without experiencing nausea, vomiting or diarrhoea. Weight loss occurs regardless of NVD but is greater in those patients with NVD then in those without NVD.

836

Meta-analysis of the efficacy of GLP-1R agonists and DPP-4 inhibitors for treatment of type 2 diabetes mellitus

V.R. Aroda, R.R. Henry, J. Han, W. Huang, Y. Peters, T. Darlow, B.J. Hoogwerf

1 MedStar Clinical Research Center, Hayttsville, University of California at San Diego, Amylin Pharmaceuticals, Inc., San Diego, Eli Lilly & Co., Indianapolis, IMS Health, Watertown, IMS Health, Falls Church, USA.

Background and aims: The number of incretin-based therapies (glucagonlike peptide 1 receptor [GLP-1R] agonists and dipeptidyl peptidase 4 [DPP-4] inhibitors) and the amount of clinical data on their efficacy for treatment of type 2 diabetes mellitus (T2DM) are rapidly increasing. The aim of this meta-analysis was to summarize changes in HbA1c, fasting glucose (FG), and weight for approved or late-stage GLP-1R agonists or DPP-4 inhibitors in studies published or presented at major scientific meetings before Dec 31, 2009.

Materials and methods: Medline, Embase, Biosis, and 2009 ADA and EASD abstract databases were searched for multiple terms including GLP-1, DPP-4, and individual drug names (exenatide [weekly-Ex QW; twice daily-Ex BID], liraglutide, alogliptin, saxagliptin, sitagliptin, vildagliptin). A database of search results was assessed by independent reviewers. Random effects meta-analysis models of the final studies for each therapy examined HbA1c, FG, and weight data.

Results: Reviewers identified 219 unique clinical studies in patients with T2DM. Of these, 63 were randomized controlled clinical trials of 12 to 52 weeks duration with the primary endpoint of change from baseline in HbA1c. The highest maintenance doses of GLP-1R agonists reduced HbA1c to a greater extent than the highest maintenance doses of DPP-4 inhibitors. Ex QW and liraglutide treatments resulted in the greatest mean reductions in FG, whereas lesser mean reductions in FG were observed for Ex BID and DPP-4 inhibitors. Mean weight loss (>2.0 kg) was observed with GLP-1R agonists but not DPP-4 inhibitors. Limitations of the analysis include high inter-trial variation due to differences in amount of data, computation, blinding, comparators, and background therapy.

837

Risk of cardiovascular events in patients with type 2 diabetes treated with exenatide or other glucose-lowering therapies: a retrospective analysis of the LifeLinkTM database

1 Medical Research, Amylin Pharmaceuticals, San Diego, Eli Lilly & Co., Indianapolis, IMS Health, Watertown, IMS Health, Falls Church, USA.

Background and aims: Studies of agents that reduce hyperglycemia in patients with type 2 diabetes have shown differing effects on cardiovascular (CV) outcomes. Glucose-lowering therapies have been associated with increased risk, decreased risk, or neutral risk for CV events and/or mortality. The primary study objective was to assess the relative incidence rate of first CV events among patients with type 2 diabetes prescribed exenatide BID, a GLP-1 receptor agonist, compared to patients treated with glucose-lowering agent(s) other than exenatide (non-Ex). Small incretin therapies significantly reduced HbA1c and FG from baseline. Treatment with GLP-1R agonists appeared to be associated with further reductions in HbA1c, FG, and body weight than were achieved with DPP-4 inhibitors. Further investigation of differences in efficacy between the GLP-1R agonists is warranted.

Conclusion: All incretin therapies significantly reduced HbA1c and FG from baseline. Treatment with GLP-1R agonists appeared to be associated with further reductions in HbA1c, FG, and body weight than were achieved with DPP-4 inhibitors. Further investigation of differences in efficacy between the GLP-1R agonists is warranted.

Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly & Co.
PS 75 Long acting GLP-1 agonists

Taspoglutide, a once-weekly human GLP-1 analogue, is superior to Sitagliptin in type 2 diabetes: the T-emerge 4 Trial

J.-L. Chiasson1, A. Forti1, A. Mosca1, A. Kerken1, M. Boldrin1, R. Balena2, M. Boldrin3, R. Balena4

1Université de Montréal, Research Centre - CHUM, Montreal, Canada
2Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
3Universidade Federal do Ceará, Fortaleza, Brazil
4International Diabetes Center, Minneapolis, USA
5Roche Pharmaceuticals, Nutley, USA
6E. Hoffmann-La Roche, Basel, Switzerland

Background and aims: This trial compared taspoglutide, a once-weekly human GLP-1 analogue undergoing Phase 3 clinical trials, with sitagliptin and placebo in adult patients (pts) with type 2 diabetes (T2DM) inadequately controlled on metformin.

Materials and methods: In this double-blinded, 24-wk study, 666 adult pts with an A1c between 7%-10% were randomized (2:2:2:1) to subcutaneous taspoglutide 10 mg weekly (Taspo10), taspoglutide 20 mg weekly (Taspo20; titrated after 4 wks of 10 mg), sitagliptin 100 mg OD orally (SIT), or placebo (PL). The primary endpoint was change from baseline in A1c at week 24 using the intent-to-treatment population. Superiority of Taspo10 and Taspo20 with PL and non-inferiority (NI) with SIT were tested. If NI with sitagliptin was shown (using 2 sided 95% CI difference and NI margin of ≤0.3), then superiority was tested under closed test procedure.

Results: Baseline characteristics were similar across the groups; average age was 56 yrs, A1c 8.0%, body mass index 32 kg/m², and duration of T2D 6 yrs. Taspo10 and Taspo20, relative to SIT and PL, significantly reduced LS mean (SE) A1c (-1.23% [0.06], -1.30% [0.06], -0.89% [0.06], and -0.10% [0.08], respectively), body weight (Fig), and LS mean (SE) FPG (-2.16 [0.14], -2.33 [0.14], -1.35 [0.14], and -0.07 [0.20] mmol/l, respectively). Both Taspo10 and Taspo20 were superior to SIT and PL for all 3 parameters. Target A1c of ≤7% was achieved by 68%, 72%, 55%, and 18% of pts receiving Taspo10, Taspo20, SIT, and PL, respectively. Gastrointestinal (GI) complaints were the most frequent adverse events and were reported in more pts receiving Taspo than SIT. GI events with Taspo were mostly mild and moderate in severity and transient in most pts; the withdrawal rate was 15%, 10%, 0.5%, and 1% of pts on Taspo10, Taspo20, SIT, and PL, respectively.

Conclusion: Once-weekly Taspoglutide provided superior glycemic control and weight loss compared with SIT, while SIT had a lower incidence of GI adverse events. (NCT00754928)

Taspoglutide reduces body weight significantly more than sitagliptin

Supported by: Roche

839

Taspoglutide, a once-weekly human GLP-1 analog, as monotherapy significantly lowers HbA1c and body weight in patients with type 2 diabetes: results from the T-emerge 1 phase 3 trial

I. Raz1, V.A. Fonseca2, M.S. Kipnes1, L. Durrwell1, J. Hoekstra1, M. Boldrin1, R. Balena2

1Hadassah Ein Kerem Hospital, Jerusalem, Israel
2Tulane University, New Orleans, USA
3DGD Research/Cetero Research, San Antonio, USA
4E. Hoffmann-La Roche, Basel, Switzerland
5National Clinical Research, Richmond, USA
6Roche Pharmaceuticals, Nutley, USA

Background and aims: Taspoglutide is a once-weekly human GLP-1 analog in Phase 3 clinical trials for T2D. This was a randomized, double-blind, placebo-controlled trial of taspoglutide monotherapy in drug-naïve patients.

Materials and methods: Adults (n=373) uncontrolled on diet and exercise with HbA1c between ≥6.5% and ≤10% were randomized 1:1:1 to subcutaneous taspoglutide 10 mg weekly (Taspo10), taspoglutide 20 mg weekly (Taspo20; titrated after 4 wks of Taspo10), or placebo (PL) for 24 weeks. The primary endpoint was the absolute change from baseline in HbA1c (%) after 24 weeks.

Results: Patient demographics were similar among the 3 groups; ~63% were women, mean age 54 yrs, body mass index 32 kg/m², mean HbA1c was 7.6% and duration of T2D ~2 yrs. Primary efficacy results at week 24 in the intent-to-treat population (ITT), using last observation carried forward (LOCF) are shown in the Table. Reductions from baseline in HbA1c and FPG were significantly greater with Taspo10 and Taspo20 than with PL. Target HbA1c of ≤6.5% was achieved by 59.8% (95% confidence interval [CI], 50.1-69.0), 66.1% (95% CI, 57.2-74.3), and 17.4% (95% CI, 11.0-25.6) in the Taspo10, Taspo20, and PL groups, respectively. Reduction in body weight in the Taspo20 group was significantly greater than in PL (Table). The most frequently reported adverse events were nausea and vomiting, occurring at a greater incidence in the Taspo10 and Taspo20 groups than PL. Withdrawals due to gastrointestinal adverse events occurred in 5.2%, 7.8% and 0.8% of patients in the Taspo10, Taspo20, and PL groups, respectively.

Conclusion: Once-weekly taspoglutide as monotherapy in drug-naïve patients with low baseline HbA1c, significantly improved glycemic control, reduced body weight, and was well tolerated. (NCT00744926)

840

Taspoglutide, once-weekly human GLP-1 analogue, compared to BID Exenatide improves glucose tolerance and insulin secretion in patients with type 2 diabetes: T-emerge 2 meal tolerance test

R. Ratner3, J. Rosenstock1, B. Balas1, B. Charbonnel2, G.B. Bolli4, M. Boldrin1, R. Balena1

1Medstar Research Institute, Hyattsville, USA
2Dallas Diabetes and Endocrine Center at Medical City, Dallas, USA
3Hoffmann-La Roche, Basel, Switzerland
4University of Nantes, France
5University of Perugia, Italy
6Roche Pharmaceuticals, Nutley, USA

Background and aims: T-emerge 2 was a randomized, open-label, 24-week trial comparing subcutaneous taspoglutide 10 mg weekly (Taspo10), taspoglutide 20 mg weekly (Taspo20; titrated after 4 wks of Taspo10), with exenatide 10 mcg BID (Exe; after 4 weeks of Exe 5 mcg) in patients inadequately controlled on metformin, a thiazolidinedione, or both. T-emerge 2 demon-
strated that once-weekly Taspo provided better glycemic control than Exe. This report focuses on a subset of T-merge 2 participants undergoing a standardized meal comparing Taspo to Exe which has been previously shown to lower postprandial glucose.

Materials and methods: Meal tolerance tests (MTT) were performed at baseline and at week 24 in a subset of 10 Taspo, 10 Ex BID and Exe patients (n=42, 39, and 67, respectively). Blood samples for glucose, insulin, glucagon, and C-peptide were obtained before and after (30, 60, 90, 120, and 180 min) ingestion of a standardized liquid meal.

Results: The 2-h postprandial, mean_AUC glucagon and AUC glucagon glucose during the MTT was reduced to a similar extent in all groups and the time profile of the postprandial glucose showed a similar pattern. Taspo10 and Taspo20 significantly increased insulin from baseline (both mean and AUC) while the increase in insulin from baseline was not significant for Exe (Table). Although changes from baseline in C-peptide were not significant within any treatment group, the mean change from baseline (both mean_AUC C-peptide) was significantly increased in Taspo10 vs. Exe. Mean glucagon showed significant decreases in all groups (Table).

Conclusion: Tasgoptide and Exe improved glucose tolerance and reduced glucagon responses to a similar extent while tasgoptide alone significantly improved insulin secretion from baseline in patients with T2DM.

Supported by: Roche

841

Disease progression modelling to quantify the effects of exenatide twice daily and once weekly formulations on HbA₁c in patients with type 2 diabetes

Exenatide, a GLP-1 receptor agonist, is given twice daily (Ex BID) and indicated for patients with type 2 diabetes; and a once weekly (Ex QW) formulation is under development. The purpose of this analysis was to implement a population disease progression pharmacodynamic modeling approach to quantify the effects of demographic, clinical, and formulation characteristics on HbA₁c and to examine the effects of exenatide exposure on HbA₁c when transitioning patients (PT) from the Ex BID formulation to Ex QW. Clinical data was pooled from: (a) A Ex BID Phase 3 trials in PT treated with metformin (MET) and/or a sulfonylurea (SU); (b) 1 Ex QW Phase 2 trial in PT treated with MET and/or Diet and Exercise (DE); and (c) 1 comparative Phase 3 trial where PT treated with MET, SU, thiazolidinedione (TZD), and/or DE, were initially randomised to Ex BID or Ex QW. Patients on Ex BID transitioned to Ex QW. The data set included HbA₁c measurements from 1272 exenatide and 496 placebo PT for up to 52 wk. A disease progression model was constructed using nonlinear mixed effects modeling for repeated measures data to describe the natural HbA₁c time course, placebo effects, exenatide effects, and the effects of patient and formulation characteristics on HbA₁c. The placebo and drug effects on HbA₁c were calculated from the estimated model parameters. The estimated baseline HbA₁c was 8.4% for the typical patient (100 kg, male, 55 y; no concomitant MET, TZD, or SU therapy). No significant differences in baseline HbA₁c were detected after concomitant administration with MET or SU. The baseline HbA₁c value was reduced by 0.44% (0.12, 0.69) for PT administered TZD. The placebo effect translated to a mean absolute reduction of 0.3% at 8 wk, and returned to baseline by approximately 30 wk. Mean (95% CI) steady-state HbA₁c levels were reduced by 0.8% (0.7, 0.9) and 1.2% (1.0, 1.5) for 5 g and 10 μg Ex BID, respectively, and reduced by 1.4% (0.7, 2.8) for a 2 mg Ex QW dose. Patients who transitioned from 10 mg Ex BID to 2 mg Ex QW demonstrated an additional 0.2% response to Ex QW administration, demonstrating a clinical advantage of prolonged exenatide exposure.

Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly & Co.

Diabetologia (2010) 53:S1–S556

S335

Background and aims: Treatment with the GLP-1 receptor agonist exenatide improved glycaemic control and weight loss in patients with type 2 diabetes. This 24-week, randomised, open-label, comparator-controlled study compared treatment with exenatide once weekly (Ex QW; 2 mg) to exenatide twice daily (Ex BID; 10 mcg).

Materials and methods: The study was conducted in 252 intent-to-treat patients with type 2 diabetes (baseline [mean±SD]: HbA1c 8.4±1.2%, fasting plasma glucose [FPG] 9.5±2.6 mmol/L, weight 96±20 kg). Patients were drug-naïve (18.7%) or treated with one (46.8%) or a combination (34.5%) of oral antidiabetic medications.

Results: Over 24 weeks of therapy, Ex QW resulted in significantly greater decreases from baseline (LS mean±SE) versus Ex BID in HbA1c (-1.6±0.1% [Ex QW] versus -0.9±0.1% [Ex BID]; P=0.0001) and FPG (1.9±0.3 mmol/L [Ex QW] versus -0.7±0.3 mmol/L [Ex BID]; adjusted P=0.0008). Improvements in HbA1c were consistently observed across different background antidiabetic therapies. A significantly greater percentage of Ex QW patients (58.1%) achieved the HbA1c target of <7% compared to Ex BID patients (30.1%; adjusted P<0.0001). A total of 41.1% of Ex QW patients achieved the HbA1c target of ≤6.5% compared to 16.3% Ex BID patients (P=0.0001). Progressive reductions in mean body weight were observed in both treatment groups (change from baseline to Week 24 (LS mean±SE): -2.3±0.4 kg [Ex QW]; -1.4±0.4 kg [Ex BID]; not significant). A total of 71% of Ex QW patients and 51% of Ex BID patients had improvements in both body weight and HbA1c after 24 weeks of therapy. Reductions in sitting systolic blood pressure from baseline to Week 24 were observed with Ex QW (LS mean [95% CI]: -2.9 [-5.2,-0.7] mm Hg) and Ex BID (-1.2 [-3.5, 1.2] mm Hg). Ex QW and Ex BID were well tolerated. Nausea, the most frequent adverse event, occurred less frequently with Ex QW (14%) than with Ex BID (35%) and was predominantly transient and mild or moderate in intensity. Injection-site reactions were infrequent and generally mild in intensity, but occurred more often with Ex QW compared to Ex BID. No major hypoglycaemia occurred. Minor hypoglycaemia was infrequent and occurred only in patients using a concomitant sulphonylurea. No change in mean calcitonin concentrations was observed during the study. Pancreatic-amylose and lipase concentrations were variable, both pre- and postbaseline, and changes in these enzymes were not predictive of gastrointestinal adverse events.

Conclusion: Continuous exenatide exposure via Ex QW therapy resulted in superior glycaemic control with fewer gastrointestinal adverse events compared to Ex BID in patients with type 2 diabetes. Both groups lost weight.

845

Treatment with LY2189265 (GLP-1 analogue) causes larger decreases in postprandial glucose excursion in Hispanics compared to Non-Hispanic Caucasians with uncontrolled type 2 diabetes: an EGO Study exploratory analysis

E.J. Bastyr, J. Noriega, E. Bottos, J. Shu, L.C. Glass; 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, 3Indiana University School of Medicine, Indianapolis, 13Statprobe, Ann Arbor, USA.

Background and aims: The Hispanic population is severely affected by the increasing incidence of type 2 diabetes mellitus, but studies of the differential responses to drug therapy in this group have received little attention. The objective of this exploratory analysis of the EGO study is to examine differences in glycemic control between Hispanic (H) and Non-Hispanic (NH) Caucasian populations in response to treatment with the long-acting glucagon-like peptide-1 (GLP-1) analogue LY2189265 (LY).

Materials and methods: Subjects were randomized to once-weekly subcutaneous injections of either placebo or 1 or 3 LY dose regimens: 1) 1.0 mg for 16 weeks; 2) 0.5 mg for 4 weeks then titrated to 1.0 mg for 12 weeks; or 3) 1.0 mg for 4 weeks then titrated to 2.0 mg for 12 weeks. The primary metabolic measure for comparison between the 2 ethnic groups was glycemic control, as measured by HbA1c change from baseline at 16 weeks. Secondary measures were change in 1) fasting blood glucose (FBG); 2) HbA1c (HOMA2%B); and 3) glucose excursion (AUC) response to a solid mixed meal test. Differences between groups were tested using a two-sample T-test and nominal significance level of 0.05 for comparisons.

Results: In all randomized subjects, the H group showed a statistically significantly higher baseline HbA1c compared to the NH group (8.4±1.0%, n=88 vs. 8.1±0.9%, n=150, p=0.006). The 177 patients randomized to LY treatment (62 H and 115 NH) had similar baseline characteristics; however, baseline HbA1c was 8.5±1.0% in H (n=62) compared to 8.2±0.9% in NH (n=114), p=0.078, and baseline postprandial AUC glucose excursion was significantly higher in H compared to NH (12.2±3.9 [mmol/L]•hr, n=60 vs. 10.3±5.3 [mmol/L]•hr, n=112, p=0.007). In response to LY treatment, both groups achieved statistically significant reductions in FBG and HbA1c. The H population experienced a greater reduction in HbA1c compared to NH at endpoint (-1.5±1.0%, n=61 vs. -1.1±0.8%, n=111, p=0.020), but changes in FBG were not significantly different between groups (-2.3±2.8 mmol/L, n=55 H vs. -1.8±2.5 mmol/L, n=92 NH, p=0.253). Changes in HOMA2%B were not significantly different between groups, but there was a 5.6-fold greater decrease over 120 min and compared to placebo treatment) performed at intervals up to 48 hrs post-dose. VRS-859 (120 mmol/kg Q2D or 240 mmol/kg Q4D) or exenatide (infusion pump) was administered to diet induced obese (DIO) mice for 28 days. PK and toxicology of VRS-859 were assessed in mice dosed every other day with up to 50 mg/kg VRS-859 and cynomolgus monkeys dosed weekly with up to 35 mg/kg VRS-859 for 28 days. Clinical pathology, cardiovascular safety, and complete histology were performed in the toxicology studies. T2DM patients are being enrolled in a Phase 1 placebo controlled single ascending dose study of VRS-859. Patient evaluations include safety, tolerability, fasting plasma glucose, glycated albumin, HbA1c, oral glucose tolerance tests, insulin, and antibodies to VRS-859.

Results: Up to 48 hrs after IP VRS-859 dosing (120 mmol/kg), mice maintained a significant improvement in glucose tolerance (AUC0-540 min -53%), while exenatide only demonstrated significant improvement up to 1 hr post-dose. Insulin secretion after IP GTT was also increased up to 48 hrs after IP VRS-859 (120 mmol/kg) administration. There was a dose dependent glucose tolerance noted at 1 hr after dosing 1.2, 12 or 120 mmol/kg VRS-859 (AUC0-120 min -66%, respectively). Correlating plasma levels of VRS-859 with the PD effects suggested that a human plasma level of 200 ng/mL VRS-859 may be sufficient to ensure glycemic control. After 28 days, DIO mice treated with VRS-859 had a significantly decreased body weight (p < 0.01) and fasting blood glucose (p < 0.05) compared to placebo, but exenatide infusion did not cause significant reduction in fasting blood glucose. The no observed adverse effect level of VRS-859 was 50 mg/kg in mice and 35 mg/kg in monkeys. Allometric scaling of the VRS-859 pharmacokinetics indicated a projected human terminal half-life of 139 hrs. Therefore, a 100 mg dose of VRS-859 may provide plasma levels sufficient to ensure glycemic control for one month in humans. Preliminary Phase 1 results including the pharmacokinetics and pharmacodynamics as well as safety and tolerability will also be presented.

Conclusion: VRS-859 provides sustained glycemic control and weight loss. A single subcutaneous dose of VRS-859 may enable glycemic control in a T2DM patient for one month.

844

VRS-859, a monthly dosed glucagon-like peptide-1 (GLP-1) analogue, provides long-term glucose control in mouse models and lacks toxicity in mice and monkeys

Background and aims: VRS-859 is a novel, monthly dosed glucagon-like peptide-1 (GLP-1) analogue, being developed for treatment of type 2 diabetes (T2DM). VRS-859 is a fusion protein containing the GLP-1 analogue, exenatide, and a long hydrophilic tail of natural amino acids, XTEN, which increases the half-life. Mouse studies were performed to determine the relationship between the pharmacokinetics (PK) and pharmacodynamics (PD) of VRS-859. Toxicology studies were performed in mice and monkeys to ensure adequate safety for the proposedhuman dose. Single subcutaneous doses of VRS-859 are being evaluated in a placebo controlled blinded study of patients with T2DM.

Materials and methods: Normal mice were treated with VRS-859 (1.2 to 120 nmol/kg) or exenatide and assessed for glycemic control and insulin secretion after intraperitoneal glucose tolerance test (IP GTT); AUC0-120 measured
The bone anabolic action of GLP-1 and exendin-4 OB was obtained in adult Wistar rats by chronic
treatment with type 2 diabetes mellitus.

Conclusion: In conclusion, in response to treatment with LY, reductions in HbA1c were significantly greater in H compared to NH. This greater decrease in HbA1c were significantly greater in H compared to NH. More studies are warranted to prospectively evaluate differential effects of LY treatment in the Hispanic population with type 2 diabetes mellitus.

Materials and methods: OB was obtained in adult Wistar rats by chronic feeding during five weeks with a cafeteria diet, consisting in standard chow supplemented with cookies, liver paste, bacon, and whole milk containing sucrose (335 g/l) and 10 g/l of a mineral and vitamin complex (65% energy from lipids). The N group was fed with standard chow and water ad libitum (8% energy as fat). Although weight was not different between N and OB rats, the OB model showed higher plasma glucose (78±2 mg/dl, n=12), triglycerides (153±13 mg/dl, n=11) and cholesterol (92±4 mg/dl, n=12) than those in N (overall mean: 37±5% Δ N-rats, p<0.01). No significant differences with N were detected in plasma insulin or GLP-1 by RIA. OB rats were 3-4 days continuously treated –osmotic pump- with saline (control), GLP-1 (0.86 nmol/kg/h) or Ex-4 (0.1 nmol/kg/h). In fed conditions, blood samples were taken before (basal) and by the end of the treatment for plasma measurements; then, rats were sacrificed and the femora, tibiae and L1-L4 vertebrae were collected. In the tibia, after total RNA extraction, osteocalcin (OC), osteoprotegerin (OPG) and RANK ligand (RANKL) gene expression -by RT-PCR- was determined; femoral and lumbar spine bone mineral densities (BMD) were also measured (Lunar Piximus).

Results: In the OB group, GLP-1 lowered the higher than normal triglycerides value (-33±6% Δ OB-basal, p<0.05, n=6 rats), without modifying that of cholesterol; however, Ex-4 induced a reduction in both triglycerides (-44±5% Δ OB-basal, p<0.01, n=6) and cholesterol (-19±3% Δ OB-basal, p<0.01, n=6). While plasma glucose, creatinin and insulin were not apparently different in any group or condition, calcium in OB was slightly higher (p<0.01) than that in N, without differences in the phosphates values; GLP-1 induced a decrease in the two latter parameters (overall mean: -8±2% Δ OB-basal, p<0.01, n=6) while Ex-4 reduced only the phosphate levels (-17±3% Δ OB-basal, p<0.01, n=6). In OB rats (n=12), BMD in femur (0.14±0.03 g/cm³) and lumbar spine (0.12±0.03 g/cm³) was lower (overall mean: -19±3% Δ N, p<0.001) than those in N-control rats (n=6) and, after all, GLP-1 or Ex-4 exerted a normalizing effect (overall mean: 94±1% N, p<0.001). In the tibia of OB rats, OC mRNA level was equal to that in N, and both GLP-1 and Ex-4 induced an increase (overall mean: 2.23±0.21 times OB-control, p<0.05). In OB rats, bone OPG/RANKL mRNA ratio was 0.39, a value below that in N (considered as unity), indicating a high resorptive activity in this model; treatment with either GLP-1 or Ex-4 increased this ratio to values close to normal (0.76 and 0.80, respectively).

Conclusion: These data suggest that both GLP-1 and Ex-4 not only could correct the high lipid levels present in obese state, but also to normalize its metabolic effects in vivo.

Supported by: FIS, CIBERDEM

847

The GLP-1 analogue liraglutide activates brainstem and hypothalamic neurons involved in appetite regulation

K. Raun1, N. Vrang2, J. Jelsing3, M. Tang-Christiansen1, K. Dahl1, L. Bjørre Knudsen1; 1Novo Nordisk, Måløv, 2Gubra, Frederiksborg, Denmark.

Background and aims: The glucagon-like peptide-1 (GLP-1) analogue liraglutide is emerging as an important drug for the treatment of diabetes.
4-week off-drug period the DI was, compared to pre-treatment, higher with exenatide, and reduced with insulin glargine (+1.43±0.78 and -0.99±0.65, respectively; P=0.028). These findings are in contrast to the results following the 1-year treatment period, after which the DI did not show a sustained effect after the 4-week washout with either exenatide or insulin glargine. 2nd-phase glucose-stimulated, and combined glucose and arginine-stimulated C-peptide secretion did not show any significant between-group differences.

Conclusion: Exenatide and insulin glargine sustained HbA1C over 3-year treatment, while exenatide significantly reduced, and insulin glargine increased body weight. 1st-phase insulin secretion was sustained following a 4-week off-drug period, after 3-year treatment with Ex. This improvement cannot only be explained by glucose lowering.

Supported by: Amylin Pharmaceuticals, Inc. & Eli Lilly and Company

849

Molecular mechanism of DPP-IV inhibitor vildagliptin effect on pancreatic beta cell preservation in diabetic mice: evidence for anti-oxidative and ER stress mechanism

Diabetes and Endocrine Division, Kawasaki Medical School, Kurashiki, Japan.

Background and aims: DPP-IV inhibitors are known to produce several biological actions including glucose-dependent insulin secretion, increase pancreatic beta cell mass by stimulating cell proliferation and inhibit apoptosis. The aim of this study is to assess the molecular mechanism for preventive effect of vildagliptin on beta cell damage in diabetic animal model.

Materials and methods: Eight-week-old male KK-A/JcIc mice received vildagliptin (VILDA) (50mg/kg once daily orally) or vehicle (control) for 4 weeks (n=5). Body weight (BW), food intake, fastest blood glucose (FBG), fasted insulin (FIRI), TG and NEFA were measured at 8, 10 and 12 weeks of age. Intraperitoneal insulin tolerance test (ipITT:1 IU/kg BW), oral glucose tolerance test (OGTT:1 g/kg BW) and glucose stimulated insulin secretion (GSIS) from isolated pancreatic islet was performed at 12 weeks. The beta cell mass and cell proliferation were assessed by histological analysis including PCNA immunostaining of the islet tissue. Gene expressions specific for the core area of pancreatic islet were analyzed by Laser Capture Microdissection method and real time RT-PCR. Primer pairs encoding genes associated with pancreatic hormones, cell proliferation, apoptosis, cell cycle, and oxidative/endoplasmic reticulum (ER) stress were prepared, and real-time RT-PCR with Sybr Green was applied.

Results: BW, food intake, FBG, FIRI, HOMA-IR, TG, NEFA, and ipITT were not different between the control and VILDA-treated groups. On the other hand, VILDA ameliorated glucose tolerance analyzed by OGTT, and a significantly higher plasma insulin response to glucose challenge was observed in VILDA groups compared with the control group. Furthermore, GSIS with 16.7mM glucose was more significantly facilitated in VILDA group than in the control group (2.4±0.72 vs. 1.57±0.42 mg/ml/15min, p<0.05). The pancreatic beta cell mass was greater in VILDA-treated mice than in the control mice (5.0±0.9 vs. 2.9±0.9mg, p<0.01, n=5 for each). The mRNA levels of Nkx2.2, Pax4, ERK1 and CyclinD associated with cell differentiation/proliferation were significantly higher in VILDA-treated mice than in the control mice. CAD and caspase3 mRNA levels were significantly decreased by VILDA treatment. VILDA significantly down-regulated XBP-1 gene expression related with ER stress, and up-regulated GSHpx gene expression related with anti-oxidative stress. The PCNA-positive cell ratio in the islet was increased significantly by VILDA treatment. VILDA significantly down-regulated XBP-1 gene expression related with ER stress, and up-regulated GSHpx gene expression related with anti-oxidative stress. The PCNA-positive cell ratio in the islet was increased significantly by VILDA treatment. VILDA significantly down-regulated XBP-1 gene expression related with ER stress, and up-regulated GSHpx gene expression related with anti-oxidative stress.

Conclusion: Vildagliptin preserves the pancreatic beta cell function and cell mass in diabetic KK-A/Jc mice. The present results suggest that the effect of vildagliptin is resulted not only from the direct action on the cell kinetics regulation but also from the suppression of oxidative and/or ER stress mechanism.
850

Restoration of insulin release with lixisenatide in patients with type 2 diabetes

R.H.A. Becker1, P. Ruus1, Y.-H. Liu1, C. Kapitza1; 1Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, 2Profil Institut für Stoffwechselforschung GmbH, Neuss, Germany.

Background and aims: Glucagon-like peptide (GLP-1) receptor agonists improve post-meal blood glucose levels in subjects with type 2 diabetes by restoring insulin release. We assessed the pharmacokinetics and pharmacodynamics of lixisenatide, a new GLP-1 receptor agonist.

Materials and methods: A two-period, two-sequence, single-centre, single-dose, cross-over study was performed. Twenty subjects with type 2 diabetes (treated with metformin or diet and exercise alone) with mean HbA1c of 6.8% (range = 6.2-8.0%) and mean BMI of 30 kg/m2 (range = 26-35 kg/m2) received single s.c. doses of 20 μg lixisenatide once-daily (intended therapeutic dose) or placebo injection 2 h prior to an intravenous glucose challenge (IVG; 0.3 g/kg body weight over 30 s). Baseline blood glucose was lowered to 5.5 mmol/L by fasting or insulin infusion (4 subjects) 30 min before the IVG. First (AUC10-120min) and second (AUC10-120min) phase insulin secretion, plus C-peptide and glucagon release and glucose disposition rate (Kgglu) were assessed and lixisenatide exposure was measured over 12 h.

Results: The maximum lixisenatide plasma concentration (Cmax) was 84 pg/mL (coefficient of variation [CV], 25%), with a mean time to maximum concentration of 2 h (range 1-4 h). Lixisenatide 20 μg s.c. enhanced first-phase insulin secretion to IVG by 2.8-fold relative to placebo (90% CI 2.5-3.1), and second-phase secretion by 1.6-fold (90% CI 1.4-1.7) (Figure); correspondingly, changes were seen in insulin (1st-phase: 6.6-fold; 90% CI 5.0-8.7 and 2nd-phase: 3.0-fold; 90% CI 2.7-3.3) and C-peptide concentrations and glucose disposition (accelerated by 1.8-fold; 90% CI 1.6-1.9). Lixisenatide had little effect on basal insulin and glucose levels and did not affect glucagon suppression. Mild-to-moderate gastrointestinal symptoms (e.g. nausea and vomiting) were reported by two subjects following lixisenatide administration and one following placebo.

Conclusion: Lixisenatide 20 μg s.c. restored insulin release and accelerated glucose disposition following an IVG in subjects with type 2 diabetes, confirming this action as the basis of its control of postprandial blood glucose levels.

Supported by: sanofi-aventis

851

Liraglutide improves two indicators of beta cell function - HOMA-B and proinsulin:insulin ratio - in a meta-analysis of 6 clinical trials

D.R. Matthews1, T. Vilsbøll1, J.-P. Courrèges5, M. Zychna1, A. Falahati1, B.W. Bode2; 1Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, 2Profil Institut für Stoffwechselforschung GmbH, Neuss, Germany.

Background and aims: The once-daily human GLP-1 analogue liraglutide reduced HbA1c by 1.0-1.5% during the phase 3 development programme. A meta-analysis of 6 large phase 3 trials was conducted to investigate if HbA1c reductions were associated with improvement in HOMA-B, a surrogate marker of beta-cell function based on fasting insulin and glucose levels, and proinsulin-to-insulin ratio. Failing beta-cells secrete an abnormally high amount of proinsulin relative to insulin, reflecting incomplete or defective proinsulin processing.

Materials and methods: The effect of 26 weeks of treatment with liraglutide (1.2 mg/1.8 mg OD), rosiglitazone (4 mg OD), glimepiride (4 mg/8 mg OD), exenatide (10 μg BID) or placebo on HOMA-B and proinsulin:insulin ratio was examined using an ANCOVA model adjusted for treatment, trial, prior treatment and baseline HOMA-B and proinsulin:insulin ratio.

Results: A significant increase from baseline in HOMA-B was observed with liraglutide and with glimepiride (both p<0.0001). The increase in HOMA-B was significantly greater with liraglutide 1.8 mg vs. exenatide, rosiglitazone and placebo (Table). Significant decreases from baseline in proinsulin:insulin ratio were observed with liraglutide (p<0.0001) and exenatide (p<0.0001). Decreases in proinsulin:insulin ratio were significantly greater with liraglutide vs. rosiglitazone, glimepiride and placebo (Table). Liraglutide and glimepiride increased HOMA-B to a similar extent. However, these two agents can be differentiated on the basis of their effects on proinsulin:insulin ratio. Liraglutide stimulates insulin secretion in a glucose dependent manner while glimepiride produces a continuous, glucose-independent signal, potentially resulting in constant stress on beta-cells.

Conclusion: Liraglutide improves HOMA-B and proinsulin:insulin ratio, two indicators of beta-cell function. Since beta-cell function is a primary determinant of type 2 diabetes progression, it is possible that liraglutide may alter the decline in beta-cell function seen in patients with this disease. However, long-term studies will be necessary to confirm this effect.

Mean change in HOMA-B and P/IR from baseline to week 26

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Δ HOMA-B (%)</th>
<th>Δ P/IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide 1.8 mg OD (n=1363)</td>
<td>35.1</td>
<td>-0.08</td>
</tr>
<tr>
<td>Liraglutide 1.2 mg OD (n=896)</td>
<td>31.7</td>
<td>-0.08</td>
</tr>
<tr>
<td>Rosiglitazone 4 mg OD (n=231)</td>
<td>9.5**</td>
<td>-0.01*,††</td>
</tr>
<tr>
<td>Glimepiride 2-4 mg OD (n=490)</td>
<td>31.8</td>
<td>-0.02*,††</td>
</tr>
<tr>
<td>Exenatide 10 μg BID (n=231)</td>
<td>5.7*</td>
<td>-0.10</td>
</tr>
<tr>
<td>Placebo (n=524)</td>
<td>7.4*,†</td>
<td>0.03*,†</td>
</tr>
</tbody>
</table>

*p<0.0001 and †p<0.05 vs. liraglutide 1.8 mg; 1p<0.0001 and ††p<0.001 vs. liraglutide 1.2 mg

Supported by: Novo Nordisk

852

Comparison between exenatide and glimepiride on metabolic control and on insulin resistance in type 2 diabetic patients with metformin therapy

S.A.T. Salavade1, P. Maffioli1, L. Ferrari1, E. Querci1, L. Ciccarelli2, M. Piccinni1, A. D’Angelo1, A.E.G. Cicerò3, G. Derosa1; 1Internal Medicine and Therapeutics, University of Pavia, IRCCS Policlinico S.Matteo, 2Ospedale Pesenti Fenaroli, Bergamo, 3Department of Internal Medicine, RSA Don Leone Porta, Milano, 4Department of Clinical Medicine, Ospedale della Carità, Cremona, 5Clinical Medicine and Applied Biotechnology Department, University of Bologna, Italy.

Background and aims: Our study aimed to compare the effect of Exenatide (Ex) vs Glimepiride (Gl) on glycemic control and on insulin resistance related parameters in type 2 diabetic patients taking metformin.

Materials and methods: One hundred and thirty type 2 diabetic patients with uncontrolled type 2 diabetes [glycated hemoglobin (HbA1c > 8 %)] were...
Treatment of type 1 diabetic patients with residual beta cell function with the once-daily glucagon-like peptide-1 analogue liraglutide

U. Kielgast, J. Holst, S. Madsbad; 1Department of Endocrinology, Hvidovre University Hospital, Copenhagen, 2Department of Biomedical Sciences, University of Copenhagen, the Panum Institute, Copenhagen, Denmark.

Background and aims: Information about the effects of treatment with GLP-1 receptor analogues in people with type 1 diabetes is sparse. Therefore, we investigated the effect of the once-daily GLP-1 analogue liraglutide on daily insulin doses, 24-hour glucose profile, glycaemic control, weight change and side effects in 853 type 1 diabetic patients with residual beta cell function.

Materials and methods: Eight type 1 diabetic patients with HbA1c < 6.3% (male/female ratio 4/4, mean age 27 ± 2.2 yr, BMI 24.3 ± 1.2 kg/m²), were treated for four weeks with liraglutide (0.6 mg for one week hereafter 1.2 mg at maximum dosage (3000 mg/day) and were taking various different doses (1000-2000 mg/day). The treatment period had a 12 months duration. We evaluated body mass index (BMI), HbA1c, fasting plasma glucose (FPG), post-prandial glucose (PPG), fasting plasma insulin (FPI), Homa index and collected plasma samples of adiponectin (ADN), and tumor necrosis factor-a (TNF-a) at baseline, and after 12 months.

Results: One hundred and eleven patients completed the study (57 in Ex and 54 in Gl group). BMI was significantly reduced by Ex, but not by Gl (from 28.4±1.3 to 26.6±0.9 Kg/m², p< 0.05, and from 26.5±1.4 to 28.2±1.3 Kg/m², ns vs baseline, p< 0.05 vs Ex, respectively). HbA1c was decreased by 1.25±0.06 % (p= 0.01), and by 1.45±0.05 % (p< 0.01); PPG was reduced by 27.6 mg/dl (p< 0.01), and by 45.8 mg/dl (p< 0.01), and by 46.9 mg/dl (p< 0.01), in Ex and Gl group, respectively. FPI was decreased by 5.0±0.6 μU/ml (p< 0.05) in Ex group, and was increased by 1.22±0.9 μU/ml in Gl group (ns vs baseline, p< 0.05 vs Ex). Homa index was increased by 47.9±4.8 % in Ex group, and was not changed in Gl group (p=NS). Two patients completely discontinued treatment 3.7 ± 0.8 yr, and with plasma C-peptide concentration after 1 mg glucagon (p< 0.01), and by 46.9±0.9 μU/ml (p= 0.01), and by 46.9±0.9 μU/ml (p< 0.01), in Ex and Gl group, respectively. ADN increased by 1.5±0.4 μg/ml (p< 0.05), and by 0.8±0.3 μg/ml (ns vs baseline, p< 0.05 vs Ex), in Ex and Gl group, respectively. ADN was increased by 1.5±0.4 μg/ml (p< 0.05), and by 0.8±0.3 μg/ml (ns vs baseline, p< 0.05 vs Ex), in Ex and Gl group, respectively. ADN increase (r=−0.57, p< 0.01), and TNF-a decrease (r=−0.61, p< 0.01).

Conclusion: Both Ex and Gl improved diabetes control when added to metformin, but only Ex improved insulin resistance related-parameters. The ADN increase, and TNF-a reduction seems to be related to weight loss.

Supported by: Hungarian Diabetes Association

PS 77 GLP-1 analogues: safety and monitoring

854

Increased collagen production of human hepatic stellate cells (Ito Cells) induced by Exendin-4 (Exenatide) treatment

G. Firneisz, K. Baghy, K. Kiss, T. Varga, G. Nagyi, I. Kovalsky, A. Somogyi; 12nd Department of Medicine, 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.

Background and aims: There are precautions about the potential for acute pancreatitis in patients taking Exenatide and these concerns were confirmed in experimental animal studies. Provided that a proportion of active glucagon-like peptide-1 (GLP-1) hormone also reaches the hepatic portal tract via the superior mesenteric vein after release form the small intestine we hypothesized that a hepatic effect should also exist even under physiologic conditions. We studied the potential effect of Exenatide on extracellular matrix (ECM) production of hepatic stellate cells (HSCs) that are thought to primarily produce the ECM proteins in the liver. These cells with fibrogenic potential were treated and co-treated with Exenatide and TGF-β1.

Materials and methods: Immortalized human HSC LX-2 cells were cultured at 37 °C atmosphere containing 5% CO2 with DMEM containing 10% FBS. Passages were made after 3-4 days using trypsin-EDTA. Cells were then cultured for 48-hours in FBS-free media that in the treated groups either contained Exendin-4 (cc=200 pg/mL) or TGF-β1 (cc=2ng/mL) or both (co-treatment). After mRNA isolation and RT-PCR Taq Man real-time PCR assays were run in ABI 7000 System and human 18S rRNA was used for normalization. To evaluate the ECM production of HSCs ELISA assay was performed from the culture media using rabbit polyclonal primary antibodies against collagen-I and collagen-III. ECM protein synthesis was also assessed using Western Blots. Immuno-chemistry (αSmooth Muscle Actin) was used to prove the activation of HSCs. All treatments were repeated 3 times and all runs were run in duplicates. Two-tailed t-test was used for statistical analysis.

Results: ECM protein production results measured by ELISA in the culture media are indicated in the following table (* = significantly increased compared to untreated controls, ** = significantly increased compared to TGF-β1 treatment). The collagen-III production of HSCs after Exendin-4 treatment was also assessed by Western blots that confirmed the ELISA results (collagen-I production was more preponderant under TGF-β1 treatment on Western Blot compared to ELISA). The alterations of mRNA expression levels were reflecting the changes observed at protein level (upregulation) although to a less remarkable extent than the degree of change in collagen production.

Conclusion: These data confirm the existence of an incretin mediated entero-hepatic axis. Specifically we intended to uncover the distinct nature of the GLP-1 mimetic Exendin-4 and its effect on Hepatic Stellate Cells with fibrogenic potential. The surprising induction of human HSC collagen-III production by Exendin-4 treatment established a novel path of regulating the ECM production in the liver and urges further clinical trials not only to clarify the pancreatic effects but also with hepatic fibrosis and chronic liver disease endpoints.
855

Liraglutide protects against traumatic brain injury in a mouse model
B. Della Valle1,2, J. Kurzhal1, M. Penkowa1
1Panum Institute, Copenhagen, 2Centre for Medical Parasitology, Dept of Clinical Microbiology, Copenhagen University Hospital, Denmark.

Background and aims: Glucagon-like peptide-1 (GLP-1) analogues are emerging as an important drug class for the treatment of diabetes because they not only lower blood glucose but also body weight. Recently, several articles have pointed to a protective effect of GLP-1 or analogues on the brain and potential efficacy in animal models of stroke, Alzheimer’s, Huntington’s and Parkinson’s disease. However, in some cases the compounds were dosed by the intracerebroventricular route. We here report the effect of liraglutide treatment during traumatic brain injury (TBI) in a mouse model. Liraglutide is a once-daily human GLP-1 analogue, the first to be approved for the treatment of type 2 diabetes (T2D) in Europe and the United States. Our study was designed to evaluate the potential of liraglutide in protecting against neuropathology.

Supported by: Novo Nordisk

856

The GLP-1 analogue liraglutide does not induce pancreatitis in mice, rats or monkeys
A.-M. Molck, L. Madsen, N.C. Berg Nyborg, L. Bjerre Knudsen; Novo Nordisk, Maløv, Denmark.

Background and aims: GLP-1 receptor agonists may be associated with an increased risk of pancreatitis in patients with type 2 diabetes. However the low overall incidence of pancreatitis and a 3-fold increase in pancreatitis rates in diabetes patients makes it difficult to assess if the association is true. Phase 3 studies with liraglutide in 4400 type 2 diabetes patients did not demonstrate a clear association between diabetes treatment and pancreatitis. A mechanism linking GLP-1 receptor activation to pancreatic inflammation has not been forthcoming.

Materials and methods: We report pancreas safety data in mice, rats and monkeys during the non-clinical development programme for liraglutide. Pancreases from mice, rats and cynomolgus monkeys were examined microscopically using standard histopathological techniques. Tissue samples were stained using hematoxylin and eosin, and immunohistochemistry. For mice and monkeys, the tissue samples were also stained by lectin binding to measure the influx of microglial cells.

Results: There were no macroscopic observations of pancreatitis in mice, rats or monkeys. After 2 years treatment, 8 out of 359 male (3 in the control group and 2, 1, 1 in the different liraglutide groups) and 12 out of 354 female mice (0 in the control group and 3, 3, 3 in the liraglutide groups) were diagnosed microscopically with pancreatitis based on histological criteria of inflammatory infiltrates with or without fibrosis and/or loss of exocrine tissue. Pancreatitis was not the cause of death in any of these animals and pancreatitis is seen spontaneously in mice. There were no cases of pancreatitis in 400 male and female rats, after 2 years dosing. Cell proliferation in the exocrine pancreas was not increased in rats dosed with liraglutide for 26 weeks. Neither pancreatitis nor pre-neoplastic proliferative lesions were found in monkeys dosed for 87 weeks, resulting in plasma liraglutide exposure 60-fold higher than that observed in humans at the maximal clinical dose.

Conclusion: In conclusion, liraglutide does not induce pancreatitis in rats or mice dosed for 2 years or in non-human primates dosed for 87 weeks.

 Supported by: Novo Nordisk
Antibodies to exenatide did not cross-react with human GLP-1 or glucagon or alter the efficacy or safety of exenatide

Materials and methods: Antibody titers, and glycemic and safety parameters were frequently sampled in 12 long-term controlled (2225 ITT patients, 12-52 wk duration) and 3 long-term uncontrolled (1538 ITT patients, up to 3 y) exenatide BID (Ex BID) trials and 4 long-term controlled (653 ITT patients, 26-30 wk) exenatide once weekly (Ex QW) trials.

Results: For Ex BID, mean antibody titers peaked between wks 6 and 16, and were reduced by 39.4% and 65.2% at wks 30 and 52, respectively. At wk 30, 37.4% of patients had antibody positive (3% higher titer), and at 3 y, 17% were positive (1% higher titer). Lower titer antibodies had no effect on efficacy as evidenced by comparable reductions in HbA1c at endpoint in controlled trials (-1.0% for both antibody-negative and low-titer subjects). In the small number of patients with higher titers (5%), the impact on efficacy was variable, with the majority experiencing a glycemic response consistent with antibody-negative patients. Similar trends were observed at 1 and 3 y. Other than injection-site reactions, no increased incidence of adverse events was observed with antibodies to exenatide. Cross-reactivity was examined in vitro for a subset of patients (106 antibody-positive patients), and treatment-emergent antibodies to exenatide did not cross-react with human GLP-1 or glucagon. Consistent with Ex BID, patients treated with Ex QW experienced titers that peaked between wks 6 and 16 and subsequently declined, with 56.8% of patients antibody positive (11.8% higher titer) at wk 26-30 and similar consequences on efficacy and safety. Conclusion: Although patients may develop antibodies to exenatide, the titers peak early in treatment and decline thereafter, and are not predictive of safety and efficacy. Importantly, as antibodies to exenatide do not cross-react with the glucoregulatory hormones GLP-1 or glucagon and diminish over time, long-term clinical consequences are unlikely. Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly & Co.

Relevance of sample collection method and specificity for the quantification of GLP-1 in two new ELISA assays for active and total GLP-1

Background and aims: Consistent with the immunogenic properties of protein and peptide pharmaceuticals, patients may develop antibodies to exenatide with exenatide treatment. This analysis characterised the time course and cross-reactivity of antibodies produced against exenatide and effects on efficacy and safety.

Materials and methods: Antibody titers, and glycemic and safety parameters were frequently sampled in 12 long-term controlled (2225 ITT patients, 12-52 wk duration) and 3 long-term uncontrolled (1538 ITT patients, up to 3 y) exenatide BID (Ex BID) trials and 4 long-term controlled (653 ITT patients, 26-30 wk) exenatide once weekly (Ex QW) trials.

Results: For Ex BID, mean antibody titers peaked between wks 6 and 16, and were reduced by 39.4% and 65.2% at wks 30 and 52, respectively. At wk 30, 37.4% of patients had antibody positive (3% higher titer), and at 3 y, 17% were positive (1% higher titer). Lower titer antibodies had no effect on efficacy as evidenced by comparable reductions in HbA1c at endpoint in controlled trials (-1.0% for both antibody-negative and low-titer subjects). In the small number of patients with higher titers (5%), the impact on efficacy was variable, with the majority experiencing a glycemic response consistent with antibody-negative patients. Similar trends were observed at 1 and 3 y. Other than injection-site reactions, no increased incidence of adverse events was observed with antibodies to exenatide. Cross-reactivity was examined in vitro for a subset of patients (106 antibody-positive patients), and treatment-emergent antibodies to exenatide did not cross-react with human GLP-1 or glucagon. Consistent with Ex BID, patients treated with Ex QW experienced titers that peaked between wks 6 and 16 and subsequently declined, with 56.8% of patients antibody positive (11.8% higher titer) at wk 26-30 and similar consequences on efficacy and safety. Conclusion: Although patients may develop antibodies to exenatide, the titers peak early in treatment and decline thereafter, and are not predictive of safety and efficacy. Importantly, as antibodies to exenatide do not cross-react with the glucoregulatory hormones GLP-1 or glucagon and diminish over time, long-term clinical consequences are unlikely. Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly & Co.

Liraglutide: short-lived effect on gastric emptying - long-lasting effects on body-weight

Materials and methods: The present study was designed to test the effect of acute and chronic exposure of liraglutide and exenatide on GE, food intake and body weight. Based on a series of dose-finding studies we identified doses of exenatide (0.01 mg/kg) and liraglutide (0.2 mg/kg) with similar anorectic effects. GE was assessed using a standard acetaminophen release assay. Acetaminophen (40 mg/kg) was administered by gavage 30 min after an intravenous dose of exenatide and liraglutide. Rats were subsequently subcutaneously dosed bi-daily for 14 days after which GE was assessed again 30 min following the final sc injection of compounds.

Results: While both compounds exerted robust acute reductions on GE (area under the curve (µg/ml x min); vehicle 350±4 g, liraglutide 318±5 g, exenatide 303±8; p<0.001 vehicle vs liraglutide, exenatide) the effects on body-weight (vehicle 350±4 g, liraglutide 318±5 g, exenatide 303±8; p<0.001 vehicle vs liraglutide, exenatide) the effects on body-weight were not. These data indicate that regulation of appetite signals in the brain, and not gastric emptying, is the main mechanism for liraglutide induced weight loss. Supported by: Novo Nordisk
PS 78 Incretins and insulin studies

861

Safety and efficacy of using exenatide in combination with insulin in the Association of British Clinical Diabetologists (ABCD) nationwide exenatide audit

B. Jose, R.E.J. Ryder, K.Y. Thong, S. Thozhukat, W. Shafigh, ABCD Nationwide Exenatide Audit Contributors;

1Diabetes, City Hospital, Birmingham, 2Diabetes, Hull Royal Infirmary, Hull, United Kingdom.

Background and aims: To learn from experience of exenatide in real clinical use in the UK, ABCD began a nationwide audit in December 2008. Though exenatide is not licensed for use with insulin, many contributors used the combination. We aimed to assess the extent, safety and efficacy of this off-label usage.

Materials and methods: ABCD website hosted, password protected, on-line questionnaire for collection of anonymised patient data. Paired T tests compared baseline and latest weight and HbA1c. Hypoglycaemia reports were quantified.

Results: 315 contributors from 126 centres submitted data on 6717 patients - mean baseline age 54.9, HbA1c 9.47%, weight 113.83 kg, BMI 38.95 kg/m2, 55.5% male. Of these 4691 had dated baseline and latest HbA1c; 4506 dated baseline and latest weight. Latest HbA1c and weight were at a median (range) of 26.3 (6.6-164.1) and 26.1 (6.6-159.0) weeks respectively after exenatide start. Insulin treatment status was assessable in 16583/16717 (91.7%) patients. These were divided into 5 groups (see table). 2061/6158 (33.5%) were on insulin at exenatide start (groups 2-4). 584/6158 (25.7%) continued on insulin (group 4). For those with dated baseline and latest data, the response of HbA1c and weight in the different insulin treatment groups are shown in the table. It can be seen that the addition of exenatide to insulin (group 4) was associated with significant falls of HbA1c and weight by 0.43% and 5.8 kg respectively. Insulin was stopped at the time of exenatide start in 477/2061 (23.1%) of those on insulin. Of these 325/477 (68.1%) substitution of exenatide for insulin proved effective with significant reductions in both weight and HbA1c and only one patient in the ABCD nationwide exenatide audit.

4. Exenatide allowed some patients to be weaned off insulin and this group may experience a considerable improvement in glycaemic control and a large reduction in weight.

Results:

Insulin treatment status was assessable in 6158/6717 (91.7%) patients. These were divided into 5 groups (see table). 2061/6158 (33.5%) were on insulin at exenatide start (groups 2-4). 584/6158 (25.7%) continued on insulin (group 4). For those with dated baseline and latest data, the response of HbA1c and weight in the different insulin treatment groups are shown in the table. It can be seen that the addition of exenatide to insulin (group 4) was associated with significant falls of HbA1c and weight by 0.43% and 5.8 kg respectively. Insulin was stopped at the time of exenatide start in 477/2061 (23.1%) of those on insulin. Of these 325/477 (68.1%) substitution of exenatide for insulin proved effective with significant reductions in both weight and HbA1c and only one patient in the ABCD nationwide exenatide audit.

Conclusion: The combination of insulin with exenatide was used in 36.7% (2257/6165) patients in the ABCD nationwide exenatide audit. Exenatide with insulin in real clinical use in the UK has been both safe and effective with significant reductions in both weight and HbA1c and only one reported case of severe hypoglycaemia.

Table: Summary of results

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline HbA1c (%)</th>
<th>Latest HbA1c (%)</th>
<th>Fall in HbA1c</th>
<th>Baseline Weight (kg)</th>
<th>Latest Weight (kg)</th>
<th>Fall in weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Not on insulin (n=3576)</td>
<td>9.42</td>
<td>8.45***</td>
<td>0.98</td>
<td>114.4</td>
<td>109.0***</td>
<td>5.4</td>
</tr>
<tr>
<td>Group 2: Insulin stopped at start and started (n=2257)</td>
<td>9.24</td>
<td>9.05***</td>
<td>0.18</td>
<td>111.5</td>
<td>102.5***</td>
<td>9</td>
</tr>
<tr>
<td>Group 3: Insulin stopped at start but restarted (n=2256)</td>
<td>9.73</td>
<td>9.02</td>
<td>0.18</td>
<td>108.5</td>
<td>103.1***</td>
<td>7.2</td>
</tr>
<tr>
<td>Group 4: Insulin continued at start (n=1506)</td>
<td>9.34</td>
<td>9.11***</td>
<td>0.23</td>
<td>112.6</td>
<td>106.8***</td>
<td>5.8</td>
</tr>
<tr>
<td>Group 5: Not on insulin at start but added later (n=321)</td>
<td>9.34</td>
<td>9.32</td>
<td>0.08</td>
<td>114.5</td>
<td>106.8***</td>
<td>7.7</td>
</tr>
</tbody>
</table>

***P<0.001 vs baseline; **P<0.05 vs baseline. The vs baseline. Supported by: Eli Lilly Ltd

862

Exenatide vs. insulin aspart in patients with type 2 diabetes: results of a randomised, open-label study

B. Gallwitz1, M. Böhm2, T. Segel1, A. Mölle1, K. Milek2, B. Becker2, K. Helbig2, H. Petto3, N. Peters4, O. Bachmann1

1Department of Medicine IV, University Hospital Tübingen, Germany;
2Diabetologist, Warburg, Germany;
3Diabetologist, Speyer, Germany;
4Center of Angiology and Diabetology, Dresden, Germany;
5Diabetologist, Hohenmölsen, Germany;
6Diabetologist, Essen, Germany;
7Medical Department, Lilly Deutschland GmbH, Bad Homburg, Germany;
8Eli Lilly GmbH, Vienna, Austria.

Background and aims: Cardiovascular trials suggest that hypoglycemia (hypo) may be underestimated as risk factor for type 2 diabetes (T2DM). This 26wk, randomized, open label study was designed to test if exenatide (EX) is noninferior to insulin aspart (IA) for glycemic control, and associated with a lower hypo risk in patients (pts) pretreated with metformin (MET; primary objective, hierarchical test). Pts pretreated with MET+sublyturons (SU) were enrolled into an additional exploratory arm.

Materials and methods: Adults with T2DM (HbA1c 6.5-10.0%, BMI 25-40 kg/m2) pretreated with MET only (confirmatory) or MET+SU (exploratory) were enrolled at 3:1 ratio. Within each arm, pts were randomized 1:1 to EX (4wks 5ug, then 10ug BID) or premixed IA 70/30 twice daily (ADA targets). For noninferiority of EX, the upper 95% CI limit of the group difference in HbA1c change (EX minus IA; MMRM, MET only) needed to be <0.4%. If noninferiority was met, hypo rates (pts with ≥1 documented [BG ≤3.9 mmol/l] or severe hypo up to wk26) were compared by Kaplan-Meier analysis (over-lap of 95% CIs; all pts treated). Corresponding exploratory analyses were performed for the MET+SU arm.

Results: Of 494 pts randomized (363 MET only; 131 MET+SU), 480 started study drug (MET only: EX 181/IA 173; MET+SU: EX 66/IA 60). 341 pts completed the study (MET-only: EX 135/IA 137; MET+SU: EX 33/IA 38). Compared to pts pretreated with MET only, MET+SU pts were older (mean age [95% CI]: 60 [58.2; 61.8] vs 57 [56.0; 58.1] y, and had a longer diabetes duration (8 [7.3; 9.4] vs 5 [4.6; 5.5]); y. Baseline BMI 32.0 [31.3; 32.8] vs 33.2 [32.7; 33.6] kg/m2) and HbA1c 7.98 [7.85; 8.12] vs 7.78 [7.79; 7.97] % were similar. MET-SU pts required higher insulin doses (mean final dose [95% CI]: 0.43 [0.36; 0.50] vs 0.29 [0.27; 0.32] IU/kg/d). Within each pretreatment arm, characteristics of EX and IA groups were similar. For patients pretreated with MET only, glycemic control with EX was non-inferior to IA (LS mean change at Wk 26: 0.14; 95% CI [-0.003; +0.291]); EX was associated with lower hypo risk in patients (pts) pretreated with metformin (MET; primary objective, hierarchical test). Pts pretreated with MET+SUfonylurea (SU) were enrolled into an additional exploratory arm.

Table: Summary of results

<table>
<thead>
<tr>
<th>Group</th>
<th>Pretreated MET Only</th>
<th>Pretreated MET+SU (exploratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX (N=181)</td>
<td>IA (N=173)</td>
<td>EX (N=66)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lmean change, wk26</td>
<td>-1.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>95% CI</td>
<td>-1.10</td>
<td>-1.24</td>
</tr>
<tr>
<td>Hypo rate (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate to wk26</td>
<td>8.0</td>
<td>20.5</td>
</tr>
<tr>
<td>95% CI</td>
<td>4.7</td>
<td>13.4</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lmean change, wk26</td>
<td>-4.1</td>
<td>+1.0</td>
</tr>
<tr>
<td>95% CI</td>
<td>-4.5</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Supported by: Eli Lilly and Company and Amylin Pharmaceuticals, Inc
863
Impact of exenatide once weekly and insulin glargine on glucose control and cardiovascular risk factors in subjects with type 2 diabetes
M. Diamant1, L.F. Van Gaal, S.N. Stranks3,1, J. Northrup4, D. Cao5, K. Taylor1, M. Trautmann1; 1Diabetes Centre, VU University Medical Centre, Amsterdam, Netherlands, 2Department of Diabetology, Metabolism, and Clinical Nutrition, Antwerp University Hospital, Belgium, 3Southern Adelaide Diabetes and Endocrine Services, Australia, 4Eli Lilly and Company, Indianapolis, USA, 5Amylin Pharmaceuticals, Inc., San Diego, USA.

Background and aims: Many patients failing to achieve blood glucose control on oral agents have elevated cardiovascular (CV) risk factors including hypertension and hyperlipidaemia. We examined glycaemic control (primary endpoint, change in HbA1c) and select CV risk factors (secondary endpoints) in subjects who were randomised to receive a glucagon-like peptide-1 receptor agonist (exenatide once weekly [EQW]) or a common starter insulin (insulin glargine [IG]) for 26 weeks.

Materials and methods: A 26-week, open-label, multicountry, randomised, superiority study compared EQW to IG titrated to target in 456 subjects with type 2 diabetes (mean HbA1c 8.3 [SD 1.1]% fasting glucose 9.8 [2.6] mmol/L, weight 90.9 [17.5] kg, diabetes duration 7.9 [6.0] years, endpoint insulin dose 31 IU/day). Randomisation was stratified by country and oral blood glucose-lowering therapy (70% metformin alone; 30% metformin plus sulphonylurea). Changes in concomitant lipid-lowering and antihypertensive medications were allowed if deemed necessary by the investigator. Post hoc assessments were performed: 1) Change in CV risk factors in subjects with abnormal baseline (defined in Table 1) and 2) Correlations between CV risk factors and body weight.

Results: EQW and IG both reduced HbA1c significantly from baseline (-1.3 [SE 0.5]% vs. -1.5 [0.6]% respectively, treatment difference -0.16 [0.07]% p=0.017). The majority of subjects had elevated lipids and/or blood pressure at baseline (Table 1). EQW subjects experienced small but statistically significant improvements in total cholesterol and high-sensitivity C-reactive protein (hsCRP), whereas IG subjects experienced improvements in triglycerides and alanine aminotransaminase (ALT). In both treatment groups, greater improvements in blood pressure, fasting serum lipids, ALT, and hsCRP were observed in subjects with abnormal baseline values. Subjects treated with EQW lost body weight while IG subjects gained weight (-2.6 [SE 0.2] kg vs. 1.4 [0.2] kg, treatment difference -4.0 [0.3] kg, p<0.001). Body weight change was weakly correlated with change in ALT (EQW: adjusted r=0.03, p=0.008) and SBP (IG: adjusted r=0.02, p=0.03).

Conclusion: In this 26-week study, superior improvements in HbA1c and body weight were observed with EQW treatment relative to IG. Treatment with either EQW or IG for 26 weeks resulted in small but significant changes in different surrogate markers of cardiovascular risk. Subjects with abnormal baseline CV risk factors exhibited the greatest improvements in those parameters.

Table 1.

<table>
<thead>
<tr>
<th>SBP mmHg</th>
<th>DBP mmHg</th>
<th>LDL-C mmol/L</th>
<th>HDL-C mmol/L</th>
<th>TG mmol/L</th>
<th>TC mmol/L</th>
<th>ALT IU/L</th>
<th>hsCRP mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal threshold</td>
<td>≥130</td>
<td>≥80</td>
<td>≥2.6</td>
<td><1.3/1.0f</td>
<td>>1.7</td>
<td>>5.2</td>
<td>>19/30</td>
</tr>
<tr>
<td>EQW: Mean BL (overall)</td>
<td>135 (1)</td>
<td>81 (1)</td>
<td>2.7 (0.1)</td>
<td>1.2 (0.0)</td>
<td>2.1 (0.1)</td>
<td>4.8 (0.1)</td>
<td>52 (1)</td>
</tr>
<tr>
<td>EQW: Week 26 Δ (overall)</td>
<td>-3 (1)*</td>
<td>-1.1</td>
<td>-0.1 (0.1)</td>
<td>-0.1 (0.0)</td>
<td>-0.1 (0.1)*</td>
<td>-2 (1)</td>
<td>-2 (1)*</td>
</tr>
<tr>
<td>EQW: Week 26 Δ (BL abnormal)</td>
<td>-6 (1)*</td>
<td>-5 (1)*</td>
<td>-0.2 (0.1)*</td>
<td>0.06 (0.01)*</td>
<td>-0.5 (0.1)*</td>
<td>-0.4 (0.1)*</td>
<td>-7 (2)*</td>
</tr>
<tr>
<td>EQW: BL/EP (% abnormal)</td>
<td>66/58</td>
<td>58/56</td>
<td>51/44</td>
<td>47/50</td>
<td>54/51</td>
<td>53/32</td>
<td>59/41</td>
</tr>
<tr>
<td>IG: Mean BL (overall)</td>
<td>133 (1)</td>
<td>80 (1)</td>
<td>2.7 (0.1)</td>
<td>1.2 (0.0)</td>
<td>2.1 (0.1)</td>
<td>4.8 (0.1)</td>
<td>31 (1)</td>
</tr>
<tr>
<td>IG: Week 26 Δ (overall)</td>
<td>-1 (1)</td>
<td>-1.1</td>
<td>0.0 (0.1)</td>
<td>0.0 (0.0)</td>
<td>-0.2 (0.1)*</td>
<td>0.0 (0.1)</td>
<td>-2 (1)</td>
</tr>
<tr>
<td>IG: Week 26 Δ (BL abnormal)</td>
<td>-5 (1)*</td>
<td>-3 (1)*</td>
<td>-0.2 (0.1)*</td>
<td>0.04 (0.02)*</td>
<td>-0.4 (0.2)*</td>
<td>-0.3 (0.1)*</td>
<td>-7 (2)*</td>
</tr>
<tr>
<td>IG: BL/EP (% abnormal)</td>
<td>61/61</td>
<td>61/60</td>
<td>51/56</td>
<td>45/45</td>
<td>53/47</td>
<td>43/43</td>
<td>54/49</td>
</tr>
</tbody>
</table>

* p<0.05 vs. baseline; BL = baseline; EP = endpoint; f Female/Male; TC = total cholesterol; SBP = systolic blood pressure; DBP = diastolic blood pressure; Data are mean (SE).

Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly and Company

864
Taspoglutide added to metformin provides comparable glycaemic control as insulin glargine with lower weight loss and less hypoglycaemia in type 2 diabetes: The T-emerge 5 Trial
F.J. Ampudia-Blasco1, M. Naukic, M. Andjelkovic3, E. Horton4, M. Boldrin1, R. Balena4; 1Clinic University Hospital, Valencia, Spain, 2Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany, 3Hoffmann-La Roche, Basel, Switzerland, 4Joslin Diabetes Center, Boston, USA, 5Roche Pharmaceuticals, Nutley, USA.

Background and aims: Taspoglutide is a once-weekly (QW) human GLP-1 analog in Phase 3 development for the management of type 2 diabetes (T2D). This trial evaluated a forward strategy replacing sulfonylureas (SU) by taspoglutide or insulin glargine in combination with previous metformin (MET) therapy.

Materials and methods: T-emerge 5 compared QW taspoglutide to once-daily (QD) insulin glargine (INS) in adult insulin-naive patients with T2D inadequately controlled with MET+SU. After discontinuation of SU for ≤21 days, 1049 patients were randomized 1:1:1 to QW taspoglutide 10 mg (Taspo10), QW taspoglutide 20 mg (Taspo20; up-titrated after 4 weeks of 10 mg), or QD INS for 24 weeks. INS was adjusted using a forced titration algorithm to achieve optimal target fasting plasma glucose of 6.1 mmol/L (110 mg/dL). The primary endpoint was the change from baseline in HbA1c at week 24. The analysis was conducted using the intent-to-treat population to test the non-inferiority of Taspo10 and Taspo20 with INS (using 2-sided 95% CI for HbA1c difference and non-inferiority margin of 0.4%).

Results: Baseline characteristics were comparable across groups (mean values: age 58 yrs, BMI 32 kg/m2, BW 91 kg, and HbA1c 8.3%). LS mean (SE) change from baseline in HbA1c was -0.8% (0.05), -1.0% (0.05) and -0.8% (0.05) for Taspo10, Taspo20 and INS groups, respectively, with both Taspo10 and Taspo20 being non-inferior to INS. Proportion of patients achieving HbA1c ≤7.0% was greater for both Taspo arms compared with INS (Taspo10, 39%; Taspo20, 47%; INS, 32%). Taspo10 and Taspo20 produced significantly greater weight loss vs. INS (Figure). In addition, the proportion of patients who experienced hypoglycaemia (confirmed/unconfirmed) was significantly lower with Taspo10 (5%) and Taspo20 (6%) vs. INS (17%) (P=0.0001 for both). Serious AE incidence was similar among the groups. Withdrawals due to adverse events (AEs) were higher with Taspo vs. INS, primarily due to gastrointestinal (GI) AEs (Taspo10, 6%; Taspo20, 10%; INS, 0%).

Conclusion: Compared to daily INS, addition of once-weekly Taspo to previous MET in patients failing on MET+SU improved similarly glycaemic control with additional weight loss and less hypoglycaemia, but more GI AEs. (NCT00755287)
Effects of long term administration of miglitol and voglibose on plasma glucagon-like peptide-1 and gastric inhibitory polypeptide after a mixed meal ingestion

Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medical Science, Akita, 3Juugaoka Medical Clinic, Internal Medicine, Obihiro, Japan.

Background and aims: Recently, we have reported that a two-week administration of miglitol (M), an alpha-glucosidase inhibitor (AGI), induces prolonged and enhanced glucagon-like peptide-1 (GLP-1) and reduced gastric inhibitory polypeptide (GIP) responses after a mixed meal ingestion in Japanese type 2 diabetics (T2Ds). However, such effects of AGI on plasma incretins during long term or whether those effects of AGIs would be different according to types of AGIs (M, absorbed type; V, non-absorbed type) have not been reported.

Materials and methods: In this multicenter, open 12-week trial, 26 and 24 Japanese T2Ds (age and HbA1c [mean]: 58.5, 59.5; 7.1%, 7.6%, respectively) with diet therapy and/or oral hypoglycemic agents other than AGIs were randomly assigned to receive 50 mg of M or 0.3 mg of V three times per day, respectively. We measured plasma glucose (PG), insulin (IRI), active GLP-1, and total GIP levels were measured using commercially available ELISA kits (Linco Research, St Charles, MO, USA). Data are expressed as mean (SE).

Results: Baseline values of PG, IRI, GLP-1 and GIP during MTT were similar in both groups. PGs (mg/dL) at 30 and 60 min during MTT were significantly decreased after both M and V (at 30 min, 204.6 (6.4) vs. 198.2 (6.4) [M, p<0.001] and 217.1 (9.6) vs. 208.6 (5.4) [V, p<0.001]). At 60 min, 247.0 (8.6) vs. 184.2 (5.4) [M, p<0.001] and 246.0 (10.4) vs. 197.2 (7.9) [V, p<0.001]). PG at 30 min during MTT after M was significantly lower than that after V (p<0.05). IRRs at 30 and 60 min during MTT were also significantly decreased both after M and V. GLP-1 values at 60 and 120 min during MTT were significantly increased after M whereas only at 60 min value was significantly increased after V (p<0.05). AUC of GLP-1 at 30, 60, 120 min during MTT were significantly decreased both after M and V (figure). AUC of GIP after M was significantly increased after M (p<0.01) despite of marginal increase after V (p=0.059). GPs at 30, 60 and 120 min during MTT were significantly decreased both after M and V (figure). GPs at 30 and 60 min during MTT after M were significantly lower than those after V (figure). AUC of GIP after M was significantly lower than that after V (p<0.03). During the 12-week treatment, BMI reduction was significant after M (from 25.1 [1.0] to 24.7 [1.0], p<0.01) but not after V (from 25.6 [1.0] to 25.5 [1.0]).

Conclusions: Long term AGI administration increases induced GLP-1 and decreased GIP responses after a mixed meal ingestion in Japanese T2Ds. Absorbed type of M may have relatively strong effects modifying postprandial incretin responses compared with non-absorbed type of V. Slight but significant BMI reduction after M but not V might be attributable to these different effects on incretins.

866

Improved glycaemic control with once-daily insulin detemir in combination with sitagliptin/metformin vs. sitagliptin/metformin ± sulphonylurea drugs

P.A. Hollander1, K. Rašlová2, T.V. Skjøth3, J. Råstam1, J. Luikus3

1Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medical Science, Akita, 2Jiyugaoka Medical Clinic, Internal Medicine, Obihiro, Japan.

Background and aims: Once-daily insulin detemir (IDet) provides stable, 24 hour glucose control and is often prescribed for patients with T2D as add-on to OADs. DPP-4 inhibitors, a new class of OADs, reduce degradation of GLP-1 mobilized in response to glucose intake, thereby improving endogenous glucose-dependent insulin secretion at mealtime. This study was a randomized, open-label, parallel group, 26-week trial designed to compare the efficacy and safety of two treatment regimens comprised of IDet in combination with the DPP-4 inhibitor sitagliptin (SITA) or SITA in combination with a subjects' prior sulphonylurea (SU) regimen, if any, and both groups continuing on metformin (Met), in insulin-naive T2D patients who were poorly controlled by their previous regimes with Met ± other OADs.

Materials and methods: Treatment was for 26 weeks with once-daily IDet + SITA (100 mg QD) + Met (at pre-trial dose ≥1000 mg) (IDet/SITA; n=107) but with any prior SU discontinued, or with SITA + Met ± SU (continuing each subject’s pretrial SU dosing, if any) (SITA ± SU; n=110). Both arms contained a similar percentage of subjects (75 and 77%, IDet/SITA vs. SITA, respectively) with pre-trial SU treatment experience.

Results: Observed baseline A1C in both arms was 8.5%. Estimated mean A1C reductions of 1.44 and 0.89% were achieved (IDet/SITA vs. SITA ± SU; est. mean diff. = 0.55%, 95% CI [0.35, 2.74]; p=0.001). Estimated final mean A1C values were 7.08 and 7.64%, respectively; 45 vs. 24% of patients reached A1C ≤7% (Adjusted Odds Ratio (OR) = 3.20, 95% CI [1.65, 6.19], p=0.001) and 19 vs. 10% reached A1C ≤6.5% (OR 2.23, 95% CI [0.96, 5.20], p=0.063). Observed FPG baselines were 9.7 mmol/L (174.8 mg/dL) and 9.8 mmol/L (176.5 mg/dL), with final mean estimated FPG values 6.1 mmol/L (110.9 mg/dL) and 8.5 mmol/L (153.5 mg/dL), respectively (IDet/SITA vs. SITA ± SU; est. mean diff. = -2.45%, 95% CI [-3.01, -1.88], p<0.001). After 26 weeks 9-point PG profiles were significantly lower for IDet/SITA at all time points except before dinner. No major hypoglycaemia occurred in either arm. Rates for minor hypoglycaemia (PG <3.1 mmol/L <56 mg/dL) were low in both treatment arms, with no statistically significant differences between arms (0.47 vs. 0.48 episodes/patient-year, IDet/SITA vs. SITA ± SU; Adjusted Rate Ratio = 0.87, 95% CI: [0.53, 1.39], p=0.40). 36% of the subjects taking IDet/SITA achieved the HbA1c ≤7% target without hypoglycaemia in the last 3 months of treatment vs. 20% in the SITA ± SU arm (OR = 2.47, 95% CI [1.26, 4.81], p=0.008). Mean IDet dose rose from 0.11 to 0.59 U/kg during the 26 weeks’ treatment.

Conclusion: Glucose control was significantly more improved in patients on once-daily IDet/SITA vs. patients on SITA ± SU (Met in both arms) with...
PS 79 SGLT-2 inhibitors

868

Efficacy of dapagliflozin as monotherapy administered in the morning or evening to treat type 2 diabetes mellitus

A. Salsal1, W. Tang1, J.F. List1, E. Ferrannini2
1Bristol Myers Squibb, Princeton, USA; 2University of Pisa School of Medicine, Italy.

Background and aims: Dapagliflozin is a highly selective and reversible inhibitor of the renal sodium glucose co-transporter-2, being developed as an oral antidiabetic agent.

Materials and methods: We report here data from a 24-week randomized, double-blind, phase 3 trial of dapagliflozin administered in the morning or the evening to treatment-naïve type 2 diabetes mellitus patients (study ID: MB102013). Patients (n=485) with HbA1c 7.0-10% were randomized equally to receive placebo, or dapagliflozin 2.5, 5 or 10 mg, once-daily in the morning (main cohort) or evening (exploratory cohort). All patients received diet/exercise counselling. Efficacy measures included change from baseline in HbA1c, fasting plasma glucose (FPG) and body weight at week 24. Adverse events were assessed throughout the study. Patients were actively monitored for signs/symptoms suggestive of urinary tract infections (UTIs) and genital infections and MedDRA (Medical Dictionary for Regulatory Activities, version 11.1) preferred terms relating to these were prospectively defined.

Results: Reductions in mean HbA1c and FPG were seen in all treatment groups and were statistically significant in 5 and 10 mg dapagliflozin arms of the main cohort (Table). Mean body weight decreases were greater with all dapagliflozin doses than in placebo, although not reaching statistical significance. Efficacy with morning and evening dose of dapagliflozin was similar when compared to placebo. There were no clinically meaningful changes in serum electrolytes, creatinine, or cystatin-C in any treatment arm. Signs/symptoms/other reports suggestive of UTI and genital infection were more frequent with dapagliflozin than placebo (4.6-12.5% in dapagliflozin arms vs 4.0% with placebo for UTI; and 2.6-12.9% in dapagliflozin arms vs 1.3% with placebo for genital infection). The reported signs and symptoms of UTI and genital infection were resolved with standard care and rarely led to study discontinuation. There was no increase in hypoglycemia with dapagliflozin and hypoglycemic events were well balanced in all treatment arms including placebo. Overall rate of adverse events was similar between the morning and evening dosing groups. There were no reports of nocturia in the main morning cohort and 1, 2, and 3 patients with nocturia in dapagliflozin 2.5, 5 or 10 mg evening dose arms, respectively.

Conclusion: Dapagliflozin is equally efficacious with morning or evening dosing with no notable difference in the number or type of adverse events between the two cohorts. Treatment with dapagliflozin resulted in clinically meaningful decreases in HbA1c and FPG in type 2 diabetes mellitus patients along with a favorable effect on weight.

Table. Change from baseline at week 24 in HbA1c, FPG, and body weight*

<table>
<thead>
<tr>
<th></th>
<th>Dapagliflozin morning dose (main cohort)</th>
<th>Dapagliflozin evening dose (exploratory cohort)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo N=75</td>
<td>2.5mg N=65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5mg N=64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10mg N=70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5mg N=67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5mg N=68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10mg N=76</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>-0.23 (0.10)</td>
<td>-0.58 (0.11)</td>
</tr>
<tr>
<td></td>
<td>-0.77 (0.11)</td>
<td>-0.89 (0.11)</td>
</tr>
<tr>
<td></td>
<td>-0.83 (0.11)</td>
<td>-0.79 (0.10)</td>
</tr>
<tr>
<td>FPG (mg/dL)</td>
<td>4.1 (3.9)</td>
<td>4.3 (4.2)</td>
</tr>
<tr>
<td></td>
<td>4.4 (4.0)</td>
<td>4.4 (4.1)</td>
</tr>
<tr>
<td></td>
<td>4.4 (4.2)</td>
<td>4.4 (4.0)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>2.2 (0.4)</td>
<td>3.3 (0.5)</td>
</tr>
<tr>
<td></td>
<td>2.8 (0.5)</td>
<td>3.2 (0.5)</td>
</tr>
<tr>
<td></td>
<td>3.8 (0.5)</td>
<td>3.6 (0.5)</td>
</tr>
<tr>
<td></td>
<td>3.1 (0.4)</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean (SE). *Mean value after adjusting for baseline value with last observation carried forward. **Per study design, the exploratory cohort was not statistically tested. **P<0.001; *P<0.0001

Supported by: Bristol-Myers Squibb and AstraZeneca

S 346
Dapagliflozin: an effective treatment option in patients with type 2 diabetes across stages of disease

S. Parikh1, J. Sugg1, L. Ying1, J.F. List2; 1AstraZeneca, Wilmington, ‘Bristol-Myers Squibb, Princeton, USA.

Background and aims: Dapagliflozin, a selective inhibitor of the renal sodium glucose co-transporter 2 (SGLT2), helps lower excess glucose levels in an insulin-independent manner by increasing urinary glucose excretion. We analysed data from 3 double-blind, randomised, placebo-controlled trials of dapagliflozin in patients with inadequately glycemic control at different stages of type 2 diabetes (T2DM), as reflected by their treatment regimens.

Materials and methods: Patients with T2DM were treated with dapagliflozin, 2.5, 5 or 10 mg or placebo as monotherapy (study MB102013; N = 485 [main cohort N = 274]), as an add-on to metformin (MB102014; N = 546) and as an add-on to insulin with or without up to 2 oral anti-diabetic drugs (AZ0306; N = 867). The primary end point for all trials was change in HbA1c at Week 24.

Results: Significant improvements in the glycemic measures of HbA1c and fasting plasma glucose (FPG) were observed with dapagliflozin (Table) regardless of T2DM stage and background medication and with no increase in major hypoglycaemia. The need for rescue therapy with anti-diabetic agents (monotherapy and metformin studies) or insulin for failing to achieve prespecified glycemic targets was reduced with dapagliflozin. Weight loss was seen in all studies, which reached statistical significance for patients in the metformin and insulin studies in dapagliflozin treatment groups compared to placebo. Adverse events (AE), serious AEs and study discontinuations were similar across all groups, although active solicitation revealed increased reports of signs, symptoms and events suggestive of genital infection in dapagliflozin groups. There were increased reports suggestive of urinary tract infection with dapagliflozin in the monotherapy and insulin trials but not in the metformin trial.

Conclusion: Dapagliflozin produced significant improvement in glycemic control in patients at various stages in the progression of T2DM, from treatment-naive to those on insulin with or without oral anti-diabetic agents. Dapagliflozin, due to its insulin-independent mechanism, is a potential therapy to improve glycemic control and body weight in patients with T2DM across stages of disease.

<table>
<thead>
<tr>
<th></th>
<th>MON</th>
<th>MET</th>
<th>DAPA 10 mg</th>
<th>PLA + MET</th>
<th>DAPA 10 mg + MET</th>
<th>PLA + INS</th>
<th>DAPA 10 mg + INS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>75</td>
<td>70</td>
<td>137</td>
<td>135</td>
<td>193</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>± SE</td>
<td>-0.23±0.10</td>
<td>-0.89±0.11</td>
<td>-0.30±0.07</td>
<td>-0.84±0.07</td>
<td>-0.30±0.05</td>
<td>-0.90±0.05</td>
</tr>
<tr>
<td>FPG (mg/dL) ± SE</td>
<td>-4.1±4.0</td>
<td>-28.8±4.3</td>
<td>-6.0±2.7</td>
<td>-23.5±2.7</td>
<td>3.3±3.4</td>
<td>-21.7±3.3</td>
<td></td>
</tr>
<tr>
<td>Body Weight (kg) ± SE</td>
<td>-2.2±0.4</td>
<td>-3.2±0.5</td>
<td>-0.9±0.2</td>
<td>-2.9±0.2</td>
<td>0.02±0.2</td>
<td>-1.7±0.2</td>
<td></td>
</tr>
<tr>
<td>Patients (%) reaching HbA1c Goal <7.0% Week 24</td>
<td>32</td>
<td>51</td>
<td>26</td>
<td>41</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Patients rescued or discontinued due to hyperglycaemia (%), Week 24:
10 mg data shown for presentation
1Adjusted mean change from baseline to Week 24 (LOCF)
2Statistically significant based on sequential testing for secondary end points at α = 0.05
3Nominal P = 0.0003 vs PLA + INS
4Adjusted percent of patients rescued with anti-diabetic agents (monotherapy and metformin studies) or insulin up-titration (insulin study), or discontinued, based on pre-specified glycemic targets.

Supported by: Bristol-Myers Squibb and AstraZeneca

Efficacy and safety of dapagliflozin in patients with type 2 diabetes mellitus and inadequate glycemic control on glimepiride monotherapy

K. Strojek1, V. Hrubá1, M. Elze1, A. Langkilde2, S. Parikh3; 1Silesian Medical University, Zabrze, Poland, 2AstraZeneca, Prague, Czech Republic, 3ClinResearch, Koeln, Germany; 4AstraZeneca, Molndal, Sweden, 5AstraZeneca, Wilmington, USA.

Background and aims: In management of patients with type 2 diabetes mellitus (T2DM), progressive deterioration of glycemic control is commonly observed, requiring treatment intensification with additional drug therapy. Dapagliflozin (DAPA), a selective inhibitor of sodium-glucose co-transporter 2 that inhibits renal glucose reabsorption, has been shown to reduce hyperglycaemia and body weight in patients with T2DM without a significantly increased risk of hypoglycaemia. We assessed efficacy, safety and tolerability of DAPA as add-on to glimepiride in patients with uncontrolled T2DM.

Materials and methods: This 24-week (wk) randomized, double-blind, placebo-controlled, parallel-group multicentre trial (D1690C00005) in Europe/Asia-Pacific enrolled patients with T2DM uncontrolled on at least half the maximum recommended dose of sulfonylurea alone (HbA1c 7.0-10.0%). A total of 397 adult subjects were randomized to DAPA (2.5, 5, or 10 mg/d) or placebo (PLA) added to open-label glimepiride 4 mg/d for 24 wk. Primary endpoint was change from baseline in HbA1c at 24 wk. Secondary endpoints included changes in other glycemic parameters and body weight. Interim safety data are also described.

Results: At 24 wk, DAPA showed dose-dependent significant reductions in HbA1c from baseline vs PLA (Table). DAPA showed weight loss relative to PLA at wk 24 (-0.46, -0.84, -1.54 kg for DAPA 2.5, 5,10 mg, respectively) which was statistically significant for DAPA 5 and 10 mg treatment groups. DAPA 5 and 10 mg caused significant improvements in oral glucose tolerance test (OGTT) response and in fasting plasma glucose (FPG) at wk 24. Compared with PLA, significantly more DAPA 5 and 10 mg-treated patients achieved HbA1c <7.0% at wk 24. Adverse events (AEs) were reported in 47%, 52%, 48%, and 50% of patients receiving PLA and DAPA 2.5, 5, 10 mg, respectively; frequency of drug-related AEs was similar across all treatment groups. Actively solicited events suggestive of urinary tract infections were 6.2%, 3.9%, 6.9% and 5.3% in PLA and DAPA 2.5, 5, 10 mg, respectively. No AE of kidney infection was reported. Actively solicited events suggestive of genital infections were 0.7%, 3.9%, 6.2%, and 6.6% in PLA and DAPA 2.5, 5, 10 mg, respectively. No cases of genital tract infection led to treatment discontinuation. Hypoglycaemic events were 4.8%, 7.1%, 6.9% and 7.9% in PLA and DAPA 2.5, 5,10 mg, respectively. No clinically meaningful mean changes from baseline at wk 24 in seated systolic/diastolic blood pressure were -1.2/-1.4, -4.7/-1.1, -4.0/-1.7 and -5.0/-2.8 mmHg for PLA, and DAPA 2.5, 5,10 mg, respectively.

Comparison: DAPA added to glimepiride in T2DM patients uncontrolled with sulphonylurea monotherapy significantly improves HbA1c, reduces weight and is well tolerated.

AE of kidney infection was reported. Actively solicited events suggestive of genital infections were 0.7%, 3.9%, 6.2%, and 6.6% in PLA and DAPA 2.5, 5, 10 mg, respectively. No cases of genital tract infection led to treatment discontinuation. Hypoglycaemic events were 4.8%, 7.1%, 6.9% and 7.9% in PLA and DAPA 2.5, 5,10 mg groups, respectively. No clinically meaningful mean changes from baseline in serum creatinine or electrolytes were observed. Adjusted mean changes from baseline at wk 24 in seated systolic/diastolic blood pressure were -1.2/-1.4, -4.7/-1.1, -4.0/-1.7 and -5.0/-2.8 mmHg for PLA, and DAPA 2.5, 5,10 mg, respectively.

Comparison: DAPA added to glimepiride in T2DM patients uncontrolled with sulphonylurea monotherapy significantly improves HbA1c, reduces weight and is well tolerated.

Supported by: Bristol-Myers Squibb and AstraZeneca
In patients with poorly controlled type 2 diabetes, dapagliflozin, a novel insulin-independent treatment, over 48 weeks in patients with type 2 diabetes poorly controlled with insulin improves glycemic control, reduces insulin requirements, and leads to weight loss. The efficacy and safety of dapagliflozin in type 2 diabetes mellitus (T2DM) increases risk of weight gain, fluid retention, and hypoglycaemia, often presenting a therapeutic dilemma. Dapagliflozin, a selective inhibitor of sodium glucose co-transporter 2 (SGLT2), reduces glucose levels in T2DM patients in an insulin-independent manner by inducing urinary glucose excretion. Resulting caloric loss may also help prevent weight gain in insulin-treated patients.

Effect of dapagliflozin, a novel insulin-independent treatment, over 48 weeks in patients with type 2 diabetes poorly controlled with insulin

J.P.H. Wilding, V. Woo, A. Pahor, J. Sugg, A. Langkilde, S. Parikh

1Department of Medicine, University of Liverpool, United Kingdom
2University of Manitoba, Winnipeg, Canada
3AstraZeneca, Wedel, Germany
4AstraZeneca, Mölndal, Sweden
5AstraZeneca, Wilmington, USA

Background and aims: Escalating insulin doses to achieve glycaemic targets in type 2 diabetes mellitus (T2DM) increases risk of weight gain, fluid retention and hypoglycaemia, often presenting a therapeutic dilemma. Dapagliflozin, a selective inhibitor of sodium glucose co-transporter 2 (SGLT2), reduces glucose levels in T2DM patients in an insulin-independent manner by inducing urinary glucose excretion. Resulting caloric loss may also help prevent weight gain in insulin-treated patients.

Materials and methods: To determine efficacy and safety of dapagliflozin in T2DM poorly controlled with insulin, patients were randomised to placebo, 2.5, 5, or 10 mg dapagliflozin added to unchanged background insulin therapy or with or without concomitant oral antidiabetic drugs (Trial D1690C00006). Primary outcome measure was change from baseline in HbA1c at week 24 (LOCF). Patients completing the 24-wk primary efficacy phase continued in a 24-wk site- and subject-blinded extension phase.

Results: A total of 808 patients were randomised. Mean baseline values were: HbA1c, 8.5%; fasting plasma glucose (FPG), 178 mg/dL; body weight (BW), 94 kg; insulin dose, 77 IU/day. Of 711 patients who completed the primary efficacy phase, 676 completed 48 wks of double-blind treatment. Significant reductions in HbA1c, FPG, BW, and insulin dose were observed with dapagliflozin relative to placebo in primary efficacy phase with no clinically relevant increase in hypoglycaemia. Reductions in glycemic parameters and BW were sustained over 48 wks. Insulin requirements over the 48 wks continued to increase with placebo but not in dapagliflozin groups. Overall, adverse events (AEs), serious AEs, and study discontinuations were comparable across groups. Active solicitation revealed increased reports of signs and symptoms suggestive of urinary (7.9-10.8% vs 5.1% for placebo) and genital (6.4-10.7% vs 2.5% for placebo) tract infection with dapagliflozin, most of which occurred during first 24 wks, were generally mild and responded to routine management. Two cases of pyelonephritis (1 each in 2.5 and 5 mg groups) occurred during first 24 wks, were generally mild and responded to routine management. Two cases of pyelonephritis (1 each in 2.5 and 5 mg groups) occurred during first 24 wks, were generally mild and responded to routine management.

Conclusion: Once-daily oral dapagliflozin improved glycaemic control without an increase in daily insulin requirements and led to weight loss in patients with T2DM poorly controlled with insulin over a 48-wk treatment period. Attenuating the cycle of escalating insulin dose and weight gain represents an improvement for this patient population.

Supported by: AZ and BMS

Effect of Dapagliflozin, a Novel Insulin-Independent Treatment, Over 48 Weeks in Patients with Type 2 Diabetes Mellitus Receiving Insulin (INS), the Clinical Utility of Escalating INS Doses

N.G. Soler, J.P.H. Wilding, V. Woo, A. Pahor, J. Sugg, A. Langkilde, S. Parikh

1Springfield Diabetes & Endocrine Center, Springfield, USA
2University of Liverpool, United Kingdom
3University of Manitoba, Winnipeg, Canada
4AstraZeneca, Wedel, Germany
5AstraZeneca, Wilmington, USA
6AstraZeneca, Mölndal, Sweden

Background and aims: In patients with poorly controlled type 2 diabetes (T2DM) receiving insulin (INS), the clinical utility of escalating INS doses
Inhibition of sodium glucose co-transporter 2 (SGLT2) is being studied as a novel modality of treatment for type 2 diabetes mellitus (T2DM). This phase 1 study aimed to assess the pharmacodynamics of SGLT2, in obese subjects, including some with impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). The coadministration of DAPA with INS can potentially attenuate escalating INS doses and associated side effects. Canagliflozin, an inhibitor of sodium-glucose cotransporter 2 in development for T2DM, improves glycaemic control, lowers body weight, and improves beta cell function (BCF) underlies efficacy of canagliflozin (CANA, JNJ-28431754/TA-7284), a potent inhibitor of SGLT2.

Materials and methods: Patients with poorly controlled T2DM (n=808; mean baseline HbA1c 8.53%) were randomized to placebo (PLA), 2.5, 5, or 10 mg/d of DAPA in addition to background INS (mean baseline dose 77 IU/d) ± other oral antidiabetic drugs. Primary glycaemic and safety endpoints have been reported separately; here we report time to study discontinuation or INS up-titration due to lack of glycaemic control (DISC-UP) for up to 48 weeks (wk) of continued centre- and patient-blinded treatment. INS was up-titrated if HbA1c was >8% or fasting plasma glucose was >9.9 mmol/L from 24-48 wk. Weight gain, peripheral oedema and DISC due to hypoglycaemia and other causes were also assessed.

Results: Time to reach DISC-UP was substantially prolonged in all DAPA + INS groups vs PLA + INS (figure). At 48 wk, the proportion of patients with DISC-UP was 42.8% in the PLA + INS group vs 21.7%, 15.6% and 15.3% in the DAPA + INS groups, with the greatest difference seen between the DAPA 10 mg + INS vs PLA + INS groups (−27.5%; 95% CI −35.9 to −19.1%). Patients receiving DAPA maintained glycaemic control and sustained reductions in body weight from 24-48 wk compared with placebo. At 24 wk, the proportion of patients with weight loss >3% was 10.4% in the PLA + INS group vs 17.7-23.3% in the DAPA + INS groups. Corresponding values at 48 wk were 10.4% and 21.6-24.5%, respectively. The frequency of peripheral oedema was 7.6% in the PLA + INS group vs 4%, 2.4% and 4.6% in the DAPA + INS groups. The frequency of DISC due to adverse events (AEs) in the PLA + INS group was 4.6% vs 3.5%, 7.1%, and 5.1% in the DAPA + INS groups, respectively. Corresponding values for DISC due to serious AEs were 1.5%, 1%, 4.6% and 2.6%, respectively. There were no DIs due to hypoglycaemia.

Conclusion: Canagliflozin, an inhibitor of sodium glucose co-transporter 2, improves glycaemic control, lowers body weight, and improves beta cell function (BCF) underlies efficacy of canagliflozin (CANA, JNJ-28431754/TA-7284), a potent inhibitor of SGLT2, in obese subjects, including some with impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). Dapagliflozin (DAPA), a selective inhibitor of sodium-glucose cotransporter 2 in development for T2DM treatment, increases renal excretion of glucose and lowers blood glucose via an INS-independent mechanism. The coadministration of DAPA with INS can potentially attenuate escalating INS doses and associated side effects.

Materials and methods: Patients with type 2 diabetes (N=451) were randomized to placebo (PLA), 2.5, 5, or 10 mg/d of DAPA in addition to background INS (mean baseline dose 77 IU/d) ± other oral antidiabetic drugs. Primary glycaemic and safety endpoints have been reported separately; here we report time to study discontinuation or INS up-titration due to lack of glycaemic control (DISC-UP) for up to 48 weeks (wk) of continued centre- and patient-blinded treatment. INS was up-titrated if HbA1c was >8% or fasting plasma glucose was >9.9 mmol/L from 24-48 wk. Weight gain, peripheral oedema and DISC due to hypoglycaemia and other causes were also assessed.

Results: Time to reach DISC-UP was substantially prolonged in all DAPA + INS groups vs PLA + INS (figure). At 48 wk, the proportion of patients with DISC-UP was 42.8% in the PLA + INS group vs 21.7%, 15.6% and 15.3% in the DAPA + INS groups, with the greatest difference seen between the DAPA 10 mg + INS vs PLA + INS groups (−27.5%; 95% CI −35.9 to −19.1%). Patients receiving DAPA maintained glycaemic control and sustained reductions in body weight from 24-48 wk compared with placebo. At 24 wk, the proportion of patients with weight loss >3% was 10.4% in the PLA + INS group vs 17.7-23.3% in the DAPA + INS groups. Corresponding values at 48 wk were 10.4% and 21.6-24.5%, respectively. The frequency of peripheral oedema was 7.6% in the PLA + INS group vs 4%, 2.4% and 4.6% in the DAPA + INS groups. The frequency of DISC due to adverse events (AEs) in the PLA + INS group was 4.6% vs 3.5%, 7.1%, and 5.1% in the DAPA + INS groups, respectively. Corresponding values for DISC due to serious AEs were 1.5%, 1%, 4.6% and 2.6%, respectively. There were no DIs due to hypoglycaemia.

Conclusion: Canagliflozin, an inhibitor of sodium glucose co-transporter 2, improves glycaemic control, lowers body weight, and improves beta cell function (BCF) underlies efficacy of canagliflozin (CANA, JNJ-28431754/TA-7284), a potent inhibitor of SGLT2, in obese subjects, including some with impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). Dapagliflozin (DAPA), a selective inhibitor of sodium-glucose cotransporter 2 in development for T2DM treatment, increases renal excretion of glucose and lowers blood glucose via an INS-independent mechanism. The coadministration of DAPA with INS can potentially attenuate escalating INS doses and associated side effects.

Materials and methods: Patients with type 2 diabetes (N=451) were randomized to placebo (PLA), 2.5, 5, or 10 mg/d of DAPA in addition to background INS (mean baseline dose 77 IU/d) ± other oral antidiabetic drugs. Primary glycaemic and safety endpoints have been reported separately; here we report time to study discontinuation or INS up-titration due to lack of glycaemic control (DISC-UP) for up to 48 weeks (wk) of continued centre- and patient-blinded treatment. INS was up-titrated if HbA1c was >8% or fasting plasma glucose was >9.9 mmol/L from 24-48 wk. Weight gain, peripheral oedema and DISC due to hypoglycaemia and other causes were also assessed.

Results: Time to reach DISC-UP was substantially prolonged in all DAPA + INS groups vs PLA + INS (figure). At 48 wk, the proportion of patients with DISC-UP was 42.8% in the PLA + INS group vs 21.7%, 15.6% and 15.3% in the DAPA + INS groups, with the greatest difference seen between the DAPA 10 mg + INS vs PLA + INS groups (−27.5%; 95% CI −35.9 to −19.1%). Patients receiving DAPA maintained glycaemic control and sustained reductions in body weight from 24-48 wk compared with placebo. At 24 wk, the proportion of patients with weight loss >3% was 10.4% in the PLA + INS group vs 17.7-23.3% in the DAPA + INS groups. Corresponding values at 48 wk were 10.4% and 21.6-24.5%, respectively. The frequency of peripheral oedema was 7.6% in the PLA + INS group vs 4%, 2.4% and 4.6% in the DAPA + INS groups. The frequency of DISC due to adverse events (AEs) in the PLA + INS group was 4.6% vs 3.5%, 7.1%, and 5.1% in the DAPA + INS groups, respectively. Corresponding values for DISC due to serious AEs were 1.5%, 1%, 4.6% and 2.6%, respectively. There were no DIs due to hypoglycaemia.

Conclusion: Canagliflozin, an inhibitor of sodium glucose co-transporter 2, improves glycaemic control, lowers body weight, and improves beta cell function (BCF) underlies efficacy of canagliflozin (CANA, JNJ-28431754/TA-7284), a potent inhibitor of SGLT2, in obese subjects, including some with impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). Dapagliflozin (DAPA), a selective inhibitor of sodium-glucose cotransporter 2 in development for T2DM treatment, increases renal excretion of glucose and lowers blood glucose via an INS-independent mechanism. The coadministration of DAPA with INS can potentially attenuate escalating INS doses and associated side effects.
7.7-10.95 mmol/l) was present in 31 subjects. Renal threshold for glucose excretion (RTG) was calculated from urinary glucose excretion (UGE), glomerular filtration rate, and PG.

Results: At baseline, subjects had a median age of 43 years (range, 21-59), a BMI of 33 kg/m² (range, 30-39), and an FPG of 5.12 mmol/l (range, 3.14-7.26). CANA significantly increased 24-h UGE (UGE_{24h}) on days 1-14 (Table), but there were no significant changes in FPG, mean 24-h PG, or insulin levels. Body weight decreased over the 14 days. Self-reported appetite and satiety measures did not change significantly.

Table 1: CANA vs. PBO

<table>
<thead>
<tr>
<th></th>
<th>PBO</th>
<th>CANA 30 mg OD</th>
<th>CANA 100 mg OD</th>
<th>CANA 300 mg OD</th>
<th>CANA 600 mg OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGE (mmol/l)</td>
<td>n=12</td>
<td>n=12</td>
<td>n=12</td>
<td>n=12</td>
<td>n=12</td>
</tr>
<tr>
<td>Baseline</td>
<td><0.1 (0.05)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>14 days</td>
<td>(0.3)</td>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.6)</td>
</tr>
</tbody>
</table>

CANA decreased RT_G, in a dose-dependent manner, with maximal effect on lowering of the RT_G to 3.5±0.9 mmol/l. In subjects with IFG and/or IGT on day -1 (n=31), treatment with CANA (n=22, all doses pooled) produced a significant reduction in 24-h mean PG (MFG) from 6.1±0.52 mmol/l on day -1 to 5.6±0.48 mmol/l on day 14 (p<0.05) compared with a corresponding change from 6.1±0.66 mmol/l to 5.9±0.77 mmol/l (p<0.05) after PBO. CANA was generally well tolerated, with no hypoglycemia. Adverse events were transient and mild to moderate in severity. The most frequently reported treatment-emergent adverse events were mild gastrointestinal disorders (20% in PBO and 0-50% across CANA dose groups). There were no clinically meaningful changes in urine volume or frequency, vital signs, ECGs, or laboratory tests.

Conclusion: CANA was well tolerated and increased 24-h UGE, decreased RT_G, and reduced body weight in obese healthy subjects. In addition, the data suggest that CANA is effective in reducing MPG in patients with IFG and/or IGT.

Canagliflozin lowers the renal threshold for glucose excretion in lean, obese and type 2 diabetic subjects

D. Polidori, S. Sha, T. Sarich, D. Devineni, P.L. Rothenberg, J. Johnson & Johnson, La Jolla, CA, USA.

Background and aims: Urinary glucose excretion (UGE) can be approximated by a threshold relationship in which almost no glucose is excreted when plasma glucose (PG) concentrations are below the renal threshold for glucose excretion (RTG), and the rate of UGE increases with PG when PG exceeds RTG. The value of RT_G is dependent on the capacity of renal glucose transporters; pharmacological inhibitors of the transporters reduce RT_G. We aimed to determine the effects of canagliflozin (CANA; JNJ-28431754/TA-7284), an inhibitor of sodium glucose co-transporter 2 (SGLT2), on RT_G, in healthy lean and obese subjects and subjects with type 2 diabetes (T2DM).

Materials and methods: Data from 3 clinical studies assessing the safety, tolerability, and pharmacodynamics of CANA were used. In study 1, lean males (BMI=20-30 kg/m²) were treated with 1 dose of 10-800 mg or 400 mg BID CANA (n=6/group). In study 2, obese otherwise healthy subjects (BMI=30-39 kg/m²) were treated with 30-600 mg once daily (OD) or 300 mg BID CANA (n=12/group) for 2 weeks. In study 3, subjects with T2DM were treated with 30-400 mg OD or 300 mg BID CANA (n=14-16/group) for 2 weeks. 24-h PG profiles, creatinine clearance (to estimate GFR), and UGE over 6 time intervals were measured. RT_G was determined from these measurements by assuming a threshold relationship between UGE and PG and determining the value of RT_G so that UGE calculated from the threshold approximation equals the measured UGE. This approach extends methods used for renal thresholds of other analytes by accounting for the dynamic changes in PG. 24-h mean RT_G (MRT_G) was calculated from RT_G values in each interval.

Results: CANA was well tolerated in the 3 studies with no observed hypoglycemia. Adverse events were transient and mild to moderate in severity. Urea volume, electrolyte excretion, renal function, and lab safety values changed meaningfully. The method for determining RT_G provided highly reproducible results in placebo-treated T2DM subjects (within-subject CV <3%). CANA dose-dependently reduced RT_G, maximally effective doses (>200 mg OD in lean, >300 mg OD obese) reduced MRT_G to 3.5±0.4 mg mol/l (mean±SD) in lean and 3.5±0.6 mg mol/l in obese subjects (Figure). In subjects with T2DM, MRT_G was elevated before CANA (13.6±1.6 mg mol/l vs commonly reported values of 10-11 mmol/l in healthy subjects), consistent with reports of increased renal glucose reabsorption in T2DM, and CANA dose-dependently reduced MRT_G to a minimum of 5.2±0.9 mmol/l at doses 200 mg. Maximally effective doses maintained maximal suppression of RT_G for the full 24-h period; with lower doses, RT_G rose from the nadir in later intervals.

Conclusion: RT_G in T2DM subjects before treatment was higher than often quoted values of 10-11 mmol/l. CANA dose-dependently decreased RT_G in all 3 studies and values in subjects with T2DM were modestly higher than nondiabetic subjects given the same doses. CANA reduces RT_G in T2DM subjects to ~5 mmol/l, a level not predicted to increase the risk of hypoglycemia.

875

Canagliflozin lowers the renal threshold for glucose excretion in lean, obese and type 2 diabetic subjects

D. Polidori, S. Sha, T. Sarich, D. Devineni, P.L. Rothenberg, J. Johnson & Johnson, La Jolla, CA, USA.

Background and aims: Urinary glucose excretion (UGE) can be approximated by a threshold relationship in which almost no glucose is excreted when plasma glucose (PG) concentrations are below the renal threshold for glucose excretion (RTG), and the rate of UGE increases with PG when PG exceeds RTG. The value of RTG is dependent on the capacity of renal glucose transporters; pharmacological inhibitors of the transporters reduce RTG. We aimed to determine the effects of canagliflozin (CANA; JNJ-28431754/TA-7284), an inhibitor of sodium glucose co-transporter 2 (SGLT2), on RTG, in healthy lean and obese subjects and subjects with type 2 diabetes (T2DM).

Materials and methods: Data from 3 clinical studies assessing the safety, tolerability, and pharmacodynamics of CANA were used. In study 1, lean males (BMI=20-30 kg/m²) were treated with 1 dose of 10-800 mg or 400 mg BID CANA (n=6/group). In study 2, obese otherwise healthy subjects (BMI=30-39 kg/m²) were treated with 30-600 mg once daily (OD) or 300 mg BID CANA (n=12/group) for 2 weeks. In study 3, subjects with T2DM were treated with 30-400 mg OD or 300 mg BID CANA (n=14-16/group) for 2 weeks. 24-h PG profiles, creatinine clearance (to estimate GFR), and UGE over 6 time intervals were measured. RTG was determined from these measurements by assuming a threshold relationship between UGE and PG and determining the value of RTG so that UGE calculated from the threshold approximation equals the measured UGE. This approach extends methods used for renal thresholds of other analytes by accounting for the dynamic changes in PG. 24-h mean RTG (MRTG) was calculated from RTG values in each interval.

Results: CANA was well tolerated in the 3 studies with no observed hypoglycemia. Adverse events were transient and mild to moderate in severity. Urea volume, electrolyte excretion, renal function, and lab safety values changed meaningfully. The method for determining RTG provided highly reproducible results in placebo-treated T2DM subjects (within-subject CV <3%). CANA dose-dependently reduced RTG, maximally effective doses (>200 mg OD in lean, >300 mg OD obese) reduced MRTG to 3.5±0.4 mg mol/l (mean±SD) in lean and 3.5±0.6 mg mol/l in obese subjects (Figure). In subjects with T2DM, MRTG was elevated before CANA (13.6±1.6 mg mol/l vs commonly reported values of 10-11 mmol/l in healthy subjects), consistent with reports of increased renal glucose reabsorption in T2DM, and CANA dose-dependently reduced MRTG to a minimum of 5.2±0.9 mmol/l at doses 200 mg. Maximally effective doses maintained maximal suppression of RTG for the full 24-h period; with lower doses, RTG rose from the nadir in later intervals.

Conclusion: RTG in T2DM subjects before treatment was higher than often quoted values of 10-11 mmol/l. CANA dose-dependently decreased RTG in all 3 studies and values in subjects with T2DM were modestly higher than nondiabetic subjects given the same doses. CANA reduces RTG in T2DM subjects to ~5 mmol/l, a level not predicted to increase the risk of hypoglycemia.
The potent and highly selective sodium-glucose co-transporter (SGLT-2) inhibitor BI 10773 is safe and efficacious as monotherapy in patients with type 2 diabetes mellitus

E. Ferrannini1, L.J. Seman1, E. Seewaldt-Becker1, S. Hantel1, S. Pinnetti2, H.-J. Woerle3

1Medicine, University of Pisa, Italy. 2Clinical Research, Boehringer-Ingelheim Pharmaceuticals, Inc, Ridgefield, USA. 3Clinical Operations and BDM, Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany.

Background and aims: The aim of this randomized double-blind, placebo (PBO)-controlled, parallel-group comparison study was to investigate the efficacy and safety of BI 10773 for 12 weeks in patients with type 2 diabetes mellitus.

Materials and methods: A total of 408 patients (baseline means [standard deviation]: HbA1c 7.9 [0.8]% , age 57.5 [9.8] years, body mass index 29.0 [4.6] kg/m2) who were treatment naive or had undergone a 4-week washout period, were randomized to 12 weeks of double-blind treatment with BI 10773 5, 10, 25 mg qd, PBO, or to open-label metformin (MET) 1000 mg bid or max. tolerated dose. The primary endpoint was the change in HbA1c from baseline after 12 weeks of treatment.

Results: After 12 weeks, BI 10773 showed a dose-dependent and statistically significant reduction in FPG and HbA1c compared with PBO (Table). Patients on BI 10773 25 mg qd showed a comparable reduction in FPG and HbA1c to those on MET. There was a significant reduction in body weight (BW) by ~2 kg on BI 10773 0.75 kg on PBO, and 1.32 on MET. Compared with PBO, mean BW reductions were statistically significant for all BI 10773 groups (p<0.001), but not for MET. The number of adverse events (AEs) was comparable among treatment groups (32.9% in PBO group, 38.8% in MET group, 29.1% in BI 10773 groups). Most frequently reported AEs (>2%) in the BI 10773 groups (average of AEs incidence of all BI doses) included polyuria (3.3% vs 0% in PBO), thirst (3.3% vs 0% in PBO) and nasopharyngitis (2.0% vs 1.2% in PBO). Frequency of urinary tract infection was low with BI 10773 (1.2%) and comparable to PBO (1.2%) and MET (1.3%). Incidence of genital infections was low; mycosis was reported in 0.8% and pruritus in 1.2% on BI 10773 but none on PBO or MET. Six patients experienced at least 1 serious AE, of which none was drug related. (1.2% vs 0% vs 3.8% BI10773, PBO and MET, respectively).

Conclusion: In patients with T2DM, once daily administration of BI 10773, demonstrated a dose-dependent clinically meaningful reduction in glycemic control, comparable to those of metformin. Furthermore BI 10773 was associated with a clinically meaningful reduction in body weight, and showed a favourable safety profile.
PS 80 Type 2 diabetes mellitus: new therapies

878

Increased secretion of GLP-1 mediated by a newly discovered ligand for GPR119
K. B. Hansen1, K. Knop1, N. W. Andersen1, T. A. Diep1, M. M. Rosenkilde2, J. J. Holst2, H. S. Hansen2,*
1Department of Clinical Physiology, Glostrup Hospital, University of Copenhagen, Glostrup, 2Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 3Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Hellerup, 4Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, 5Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Denmark.

Background and aims: GPR119 is a G protein-coupled receptor expressed in pancreatic beta cells and the L-cells in the gastrointestinal tract in humans. In the intestine, activation of GPR119 results in the release of glucagon-like peptide-1 (GLP-1), which has been shown to improve glucose homeostasis through several mechanisms: e.g. stimulation of glucose-induced insulin secretion, inhibition of glucagon secretion and reduction of food intake. In search for activators of the GPR119 receptor our group recently identified a naturally occurring ligand with high affinity for the receptor (EC50 <1 μM), designated XX (patent protection; name of compound will be official at the Annual Scientific Meeting of EASD 2010). We aimed to investigate the impact of XX on endogenous GLP-1 secretion in healthy subjects.

Materials and methods: Six healthy Caucasian male subjects (age: 23±2 years (mean±SEM); BMI: 23.1±1 kg/m2, fasting plasma glucose: 5.2±0.1 mM, HbA1c: 5.2±0.04%) were investigated in a randomised single-blinded cross-over study. The subjects were given four different solutions on four different days using glycerol as vehicle: A) XX-glycerol (50 ml), B) glycerol, C) XX-glycerol and glucose (10 g), and D) glycerol and 10 g glucose. To prevent degradation in the stomach the solutions were delivered to the proximal jejunum through a tube placed distally to the ligament of Treitz. Plasma GLP-1, insulin and glucose were measured for four hours following delivery.

Results: The solution of XX (day A) elicited a significantly greater initial GLP-1 response compared to glycerol (day B) (AUC0-321±104 pmol×30 min, p=0.036). We observed a significantly greater initial plasma insulin response following delivery of XX (day A) compared to glycerol (day B) (AUC0-321±104 pmol×30 min, p=0.037). When the two solutions were administered along with glucose (day C and D) trends toward increased initial GLP-1 and insulin responses were observed.

Conclusion: These data show that XX induces secretion of GLP-1. This ligand might be a promising new way of stimulating endogenous GLP-1 secretion using an oral regime. Further studies defining doses, formulation and long-term effects are needed.

879

Insulin sensitizer, BGP-15 prevents saturated fatty acid induced mitochondrial dysfunction
A. Kolonics1, C. Magyari1, E. Kiss1, Z. Literati-Nagy1, L. László1, P. Literati-Nagy1, K. Tory1,2
1Molecular Pharmacology, N-Gene Research Laboratories, 2Institute of Enzymology, Biological Research Center, Immunology, Eötvös Loránd University, 3General Zoology, Eötvös Loránd University, Budapest, Hungary.

Background and aims: Mitochondrial rotenone-sensitive NADH/ubiquinone oxidoreductase (complex I) activity and substrate switching were found to be diminished in obese and type 2 diabetic patients. Saturated long chain fatty acids, like palmitate inhibit complex I activity and result in increased mitochondrial ROS production. BGP-15 (R,S-0-(3-piperidino-2-hydroxy-1-propyl)-nicotinic-acid-amidoxime) is a new type insulin sensitizer drug candidate in human phase 2 developmental stage. It has been demonstrated that BGP-15 facilitates the expression of inducible heat shock protein resulting in decreased activation of JNK, which is a common mediator of obesity associated insulin resistance. Affinity binding assay revealed binding of BGP-15 to NDUF5S1, a 75 kDa iron-sulphur protein subunit of mitochondrial complex I. Now we report the effect of BGP-15 treatment on the activity of complex I and II and ROS production in palmitate and hyperglycemia exposed cells. We also aimed to characterize the possible docking site of BGP-15 to NDUF5S1.

Materials and methods: The effects of BGP-15 on the activity of complex I and II was evaluated in human HaCaT keratinocytes and L6 murine myocytes using a specific electron acceptor, DCIP and NADH or succinate electron donor. ROS production was measured by MitoSox or Amplex Red fluorescent probes. Vina and Surflex programs were used for molecular docking.

Results: BGP-15 treatment resulted in a rapid increase in the activity of complex I while the activity of complex II was inhibited in hyperglycemia exposed cells. The elevated activity of complex I was maintained in the presence of the drug for days in hyperglycemic culture conditions. Palmitate treatment decreased the activity of complex I and increased the activity of complex II, and elevated mitochondrial ROS production in L6 myocytes. BGP-15 treatment restored the activity of complex I and reduced the activity of complex II. In addition super-oxide production was lowered back to the level of untreated control. Molecular docking analysis on the bacterial (Thermus Thermophylus) homologue of human NDUF5S1 identified a specific binding site (DG = -7.2 kcal/mol) for BGP-15.

Conclusion: Data indicate that BGP-15 ameliorates the effects of palmitate on complex I resulting in balanced substrate oxidation and reduced ROS production. Molecular docking results support the concept that BGP-15 may target complex I, the main substrate entry and ROS producing site of mitochondrial respiratory chain. Prevention of saturated fatty acid induced mitochondrial dysfunction can significantly contribute to insulin sensitizing effect of BGP-15.

Supported by: GOF 1.1.1

880

GFT505, a new PPARα/δ agonist improves lipid and glucose homeostasis in prediabetic patients with atherogenic dyslipidemia and/or impaired fasting glucose
R. Hanf1, E. Bruckert1, B. Cariou1, R. Darteil2, H. Ham1, B. Staels1,2
1GENFIT, Loos, 2Hôpital de la Salpêtrière, Paris, 3CHU Nantes, 4UMR 1011, Institut Pasteur de Lille, France.

GFT505 is a drug candidate for the treatment of metabolic disorders associated with metabolic syndrome and Type 2 diabetes. GFT505 and GFT1007, its main active circulating metabolite, activate the PPARα and PPARβ subtypes. GFT505 potently reduces plasma triglycerides and total cholesterol and increases HDL cholesterol in animal models of dyslipidemia. GFT505 prevents the development of atherosclerotic plaques and has insulin-sensitizing properties in mice. In Phase I trials in healthy volunteers, GFT505 was well tolerated with no clinically relevant emergent adverse event. The maximum tolerated dose in humans has not been reached while a reduction in plasma triglycerides and increase in HDL-C was observed at doses from 40 to 100 mg/d. The safety of GFT505 was confirmed in the ensuing phase IIa trials. In a double blind, placebo controlled phase IIa trial conducted in 98 patients with atherogenic dyslipidemia (high triglycerides, low HDL-C), treatment with GFT505 at 80 mg/day for 28 days led to a 21% (p=0.0027 vs placebo) reduction in triglycerides and a 9 % (p=0.003 vs placebo) increase in HDL-C, treatment with GFT505 at 80 mg/day for 28 days led to a 21 % (p=0.0027 vs placebo) reduction in triglycerides and a 9 % (p=0.003 vs placebo) increase in HDL-C. GFT505 significantly reduced ApoCIII (-17 %, p=0.04) and ApoA2 (+15 %, p=0.001) and reduced fibrinogen and haptoglobin. These effects are comparable to those reported with fibrates, such as fenofibrate, in this population. In contrast, GFT505 did not induce clinically significant effects on homeostasis and creatinine. Finally, GFT505 reduced two distinct indicators of liver dysfunction: alanine aminotransferase (ALAT, -15 % vs placebo, p=0.02) and Gamma Glutamyl Transpeptidase (-20 % vs placebo) while it did not affect plasma levels of aspartate aminotransferase. In a phase II clinical trial conducted in 47 patients with impaired fasting plasma glucose, impaired glucose tolerance and abdominal obesity, treatment with GFT505 (80mg/day) for 28 days led to a significant reduction in fasting plasma glucose levels (-5 % vs placebo, p=0.03). In parallel, significant reductions in fasting plasma insulin (-25 % vs placebo, p=0.009) and C-peptide (-11% vs placebo, p=0.03) were also obtained. Thus, the HOMA insulin-resistance index (HOMA-IR) was significantly reduced by -31% vs placebo (p=0.0027). Moreover, a beneficial effect of the compound on plasma lipids was observed with a significant reduction of LDL-C (-11% vs placebo, p=0.0049) and triglycerides (-25 % vs placebo, p=0.0003) and an increase in HDL-C (+9% vs placebo, p=0.003). Finally, treatment with GFT505 led to a significant reduction in markers of inflammation (fibrinogen, -10%, p=0.0126; haptoglobin, -16%, p=0.007) while homocysteine levels remained unchanged. These first clinical trials position GFT505 as a new efficient and safe drug candidate for the treatment of prediabetic patients with impaired fasting glucose and atherogenic dyslipidemia.
P1738, a novel insulin sensitizer improves metabolic control with a favourable weight profile in mice

Background and aims: Type 2 Diabetes is characterized by peripheral insulin resistance and insulin deficiency. While most of the current treatments have focused on improving glycemic control, measures that can prevent co-morbidities such as dyslipidemia, hypertension and obesity are useful in reducing cardiovascular disease. Thiazolidinediones (TZD) drugs, including rosiglitazone exhibit potent anti-diabetic and insulin sensitizing effects. However, TZD therapy has been associated with adverse cardiovascular outcomes and weight gain. Therefore, insulin sensitizers with improved safety profile are urgently needed. In this regard, we have used a phenotypic screening paradigm, capable of selecting modulators of insulin sensitivity, and identified P1738 as the lead compound. The present study describes the in vitro and in vivo pharmacology of P1738.

Materials and methods: We screened our chemical library in the phenotypic assay of adipogenesis using 3T3-L1 cells. The positives were evaluated for glucose uptake in the insulin resistant adipocytes and were identified as hits. The anti-diabetic efficacy of these hits was investigated in ob/ob and db/db mice. Further, cardiac and developmental toxicity was determined using the zebrafish model.

Results: P1738 (20 µg/ml) enhanced insulin-induced adipogenesis of 3T3 fibroblasts. P1738 (20 µg/ml) stimulated glucose uptake (EC50 - 0.5 µM) in the insulin resistant adipocytes. P1738 did not cause activation of PPARγ receptors in transactivation assays. Chronic oral treatment of ob/ob mice with P1738 induced a dose-related reduction in plasma glucose (23% at 200 mg/kg) and triglyceride levels (18% at 100 mg/kg) and above. An oral glucose tolerance test carried out on day 1 revealed that P1738 improved (p<0.01) glucose tolerance similar to rosiglitazone. Interestingly, P1738 treatment did not induce weight gain in mice, at all the tested doses (50 to 200 mg/kg) compared to rosiglitazone treatment (5 mg/kg) which induced 12% gain (p<0.001). Further, P1738 treatment did not significantly affect hematocrit and plasma protein levels, in contrast to rosiglitazone which induced significant reduction (p<0.001). P1738 exhibited an excellent liver safety profile with no changes in weight or triglyceride levels, even at 200 mg/kg while rosiglitazone (5 mg/kg) caused hepatomegaly and 30% (p<0.01) increase in liver triglyceride levels. P1738 was also efficacious in db/db mice wherein administration of 100 mg/kg resulted in 26% reduction in glucose levels while rosiglitazone (5 mg/kg) induced 35% reduction. Importantly, while rosiglitazone caused significant (p<0.05) weight gain, animals exposed to P1738 did not register significant change in body weight. When administered to diet-induced obese mice, P1738 did not cause weight gain while rosiglitazone induced significant increase during the same period. In a zebrafish model, P1738 (100 µg/ml) did not induce any adverse effects whereas pericardial edema was observed with rosiglitazone (25 µg/ml).

Conclusion: This study shows that P1738 is a novel insulin sensitizer with no PPARγ transactivation potential. Improvement in glycemic and extraglycemic parameters caused by P1738, in mouse models of obesity, is associated with a favorable weight profile. Thus P1738, with its unique pharmacology and improved safety profile, may represent an alternative treatment for Type 2 Diabetes.

882
A selective GPR40 agonist, TAK-875, stimulates glucose-dependent insulin secretion without beta cell toxicity and decreases blood glycosylated haemoglobin levels in diabetic rats

Background and aims: GPR40 is highly and dominantly expressed in pancreatic beta cells and is activated by medium- to long-chain free fatty acids (FFAs) to potentiate glucose stimulated insulin secretion. While GPR40 is an attractive target for Type 2 diabetes, it is unclear whether agonists or antagonists represent the best therapeutic approach. TAK-875 is a novel, oral, and selective small molecule agonist of GPR40 under development as a once-daily treatment for type 2 diabetes. In this study, pharmacological effects of TAK-875 were examined.

Materials and methods: EC50 for inositol monophosphate (IP) production was assessed in Chinese hamster ovary cells expressing human GPR40 (hGPR40-CHO). Acute effects (2h) of TAK-875 and glibenclamide were measured in rat insulinoma INS-1 833/15 cells. Chronic effects (72h) of TAK-875 and FFAs were measured in rat insulinoma INS-1 833/13 cells. Oral glucose tolerance test (OGTT) was performed in male N-STZ-1.5 diabetic rats (18w). Measurement of metabolic parameters after chronic treatment with TAK-875 for 6 weeks were performed in female Wistar fatty (WF) rats (14w).

Results: TAK-875 (EC50 = 0.072 µM) showed over 400-fold stronger agonist activity compared to oleic acid (EC50 = 29.9 µM) in IP production assay in hGPR40-CHO cells. In rat insulinoma INS-1 833/15 cells, TAK-875 increased intracellular IP and calcium concentration, indicating that the compound activates Gαq signaling pathway. Unlike the sulfonylurea glibenclamide (10 µM), the insulotropic action by TAK-875 (10 µM) in INS-1 833/15 was glucose-dependent. Chronic exposure to TAK-875 (100 µM) for 72h in INS-1 833/13 cells did not affect insulin secretion, insulin content, or caspase 3/7 activity, while similar exposure to palmitic acid (1 mM) decreased both (p<0.05) insulin content and caspase 3/7. An oral glucose tolerance test in N-STZ-1.5 diabetic rats, TAK-875 showed dose dependent improvement of glucose tolerance and potently augmented insulin secretion. Chronic treatment with TAK-875 in WF rats dose dependently decreased glycosylated hemoglobin with no effects on body weight or other metabolic insulin content.

Conclusion: Our results support the concept that TAK-875 therapy may be an effective treatment of Type 2 diabetes without causing beta-cell toxicity.

883
Chemokine receptor 2 antagonist CCX140-B in Phase 2 for type 2 diabetes

Background and aims: CCX140-B is a highly specific oral chemokine receptor 2 (CCR2) antagonist in Phase 2 development for treatment of type 2 diabetes mellitus. Increased adiposity leads to elevated recruitment of inflammatory monocytes/macrophages into adipose tissue. Concurrent with increased adipose macrophage numbers, local and systemic elevations in inflammatory markers, such as TNFα, IL-6, and monocyte chemoattractant protein-1 (MCP-1)/chemokine ligand 2 (CCL2) are also seen and these inflammatory mediators have been shown to impair insulin sensitivity in multiple tissues. Studies in rodent models of insulin resistance and type 2 diabetes have indicated that the CCR2:MCP-1 axis is a primary control point for the entry of inflammatory macrophages in the adipose tissue of obese subjects.

Materials and methods: Male C57BL/6 mice were placed on high-fat diet at 6 weeks of age for 18 to 24 weeks. Metabolic profiling (blood glucose, insulin, adiponectin) was determined in fasted mice. CCR2 antagonist or placebo was delivered once daily via subcutaneous injection for 7 to 28 days. Adipose tissue macrophage numbers were determined by fractionation of epidymal fat pads followed by flow cytometry to identify macrophages. Preclinical studies were followed by single and multiple ascending dose placebo-controlled Phase 1 clinical trials of the CCR2 antagonist CCX140-B at doses ranging from 0.05 mg to 10 mg in 88 healthy volunteers.

Results: Daily treatment with CCR2 antagonist significantly improved fasting glucose and HOMA-IR levels in obese, diabetic mice over 2 days of treatment (see table). Circulating adiponectin levels were significantly reduced in obese, diabetic mice and this was reversed by CCR2 antagonist treatment. The metabolic improvements correlated with a significant reduction in adipose tissue macrophage numbers. CCL2 levels were unchanged in mice treated with CCR2 antagonist. Additionally, circulating populations of monocytes were unchanged in the mice. CCX140-B was well tolerated in Phase 1 clinical trials. No serious adverse events (AEs) or withdrawals due to AEs were observed. No clinically significant laboratory abnormalities, vital signs, or ECG changes were observed. CCX140 pharmacokinetics were relatively linear across the dose range, with T1/2 of 1.4 to 3.2 hr and plasma half-life of 40 to 58 hrs. Plasma MCP-1 levels, as well as circulating monocyte populations were unchanged after CCX140-B dosing, in contrast to results observed with other CCR2 antagonists. Based on the encouraging results from preclinical and Phase 1 clinical trials, a Phase 2 study in subjects with type 2 diabetes mellitus was initiated.

Conclusion: Oral CCR2 antagonist treatment improved metabolic function in mice without a corresponding increase in MCP-1. CCX140-B was well tol-
is suitable for use as monotherapy at diagnosis of T2D and may be effective at any stage in the T2D continuum, from diagnosis through to disease complications. Because of its unique mechanism of action it may be well suited for combination therapy with most other classes of antidiabetic agents.

885

A multicenter, randomised, placebo-controlled, parallel group, double-blind, Phase II trial to evaluate the efficacy and safety of imeglimin 500 mg bid (ZP2929) in subjects with type 2 diabetes mellitus.

Materials and methods: In a double-blind, randomized, multicenter, parallel group, dose-range finding study, 145 patients (91 men and 54 women) with median age 53 years and with median BMI 25.1 kg/m² participated the study. Median fasting plasma glucose at baseline was 145 mg/dL and median HbA1c was 7.9%. Median duration since diagnosis of diabetes was 3 years. After 2 weeks of exercise/diet program and 2 weeks of placebo period after that, subjects were randomized to one of 4 groups, placebo, 50, 100 and 200 mg, for 12-week active treatment period.

Results: All three doses of ZP2929 reduced HbA1C level from baseline to week 12 significantly compared to placebo (-0.06 vs. -0.98, -0.74, -0.78% in placebo, 50, 100 and 200 mg respectively), with no significant differences among different dosings. Subjects with higher HbA1C level (≥8.5%) at baseline experienced greater HbA1C reductions compared with the subjects with lower HbA1C level (<8.5%). Insulin secretory function assessed by HOMA-β, C-peptide, and insulinogenic index was significantly improved by ZP2929 treatment, and insulin sensitivity, assessed by HOMA-IR, was also significantly improved after 12 weeks of treatment. For lipid parameters, 50 and 200 mg groups showed significantly reduced total cholesterol and LDL-C level at week 12 from baseline compared with placebo. All 3 dosing groups did not have any effects on body weight nor on waist circumference, and the incidence of adverse events was similar in all four groups.

Conclusion: Once-daily ZP2929 monotherapy for 12 weeks improved glycaemic control in HbA1C, FPG, post oral glucose tolerance test (OGTT) glucose, improved measures of β-cell function and insulin sensitivity, and was well tolerated in Korean subjects with type 2 diabetes.

Supported by: LGLS

886

The new dual glucagon-GLP-1 agonist ZP2929 improves glycaemic control and reduces body weight in murine models of obesity and insulin resistance

J.R. Daugaard1, D. Riber1, K.S. Larsen1, E. Maier1, C.E. Bak1, G. Kampen2, Z. Elwood3, C.Æ. Bæk2.

1Novo Nordisk A/S, 2Glostrup, 3Novo Nordisk A/S, Bagsværd, Denmark.

Background and aims: Oxyntomodulin is released from L cells of the small intestine in response to meal ingestion, and is believed to exert its biological effects by activating both the GLP-1 receptor and the glucagon receptor, i.e. by acting as a dual glucagon-GLP-1 agonist. ZP2929 is a potent dual glucagon-GLP-1 receptor agonist with a pharmacokinetic profile compatible with once daily dosing. The effect of ZP2929 was studied in eight months high fat fed C57Bl/6J mice, as an animal model of insulin resistance and in four weeks high fat fed C57Bl/6J mice, as a model of obesity. ZP2929 was compared to vehicle and exendin-4.

Materials and methods: To assess the effect of ZP2929 on insulin resistance, eight months high fat fed C57Bl/6J male mice were randomized into groups with similar average fasting glucose, and treated twice daily s.c. with ZP2929 (10 nmol/kg), exendin-4 (10 nmol/kg), or vehicle. After 3 weeks of treatment,
following an initial blood sample for the determination of fasting blood glucose level, oral glucose tolerance tests were performed. To investigate the effect of ZP2929 on body weight gain, four weeks high fat fed C57Bl/6J male mice were randomized into groups with similar average body weight and treated twice daily s.c. with ZP2929 (0.6, 1.6, 3.2, 6.4 and 12.7 nmol/kg), exendin-4 (0.2, 0.3, 2, 5, 10 and 20 nmol/kg) or vehicle. Before treatment and after four and six weeks of treatment, blood samples were taken and blood lipids (low and high density lipoproteins (LDL and HDL)), total cholesterol (TC) and triglycerides) measured.

Results: In eight months high fat fed C57Bl/6J mice, treatment with ZP2929 and exendin-4 for three weeks significantly (p<0.05) prevented the increase in fasting blood glucose seen in vehicle-treated animals. ZP2929 and exendin-4 improved glucose tolerance (measured as decrease in the area under the glucose curve) by 15.7% and 30.3%, respectively. In four weeks high fat fed C57Bl/6J mice, treatment with ZP2929 and exendin-4 significantly (p<0.05) and dose-dependently reduced body weight gain over time, compared to vehicle-treated animals. ZP2929 (12.7 nmol/kg) was significantly (p<0.05) more effective than a similar dose of exendin-4 (10 nmol/kg) in preventing body weight gain. Plasma lipid parameters demonstrated a tendency to increase over time in vehicle-treated animals. At the two highest doses, ZP2929 and exendin-4 reduced the increase in plasma LDL, HDL and TC.

Conclusion: In conclusion, the new glucagon-GLP-1 agonist ZP2929 improves glucose control, markedly decreases body weight gain and improves blood lipid profile in murine models of insulin resistance and obesity.

887

Long-term effect of amylin on the glucose metabolism of extrapancreatic tissues in insulin-resistant and type 2 diabetic states

A. Acitores1, P. Moreno1, I. Gutierrez-Rojo1, R. Nuche-Berenguer1, M. El Assar1, L. Rodriguez-Manias1, I. Valverde1, A. Novials1, M.L. Villanueva-Peñacarrillo1.

1IIS-Fundación Jiménez Díaz, Madrid, 2Hospital de Getafe, Madrid, 3Hospital Clinic, Barcelona, Spain.

Background and aims: Amylin is glucose dependently co-secreted with insulin from the pancreatic β-cell, one another perhaps in an independent manner; it inhibits gastric emptying and glucagon release, reduces postprandial hepatic glucose productions, and shows anorexic effects. In type 2 diabetes, amylin secretion could is impaired. We studied the effect of amylin treatment on parameters related to the glucose metabolism of extrapancreatic tissues in insulin-resistant (IR) and type 2 diabetic (T2D) rat models, compared to normal (N) animals.

Materials and methods: Male Wistar rats were used. IR was induced by chronic feeding -8 weeks- with standard chow combined with D-fructose (20% in the drinking water). T2D was developed by streptozotocin injection (100 μg/g bw) at birth. IR, T2D and N were treated (3 days) with saline (control) or 100 pM amylin (n=5-10 rats/group), through an osmotic pump; in fed conditions, blood samples were taken before and by the end of treatment for plasma glucose and insulin (RIA) measurements; GLUT-2 and GLUT-4 expression -Western blot and RT-PCR- was respectively studied in liver, muscle and fat; liver glycogen content, soleus muscle glycogen synthase a (Gsa) -UDP-[14C]glucose incorporation into glycogen- and isolated adipocytes glucose transport (GT) -2-deoxi-D-[1,2-3H]glucose uptake-, were measured.

Results: The liver of IR (n=7 rats) and T2D (n=5), both showed GLUT-2-mRNA lower than (0.23±0.03 and 0.16±0.1 times N-control; p<0.001) and protein (overall mean: 62±6% N-control, p<0.001); amylin further reduced (p<0.01) mRNA in IR, without altering that in T2D, while failing to modify GLUT-2-protein in either group, amylin increased it in N (182±15% N-control, p<0.001). Respect N, liver glycogen content in IR (193±20 μg/mg protein) and T2D (230±18 μg/mg protein) was close to half lower (p<0.01); amylin, further reduced it in both groups (45.1±2.7, n=23) higher (p<0.001); amylin normalized it in both groups, by respectively increasing (p<0.02) and reducing (p<0.001) the value. No major changes in plasma parameters were detected in any group after treatment.

Conclusion: In insulin-resistant and type 2 diabetic states, amylin could exert a restoring action on the deleterious glucose metabolism of extrapancreatic tissues participating in the glucose homeostasis, by perhaps increasing insulin sensitivity through its normalizing effect upon their altered glucotransporters expression.

Supported by: FIS, CIBERDEM, ENDODIAB
PS 81 Therapeutic alternative approaches to type 2 diabetes mellitus

888

Vitamin D and calcium supplementation in adults at risk for type 2 diabetes. The CADDM randomised controlled trial

A. Pittas1, J. Goetz2, B. Dawson-Hughes3
1Tufts Medical Center, Boston, 2Tufts University, Boston, USA.

Background and aims: Vitamin D and calcium have been shown to modify risk of type 2 diabetes in observational studies, but evidence from trials is lacking. The aim of the study was to determine whether vitamin D or calcium supplementation either alone or in combination improve glucose homeostasis in adults with glucose intolerance.

Materials and methods: Ninety-two adults with fasting plasma glucose (FPG) ≥100 mg/dl or 2-hour glucose (2hG) ≥140 mg/dl after 75 grams of dextrose and Hemoglobin A1c 5.8 - 7% were randomized in a 2x2 factorial design to 1 of 4 arms as follows: vitamin D3 (2,000 IU once daily) and calcium carbonate (400 mg twice daily), vitamin D3 and placebo-calcium, calcium and placebo-vitamin D, and placebo-vitamin D and placebo-calcium. Treatment was started in October 2007 and November 2009. Outcome was change in glycemia (hemoglobin A1c, FPG and 2hPG) from baseline to 16 weeks. [ClinicalTrials.gov Identifier: NCT00436475]

Results: Enrolled participants had a mean age of 57 years, BMI of 32 kg/m2, 25-hydroxyvitamin D of 32 ng/ml and A1c of 5.9%. The difference in 25-hydroxyvitamin D between vitamin D3 and placebo-vitamin D was 13.3 ng/ml (p<0.001). Participants assigned to vitamin D3 had a smaller rise in hemoglobin A1c compared to those on placebo-vitamin D (0.05 vs. 0.15% respectively; p=0.034). Fasting plasma glucose (-0.08 vs. 2.2 mg/dl; p=0.12) and 2hPG (-10.1 vs. 0.54 mg/dl; p=0.14) also improved, but the difference between groups was not statistically significant. Combined vitamin D3 and calcium carbonate improved glycemia more than vitamin D3 alone or calcium alone compared to the group assigned to placebo (0.04 vs. 0.08 vs. 0.11 vs. 0.20% respectively).

Conclusion: In adults at risk for type 2 diabetes, supplementation with vitamin D3 attenuates the increase in glycemia that occurs over time. The addition of calcium carbonate appears to further improve glycemia. Our findings need to be confirmed in long-term randomized trials.

Supported by: National Institutes of Health

889

The effect of vitamin D supplementation on beta cell function and insulin sensitivity during a mixed meal tolerance test in healthy humans

G. Bock1, J.K. Mayer1, J. Fruhmann1,2, N. Hueter1,2, B.M. Obermayer-Pietsch3, T.R. Pieber2,3
1Endocrinology and Nuclear Medicine, University Hospital Graz, Graz, Austria.

Background and aims: Increasing evidence from animal and human studies suggests that vitamin D may play a role in modifying risks of diabetes and other autoinmune diseases. Potential mechanisms of action of vitamin D on glucose metabolism include direct effects on the beta cell function and insulin sensitivity. The aim of our study was to evaluate the effect of a short time, high dose 25-OH vitamin D [25(OH)D] supplementation on glucose metabolism in healthy humans.

Materials and methods: 35 healthy subjects (16 females / 19 males, 35±11.4 years, 24.1±3.8 kg/m2 BMI) were randomised to vitamin D supplementation (140.000IU monthly) or placebo (almond oil). A standard liquid mixed meal containing 1400 kcal was performed at baseline and at 3 months of treatment. Areas under the curve (AUC) for glucose, insulin, C-peptide and from pre-meat to 120min after consumption were calculated as were the Matsuda index of insulin sensitivity.

Results: 25(OH)D serum levels increased from 27.2±1.10 (mean ±SD) to 60.2±21.1ng/ml in the treatment group (n=17) whereas 25(OH)D levels decreased from 25.6±7.1 to 18.8±7.2 ng/ml in the placebo group (n=18) during the 12 week study period. In the group receiving 25(OH)D supplementation the AUC for glucose (12238.2±1760.6 vs. 11577.8±2024.1 mg/dl; p=0.020) and insulin (56563±3207 vs. 49355.2±3363 µU/ml; p=0.087) decreased, with the main improvement of the AUC delta glucose (43.5±23.0 vs. 25.6±15.8mg/dl; p=0.014) and AUC delta insulin (83.4±56.5 vs. 59.9±50.8µU/ml; p=0.003) from 0 to 30min of the MMTT. Changes in AUC for C-peptide did not reach significant levels. The Matsuda insulin sensitivity index values increased slightly from 11.1±5.3 to 12.6±7.9 (p n.s.) in the treatment group but decreased significantly in the placebo group from 15.1±13.3 to 10.4±5.9 (p=0.023). In both groups no clinically relevant adverse events occurred.

Conclusion: Our data show that vitamin D supplementation in apparently healthy humans with insufficient 25(OH)D levels improves beta cell function and insulin sensitivity over a short period of time and support the beneficial effects of vitamin D on glucose metabolism.

Supported by: an EASD/MSD grant

890

Anti-diabetic effect of add-on gynostemma pentaphyllum tea therapy with sulfonylureas in randomly assigned type 2 diabetic patients

H.T.T. Vu1, P.V. Dao2, T. Pham3, H.K. Nguyen1, C.-G. Ostensson1
1Department of Molecular Medicine & Surgery, Endocrine & Diabetes Unit, Karolinska Institute, Stockholm, Sweden, 2Department of Internal Medicine, Hanoi Medical University, Viet Nam, 3Department of Pharmacology, Hanoi Medical University, Viet Nam, 4National Institute of Gerontology, Hanoi, Viet Nam, 5Dept of Internal Medicine, University of Manitoba, Winnipeg, Canada.

Background and aims: In Vietnam, herbs have been used traditionally to treat diabetic patients. Our previous works on Gynostemma pentaphyllum (GP) have revealed the anti-diabetic effect of GP extract in normal rats, associated with a novel insulin releasing gypenoside - phanoside. In addition GP tea has been proven in our recent clinical study to possess anti-diabetic effects with good safety data in newly diagnosed T2D patients, and to have effect on insulin sensitivity. The aim of the study was to investigate the anti-diabetic effect of the traditional Vietnamese herb GP as add-on therapy with sulfonylurea (SU) in 25 drug-naive type 2 diabetic (T2D) patients.

Materials and methods: After 4-week treatment with gliclazide modified-release preparation, 30 mg daily, all patients were randomly assigned into 2 groups to add-on GP tea or placebo tea, 6g daily, during eight weeks. Fasting plasma glucose (FPG), C-peptide and insulin levels, HbA1c and oral glucose tolerance tests (OGTT) were measured before, during and after the treatment.

Results: After 4-week treatment with SU, FPG and HbA1c significantly decreased (p<0.001), C-peptide and insulin levels increased, and lipid profile improved significantly. There were no statistically significant differences between the groups allotted to GP and placebo tea. The decrease in FPG after eight weeks was 2.9 ± 1.7 mmol/l in the GP group and 0.9 ± 0.6 mmol/l in the control group (p < 0.001). Therapy with GP tea also significantly decreased 30 and 120 minute OGTT post-load values. HbA1c levels decreased approximately 2%-units in the GP group compared to 0.7%-unit in the controls (p=0.001). The glycometabolic improvements were achieved without any major change of circulating insulin and C-peptide levels. There were no changes in Homeostasis Model Assessment-Insulin Resistance, lipids, body measurements, blood pressure and no reported hypoglycemias, or acute adverse effects regarding kidney and liver parameters.

Conclusion: The results of this study show that GP tea in addition to SU could offer an advantage over the addition of other oral medication to treat type 2 diabetic patients.

Supported by: SIDA/SAREC.

891

Silibinin reverses insulin resistance in an animal model of high-fructose diet by an inhibition of glucose-6-phosphatase activity

G. Sánchez-Martin1, M.N. Sanz2, D. Detaille3, O. Bourron4, F. Foufelle5, J.M. Recio-Córdova1, G. Gómez-Peralta1, G. R. Villanueva1, M.Y. El-Mir1
1Physiology and Pharmacology, University of Salamanca, Spain, 2University of Grenoble-1, Grenoble, France, 3Centre de Recherches des Cordeliers, Paris, France, 4Endocrinology Unit, University Hospital of Salamanca, Spain, 5Endocrinology and Nutritional Unit, Nuestra Señora de Sonsoles Hospital, Ávila, Spain.

Background and aims: High fructose diet causes insulin resistance (IR) and alterations in glucose metabolism in Wistar rats. The flavonoid silibinin (SB) has recently shown important properties to be used in the treatment of type 2 diabetes.

2 diabetes. Previous studies in vitro of our group have shown that SB inhibits hepatic gluconeogenesis in perfused rat hepatocytes by an inhibition of glucose-6-phosphate dehydrogenase. The aim of this study was to explore the capacity in vivo of silibinin to reverse the particular alterations to IR induced in high fructose-fed rats, as well as the underlying mechanisms.

Materials and methods: Male Wistar rats were divided into two batches. One batch received a standard diet, and the other received a fructose-enriched diet. After 4 weeks, each group of rats was divided into two groups. One group received SB (50 mg/kg/day, i.p.) for additional two weeks, while the other received SB vehicle. Hepatocytes were isolated from starved rats, perfused at 37°C and titrated with increasing substrate concentrations of dihydroxyacetone (DHA). We measured glucose concentrations in cellular perifusate and dihydroxyacetone phosphate (DHAP), glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) in the cellular fraction. The effect in vivo of SB on glucose-6-phosphatase activity was also investigated.

Results: In perfused hepatocytes, fructose diet increased gluconeogenesis (Jg) as compared with control by 25% (DHA 2.4 mM, p<0.001). Administration of SB not only reversed Vmmax but also increased the maximal velocity (Vmax) by 22% (DHA 2.4 mM, p<0.001). Also, fructose-enriched diet increased DHAP, G6P and F6P concentrations at each steady state, giving a double relationship between Vmmax and DHAP, F6P and G6P. SB normalized this effect. On the other hand, high fructose diet increased glucose-6-phosphatase activity as compared with control by 10% (G6P 20 mM, p<0.05). SB fully reversed this effect. Regarding the kinetic parameters of glucose-6-phosphatase enzyme, fructose diet increased the maximal velocity (Vmax, p<0.05) and decreased Michaelis-Menten constant (Km, p<0.01). Administration of SB only reversed Vmax (<p<0.05) compared to fructose fed rats.

Conclusion: SB causes metabolic alterations proper to insulin resistance in Wistar rats by an inhibition of glucose-6-phosphatase enzyme. These results suggest that SB could be beneficial as complementary therapy for the treatment of type 2 diabetes.

892

The natural flavonoid Resveratrol reduces hepatic gluconeogenesis and respiration by a direct and a non-gene modification manner

M.N. Sana, C. Sánchez-Martín, D. Delatté, C. Pueyo, C. Ortega-la, O. Bourron, F. Fouillele, X. Leverve, M.Y. El-Mir;

Background and aims: Resveratrol is a polyphenolic flavonoid with potent antioxidant activity. It is present in a variety of plants, notably berry fruit, and has emerged as a promising chemotherapeutic molecule due to its health benefits, especially in cancer, type 2 diabetes, cardiovascular and neurological diseases. The diverse biological effects of resveratrol refer to its ability to target many intracellular molecules, mainly through the activation of sirtuins, a class of NAD+-dependent deacetylases that affects multiple transcription factors and other protein targets. To investigate other possible mechanisms of action of Resveratrol without involvement of gene activation in the liver, the most important organ of insulin resistance in type 2 diabetes.

Material and methods: Hepatocytes were isolated from 24h starved rats according to the method of Berry and Friend. They were perfused at 37°C with Krebs-harb-calcium-saturated with O2/CO2 at a flow rate of 5 ml/min. Saturating concentrations of dihydroxyacetone (DHA) (0; 0.15; 0.30; 0.60; 1.20; 2.40; 4.80 mM) were used as exogenous substrate, in the presence or absence of 10 µM Resveratrol, to get seven consecutive steady states. Glucose, pyruvate and lactate concentrations were measured in cell perfusate for each steady state. We also studied the direct effect of Resveratrol on oxygen consumption rate (Jo2) using mitochondria isolated by differential centrifugation from livers of fed Wistar rats. Jo2 was measured polarographically at 37°C using a Clark-type oxygen electrode, with either glutamate/malate (GM) or succinate/ malate (SM) as energy substrates of complex I or II, respectively.

Results: In perfused hepatocytes, Resveratrol (10 µM) inhibited hepatic glucose output (Jg) by 28% and glycolysis (Jo2), determined by the addition of lactate+pyruvate, by 22% (DHA 2.4 mM; p<0.005). According to these results, we obtained an inhibition of total DHA metabolic flux (Jo2, glucose+1+P) by 25% (p<0.005) and a decrease of cytosolic NADH/NAD+ redox state, estimated as the lactate/pyruvate ratio, of nearly 25% as well (p<0.005). Resveratrol did not significantly affect the state 4 of respiration whatever the respiratory substrates used. On the contrary, the flavonoid inhibited the phosphorylating state 3 (in presence of ADP) by 15% with either substrate.

Conclusion: Resveratrol, a potent antioxidant flavonoid, is recently investigated for its therapeutic and preventive potential in age-related diseases like type 2 diabetes. For the first time we demonstrate that this compound exerts direct effects upon hepatic metabolism, i.e. inhibition of hepatic gluconeogenesis and cell respiration. This acute response could be beneficial for the treatment of such metabolic disorders.

Supported by: Junta de Castilla y León, Spain

893

A prescribed Chinese medicine improves glucose profile and ameliorates oxidative stress in GK rats fed with high fat diet

L. Wu1, X. Gao2;

1. *Geriatrics, 2Endocrinology & Metabolism, Fudan University, Shanghai, China.*

Background: The intrinsic anti-oxidative defence system of pancreatic β cells is fragile and oxidative stress is an underlying mechanism of β cell dysfunction. High-fat diet increases oxidative stress and exacerbates hyperglycemia in GK rat. We previously observed the prescribed traditional Chinese medicine preparation “Qing Huo Yi Hao” (QHYH) decreased urinary micro-albumin excretion in type 2 diabetic patients and also demonstrated its anti-oxidative activity by electron paramagnetic resonance. Recently we confirmed that QHYH protect endothelial cells from high glucose induced ROS production. So we hypothesized that QHYH might also protect β cell and improve glucose profile. We use GK rats fed with high-fat diet treated by QHYH to determine whether QHYH will improve glucose metabolism and ameliorate oxidative stress.

Materials and methods: 4-week-old male GK rats were given high fat diet (4.8kcal/g, 52% of the energy from fat) and divided randomly into 2 groups: QHYH group (n=10), rats were administered QHYH solution twice a day (3ml/Kg/d); and control (HFD) (n=10). Meanwhile, rats (ND) (n=10) fed normal chow (3.2kcal/g, 12% of the energy from fat) as normal control. Blood glucose and glycated serum protein (GSP) concentrations were measured every 4 week. IPGTT were done in 5 rats of each group at 4th and 16th week. Serum MA concentration and activities of antioxidant enzymes were measured at the 4th and 16th week. Rats were sacrificed at the end of 16th week. Pancreas were taken out for morphological studies by immunohistochemistry to quantitatively determine β cell mass and relative volume. Nitrotyrosine and 8OHdG staining was also done.

Results: Of the QH group, fasting glucose level was significantly lower at 4th and 8th week(Fig 1A) , non-fasting blood glucose at the 4th week (1B) and GSP at the 12th week(1C) than HFD group. QHYH improved glucose tolerance by decreasing blood glucose level markedly at 15’ and 30’ after glucose load at the 4th week (1D). QHYH markedly decreased serum MDA concentration(1F), increased serum CAT (1H) and SOD (1I) activities compared to HFD group only at the 4th week, however, GSH-Px activity(1G)was also markedly decreased. At the 16th week, neither glucose profile, nor glucose tolerance, nor serum MDA level or antioxidant enzyme activities was markedly different. Furthermore, in morphometry study, QHYH intervention did not restore the significant decrease of both beta cell mass and relative volume induced by high fat diet (ND vs HFD vs QH: 3.31±1.07mg vs 1.48±1.24mg vs 2.33±2.48mg, 27.6%±4.27% vs 19.4%±1.14% vs 18.1%±3.08%), nor with NT and 8OHdG staining.

Conclusions: QHYH improved glucose profile (48k weeks) and ameliorate oxidative stress (4 weeks) in GK rats fed with a high fat diet, which might be compromised by chronic glucotoxicity to pancreatic β cells.
894

Initial treatment with metformin + colesevelam provides greater glycemic control than metformin alone in Hispanic patients with type 2 diabetes mellitus

E. Hernandez-Triana1, W.T. Garvey2, R.B. Goldberg3, Y. Handelman4, V.A. Fonseca5, M.R. Jones6, S.L. Abby7, M. Markiewicz8, X. Jun9, S. Misra10, S. Nagendra10, J. Rosenstock10, 1Endocrine Research Institute, Universidad del Rosario, Bogota, Colombia, 2UAB Diabetes Research and Training Center, University of Alabama at Birmingham, USA, 3University of Miami Miller School of Medicine, USA, 4Metabolic Institute of America, Tarzana, USA, 5Tulane University Health Sciences Center, New Orleans, USA, 6Daichi Sankyo, Inc., Parsippany, USA, 7Daichi Sankyo Pharma Development, Edison, USA, 8Dallas Diabetes and Endocrine Center at Medical City, Dallas, USA.

Background and aims: Colesevelam is indicated for glycemic control and LDL-C lowering in patients with type 2 diabetes mellitus (T2DM) and hypercholesterolemia, respectively. A 16-week (wk), randomized, double-blind, placebo-controlled, multinational study evaluated the effect of initial therapy with metformin + colesevelam in drug-naïve patients with T2DM.

Materials and methods: This post-hoc analysis evaluated the efficacy of metformin + colesevelam in a subpopulation of Hispanic patients (those self identified enrolled in Colombia, Mexico, and the US) included in the 16-wk study. Drug-naïve adults with T2DM (HBA1c 6.5%-10.0%), LDL-C ≥2.6 mmol/L, and triglycerides (TG) <5.7 mmol/L were randomized 1:1 to metformin + colesevelam 3.75 g/d or metformin + placebo. Metformin was initiated at 850 mg/d and was uptitrated at Wk 2 to 1700 mg/d. Efficacy parameters included change in HBA1c (primary) and LDL-C (secondary) from baseline to Wk 16. All efficacy analyses were performed with last observation carried forward at Wk 16.

Results: In total, 173 Hispanic patients were treated with metformin + colesevelam (n=85) or metformin + placebo (n=88). Mean baseline HBA1c was 7.7% (metformin + colesevelam) and 7.6% (metformin + placebo). At Wk 16, the mean change from baseline in HBA1c was significantly greater with metformin + colesevelam vs metformin + placebo (-1.2% vs -0.8%; treatment difference [TD]: -0.4%; P=0.001), resulting in significantly more patients achieving HBA1c <7.0% (75% vs 56%; P=0.02). Metformin + colesevelam resulted in significantly greater mean reductions in LDL-C vs metformin + placebo (-22.8% vs -3.4%; TD: -19.4%; P<0.0001), resulting in significantly more patients achieving LDL-C <2.6 mmol/L (49% vs 14%; P<0.0001). There were significant LS mean changes from baseline with metformin + colesevelam vs metformin vs metformin in non-HDL-C (-13.6% vs -3.3%; TD: -10.3%; P<0.0001), total cholesterol (-9.1% vs -1.2%; TD: -7.9%; P<0.0001), total cholesterol /9.7% vs 5.4%; TD: 4.2%; P=0.01), and apoB (-11.4% vs -1.7%; TD: -9.8%; P<0.0001). Overall, metformin + colesevelam was well tolerated (Table).

Conclusion: Metformin + colesevelam may be an appropriate initial treatment option to improve glycemic and lipid control in Hispanic patients with T2DM.
PS 82 Conventional oral agents

896
Effects of RSG/MET FDC on glycaemic control and BMD after 80 weeks of treatment in drug-naive type 2 diabetes mellitus subjects
A.J. Nino1, J. Bilezikian1, J. Borges1, P.L. Adams1, A.R. Jones1, A. Acusta1, P. Amberly1, A. Cobiz1, L.A. Fitzpatrick1;
1MDC CVM, GlaxoSmithKline, King of Prussia, USA, 2College of Physicians & Surgeons, Columbia University, New York, USA, 3Clínica de Endocrinología e Metabología, Brasilia, Brazil, 4MDC CVM, GlaxoSmithKline, Harlow, United Kingdom, 5Biopharm R&D, GlaxoSmithKline, King of Prussia, USA.

Background and aims: Avandamet is a fixed-dose combination tablet comprised of rosiglitazone (RSG) and metformin (MET), which have complementary modes of action. Clinical studies have suggested that earlier use of combination therapy may improve long-term glycemic control. The purpose of this study (CT.gov NCT00386100) was to assess if RSG/MET significantly lowers A1c compared to MET alone, and if glycemic effects attained with AVM are durable over 80 weeks. A bone sub-study was added to this trial to further investigate the effects of RSG/MET on bone in light of an increased fracture rate in female subjects who received RSG in the ADOPT study. Presently, understanding of the clinical significance of these findings is incomplete, and the mechanism(s) for the observed increase in fractures are uncertain.

Materials and methods: In this double-blinded, randomized study, RSG/MET was compared to MET in drug-naive T2DM subjects with A1c ≥7.5% to ≤10.5%. Subjects (n=688) were randomized to either RSG/MET 4/500mg (max daily dose, 8/2000mg) or MET 500mg (max dose, 2000mg) and were assessed for 80 weeks. Doses were titrated at 4-week intervals up to Week 20 (unless mean daily glucose was <100mg/dL) and at 12-week intervals from Weeks 22 to 30 (unless A1c ≤5.6%). BMD by DXA at lumbar spine, total hip, femoral neck, trochanter, distal radius, and total body were assessed at Weeks 0, 20, 56 & 80.

Results: RSG/MET (-1.9%) was superior to MET (-1.4%) with respect to mean change from baseline A1c at Week 80 (0.50%, P<0.0001). RSG/MET showed significant improvements in insulin sensitivity (HOMA-%S) at 80 weeks compared to MET alone (% treatment difference: 31.1%, P<0.0001). There were significantly greater reductions in fasting insulin, c-peptide, and free fatty acids for RSG/MET vs MET. No statistically significant between-group BMD reductions occurred in femoral neck, distal radius, or total body. Significant between-group BMD changes at Week 80 occurred at: lumbar spine in the overall, total female, and post-menopausal female groups; trochanter in the overall and total female groups; and total hip in all subgroups except post-menopausal females. MET alone was not associated with significant bone loss for the duration of the trial. Both agents were generally well-tolerated: withdrawals due to an AE occurred in 7% (25/344) and 5% (13/334) of RSG/MET and MET subjects. There were a total of nine on-therapy fractures (5 for RSG/MET, 4 for MET) reported as AE/SAEs. In the overall study, there were no unexpected adverse events.

Conclusion: RSG/MET significantly reduced A1c vs MET and maintained glycemic control over 80 weeks. These data confirm that RSG/MET is superior to MET in improving insulin sensitivity in drug-naive subjects with T2DM. The observed BMD changes may be relevant to fracture risk in this population.

Supported by: GlaxoSmithKline

897
Efficacy and safety of repaglinide and metformin combination therapy compared to repaglinide monotherapy in Chinese oral anti-diabetic drug (OAD) naïve type 2 diabetic patients
W. Wang1, G. Ning1, Q. Su1, J. Liu1, R. Bu1, AGE3705 Study Group; 1Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, 2Shanghai Jiaotong University Affiliated Xinhua Hospital, Shanghai, 3The First Affiliated Hospital of Nanchang University, Nanchang, 4Wuxi People's Hospital, Wuxi, China.

Background and aims: The ADA and EASD recommend early initiation of combination therapy when HbA1c > 8.5%. Combination therapy with repaglinide and metformin is a good treatment option for type 2 diabetes. This trial was designed to investigate the efficacy and safety of this combination treatment compared to repaglinide monotherapy in Chinese OAD naïve type 2 diabetic patients with HbA1c > 8.5%.

Materials and methods: This was a 16-week, open-label, multicentre, randomised, active-controlled, parallel study involving 17 sites in China. Subjects were randomised 1:1 to receive either repaglinide in combination with metformin (1 mg/500 mg QD) or repaglinide alone (1mg, TID), and then underwent a 6-week dose titration period followed by a 10-week maintenance period. During the dose titration period, subjects whose fasting plasma glucose (FPG) ≥ 6.1 mmol/L without clinically unacceptable hypoglycaemic episodes continued to titrate the daily dose until the FPG target of 4.4-6.1 mmol/L or the maximum recommended daily dose (repaglinide/metformin 4mg/500mg, TID; repaglinide 4 mg, TID) was reached.

Results: A total of 432 subjects (female 313, mean ± SD: age 49.9 ± 10 years, BMI 24.3 ± 3.0 kg/m2, HbA1c 10.8 ± 1.5 %) were exposed to trial drugs. After 16-weeks treatment, the glucose control was improved in both groups. Mean HbA1c decreased from 10.9 ± 1.5 % at baseline to 6.4 ± 1.1 % at 16 weeks in the combination therapy group, and from 10.7 ± 1.5 % to 6.7 ± 1.0 % in the monotherapy group. The mean reduction was 4.5 ± 1.6 % point and 4.1 ± 1.6% point, respectively (P=0.002). HbA1c < 7 % was achieved in 78.9 % of the subjects with combination therapy, and in 69.6 % of those with repaglinide alone (P=0.010). Compared to monotherapy, the combination treatment also achieved a superior outcome in FPG, 2-hour postprandial plasma glucose, mean 7-point plasma glucose, and mean prandial plasma glucose increment (Table). No major hypoglycaemia was reported during the trial, and the overall hypoglycaemia rate was 2.04 events per subject year in the combination treatment group and 1.35 events per subject year in the monotherapy group (P=0.058). Adverse events reported during the trial were comparable between groups. At the end of the trial, mean weight gain was small in both groups; 0.2 ± 0.2 (mean ± SD) kg in the combination therapy group and 0.5 ± 0.2 kg in the monotherapy group, respectively (P=0.322).

Conclusion: Combination therapy with repaglinide and metformin and repaglinide monotherapy improved glucose control significantly in OAD naïve Chinese type 2 diabetic patients with baseline HbA1c > 8.5 %. However, combination treatment provided superior glycaemic control compared to repaglinide monotherapy. The safety profile was comparable between groups.

Comparison of glucose control parameters between groups

<table>
<thead>
<tr>
<th>Glucose control parameters</th>
<th>Baseline</th>
<th>After 16-week treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting plasma glucose</td>
<td>Repaglinide</td>
<td>+13.0 ± 3.20</td>
</tr>
<tr>
<td></td>
<td>Metformin</td>
<td></td>
</tr>
<tr>
<td>2-hour postprandial plasma glucose after breakfast</td>
<td>Repaglinide</td>
<td>+17.08 ± 3.54</td>
</tr>
<tr>
<td></td>
<td>Metformin</td>
<td></td>
</tr>
<tr>
<td>Mean 7 point plasma glucose</td>
<td>Repaglinide</td>
<td>+14.27 ± 3.93</td>
</tr>
<tr>
<td></td>
<td>Metformin</td>
<td></td>
</tr>
<tr>
<td>Mean prandial plasma glucose increment</td>
<td>Repaglinide</td>
<td>+4.13 ± 2.42</td>
</tr>
<tr>
<td></td>
<td>Metformin</td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01 between groups.

Supported by: Novo Nordisk (China) Pharmaceuticals Co., Ltd.

898
Metformin therapy and outcomes of viral C cirrhosis in type 2 diabetic patients. A retrospective study
G. Nkontchou1, P. Valensi1, M. Aout1, N. Ganne-Carrie1, V. Grando-Lemaire1, E. Vicaut1, J.-C. Trinchet1, M. Beaugrand1, E. Cosson1;
1Hepato-Gastro-Enterology, Jean Verdier Hospital, BONDY, 2Endocrinology-Diabetes:Nutrition, Jean Verdier Hospital, BONDY, 3Direction de la Recherche Clinique, Fernand Widal Hospital, Paris, France.

Background and aims: Insulin resistance seems to play a crucial role in the poor prognosis associated with overweight and obesity for viral C cirrhosis. The aim of the study was to retrospectively examine whether metformin therapy (which activates AMP kinase and decreases insulin resistance) may be associated with a better prognosis in patients with type 2 diabetes.

Materials and methods: Between 1988 and 2007, 100 consecutive diabetic patients, 53 men, 61±11 years old, body mass index 27.5 kg/m2, with ongoing viral C infection and cirrhosis were included in a screening program for...
900
Comparison of the effects of pioglitazone vs. placebo when given in addition to standard insulin treatment in patients with type 2 diabetes mellitus requiring haemodialysis: interim results from the PIOren study
J. Galle, V.H.R. Schmidt, C. Junker, T. Forst, A. Pfützner
1Klinikum Lüdenscheid, 2IKFE - Institute for Clinical Research and Development, Mainz, Germany.

Background and aims: Patients with type 2 diabetes mellitus and clinically significant kidney disease are usually treated with insulin. However, the modified pharmacokinetic insulin profile and vascular insulin resistance in patients with delayed renal insulin elimination frequently impairs a successful therapy and, additionally, results in increased oxidative stress and cardiovascular risk. Therefore, the aim of this study was to investigate the effect of the insulin sensitizer pioglitazone (PIO) vs. placebo treatment on total daily insulin requirements and the overall metabolic status in type 2 diabetes patients with renal failure requiring hemodialysis.

Materials and methods: The effect of pioglitazone (30 mg) vs. placebo was explored by an interim analysis of this multi-centre, randomized, double-blind study in 23 patients with Type 2 diabetes and kidney failure and dialysis therapy (16 male, 7 female, age (mean±STD): 68.2±8.8 yrs., HbA1c: 7.5±0.8 %, disease duration: 11.8±8.5 yrs.). Efficacy parameters collected before dialysis and after an overnight fast at baseline and after 6 months were: total daily insulin dose, HbA1c, fasting blood glucose, adiponectin, LDL, triglycerides, NT-proBNP and ultra filtrate volume.

Results: Application of PIO resulted in a significant decrease in insulin resistance as indicated by a reduction in daily insulin dose by 32 % (p<0.05 vs. baseline; p<0.05, n.s.), and clinically relevant improvements in HbA1c (-0.62±0.75 %, p<0.01; placebo: +0.57±1.08 %, n.s.), fasting glucose (-56±73 mg/dl, p<0.05 vs. +20±35 mg/dl, n.s.), adiponectin (+6.9±8.4 mg/l, p<0.01 vs. +1.0±8.5 mg/l, n.s.), and triglycerides (-111±178 mg/dl, p<0.05 vs. +65±70 mg/dl, p<0.05). Slight improvements or no changes were seen with LDL, HbA1c, NT-proBNP and the ultra filtrate volume. The absolute values at baseline and endpoint are provided in the Table.

Conclusion: Addition of pioglitazone to insulin in hemodialysis patients was well tolerated. Without changing the ultra filtrate volume, treatment with pioglitazone in addition to insulin in patients with late stage kidney failure requiring hemodialysis was associated with a lower insulin dose and with an improved glycaemic control and lower triglyceride levels, indicating a potential impact of pioglitazone on the long-term disease prognosis in late stage diabetes.

Observation parameters at baseline and endpoint (*: p<0.05 vs. baseline)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PIO (n = 14)</th>
<th>Placebo (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c [%]</td>
<td>7.6±1.0</td>
<td>7.0±1.0</td>
</tr>
<tr>
<td>Glucose [mg/dl]</td>
<td>178±61</td>
<td>122±32</td>
</tr>
<tr>
<td>Adiponectin [mg/l]</td>
<td>10.6±4.9</td>
<td>16.9±7.3</td>
</tr>
<tr>
<td>HDL [mg/dl]</td>
<td>32±10</td>
<td>36±10</td>
</tr>
<tr>
<td>LDL [mg/dl]</td>
<td>99±34</td>
<td>117±40</td>
</tr>
<tr>
<td>Triglycerides [mg/dl]</td>
<td>333±237</td>
<td>222±187</td>
</tr>
<tr>
<td>NT-proBNP [pg/mL]</td>
<td>6028±10144</td>
<td>4470±16294</td>
</tr>
<tr>
<td>Ultra filtrate volume [ml]</td>
<td>2402±920</td>
<td>2576±1021</td>
</tr>
</tbody>
</table>

901
PIOcom study interim analysis: Pioglitazone added to insulin treatment reduces chronic systemic inflammation in patients with type 2 diabetes
B. Stratmann1, T. Forst1, A. Pfützner2, J. Müller2, D. Tschope2, M. Hanefeld2, 1Heart and Diabetes Center, Bad Oeynhausen, 2IKFE - Institute for Clinical Research and Development, Mainz, Germany.

Background and aims: Combination therapy with insulin glargine and metformin is a common therapy in type 2 diabetes. The purpose of the PIOcom study was to investigate, whether use of pioglitazone instead of metformin has additional impact on the underlying disease pathophysiology, and in particular on chronic systemic inflammation (CSI). CSI leads to microvascular complications, the major cause of mortality in patients with type 2 diabetes.
We randomised 188 type 2 diabetic patients to titrate 2 mg acarbose (p<0.05), even if no differences between the two treatments were recorded. Acarbose reduced HOMA index after 3 and 7 months (p<0.05, and p<0.01, respectively), while no modifications were registered in controls; moreover HOMA index obtained with acarbose was significantly lower than the value in control group (p<0.05). Neither of treatments influenced HDL-cholesterol; instead acarbose significantly reduced total cholesterol (p<0.05), and LDL-cholesterol (p<0.05) after 7 months compared to baseline, and with control group (p<0.05). No variation of triglycerides (Tg) was reached in controls, while acarbose decreased Tg value after 3, and 7 months compared to baseline (p<0.05, and p<0.01, respectively), and with controls (p<0.05). We did not observe any variation of s-ICAM, sVCAM-1, IL-6, and HS-CRP in controls, while there was a reduction of these parameters with acarbose (p<0.05 for all), even if no differences were obtained between the two groups. No variation of s-E-selectin was recorded in neither of groups. Regarding OFL, there was a decrease of blood glucose levels in both groups comparing OFL administered at baseline, and at the end of the study. There was an improvement of all parameters compared to placebo (p<0.05 for all), even if acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Conclusion: Acarbose gave a faster and better improvement of glycemic, lipid and inflammatory parameters compared to placebo. Regarding OFL, acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Materials and methods:
We randomised 188 type 2 diabetic patients to titrate acarbose till 100 mg three times a day or placebo. We evaluated: body mass index (BMI), glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), post-prandial plasma glucose (PPI), lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides), tumor necrosis factor-α (TNF-α), resistin (r), retinol binding protein-4, adiponectin (ADN), high-sensitivity C reactive protein (CRP), IL-6, and Hs-CRP in controls, while there was a reduction of these parameters with acarbose (p<0.05 for all), even if no differences were recorded between the two groups. No variation of s-ICAM, sVCAM, IL-6, HS-CRP, and s-E-selectin was registered in both groups, even if acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Background and aims:
To evaluate the effects of acarbose compared to placebo on inflammatory biomarkers in a randomised, double-blind, placebo-controlled trial.

Materials and methods:
We randomised 188 type 2 diabetic patients to titrate acarbose till 100 mg three times a day or placebo. We evaluated: body mass index (BMI), glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), post-prandial plasma glucose (PPI), lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides), tumor necrosis factor-α (TNF-α), resistin (r), retinol binding protein-4, adiponectin (ADN), high-sensitivity C reactive protein (CRP), IL-6, and Hs-CRP in controls, while there was a reduction of these parameters with acarbose (p<0.05 for all), even if no differences were recorded between the two groups. No variation of s-ICAM, sVCAM, IL-6, HS-CRP, and s-E-selectin was registered in both groups, even if acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Conclusion:
Acarbose gave a faster and better improvement of glycemic, lipid and inflammatory parameters compared to placebo. Regarding OFL, acarbose had a longer effect in reducing inflammatory parameters compared to controls.

903

Acarbose compared to placebo on insulin resistance biomarkers in a double-blind, placebo-controlled trial.

Background and aims:
To evaluate the effects of acarbose compared to placebo on insulin resistance biomarkers in a randomised, double-blind, placebo-controlled trial.

Materials and methods:
We randomised 188 type 2 diabetic patients to titrate acarbose till 100 mg three times a day or placebo. We evaluated: body mass index (BMI), glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), post-prandial plasma glucose (PPI), lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides), tumor necrosis factor-α (TNF-α), resistin (r), retinol binding protein-4, adiponectin (ADN), high-sensitivity C reactive protein (CRP), IL-6, and Hs-CRP in controls, while there was a reduction of these parameters with acarbose (p<0.05 for all), even if no differences were recorded between the two groups. No variation of s-ICAM, sVCAM, IL-6, HS-CRP, and s-E-selectin was registered in both groups, even if acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Conclusion:
Acarbose gave a faster and better improvement of glycemic, lipid and inflammatory parameters compared to placebo. Regarding OFL, acarbose had a longer effect in reducing inflammatory parameters compared to controls.

Supported by: Takeda Pharma

902

Effect of acarbose on inflammatory parameters at baseline and after an oral fat load: a double-blind, placebo controlled trial.

Background and aims:
To evaluate the effects of acarbose compared to placebo on inflammatory biomarkers in diabetic patients at baseline and after a standardized oral fat load (OFL).

Materials and methods:
A multicenter, randomised, double-blind, controlled study was conducted; 188 type 2 diabetic patients were randomised to titrate acarbose till 100 mg three times a day or placebo. We evaluated: body mass index (BMI), glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), post-prandial plasma glucose (PPI), lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides), tumor necrosis factor-α (TNF-α), resistin (r), retinol binding protein-4, adiponectin (ADN), high-sensitivity C reactive protein (CRP), IL-6, and Hs-CRP in controls, while there was a reduction of these parameters with acarbose (p<0.05 for all), even if no differences were recorded between the two treatments were recorded. Acarbose significantly reduced HOMA index compared to baseline after 3, and 7 months (p<0.05, and p<0.01, respectively), and with controls after 7 months (p<0.05). Acarbose significantly decreased total cholesterol (p<0.05), triglycerides (Tg) (p<0.01), and LDL-cholesterol (p<0.05) after 7 months compared to baseline, and with controls (p<0.05). We did not observe any variation of TNF-α in neither of groups. We obtained a reduction of r, and HS-CRP after 7 months with acarbose (p<0.05, for both) but not with placebo, even if no differences were recorded in group to group comparison. Moreover, acarbose, but not placebo, gave a decrease of RBP-4, and an increase of ADN compared to baseline (p<0.05 for both), and the values obtained at 7 months were significantly better than the values obtained in control group (p<0.05). Regarding OFL, there was a decrease of blood glucose levels in both groups during OFL administration at the end of the study compared to OFL at baseline. There was an improvement of all lipid parameters in acarbose group, while there was only a decrease of Tg in control group. A reduction of RBP-4, TNF-α, and HS-CRP,
and an increase of ADN were observed in both groups, even if acarbose had a longer effect in reducing inflammatory parameters during OFL. We reached an increase of M value, and TGR after 7 months (p<0.05 for both) with acarbose, but not with placebo.

Conclusion: We reached a faster and better improvement of glycemic and lipid profile with acarbose compared to placebo. Acarbose also improved insulin resistance biomarkers, while placebo did not decrease these parameters. Regarding OFL, acarbose had a longer effect in improving insulin resistance compared to control group.

904

Efficacy of miglitol on postprandial glucose control assessed by continuous glucose monitoring

S. Nagasaka1, T. Tsuchita2, N. Takahashi1, D. Sekizawa1, N. Saito1, K. Okada1, I. Kusaka1, H. Yagyu1, H. Ogata1, S. Ishibashi1, 1Endocrinology and Metabolism, Jichi Medical University, Shimotsuke, 2Graduate School of Education, The University of Tokyo, Bunkyo-ku, Japan.

Background and aims: α-glucosidase inhibitors improve postprandial glucose control, but their precise efficacy has not been evaluated by continuous glucose monitoring (CGM). The present study was undertaken to reveal efficacy of miglitol on postprandial glucose control.

Materials and methods: Nineteen diabetic subjects (4 with type 1 and 15 with type 2; with ages of 58±11yrs, BMI 22.8±3.2kg/m², HbA1c 9.1±2.5%, glycated albumin 24.5±6.3%, and 1, 5-anhydroglucitol 6.5±3.9μg/ml, mean±SD, respectively) were studied with CGM on 2 consecutive days. By a cross-over manner, their usual therapies (10 with multiple insulin injections, 4 with oral hypoglycemic agents, and the remaining 5 with diet therapy alone) were rendered on one day, and miglitol 150mg/day was additionally administered on another day. These measurements were performed while the patients were admitted and given controlled diet comprising 50% of energy intake as carbohydrate.

Results: Averaged glucose levels on their usual therapies were 137±49 (preprandial), a peak of 177±49 observed at 60 min postprandial, and then the levels were gradually decreased to 151±57 mg/dl (at 180 min). The glucose levels on miglitol administration were 131±43 mg/dl (preprandial), and thereafter no apparent peak was observed until 180 min (P=0.0015 by two-way repeated-measures ANOVA, Figure). There were also significant differences in glucose levels from 20 to 120 min postprandial between these two situations. On their usual therapies, preprandial glucose levels at breakfast, lunch, and supper were 136±52, 136±48, and 137±52 mg/dl, and maximal postprandial levels were 181±49 (at 65), 160±51 (at 65), and 192±42 mg/dl (at 55), respectively. By miglitol administration, postprandial glucose levels displayed essentially similar pattern as shown in Figure, so that the efficacy of miglitol was most evident after dinner. Some of the measures of glycemic variability assessed by CONGA (Diabetes Technol Ther 7: 253, 2005) were improved by miglitol administration.

Conclusion: Postprandial glucose levels were significantly reduced from as early as 20 min and until 120 min by miglitol administration. The efficacy was most evident after dinner.

905

Gliclazide blocks cytotoxic effect of hydrogen peroxide

A. Sliwinska1, A. Rogalska1, Z. Jozwiak1, J. Kasznicki1, J. Drzewoski1; 1Department of Internal Disease, Diabetology and Clinical Pharmacology, Medical University of Lodz, Zgorze, 1Department of Thermotherobiology, University of Lodz, Poland.

Background and aims: Apoptosis, a programmed cell death, is needed to maintain homeostasis of the cell under physiological condition. However, this process can be induced under pathological conditions such as an increase in reactive oxygen species (ROS) production in the mitochondria. It is believed that ROS-induced apoptosis is responsible for loss of beta cell mass in diabetes. It was found that gliclazide - a member of sulfonylureas group- may protect pancreatic beta cells against apoptosis induced by oxidative stress. The aim of our study was to explore the ant apoptotic action of gliclazide in vitro.

Materials and methods: Evaluation of the impact of gliclazide on apoptosis induced by hydrogen peroxide of pancreatic and mammary gland tumor cells (PANC-1 and HS578T) was assessed by the 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) colorimetric assay and the neutral red uptake (NRU) cytotoxicity assay. The effect of gliclazide on the level of ROS was measured by the 2’’7’’-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay. N-acetylcysteine (NAC), that possesses antioxidant properties similarly to gliclazide, was used as a control.

Results: We observed that hydrogen peroxide induced a concentration- and time-dependent loss of viability of PANC-1 and HS578T cells. Gliclazide significantly diminished cytotoxic effect of hydrogen peroxide on both cell lines. It was also found that either gliclazide and NAC inhibited generation of ROS in both cell lines. Interestingly, there were not significant differences in inhibition of ROS generation between gliclazide and NAC after 24 h incubation. However, NAC was more sufficient after 72 h incubation than gliclazide (Figure).

Conclusion: Our findings indicate that gliclazide may prevent cells from cytotoxic effect of hydrogen peroxide by decreasing the generation of ROS. These results support previous observations suggesting protective effect of this antidiabetic drug on beta-cells loss. However, further studies are needed to evaluate the mechanism(s) of protective effects of gliclazide against oxidative stress induced apoptosis.

Supported by: Medical University of Lodz 503 -0077-9
PS 83 Natural history of type 2 diabetes mellitus management

906

Uncontrolled type 2 diabetes treated with oral hypoglycaemic agents (OHA): therapeutic behaviour in primary care in France

B. Detournay1; B. J. Balkau2; S. Halimi2; J.-F. Bickel2; I. Chartier1; E. Tocque2; E. Amelineau1; 1CEMKA-EVAL, Bourg La Reine, 2Inserm U780-IFR69, Villejuif, 3CHU Michalon, Grenoble, 4Hôpital Civil de Strasbourg, 5AIXIAL Pharma, Levallois-Perret, 6AstraZeneca, Rueil Malmaison, 7Bristol-Myers Squibb, Rueil Malmaison, France.

Background and aims: Current diabetes guidelines recommend that treatment should be intensified according to the HbA1c level. In France, HbA1c thresholds vary according to treatment patterns: mono-, bi- or tritherapy with OHA or with insulin. Recent epidemiologic data have confirmed that intensified therapies are still underused. The study objectives were: to identify the proportion of type 2 diabetic (T2D) patients with intensified treatment among those who needed such intensification according to HbA1c levels, to measure the time to intensification, to identify the factors related with this delay.

Materials and methods: A retrospective analysis was performed on a cohort of T2D patients from a large computerised longitudinal database in primary care. Patients analyzed were adult T2D patients, treated with OHA without insulin therapy or GLP-1 mimetic. Time to treatment intensification was measured from the last of two successive HbA1c levels above the recommended thresholds in France (6.5% for patients treated with a monotherapy; 7.0% for bitherapy and 8.0% for tri and quadratherapy). Treatment intensification was defined as an increase in the number of drug classes or an increase of the class being used or the introduction of insulin therapy or GLP-1 mimetic. Switches to a different class were not considered. Predictive factors were identified by Cox regression multivariate models.

Results: In the overall sample of 17,493 patients treated with OHA without insulin therapy or GLP-1 mimetic, 3,118 (18%) were identified as requiring a treatment intensification. Such intensification was performed respectively for 7.0% for bitherapy and 8.0% for tri and quadratherapy). Treatment intensification was defined as an increase in the number of drug classes or an increase of the class being used or the introduction of insulin therapy or GLP-1 mimetic. Switches to a different class were not considered. Predictive factors were identified by Cox regression multivariate models.

Conclusion: With regard to current guidelines in T2D France, treatment intensification is still underused in primary care in France. Adherence to the guidelines appears to be mainly restrained by the age of the patient, with older patients being prescribed less frequently intensive treatment. Future guidelines should consider those points.
All analyses were stratified by patient’s age at the time of T2DM diagnosis (younger <65 years) vs. older ≥65 years). Group differences were assessed with a t-test for mean, rank test for median and χ² test for proportions.

Results: Of the 2,028 patients provided by the physicians, 1,023 were younger (mean age=51 years; mean most recent HbA₁c=6.8%; 61% males) and 1,005 were older (mean age=74 years; mean most recent HbA₁c=6.8%; 54% males). Compared to younger patients, older patients had a longer duration of T2DM (median 25 vs. 18 months), lower BMI (29 vs. 31 kg/m²), and a higher prevalence of cardiovascular conditions (18% vs. 5%) and microvascular complications (15% vs. 4%) (all p<0.001). The proportion of patients with most recent HbA₁c ≥6.5% (UK treatment target ≥6.5%) did not differ significantly between older and younger patients (38% vs. 39%, respectively). The most commonly reported reason for not initiating an AHA by physicians was related to mild hyperglycaemia and was not different between groups (86% for older and 88% for younger patients). Compared to younger patients, factors related to AHAs (46% vs. 38%) and issues with co-morbidities/polypharmacy (33% vs. 19%), both including safety-related issues, were more commonly reported reasons for not initiating AHA therapy in older patients (all p<0.001). The reported patient-related reasons were not different between older (41%) and younger (43%) patients.

Conclusion: Among patients who were untreated with an AHA for ≥6 months following diagnosis of T2DM, nearly 60% had a most recent HbA₁c above their goal (21% vs. 9% more). Mild hyperglycaemia was the most-reported reason by physicians for non-treatment in all patients, regardless of age. AHA-related factors, e.g., “may cause hypoglycaemia”, were more frequently reported by physicians as reasons for non-treatment among older patients. Given older patients have higher prevalence of vascular complications, delay in diabetes treatment for this population may have greater health implications than for younger patients.

Supported by: Merck

909

The likelihood of initiating insulin is increased in UK patients with newly diagnosed type 2 diabetes who received initial monotherapy with sulphonylurea compared with metformin

P. Mavros1, C. Zhao1, Q. Zhang1, S.S. Engel2;
1Global Outcomes Research, Merck Sharp & Dohme, Corp., Whitehouse Station, USA, 2Merck Research Laboratories, Merck Sharp & Dohme Corp., Rahway, USA.

Background and aims: Despite initial treatment with a single antihyperglycaemic agent (AHA), the addition of other AHAs including insulin is ultimately required in many patients. This study examined the association of initial oral AHA monotherapy choice with the likelihood of subsequent addition of insulin among patients with newly diagnosed type 2 diabetes (T2DM) in the UK.

Materials and methods: This retrospective cohort study used a sample from the MediPlus database of general practitioners in the UK. Patients with newly diagnosed T2DM during 1992 to 2008 who were ≥30 years old at the first T2DM diagnosis and who received either metformin (MET) or sulphonylurea (SU) as initial monotherapy in 1992 or beyond were included. The follow-up period lasted to the end of 2008 or the patients’ latest data available. The time from initial oral AHA monotherapy (MET or SU) to insulin initiation was estimated based on prescription records. An adjusted Cox proportional hazards regression was conducted to evaluate the likelihood of insulin addition (21% vs. 9%) and shorter time to insulin initiation (median 61 years), had lower BMI (mean 28 vs. 33 kg/m²), and a higher prevalence of cardiovascular conditions (18% vs. 5%) and microvascular complications (15% vs. 4%) (all p<0.001). The proportion of patients with most recent HbA₁c ≥6.5% (UK treatment target ≥6.5%) did not differ significantly between older and younger patients (38% vs. 39%, respectively). The most commonly reported reason for not initiating an AHA by physicians was related to mild hyperglycaemia and was not different between groups (86% for older and 88% for younger patients). Compared to younger patients, factors related to AHAs (46% vs. 38%) and issues with co-morbidities/polypharmacy (33% vs. 19%), both including safety-related issues, were more commonly reported reasons for not initiating AHA therapy in older patients (all p<0.001). The reported patient-related reasons were not different between older (41%) and younger (43%) patients.

Conclusion: Among patients who were untreated with an AHA for ≥6 months following diagnosis of T2DM, nearly 60% had a most recent HbA₁c above their goal (21% vs. 9% more). Mild hyperglycaemia was the most-reported reason by physicians for non-treatment in all patients, regardless of age. AHA-related factors, e.g., “may cause hypoglycaemia”, were more frequently reported by physicians as reasons for non-treatment among older patients. Given older patients have higher prevalence of vascular complications, delay in diabetes treatment for this population may have greater health implications than for younger patients.

Supported by: Merck

910

Time to add-on medication use for patients with type 2 diabetes who failed metformin monotherapy

Y. Qiu1, A.Z. Fu1, L. Radican1;
1Merck Sharp & Dohme, Corp., Whitehouse Station, USA, 2Quantitative Health Sciences, Cleveland Clinic, USA.

Background and aims: Add-on medication regimens are recommended if target glycaemic goals for patients with type 2 diabetes (T2DM) are not achieved or sustained after initial metformin monotherapy. However, it is not clear how long it takes for additional treatment to be used after metformin monotherapy failure in clinical practice. This study was undertaken to address this question.

Materials and methods: The study cohort was selected from a large US electronic medical record database from 1/1/1997 to 12/31/2008. Included subjects had to be aged ≥218 years with a diagnosis of T2DM who had HbA₁c ≥7% or at least two fasting blood glucose levels of ≥126 mg/dL (7 mmol/L). Treatment failure was defined as HbA₁c ≥7% (index date) after metformin monotherapy for at least 6 months. Baseline data were extracted during 1 year prior to the index date. Time to add-on medication use was the time between the index date to the first add-on medication use during follow-up period and was evaluated for the overall cohort and for three individual AHAs: SU (7%–8%, 8%–9%, and >9%), MET (7%–8%, 8%–9%, and >9%), and a COX proportional hazard model was employed to determine baseline clinical and demographic characteristics associated with shorter time to add-on medication use (all p<0.05).

Conclusion: In clinical practice in the US, it takes nearly 16 months for T2DM patients with sub-optimal glycaemic level after initial metformin monotherapy to receive additional antihyperglycaemic therapies. There is room for improvement through disease management so that patients who fail metformin monotherapy and are eligible and appropriate for treatment intensification, receive add-on therapy sooner rather than later.

Supported by: Merck

911

Is three months sufficient to assess HbA₁c reduction in high-baseline patients? An analysis of HbA₁c time course after initiation of metformin alone or in combination with sitagliptin

S.S. Engel, H. Katzef, H. Wang, Q. Dong, R.B. Langdon, D.E. Williams-Herman, K.D. Kaufman, B. Goldstein; Merck Research Laboratories, Rahway, USA.

Background and aims: The ADA/EASD consensus algorithm for treatment of type 2 diabetes recommends that antihyperglycaemic (AHA) medications be added if target A1C levels are not achieved within 2-3 months. We examined whether this timeframe is adequate to assess the full response to a new course of therapy.

Materials and methods: The time course of change in A1C was analyzed in data pooled from 2 randomized, double-blind, multicenter studies of drug-naive patients treated for 30-31 weeks with metformin (MET) 2000 mg/day (up titrated during Weeks 0-4) as monotherapy (N=803) or in combination with sitagliptin 100 mg/day (SITA/MET) (N=807). The analysis determined each patient’s maximum A1C reduction ([ΔA1C]max) and the cumulative proportion of patients first achieving 95% of [ΔA1C]max at Weeks 6, 12, 18, and 30. It included all patients who completed treatment without rescue (n=514 and 538 in the MET and SITA/MET groups, respectively) and 3 subgroups composed of patients with baseline A1C ≤8.0% (n=253), >8.0-<9.5% (n=376), and ≥7.0% or at least two fasting blood glucose levels of ≥126 mg/dL (7 mmol/L). Treatment failure was defined as HbA₁c ≥7% (index date) after metformin monotherapy for at least 6 months. Baseline data were extracted during 1 year prior to the index date. Time to add-on medication use was the time between the index date to the first add-on medication use during follow-up period and was evaluated for the overall cohort and for three individual AHAs: SU (7%–8%, 8%–9%, and >9%), MET (7%–8%, 8%–9%, and >9%), and a COX proportional hazard model was employed to determine baseline clinical and demographic characteristics associated with shorter time to add-on medication use (all p<0.05).

Conclusion: In clinical practice in the US, it takes nearly 16 months for T2DM patients with sub-optimal glycaemic level after initial metformin monotherapy to receive additional antihyperglycaemic therapies. There is room for improvement through disease management so that patients who fail metformin monotherapy and are eligible and appropriate for treatment intensification, receive add-on therapy sooner rather than later.

Supported by: Merck

Discontinuing SU and initiating insulin detemir + sitagliptin: improved efficacy and similar safety vs. adding sitagliptin to a prior SU regimen. A TRANSITION™ trial subanalysis

K. Rašlová1, J. Liatků,1 T.V. Skjøth,1 J. Råstam,2 P.A. Hollanders,3 Metabolícke Centrum, Bratislava, Slovakia, 3Vascular Risk Modification Clinic, Cambridge, Canada, 1Novo Nordisk A/S, Copenhagen, Denmark, 3Baylor University Medical Center, Dallas, USA.

Background: Once-daily insulin detemir (IDet) is often prescribed for patients with T2D as add-on to OAD. IDet has not previously been evaluated in combination with a newer class of OAD, dipeptidyl peptidase-4 (DPP-4) inhibitors, which reduce enzymatic degradation of the incretin glucagon-like peptide-1 (GLP-1) and thereby enhance glucose-dependent insulin secretion. In this randomized, open-label, parallel group, 26-week trial of insulin-naïve T2D patients who were poorly controlled by a previous regimen with metformin (Met) ± sulphonylurea (SU) or other OADs, IDet was administered in combination with the DPP-4 inhibitor sitagliptin (SITA) as add-on to Met or Met + SU, if any. This was compared for efficacy and safety against SITA + Met in combination with the subjects’ prior SU regimens, if any, continued. This is a sub-group analysis which reports outcomes only for patients with pre-trial SU treatment regimens.

Materials and methods: This subgroup analysis is comprised of the 75% of subjects (n=80) in the IDet + SITA group and the 77% of subjects (n=85) in the SITA + SU group who had a pre-trial SU regimen (SITA + SU). Treatment groups comprised IDet + SITA as add-on to Met, with discontinuation of prior SU therapy, vs. SITA as add-on to Met + pre-trial SU. Results described herein are after 26 weeks’ treatment with once-daily IDet + SITA (100 mg QD) + Met (1000 mg) (IDet/SITA) with discontinuation of pre-trial SU vs. SITA + Met + SU (SU/SITA) (at each subject’s pretrial SU dose). A normal linear regression model was used to analyze HbA1c, body weight and BMI.

Results: Observed baseline A1c was 8.46 and 8.58%, with final mean estimated A1c of 7.23 and 7.63% for the IDet/SITA and SU/SITA groups, respectively. Estimated reductions in A1c, after baseline adjustment for covariates, were 1.29 and 0.88% (est. mean diff. = −0.40%; 95% CI = [−0.66; −0.15], p=0.002), for IDet/SITA and SU/SITA, respectively. FPG fell to 6.20 and 8.53 mmol/L from observed baselines of 9.61 vs. 9.79 mmol/L for the IDet/SITA and SU/SITA groups, respectively, with estimated reductions of 3.51 vs. 1.18 mmol/L (est. mean diff. = −2.34 mmol/L, 95% CI = [−3.00; −1.68], p=0.001). Body weight and BMI decreased in both subgroup treatment arms with no significant differences between groups (−1.10 vs. −1.42 kg, and −0.40 vs. −0.52 kg/m², p=NS, IDet/SITA vs. SU/SITA, respectively). No major hypoglycemia was reported. Minor hypoglycemia (PG <3.1 mmol/L) was low in both arms (0.58 and 0.70 estimated events/patient-year, Adjusted Rate Ratio = 0.84 [95% CI: 0.27, 2.65]; p=NS, IDet/SITA vs. SU/SITA, respectively). Final insulin dose was 0.59 U/kg at trial end.

Conclusion: The results of this subgroup analysis - improved A1c, FPG, low hypoglycemia and modest decreases in body weight and BMI in both arms - supports substitution of IDet/SITA for SU, or addition of IDet to SU + Met. Better glycemic control (i.e. lower A1c and FPG) was achieved for IDet/SITA compared to the SU/SITA arm among these pre-trial SU users with low incidence of hypoglycemia. Therefore, discontinuation of SU and substitution of once-daily IDet in combination with a DPP-4 inhibitor, SITA and Met, is a safe and more effective treatment option for insulin-naïve T2D patients, compared to adding SITA to an existing SU and Met regimen.

Supported by: Novo Nordisk

Discontinuing SU and initiating insulin detemir + sitagliptin: improved efficacy and similar safety vs. adding sitagliptin to a prior SU regimen. A TRANSITION™ trial subanalysis

K. Rašlová1, J. Liatků,1 T.V. Skjøth,1 J. Råstam,2 P.A. Hollanders,3 Metabolícke Centrum, Bratislava, Slovakia, 3Vascular Risk Modification Clinic, Cambridge, Canada, 1Novo Nordisk A/S, Copenhagen, Denmark, 3Baylor University Medical Center, Dallas, USA.

Background: Once-daily insulin detemir (IDet) is often prescribed for patients with T2D as add-on to OAD. IDet has not previously been evaluated in combination with a newer class of OAD, dipeptidyl peptidase-4 (DPP-4) inhibitors, which reduce enzymatic degradation of the incretin glucagon-like peptide-1 (GLP-1) and thereby enhance glucose-dependent insulin secretion. In this randomized, open-label, parallel group, 26-week trial of insulin-naïve T2D patients who were poorly controlled by a previous regimen with metformin (Met) ± sulphonylurea (SU) or other OADs, IDet was administered in combination with the DPP-4 inhibitor sitagliptin (SITA) as add-on to Met or Met + SU, if any. This was compared for efficacy and safety against SITA + Met in combination with the subjects’ prior SU regimens, if any, continued. This is a sub-group analysis which reports outcomes only for patients with pre-trial SU treatment regimens.

Materials and methods: This subgroup analysis is comprised of the 75% of subjects (n=80) in the IDet + SITA group and the 77% of subjects (n=85) in the SITA + SU group who had a pre-trial SU regimen (SITA + SU). Treatment groups comprised IDet + SITA as add-on to Met, with discontinuation of prior SU therapy, vs. SITA as add-on to Met + pre-trial SU. Results described herein are after 26 weeks’ treatment with once-daily IDet + SITA (100 mg QD) + Met (1000 mg) (IDet/SITA) with discontinuation of pre-trial SU vs. SITA + Met + SU (SU/SITA) (at each subject’s pretrial SU dose). A normal linear regression model was used to analyze HbA1c, body weight and BMI.

Results: Observed baseline A1c was 8.46 and 8.58%, with final mean estimated A1c of 7.23 and 7.63% for the IDet/SITA and SU/SITA groups, respectively. Estimated reductions in A1c, after baseline adjustment for covariates, were 1.29 and 0.88% (est. mean diff. = −0.40%; 95% CI = [−0.66; −0.15], p=0.002), for IDet/SITA and SU/SITA, respectively. FPG fell to 6.20 and 8.53 mmol/L from observed baselines of 9.61 vs. 9.79 mmol/L for the IDet/SITA and SU/SITA groups, respectively, with estimated reductions of 3.51 vs. 1.18 mmol/L (est. mean diff. = −2.34 mmol/L, 95% CI = [−3.00; −1.68], p=0.001). Body weight and BMI decreased in both subgroup treatment arms with no significant differences between groups (−1.10 vs. −1.42 kg, and −0.40 vs. −0.52 kg/m², p=NS, IDet/SITA vs. SU/SITA, respectively). No major hypoglycemia was reported. Minor hypoglycemia (PG <3.1 mmol/L) was low in both arms (0.58 and 0.70 estimated events/patient-year, Adjusted Rate Ratio = 0.84 [95% CI: 0.27, 2.65]; p=NS, IDet/SITA vs. SU/SITA, respectively). Final insulin dose was 0.59 U/kg at trial end.

Conclusion: The results of this subgroup analysis - improved A1c, FPG, low hypoglycemia and modest decreases in body weight and BMI in both arms - supports substitution of IDet/SITA for SU, or addition of IDet to SU + Met. Better glycemic control (i.e. lower A1c and FPG) was achieved for IDet/SITA compared to the SU/SITA arm among these pre-trial SU users with low incidence of hypoglycemia. Therefore, discontinuation of SU and substitution of once-daily IDet in combination with a DPP-4 inhibitor, SITA and Met is a safe and more effective treatment option for insulin-naïve T2D patients, compared to adding SITA to an existing SU and Met regimen.

Supported by: Novo Nordisk

Long-term patterns of statin therapy in patients with type 2 diabetes mellitus compared to long-term oral anti-diabetic medication patterns

E.J.F. Lamberts1, M.L. Bouvy2, P.C. Souverein3, G. Nüpehl4, I.M.C. Welschen5, J.G. Hugtenburg6, J.M. Dekker7; 1Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences Faculty of Science, 2EMGO, VU University Medical Center, Amsterdam, Netherlands.

Background and aims: Statins are effective in the prevention of cardiovascular disease in type 2 diabetes mellitus. However studies on long-term use of statins among type 2 diabetes mellitus patients are scarce. The aim of this study was to describe long-term patterns of statin use among patients with type 2 diabetes mellitus and compare discontinuation of statins and oral antidiabetics.

Methods: A cohort study among 2072 patients with type 2 diabetes mellitus who initiated treatment with statins between 1999 and 2007. Drug dispensing data were extracted from 17 community pharmacies in a geographically well-defined region in The Netherlands. Patients were classified as using statins before (prevalent users) or after (incident users) the initiation of oral antidiabetics. Patients were considered to have discontinued statin therapy when an interval of 180 days or more occurred between the theoretical end date of a statin prescription and a subsequent statin prescription. This was done in the same way for oral antidiabetics in order to compare discontinuation between the drug groups.

Results: The proportion of patients with type 2 diabetes mellitus using statins increased between 1999 and 2007. Discontinuation rates for statins were higher compared to discontinuation of oral antidiabetic drugs (52.1 vs.15.0%). Moreover, incident statin users were more likely to discontinue statin therapy compared to prevalent statin users (62.8 vs. 48.2%).

Conclusion: Although statins are increasingly prescribed to patients with type 2 diabetes mellitus, discontinuation of statins is high compared to discontinuation of antidiabetics. This could result in suboptimal therapeutic outcomes for patients with type 2 diabetes mellitus.
PS 84 “Metabolic syndrome”: definition and management

Remission of the metabolic syndrome three years after screening for increased waist circumference

C. den Engelsen, M.C. Busser, M. van den Donk, K.J. Gorter, P.L. Salomé, G.E.H. Rutten; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands.

Background and aims: Screening for cardiovascular risk factors and diabetes among overweight and obese individuals might be an attractive option with potential health benefits. In 2006, such a screening in primary care was performed to detect individuals with the metabolic syndrome (MetS) by letting them measure their waist circumference at home as a first step. Among individuals aged 20-70 years, previously not known with hypertension, diabetes or dyslipidemia and selected by means of a self-measured increased waist circumference, 473 new MetS cases were detected. They were advised to contact their general practitioner. However, screening of individuals with a high cardiovascular risk is only meaningful if adequate subsequent and effective action is undertaken. The aim of this study was to assess the remission of the MetS three years after screening followed by usual care in general practice.

Materials and methods: 432 individuals with screen-detected MetS (those of the original group of 473 patients that still visited the same general practice) were invited for follow-up measurements, which included a physical examination and laboratory tests. The MetS was defined according to the NCEP ATP III criteria. We also invited a random selection of 280 individuals who had an increased self-measured waist circumference during screening, but did not meet the MetS criteria at that time.

Results: The overall response rate was 84%. 63% of the responders indicated to be interested in follow-up measurements (the ‘participants’), 197 individuals with MetS at screening and 179 individuals without MetS at screening underwent all follow-up measurements. A significant improvement in all MetS components, except for glucose, was seen in the group with screen-detected MetS (table). The remission rate was 53%. The only significant changes in the group without MetS in 2006 were a decrease in diastolic blood pressure, an increase in triglyceride level and a decrease in HDL-cholesterol level in women. 15% of the participants in this group developed the MetS at follow-up. Non-participants and participants were comparable in age, gender and mean level of MetS components in 2006. The 16% non-responders with screen-detected MetS were significantly younger than the responders (both participants and non-participants) with screen-detected MetS.

Conclusion: Screening for MetS three years after screening followed by usual care in general practice.

915

Improving cardiometabolic risk by lifestyle modification in viscerally obese men: is weight loss the best therapeutic target?

A.-L. Borel1, N. Alméras1, J. Bergeron1, A. Tremblay1, P. Poitier1, J.-P. Després1,2, 3

1Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, 2Centre de recherche du Centre hospitalier de l’Université Laval, 3Faculté de médecine, Département de médecine sociale et préventive, Division de kinésiologie, Faculté de pharmacie, Quebec, Canada.

Background and aims: Visceral obesity is associated with a diabetogenic/atherogenic cardiometabolic risk profile (CMR) profile. Most intervention studies aiming to reduce CMR have used magnitude of weight loss as their main outcome measure. The present work compared the CMR profile response to a one-year healthy eating/physical activity lifestyle modification program of high risk viscerally obese men (waist girth > 90 cm, triglycerides ≥ 1.69 mmol/L, and/or HDL cholesterol < 1.03 mmol/L) classified into two groups according to both weight loss and loss of visceral adipose tissue (VAT).

Materials and methods: From the 144 viscerally obese men who participated in the study (age 47.3 ± 9.0 years, waist girth 107.8 ± 8.5 cm, triglycerides 2.52 ± 0.89 mmol/L, HDL-cholesterol 0.95 ± 0.16 mmol/L), 109 completed the first year of intervention. In the present analysis, we examined the relationship between weight loss and loss of VAT in the subgroup of 100 men who lost both weight and VAT. Body weight, body composition and fat distribution were assessed by anthropometry and DEXA/computed tomography. Cardiorespiratory fitness and fasting lipoprotein/lipid profile were assessed, and an oral glucose tolerance test (75 g) was performed. The regression line between weight loss and loss of VAT was used to define two groups of men, below and above the regression line (figure). Group 1 and group 2 were defined as men having lost more (group 1: 10 ± 4 %) or less (group 2: 6 ± 4 %) body weight than predicted by the regression line.

Results: At baseline, group 1 presented higher body weight and subcutaneous adipose tissue (SAT) volume than group 2 (97 ± 13 vs. 92 ± 9 kg and 1886 ± 558 vs. 1585 ± 476 cm³, for group 1 and 2 respectively, p < 0.05), but lower VAT volume (1843 ± 493 vs. 2043 ± 431 cm³, respectively, p = 0.03). After the one-year intervention, group 1 had lost more weight and SAT than group 2 (-9.2 ± 4.1 vs. -5.2 ± 3.9 kg and -446 ± 284 vs. -245 ± 195 cm³, respectively, p < 0.001). However, loss of VAT was similar between the two groups. Finally, despite greater absolute and relative losses of body weight and body fat in group 1 than 2, both groups showed essentially similar improvements in their CMR profile.

Conclusion: Provided that loss of visceral AT is similar, magnitude of weight loss does not appear to have any additional effects on the response of the CMR profile to a one-year lifestyle modification program. Therefore, our results suggest that magnitude of VAT loss may be a better therapeutic target than weight loss.
Optimal serum alanine aminotransferase cutoffs for the metabolic syndrome in Chinese
M. Xia1, H. Yan1, H. Bian1, B. Pan1, X. Gao1; 2Endocrinology, Laboratory Medicine, Zhongshan Hospital, Shanghai, China.

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease in China and western countries. It has been demonstrated that NAFLD was significantly correlated with all components of the metabolic syndrome (MetS), and could independently predict the risks of type 2 diabetes and coronary vascular disease (CVD). Serum alanine aminotransferase (ALT) concentration is the most commonly measured variable for assessment of liver disease. However, the current ALT upper limit (40 IU/L) often fails to identify patients with MetS and potential hepatic fat infiltration, thus underestimating the risks of type 2 diabetes and CVD. It has been recently recommended that the normal upper limit for ALT should be revised to 30 IU/L for men and 19 IU/L for women to identify NAFLD or chronic HCV infection in western countries. However, the optimal ALT cutoffs for metabolic syndrome in Chinese communities were poorly studied. The aim of the present study was to determine the optimal cutoffs for ALT linking to the risk of the MetS in Chinese subjects.

Materials and methods: The study population consisted of 440 subjects (242 male and 198 female) aged from 18 to 80 years recruited from the local community and outpatient department of endocrinology, Shanghai Zhongshan Hospital. Participants with hepatitis B or C, excessive alcohol intake and other hepatic disease were excluded. A standard interview, anthropometrics (height, weight, waist, hip circumference and blood pressure), Laboratory parameters (ALT, serum lipids, fasting plasma glucose, 2 h postload plasma glucose) were conducted for each participant. Metabolic syndrome was defined according to the International Diabetes Federation criteria. Statistical analyses were performed with SPSS for windows 15.0. All reported P values were two-tailed and P values less than 0.05 were considered statistically significant. Univariate analysis of variance was used to detect the association between ALT level and all MetS components. Receiver operating characteristic (ROC) curve analyses were utilized to determine the appropriate cutoffs of ALT for identifying individuals with MetS.

Results: In 242 men there were 97(40.1%) with MetS, and in 198 women there were 89(55.1%) with MetS. The frequency of MetS was elevated with increased ALT level in both male and female participants. Stratified according to sex, Univariate analysis showed ALT level was associated with waist circumference, serum cholesterol and LDL-c in female, but only associated with waist circumference in male. The optimal cutoffs were 36 IU/L in male and 19 IU/L in female for ALT to identify MetS patients. Compared with the current ALT upper limit, the revised ALT cutoffs were more sensitive and efficacious in identifying MetS, especially in women (Table 1).

Conclusion: The optimal cutoffs of ALT for MetS are 36 IU/L for men and 19 IU/L for women in Chinese. The current used ALT upper limit (40 IU/L) could underestimate MetS accompanied by NAFLD, especially in women.

Table 1 Sensitivity and specificity of ALT to determine subjects with MetS based on the IDF definition

<table>
<thead>
<tr>
<th>Female(198)</th>
<th>Male(242)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT cutoff</td>
<td>Current</td>
</tr>
<tr>
<td>Area under curve</td>
<td>0.657</td>
</tr>
<tr>
<td>Cutoff value</td>
<td>40 IU/L</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.764</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.567</td>
</tr>
<tr>
<td>PPV(%)</td>
<td>0.662</td>
</tr>
<tr>
<td>NPV(%)</td>
<td>0.758</td>
</tr>
<tr>
<td>J value</td>
<td>0.351</td>
</tr>
</tbody>
</table>

918

Effect of dietary fat modification on insulin secretion in subjects with the metabolic syndrome
H. Blüher1, A. Rudich2, N. Klöting3, O. Tang1, M. Stampfer4, J. Thiery1, M. Stumvoll1, I. Shai3; 1Department of Medicine, University of Leipzig, Germany, 2The Department of Clinical Biochemistry, Ben-Gurion University, Beer-Sheva, Israel, 3S. Daniel Abraham Center for Health and Nutrition, Ben-Gurion University, Beer-Sheva, Israel, 4Nuclear Research Center Negev, Nuclear Research Center Negev, Dimona, Israel, 5Brigham and Women’s Hospital, Harvard School of Public Health, Boston, USA.

Background and aims: During dietary interventions, adipokines’ serum concentrations may be affected by changes in adipose tissue mass and/or by direct effects of healthier diet. However, which are the adipokines that follow hormones and lipid parameters that mainly reflect weight changes, versus those that are primarily affected by the dietary change that could persist beyond weight change is largely unknown.

Materials and methods: In the 2-year Dietary Intervention Randomized Controlled Trial (DIRECT) among patients with type 2 diabetes (T2D; n=45) and non-diabetic (n=277), which have been randomly assigned to one of three diets: low-fat, Mediterranean, or low-carbohydrate, we analyzed the dynamics in circulating levels of adipokines, as well as serum concentrations of traditional biomarkers, and their association with 2-year changes in homeostasis model assessment-insulin resistance (HOMA-IR) and carotid artery intima-media thickness (IMT).

Results: Both qualitative analysis of the changes in biomarker levels at baseline, 6 and 24 months of intervention, and utilizing a non-biased mathematical modeling approach, revealed 2 major patterns of dynamics. Pattern A included biomarkers whose dynamics closely reflect changes in body weight, which exhibited a rapid decline (0-6 months) followed by weight stabilization or regain (7-24 months). This pattern included fasting circulating levels of insulin, triglycerides (TG), leptin, chemerin, monocyte chemoattractant protein-1 (MCP-1), and retinol binding protein-4 (RBPA). Pattern B consisted of biomarkers that displayed a continuing, cumulative increase or decrease throughout the 24 months of dietary intervention, despite the partial regain in mean body weight. This group included high molecular weight (HMW) adiponectin, HDL-cholesterol, CRP, fetuin-A, progranulin, and vaspin. Patterns A and B were similar among patients with T2D and non-diabetics. In models adjusted for age, sex and assigned diet group, a greater decline in either chemerin (beta=0.136, P=0.034) or leptin (beta=0.250, P=0.001) within the first 6 months of intervention were associated with lower levels of HOMA-IR at 24 months. In multivariate models adjusted for age, sex, assigned diet group, and 24 months changes in weight, chemerin, progranulin and MCP-1, a greater decrease in fetuin-A predicted a larger decline in IMT of the carotid artery by the end of the 2 years intervention (beta = 0.201, P=0.040).

Conclusion: During a 2-year dietary intervention, leptin, chemerin, MCP-1 and fetuin-A corresponded mainly to body weight, similar to serum insulin and TG levels. In contrast, HMW adiponectin, fetuin-A, progranulin, and vaspin exhibited cumulative improvement despite partial weight regain, similar to the changes in HDL-cholesterol and CRP. The two patterns underscore weight-related versus healthy diet-induced beneficial effects beyond weight loss, and suggest a potential predictive value for clinically-relevant metabolic and cardiovascular endpoints. Supported by: Israeli Ministry of Health, DFG, AP.
Material and methods: In a 12 weeks parallel, randomized controlled dietary intervention trial (LIPGENE) 486 subjects were randomly assigned to isoenergetic diets: High fat (38 energy%) diets rich in saturated fat (HSFA) or monounsaturated fat (HMUFA) or low-fat (28 energy%), high complex carbohydrate diets with (LFHCC n-3) and without (LFHCC-control) 1.2 g/day of n-3 PUFA. The β-cell function was measured as acute insulin response (AIRg) and disposition index (DI), modeled from intravenous glucose tolerance test (IVGTT). The mean age was 54.4 ± 9.0 years, BMI was 32.3 ± 4.1 kg/m² and 45% were males.

Results: There was no overall effect on AIRg and DI of the dietary intervention, but there were significant diet*age and diet*age*stratification effects. Subjects with normal fasting glucose and preserved first phase insulin secretion the effects of dietary intervention were significantly different between the HMUFA and the HSFA diets for both AIRg and DI (p=0.010). There were no differences between the LFHCC diets.

Conclusion: The effects of dietary fat modification on β-cell function were minor in the total cohort, but in normoglycaemic subjects the HMUFA diet improved AIRg and DI as compared to the HSFA diet.

Supported by: EU 6FP

919

Defining waist circumference cut points for South Asians in the United Kingdom using measures of dysglycaemia

L.J. Gray1, T. Yates2, E.M. Brady3, M.J. Davies4, D.R. Webb1, N. Sattar5, K. Khunti6

1Department of Health Sciences, University of Leicester, 2Department of Cardiovascular Sciences, University of Leicester, 3Department of Diabetes and Endocrinology, University Hospitals of Leicester, 4BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom.

Background and aims: To determine waist circumference cut-points in South Asians giving equivalent levels of dysglycaemia as in white Europeans with waist levels equivalent to obese BMI cut-points.

Materials and methods: 6888 white Europeans and 1353 South Asians aged 40-75 years were screened for type 2 diabetes. Regression models for fasting glucose, two-hour post-challenge glucose, HbA1c and a glucose factor (derived using principal components from the three glucose parameters), adjusted for centred age and stratified by sex, were used to identify waist circumference cut points in South Asians that correspond to glycaemic values at the recommended ‘obese’ waist circumferences of 102 cm for males and 88 cm for females in white Europeans.

Results: For South Asians the derived waist circumference cut points were substantially lower than for white European males and females across all glucose parameters. An overall glucose factor score at a cut point of 102 cm in white Europeans was met by South Asian males at a waist circumference of 84 cm. Similarly, a cut point of 88 cm for white European females was equivalent to cut point 69 cm for South Asian females. Here 7.5% of South Asian males have a waist circumference ≥84 cm and 4.2% of females have a waist circumference ≥69 cm.

Conclusion: Remarkably low cut points for defining very high waist circumferences for males and females are needed in South Asians for detecting equivalent levels of dysglycaemia as in obese white Europeans. Although the IDF already accepts a lower cut point for South Asian males (90 cm), the even lower cut points suggested herein suggest that South Asian people should be considered at high risk of diabetes irrespective of waist circumference measurements.

Supported by: LNR CLARHC

920

Assessing cardiometabolic risk among shift workers

G. Jermendy1, T. Hidegvi1, J. Oxtobviva2, J. Nadas3, J. Hegyi4, J. Vasas5

13rd Medical Department, Bajcsy-Zsilinszky Hospital, Budapest, 2Petz Hospital, Győr, 3Kardirex Health Center, Győr, Hungary.

Background and aims: The term of cardiometabolic risk includes a cluster of cardiovascular risks beyond the metabolic syndrome. Shift workers, possibly due to impairment in circadian biological rhythm, may be at higher cardiometabolic risk. In order to assess cardiometabolic risk in shift workers, a cross-sectional study was performed among active workers (aged 25-66 years, with a minimal shift working experience of 5 years).

Materials and methods: We investigated 481 workers (121 male, 360 female) in our study, most of them were employees in light industry (38.2%) or in public service (23.9%). At enrolment, past medical history was recorded and anthropometric measurements and physical examination were performed in each subject. Validated questionnaires were used to characterize daily activity, eating and smoking habits. Fasting venous blood sample was taken for measuring laboratory parameters. Data from shift workers (n=234, 54 men and 180 women, age 43.9±8.1 years) were compared to those of day workers (n=247, 67 men and 180 women, age: 42.8±8.5 years).

Results: Weight, BMI index (27.5±5.3 vs 26.0±4.9 kg/m²; p<0.01), systolic blood pressure (123±19 vs 119±16 mmHg, p<0.01), the prevalence rate of diabetes (4.3 vs 1.2 %; p<0.05) and cardiovascular diseases (3.8 vs 0.8 %; p<0.05) in the past medical history were higher in shift workers as compared to day workers. In addition, proportion of subjects with regular physical activity in leisure time were lower (20.6 vs 38.7 %; p<0.01) and that of current smokers were higher (35.0 % vs 19.5 %; p<0.001) in shift workers than in day workers. As for laboratory findings, HDL-cholesterol level was lower in female shift workers than in female day workers (1.56±0.32 vs 1.68±0.36 mmol/l; p<0.01).

Conclusion: These data indicate that middle-aged, active shift workers, as compared to day workers, are at higher cardiometabolic risk. Thus, our study highlights the importance of measures for preventing cardiovascular diseases in shift workers.

Supported by: Hungarian Diabetes Association

921

Immunological and cardiometabolic risk scores in the prediction of incident type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study

C. Herder1, J. Baumert2, A. Zierer2, M. Roden3,4, C. Meisinger2, W. Koenig2, B. Thorand2

1Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, 2Helmholtz Zentrum München, Neuberheberg, 3University Hospital Düsseldorf, 4University of Ulm Medical Center, Germany.

Background and aims: Systemic concentrations of acute-phase proteins, cytokines, chemokines and soluble adhesion molecules are associated with the risk of type 2 diabetes and coronary events. The association of each of these biomarkers alone with incident disease is too weak for the prediction of outcomes, but the predictive value of combinations of multiple inflammation-related biomarkers is still unclear. This study aims to address the following questions: (i) what is the predictive value of inflammation-related biomarkers for incident type 2 diabetes and coronary events, (ii) are these predictive values comparable with the Ilose of established biomarkers of cardiometabolic risk, and (iii) can the predictive value be improved by combining both sets of risk factors?

Materials and methods: The study investigates inflammation-related biomarkers (measured in non-fasting serum samples) and additional cardiometabolic risk factors in a prospective case-cohort study within the population-based MONICA/KORA Augsburg cohort. Analyses with the endpoint type 2 diabetes are based on 436 individuals with and 1413 individuals without incident type 2 diabetes. Analyses for coronary events are based on 314 individuals with and 1662 individuals without incident coronary events. The follow-up was 10.5 years. Receiver operator characteristic (ROC) analyses were used to calculate areas under the ROC curve (AROC) for different sets
of risk factors for both incident type 2 diabetes and incident coronary events: (a) basic model: adjusted for age, sex, and survey; (b) immunological model: factors from (a) plus CRP, IL-6, IL-18, MIF, TGf-β1, MCP-1, IL-8, IP-10, RANTES, adiponectin, leptin, s-Selec, sCAM-1; (c) cardiometabolic model: factors from (a) plus BMI, systolic blood pressure, total cholesterol/HDL cholesterol ratio, parental history of diabetes or myocardial infarction (according to the respective endpoint), smoking, alcohol, physical activity; (d) full model: combination of risk factors in (b) and (c).

Results: For the prediction of type 2 diabetes, the AROC for the basic model was 0.733. Addition of either inflammation-related biomarkers (as continuous variables) or cardiometabolic risk factors resulted in an increase to 0.803 in both models. A combination of all risk factors predicted type 2 diabetes with an AROC of 0.845. For the prediction of coronary events, the basic model had a higher predictive value (AROC 0.802), whereas the addition of inflammation-related or cardiometabolic risk factors led to less pronounced increases (AROC 0.825 and 0.836). The combination of all risk factors resulted in a similar predictive value as for type 2 diabetes (AROC 0.819).

Conclusion: The additional predictive value of inflammation-related biomarkers is limited and cardiometabolic risk factors lead to a significant increase in both models. A combination of all risk factors predicted type 2 diabetes and coronary events, although the increase was less pronounced for the latter endpoint. As limitation, it is important to note that the results were based on non-fasting blood samples and cannot be extrapolated to different study settings with more complete assessment of diabetes risk factors including glucose, insulin and HbA1c measurements.

Supported by: DFG

922

Significant type 2 diabetes incidence reduction in high risk participants, after three years of an intensive lifestyle intervention in primary care (DE-PLAN-CAT)

X. Cot1, B. Costa1, F. Barrio1, J.J. Cabré1, S. Sarret1, M. Cot1, X. Mundet1, F. Pujo1, J. Caula1, T. Mur1, LL. Piñol1, J. Basora1, B. Bolíbar1, C. Castell1, y el Grupo de Investigación DE-PLAN-CAT; IDiAP Jordi Gol, Public Health Department, Barcelona, Spain.

Background and aims: Many lifestyle interventions have demonstrated their efficacy preventing Type 2 Diabetes although none of them have shown their benefits into real clinical practice. Public health strategy on type 2 diabetes prevention in primary health care. The European coordinated project DE-PLAN (Diabetes in Europe-Prevention using Lifestyle, Physical Activity and Nutritional intervention) evaluates its effectiveness in Primary Health Care.

Materials and methods: Public health strategy on type 2 diabetes prevention in primary health care. Two-step multicentre cohort study: cross-over period (1y-screening) plus a follow-up period (3y-preventive intervention). In Catalonia (DE-PLAN-CAT) has 18 participating centres, more than 150 professionals (GP+nurses) and a representative randomized population based sample between 45-75 yo. Randomized non-invasive diabetes screening program by means of the FINDRISC score comparing with the oral glucose tolerance test (OGTT). All those high risk participants, without Diabetes, received a lifestyle intervention (self-acting informative intervention or intensive). Both groups were followed by “usual care” (self administered group) or by psychologically motivation reinforcement. We performed an OGTT after 3 year of the intervention (An OGTT was yearly performed).

Results: A total of 2547 non diabetic subjects > 45 y were contacted with a 80.6% positive response rate (n=2054). Of them 552 (26.9%) had high diabetes risk and 251 (45.5%) type 2 prediabetes. 210 (38%) were allotted to self-acting informative intervention and 342 (62%) to intensive lifestyle intervention. No differences in risk factor profile or in glycaemic status were increased. Mean annual drop-out rate was 11.4%, statistically higher in the informative group (14.4% f 9.6%; p<0.001). First year (n=476), 37 participants (7.8%) developed Diabetes, finishing the study. Second year (n=383) were diagnosed 32 new cases (8.4 %) and 21 (7.2%) in the third year (n=293). Cumulated diabetes incidence was 24.8%, 32.8% self-acting group vs 21% in the intensive intervention (p<0.01) [RRR 36%]. Progression rates (normality to prediabetes or diabetes and prediabetes to diabetes) were 40.3% and 31.7% (RR=21.3%). Regression rates (prediabetes to normality) were 5.9% and 13.6%, respectively (relative increase =130.5%).

Conclusion: Lifestyle intensive intervention has reduced significantly Type 2 Diabetes incidence, compared with a self-acting informative, in the Spanish Primary Health Care usual practice

Supported by: DGSanco, FIS and Generalitat de Catalunya (Public Health)
PS 85 Diabetes in childhood

Seasonal variation of type 1 diabetes incidence in childhood in Germany

J. Rosenbauer, C. Bächle, A. Stahl, R. Hoff, M. Grabert, G. Giani, in cooperation with the German Pediatric Surveillance Unit and the DPV-Science Initiative;

Institute of Biometrics and Epidemiology, German Diabetes Centre, Leibniz Institute at Düsseldorf University, Institute of Biometrics and Epidemiology, German Diabetes Centre, Düsseldorf, Institute of Epidemiology, University of Ulm, Germany.

Background and aims: Seasonal variation of T1DM onset has been investigated in various studies and the results are conflicting. A sufficiently large cohort of cases is an important precondition for valid estimation of seasonal variation. Aim of the study was to investigate the seasonal variation of T1DM in children 0-14 years of age in the large risk population of the German federal state North Rhine-Westphalia (NRW) during the 12-year period 1996-2007.

Materials and methods: Data were taken from the NRW diabetes incidence register ascertaining newly diagnosed cases of T1DM by means of three data sources. During the study period a total of 7,128 newly diagnosed diabetic children aged 0-14 years (3,678 boys, 3,371 girls) were registered; the average risk population was 2.84 million children. The completeness of ascertainment was estimated to be 98%. Overall, sex- and age-specific (0-4, 5-9, 10-14 years) seasonal variation of the monthly T1DM incidence were analysed assuming a Poisson distribution of cases. The monthly expected mean of the incidence was modelled using a log-linear regression including a linear term for temporal trend and sinus and cosine terms for seasonal variation. The analyses were additionally adjusted for overdispersion of incidence data and, where appropriate, for sex and age at onset. Month of diagnosis was used as independent time variable. Seasonal variation was assumed to be constant over the study period.

Results: Overall, the average monthly incidence rates ranged between 16.6 per 100,000 person-years in July and 24.9 in January. Lower average incidences were found from April to August and higher incidences between September and March. According to the fitted sinusoidal regression model the seasonal variation of T1DM incidence was significant (p<0.001) with the trough at the end of June-July and the peak in December-January. The ratio of model-based maximum and minimum incidences was 1.34. Similar significant seasonal patterns (p<0.001) were observed among male and female patients, however, the amplitude was larger for males than for females (max/min-ratio: 1.46 vs. 1.24). Further, among males the trough was slightly earlier than among females. Significant seasonal variation was also detected for all age groups (0-4yrs: p=0.005; 5-9 and 10-14 yrs p<0.001). The magnitude of seasonal variation was similar in both older groups (max/min-ratio: 5-9 yrs: 1.43; 10-14 yrs: 1.38) but was considerably minor among the youngest children (max/min-ratio: 1.25). The model-based troughs in the age groups 0-4, 5-9 and 10-14 yrs were in May, June, and July, respectively.

Conclusion: This study based on a large cohort of T1DM cases showed significant seasonal variation in both sexes and all age groups. Seasonal patterns differed slightly between sexes and more distinctly between age groups. Seasonality of T1DM onset points to the importance of environmental factors in disease aetiology. Seasonal factors stressing beta cells (e.g. viral infections) may account for the variation. Delayed diagnosis in older children may account for the shift of the trough with age. Further research is needed to identify causes of the differing seasonal patterns between age groups.

Supported by: BMG, MIWFT of NRW, Kompetenznetz Diabetes mellitus funded by BMBF.

Figure: Autocorrelogram of HbA1c levels during the study period.

Supported by: The Foundation for Polish Science, TEAM Programme 1.2 PO IG.

926

Epidemiology of type 1 diabetes mellitus in children in Uzbekistan

G.N. Rakhimova, N. Alimova;

Institute of Endocrinological Research, Tashkent, Uzbekistan.

Background and aims: Assessment and monitoring of basic epidemiological parameters of type 1 DM among children in the course of the 2000-2007 National Register.

Materials and methods: Epidemiological data was studied on the basis of annual reports from 13 regional endocrinological dispensaries and Tashkent endocrinological dispensary as well as on the basis of register cards filled up by local endocrinologists-pediatricians.

Results: In Uzbekistan within the period from 2000 to 2007 type 1 DM prevalence increased from 7.5 to 11.0 per 100,000 of pediatric population. The highest prevalence was observed in Tashkent (17.7), in Bukhara region (16.6) and in Tashkent region (14.5), the lowest one in Kasakhkadya region (7.1) and in Surkhandarya region (7.7). Pediatric incidence in 2007 as compared with 2000 reduced from 2.7 to 2.1 per 100,000 of pediatric population. Analysis of pediatric incidence in 2007 revealed the highest one in Tashkent (4.6) and in Syrdarya region (2.7), the lowest being found in Navoi region (0.9). As to age distribution children aged from 10 to 14 comprised the largest group (66.6%),
the smallest including children from 0 to 4 years (5.0%), 28.3% accounting for patients aged from 5 to 9. As the disease duration with type 1 DM duration less than 5 years comprised the largest group (70.9%), in the smallest one (2.1%) including patients with 10-year DM duration. As a whole, in Uzbekistan within the period of the Register fulfilment mortality level reduced from 0.1 to 0.03 per 100, 000 of pediatric population. In 2007 mortality cases were registered in Kashkadarya region (0.1), Navoi region (0.4) and Samarkand region (0.09 per 100, 000 of pediatric population. As a whole in Uzbekistan mortality reduction in children with type 1 DM within the period from 1998 to 2007 was 99%.

Conclusion: Within the period of the National Register reduction in mortality paralleling alterations in structure of death cause and increase of survival can be noted to suggest perfect choice of strategy and tactics of the Register fulfillment.

927
The impact of intrauterine hyperglycaemia on glucose metabolism in the offspring five years after delivery
L. Bozkurt1; C.S. Gohl1, B. Ramf1, A. Handsisurya1, Y. Winhofer1, E. Schober1, A. Kautzky-Willer1; 1Department of Internal Medicine III, Division of Endocrinology and Metabolism, 2Department of Pediatrics, Medical University of Vienna, Austria.

Background and aims: Diabetes in pregnancy is associated with a higher risk of obesity and abnormal glucose homeostasis for the offspring in later life. The aim of the study is to assess features of glucose metabolism and insulin secretion as well as the prevalence of obesity in young children of diabetic mothers.

Materials and methods: In a prospective cross-sectional analysis data on anthropometric and metabolic parameters of 58 children (29; m:29) aged 4-9 years were collected. 13 mothers of these children had at the time of pregnancy a normal glucose tolerance (NGT) and served as a control group whereas 31 mothers were affected by gestational diabetes (GDM) and 14 women by Type 1 diabetes (T1D). Differences in BMI-SDS (Standard Deviation Score) were suggested as the primary outcome of this study. Further, a 2h-OGTT was performed in all children and circulating levels of adiponectin and leptin were measured.

Results: Children of mothers with T1D (-0.83±0.94) showed significantly higher BMI-SDS as compared to GDM (-0.11±0.94; p=0.003) and NGT (-0.20±0.88; p=0.021) exposed children. There were no differences between the NGT and GDM subgroups (p=0.77). However, the glucose profile during the 2h-oGTT was comparable (G0:p=0.51; G60:p=0.26; G120:p=0.47) and also indices of insulin resistance were not different (HOMA:p=0.64; Quicki: p=0.64). Regarding adipokine levels, we found no differences for Leptin (p=0.33) but when comparing adiponectin levels of GDM and T1D groups we found higher levels for T1D children (p=0.047).

Conclusion: Children of women with T1D in pregnancy were more obese than children of mothers with NGT and GDM despite comparable plasma leptin concentrations and similar degree of insulin sensitivity at the age of five years. Further longitudinal studies are needed to detect as early as possible those children at highest risk in follow-up.

928
Plasma vitamin D and preservation of C-peptide in youth with recently diagnosed autoimmune positive type 1 diabetes: SEARCH Nutrition Ancillary Study
E.J. Mayer-Davis1, K.Y. Wojcik1, D. Dabelea2, R.B. D’Agostino2, J.M. Norris2, I. King1, C. Pihoker3; 1Nutrition, University of North Carolina, Chapel Hill, 2Epidemiology, University of Colorado Denver, Aurora, 3Bioestatistical Sciences, Wake Forest University, Winston-Salem, 4Epidemiology, University of Colorado, Denver, 5Internal Medicine, University of New Mexico, Albuquerque, 6Seattle Children’s Hospital, United States.

Background and aims: Preservation of insulin secretion following a diagnosis of diabetes predicts improved prognosis, yet little is known of the potential nutritional determinants of sustained beta cell function. We explored associations of plasma 25-hydroxyvitamin D concentration with baseline and short-term (~24 months) change in fasting c-peptide (FCP) within the SEARCH for Diabetes in Youth cohort diagnosed between 2002 and 2005.

Materials and methods: Included were 1224 youth (mean age at diagnosis, 9.8 yr) with at least one diabetes autoantibody positive (GAD65 or IA-2) and a clinical diagnosis of type 1 diabetes. About 77% were non-Hispanic white and gender was about equally distributed (52% male). Mean diabetes duration at baseline was 10 months. Mixed models regression analyses accounting for repeated measures were fit adjusting for onset age, sex, race/ethnicity, clinical center, baseline waist circumference, A1C, insulin regimen, HLA risk group and change in an index of insulin resistance. Vitamin D was analyzed as a continuous measure with values at the 25th, 50th, and 75th percentiles used for illustration.

Results: From the fully adjusted model, higher baseline vitamin D was associated with higher FCP at baseline (p=0.04) but unexpectedly was associated with more rapid decline in FCP (see figure; fully adjusted p-value=0.009).

Conclusion: Higher plasma vitamin D may provide some protection of the beta cell near the time of T1D diagnosis, although this protective effect appears to be of limited durability. The mechanisms for a potential protective effect of vitamin D on beta cell function near the diagnosis of diabetes, and whether such an effect would hold clinical significance, remains to be determined.
and in the group I increased to 8.2% at the time of follow-up. TDD increased from 0.7 U/kg/d to 0.7 U/kg/d (p=0.0001). The insulin daily dose increased in the I group from 0.7 to 0.87 U/kg/d and in the II group from 0.48 to 0.87 U/kg/d, the significant differences between both groups were observed in the 1st and 2nd year. BMI increased in the I group from 16.3 after the 1st year to 19.8 kg/m² after the 7th year and in the II group from 15.9 after the 1st year to 18.4 kg/m² after the 7th year. BMI was significantly higher in the group I in the 6th and 7th year of the follow-up. There was no significant difference between both groups in the number of episodes of DKA and SH.

Conclusion: In longitudinal observation children started with CSII at diabetes recognition achieved better metabolic control than children initiated with CSII after MDI. The long-term benefits of CSII therapy started at T1DM onset should be taken under consideration before making a decision on CSII initiation.

930

Long-term efficacy of insulin pump therapy in young children with diabetes

Department of Pediatrics, San Raffaele Scientific Institute, Milano, Italy.

Background and aims: To compare effectiveness of continuous subcutaneous insulin infusion (CSII) to multiple daily injections with rapid-acting insulin analogue (MDI) in preschooolers after more than 1 year of treatment.

Materials and methods: We evaluated 25 preschool patients (11 males, 14 females) with a history of type 1 diabetes of at least one year duration (14 CSII, 11 MDIs). Outcomes included measures of: glycated haemoglobin (HbA1c), mean blood glucose (BG) and standard deviation (SD), percent of BG values above and below target regarding the last 3 months of follow up, and the average daily risk range (ADR) regarding the last month of follow up. Unpaired nonparametric twotailed Mann-Whitney tests were used to analyze data from the two groups.

Results: The 25 subjects’ ages ranged from 2 to 6 years (mean age CSII 4.6 yrs; mean age MDII 4.6 yrs), duration of diabetes ranged from 1 to 4.9 years (mean disease duration CSII 2.8 yrs; mean disease duration MDIs 2.3 yrs), duration of CSII ranged from 1 to 3.9 years (mean disease duration 2.45 yrs). Comparison of overall metabolic control showed no statistically significant differences between the two groups when considering Hba1c (CSII 7.09%; MDIs 7.38%), mean BG (CSII 161.8 mg/dL; MDIs 168 mg/dL) and SD (CSII 82.1 mg/dL; MDIs 85.2 mg/dL), and percent of BG values below target (CSII 12.7%; MDIs 15.2%). However a statistically significant difference was found when comparing percent of BG values above target (CSII 35.1%; MDIs 47.2%; p<0.05). Furthermore, the MDIs group showed ADRR values consistent with moderate risk of BG excursions, while the CSII group showed an ADRR value consistent with high risk. However, no statistically significant differences were found regarding ADRR values of the two groups (CSII 44.9; MDIs 35.6).

Conclusion: Although CSII can be a safe and effective method to deliver insulin in young children, long-term pump therapy in our young patients was not associated with significant differences in glycemic control as compared with intensive injection therapy, confirming short-term results from past studies. Our study also showed that both CSII and MDI may allow the achievement of target glycemic control (HbA1c < 7.5 for all age-groups) according to ISPAD 2009 guidelines, underlining that optimal control may be obtained independently of the means of insulin administration. Furthermore, evaluation of ADRR showed a greater risk for glycemic excursions in the CSII group, although comparison of ADRR values between the two groups showed no statistically significant difference. Consequently, rationale for initiating CSII in this age group should be primarily based on patient/parent selection and lifestyle preference. Nonetheless, further studies involving sensor augmented CSII in this age group are warranted in order to evaluate potential benefits on diabetic complications, thus going beyond lifestyle improvements which currently appear to be the only achievement in preschoolers.

931

Intervention with metformin in childhood diabetes may slow decline of C peptide - the accelerator hypothesis

L.M. Saranac, B. Jelakovic, S. Zivanovic, M. Novak;
Pediatric Clinic Clinical Centre Nis, Serbia.

Background and aims: Diabetes results from beta cell insufficiency. The accelerator hypothesis proposes that type 1 and type 2 diabetes are not different disorders, but poles of a single spectrum. Variable interaction between insulin resistance and the immune response to it determines the tempo of beta cell loss, and with it age at onset and incidence. The hypothesis is sufficiently well developed to consider use of metformin in children with new onset of type 1 diabetes. The aim of the study was to investigate the impact of metformin on the progression of childhood diabetes.

Materials and methods: Twenty-one children, mean age 10.9±2.8y with recently diagnosed and insulin-treated type 1 diabetes were studied. Metformin was added after two weeks as insulin sensitizer and apoptosis reducing agent. Inclusion criteria were basal C peptide over 0.2 nmol/l and preserved pulsatile secretion of insulin secretion. Twenty-six children and adolescents on insulin monotherapy acted as controls.

Results: Insulin was gradually reduced according to daily glycemic profiles and the metformin-treated children entered remission faster. Six of them achieved complete remission for longer than 12 months. Mean C-peptide level after 18 months was 0.57 nmol/l in metformin group versus 0.20 in the group on insulin alone (p<0.005). Hba1c tended to be lower in the metformin group; (7.7 % compared with 9.0 % , NS).

Conclusion: Our first experiences with combined treatment (insulin and metformin) are favourable, suggesting that metformin use in childhood diabetes may reverse C peptide decline. Further studies are necessary.

932

Relationship between depressive symptoms and quality of life and metabolic control in children and adolescents with diabetes type 1

1Clinical Pediatric Hospital, 2The Department of Pediatrics, Clinical Pediatric Hospital, 3The Department of Pediatrics, Medical University of Warsaw, Poland.

Background and aims: As many studies show depression is a factor involved in pathogenesis of diabetes and a major complication affecting metabolic control in patients with diabetes. There is a higher incidence of diabetes among patients with depression and patients with diabetes and depressive symptoms achieve worse metabolic control. These studies are usually conducted on adults with diabetes type 2. It is still little known about children and adolescents with diabetes type 1. The aim of this study was to assess the prevalence of depression and examine its effect on metabolic control and quality of life in children and adolescents with diabetes type 1.

Materials and methods: 214 children so far took part in this study: 107 girls and 107 boys. Mean age: 13.1 <7-17, SD 2.7>. Mean diabetes duration: 5.2 (SD 2.7). During the routine visit in the outpatient clinic all children and adolescents with diabetes type 1 age 7 and above were asked to fill in Children’s Depression Inventory (Polish version), a self-report questionnaire consisting of 27 items. Patients from age 11 and above were asked to answer questions in Quality of Life Questionnaire, a 58 item questionnaire based on the DCCT Diabetes Quality of Life Measure. At the same time other data was collected: sex, age, diabetes duration, HbA1C, BMI, daily insulin dose.

Results: 35 participants (16.35%) scored ≥ 13, indicating elevated depressive symptoms. In the group with scores below 13 (179) there were 76 participants (42.45%) who scored above average in one of subscales. There was an extremely significant correlation between scores on the CDI and quality of life (r=0.6510, p<0.0001). A very significant correlation was found between scores on the CDI and HbA1c (r=0.2088, p=0.005) and age of participants (r=0.2000, p=0.005). There was also a significant correlation between scores on the CDI and diabetes duration (r=0.1576, p=0.023). BMI (r=0.1356, p=0.049) and insulin daily dose (r=0.1785, p=0.011). There was no difference between girls and boys on the CDI scores.

 Springer
Conclusions: 16.35% participants show elevated depressive symptoms as assessed by CIDI. 42.45% participants without depressive symptoms score above the average on one of the CIDI subscales. Children and adolescents with higher scores on the CIDI have worse quality of life and achieve worse metabolic control. The longer diabetes duration and the older participant the more likely he presents depressive symptoms. It is necessary to pay attention to emotional wellbeing of children and adolescents with diabetes type 1, especially the older ones who are longer ill. It is necessary to develop an intervention program aimed at prevention of emotional problems in youths with diabetes.

933

Longitudinal associations between depressive symptoms and glycaemic control among adolescents and young adults with type 1 or type 2 diabetes

J.M. Lawrence1, K. Hood2, A. Anderson3, J.P. Yi-Frazier4, L.D. Case5, D. Dabelea6, R. Bell7, D.E. Williams8, R. McKeown9;
1Kaiser Permanente Southern California, Pasadena, 2Cincinnati Children’s Hospital, Cincinnati, 3Wake Forest Univ., Winston-Salem, 4Univ. of Washington, Seattle, 5Univ. of Colorado Denver, 6Centers for Disease Control and Prevention, 7Univ. of South Carolina, Columbia, USA.

Background and aims: Depression is associated with poor glycaemic control in youth with diabetes (DM). We assessed the association between depression scores and change in depression score over time with change in A1c among youth in the SEARCH for Diabetes in Youth study.

Materials and methods: 861 youth (age 15.3 ± 2.5 years; 78% type 1 DM; 50% female; 81% non-Hispanic White) had a baseline visit (time1) within 1 year of DM diagnosis and completed a follow-up visit (time2). At each visit, symptoms of depression were evaluated with the Center for Epidemiologic Studies-Depression (CES-D) scale, blood was drawn for A1c analysis, and DM duration was assessed. CES-D score was categorized to indicate minimal (0-15), moderate (16-23) and frequent (24-60) symptoms of depression, and also used as a continuous measure in regression analyses. A linear regression model was fit to examine the effects of CES-D score at time1 and the change in CES-D score from time1 to time2 (predictors) on the change in A1c from time1 to time2 (outcome) adjusting for age, gender, race/ethnicity, DM type, DM duration, BMI-Z score, and presence of co-morbidities, all measured at time1, as well as time between visits.

Results: Youth had DM for 26.8±9.1 months at their time2 visit which was, on average, 17.2±6.0 months after their time1 visit. At time1, 80%, 13%, and 8% had minimal, moderate, and frequent symptoms of depression, respectively, while a similar distribution observed at time2. CES-D score at time1 and time2 were significantly associated (p<0.001); continuous scores on the CES-D were also correlated (r=0.56, p<0.0001). Of youth with minimal symptoms at time1, 87% remained minimal at time2 while 8% were moderate and 5% had frequent symptoms of depression. Of youth with moderate symptoms at time1, 36% improved while 17% moved to the frequent category at time2. Of those with frequent symptoms at time1, 34% stayed the same, while 29% were in the moderate and 27% in the minimal symptom categories. In the multiple linear regression analyses, there was a positive association between both the CES-D score at time1 and change in CES-D from time1 to time2 and change in A1c. Larger changes in CES-D and higher CES-D scores at time1 were both associated with greater increases in A1c. Race/ethnicity, gender, DM duration and BMI-Z were also significant in the final model while DM type was not.

Conclusion: Most youth with minimal symptoms at time1 remained in that category at time2 while about 2/3 of youth with frequent symptoms experienced some improvement. Youth who had more frequent symptoms of depression as well as a greater increase in symptoms tended to have worsening glycaemic control at follow-up while improvement in depressive symptoms was associated with improved glycaemic control. Screening for and treatment of depressive symptoms in adolescents and young adults with DM may help improve glycaemic control in this population.

Supported by: U.S. CDC & NIH

PS 86 Nutrition and diet

934

Dose-dependent effects of protein ‘preloads’ on gastrointestinal hormones, glycaemia, and energy intake in type 2 diabetes

J. Ma1, J.M. Wishart1,2, K.L. Jones1,2, M. Horowitz1,2, C.K. Rayner1,2;
1Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, 2Centre of Clinical Research Excellence in Nutritional Physiology, University of Adelaide, Australia.

Background and aims: Whey protein ‘preloads’ can stimulate glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin and cholecystokinin (CCK) release, slow gastric emptying of a subsequent meal, and improve postprandial glycaemia. We aimed to determine the effects of different doses of whey, when ingested before a buffet-style meal, on gastrointestinal hormones, glycaemia, and energy intake in type 2 diabetes.

Materials and methods: Nine patients with diet-controlled type 2 diabetes (glycated haemoglobin 6.7 ± 0.3 %) were studied on 3 separate days in randomised order. Subjects consumed a chocolate-flavoured liquid ‘preload’ (100 ml water mixed with either a flavoured ‘placebo’ (8 kcal), or with 25 g (89 kcal) or 55 g (195 kcal) flavoured whey protein), 30 minutes before an ad libitum meal (T = 0 to 30 min). Blood was sampled frequently for hormone measurements.

Results: Data are shown as mean ± standard error. Both whey preloads stimulated GLP-1, GIP, insulin and CCK before the meal (P < 0.05); the stimulation of insulin and CCK were greater (P < 0.05) with 55 g whey. The incremental area under the curve (iAUC) for GLP-1 was greater after 55 g whey than the other days, while iAUC for insulin was greater after 25 g and 55 g whey than placebo. The peak postprandial blood glucose was slightly lower with 25 g and 55 g whey than placebo (P < 0.05). Both whey preloads increased postprandial fullness slightly (P < 0.05), but neither affected energy intake.

Conclusion: Acute administration of a whey protein ‘preload’ in patients with diet-controlled type 2 diabetes dose-dependently stimulated GIP, GLP-1, insulin and CCK, and reduced postprandial glycaemia, as well as increasing fullness, but had no significant effect on energy intake.

Supported by: NHMRC
Background and aims: Whey protein ‘preload’ acutely reduce glycaemia after a subsequent meal in type 2 diabetes, associated with slowing of gastric emptying and stimulation of incretin and insulin release. The aim of the current study was to evaluate whether the effects of protein preloads on gastric emptying and glycaemia are sustained with ‘chronic’ (4 weeks) administration.

Materials and methods: Seven patients with uncomplicated type 2 diabetes treated by diet alone (glycated haemoglobin 5.9 ± 0.2 %) participated in the study. Each consumed a chocolate-flavoured ‘preload’ (containing either 25 g whey or placebo), 30 min before each of the three main meals for 4 weeks, followed by a ‘washout’ period of 2 weeks, and then the alternative preload for 4 weeks in a randomised, cross-over design. Gastric emptying of (scintigraphy), and the glycemic response to, a standard potato meal consumed 30 min after the preload, were measured at the beginning and end of each 4-week period, as was serum fructosamine.

Results: Data are shown as mean ± standard error. Whey slowed gastric emptying and reduction postprandial glycaemia was sustained with ‘chronic’ (4 weeks) administration.

Materials and methods: Plasma GLP-1 was measured as GLP-1(7-36) using ELISA kit. Plasma PYY was measured as PYY(3-36)

Conclusion: Administration of a whey preload for 4 weeks results in sustained slowing of gastric emptying and reduction in postprandial glycaemia in type 2 diabetes. A longer trial of longer duration is indicated to determine whether this strategy can improve glycaemic control.

Materials and methods: Twenty two normal subjects were recruited. They were not obese and not diabetic. Plasma mean fasting glucose was 96 mg/dl. Mean age was 37 years and mean BMI was 23.1. The subjects were given the test meal early in the morning after 12h fasting. They ate it for 20 minutes and chewed each mouthful 5 times (5 times chewing). On the other day the subjects ate it for 20 minutes and chewed each mouthful 30 times (30 times chewing, i.e. thorough chewing). Plasma GLP-1 and PYY were measured before and 1 h after ingestion of the test meal. Plasma glucose and insulin were measured before and 1 h after ingestion of the test meal. Plasma TG was measured before and 2 h after ingestion of the test meal. The test meal consisted of bread, margarine, a boiled egg, steamed vegetables, a banana, and milk. Total calories were 630 kcal, with 16% protein, 32% fat, and 52% carbohydrate. Plasma PYY was measured as PYY(3-36) using an enzyme immunoassay kit. Plasma GLP-1 was measured as GLP-1(7-36) using ELISA kit.

Results: Plasma mean PYY levels with 5 times chewing tended to increase from 41.0 pg/ml (before a meal) to 46.1 pg/ml (after 4 weeks). Plasma PYY levels with 30 times chewing significantly increased from 41.7 pg/ml (before a meal) to 65.4 pg/ml (after a meal). Postprandial PYY level with 30 times chewing was significantly higher than with 5 times chewing. Plasma mean GLP-1 levels with 5 times chewing significantly increased from 4.8 pmol/l (before a meal) to 18.9 pmol/l (after a meal). Plasma GLP-1 levels with 30 times chewing significantly increased from 5.0 pmol/l (before a meal) to 25.1 pmol/l (after a meal). Postprandial GLP-1 level with 30 times chewing was significantly higher than with 5 times chewing. GLP-1 level with 30 times chewing significantly increased from 107 mg/dl (before a meal) to 170 mg/dl (after a meal). Plasma TG level with 30 times chewing significantly increased from 114 mg/dl (before a meal) to 147 mg/dl (after a meal). Postprandial TG level with 30 times chewing was significantly lower than with 5 times chewing. There was no significant difference in increases of plasma glucose and insulin after a meal between 5 times and 30 times chewing in normal subjects.

Conclusion: This is the first report that thorough chewing stimulates postprandial increases of plasma GLP-1 and PYY in normal subjects. In addition, thorough chewing suppresses postprandial increase of plasma TG level. Thorough chewing may be clinically effective in normal subjects.

936

Thorough chewing stimulates postprandial increases of plasma GLP-1 and peptide YY in normal subjects

M. Eto, M. Saito, Y. Hattori, R. Terasawa;
Clinical Medicine, Ohu University, Koriyama, Japan.

Background and aims: Glucagon like peptide (GLP)-1 and peptide YY (PYY) are secreted from intestinal L cells, and plasma levels of both hormones rise after a meal. GLP-1 stimulates glucose-dependent insulin secretion. PYY decreases appetite and reduces food intake by acting on receptors in the hypothalamus. Greater carbohydrate intake at the expense of protein, especially plant protein intake, was inversely associated with diabetes risk, but plant protein intake itself showed no association with diabetes risk.

Materials and methods: The cohort comprised 25 943 Finnish male smokers aged 50-69 years. Diet was assessed at baseline with a validated diet history questionnaire. During a 12-year follow-up, 1 998 incident diabetes cases were identified from a national register. Cox proportional hazard modeling was used to estimate the risk for diabetes and multivariate nutrient density models to examine the effects of substitutions of different macronutrients.

Results: The substitution of carbohydrates for protein, fat, and their subtypes (low, medium, and high GI carbohydrates; protein from meat, milk products, and plant sources; and fatty acids) with diabetes risk.

Materials and methods: Cox proportional hazard modeling was used to estimate the risk for diabetes and multivariate nutrient density models to examine the effects of substitutions of different macronutrients.

Results: The substitution of carbohydrates for protein was inversely associated with diabetes risk: change in the multivariate relative risk when carbohydrates replaced two percent of energy of protein was 0.85 (95% CI: 0.80, 0.90). The substitutions of carbohydrates for protein subtypes, protein from meat, milk products and plant origin, were each inversely associated with diabetes risk, but plant protein intake itself showed no association with diabetes risk. The substitution of carbohydrates for total fat was also inversely associated with diabetes risk, but not significantly for all the fatty acids.

Conclusion: Greater carbohydrate intake at the expense of protein, especially from meat or milk products, was associated with decreased diabetes risk. Carbohydrate intake at the expense of total fat intake was associated with decreased diabetes risk, but the beneficial association may depend on which fatty acids are substituted.

Supported by: Academy of Finland, DPHF, Foundations: Juhani Vainio, Lekhoinen, Finnish Cultural
Effect of changes in the intake of specific food groups on weight loss; a two year dietary intervention trial

Y. Gepner1, A. Canfi1, D. Schwarzfuchs2, R. Golan1, D. Shahar1, D. Fraser1, S. Wirkow1, I. Greenberg1, H. Vardi1, B. Sarusi1, M. Friger1, M.J. Stampfer1, I. Shai2, S. Witkow1, Y. Gepner2

1Epidemiology and Health Systems Evaluation, Ben Gurion University of the Negev, Beer-Sheva, Israel. 2Nuclear Research Center Negev, Dimona, Israel. 3Harvard School of Public Health, Channing laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, and Departments of Epidemiology and Nutrition, Boston, USA.

Background and aims: Adherence to distinct dietary strategies is associated with changes in specific food-groups consumption. We aimed to address the effect of changes in the intake of specific weight of food-groups on weight loss in a 2-year low-fat, Mediterranean and low-carbohydrate dietary intervention trial.

Materials and methods: Electronic-food-frequency questionnaires were used to assess changes in the intake of 11 food-groups (beverages, vegetables, fruits, dairy products, meat, breads/cereals/pasta/potatoes, sweets/cakes, legumes, fish, fats/oils, and eggs) among patients with type 2 diabetes (n=45) and non-diabetics (n=277) moderately obese participants (BMI=31kg/m²; age=52 years; 86% men).

Results: Mean weight-losses at 6-months were -4.6kg, -4.7kg and -6.4kg for the low-fat, Mediterranean and low-carbohydrate groups, respectively (p=0.026 between groups). Reduction in total weight of food consumption, however, was similar across diet-groups (Figure 1): from 3,593 g/day, the participants reduced (p=0.005) their food intake by 284g/day at 6-months and by 963g/day at 24-months. In multivariate regression models, adjusted for age, sex, baseline body-weight and simultaneous changes in 11 food-groups weight intake (g/day), independent dietary predictors of 6-month weight-loss (rapid weight-loss-phase) were: decreased consumption of sweets and cakes (β=0.493;p=0.008) in the low-fat, increased intake of crude legumes (β=0.196;p=0.061) in the Mediterranean, and increased vegetables intake (β=0.249;p=0.018) in the low-carbohydrate diet-group. In the entire study population, in models further adjusted for diet-type, the leading predictors for weight loss after 6-months were increased vegetables (β=-0.116;p=0.045) and decreased sweets and cakes intake (β=-0.182;p=0.007) and meat (β=-0.146;p=0.026) and decreased eggs (β=-0.187;p=0.003), processed legumes (β=0.195;p=0.002), and beverages intake (β=0.135;p=0.032). Analyses were similar when stratifying by diabetes status.

Conclusion: Weight loss may be achieved by a variety of changes in specific food-groups consumption within different diet strategies, while in overall, the leading universal predictors for weight loss are increased vegetables and decreased sweets and cakes intake.

Special dietary regimen and nutrient intake of patients with type 1 diabetes

A.J. Aholam1, V. Mikkilä1, S. Mäkimattila1, C. Forsblom1, R. Freese2, P.-H. Groop1,3

1on behalf of the FinnDIane Study Group; 2Folkhälso Research Center, Helsinki, 3University of Helsinki, Helsinki University Central Hospital, Finland.

Background and aims: Patients with type 1 diabetes are instructed to eat a healthy, balanced diet with the aim to optimize metabolic control. Type 1 diabetes is, however, associated with a number of conditions that may require dietary modifications. We aimed to evaluate the frequency of adhering to special dietary regimens and to study whether such adherence would rise any concern in the sufficiency of dietary intake.

Materials and methods: Cross-sectional data were collected from 810 participants (40% men, mean age 47 range 18-84 years, diabetes duration 32 (1-68) years) in the Finnish Diabetic Nephropathy Study. Data on energy and nutrient intake were collected with a three-day food record (two weekdays and a weekend day) that was completed twice with a 2-3 month interval. Self-report questionnaire was applied to assess adherence to a lactose free, protein restriction, gluten free, or vegetarian diet. Whether diet was introduced based on a recommendation from a health care professional or was self-initiated, was also enquired.

Results: A total of 225 (28%) patients reported adhering to a special diet. Adherence to a lactose free diet was the most frequent (15%), followed by protein restriction (7%), vegetarian (6%) and gluten free diet (4%). Vegetarian (93%) and lactose free (63%) diets were most frequently self-initiated, while protein free and protein restriction diets were primarily initiated based on a diagnosis (88% and 85%, respectively). Frequencies of reaching the recommendations for carbohydrate intake (45-60 E%) ranged from 50% (gluten free) to 63% (vegetarian). Those not reaching the recommendations mainly consumed less carbohydrates than recommended. A total of 24% (protein restriction) to 37% (vegetarian) of the patients exceeded the recommendations for sucrrose intake (<10 E%). Recommendations for protein intake (10-20 E%) were frequently met in all four groups (86 to 92%). At least 50% of patients in all groups met the recommendations for total fat (25-35 E%), monounsaturated fatty acids (10-20 E%), and polyunsaturated fatty acids (5-10 E%). However, a substantial proportion of patients exceeded the recommended levels for total fat (28 to 46%) and saturated fatty acid (<10 E%) intakes (61 to 84%). Moreover, the proportion of patients achieving the recommendations for fibre (0 to 5%) and salt intake (30 to 50%) were low in all four groups. Mean intakes of vitamin A and D per 1000 kcal were below recommendations in all special diet groups. The mean intake of folic acid was below recommendations among all but those adhering to a vegetarian diet. Moreover, those on a gluten free diet did not, in average, meet the recommended level for iron intake.

Conclusion: Special diets were found to be common among patients with type 1 diabetes. Dietary intake of those following a special dietary regimen did not, for many parts, meet the recommendations. Particular attention should be paid to fibre, saturated fatty acid, salt, vitamin A and vitamin D intakes. Moreover, those adhering to gluten free diets are encouraged to address their iron intake.

Supported by: Gyllenberg Foundation, Folkhälsan Research Foundation, Stockmanns Foundation

Glycaemic responses of RP-13 (Bangladeshi Origin) and Jasmine (Thailand) rice in type 2 diabetic subjects

F. Rahman1, N. Sumi1, K. Kobura2, C.B. Mikkelsen3, K. Fatema1, L. Ali1,2

1Dept of Epidemiology and Biostatistics, Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh, 2ISIS Food Products, Skanderborgvej, Denmark, 3Dept of Biochemistry & Cell Biology, Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh.

Background and aims: In the context of the importance of Glycemic Index (GI) and Glycemic Load (GL, an applied tool calculated from GI and serving size) in determining the health of carbohydrate rich foods. The present study was carried out to determine these parameters for Jasmine Rice (Thailand origin) and RP-13 rice (produced in Bangladesh by ISIS Food Products, Denmark), Insulinemic response and NEFA response, as important covariables, were also determined.

Materials and methods: Eighteen diabetic subjects (male 12, female 6), under a cross-over design, consumed equi-carbohydrate amount of the test
foods and two times glucose (as reference food), with a run in period of 7 days between the consecutive items. The (mean±SD) age (years) of the participants was 41±6, waist hip ratio 0.93 ± 0.04, body mass index (BMI) 25 ± 3 and they had basal serum HbA1c value of 6.56 ± 0.83 %. The test meals contained 50 g of total carbohydrate and were given to the participants for ingestion within 10 minutes with 200 ml water. Serum levels of glucose were estimated at 0, 30, 60, 90, 120, 150 and 180 minutes respectively. NEFA, TG and Insulin levels were measured at 0 and 180 minutes only. Serum glucose and TG were measured by glucose-oxidase method, serum Insulin by chemiluminescent ELISA, NEFA by colorimetric method and HbA1c was measured by HPLC method.

Results: RP-13 showed significantly lower serum glucose levels than that of Glucose and Jasmine rice (Incremental area under the curve 289.4±111.3 in RP-13 vs. 591.4±198.8 in Glucose and 499.1±180.3 in Jasmine Rice; p<0.001). RP-13 had significantly lower Gl levels than that of T2D group (Mean: 51.5 ± 8.3 in RP-13 vs. 86.4 ± 21 in Jasmine rice p<0.001)]. The GI of RP-13 and Jasmine rice are 22 and 41 respectively. There were no significant differences between RP-13 and Jasmine rice in terms of serum lipid levels.

Conclusion: As judged against the mean values of the international table (GI: High ≥ 70, Medium 56-69 and low ≤ 55; GL: High ≥ 20, Medium 11-19 and low ≤ 10) RP-13 is a low GI and Jasmine is a high GI rice. However, from the dietary practices in Bangladesh both the items may be used as high GI rice. The data emphasizes the necessity of constructing GI and GL tables based on studies from individual societies.

941

Both higher serum vitamin D and dairy calcium intake are related to a greater 2-year diet induced weight loss, especially in diabetes

R. Golan1, D.R. Shachar2, D. Schwarzfuchs3, D. Fraser4, Y. Gepner1, O. Tangi-Rosental1, H. Yardi5, M. Teyeny, G. Fiedler1, M. Blüher2, M. Stumvoll3, M. Stamper1, L. Shai1; 1Epidemiology, Ben Gurion University, Beer Sheva, Israel, 2Epidemiology, Nuclear Research Center Negev, Dimona, Israel, 3Medicine, Department of Medicine and Institute of Laboratory Medicine, University of Leipzig, Germany, 4Public Health, Channing laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, and Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Boston, USA.

Background: The role of serum 25-OH vitamin D levels and dairy calcium intake on weight loss is controversial.

Objective: To address the association of dairy calcium intake and serum 25-OH vitamin D levels with long-term weight loss in persons with type 2 diabetes (T2D) and with persons with normal glucose tolerance (NGT).

Design: We analyzed the 2-year Dietary Intervention Randomized Controlled Trial (DIRECT)! [NGT: n=277, T2D: n=45, mean body-mass-index (BMI)=31kg/m², mean age=52years]. A representative sample (n=126) was followed for 6-months for serum vitamin D changes. Dietary intake, including dairy products, was evaluated by a validated food frequency questionnaire (FFQ).

Results: Serum baseline 25-OH Vitamin D levels were significantly lower across the two-years of intervention. However, these associations were much stronger in persons with T2D. (-1.3kg; -4.1kg and -7.7kg; across tertiles of serum 25-OH vitamin D). (-0.8kg, -5.3kg and -8.7kg; across tertiles of serum 25-OH vitamin D).

Conclusion: Higher dairy calcium intake and increased serum vitamin D are related to greater dietary-intervention two-year weight loss, especially among persons with type 2 diabetes.
PS 87 Nutritional interventions: mechanisms and ahaenotyps

943

N-3 fatty acids as phospholipids are superior over triacylglycerols in ameliorating hepatic steatosis in mice fed a high-fat diet

T. Jelenik1, Z. Macek Jilkova2, M. Rosmeisl2, D. Medrikova1, P. Janovska1, P. Flachs1, B. Kristinsson1, G.G. Haraldsson1, H. Svensson1, I. Stoknes3, M. Bryhn4, J. Kopecky5
1Department of Adipose Tissue Biology, Institute of Physiology, AS CR, v.v.i., Prague, Czech Republic, 2University of Iceland, Science Institute, Reykjavik, Iceland, 3EPAX AS, Aalesund, Norway, 4Silentia AS, Svelvik, Norway.

Background and aims: n-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), could prevent development of obesity and insulin resistance. In this study, metabolic consequences of dietary n-3 PUFA supplemented to a high-fat diet either as phospholipids (PL) or triacylglycerols (TG) were studied in the obesity-prone C57BL/6J strain of mice.

Materials and methods: In the Prevention study, 3-mo-old male mice were fed ad libitum for 9 weeks either a corn oil-based high-fat diet (cHF; lipids ~35% wt/wt) or cHF-based experimental diets, matched for the total EPA and DHA content (3.15% wt/wt), in which part of dietary lipids (corn oil) was replaced by the EPA and DHA concentrates (EPAX a.s., Aalesund, Norway) in the form of either TG-concentrate (EPAX 1050 TG; 60% EPA+DHA wt/wt) or novel PL-concentrate (27% EPA+DHA wt/wt). In the Reversal study, obesity was induced by cHF feeding for 4 mo prior to dietary treatments by either TG- or PL-concentrates. Obese mice were then subjected to one of the following treatments: 1) cHF diet; 2) cHF and metformin (2 g/kg diet; 3) cHF+M and TG-concentrate (cHF+M+TG diet); 4) cHF+M and PL-concentrate (cHF+M+PL diet). Markers of glucose and lipid homeostasis, glucose tolerance (AUC), hepatic steatosis, adipocyte hypertrophy and adipose tissue inflammation were analyzed.

Results: In the Prevention study, the concentrates did not affect weight gain or adiposity, while reducing plasma NEFA (cHF; 0.44 ± 0.04 vs. TG-concentrate, 0.30 ± 0.02 vs. PL-concentrate, 0.27 ± 0.04 mmol/l; p<0.01 vs. either concentrate). PL-concentrate more effectively (p<0.05 vs. cHF) reduced plasma TG (cHF; 1.12 ± 0.13 vs. TG-concentrate, 0.91 ± 0.13 vs. PL-concentrate, 0.71 ± 0.13 mmol/l) and increased high-molecular weight adiponectin (cHF; 0.60 ± 0.11 vs. TG-concentrate, 0.88 ± 0.10 vs. PL-concentrate, 0.93 ± 0.09 A.U.). Only PL-concentrate (p<0.01) improved glucose tolerance during a 3-hr tolerance test (AUC; cHF; 2221 ± 78 vs. TG-concentrate, 2299 ± 84 vs. PL-concentrate, 1831 ± 78 mmol/l), and prevented hepatic lipid accumulation (cHF; 41 ± 7 vs. TG-concentrate, 36 ± 4 ± 27 ± 4 mg/g tissue). In the Reversal study, both concentrates reduced abdominal fat depot, plasma TG, NEFA and cholesterol, and induced adiponectin. However, hepatic steatosis was more effectively reduced by PL-concentrate (cHF; 212 ± 28 vs. cHF+M, 160 ± 17 vs. cHF+M+TG, 83 ± 15 vs. cHF+M+PL, 41 ± 4 mg/g tissue; p<0.001; cHF+M vs. either treatment), and only PL-concentrate (p<0.05 vs. cHF+M) reduced adipocyte hypertrophy (cHF; 5532 ± 553 vs. cHF+M, 5961 ± 381 vs. cHF+M+TG, 5195 ± 349 vs. cHF+M+PL, 4433 ± 127 mm²).

Conclusion: As compared to TG, dietary n-3 PUFA administered as PL exert a number of superior effects on obesity-associated metabolic disorders. The PL-concentrate was especially effective in reducing hepatic lipid accumulation and adipocyte hypertrophy associated with high-fat feeding. Thus, the use of n-3 PUFA as PL might be a preferred way of dietary supplementation to help prevent or even reverse hepatic steatosis associated with obesity and insulin resistance.

Supported by: IGA of the Ministry of Health of the Czech Republic

944

The effects of omega-3 polyunsaturated fatty acids on cardiometabolic parameters and oxidative stress after 1-year administration in metabolic syndrome patients

A.D. Dragomir1, G. Radulian1, E.D. Rusu1, S. Dragani, D. Cheta2; 1Healthy Food Foundation, Bucharest, 2University of Medicine "Carol Davila", Bucharest, 3University of Medicine, Timisoara, Romania.

Background and aims: To observe if one year administration of a diet containing omega-3 PUFA supplements vs. baseline diet recommended to patients with metabolic syndrome has a significant impact on oxidative stress, atherosclerosis progression and metabolic parameters.

Materials and methods: A total of 270 patients with metabolic syndrome (MS) according to IDF criteria, aged 61.6±8.6 years, without clinical evidence of atherosclerosis were allocated to 2 groups, matched by sex, age and weight: group A (140 patients) - diet according to ESC/EASD recommendations and individual needs; group B (130 patients) - the same diet + capsules of fish oil (1.0 g eicosapentaenoic acid, 1.0 g docosahexaenoic acid and 0.1 g α-tocopherol acetate). Body fat mass (BFM) and body fat percent (%BF) were measured by bioimpedance analysis (BIA) using InBody 3.0 Analyzer. Fasting plasma glucose, HbA1c, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, plasma insulin, adiponectin and leptin were measured according to standard procedures. Insulin resistance was measured using HOMA-IR index. Oxidative stress was assessed using FormOx systems monitor on a blood drop. The progression of atherosclerosis was determined by measuring intima-media thickness (IMT) at common carotid artery (ACCI). The patients were evaluated at baseline, after 6 months and after 1 year.

Results: Baseline characteristics were similar between groups. After 6 months, omega-3 supplements determined a significant improvement of metabolic parameters, decrease of oxidative stress and a statistically significant increase in adiponectin levels (from 9.46 ± 2.76 to 10.86 ± 2.68). BMI, mean %BE, mean BFM and mean waist-to-hip ratio (WHR) were significantly lower in group B vs. group A (BMI5 - 29.1 ± 31.12 kg/m²; %BE5 - 27.48 vs 30.48; BFM - 26.78 vs 29.42 kg; WHR - 1.02 vs 1.07). BMI was statistically correlated with BFM (p<0.0001) and %BF (p<0.0001). Intima-media thickness (IMT) was significantly decreased in group B (IMT in left ACC - 0.610 ± 0.06 vs. 0.621 ± 0.071 mm; p=0.002; IMT in right ACC - 0.593 ± 0.074 vs. 0.612 ± 0.059). Considering the results at 6 months comparing with those at 1 year, all the parameters considered in the study were significantly improved (Table 1). IMT was correlated with %BF (p<0.0001), WHR (p<0.002), leptin values (p<0.001), adiponectin values (p<0.001), leptin/adiponectin ratio (p<0.001) and oxidative stress (p<0.0001). The decrease of oxidative stress was correlated with increased HDL-cholesterol levels (p<0.05), %BF (p<0.0001) and WHR (p<0.001).

Conclusion: Omega-3 PUFA enriched diets bring metabolic parameters closer to target values, thus lowering cardiovascular risk of MS patients. Also, oxidative stress is decreased, underlying the role of omega-3 in the delay of endothelial cells damage.

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group B - 6 months</th>
<th>Group B - 1 year</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>198 ± 18.9</td>
<td>186 ± 16.5</td>
<td>P<0.001</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dl)</td>
<td>55 ± 12</td>
<td>58 ± 9</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>132 ± 58</td>
<td>120 ± 43</td>
<td>P=0.012</td>
</tr>
<tr>
<td>Fasting Plasma Glucose (mg/dl)</td>
<td>110 ± 14</td>
<td>107 ± 9</td>
<td>P=0.05</td>
</tr>
<tr>
<td>FormOx (Fort Units)</td>
<td>268 ± 76</td>
<td>258 ± 81</td>
<td>P=0.001</td>
</tr>
<tr>
<td>IMT - right ACC</td>
<td>0.610 ± 0.06</td>
<td>0.598 ± 0.082</td>
<td>P=0.001</td>
</tr>
<tr>
<td>IMT - left ACC</td>
<td>0.593 ± 0.074</td>
<td>0.589 ± 0.063</td>
<td>P=0.05</td>
</tr>
<tr>
<td>%BF</td>
<td>27.48 ± 2.8</td>
<td>25.92 ± 1.6</td>
<td>P=0.016</td>
</tr>
</tbody>
</table>

Supported by: PNCDI2 program - DIAIDIOHPE, CEEX

945

Metabolic inflexibility to carbohydrates in dietary obese mice: improvement by combination treatment with n-3 polyunsaturated fatty acids and calorie restriction

Background and aims: Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability and it is usually impaired in obese, insulin-resistant subjects. In this study, we attempted to validate the use of intragastric glucose gavage and indirect calorimetry (iCO2) for the measurement of metabolic flexibility to carbohydrates in lean and dietary obese C57BL/6J mice. In addition, we used this approach to assess the effects of a combination treatment by n-3 polyunsaturated fatty acids (PUFA) and 10% calorie restriction (CR) on metabolic flexibility in mice fed a high-fat diet.

Materials and methods: Female C57BL/6J mice were fed either a standard chow (STD) or corn oil-based high-fat diet (~5%F; lipids ~35% wt/wt) from...
the weaning (4 wk of age) until 7 mo of age (n = 6–9). Metabolic flexibility was assessed as a maximal change in respiratory quotient (ΔRQ) measured by INCA during a 4-hr period following a glucose load (0.45 ml of 50% D-glucose) administered by intragastric gavage to overnight (~12 hr) fasted ani-
mals. In the second experiment, 3- to 5-month-old male C57BL/6J mice were habitu-
ated for 2 wk to the chF diet, followed by differential dietary treatments (n = 9–13 for 5 wk: 1) chF, ad libitum; 2) chF with n-3 PUFA concentrate (EPAX 10507TG; EPAX, a.s., Lynäsymäki, Norway) replacing 15% of dietary lip-
ids, ad libitum (chF+F); 3) chF, 10% CR (chF+CR); or (4) chF+F, 10% CR (chF+F+CR). Changes in plasma NEFA in response to fasted to fed transitions were also analyzed.

Results: In the first experiment, chF feeding for 6 mo induced a weight gain of 31.7± 2.5 g as compared to a gain of 10.8± 0.5 g in the STD mice (body weight: chF: 45.8± 2.4 vs. STD: 25.0± 0.6 g; p<0.001). Although there were no differences between chF and STD mice in RQ following overnight fasting (chF: 0.746± 0.010 vs. STD: 0.773± 0.008; p=0.057), chF-fed mice showed a ~2-fold lower increase in RQ in response to the glucose load as compared to STD mice, suggesting impaired metabolic flexibility. In the second experiment, com-
pared with chF mice, all the treatments tended to prevent body weight gain (chF>F+CR>chF+F+CR), while a significant reduction was found only in mice subjected to the combination treatment (chF: 28.7± 0.7 vs. F+CR: 25.8± 0.4 g; p<0.001). This treatment was also the most ef-
fective in elevating RQ in response to glucose (ΔRQ; chF: 0.086± 0.002 vs. chF+F: 0.095± 0.006 vs. chF+CR: 0.096± 0.005 vs. chF+F+CR: 0.107± 0.006; p<0.05 vs. chF+F+CR). At the same time, chF+F+CR induced a most prominent decrease in plasma NEFA following fasting [(chF: 0.89± 0.05 vs. chF+F: 0.70± 0.04 mmol/l) to fed (chF: 0.59± 0.09 vs. chF+F+CR: 0.43± 0.04; p<0.001 vs. chF+F and chF+F+CR)], transition, while the other treatments were less effective.

Conclusion: Metabolic inflexibility to carbohydrates could be demonstrated using intragastric gavage gavage and INCA in dietary obese mice. Combin-
tion treatment using n-3 PUFA and 10% CR preserved metabolic flexibility better than any of these treatments applied separately.

Supported by: IGA of the Ministry of Health of the Czech

946

Cross-linked dairy protein attenuates postprandial glucose and insulin levels and increases fullness in healthy young men

K.-H. Herzig1, K.R. Juvonen2, N. Lilliette, L.-V. Vartiovuori2, T. Karhu2, A. Jurado Acosta1, D. Laaksonen1, H. Mykkänen1, L.K. Niskanen1, K. Poutanen3; 1Dept of Physiology, Medical School, Institute of Biomedicine, University of Oulu, Department of Clinical Nutrition, Food and Health Research Centre, University of Eastern Finland, VTT, Technical Research Centre of Finland, 2Department of Medicine, Kuopio University Hospital, Finland.

Background and aims: Food induces many signals in the gastrointestinal tract, important for digestion, satiety and further systemic responses. The properties of the postprandial response determined by their chemical composition and physi-
al properties. Protein has the highest satiety value of among the different macronutrients. Furthermore, the textural properties of a single protein can be tailored by cross-linking enzymes e.g. transglutaminase (Tg). However, little is known about the effects of modified protein structures on these re-
sponses. Our aim was to examine the effects of intact and transglutaminase (TG) cross-linked dairy protein on postprandial hormonal, metabolic and appetitive responses.

Materials and methods: The study had a randomized repeated-measures crossover design. All participants tested each test product with a minimum of 2 d separating the individual test days. Eight healthy males (24.0±0.82 yrs; 23.3±0.5 BMI kg/m2) consumed 200 ml water isocaloric (850 kJ) and
isovolumic (400 ml) test product containing either 50 g whey (Wh), casein (Cas) or casein protein cross-linked with transglutaminase (Cas-TG) in a
isovolumic (400 ml) test product containing either 50 g whey (Wh), casein (Cas) or casein protein cross-linked with transglutaminase (Cas-TG) in a

Results: Glucose levels significantly decreased in the first hour and returned close to baseline at the end of sampling at 240 min. Cas and Wh were more potent in lowering glucose levels than Cas-Tg. Release of insulin, GLP-1, PYY and CCK differed significantly in response to the three protein meals, with the highest release 30 min after Wh. The insulin response to Cas-Tg was attenuated and peaked at 60 min. GLP-1 peaked at 15 - 30 min after Wh and 60 min after Cas, whereas the response to Cas-Tg was attenuated. PYY

947

Effects of different types of meal on the expression on oxidative mitochondrial genes in skeletal muscle of healthy subjects

A. A. Turco1, M. Guascini2, V. Valtucci1, C. Colosimo1, V. Stocchi2, G. Riccardi2, B. Capaldo2; 1Dept. of Clinical and Experimental Medicine, Federico II, University, Naples; 2Institute of Biological Chemistry, University of Urbino “Carlo Bo”, Urbino, Italy.

Background and aims: Recent studies have shown an impaired mitochondrial oxidative capacity in skeletal muscle of individuals with insulin resistance, suggesting that mitochondrial dysfunction may be a primary, genetically de-
termined defect. There is also evidence that mitochondrial dysfunction may be a consequence of adverse environmental factors, such as sedentary lifestyle and over nutrition. To evaluate the impact of acute administration of differ-
ent dietary fat on the expression of muscle mitochondrial genes regulating replication and function in healthy subjects.

Material and methods: Six healthy subjects (3F/3M; age 29±3 yrs; BMI 25.0±3 Kg/m2) received in a random order a test meal with the same energy content (970 Kcal) but different composition in macronutrients and quality of fat: Mediterranean meal (M) (Lipid 30% of which 6% saturated), SAFa meal (Lipid 67% of which 36% saturated) and MUFA meal (Lipid 63% of which 37% monounsaturated). At fast and after 180 min, a fine needle aspiration (FNA) was performed from the vastus lateralis muscle for determination of mitochondrial gene expression by quantitative PCR.

Results: M meal was associated with a significant increase (p<0.05) of transcrip-
tion factor PPARs expression levels, whereas expression of regulator genes PGG1α and PGG1β remained substantially unchanged. No change was detected in the expression of COX5b, COX2 and GLUT 4 genes. After MUFA meal, no modification was observed in the expression of PPARs, but a signifi-
cant increase of PGC1α (p=0.07) and PGC1β (p<0.001) gene expression was detected in the expression of COX5b, COX2 and GLUT 4 genes. After MUFA meal, no modification was observed in the expression of PPARs, but a signifi-
cant increase of PGC1α (p=0.07) and PGC1β (p<0.001) gene expression was observed. COX5b and COX2 gene expression remained unchanged whereas GLUT4 gene expression increased significantly (p<0.05). After SAFa meal, PGG1α, PGG1β, and PPARs gene expression were unchanged whereas COX2 expression decreased by 38 % (p<0.02), COX2 decreased by 31% (p<0.07), and GLUT4 decreased by 11% (p<0.05).

Conclusion: The present data indicate that mitochondrial gene expression profile since saturated fat, but not monounsaturated, downregulated the expression of genes involved in glucose transport and substrate oxidation.

948

Dose-dependent anti-obesity and anti-diabetic effects of synbiotics in high-fat fed C57BL/6J mice

K. Berger1, U. Andersson, C. Holm; Experimental Medical Science, Lund University, Lund, Sweden.

Background and aims: We have recently shown that plants rich in polyphen-
ols (with antioxidants and prebiotic effects) administered alone or together
with the probiotic dietary bacteria Lactobacillus plantarum (Lp) exerts anti-
obesity and anti-diabetic effects in HFD-fed C57BL/6J mice, a model of hu-
man obesity and insulin resistance. For instance, we observed an almost com-
plete prevention of body weight gain, as an effect of decreased adiposity, in groups receiving the supplemented diets. In addition, we observed an inhib-
ited inflammatory activity in mice receiving the combination of supplement.
Based on these results where the dramatic effects were attained with relatively high polyphenol concentration, we here aim to evaluate the dose-response relationship for the studied plant-associated polyphenol, both in absence and presence of probiotic bacteria.
949

Effects of supplementation with red wine polyphenols on inflammation, mitochondrial function and oxidative stress muscle

K. Lambert, M. Coisy-Quivy, P. Sirvent, A. Sultan, C. Bisbal, J. Mercier, A. Avgignon; INSERM ERI 25, Montpellier, France.

Background and aims: The mechanisms responsible for skeletal muscle insulin resistance (IR) remain incompletely understood. However, chronic low-grade inflammation, oxidative stress and mitochondrial alterations have been suggested to take part in the development of IR. Recent studies have found that the polyphenolic compounds found in red grape have interesting properties suggested to take part in the development of IR. Moreover modulations of insulin levels in subjects with MS. Moreover modulation of insulin levels has a strong effect on circulating MR-proANP. These observations provide a novel link between postprandial metabolism and hormonal heart action.

Supported by: Antiabetic Food Center (AFC), Lund university

950

Reduction of glycaemic index enhances levels of midregional-pro-atrial natriuretic peptide: evidence for gut-heart-axis

A.F.H. Pfeiffer, A. Ernst, M.O. Weickert, O. Pivovarova, A.M. Arafat, N.G. Morgenthaler, A. Bermagno, N. Rudovich, Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Germany; B.R.A.H.M.S AG, Biotechnology Centre Berlin-Hennigsdorf, Germany; Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, Coventry, United Kingdom.

Background and aims: Reduction of glycaemic index is an effective strategy for prevention of hypertension and CVD events in the subjects with metabolic syndrome and T2DM. Atrial natriuretic peptide (ANP) is a potent natriuretic and vasorelaxant hormone that is secreted mainly by cardiomyocytes and plays contributory roles in cardiovascular homeostasis. In the subjects with Metabolic Syndrome (MS) circulating level of N-terminal natriuretic peptides are decreased for unknown reason. The midregional-pro-atrial natriuretic peptide (MR-proANP) is a stable fragment of the ANP precursor proANP, which is co-secreted with mature ANP from cardiomyocytes. We hypothesized that reduction of glycemic index by alpha-glucosidase inhibitor acarbose may modulate MR-proANP levels.

Materials and methods: Subjects with MS (n=28) were studied in the double blind, placebo controlled, crossover intervention study. Interventions with acarbose (3x100 mg/d) or placebo for 12 weeks (with a respective 12-week washout period) were performed. Changes in MR-proANP, postprandial glucose/insulin responses during liquid meal challenge test, body weight, and insulin sensitivity in the euglycemic clamp were assessed. Furthermore, in a cohort of normotensive non-diabetic subjects (n=46), the effect of insulin application on MR-proANP was analyzed during a hyperinsulinemic-euglycemic clamp.

Results: Fasting MR-proANP increased after 12 weeks of acarbose treatment (p<0.001). Acarbose decreased postprandial insulin and glucose concentrations (p=0.0001 and p = 0.024, respectively). Changes in MR-proANP levels correlated negatively with changes in postprandial insulin (r= -0.53, p<0.001). No effects on body weight and insulin sensitivity were observed. Exogenous insulin suppresses plasma levels of MR-proANP (p<0.001).

Conclusion: Reduction of glycaemic index by acarbose increases MR-proANP levels in subjects with MS. Moreover modulation of insulin levels has a strong effect on circulating MR-proANP. These observations provide a novel link between postprandial metabolism and hormonal heart action.

Supported by: Firma Bayer Vital, Leverkusen, Germany

951

Rose hip exerts anti-diabetic effects via a mechanism involving downregulation of the hepatic lipogenic program

Background and aims: In the recent decades there has been a dramatic increase in the prevalence of obesity and type 2 diabetes worldwide. Both type 2 diabetes and obesity are strongly associated with non-alcoholic fatty liver disease, the most common liver disease worldwide. Rose hips are a rich source of antioxidants such as ascorbic acid, phenolic compounds and carotenoids. Recently it was shown that administration of an acetone extract from fruit and seeds from Rosa canina prevented body weight gain in mice fed a normal chow diet. The aim of this study was to explore the beneficial metabolic effects of rose hip in greater detail and to elucidate some of the mechanisms underlying the observed anti-diabetic effects. We used the high-fat fed C57BL/6J mouse which is a model for obesity, impaired glucose tolerance and early type 2 diabetes.

Materials and methods: Long-term metabolic effects were investigated in this mouse model following administration of powdered rose hip together with high-fat diet to lean mice. Parameters related to obesity and glucose tolerance were monitored, and livers were examined for lipids and expression of genes and proteins related to lipid metabolism and gluconeogenesis.

Results: A supplement of rose hip was capable of preventing the increase in body weight imposed by a high-fat diet in the C57BL/6J mouse (7.1±0.4 vs. 17.1±1.1g, p<0.001). The decreased body weight gain mirrored a lower body fat content, measured by dexas-scan technique. Lower basal levels of in-
Vegetarian diet improves plasma concentrations of adipokines and oxidative stress markers more than conventional diabetic diet in subjects with type 2 diabetes

H. Kahleova1, M. Matoušek2, H. Malinská3, O. Olyarník3, L. Kazdová3, T. Pelíšková4
1Diabetes Centre, Institute for Clinical and Experimental Medicine, 23rd Internal Clinic of Endocrinology and Metabolism, General University Hospital, Prague, Czech Republic.

Background and aims: Trials using vegetarian diet in subjects with type 2 diabetes (T2D) have shown greater improvement in HbA1c compared to conventional diabetic diet. We sought to investigate the effect of vegetarian diet on plasma concentrations of adipokines and oxidative stress markers.

Materials and methods: Subjects with T2D (n=74) were randomly assigned to experimental group (EG, n=37) following vegetarian diet or control group (CG, n=37) following conventional diet. Participants were examined at baseline, 12 weeks of diet intervention and 24 weeks (second 12 weeks of diet were combined with aerobic exercise). Plasma concentrations of adipokines and oxidative stress markers were measured using commercial kits.

Results: 43% of EG and 5% of CG participants reduced diabetes medication. Body weight decreased by 6.2 kg in EG and by 3.2 kg in CG (interaction between group and time p<0.001). Plasma concentrations of vitamin C increased in EG by 22% (p<0.002; group x time p=0.002). Superoxide dismutase increased in EG by 49% (p=0.001), whereas in CG it decreased by 30% (p=0.001; group x time p=0.001). Catalase increased in both groups (p<0.001 for EG and p=0.01 for CG). TRAP levels decreased in both groups (p<0.001 for both groups). Reduced glutathione increased in EG by 27% (p=0.02), whereas in CG it decreased by 11% (p=0.05; group x time p=0.001). Glutathione reductase decreased in EG by 42% (p<0.001) while glutathione peroxidase increased in EG by 20% (p<0.001) and glutathione transferase increased in both groups, more in CG (by 59% vs. 14% in EG; group x time p=0.003). Plasma concentrations of total adiponectin increased in EG by 19% (p=0.05; group x time p=0.02). HMW adiponectin increased in EG by 15% (p=0.02; group x time p=0.05). Resistin increased in CG (p=0.01; group x time p=0.005). Leptin decreased by 35% in EG (p=0.02; group x time p=0.05).

Conclusion: Vegetarian diet led to greater weight loss and reduction of diabetes medication and to greater improvement in plasma levels of adipokines and oxidative stress markers. Vegetarian diet could be a more convenient alternative in treatment of T2D.

Supported by: Swedish Research Council, Swedish Diabetes Association, Novo Nordisk

1952

PS 88 Initiating and intensifying insulin therapy

953

Negative attitudes towards insulin treatment in type 2 diabetes seems to be a rather temporal and benign phenomenon: Results of an observational longitudinal study

N. Hermanns1, B. Kulzer2, M. Mahr1, S. Skovlund3, T. Haak3
1Research Institute of Diabetes Academy Mergentheim (FIDAM), Bad Mergentheim, Germany, 2Novo Nordisk AS, Bagsværd, Denmark.

Background and aims: Cross sectional findings indicate that negative attitudes towards insulin therapy are rather frequent in type 2 diabetes. These attitudes may be based on beliefs that the need for insulin therapy indicates a higher severity of diabetes and proves a failure of successful diabetes self-management. Worries about painful injections and the risk of hypoglycaemia or weight gain are also common. These negative attitudes may be one reason for the delay of insulin treatment initiation. In this observational longitudinal study with a three month follow-up the course of negative attitudes towards insulin treatment was analysed in three different groups of type 2 diabetic patients facing an intensification of diabetes treatment.

Materials and methods: The first subgroup was on insulin therapy at baseline (n=57; age 56.0±8.9, disease duration 12.7±7.2 yrs, HbA1c 8.5±1.6%) and remained on insulin at follow-up. Of an initial 73 insulin-naïve patients, 44 were switched to insulin therapy (group 2: age 58.1±6.8, disease duration 7.7±5.0 yrs, HbA1c 9.1±1.7%) and 29 patients remained on an oral regimen (group 3: age 52.7±10.7 yrs, disease duration 5.3±4.6 yrs, HbA1c 8.3±1.4%). Barriers towards insulin therapy were measured using the Insulin Treatment Appraisal Scale (ITAS). As generic instruments of health related quality of life patients completed also the Problem Areas of Diabetes Questionnaire (PAID), the WHO-5 Well-Being Scale (WHO-5), the Centre for Epidemiologic Studies Depression Scale (CES-D) and the Trait Version of the State Trait Anxiety Inventory (STAI) at baseline and at a three month follow-up.

Results: In the three month follow-up HbA1c improved in all three groups (7.7±1.2% vs. 7.1±1.1% vs. 6.7±1.7%). The course of negative appraisal of insulin therapy was significantly different in the 3 groups (p=0.003): It increased in patients remaining on an oral regimen (51.2±12.2 to 53.6±12.3), whereas the ITAS score decreased in patients who switched to insulin (49.2±9.8 to 46.2±9.9) and patients who remained on insulin (45.8±8.3 to 44.5±8.0). More generic psychological variables like diabetes related distress, trait-anxiety or well-being showed an improvement in all three groups, but no significant differences between the groups. In patients who switched to insulin therapy the depression score improved significantly (16.1±10.2 to 11.9±9.8) compared to the groups who remained on oral medication (11.7±8.2 to 10.8±7.9) respectively who remained on insulin therapy (CES-D: 17.8±10.9 to 16.4±9.8 p=0.045).

Conclusion: In type 2 diabetic patients who switched to insulin therapy negative appraisal of insulin therapy was reduced to the level of type 2 diabetic patients already treated with insulin. Patients remaining on an oral regimen increased negative appraisal towards insulin therapy. In summary this study shows that negative appraisal of insulin treatment is modifiable by the initiation of insulin therapy, indicating that features of “psychological insulin resistance” are a benign, temporary phenomenon. More meth-odological robust randomized studies are needed to corroborate this result further.

Supported by: Novo Nordisk

1954

Beginning insulin in people with type 2 diabetes mellitus in real life practice – 1-year results of the 4-year CREDIT Study

P. Home1, B. Balkau2, N. Danchin3, E. Genestin4, M. Marre5, G. Vespasiani6, R. K. Kamonori3, N. Freeman6
1Institute of Cellular Medicine – Diabetes, Newcastle University, United Kingdom, 2INSERM CESP U1018, Villejuif, France, 3Division of Coronary Artery Disease and Intensive Cardiac Care, Paris, France, 4sanofi-aventis, Paris, France, 5Université Paris, INSERM U695, France; 6Diabetesology and Metabolic Disorders Centre, San Benedetto Del Tronto (AP), Italy, 7Department of Medicine, Juntendo University, Tokyo, Japan, 8Department of Primary Care and General Practice, University of Birmingham, Edgbaston, United Kingdom.

Background and aims: CREDIT, a 314-centre, non-interventional study, investigates the effects of long-term glycaemic control with insulin treatment
on the risk reduction of cardiovascular events associated with type 2 diabetes mellitus (T2DM). Here, we present the 1-year findings of the CREDIT study in patients who initiated insulin at baseline.

Materials and methods: People with T2DM (n=3031) who had recently started insulin (basal, short-acting or premix insulin at the physician’s discretion) were eligible for evaluation. Changes in therapy, metabolic control parameters and lipid profiles of 2724 people at baseline and at 1 year (9–18 months) after insulin initiation are described.

Results: Most people (75%) had the same insulin regimen at baseline and at 1 year (Table). Those starting with short-acting insulin regimen alone were more likely to have changed insulin regimen. Overall, the insulin dose increased from 19.7 ± 14.5 U/day at baseline to 34.4 ± 25.3 U/day at 1 year. Substantial reductions in HbA1c (~1.8%), fasting plasma glucose (FPG; ~3.6 mmol/L) and postprandial PG (PPPG; ~4.7 mmol/L) were observed; 32% of patients had HbA1c <7.0%. Symptomatic hypoglycemia occurred in 20% of patients (2% experiencing at least one severe episode). Mean weight increased marginally by 1.7 ± 4.8 kg (from 80 ± 19 at baseline to 81 ± 18 at 1 year). LDL cholesterol levels were reduced slightly by ~0.2 mmol/L (from 2.9 ± 0.9 to 2.7 ± 0.9 mmol/L) and triglycerides by ~0.3 mmol/L (from 2.2 ± 2.4 to 1.8 ± 1.4 mmol/L). Mean HDL cholesterol levels were unchanged.

Conclusion: Although the results of the 1-year analysis of the CREDIT study are encouraging, the majority of patients remain above the HbA1c target level of ≤7.0% commonly advocated. The high FPG and PPPG levels indicate that there may be suboptimal insulin dose titration over the first year. In contrast to the substantial decrease in HbA1c, the small decrease in LDL levels indicates that physicians focus on glucose control rather than on other aspects of secondary prevention.

Table

<table>
<thead>
<tr>
<th>Insulin regimen (%)</th>
<th>Baseline (n=3031)</th>
<th>1-year follow-up (n=2734)</th>
<th>Change from baseline (n=2734)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>52</td>
<td>41</td>
<td>64</td>
</tr>
<tr>
<td>Basal + short-acting</td>
<td>15</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Short-acting</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Premix</td>
<td>23</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>9.5 ± 2.0</td>
<td>7.7 ± 1.4</td>
<td>−1.8 ± 2.1</td>
</tr>
<tr>
<td>FPG (mmol/L)</td>
<td>11.6 ± 3.7</td>
<td>7.9 ± 2.5</td>
<td>−3.6 ± 3.9</td>
</tr>
<tr>
<td>PPPG (mmol/L)</td>
<td>14.2 ± 4.6</td>
<td>9.6 ± 3.2</td>
<td>−4.7 ± 4.9</td>
</tr>
</tbody>
</table>

Data are mean ± SD. *No insulin at 1 year: 2.3%*

Supported by: sanofi-aventis

955

Fasting plasma glucose 6 to 12 weeks after starting insulin glargine predicts success in reaching HbA1c ≤7.0% at weeks 24 to 28

D.M. Karl;

The Endocrine Clinic, PC, Portland, USA.

Background and aims: Adding insulin glargine, using a treat-to-target method, restores glycated hemoglobin A1C (A1C) to ≤7.0% for many patients with type 2 diabetes (T2DM) with inadequate glycemic control on oral agents, but some need further therapy to reach this goal. The purpose of this analysis was to identify patients who may need prandial insulin aspart, based on GLA supported oral therapy, BOT is preferably recommended in type 2 diabetic (T2D) patients according to the consensus statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). We aimed to assess the persistence of T2D patients starting a BOT with either insulin glargine (GLA) or NPH insulin (NPH) until modification of insulin therapy.

Materials and methods: A retrospective cohort study was performed using claims data for ambulatory prescriptions within the German statutory health-insurance scheme, based on a representative sample of more than 80% of community pharmacies. Patients on BOT with either GLA or NPH between 01/2003 and 12/2006 were included and followed up until 12/2007. Persistence was defined as the duration of time from initiation of BOT with GLA or NPH until modification of insulin therapy, with either premixed insulin (CT), bolus insulin alone (SIT) or bolus insulin added to basal insulin (ICT). Univariate and multivariate proportional hazards models were used to compare both cohorts.

Results: In total, 97,976 patients (61,053 GLA and 36,923 NPH) were included. Altogether, 44.1% of GLA patients and 48.7% of NPH patients modified initial BOT. On average, these patients stayed 373 days on BOT with GLA and 365 days on BOT with NPH (incidence rate per 100 person-years: 25.8 vs. 33.4). During the observation period 23.7% of the patients switched to ICT, 17.6% to CT, and 4.5% to SIT. The risk of switching from BOT to one of these intensified insulin regimens was significantly higher for NPH compared to GLA patients (HR 1.25, 99% CI 1.22-1.28). After adjustment for predefined covariables i.e. type of physician, region, insurance status, health insurance company, comodication, number of OADs, dose of basal insulin, the risk for NPH patients remained significantly higher (HR 1.17, 99% CI 1.14-1.20).

Conclusion: T2D patients under BOT with GLA remain significantly longer compared to NPH before they have to be switched to more intensified regimens. This might also be of economic importance, since BOT causes less resource consumption than CT, SIT or ICT regimens as has been shown by other investigators.

Supported by: MU: Lesmüller Stiftung, Munich; GIDE: sanofi-aventis Deutschland GmbH

957

The STEPwise® randomised, controlled, 48-week trial: intensifying treatment with stepwise addition of prandial insulin aspart, based on largest prandial glucose increment or largest meal, to once-daily basal insulin detemir in subjects with type 2 diabetes

K. Hermansen1; S. Kumar2; H. Mersbach3; A.L. Svendsen4; L. Meneghini5; 1Aarhus University Hospital, Denmark, 2Warwick University, United Kingdom, 3Novo Nordisk A/S, Copenhagen, Denmark, 4University of Miami Miller School of Medicine, United States

Background and aims: Adding bolus insulin doses step by step is one approach for intensifying treatment in patients on basal insulin when glycaemic...
control is no longer maintained. The aim of this randomised, controlled, parallel group, open-label, 48-week trial (STEPwise) was to compare the effect on glycaemic control and safety endpoints of sequential addition of prandial insulin aspart (IAsp) to: (a) largest perceived meal (SimpleSTEP); or (b) meal with the largest post-prandial glucose increment (ExtraSTEP).

Materials and methods: 296 subjects with type 2 diabetes inadequately controlled on basal insulin+OADs (mean age 58.3 yrs; mean HbA1c 8.8%; mean diabetes duration 12.3 yrs) underwent a 12-week run-in and were transferred to once-daily bedtime insulin detemir with continuation of their previous stable pre-trial OAD regimen and optimisation of basal insulin doses. Subjects with HbA1c ≥7% after run-in were randomised to one of the two groups, and sulphonylureas were discontinued. Bolus insulin titration was based on pre-meal glucose values for SimpleSTEP and post-meal glucose values for ExtraSTEP. After 12 weeks’ treatment with the 1-IAsp regimen (Period 1), subjects not at HbA1c <7% received a second IAsp titrated bolus at the next largest meal or uncovered meal with largest post-prandial glucose increment for an additional 12 weeks (Period 2); subjects with HbA1c <7% continued with one IAsp injection. At 24 weeks, subjects with HbA1c ≥7% received IAsp at a second/third meal and subjects with HbA1c <7% continued on the 1- or 2-IAsp regimens for 12 more weeks (Period 3).

Results: At study end, both groups showed significant improvements in HbA1c (-1.2%) with no difference between regimens. HbA1c decreased by ~0.5% in Period 1, by a further ~0.5% in Period 2, and by ~0.2% in Period 3 in both groups. The overall rate of hypoglycaemia was low. Conclusion: Improvement in glycaemic control with a low risk of hypoglycaemia can be achieved by the stepwise addition of insulin aspart to insulin detemir based on perceived meal size or measured post-prandial glucose increments.

Supported by: Novo Nordisk

958

Stepwise intensification of prandial insulin versus basal–bolus insulin therapy in patients with type 2 diabetes mellitus

D. Raccab, T. Haak, D. Huet, L. Monnier, J.S. Ramon, D. Robertson, P. Labard, A. Penfornis, OSIRIS Study Group; 1Hôpital Sainte Marguerite, Marseille, France, 2Diabetes Zentrum, Bad Mergentheim, Germany, 3Centre Hospitalier Saint Joseph, Paris, France, 4Hôpital Lapeyronie, Montpellier, France, 5Centre Hospitalier Saint Joseph, Besançon, France.

Background and aims: Insulin therapy intensification is important for patients with poorly controlled type 2 diabetes mellitus (T2DM). This international, randomised, parallel-group, non-inferiority study compared stepwise addition of prandial insulin with a basal–bolus regimen.

Materials and methods: A total of 811 patients (mean ± standard deviation [SD] age: 58.6 ± 8.9 years) with T2DM poorly controlled on basal insulin (HbA1c 9.1 ± 1.4%; fasting plasma glucose [FPG] 9.7 ± 3.3 mmol/L [174 ± 59 mg/dL]) were switched to insulin glargin (GLAR) for 6 months, and continued oral therapy. At 6 months, mean GLAR dose was 36 U/day and mean HbA1c was 8.3%. Patients with HbA1c >7% and FPG >6.7 mmol/L (>120 mg/dL) were then randomised to Group 1 [GLAR + metformin (MET) + 3× insulin glulisine (GLU); Group 2] GLAR + MET + 1–3× GLU; or Group 3] GLAR + MET + sulphonylurea + 1–3× GLU for 12 months. Patients in Group 1 received GLU at each meal; patients in Groups 2 and 3 injected GLU at the meal with the highest postprandial plasma glucose (PPPG), with two further doses added at Months 4 and 8 if HbA1c >7% (target PPPG 6.1–8.9 mmol/L [110–160 mg/dL]). Initial GLU dose was half the mean PPPG and titrated according to an algorithm based on the PPPG. Non-inferiority of Group 2 to Group 1 was concluded if the 95% confidence interval (CI) upper limit for the HbA1c difference was ≤0.4%.

Results: The adjusted difference of Group 2 versus Group 1 for the per-protocol population (PP; primary analysis) crossed the non-inferiority margin (0.228 [95% CI: –0.018, 0.475]) but did not for the intent-to-treat population (ITT; secondary analysis; 0.122 [95% CI: –0.114, 0.358]). In both the PP and ITT, Group 1 was not superior to Groups 2 or 3 (Table). At endpoint, the GLAR dose was similar in all three groups with mean doses of 37, 40 and 40 U/day for Groups 1, 2 and 3, respectively. The mean GLU dose at endpoint was 29, 20 and 17 U/day, respectively; 33 and 40% of patients remained on one GLU injection in Groups 2 and 3, respectively. The incidence of symptomatic hypoglycaemia was highest in Group 3 and lowest in Group 2, although between-group differences were not significant (Table). Mean change in body weight was slightly increased in all three groups but the increase was significantly lower in Group 2 compared with Group 1 (Table). Conclusion: Stepwise intensification of GLU added to GLAR showed efficacy similar to a basal–bolus approach with less symptomatic hypoglycaemia and significantly less weight gain, although non-inferiority was not achieved.

Table

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Group 1 (n=144)</th>
<th>Group 2 (n=197)</th>
<th>Group 3 (n=123)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%; per protocol)</td>
<td>8.3 ± 1.1</td>
<td>8.4 ± 1.1</td>
<td>8.3 ± 1.1</td>
</tr>
<tr>
<td>Randomization</td>
<td>7.7 ± 1.2</td>
<td>7.9 ± 1.2</td>
<td>7.9 ± 1.3</td>
</tr>
<tr>
<td>Endpoint</td>
<td>−0.72 ± 1.25</td>
<td>−0.47 ± 1.05</td>
<td>−0.40 ± 1.10</td>
</tr>
<tr>
<td>Change</td>
<td>4.56</td>
<td>4.23</td>
<td>5.46</td>
</tr>
</tbody>
</table>

Symptomatic hypoglycaemia (mean events/pt yr)

Body weight (kg)	82.7 ± 15.6	81.6 ± 15.8	83.6 ± 17.0
Randomization	84.7 ± 15.1	82.9 ± 16.0	85.5 ± 17.5
Endpoint	+2.03 ± 3.21	+1.30 ± 3.17	+1.90 ± 3.38
Change	*p<0.05 versus Group 1		

Supported by: sanofi-aventis

959

Premeal injection of rapid-acting insulin reduces postprandial glycaemic excursions, a randomised controlled trial

Y.M. Luijif, A.C. van Bon, J.R.L. Hoekstra, J.H. DeVries; Internal Medicine, Academic Medical Centre, Amsterdam, Netherlands.

Background and aims: To assess the effect of three premeal timings of rapid-acting insulin on postprandial glucose excursions in patients with CSII treated type 1 diabetes.

Materials and methods: 10 subjects (3 females and 7 males) with T1DM participated. Mean ± SD age was 45.3 ± 12.09 years, HbA1c 8.55 ± 1.50%, duration of diabetes 23.8 ± 7.8 years and duration of CSII therapy 8.5 ± 6.10 years. Patients were served an identical breakfast on three study days. Insulin aspart was randomly administered at 30, 15 or 0 minutes before the meal. All patients started the study with admission blood glucose between 3.5 and 7.8 mmol/L. Blood was sampled for glucose determination from one hour before the meal until four hours after.

Results: The area under the curve was significantly lower in the -15 group (0.41 ± 0.51 mmol/L/min) compared to the -30 group (0.52 mmol/L/min; P = 0.025) and 0 group (0.65 ± 0.76 mmol/L/min; P = 0.030). The maximum blood glucose excursion was also lower in the -15 group (4.77 ± 0.52 mmol/L compared to the -30 (6.48 ± 0.76 mmol/L; P = 0.025) and 0 group (6.93 ± 0.76 mmol/L; P = 0.022). The peak blood glucose level was significantly lower in the -15 group (9.26 ± 0.72 mmol/L) compared to the -30 group (11.74 ± 0.80 mmol/L; P = 0.007) and the 0 group (12.29 ± 0.93, P=0.009). Time spent in the 5.5 to 10 mmol/L range was highest in the -15 group (24.5 ± 2.50 min) and this difference was significant in comparison with the 0 group (90.5 ± 23.2 min, P=0.001) but not when compared to the -30 group (182.5 ± 28.2 min; P=0.212). There was no significant difference between the occurrences of glucose levels <3.5mmol/L between groups (P=0.901).

Conclusion: Administration of rapid acting insulin analogues at 15 minutes before mealtime results in lower postprandial glucose excursions and more time spent in the 3.5-10.0 mmol/L glucose range, without increased risk of hypoglycaemia.
Clinical outcomes after basal insulin initiation correlate with baseline oral antidiabetic drug therapy: a pooled analysis of clinical trial data

J. Leahy, J. Gill, R. Zhou, V.A. Fonseca

Supported by: sanofi-aventis, US

Background and aims: This analysis evaluated the association between baseline oral antidiabetic drug (OAD) therapy and clinical outcomes after insulin initiation.

Materials and methods: The analysis included data from 11 prospective randomized controlled trials of insulin glargine (without prandial insulin) with/without OADs in adults with type 2 diabetes; 2171 patients received insulin glargine. These studies used strict, predefined insulin titration algorithms to achieve fasting glucose concentrations ≤5.5 mmol/L. Study duration varied from 24 to 48 weeks; outcomes for the pooled analysis were assessed at week 24. Statistical analysis compared patients taking 0 or 1 OAD at baseline (low use; 1.8% and 45.2% of patients, respectively) with those taking 2 OADs (52.2%), and patients on metformin (MET) only (8.5%) with those on sulfonlurea (SU) only (36.5%) or MET + SU (49.9%).

Results: Mean age was 58.6 years, 55.6% were male, and 88.3% were white. At week 24, patients with low baseline OAD use and those taking only MET had significantly greater A1C reductions (Table). Weight gain from baseline to week 24 was not significantly different based on the number or type of baseline OADs. However, patients with low baseline OAD use had significantly lower rates of symptomatic hypoglycemia vs those taking 2 OADs (P<0.0009), and those taking only MET had lower rates than those taking SU or MET + SU (P<0.0001) despite higher insulin doses (53 vs 37.5 vs 38.8 U). The median time to starter insulin failure illustrates the progressive nature of T2D, necessitating continued diligence and advancement of therapy.

Compared to pts unable to maintain HbA1c goal, pts on LM25 who maintained HbA1c goal throughout the study had lower baseline HbA1c (P=0.043). Pts on G who maintained goal had shorter duration of diabetes; lower baseline HbA1c, mean post-meal plasma glucose (PG), and mean PG; and higher 1,5-anhydroglucitol (<0.05 for all). There was no difference in the rate (episodes/patient/year) of overall (LM25 19; G 18), nocturnal (LM25 6; G 9), or severe (LM25 0.02; G 0.02) hypoglycemia. Incidence of serious adverse events was not different.

Conclusion: LM25 therapy resulted in statistically longer durability than treatment with G, though the clinical relevance of this difference is unclear. Patients with the lower baseline HbA1c goal, which support the concept of early introduction of insulin therapy in T2D. In both groups, the median time to insulin failure illustrates the progressive nature of T2D, necessitating continued diligence and advancement of therapy.
Switching from premixed insulin to basal–bolus insulin glargine plus rapid-acting insulin: results of the ATLANTIC study

G. Storms1, I. Colin1, T. Veneman1, C. Mathieu1, 2
1St. Antonius Hospital, Utrecht, Netherlands; 2CHR Clinic Saint-Joseph, Mons, Belgium; 3Ivenezborg Hospital, Almelo, Netherlands, Katholieke Universiteit, Leuven, Belgium.

Background and aims: This study evaluated the efficacy and safety of switching from twice-daily premixed insulin to basal–bolus glargine (GLAR) plus rapid-acting insulin in a ‘real-world’ clinical practice setting in Belgium and The Netherlands.

Materials and methods: This was a prospective, 6-month, multicentre, non-interventional, observational study. Adults with Type 2 diabetes mellitus (T2DM) could be enrolled if they were being switched from twice-daily premixed insulin to basal–bolus GLAR plus insulin glulisine (GLU; The Netherlands) or any rapid-acting insulin (Belgium) due to poor glycaemic control. The primary objective was the proportion of patients with HbA1c <7% at Month 6. Secondary objectives included changes in mean HbA1c, fasting plasma glucose (FPG), self-monitored blood glucose (SMBG), weight, insulin dose, fasting blood lipid profile (FBLP), safety (including the incidence of symptomatic nocturnal and severe hypoglycaemia) and treatment satisfaction (DTSQs and DTSQc).

Results: A total of 214 patients were included: mean ± standard deviation age 64.4 ± 9.8 years, diabetes duration 12.1 ± 7.8 years, weight 89.5 ± 17.2 kg. GLAR was initiated with GLU, regular human insulin or insulin aspart in 81.7, 14.2 and 4.1% of patients, respectively. At baseline, 3.3% had HbA1c <7%, which increased significantly at Months 3 and 6 to 20.1 and 24.9%, respectively (Table). Significant reductions over 6 months were observed in mean HbA1c, FPG and SMBG. The mean total premixed insulin dose prior to switching was 65.2 U/day and the starting doses of GLAR and rapid-acting insulin were 28.1 and 35.7 U/day, respectively. Mean GLAR and rapid-acting insulin doses were significantly higher at Month 6. Mean weight increased by 0.67 ± 4.8 kg at Month 6 (not significant). No statistically significant changes in FBLP were observed at Month 6, although there was a trend toward a reduction in triglycerides (−14 mg/dL; p=0.063). At Month 6, 33.9% and 27.8% of patients reported a reduction in the incidence of nocturnal and severe hypoglycaemia, respectively, compared to the initial visit (both p<0.0001). Increases in these events were reported by 1.8 and 2.5%, with the remaining patients reporting no change. Overall, 22 adverse events were reported by 19 patients, including nine episodes of hypoglycaemia, which were considered non-serious. Treatment satisfaction improved significantly at Month 6 (DTSQs +5.9 and DTSQc +10.4; both p<0.0001).S1–S556

Conclusion: In a Belgian and Dutch clinical practice setting, patients with T2DM poorly controlled on premixed insulin experienced significant improvements in glycaemic control and treatment satisfaction, without a concomitant increase in hypoglycaemic events or weight, when switched to basal–bolus GLAR plus rapid-acting insulin.

Table

<table>
<thead>
<tr>
<th>% of patients with HbA1c <7% (95% CI)</th>
<th>Baseline</th>
<th>Month 3</th>
<th>Month 6</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>9.2 ± 4.5</td>
<td>2.7 ± 1.0</td>
<td>7.5 ± 0.9</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>FPG, mmol/L (mg/dL)</td>
<td>10.4 ± 4.1 (187 ± 73)</td>
<td>8.4 ± 5.3 (152 ± 96)</td>
<td>7.8 ± 2.7 (140 ± 48)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>7-point SMBG, mmol/L (mg/dL)</td>
<td>10.8 ± 2.7 (195 ± 48)</td>
<td>8.5 ± 2.0 (153 ± 36)</td>
<td>8.5 ± 2.0 (153 ± 36)</td>
<td>p=0.0001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>89.5 ± 17.2</td>
<td>89.8 ± 17.1</td>
<td>90.4 ± 17.6</td>
<td>NS</td>
</tr>
<tr>
<td>Insulin glargine dose (U/day)</td>
<td>28.1 ± 17.4</td>
<td>32.8 ± 16.8</td>
<td>34.7 ± 22.1</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Rapid-acting insulin dose (U/day)</td>
<td>35.7 ± 17.5</td>
<td>43.0 ± 20.0</td>
<td>43.8 ± 20.9</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Hypoglycaemia, reduction/no change/increase (%)</td>
<td>29.4 / 66.1 / 39.9</td>
<td>64.2 / 1.8</td>
<td>p=0.0001</td>
<td></td>
</tr>
<tr>
<td>Nocturnal Severe</td>
<td>3.4 / 2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: In a Belgian and Dutch clinical practice setting, patients with T2DM poorly controlled on premixed insulin experienced significant improvements in glycaemic control and treatment satisfaction, without a concomitant increase in hypoglycaemic events or weight, when switched to basal–bolus GLAR plus rapid-acting insulin.

Supported by: sanofi-aventis
was measured for PK evaluation. Glucose infusion rates were recorded for PD analysis.

Results: Results for the 100 IU dose are shown in the table. While overall exposure (AUC) from time zero to return to baseline, AUC_{tot} was similar between formulations at both 50 IU and 100 IU doses, the U-500R peak concentration (C_{max}) was significantly lower than that for U-100R at both doses. The time-to-peak concentration (t_{max}) was significantly longer for U-500R at the 100 IU dose only. Overall, peak effect (E_{peak}) for U-500R was similar to U-100R at both doses. Peak effect (E_{peak}) was lower for U-500R vs U-100R at both doses. Time-to-peak effect (t_{max}) was shown to be prolonged for U-500R vs U-100R at the 100 IU dose only. Time variables reflective of duration of action (early and late) t_{max} for U-500R were prolonged for U-500R vs U-100R at both doses.

Conclusion: While AUC_{tot} was similar at both 50 IU and 100 IU, the peak concentration was significantly lower for U-500 at both doses. The PD results are generally consistent with the PK. Both U-500R and U-100R exhibited long time-to-peak effect and duration of effect, with U-500R being significantly longer for these parameters vs U-100R. For T2D patients requiring high-dose U-100R therapy, this may have important clinical implications for bolus/basal insulin calculations. The longer duration of effect of U500R compared to U100R suggests that multiple daily injections of U500R without use of a basal insulin may be a plausible treatment option for obese patients with type 2 diabetes; further study is required to determine the safety and efficacy of such an approach.

<table>
<thead>
<tr>
<th>100-IU Dose</th>
<th>Human Regular U-500 Insulin</th>
<th>Human Regular U-100 Insulin</th>
<th>Ratio ($) or Difference ($) of LS Means</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC_{tot}</td>
<td>12300 (19)</td>
<td>12400 (22)</td>
<td>0.99† (0.92, 1.05)</td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>1020 (31)</td>
<td>1400 (28)</td>
<td>0.72† (0.66, 0.78)</td>
<td></td>
</tr>
<tr>
<td>t_{max}</td>
<td>8.00 (0.50 - 8.00)</td>
<td>3.00 (1.00 - 8.00)</td>
<td>2.50† (0.00, 4.00)</td>
<td></td>
</tr>
<tr>
<td>G_{max}</td>
<td>621 (33)</td>
<td>586 (23)</td>
<td>1.09† (1.01, 1.17)</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{peak}</td>
<td>6.37 (25)</td>
<td>5.32 (22)</td>
<td>1.04† (0.38, 1.70)</td>
<td></td>
</tr>
<tr>
<td>Early t_{peak}</td>
<td>2.02 (59)</td>
<td>1.51 (41)</td>
<td>0.60† (0.34, 0.87)</td>
<td></td>
</tr>
<tr>
<td>Late t_{peak}</td>
<td>15.1 (16)</td>
<td>11.7 (16)</td>
<td>3.99† (2.54, 4.25)</td>
<td></td>
</tr>
<tr>
<td>t_{max}</td>
<td>21.5 (11)</td>
<td>18.3 (15)</td>
<td>3.24† (2.29, 4.19)</td>
<td></td>
</tr>
</tbody>
</table>

Parameters are expressed as geometric mean (CV%, except for t_{max} expressed as median (range)). *p<0.05

Supported by: Lilly USA, LLC

965

More rapid onset and shorter duration of insulin exposure and action for 3 rapid insulin analogues coindected with human hyaluronidase

Background and aims: This study compared the pharmacokinetic (PK) and glucodynamic (GD) responses to 3 rapid-acting insulin analogs (glulisine, lispro and aspart) ± coindected recombinant human hyaluronidase (PH20)

Materials and methods: A 6-way crossover glucose clamp study was conducted in 14 healthy volunteers [8 male, 6 female; mean age 34 (23-53); mean BMI 24.7 kg/m² (21.1-27.0)]. Euglycemic clamp (87% at 90% FBG w/o basal insulin infusion) were performed following 0.15 U/kg doses of each study drug SC in a random order. Specificity and sensitivity of the insulin immunoassay used for PK analysis was slightly different for the three analogs; data for bolus/basal insulin calculations. The longer duration of effect of U500R compared to U100R suggests that multiple daily injections of U500R without use of a basal insulin may be a plausible treatment option for obese patients with type 2 diabetes; further study is required to determine the safety and efficacy of such an approach.

Results: The three analogs w/o PH20 had generally comparable insulin time-exposure and time-action profiles [time to 50% of total insulin exposure (AUC) were 124, 123 & 131 min; time to 50% insulin action (Gtot) were 183, 186 & 187 min, for glulisine, lispro and aspart; all P>0.2] although glulisine had modestly more rapid onset (time to 10%) of exposure (40 ± 47 & 48 min; P=0.005 & 0.004) and action (67 ± 76 & 76 min; P=0.025 & 0.021). PH20 accelerated the absorption of all three rapid-acting analogs, resulting in more physiologic fast-in, fast-out profiles: insulin exposure in the 1st hr increased to 191%, 229%, and 246% control and after 2 hrs decreased by 43%, 34%, and 57% glucose infused in the 1st 2 hrs increased to 157%, 161%, and 182% control, and after 4 hours decreased by 48%, 44%, and 50% for glulisine, lispro and aspart, respectively (all P<0.0001). With PH20, all 3 analogs had comparable profiles (times to 50% of total insulin exposure were 79, 71 & 73 min and time to 50% insulin action were 135, 140 & 127 min, for glulisine, lispro and aspart respectively; all P>1 between analogs w/ PH20) and each was notably faster than any marketed products alone (all P<0.001). All injections were well tolerated; all adverse events (mild or moderate) were procedure related. Also shown in the figure are cumulative insulin exposure and action for regular human insulin (RHI) from data collected in a separate but similar study.

Conclusion: Coinjection with PH20 was well tolerated and accelerated the absorption of all 3 insulin analogs to a comparable degree, resulting in more rapid onset and shorter duration of both insulin exposure and action.

Dissolving microneedles for percutaneous delivery of insulin

K. Takada, Y. Itoh,
Pharmacoekinetics, Kyoto Pharmaceutical University, Japan.

Insulin (Ins) chip having 300 2-layered dissolving microneedle (DM) arrays on 254mm² were prepared by microfabrication technology where watersoluble thread-forming polymer, chondroitin sulfate (Chon) was used as the base. The obtained Ins DM chips were evaluated as a new TDDS. The mean length of the DM were 473±3±3.7(SE)μm, though the mean length of Ins loaded space was 328.1±3.5μm from the top of DMs. The diameters of the basement were 301.6±1.6μm. One chip contained 5.7±0.04 and 7.1±0.7 IU Ins by HPLC analysis. After administration of Ins chip to the abdominal skin of dogs, plasma Ins levels were measured. Maximum hypoglycemic effect appeared at 1.0±0.0 h. The minimum glucose levels were 46.5±3.9 and 36.1±5.8% as compared to the pre-dose level. By comparing the AAC (area above the plasma glucose level vs. time curve) obtained after sc injection of Ins solution, 4.0 IU, relative pharmacological_availabilities (RPA) were 54.9±5.9 and 56.3±5.1%. Plasma Ins levels were also measured by ELISA. C_{max} were 148.5±57.2 and 163.8±44.2 μIU/mL and t_{max} were 0.57±0.0 and 0.75±0.0h. Relative bioavailabilities (RBA) against sc Ins injection were 72.0±34.4 and 79.7±26.5 %. Fluorescence microscopy experiment using a DM chip containing FITC-insulin (F-ins) showed that DM was dissolved in the inserted epidermal site of the skin within 5 min and thereafter F-ins diffused both horizontal and vertical directions of the skin within 30 min. Histological study on the administrated skin showed that there was no damage on the skin. As chip is made of Ins and Chon, safety is established. Ins DM chip is a useful TDDS platform.
No generation of insulin antibodies in subjects with impaired glucose tolerance treated with buccal spray insulin

A. Palermo, N. Napoli, D. Tucciardini, S. Manfrini, M. Altomare, S. Leotta, P. Pozzilli,
Campus Bio-Medico di Roma, Italy.

Background and aims: In patients with impaired glucose tolerance (IGT), upon implementation of lifestyle changes and metformin, a third returns to normal glucose tolerance, a third continues with IGT and the rest goes on to develop clinical type 2 diabetes. An increased risk for cardiovascular disease occurs in the latter two groups even though there is no progression to diabetes. The implementation of treatment strategies to lower postprandial hyperglycaemia has been recommended by the IDF guidelines. A previous proof of concept study demonstrated that treatment with buccal spray insulin (Oral-lyn™) can be a valuable tool for managing subjects with IGT. Thus, treatment with 12 puffs was followed by a significant 29.6% decrease in mean plasma glucose at two-hours and a 26.8% decrease at three-hours Considering all time points OGT, there was a mean reduction of 15.8% in mean plasma glucose following buccal spray insulin. No hyperglycaemia episodes were recorded. The aim of this study was to evaluate the effect of Oral-lyn on metabolic and immunological parameters in subjects affected by IGT who were exposed to long term treatment with this insulin formulation.

Material and Methods: We have designed a randomized controlled trial in 36 subjects with IGT comparing buccal spray insulin (12 puffs per meal) plus physical exercise and diet vs. physical exercise and diet only (control group). Primary endpoint is the reduction of HbA1c of 0.3 % at 6 month treatment between the experimental vs control group. Secondary endpoints include the evaluation of production of antibodies against insulin (IA), glucose variability (measured with continuous glucose monitoring), changes in body weight, number of hypoglycemic events after buccal spray insulin treatment. Insulin antibodies were measured using a DASP recognized assay.

Results: Subjects enrolled in the treatment group did not suffer of hypoglycaemia episodes. IA were negative at entry into the study in IGT subjects and treatment with buccal spray insulin did not induce generation of IA.

Conclusion: Our preliminary data show that subjects treated with buccal spray insulin do not develop autoimmune vs insulin as usually occurs with subcutaneous or other forms of insulin delivery (pulmonary). This may represent an additional benefit of buccal insulin, considering also the more acceptable route of administration.

Supported by: Generex

Biocompatibility of the ultra-rapid insulin VIAject with continuous insulin infusion sets

F. Flacke1, P.B. Musholt2, A. Weise1, G. Schipper1, A. Krasner1, T. Forst1, S.S. Stein1, A. Pfützner1.
1Biodel, Inc., Danbury, USA, 2IKFE-Institute for Clinical Research Development, Mainz, Germany.

Background and aims: Use of prandial insulins with a more rapid absorption profile would be expected to provide improved postprandial glucose control with lower risk of hypoglycaemia during treatment with continuous subcutaneous insulin infusion. VIAject is a formulation of recombinant human insulin that has been shown to be more rapidly absorbed than insulin lispro or regular insulin. The goal of this investigation was to explore the biocompatibility of VIAject with CSII infusion systems from several insulin pump manufacturers.

Materials and methods: Infusion sets used for the following insulin pumps were included into this investigation: ACCUCHEK Combo (Roche Diagnostics), Paradigm 722 (Minimed-Medtronic), Animas IR2020 (Animas, Johnson&johnson), and Omnipod (Insulet). Three catheters (steel needle and/or Teflon catheter) of each product were tested. The pumps were filled with VIAject and emptied over 96 h at 37°C through the infusion systems. Samples of the delivered insulin product composition were collected after 0, 1, 3 and 4 days. Determinations of insulin, its degradation products and high molecular weight proteins were performed by a USP-conform HPLC-method.

Results: All mean insulin concentrations and by-product concentrations were in the acceptable ranges by USP specifications (insulin: 95-105 %, A21 desamido insulin < 2 %, total contamination excl. A21 desamido insulin < 2 %, high molecular weight products < 1.7 %). The results were similar to those of a reference sample of insulin VIAject stored in a glass vial under the same environmental conditions.

Conclusion: This investigation confirmed that VIAject is pharmaceutically stable when delivered though clinically used infusion systems under the conditions of CSII therapy. The pharmaceutical properties of VIAject appear suitable for pump use which can now be investigated in clinical trials.

Supported by: Biodel, Inc.
A total of 40 consecutive patients affected by type 1 diabetes aged 18-65 years with disease duration > 1 year, were included in the study. HbA1c was evaluated at entry into the trial and at 3 and 6 months follow-up. Patients were randomised to Calsulin or standard education for insulin treatment (control group). Paired t test (two tailed) and analysis of variance were used to evaluate differences in HbA1c at different time points.

Results: HbA1c at entry was 7.9% ± 1.0 (SD) in Calsulin treated group and 7.8% ± 1.6 (SD) in control patients (p:NS). Already after 3 months follow-up there was a tendency for an improvement in HbA1c levels in the Calsulin treated group vs. control group (7.3% ± 0.5 vs. 7.7% ± 1.0, respectively, p:NS). Taking into account the 6 months period of observation, a statistically significant reduction in HbA1c levels was observed in the Calsulin treated group vs. control group (-0.85% vs. -0.07% difference, respectively, p<0.05).

Conclusions: The results of this study showed that this simple pocket instrument of the size of a small calculator is an acceptable and practical tool to make the process of calculating the number of insulin units very simple and, most importantly, helps to improve metabolic control as shown by a significant reduction of HbA1c levels compared to standard methods used for calculating the required insulin doses.

PS 90 Long-acting insulin analogues

Background and aims: Insulin degludec (IDeg) is a new generation basal insulin analogue with an ultra-long (~24-hour half-life) duration of action. We compared the pharmacodynamic (PD) variability of IDeg and insulin glargine (IGlar) under steady-state conditions.

Materials and methods: In this randomised, double-blind, parallel-group study, 54 subjects with type 1 diabetes (48 male, 6 female, age 38±10 years (mean±SD), HbA1c 7.7±0.9%, BMI 24.6±2.2 kg/m²) received 0.4 U/kg of either IDeg or IGlar once daily for 12 days. On treatment days 6, 9 and 12 PD-profiles were investigated over 24h with the euglycaemic glucose clamp technique (Biostator, pre-dose blood glucose (BG) stabilisation at the clamp level of 5.5 mmol/l with iv insulin that was stopped post-dose when BG decreased by 0.3 mmol/l and when glucose infusion was initiated). Within-subject variability (expressed as coefficient of variation - CV) was estimated using a linear mixed model on log-transformed PD endpoints. All PD endpoints were derived from the glucose infusion rate (GIR) profiles during the clamps.

Results: IDeg produced significantly less overall PD variability than IGlar between days 6, 9 and 12 on all protocol-specified PD variability parameters including total metabolic effect (AUC-GIR_0-24h, CV 20 vs. 82%, p<0.0001), the effect in the last 22 hours (AUC-GIR_22h, not influenced by iv insulin during the clamp), CV 22 vs. 92%, (p<0.0001) and the maximum effect (GIR_max, CV 18 vs. 60%, p<0.0001). Total metabolic effect (AUC-GIR_0-24h) tended to be higher with IDeg than with IGlar (geometric mean 2618 vs 1953 mg/kg, ratio 134%). The individual within-subject variability was consistently lower for IDeg compared with IGlar when the individual CVs were compared in a ranked order (figure). IDeg's metabolic effect was exactly evenly distributed between the first and the second twelve hours (ratio of AUC-GIR_12h/AUC-GIR_24h, geometric mean: 0.50 vs. 0.57 with IGlar) and this distribution was also less variable than with IGlar (CV 10 vs 17%, p<0.0001). Both insulin formulations were well tolerated. No serious adverse events occurred. In total, 166 (20 nocturnal) hypoglycaemic episodes, defined as BG < 2.8 mmol/l with or without hypoglycaemic symptoms, were observed with IDeg compared with 182 (37 nocturnal) episodes with IGlar. There were no severe hypoglycaemic episodes in this study. No injection site reactions occurred with either insulin.

Conclusion: Under steady-state conditions after once daily administration, the effect of the novel basal insulin analogue insulin degludec is evenly distributed over each 24h period and significantly less variable than that of insulin glargine. The results suggest a less variable and more stable glucose-lowering insulin effect for IDeg compared with IGlar.

Supported by: Novo Nordisk A/S

[Figure: Individual within-subject variability in AUC-GIR_0-24h for IDeg and GLA]
972

Insulin degludec: multi-hexamer formation is the underlying basis for this new generation ultra-long acting basal insulin

1 Diabetes Research Unit, Novo Nordisk A/S, Maaleø, 2 Global Development, Novo Nordisk A/S, Soeborg, Denmark.

Background and aims: Insulin degludec is a new generation ultra-long acting basal insulin analogue in clinical development. The insulin degludec molecule retains the human insulin amino acid sequence except for the deletion of Thr30 and the addition of a 16-carbon fatty acid attached to LysB29 via a glutamic acid spacer. It is well established that absorption rate from subcutaneous tissue is determined by molecular size. Therefore the aim of this study was to demonstrate that under in vitro conditions mimicking the physiological injection site, insulin degludec self-associates to form large multi-hexamer assemblies and that this ultimately results in an ultra-long and peak-less pharmacokinetic profile when administered to people with type 1 diabetes.

Materials and methods: Size exclusion chromatography (SEC) experiments were performed to characterise the molecular size of self-assembled units of insulin degludec, in particular, hexamers, di-hexamers and multi-hexamers. Various pharmaceutical formulations containing zinc ions, phenol and m-cresol were examined by SEC analysis to simulate conditions before and after sub-cutaneous injection. To examine the pharmacokinetic (PK) profile of insulin degludec, a clinical pharmacology study was conducted in subjects (n=12) with type 1 diabetes. The steady state PK profile (24 hour) was determined after 6 consecutive days of once daily dosing with insulin degludec (5.0 nmol/kg).

Results: SEC analysis demonstrated that insulin degludec forms di-hexamers in the presence of phenol and m-cresol. To mimic a subcutaneous injection, further SEC analysis was conducted in the absence of phenol and m-cresol and it was revealed that there occurs a reorganisation from di-hexamers to multi-hexamer assemblies which remain in solution at physiological pH. In the clinical pharmacology study where insulin degludec was administered to subjects with type 1 diabetes, the steady-state PK profile demonstrated a smooth and stable exposure over 24 hours (see figure). Insulin degludec was found to have a 1½ longer than 24 hours and was detectable in circulation for at least 96 hours after the final injection.

Conclusion: In summary, insulin degludec is a new generation soluble basal insulin with an ultra-long, peak-less pharmacokinetic profile attributed to multi-hexamer formation and slow release of insulin degludec monomers. Insulin degludec has the potential to address major challenges in diabetes care such as hypoglycaemia as well as compliance by providing more flexible dosing schedules.

973

Insulin degludec, a new generation ultra-long acting insulin, in a mealtime + basal regimen in people with type 1 diabetes: comparison to insulin glargine

1 University of Miami School of Medicine, USA, 2 Newcastle University, United Kingdom, 3 University of Amsterdam, Netherlands, 4 Orebro University Hospital, Sweden, 5 Novo Nordisk A/S, Soeborg, Denmark, 6 Royal Adelaide Hospital, Australia, 7 MedStar Research Institute, Washington, USA, 8 Gemeinschaftspraxis für Innere Medizin und Diabetologie, Hamburg, Germany, 9 Oslo University Hospital, Norway.

Background and aims: Insulin degludec (IDeg) is a novel insulin analogue that forms soluble multi-hexamer assemblies after subcutaneous injection (s.c.), resulting in ultra-long duration of action. This phase 2, 16-week, open-label, randomised, three-arm, parallel-group trial investigated the efficacy and safety of candidate formulations of IDeg in people with type 1 diabetes.

Materials and methods: Participants (mean age 45.8 years, HbA1c 8.4%, fasting plasma glucose (FPG) 9.9 mmol/l, BMI 26.9 kg/m²) injected (s.c.) IDeg (n=59), an alternative formulation of IDeg (development discontinued, data not shown; n=60) or insulin glargine (IGlar; n=59) once daily in the evening, for 16 weeks. The overall rate of confirmed nocturnal hypoglycaemia (plasma glucose < 3.1 mmol/l, for requiring assistance) was 28% lower for IDeg compared to IGlar (47.9 vs. 66.2 events/patient year; relative rate = 0.72 (95% CI: 0.52; 1.00)). The overall rate of confirmed nocturnal hypoglycaemia was 58% lower for IDeg compared with IGlar (3.1 vs. 12.3 events/patient year; relative rate = 0.42 (0.25; 0.69)). Very few severe hypoglycaemic events were reported for IDeg and IGlar (7 vs. 6 events). The overall rate of adverse events was similar between basal insulins, with no specific pattern or clustering. No injection site reactions were observed.

Conclusion: In this proof-of-concept trial, IDeg was safe and well-tolerated and provided comparable glycaemic control to IGlar at similar doses, with a reduced rate of confirmed hypoglycaemia.

Supported by: Novo Nordisk A/S

974

Insulin degludec: a new ultra-long, basal insulin designed to maintain full metabolic effect while minimizing mitogenic potential

1 Diabetes Research Unit, Novo Nordisk A/S, Maaleø, Denmark.

Background and aims: Insulin degludec (IDeg) is a new generation basal insulin analogue in clinical development, designed to allow the formation of soluble multi-hexamer assemblies upon subcutaneous injection to give an ultra-long peak-less pharmacokinetic profile. The aim of the present study was to investigate the metabolic responses and molecular safety (IGF-1 receptor affinity and in vitro mitogenicity) of IDeg.

Materials and methods: In vitro binding studies were conducted using recombinant human insulin receptors (both isoforms, hIR-A and hIR-B) and human IGF-1 receptors. Scintillation proximity assays using solubilised receptors from transfected BHK cells were conducted in the absence of albumin. Receptor kinetic studies were conducted using intact BHK cells expressing the hIR-A. The mitogenic effect of insulin degludec was determined by measuring H-thymidine incorporation into L6 myoblasts expressing HIRs (L6-HIR), primary human mammary epithelial cells (HMEC) as well as COLO-205 and MCF-7 cell lines (from human colon and mammary adenocarcinomas, respectively). The metabolic effects of IDeg were determined by: (1) lipogenesis in rat adipocytes (H-glucose into lipid), (2) glycogen accumulation in rat hepatocytes and (3) glycogen synthesis in rat skeletal muscle cells, L6-HIR and MCF-7 cells (H-glucose into glycogen).

Results: The affinity of IDeg for both insulin receptor isoforms (HIR-A and -B) was found to be similar (13% and 15% relative to human insulin,
HI) while the affinity for the human IGF-1 receptor was lower (2% relative to HI). The kinetics of IDeg binding to hIRbA was not significantly different from that of HI. The mitogenic response measured in L6-HIR, HMEC, COLO-205 and MCF-7 cells, in the absence of albumin, ranged from 4-14% relative to HI. IDeg elicited the same metabolic responses and same maximal effect as HI: lipogenesis in rat adipocytes, glycolysis accumulation in rat hepatocytes and glycogen synthesis in rat muscle cells. Furthermore, in cellular assays where no albumin was added (hepatocytes and MCF-7 cells), the in vitro metabolic potency was determined to be in the range of 8-20% resulting in a mitogenic/metabolic potency ratio of s1.

Conclusion: In summary, insulin degludec is a full agonist at the insulin receptor and maintains the metabolic responses of HI. This is in agreement with phase 2 trial results, where IDeg gave comparable glycaemic control as insulin glargine at similar molar and unit doses in subjects with type 1 or 2 diabetes. The low IGF-1 receptor binding affinity and the low mitogenic/metabolic potency ratio indicate that the modifications made to IDeg do not compromise molecular safety.

Supported by: Novo Nordisk A/S

975

Once-daily use of a new generation ultra-long acting basal insulin with a bolus boost in insulin-naïve people with type 2 diabetes: comparison with insulin glargine

R. Cuddihy1, C.J. Tack2, T. Heise2, J. Davidson1, D. Gouet1, A. Liebl3, E. Romero4, H. Miersch5, B. Rutz6, R. Jorde7, T. Heise2
1International Diabetes Center, Minneapolis, USA, 2Radboud University Nijmegen Medical Centre, Netherlands, 3Profil Institut für Stoffwechselforschung, Neuss, Germany, 4Southwestern Medical School, Dallas, USA, 5Hôpital Saint Louis, La Rochelle, France, 6Center for Diabetes and Metabolism, Bad Heilbrunn, Germany, 7Instituto de Endocrinología, UVA, Valladolid, Spain, *Novo Nordisk A/S, Soeborg, Denmark, University of Tromsø, Norway.

Background and aims: Insulin degludec (IDeg) is a novel insulin analogue that forms soluble multi-hexamer assemblages after subcutaneous injection, resulting in ultra-long duration of action. IDegAsp is a soluble insulin product comprising IDeg (70%) and insulin aspart (IAsp, 30%). The aim of this phase 2, 16-week, open-label, randomised, parallel-group, treat-to-target trial was to investigate the safety and efficacy of IDegAsp in insulin-naïve people with type 2 diabetes inadequately controlled on oral antidiabetic drugs.

Materials and methods: Subjects (mean: 59.1 yrs, HbA1c 8.5%, fasting plasma glucose (FPG) 11.6 mmol/l, BMI 30.3 kg/m²) received once-daily IDegAsp (n=59), an alternative formulation of IDegAsp (AF: 55% IDeg and 45% IAsp; n=59) or insulin glargine (IGlar; n=60), all in combination with metformin, for 16 weeks. Insulin was dosed (s.c.) before dinner and titrated to a FPG target of 4.0-6.0 mmol/l. At the end of the 16-week treatment period, patients underwent a 72-h continuous glucose measurement (CGM).

Results: After 16 weeks, mean HbA1c decreased from baseline in all treatment groups (IDegAsp: -1.31%; AF: -1.46%; IGlar: -1.29%) to comparable end-of-trial values (IDegAsp: 7.0%; AF: 7.2%; IGlar: 7.1%; p=NS for all pairwise comparisons). The proportion of subjects achieving HbA1c <7.0% without confirmed hypoglycaemia in the last 4 weeks of treatment (IDegAsp: 51%; AF: 47%; IGlar: 50%). Mean self-measured 2-h post-dinner PG increment was lower for IDegAsp (0.13 mmol/l) and AF (0.24 mmol/l) than IGlar (1.63 mmol/l). These findings were mirrored by mean 2-h post-dinner interstitial glucose (IG) increments determined by CGM. The mean total time spent in hyperglycaemia (IG>12 mmol/l) per day tended to be lower for IDegAsp (2.2 h) and AF (2.2 h) compared to IGlar (2.7 h). Mean FPG was similar across treatments (IDegAsp: 6.8 mmol/l; AF: 7.4 mmol/l; IGlar: 7.0 mmol/l). At end-of-trial, mean daily insulin doses were lower for IDegAsp (0.38 U/kg) and AF (0.36 U/kg) than IGlar (0.45 U/kg). No severe hypoglycaemic events were reported. Rates of confirmed hypoglycaemia (PG<3.3 mmol/l) were lower for IDegAsp and IGlar than AF (1.2, 0.7 and 2.4 events/patient/year). The proportion of subjects having at least one episode of near-hypoglycaemia (IG<3.5 mmol/l) over the course of a 72-h CGM was similar among groups (IDegAsp: 46%; AF: 44%; IGlar: 54%). Very few confirmed nocturnal hypoglycaemic events were reported for IDegAsp (1 subject; 1 event) and IGlar (3 subjects; 3 events) compared to AF (10 subjects; 27 events). Adverse events with a possible or probable relation to insulin were only reported for AF (5 subjects; 5 events).

Conclusion: This proof-of-concept trial showed once-daily IDegAsp to be safe, well tolerated and effective. IDegAsp provided comparable overall glycaemic control to IGlar at similar rates of hypoglycaemia, with the additional benefit of post-dinner PG control.

Supported by: Novo Nordisk A/S

Efficacy and goal attainment with insulin glargine vs comparators

M.A. Banerji1, M. Baroni2, L. Blonde1
1SUNY Downstate Medical Center, Brooklyn, 2sanofi-aventis US, Bridgewater, *Ochsner Medical Center, New Orleans, USA.

Background and aims: Clinicians have many type 2 diabetes (T2DM) treatment options. We evaluated patient level data from similar prospective, randomised, controlled studies to assess the likelihood of achieving glycemic control after 24 weeks of insulin glargine (GLAR) vs comparators (C) by baseline glycated hemoglobin A1C (A1C) category (<8.0%, 8.0% to <9.0%, 9.0% to <10.0%, and ≥10.0%).

Materials and methods: Data were pooled from 9 similar studies (N=2938) meeting the following criteria: included insulin-naïve patients with T2DM, uncontrolled on oral antidiabetic drugs (OADs), randomized to addition of GLAR (n=1462) or C (OADs, NPH, lispro, or premix; n=1476) and utilized similar insulin titration algorithms.

Results: Groups were comparable at baseline (56% male, 83.5% white, mean age 57 y, diabetes duration 8.6 y, A1C 8.7%, body mass index 31.6 kg/m²). A1C reductions at week 24 were greater with GLAR vs all C (-1.68 and -1.51%, P<0.001); and when evaluated vs specific comparators, reductions were greater with GLAR vs OADs and vs. premixed insulin, but similar to NPH and lispro. Proportions of patients achieving ≤1.0% reduction in A1C and achieving A1C ≤7.0% were greater with GLAR vs all C, and vs OADs (Table). The comparisons vs specific insulins failed to reach significance. When stratified by baseline A1C category, A1C improvements were similar between GLAR and OADs if A1C <8.0% but greater with GLAR if A1C ≥8.0%; similar between GLAR and other insulin C for all categories except a greater reduction if <8.0% vs premixed insulin. Hypoglycemia event rates were significantly lower for GLAR vs NPH, lispro, and premixed insulin, and higher for GLAR vs OADs (Table). Severe hypoglycemia was lower for GLAR than premixed insulin (0.02 vs 0.08 events/patient/year, P<0.05), and not different between GLAR and OADs, NPH, or lispro. Changes in weight were similar between GLAR and any C. Incidence of edema was higher with OADs than GLAR, largely as the result of 2 trials in which the OAD comparator was a thiazolidinediones.

Conclusion: Initiating GLAR in patients uncontrolled on OADs was associated with better efficacy and goal attainment overall, vs C across the A1C continuum, and compared with OADs when baseline A1C was ≥8.0%. Efficacy across A1C categories was similar for insulin comparators; however, hypoglycemia rates were lower with GLAR.

Table: A1C and Hypoglycemia

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Week 24 A1C (%) (± SD)</th>
<th>Hypoglycemia Event Rate (Any, Events/Patient/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine, n=1462</td>
<td>57.7 ± 1.13</td>
<td>7.1 ± 0.05</td>
</tr>
<tr>
<td>Comparator, n=1476</td>
<td>51.4 ± 0.75</td>
<td>10.1 ± 0.05</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td>1.35 (1.16; 1.57)</td>
<td>0.16 (0.10; 0.25)</td>
</tr>
<tr>
<td>P value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Insulin glargine, n=1462</td>
<td>57.7 ± 1.13</td>
<td>7.1 ± 0.05</td>
</tr>
<tr>
<td>NPH, n=420</td>
<td>55.9 ± 0.68</td>
<td>15.3 ± 0.05</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td>1.70 (1.08; 2.51)</td>
<td>0.26 (0.17; 0.39)</td>
</tr>
<tr>
<td>P value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Insulin glargine, n=1462</td>
<td>57.7 ± 1.13</td>
<td>7.1 ± 0.05</td>
</tr>
<tr>
<td>Lispro, n=2041</td>
<td>73.0 ± 0.63</td>
<td>15.98 ± 0.05</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td>0.68 (0.44; 1.08)</td>
<td>0.01 (0.00; 0.02)</td>
</tr>
<tr>
<td>P value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Advanced mean; †9 studies; ‡3 studies; §2 studies; ¶1 study; OADs discontinued in premixed arm only (1 study).

Supported by: sanofi-aventis US
977
Improved glycaemic controls for patients on twice daily dosing regime of insulin glargine compared to those on a once daily dosing regime
K. Dhatariya1, J. Yeong2; 1Elise Bertram Diabetes Centre, Norfolk and Norwich University Hospital NHS Trust, 2School of Medicine, Health Policy and Practice, Norwich, United Kingdom.

Background and aims: Insulin glargine is a long acting once-daily insulin formulation, which is used to achieve glycemic control in patients with type 1 or type 2 diabetes mellitus. It is unclear whether better glycaemic control, in terms of HbA1c, is achieved with twice daily dosing of insulin glargine compared to once daily administration.

Materials and methods: We conducted a retrospective case note analysis to evaluate whether there is any change in HbA1c values among type 1 or type 2 diabetic patients after switching from a once-daily to twice daily insulin glargine regime. Data was collected as a part of a local service evaluation on diabetes care using patient notes and database laboratory results.

Results: A total of 206 patients were included with 38% on once daily insulin glargine (n=78) and 62% on twice daily insulin glargine (n=128). Of the 128 patients using a twice daily insulin glargine dosing regime, we found that switching from previous insulin therapy to once daily insulin glargine was associated with a average decrease in HbA1c of 0.27% (3 mmol/mol) and there was a further decrease of 0.49% (5.4 mmol/mol) when the insulin glargine was changed to a twice daily dosing regime. This decrease was further evident when starting HbA1c was greater than 9%.

Conclusion: Our data suggests that patients on a one daily dosing regime of insulin glargine may benefit from reduction in HbA1c levels by switching to a twice-daily insulin glargine regime.

978
MAGE revisited: Evaluation of glucose variability with once daily glargine vs NPH insulin in type 2 diabetes
G. Silvani, S. Acquati, R. Mamin, C. Ragazzini, S. Taroni, F. Donadio, L. Buci, L. Gagliardi, A. Tartaglia, M. Nizzoli; Endocrinology, G.B. Morgagni - L. Pierantoni Hospital, Forlì, Italy.

Background and aims: Insulin combination regimens, i.e. a single bedtime injection of long-acting insulin added to oral anti-hyperglycaemic agents, are widely used in the secondary failure treatment of type 2 diabetes (T2DM); however most basal insulin formulations do not provide a constant and reliable 24-h insulin supply and are associated with an high risk of nocturnal or early morning hypoglycaemia. Aim of this perspective study was to evaluate the efficacy and safety of once daily glargine vs NPH insulin on glucose control and variability, expressed by Service’s MAGE (Mean Amplitude of Glycaemic Excursions), in combination therapy of T2DM.

Materials and methods: In 40 T2DM patients, aged 62.5±8.3, overweight (BMI 29.1±6.0 kg/sq.m) and in a poor glycaemic control (HbA1c 9.1±1.2%) on combination therapy with once daily bedtime NPH insulin 0.21±0.07 IU/kg/day and oral agents, sulphonylureas and metformin, after a 2-weeks run-in period NPH was replaced by the same dose of glargine at the same time while oral agents were unchanged. Body weight, HbA1c and fasting C-peptide were evaluated at baseline and after 6 weeks during which, as well as in 2-weeks run-in period, the patients provided a weekly self-monitored 6-points blood glucose profile (before and 2 h after breakfast, lunch and dinner) and recorded daily any hypoglycaemic episode. The mean glucose values of self-monitored profiles in run-in period were compared point by point with the glargine treatment last 2 weeks profiles and MAGE was calculated.

Results: After glargine 6-weeks treatment body weight (as BMI) and C-peptide levels were unchanged; a slight but not significant decrease was observed in 86% of patients (HbA1c 9.4±1.3 vs 9.2±1.2, p=0.05); only fasting glucose decreased (p=0.019) when glargine was added. HbA1c decreased from 9.8±1.1 to 9.0±1.0 (p=0.001); post-breakfast glucose (p=0.028) significantly decreased while MAGE reached a more significant difference (71.4±15.6 vs 92.3±15.6 mg/dl, p<0.001); moreover, a more significant MAGE decrease of the percentage of symptomatic hypoglycaemias was significantly lower (- 39.5% vs - 0.012).

Conclusion: Glargine insulin instead of NPH did not improve the short-term glycaemic control in combination therapy of T2DM patients only two mean glucose levels significantly decreased in the six-points self-monitored profile while decrease of HbA1c was not significant. On the contrary glargine treatment was effective to reduce glucose variability, according to highly significant decrease of MAGE, and to lower the frequency and seriousness of hypoglycaemic episodes. In a blind post-study interview with DTSQ 29 patients (72.5%) declared an improvement of well-being, likely due to the lesser extent of glycaemic excursions.

979
Efficacy and safety of insulin lispro protamine suspension versus insulin glargine added to oral antihyperglycaemic medications and exenatide in patients with type 2 diabetes
R.F. Arakaki1, T.C. Blevins1, D.R. Liljenquist1, J.K. Wise1, H.H. Jiang1, K.K. Schneider2, J.G. Jacobson1, S.A. Martin1, J.A. Jackson1; 1University of Hawaii, Honolulu, Texas Diabetes and Endocrinology, Austin, Texas, 2Rocky Mountain Diabetes and Endocrinology Center, Idaho Falls, Diabetes and Metabolism Assoc, Metarie, Elib Lilly and Co, Indianapolis, USA.

Background and aims: Patients (pts) with type 2 diabetes (T2D) on oral antihyperglycaemic medications (OAMs) and exenatide (Ex) may encounter progressive metabolic deterioration requiring additional treatment. Intensification of therapy with insulin added to OAM(s) plus Ex has not been previously reported. The primary aim of this study was to determine if insulin lispro protamine suspension (ILPS) is noninferior to glargine (G) in change in HbA1c when added to OAMs plus Ex in adults with suboptimally controlled T2D.

Materials and Methods: This open-label, multicenter, randomised, 24-week clinical trial enrolled pts with T2D (BMI ≤45 kg/m2) and in a poor glycaemic control (HbA1c 9.1±1.2%) who had been treated ≥3 months with 1 or 2 OAMs (metformin ± sulphonylurea or pioglitazone) and Ex (10 μg twice-daily). Pts were randomly assigned to receive either ILPS (n=171) or G (n=168) at bedtime added to pre-study OAM(s) and Ex. Insulin was titrated from 6 insulin doses, using dosing algorithms to achieve fasting plasma glucose (FPG) targets 4.4-5.5 mmol/l for ILPS and 4.1-5.5 mmol/l for G. Statistical analysis was performed based on intent-to-treat population using last observation carried forward method. Prespecified noninferiority margin was 0.4%.

Results: Baseline demographics (age 56 years; T2D duration 9.9 years; weight 102 kg; BMI 34.9 kg/m2) and disease characteristics (table) were similar across treatment groups. At 24-week endpoint (table), least squares mean difference in HbA1c change between treatment groups (ILPS minus G) was 0.22% (95% CI: 0.06 to 0.38), demonstrating noninferiority of ILPS to G. However, mean reduction in HbA1c was statistically less for ILPS-treated patients than G-treated pts. Percentage of pts who achieved HbA1c <7.0% was not significantly different between treatment groups. Endpoint FPG was similar between treatment groups. Insulin dose was lower for ILPS vs G. Overall and severe hypoglycaemic rates were similar in both groups but nocturnal hypoglycaemia rate was higher in ILPS vs G-treated pts. Weight gain, <1 kg, was similar between treatments. Serious adverse events were infrequent and similar between groups.

@ Springer
Conclusion: ILPS is noninferior to G for change in HbA1c. Compared to G, ILPS-treated pts had higher nocturnal hypoglycaemia rates, but similarly low overall and severe hypoglycaemia and minimal weight gain over the 24-week study duration. This is the first study demonstrating that addition of ILPS or G as treat-to-target basal insulin is an effective option for improving glycaemic control in pts with suboptimally controlled T2D treated with OAM(s) and Ex.

<table>
<thead>
<tr>
<th>ILPS (n=171)</th>
<th>Glargine (n=168)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline HbA1c (%)</td>
<td>8.2 ± 0.77</td>
<td>8.23 ± 0.80</td>
</tr>
<tr>
<td>Endpoint HbA1c (%)</td>
<td>7.04 ± 0.81</td>
<td>6.83 ± 0.78</td>
</tr>
<tr>
<td>HbA1c change (%)</td>
<td>-1.16 ± 0.84</td>
<td>-1.40 ± 0.97</td>
</tr>
<tr>
<td>Pts achieving HbA1c <7.0% (n [%])</td>
<td>87 (53.7%)</td>
<td>100 (61.7%)</td>
</tr>
<tr>
<td>Baseline FPG (mmol/l)</td>
<td>9.74 ± 2.19</td>
<td>10.04 ± 2.16</td>
</tr>
<tr>
<td>Endpoint FPG (mmol/l)</td>
<td>7.20 ± 1.75</td>
<td>7.05 ± 1.61</td>
</tr>
<tr>
<td>Insulin dose (IU)</td>
<td>31.1 ± 18.9</td>
<td>37.9 ± 18.5</td>
</tr>
<tr>
<td>Insulin dose (IU/kg)</td>
<td>0.30 ± 0.17</td>
<td>0.37 ± 0.17</td>
</tr>
<tr>
<td>Overall hypoglycaemia rate (episodes/pt/yr)</td>
<td>16.27 ± 23.19</td>
<td>18.05 ± 24.59</td>
</tr>
<tr>
<td>Nocturnal hypoglycaemia rate (episodes/pt/yr)</td>
<td>4.88 ± 8.43</td>
<td>3.01 ± 7.21</td>
</tr>
<tr>
<td>Severe hypoglycaemia incidence (n [%])</td>
<td>3 (1.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Baseline Weight (kg)</td>
<td>101.6 ± 18.7</td>
<td>102.3 ± 19.7</td>
</tr>
<tr>
<td>Weight gain (kg)</td>
<td>0.27 ± 3.38</td>
<td>0.66 ± 3.93</td>
</tr>
<tr>
<td>Patients with ≥1 serious adverse event (n [%])</td>
<td>9 (5.3%)</td>
<td>5 (3.0%)</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation unless otherwise noted.

Supported by: Eli Lilly and Company

980

Basal insulin NPH, glargine and detemir in type 2 diabetes: hepatosteatospecificity, effects on glucose and lipid metabolism, and pancreatic islet alpha and beta cell rest: a PK-PD study

P. Lucidi, P. Rossetti, F. Porcellati, P. Candeloro, P. Cioli, S. Marzotti, A. Marinelli Andreoli, R. Fede, G.B. Bolli, G.C. Fanelli; Internal Medicine, University of Perugia, Italy.

Background and aims: To compare pharmacokinetics (PK) and pharmacodynamics (PD) of insulins NPH, glargine (Gla) and detemir (Det) in T2D.

Materials and methods: 18 persons with type 2 diabetes (age 66±7 yrs, known diabetes duration 12.8±7.5 yrs, BMI 29.1±3.2 kg/m2, A1C 7.5±0.6%, treatment insulin+OHA) (mean±SD) were studied after 1-week treatment with either NPH, Gla or Det 1/day (at 10 pm). Plasma glucose (PG) was clamped at 100 mg/dl for 32 h after s.c. injection of 0.4 U/kg at 10 pm (randomized, single-blind, crossover study). The primary endpoint was the glucose infusion rate (GIR) over 0.32 h (AUC GIR).

Results: All 18 persons completed the Gla study, but 2 persons on NPH and 3 on Det, interrupted the study because PG >150 mg/dl. The target PG was best achieved by Gla, followed by NPH and Det (102±2, 108±15, 108±14 mg/dl, p<0.05). However, PG increased overnight with NPH to a peak (119±18 mg/dl) at 07.00 h (NPH vs Gla and Det, p<0.05). The GIR AUC GIR was greater for Gla vs Det and NPH (158±688, 1081±785, 1170±703 mg/kg, p<0.05). Plasma insulin peaked with NPH at 05.00 h and then decreased (peak 95±46, 32h 44±24 pmol/l), whereas it decreased less with Gla (peak at 07.00 h 108±42, 32h 61±30 pmol/l). Det (bound-free) had a plateau of ~1800 pmol/l between 6-10 am followed by relatively faster decrease vs Gla. Gla suppressed endogenous glucose production more than NPH and Det (p<0.05), with no effect on glucose utilization. Glucagon was lower with Gla vs Det by 10% (p=0.05) likewise C-peptide with Gla vs Det and NPH (~17% and ~12%) (p<0.05). FFA were higher with Det vs Gla by 22% and NPH by 15% (p<0.05) likewise ketones vs Gla (41%) and NPH (20%) (p<0.05).

Conclusion: All 3 basal insulins have similar hepatospecific effects, but there is no unit-to-unit equivalence on glucose-lipid metabolism. NPH is limited by nocturnal peak and decreased PK/PD at dawn. Det and Gla are superior to NPH for overnight-morning PG control, but Det is less potent than Gla and NPH in the afternoon. Each basal insulin should be used according to its PK/PD.

981

Mechanism for the differential effect of the long-acting insulin analog detemir on weight in patients with type 1 diabetes

S. Zachariah, B. Sheldon, F. Shojaee-Moradie, N. Jackson, K. Backhouse, S. Johnsen, M. Umpleby, D. Russell-Jones; Diabetes and Endocrinology, Royal Surrey County Hospital, Surrey Clinical Research Centre, Guildford, United Kingdom.

Background: The acylated long-acting insulin analog detemir appears to lack the usual propensity for insulin to cause weight gain. Possible mechanisms include insulin detemir’s predominant action on liver giving it a more physiological profile as well as a direct and indirect effect on appetite. Elucidation of the mechanism(s) of weight sparing with insulin detemir could provide valuable insights into the cause of insulin-induced weight gain.

Research, design and methods: A single-centre, 32 week, open-label randomized crossover design trial was undertaken in 23 subjects (14 men, age 36.8 ±10.6 years, BMI 28.0 ±3.6 kg/m2) (mean±SD) with type 1 diabetes. Patients on a basal-bolus regime (with insulin aspart as bolus insulin) were randomized to receive either insulin detemir or NPH insulin as basal insulin for 16 weeks, followed by a switch to the other basal insulin for 16 weeks. At the end of each 16 week period the following were measured: total energy expenditure (by double labelled water), resting energy expenditure and diet induced thermogenesis (by indirect calorimetry), activity energy expenditure, (with an Actiheart monitor) and energy intake (by a 7 day food diary). Weight change, glycemic control, hypoglycemic episodes and hormones that affect satiety/fuel partitioning were also measured. Following a standard meal (600 kcsals), serial measurements of GLP-1, ghrelin, pancreatic polypeptide and peptide YY were undertaken for 180 minutes. Statistical analysis was done using a general linear mixed model, and it was modified to include additionally a repeated measure effect for the times of measurement of the metabolic hormones.

Results: After 16 weeks of treatment, the weight change was -0.69 ± 1.85 kg with insulin detemir and +1.7 ± 2.46 kg with NPH (p=0.0006). Total energy expenditure was not different with insulin detemir compared to NPH insulin (p=0.334) but total energy intake was significantly less with insulin detemir (2016± 501 kcal/day) than NPH insulin (2181± 559 kcal/day) (p=0.026). There was no significant difference in HbA1c or the number of hypoglycemic episodes. Statistical modeling showed there was no relationship between HbA1c or hypoglycemia and weight change. Leptin was significantly lower with insulin detemir (9.45±7.29 ng/ml) compared to NPH insulin (10.83±9.13 ng/ml, p=0.047). There was no difference in adiponectin and IGF-1. Following the meal, ghrelin (610.9 pg/ml vs. 528.39 pg/ml, p=0.002) and pancreatic polypeptide (813.4 vs. 777.13 pg/ml, p=0.001) were significantly higher with insulin detemir compared to NPH insulin treatment (12.10±9.43 ng/ml vs. 9.28±4.13 ng/ml, p=0.047). There was no difference in adipsinotin and IGF-1. Following the meal, ghrelin (610.9 pg/ml vs. 528.39 pg/ml, p=0.002) and pancreatic polypeptide (813.4 vs. 777.13 pg/ml, p=0.001) were significantly higher with insulin detemir compared to NPH treatment. There was no difference in GLP-1 and PYY levels.

Conclusion: Insulin detemir caused less weight gain in type 1 diabetes patients compared to NPH insulin. This study suggests this is due to reduced energy intake rather than an increase in energy expenditure. This may be mediated by a direct or indirect effect of insulin detemir on hormones that control satiety.

Supported by: Novo Nordisk
PS 91 Body and soul: the psychological aspects of diabetes

982

Psychological distress predicts the development of the metabolic syndrome: a prospective, population-based study

P.J. Puustinen1, H. Koponen2, H. Kautiainen1,2, P. Mäntyselkä1, M. Vanhala1,2
1Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 2Unit of Family Practice, Central Hospital of Middle Finland, Jyväskylä, 3ORTON, Rehabilitation Unit, Helsinki, Finland.

Background and aims: To prospectively examine the association of psychological distress with the development of metabolic syndrome (MetS) and the role of potential mediators (demographic characteristics, health behaviors and inflammation) in this association.

Materials and methods: A total of 466 (185 male and 281 female) subjects, aged 36 to 56 years and free of MetS at baseline, participated in a population-based study from 1997-1998 and again from 2004-2005. Mean observation time was 6.4 years. Various clinical, biochemical and behavioral factors were measured at baseline, including assessment of psychological distress using the 12-item General Health Questionnaire (GHQ-12). The development of MetS was measured at follow-up based on National Cholesterol Education Program (NCEP) criteria.

Results: Subjects with high psychological distress at baseline (GHQ score 4-12) were more than twice as likely to develop MetS than those with low psychological distress (OR 2.18, 95% CI 1.30 to 3.64). Adjustments for age and gender, health behaviors (smoking, alcohol use and leisure time physical activity) and C-reactive protein (CRP) in the analysis diminished the odds of developing MetS in the distressed group (OR 1.87, 1.82 and 1.80, respectively); however, the association remained statistically significant (p=0.022 - 0.037).

Conclusions: Psychological distress at baseline increases the risk of developing MetS during follow-up. This association remained robust after adjusting for age, gender, baseline health behaviors and CRP. These prospective findings are evidence of a significant association between psychological distress and the development of MetS. Thus, effective treatment of psychological distress may reduce the incidence of MetS.

TABLE 1. Logistic Regression Models for the Metabolic Syndrome across Follow-Up (Odds Ratios, 95% Confidence Intervals, p-values). Models Include Psychological Distress, Age, Gender, Health Behaviors and C-reactive Protein.

<table>
<thead>
<tr>
<th>Psychological distress (GHQ-12)</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (0-3) (reference) †</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>High (4-12)</td>
<td>1.80 (1.04 to 3.12)</td>
<td>0.037</td>
</tr>
<tr>
<td>Age, per year</td>
<td>1.09 (1.05 to 1.14)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1 (reference) †</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.02 (0.64 to 1.65)</td>
<td>0.92</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1.77 (1.05 to 2.99)</td>
<td>0.032</td>
</tr>
<tr>
<td>Current use of alcohol</td>
<td>0.85 (0.45 to 1.62)</td>
<td>0.62</td>
</tr>
<tr>
<td>Leisure time physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1 (reference) †</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>1.25 (0.74 to 2.10)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.95 (0.43 to 2.10)</td>
<td>0.85†</td>
</tr>
<tr>
<td>hsCRP, per mg/dl</td>
<td>1.03 (0.92 to 1.13)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Model 1 = Psychological distress.
Model 2 = Psychological distress, age, gender.
Model 3 = Psychological distress, age, gender, smoking, use of alcohol, leisure time physical activity.
Model 4 = Psychological distress, age, gender, smoking, use of alcohol, leisure time physical activity, hsCRP.
GHQ-12 = 12-item General Health Questionnaire; hsCRP = high-sensitivity C-reactive protein
Leisure time physical activity (min. 30 minutes) = Low: < 1 time/week, Medium: 1-3 times/week, High: >3 times/week
† Denominator (reference group) of following odds ratios
† p-value for linearity across the leisure time physical activity groups

983

A matched case-control study of depressive symptoms in type 2 diabetes

W.A. Davis1, M. Hunter2, K. Peters3, T.M.E. Davis4
1School of Medicine and Pharmacology, University of Western Australia, Fremantle, 2Busselton Health Study, University of Western Australia, Busselton, Australia.

Background and aims: Diabetes and depression are important co-morbid conditions. Patients with diabetes are 1.5-2 times more likely to have depression compared with people without diabetes, although this risk is attenuated after adjustment for age, sex and cardiovascular disease (CVD). Risk factors for depression include both clinical and personal factors, and there is some evidence that psychiatric conditions including depression are more common in rural vs. urban environments. We conducted an age- and sex-matched case-control study to elucidate the relationship between type 2 diabetes and depression in a rural setting.

Materials and methods: In 2009, residents of Busselton Shire in the southwest of Western Australia who had been diagnosed with diabetes and randomly selected age- and sex-matched normoglycaemic residents were invited for a comprehensive assessment. In addition to medical history, examination and biochemical testing, participants completed the Personal Health Questionnaire Depression Scale (PHQ-9). Paired tests were used to compare potential associates of depression between cases and controls. Multiple logistic regression was used to determine independent correlates of prevalent depression.

Results: We assessed 172 adults with type 2 diabetes and 172 controls. Half (51%) were male. Cases and controls did not differ significantly in age (70.7±10.4 vs. 71.0±10.0, P=0.80), but cases had significantly higher mean body mass index (BMI) than controls (30.4±5.3 vs. 27.0±4.0, P<0.001) and higher prevalence of self-reported CVD, exertional chest pain, and current smoking habit. Those with diabetes had median duration of 8.9 [5.0-14.3] years; 35.7% were diet-treated, 46.8% were on oral treatment and 17.5% were using insulin. Those with type 2 diabetes were significantly more likely to have a current major or any depressive syndrome compared with those with normoglycaemia (5.9% vs. 0.6%, P=0.012, and 11.8% vs. 4.1%, P=0.019, respectively), but were no more likely to have been prescribed antidepressant therapy (11.6% vs. 12.6%, P=0.86). The majority (22/25 or 88.0%) of normoglycaemic subjects with any depressive syndrome and/or taking antidepressants were being treated for depression compared with less than two-thirds (20/35 or 57.1%) of those with type 2 diabetes. BMI, current smoking habit and exertional chest pain but not diabetes status were independently associated with the presence of a) any depressive syndrome, and b) any depressive syndrome and/or antidepressant medication use. Age, sex, income, marital status, born overseas, education, alcohol intake, and self-reported CVD were also not associated with depression.

Conclusion: Depressive syndromes, especially major depression, were significantly more prevalent in rural-dwelling Australian adults with type 2 diabetes compared with age- and sex-matched normoglycaemic controls; but those with diabetes were less likely to be treated for depression. The higher prevalence of depressive syndrome in adults with type 2 diabetes compared with normoglycaemic adults may be explained largely by their significantly higher BMI.

Supported by: Perpetual Trustees

984

Depression, glycaemic control, and physical activity in a multi-ethnic population screened for type 2 diabetes

L.V. Murray1, E.G. Wilmott1, M.J. Davies1, T. Yates1, K. Khunti2
1Cardiovascular Sciences, Health Sciences, University of Leicester, United Kingdom.

Background and aims: Individuals with type 2 diabetes mellitus (T2DM) suffer from higher levels of diagnosed depression and depressive symptoms compared to healthy controls. Evidence also exists for this relationship in individuals with impaired glucose regulation (IGR), defined as impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). It is unclear whether this association is related to lifestyle factors such as physical activity (PA) or pathophysiological changes related to insulin resistance. Previous studies have shown an association between depression and PA levels, and individuals with T2DM and IGR are less physically active than healthy controls. We hypothesised that glucose regulation is associated with depression, independent of PA levels.
Materials and methods: Participants were identified from general practices in Leicestershire (UK), using the Leicestershire Diabetes Risk Score. Individuals received a baseline screening visit that involved questionnaires, blood samples and clinical assessment. Glucose status was assessed using the Oral Glucose Tolerance Test. Depression status was assessed using the Hospital Anxiety and Depression Scale (HADS). Participants were a pedometer for a 7-day period to objectively measure PA levels. 2SFPS v.16 was used to calculate means (±SD) and correlation coefficients. ANOVA and chi squared tests assessed differences between groups.

Results: 926 individuals (38.4% female) were screened; 88.6% White European and 11.4% Black and Minority Ethnic. Mean age was 63 years (±8.3); 25.7% had screen-detected IGR and 4.4% had screen-detected T2DM. Mild-severe depression was detected in 9.6% of screened individuals and 17.8% reported a history of depressive illness. Mean steps per day was 6801 (±3202). Mild to severe depressive symptoms were more prevalent in individuals with screen-detected T2DM (19% vs. 12% with IGR vs. 9% with normal glucose tolerance [NGT], <p>0.05 for trend). Across the whole sample fasting glucose was weakly correlated with depression score when controlling for age, sex and ethnic origin (r = 0.087, p < 0.05), which was maintained after further controlling for PA levels (r = 0.083, p < 0.05). In addition, fasting glucose was higher in those with moderate-severe depressive symptoms, compared to those without depressive symptoms (mean difference = 0.48mmol/L, p = < 0.05). No significant associations were found between depression score and 2-hour glucose or HbA1c. In participants with screen-detected IGR, fasting glucose was more strongly correlated with depression score when controlled for age, sex and ethnic origin (r = 0.247, p = 0.01), which was maintained after further controlling for PA levels (r = 0.269, p < 0.01). Those with IGR performed significantly less steps/day than individuals with NGT (mean difference = -850 steps, p < 0.01).

Conclusion: This study reveals a positive association between depression score and fasting glucose, independent of PA levels, in individuals that are unaware of their glycaemic status. This suggests that the higher levels of depression seen in those with T2DM are not simply due to the impact of living with a chronic illness or to the low levels of PA seen in this group. We did not observe an association between depression score and 2-hour glucose or HbA1c, suggesting that the mechanisms underlying IGF may be more related to depression than those relating to IGT.

Supported by: NIHR and CLARHC

985

Interaction between depressive symptoms and illness representations in predicting self-care behaviours in type 2 diabetic patients

M. Pibernik-Okanovic, D. Ajdukovic, Z. Metelko; Outpatient Clinic, Vuk Vrhovac Institute, Zagreb, Croatia.

Background and aims: Predictive value of illness representations including seriousness, treatment effectiveness and control, on multiple diabetes outcomes has been well established. This study aimed to determine how depressive symptoms interacted with personal models domains in predicting eating behavior, physical activity, blood glucose self-monitoring and foot care in type 2 diabetic patients.

Materials and methods: A randomly selected sample of 172 type 2 outpatients (55% female, aged 63±8; educated for 10.5±4 yrs., with diabetes duration of 10±8 yrs., 29% insulin-treated, with 6.5±0.9 HbA1C and 30±4 kg/m² BMI) was interviewed for psychological anamnesis and examined for depressive symptoms and personal model of diabetes. Respondents' mood and illness representations were assessed by The Patient Health Questionnaire-Depression (PHQ-9) and the 8-item Personal Model of Diabetes Questionnaire (PM), and their self-care behaviours were approximated by the Summary of Diabetes Self-Care Activities (SDSCA). Participants were divided into three groups: without depressive symptoms (PHQ<5), with minimal symptoms (PHQ=5-9) and with moderate to severe depressive symptoms (PHQ≥10), which were compared as to personal model, self-reported self-care and disease-related characteristics. Kruskal-Wallis ANOVA was used to compare psychological and disease-related variables in the groups with different depressive symptom levels, and ordinal multinomial regression model to determine to what degree depressive symptoms and personal model of diabetes predicted particular self-care behaviours.

Results: Minimal depressive symptoms were reported by 20% of the patients, and moderate to severe symptoms by another 9%. No differences in age, diabetes duration or type of therapy, HbA1C and BMI were found between the non-depressed group and patients with depressive symptoms (all p>0.05). Self-reported eating behaviour, exercise and foot care were comparable across the groups (all p>0.05). Blood glucose self-monitoring was most frequent in patients with minimal depressive symptoms, followed by the non-depressed and moderately to severely depressed ones (H=5.80 p=0.05). Depression impact on daily life as measured by PM was reported greater by both depressed groups as compared to the non-depressed one (H=6.18 p=0.04), while other domains - seriousness, diabetes control and prevention of complications - did not differ across the groups. Non-linear regression model indicated that the control beliefs independently predicted patients' eating behaviour and physical activity as measured by SDSCA (Wald Stat=9.3 p=0.002 and Wald Stat=7.4 p=0.006, respectively). Foot care was predicted by seriousness beliefs (Wald Stat=4.6 p=0.03), while depressive symptoms were the only independent predictor of blood glucose self-monitoring (Wald Stat=7.9 p=0.01).

Conclusion: Even mild depressive symptoms were found to be associated with illness representations in type 2 diabetic patients, implying a more highly perceived impact of diabetes on daily activities. Beliefs that self-care controlled diabetes were the best predictors of eating behaviour and exercise, while feelings about diabetes seriousness and worry predicted foot care. Depressive symptoms rather than personal model domains predicted blood glucose self-monitoring, showing a positive effect in mild depressive symptoms and adverse in moderate to severe ones.

Supported by: Ministry of Science, Education and Sports of the Republic of Croatia

986

Pain self-efficacy and pain catastrophising predict depression in people with painful diabetic neuropathy

B.E. McGuire1, M. Treacy1, K. Sarma1, S. Dinneen2, T. O’Brien1, F. Dunne1; Psychology, 1Medicine, National University of Ireland, Galway, Ireland.

Background and aims: Neuropathy is one of the most common and troublesome complications of diabetes and neuropathic pain can result in significant morbidity and reduced quality of life. The objective of the study was to investigate whether pain self-efficacy (belief in one’s ability to function, despite pain) and pain catastrophizing (fearful and anxious thoughts about pain) influence depression levels in those with painful diabetic neuropathy.

Materials and methods: We identified a sample of 138 patients with painful diabetic neuropathy on the basis of database recordings and issued a postal survey pack including a measure on pain (Brief Pain Inventory - BPI), pain self-efficacy (Pain Self-Efficacy Scale - PSE), pain catastrophizing (Pain Catastrophising Scale - PCS), and depression (Hospital Anxiety and Depression Scale - HADS).

Results: We received responses from 62 patients (45% response) of mean age 54 years; 79% had Type 2 diabetes. Depression “caseness” on the HADS was reported by 53% of respondents. There was a statistically significant negative correlation between Pain Self-Efficacy and Depression (r=-.54, p≤.005) and a significant positive correlation between Pain Catastrophizing and Depression (r=.51, p≤.005). When applied as a predictive model of depression, together Self Efficacy and Catastrophizing were moderately associated with Depression (Multiple R=.56) and predicted 35% of this variable’s variance. The standardised regression coefficients suggest that Self Efficacy (β=.357) is a stronger predictor of Depression than total Pain Catastrophizing score (β=.259).

Conclusion: The results indicate that severity of depression in those with diabetic neuropathic pain is predicted by a lower sense of control over the pain (as indicated by Self Efficacy measure) and is also predicted by a tendency to think about the pain in an unhelpful way (as indicated by the Pain Catastrophizing Scale). The results highlight a role for cognitive-behavioural interventions to assist patients with diabetes in coping with neuropathic pain.
Materials and methods: Respondents to the 2008 U.S. Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD) survey were asked the number of times they experienced hypoglycemia in the past 4 weeks and past 12 months. Respondents also completed the Short Form-12 (SF-12) quality-of-life questionnaire and the Patient Health Questionnaire (PHQ-9) depression questionnaire. T2DM respondents reporting at least 1 hypoglycemia (low blood sugar) episode were compared with T2DM respondents who did not report hypoglycemia in the previous 12 months.

Results: There were 3,000 respondents with T2DM, and 2,718 (91%) completed the SF-12 and PHQ-9; 23% reported experiencing hypoglycemia in the past 12 months. Respondents reporting at least 1 hypoglycemic episode (n = 627) had significantly lower (p<0.001) SF-12 scores for both physical health (PCS) (mean ± SD: 37.4 ± 12.7 vs. 40.9 ± 12.7) and mental health (MCS) (50.1 ± 11.7 vs. 52.4 ± 10.1) compared with those without hypoglycemia (n = 2,091). Mean PCS scores decreased as the number of hypoglycemia episodes increased: PCS 39.0 ±14.4 for 1 episode, 38.3 ± 12.0 for 2-3 episodes, 38.1 ± 12.3 for 4-5 episodes, and 35.1 ± 12.6 for ≥6 episodes (p = 0.03). Mean MCS scores did not differ by across these same groupings (p = 0.09). Mean PHQ-9 scores were significantly higher (p<0.001) among respondents reporting hypoglycemia (5.2 ± 5.8), compared with respondents who did not report hypoglycemia (3.9 ± 5.0), indicating greater depression burden. Significantly more respondents experiencing hypoglycemia (10.1% ± 3.8%) reported moderately severe to severe depression (PHQ-9 scores ≥15), compared with respondents without hypoglycemia (5.1% ± 2.1%). Mean PHQ-9 scores increased as the number of hypoglycemia episodes increased: score 4.1 ± 2.9 for 1 episode, 4.9 ± 5.7 for 2-3 episodes, 5.7 ± 6.3 for 4-5 episodes, and 6.0 ± 6.0 for ≥6 episodes (p = 0.01).

Conclusion: T2DM respondents experiencing hypoglycemia report a lower quality of life, in the domains of both physical and mental health, and greater burden of depression than respondents without hypoglycemia. These findings suggest that hypoglycemia and depression need to be considered together in routine clinical practice settings.

Supported by: AstraZeneca Pharmaceuticals LP

Can affects and self image affect diabetes mellitus?

E.O.M. Melin1, M. Landin-Olsson1, H.O. Thulesius2; 1Department of Clinical Sciences, Lund University, Lund, 2Division of Family Medicine, Department of Clinical Sciences, Lund University, Malmö, Sweden.

Background and aims: Depression is common in patients with DM and associated with impaired metabolic control and increased risk of all diabetic complications. Other types of psychological and psychosomatic factors involved in DM morbidity are not so well investigated. Our aims in this study were to explore depression, anxiety, alexithymia and self image and their correlations with HbA1c among young and middle aged patients with DM. Alexithymia was here defined by three factors: Difficulties Identifying Feelings (DIF), Difficulties Describing Feelings (DDF) and Externally Oriented Thinking (EOT). Self image was in this study composed of three positive factors: “self-affirm”, “active self-love”, “self-protect”; three negative factors: “self-blame”, “self-attack”, “self-neglect”; and two neutral factors reflecting autonomy: “self-emancipate” and “self-control”.

Materials and methods: At a Swedish specialist outpatient clinic, 353 DM patients 18-59 years old (median age 42 years; 56% men, 44% women) participated in this study. Depression and anxiety were assessed by the Hospital Anxiety and Depression Scale (HAD), Alexithymia by the Toronto Alexithymia Scale-20 (TAS-20), and Structural Analysis of Social Behaviour (SASB) was used for assessing the eight factors of self image described above. We also measured waist circumference and determined Body Mass Index (BMI) for the 353 DM patients. We did bivariate correlation, linear regression, and combined variable correlations analyses with HbA1c as dependant variable.

Results: Mean HbA1c was 7.13 % (SD=1.37, N=353) and mean waist circumference 0.87 m (SD 0.13, N=339). An elevated anxiety score was found in 35% (111/320), a negative self image in 35% (111/320), an elevated anxiety score and a negative self image in 22% (69/309), alexithymia in 16% (51/318), and an elevated depression score in 12% (37/320) of the 353 DM patients. We found that 45% (N=144) of DM patients did not have any signs of depression, anxiety or alexithymia and had a normal self image score. Their mean HbA1c was 8.6% (SD=1.18). Alexithymia had the greatest impact (p<0.037) and the combination with negative self image (p<0.035) was particularly severe. For 17 patients with a high alexithymia score, a negative self image, but with a normal depression score HbA1c was 7.82 % (SD=1.57). For 12 patients with a combination of a high alexithymia score, a negative self image and a high depression score HbA1c was 8.57 % (SD=1.78). For 46 women with a waist circumference of >0.88 the HbA1c was 7.92 %, and for 21 men with >1.02 it was 7.35%. Bivariate correlation between HbA1c and 17 variables showed a significant r below the 5% p-level for the following 8 variables: anxiety, depression, DIF, “self-control”, “self-attack”, “self-neglect”, BMI, and waist circumference. Age, DDF, EOT, “self-emancipate”, “self-affirm”, “active self-love”, “self-protect”, “self-blame” and duration of DM showed no correlation with HbA1c. In linear regression analyses, including the 8 variables above, DIF (p<0.0001) and waist circumference (p<0.001) remained significantly associated with HbA1c.

Conclusion: In this study we show that alexithymia and negative self image had a greater impact on HbA1c levels than depression in patients with DM. Particularly, the alexithymia sub factor DIF (difficulties identifying feelings) correlated with HbA1c, and the waist circumference in a linear regression model.

Supported by: Research and Development Committee. County of Kronoberg

Longitudinal motivational predictors of dietary self-care, life satisfaction and diabetes control in adults with newly diagnosed type 2 diabetes mellitus

A. Nouwen1, T. Ford2, A. Balan3, J.W.R. Twisk1, D.G. White3; 1School of Psychology, University of Birmingham, United Kingdom, 2School of Psychology, Staffordshire University, Stoke-on-Trent, United Kingdom, 3Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, Netherlands.

Background and aims: Changing dietary habits is considered the most difficult part of diabetes self-management after being diagnosed with type 2 diabetes (T2DM). The tendency to overeat at diagnosis has been associated with weight gain and intake of energy four years after diagnosis. Therefore, better understanding of the motivational factors involved in adopting and maintaining dietary self-care activities during the critical period following the diagnosis of T2DM is needed. This study aimed to examine whether motivational factors from Social-Cognitive Theory (self-efficacy, positive and negative outcome expectancies and self-evaluation) and Self-Determination Theory (autonomous self-regulation and autonomy support) are associated with the course of dietary self-care, life satisfaction and diabetes control in a sample of people newly diagnosed with type 2 diabetes.

Materials and methods: Participants, 237 people (65% male) newly diagnosed with type 2 diabetes, completed questionnaires assessing perceptions of support from health care professionals fostering autonomy, autonomous motivation, diet self-efficacy and autonomous motivation, and negative outcome expectancies, self-evaluation, dietary self-care, life-satisfaction and diabetes knowledge at five occasions, each three months apart. BMI and HbA1c were also assessed on each occasion.

Results: Multivariate analyses, using Generalised Estimating Equations (GEE), showed that autonomous motivation (β = 0.06, p < 0.05), dietary self-efficacy (β = 0.006, p < 0.001), and positive (β = 0.005, p < 0.01) and negative outcome expectancies (β = -0.002, p < 0.01), while changes in HbA1c were significantly associated with self-efficacy (β = 0.007, p < 0.05), and negative outcome expectancies (β = -0.005, p < 0.01). However, for the latter two analyses, self-efficacy was no longer a significant predictor after controlling for a number of demographic and illness-related variables. The course of life satisfaction over the 18-month period was significantly associated with self-efficacy (β = 0.008, p < 0.01), and positive (β = 0.005, p < 0.01) and negative outcome expectancies (β = -0.002, p < 0.01), while changes in HbA1c were significantly associated with self-efficacy (β = 0.007, p < 0.05), and negative outcome expectancies (β = -0.005, p < 0.01). Together with self-efficacy and autonomous motivation, self-evaluation is an important motivational construct associated with dietary self-care over the first 18 months after diagnosis of T2DM. Whether people newly diagnosed with T2DM remain satisfied with their lives over that period depends on their positive and negative perceptions they have about their diabetes. Because HbA1c reflects diabetes control over the past 2-3 months, the significant longitudinal association with negative outcome expectancies is likely to indicate poorer control of diabetes leading to more negative perceptions of diabetes. In teaching how to cope with newly diagnosed T2DM, health care professionals may want to include specific interventions targeting these motivational constructs.

Supported by: Diabetes-UK
The association of screening anxiety with fasting and 2-hour plasma glucose, and HbA1c

N. Aujla1, M.J. Davies2, T.C. Skinner3, D.R. Webb3, B. Srinivasan4, K. Khunti1, 2Health Sciences, University of Leicester, United Kingdom, 3Cardiovascular Sciences, University of Leicester, United Kingdom, 4Combined Universities Centre for Rural Health, Geraldton, Australia.

Background and aims: Previous work has identified that feelings of stress can result in hyperglycaemia, which may become problematic during diabetes screening involving Oral Glucose Tolerance Tests (OGTTs). OGTTs are currently the gold standard approach for screening for diabetes, and involve collection of both fasting and 2-hour plasma samples. Some research has identified that for diabetes screening, anxiety may be intensified in people with negative perceptions about the condition being life-threatening and resulting in complications. Importantly, research has not yet explored the extent to which raised anxiety levels can affect glucose results obtained from OGTTs. HbA1C has recently been suggested for use as a diagnostic test for diabetes. The aim of this study was to investigate associations between anxiety and fasting and 2-hour plasma glucose levels collected from OGTTs, and HbA1C.

Materials and methods: In a community screening study, 4688 White-European (WE, 40-75 years) and 1333 South-Asian participants (SA, 25-75 years) without a previous diagnosis of Type 2 Diabetes Mellitus (T2DM) underwent an OGTT, HbA1C, full lipid profile, detailed history, anthropometric measurements and completed the short-form Spielberger State Trait Anxiety Inventory. Data was analysed with means and standard deviations (for continuous variables) and percentages (for categorical variables). Pearson’s correlation coefficient was computed to identify relationships. Linear modeling was conducted to further explore associations, with adjustment for confounding factors.

Results: Overall prevalence of T2DM and Impaired Glucose Regulation (IGR) was 3% and 16%, respectively. Anxiety levels were significantly higher in SA (mean 34.1; SD 0.37) compared to WE participants (mean 29.8; SD 0.13). Fasting glucose levels (mean 5.3mmol/l; SD 0.9, p=0.001) and HbA1C (mean 5.9%; SD 0.62, p=0.001) were also significantly higher among SA participants. Significant correlations were not identified between fasting (r =0.005, p=0.75) or 2-hour glucose levels (r =-0.10, p=0.24) and HbA1C (r =0.01, p=0.40). Statistically non-significant associations of anxiety with fasting glucose and HbA1C remained following adjustment for age, gender or ethnicity.

Conclusion: This study found that anxiety levels at screening were heightened among people of SA ethnicity. In addition, the study found that fasting and 2-hour plasma glucose levels and HbA1C are not affected by anxiety during screening tests for diabetes. Therefore, current and proposed screening methods are not affected by anxiety at screening.

Supported by: DoH

Patient-centered outcomes and glycaemic variability in type 1 and type 2 diabetes: a cross-over trial of insulin glargine + glulisine vs premix analogue insulin

M.A. Testa1, L. Blonde1, J. Gill2, R.R. Turner1, D.C. Simonson3
1Biostatistics, Harvard School of Public Health, Boston, 2Endocrinology, Ochsner Medical Center, New Orleans, 3sanofi-aventis, Bridgewater, 5Phase V Technologies, Wellesley, 6Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, USA.

Background and aims: Intensive insulin therapy with multiple daily injections (MDI) offers superior glycemic control; however, regimen burden and hypoglycemia remain barriers to acceptance. The primary objective of this study was to test for superiority in improvements from baseline in patient-centered outcomes of patient satisfaction (PS) and quality of life (QoL) in subjects with type 1 or type 2 diabetes when treated with insulin glargine plus premeal rapid acting insulin glulisine versus treatment with premix analogue insulin. The secondary objectives were to compare glycemic control and variability between the two insulin regimens.

Materials and methods: We studied 388 insulin-treated patients (82 T1DM, 306 T2DM, 47% male, age 54±11 yrs, HbA1c 7.8±0.7%) who were randomized to either open-label daily insulin glargine plus premeal glulisine (GG; n=192) or BID premix 75/25 or 70/30 (PM; n=196) for 12 wks (P1), and then crossed over to the alternate treatment arm for an additional 12 wks of treatment (P2). Patients followed an insulin titration algorithm with a target HbA1c < 7.0% with the aid of an electronic diary transmitting data daily to a web-based remote monitoring system. Clinic personnel reviewed daily 4-point glucose readings, insulin dosages, hypoglycemia, other symptoms, and adverse events, and called the patient weekly to provide insulin dosing recommendations. Patients completed clinic-based PS and QoL questionnaires at Wks 0, 8, 12, 20 and 24, and underwent continuous glucose monitoring (CGM) for three-day periods at Wks 0, 12 and 24.

Results: Mean±SE HbA1c change for GG vs PM was -0.53±0.10% vs -0.20±0.10% for P1, and -0.25±0.10% vs +0.10±0.10% for P2 (both p<0.0001). At P1 Wk 12, 55% of GG reached HbA1c <7.0% vs 31% for PM (p<0.0001), with no differences in serious adverse events (5.4 vs 4.9%, p=0.7) or daytime or nocturnal hypoglycemia. Combined linear, mixed model P1 and P2 baseline-adjusted Wk 12 mean±SE estimates are reported for PS, QoL and CGM. The PS Net Benefit scale (0-100) improved from 51.1 to 60.5±1.2 for GG, but worsened to 45.4±1.2 for PM (p<0.0001). Overall QoL favored GG by 0.13±0.04 Z-score units (p<0.001). The PS Regimen Acceptance scale was comparable (67.3±0.5 for GG vs 66.5±0.5 for PM, p=0.33) with 3 lifestyle and side effects subscales favoring GG (p<0.001) and 3 convenience subscales favoring PM (p<0.02). QoL scales favoring GG vs PM were perceived health, symptom distress (both p<0.0001), general health perceptions (p=0.01) and psychosocial (p=0.02). Emotional and cognitive scales were comparable. CGMS daily mean, daily SD and % time > 7.8 mmol/l were lower for GG than PM by 0.7±0.1 mmol/l, 0.3±0.07 mmol/l and 7.3±1.6% respectively (all p<0.0001), with no difference in CGM % time < 3.9 mmol/l (p=0.10).

Conclusion: Patient perception of net benefit and treatment satisfaction was more heavily weighted by the beneficial changes in health status and quality of life associated with improvements in glycemic control and reduced variability with insulin glargine plus premeal insulin glulisine than by the burden of additional daily insulin injections.

Supported by: sanofi-aventis
PS 92 The heterogeneity of diabetes

Clinical heterogeneity of type 1 diabetes mellitus at onset

Z. Huang, Y. Chen, F. Li, Y. Li;
1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun yat-sen University, Guangzhou, 2Department of Endocrinology, Guangzhou No.458 Hospital, 3Department of Internal Medicine, Traditional Chinese Medical Hospital of Gaoming County, Foshan, China.

Background and aims: Retrospective analysis was performed in 489 consecutive patients with discharge diagnosis of type 1 diabetes (T1DM) between 1999 and 2009 in our hospital to examine the clinical heterogeneity of the disease.

Materials and methods: A total of 205 out of 489 patients were newly onset T1DM. In these patients, clinical characteristics and laboratory data at onset were compared among fulminant type 1 diabetes (FT1DM, diagnostic criteria according to Imagawa et al.) and those with duration of symptoms before diagnosis shorter (acute-onset) or longer (slow-onset) than 3 months. One-way ANOVA and multivariate chi square were employed to compare the differences among groups.

Results: The proportions of FT1DM (n=18), acute-onset (n=137) and slow-onset (n=50) T1DM were 8.8%, 66.8%, 24.4% respectively. The onset of FT1DM was so abrupt that the concentration of plasma glucose was prominently elevated, whereas HbA1c, was disproportionately near normal, and the duration of symptoms before diagnosis was extremely shorter than the other two groups. More female patients tended to develop FT1DM, and flu-like symptoms (44.4% vs 22.6%, 18%) were more frequently observed in this group, but the differences failed to reach significance. Two patients who developed T1DM during or after pregnancy belonged to the FT1DM group. Ketonacidosis was almost inevitable phenomenon at diagnosis and the accompanied metabolic derangement (hypernatremia, acidosis, dysfunction of kidney and liver etc) was more severe in FT1DM group. The acute-onset T1DM constituted the maximum ratio of the disease, and patients were with the youngest age at onset and with the leanest somatotype before diagnosis. Patients with slow-onset type were relatively older and had greater body mass index but lost more weight at diagnosis. The fasting as well as post-load C-peptides in slow-onset type were relatively older and had greater body mass index but lost more weight at diagnosis. The fasting as well as post-load C-peptides in this group were relatively higher, and ketocacidosis at onset was less likely.

Conclusion: Clinical heterogeneity in the three groups was apparent, which might indicate different trigger mechanisms, especially the impacts of virus infection, feminine hormones or state of pregnancy on the extent of β cell damage as well as the development of T1DM, more so the fulminant type.

Table 1 Comparisons of clinical features of FT1DM, acute-onset and slow-onset T1DM.

<table>
<thead>
<tr>
<th>Items</th>
<th>Fulminant (n=18)</th>
<th>Acute-onset (n=137)</th>
<th>Slow-onset (n=50)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset (y)</td>
<td>10.3±3.6</td>
<td>13.7±5.6</td>
<td>15.2±4.9</td>
<td>0.006</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>55.6%</td>
<td>59.8%</td>
<td>56.0%</td>
<td>0.11</td>
</tr>
<tr>
<td>Duration of symptoms ≥3 months</td>
<td>3.6±2.5</td>
<td>5.3±2.6</td>
<td>7.5±7.6</td>
<td>0.009</td>
</tr>
<tr>
<td>BMI before onset (kg/m²)</td>
<td>20.1±3.1</td>
<td>20.6±3.4</td>
<td>20.6±3.3</td>
<td>0.041</td>
</tr>
<tr>
<td>Weight loss (kg)</td>
<td>6.8±1.4</td>
<td>5.2±1.0</td>
<td>7.7±2.7</td>
<td>0.009</td>
</tr>
<tr>
<td>Pregnancies (%)</td>
<td>22.2% (4/18)</td>
<td>0%</td>
<td>0%</td>
<td>0.002</td>
</tr>
<tr>
<td>Flu-like symptoms (%)</td>
<td>44.4%</td>
<td>22.6%</td>
<td>18%</td>
<td>0.093</td>
</tr>
<tr>
<td>Ketosis at diagnosis (%)</td>
<td>19.0%</td>
<td>83.8%</td>
<td>64%</td>
<td>0.007</td>
</tr>
<tr>
<td>Acidosis at diagnosis (%)</td>
<td>9.0%</td>
<td>45.3%</td>
<td>64%</td>
<td>0.009</td>
</tr>
<tr>
<td>Plasma Glucose (mmol/L)</td>
<td>31.4±11.7</td>
<td>25.1±10.1</td>
<td>24.5±3.3</td>
<td>0.023</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.8±1.1</td>
<td>12.3±4.2</td>
<td>15.6±2.7</td>
<td>0.009</td>
</tr>
<tr>
<td>Na (mmol/L)</td>
<td>133.8±7.5</td>
<td>130.1±5.9</td>
<td>135.6±4.2</td>
<td>0.009</td>
</tr>
<tr>
<td>CO2 (mmol/L)</td>
<td>21.5±5.8</td>
<td>21.9±6.8</td>
<td>23.6±5.8</td>
<td>0.009</td>
</tr>
<tr>
<td>Cr (mmol/L)</td>
<td>103.4±76.8</td>
<td>93.4±45.6</td>
<td>90.5±23.5</td>
<td>0.065</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>58.4±60.9</td>
<td>38.9±16.4</td>
<td>34.7±15.2</td>
<td>0.016</td>
</tr>
<tr>
<td>Fasting C-peptide (pmol/L)</td>
<td>3.1±1.9</td>
<td>0.15±0.1</td>
<td>1.23±0.7</td>
<td>0.046</td>
</tr>
<tr>
<td>Post-load C-peptide (pmol/L)</td>
<td>3.1±0.1</td>
<td>0.2±0.1</td>
<td>0.4±0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>

1 Data are presented by the means ± SD or number of patients or percentage (%).
2 Statistically significant difference among groups (P<0.05).

#993 Ketonosis prone diabetes in south London - are we discontinuing insulin appropriately?

M.S.B. Huda, R. Mailtand, S.R. Henderson, O. Poole-Wilson, J. Miell, S.R. Kotteroda;
1Department of Diabetes & Endocrinology, University Hospital Lewisham, London, United Kingdom.

Background and aims: Ketonosis prone diabetes is a common, but frequently unrecognised presentation of diabetes in an African/Caribbean population. An ideal approach to insulin discontinuation in these patients is unclear. We examined rates of insulin discontinuation, initial management and subsequent follow up in a large cohort of patients from a south London population.

Materials and methods: Patients that presented with diabetic ketoacidosis (DKA) or unprovoked ketosis (defined as ≥2+ ketones on urine dipsticks) between 2003 and 2009 to University Hospital Lewisham, London were identified from hospital notes and a clinic database. Those with known or a clear clinical new diagnosis of diabetes 1 were excluded.

Results: 53 patients were identified; 28 with DKA and 27 with unprovoked ketosis. 36 (68%) were male. The median age was 41 (range 17-71). December 2008, patients with previous history of using steroids, or data not available were excluded in 2 cases. The mean time to insulin discontinuation was 13±3.0 months. Only one patient had a relapse of DKA seven years after discontinuing insulin. Mean HbA1c on admission was 12.3±0.6, decreasing significantly to 8.1±0.4 at follow up (p<0.01). Body weight did not significantly increase over follow up (90.1±3.1 admission to 91.8±3.2 follow up p=0.66).

Conclusion: This is the first large cohort of ketosis prone diabetic patients described in a UK population. Our data show that the majority of patients are discharged on insulin and continue with insulin at follow up, which may explain the extremely low incidence of relapse in DKA. Patients have a significantly decrease in HbA1c with minimal weight gain, suggesting a conservative approach to insulin withdrawal may be appropriate in this population.

#994 Post-transplant diabetes mellitus and its impact on survival of liver transplant patients

X.Y. Chen, M.X. Yu, J. Zhou, J. Gao, X. Gao;
1Department of Endocrinology, 2Department of Liver Surgery, 3Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China.

Background and aims: Post-transplant diabetes mellitus (PTDM) has great effects on complications in relation to cardiovascular system, infections, neuropsychiatric system et al, resulting in greater morbidity and affecting graft survival and patients’ long-term outcome. The aim of our study was to discuss the impact of PTDM on patient survival and long-term complications.

Materials and methods: Retrospective analysis 438 patients who performed orthotopic liver transplantation (OLT) in our center between April, 2001 and December 2008, patients with previous history of using steroids, or data not available were included in only 3 months after OLT were excluded. All patients were divided to PTDM (n=140) and non-PTDM (n=298) group according to fasting plasma glucose (FPG) after operation. We compared two groups on survival rate and complications after OLT, including sepsis, chronic renal insufficiency, fungal infection, biliary complication, CMV infection, fatty liver. Cox regression analysis was used to analyze those factors affecting patient survival. We used Chi-square test to compare qualitative variables and Kaplan-Meier method and log-rank test to analyze survival rate. P value less than 0.05 was considered statistically significant. Statistic analysis was done by SPSS 16.0.

Results: Cox regression analysis indicated that FPG before or after operation, tumor relapse or metastasis and renal insufficiency after OLT were independent risk factors for patients’ death, while the hazard ratio of each factor was
1.57 (P=0.02), 1.84 (P<0.0001), 2.08 (P=0.0001) in PTDM group towards non-PTDM group. The mean survival time in PTDM group was 4.216±0.260 years, while non-PTDM group was 6.133±0.198 years, which showed statistic meaning between each group (P<0.01). Compared with non-PTDM group, PTDM group had higher rate in sepsis (151/298:87/140) (P=0.025) and chronic renal insufficiency (65/298:51/140) (P=0.001), and showed statistic meaning, while no difference were found in fungal infection, biliary complication, CMV infection and fatty liver (All P>0.05).

Conclusion: PTDM has great effect on patient’s survival and complication after OLT, reduces patient’s survival and raises the odds of sepsis and chronic renal insufficiency.

Supported by: Zhongshan Hospital, Fudan University

995
Patients with long-standing type 2 diabetes can develop absolute insulin deficiency
S.V. Hope1,2, M. Shepherd1, B.M. Shields3, T. McDonald3, B.A. Knight2, A.T. Hattersley2;
1Geriatrics, Royal Devon & Exeter NHS Foundation Trust, 2Peninsula NIHR Clinical Research Facility, 3Clinical Biochemistry, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.

Background and aims: Insulin treatment is increasing in Type 2 diabetes, reflecting the aim for tight glycaemic control, progressive beta-cell failure, and prolonged life expectancy. It is unclear whether the progressive beta-cell failure found in T2D can result in absolute insulin deficiency, with the resulting risk of increased fluctuations in glucose, including severe hypoglycaemia and diabetic ketoacidosis. This may need different treatment from the majority of patients with T2D who have endogenous insulin production. Recent work has developed Urinary C-Peptide Creatinine Ratio (UCPCR) as a non-invasive, stable measure of endogenous insulin production utilising a single urine sample. This has been shown to correlate well with the gold-standard Mixed Meal Tolerance Test in insulin-treated patients. We aimed to assess if absolute insulin deficiency, measured by UCPCR, occurs in T2D.

Materials and methods: We studied 171 insulin-treated subjects who clinically met criteria for type 2 diabetes (diagnosed ≥ 45 years (median age 73, IQR 67-78), and who started insulin ≥12 months post-diagnosis). They provided a spot 2hr post-prandial urine sample, on which UCPCR was measured. Absolute insulin deficiency is defined by UCPCR <0.2 nmol/mmol.

Results: 23/171 (13.5%) had absolute insulin deficiency (UCPCR<0.2). Duration of diabetes was significantly longer in those with insulin deficiency (18vs12yrs, p=0.02), and insulin dose in units/kg/24hrs was higher (0.77vs0.5, p=0.01). There was no difference between those with insulin deficiency versus those with endogenous insulin production (UCPCR>0.2) for age of diagnosis (median 58vs58yrs, p=0.27), BMI (29vs29, p=0.87), HbA1c (8vs7.8, p=0.76), time to insulin from diagnosis (6vs5.5yrs, p=0.31), or number taking oral hypoglycaemic agents (OHA) (12/23 vs 92/148, p=0.36). Of those with absolute insulin deficiency, only 4/23 (17%) were on a basal bolus treatment regime, and 8/23 (34.8%) were on long-acting insulin alone.

Conclusion: UCPCR suggested 13.5% of elderly diabetic patients who met clinical criteria for type 2 diabetes had absolute insulin deficiency. Those who were insulin deficient had had a diagnosis of diabetes for significantly longer than those who retained endogenous insulin secretion, and were on higher doses of insulin. The insulin treatment regimes in the majority of these patients suggested insulin deficiency had not been recognised. Identifying insulin deficiency in long-standing patients with diabetes is important as their management will differ, and UCPCR may have a valuable role in detecting these patients.
PS 93 Tools for diagnosing and monitoring of diabetes

996

How should HbA1c be incorporated into the diagnostic pathway for diabetes mellitus?
S.E. Manley1, P.G. Nightingale2, K.A. Sikaris3, I.M. Stratton1, R. Cramb1, S.C.L. Gough1;
1Clinical Biochemistry, University Hospital Birmingham NHS Foundation Trust, United Kingdom, 2Wellcome Trust Clinical Research Facility, University Hospital Birmingham NHS Foundation Trust, United Kingdom, 3Melbourne Pathology, Australia, 4English National Screening Programme for Diabetic Retinopathy, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom, 5Oxford Centre for Diabetes, Endocrinology and Metabolism, United Kingdom.

Background and aims: Alternative strategies have been suggested for using HbA1c to diagnose diabetes mellitus. An HbA1c cut-off of ≥6.5% has been included by the American Diabetes Association (ADA) in their guidelines for 2010. Other approaches involve limits for HbA1c, to ‘rule diabetes out/in’ and a combination of HbA1c and glucose to reduce oral glucose tolerance testing (OGTT). These strategies are examined in patients referred for OGTT in the UK with impaired fasting glucose (IFG) and patients at risk of diabetes in Australia, 26% with IFG at OGTT.

Materials and methods: OGTT were performed in 500 UK patients by capillary sampling with HbA1c measured by Tosoh G7 & G8 IE HPLC (ion exchange high performance liquid chromatography) analysers and in 1175 Australian patients using venous samples with HbA1c from Bio-Rad Variant II Turbo analysers.

Results: The prevalence of diabetes by WHO criteria was 49% in UK patients, age, median IQ range, 62(53-72) years/52% male, and 35% for Australian patients, age 59(49-68) years/54% male. Those identified with diabetes by WHO in UK cohort were aged 62(53-73) years/52% male and by ADA 64(54-73) years/50% male, p = 0.12 for age & p = 0.54 for gender, and for Australian patients, 61(51-71) years/55% and 59(50-70) years/57%, p = 0.004 & p = 0.056. When limits of <5.5% HbA1c (NHba1c, not diabetes) and ≥7.5% (DHbA1c, diabetic) are applied to ‘rule out/in diabetes’, 12% (6%/6% respectively) of UK and 27% (17%/10%) of Australian patients would be identified. Those with NHba1c in the UK cohort were aged 56(46-65) years/63% male, ΔHba1c (intermediate 5.5% to 7.4%) 62(53-72) years/51% male and ΔHba1c, 68(53-74) years/52% male, p=0.26 for age and p=0.42 for gender. For Australian patients, values were 50(39-60) years/53%, 60(52-69) years/54% and 55(47-69) years/57%, p <0.001 & p=0.48. An algorithm combining FPG <7.8mmol/l and HbA1c <6.0% could provide additional benefit by reducing OGTT further as 20% of UK and 28% of Australian patients had HbA1c between 5.5% and 5.9%.

Conclusion: Further studies are required to establish the sensitivity and specificity of HbA1c limits in other populations. The means of referral, age and ethnicity of populations and analyser used for HbA1c may influence limits chosen. In addition, use of a surrogate marker for diagnosis of diabetes will require careful assessment in individual patients of conditions, either clinical or iatrogenic, which could affect haemoglobin or its turnover.

997

Diagnosis of diabetes applying the new and old ADA guidelines - characterisation of patients who do not hit both criteria

Background and aims: For the diagnosis of diabetes the new ADA guidelines for the diagnosis of diabetes recommended the use of the HbA1c test to diagnose diabetes, with a threshold of >6.5%. Moreover the common criteria for the diagnosis of diabetes, FPG >7.0mmol/l and 2-h PG >11.1mmol/l, stay valid. Not in every case the new and the old criterion lead to a diagnosis at the same time. There are patients whose glycaemic status is categorized differently either by the HbA1c or the 2 hour post challenge plasma glucose. These patients have to get characterized, to identify, which criteria is better to use in this situation.

Patients and methods: Data of 729 Patients who had 864 oral glucose tolerance tests and an HbA1c test in proximity of time were analyzed. Patients characteristics: age 40.3 y; HbA1c according to OGTT 5.5%; BMI 29.2 kg/m². HbA1c was DCCT adjusted. The conformity of diabetes-diagnosis of diabetes following the different criteria and potential reasons for non conformance are checked in the digital patient record EMIL.

Results: 28 (3.8%) of 729 patients hit both criteria for the diagnosis of diabetes (HbA1c >6.5% and 2-h PG >11.1 mmol/l). 641 patients (87.9%) met none of both criteria and 22 patients (3.0%) met the HbA1c (>6.5%)- but not the glucose criterion (2-h PG >11.1 mmol/l). Lots of these patients, hitting only the HbA1c criteria, had an IFG (n=16), or an IGT (n=16) or both (n=14). Four of these 22 patients had whether IFG nor IGT. In 12 patients (1.6% of all patients) with a follow up the diagnosis could be confirmed by abnormal 2h-PG at a later time. In 4 patients HbA1c dropped below 6.5%, stayed or increased and 6 patients had no or only short follow up up. 5.2% (n=38) of all patients had abnormal 2h-PG (>11.1 mmol/l) at diagnosis but HbA1c below the limit (<6.5%). In 15 patients (2.1% of all patients) with follow up HbA1c rose above 6.5% and they met both criteria for diagnosis of diabetes. Nine patients with follow up (1.9%) stayed below an HbA1c 6.5%. Fourteen 14 patients (1.9%) had no or only short follow up to show changes in HbA1c. Confounder which could interfere with HbA1c were rare (severe illness 3, anaemia 2, hypoglycaemic agent 0, corticoids 0).

Conclusion: Applying the new ADA criteria for diabetes diagnose to an caucasian population we found concordance between HbA1c criterion and 2h post challenge criterion in 91.7% of all the patients and an additional 5.7% within 12 month after the first test. Thus, HbA1c is a suitable parameter for diagnosis of diabetes mellitus.

Conformity of HbA1c and 2h post challdge plasma glucose for diagnosis of diabetes

<table>
<thead>
<tr>
<th>2-h PG <11,1mmol/l</th>
<th>2-h PG >=11,1mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c < 6.5%</td>
<td>641 patients</td>
</tr>
<tr>
<td>(87.9%)</td>
<td>(5.2%)</td>
</tr>
<tr>
<td>HbA1c >= 6.5%</td>
<td>22 patients</td>
</tr>
<tr>
<td>(3.0%)</td>
<td>(3.8%)</td>
</tr>
</tbody>
</table>

998

Detecting undiagnosed diabetes using HbA1c, an automated screening test in hospitalised patients
N.A. Valentine1, T.M. Alhawass2, G.W. Roberts1, P.P. Vora3, S.N. Stranks4, M.P. Doogue5;
1Discipline of Pharmacology, Flinders University, Bedford Park, Australia, 2College of Pharmacy, King Saud University, Saudi Arabia, 3Pharmacy Department, Repatriation General Hospital, Daw Park, Australia, 4Southern Adelaide Diabetes and Endocrine Services, Bedford Park, Australia.

Background and aims: Diabetes is associated with morbidity, mortality and use of health care resources. The prevalence of diabetes in hospitalised patients is approximately three times community prevalence. HbA1c has been recently recommended as a diagnostic tool for diabetes. The aims of this study were to assess the utility of A1C as an automated screening test for undiagnosed diabetes in hospitalised patients and to estimate the prevalence of undiagnosed diabetes in hospitalised patients.

Materials and methods: A 3 month prospective observational study of all adult patients admitted to a tertiary hospital. An A1C test was automatically undertaken on admission for all patients with random plasma glucose (RPG)
We evaluated data from a large population of patients with type 2 diabetes mellitus. A subset of patients were recruited for an oral glucose tolerance test (OGTT) post discharge. Undiagnosed diabetes was defined as A1C ≥ 6.5% in accordance with International Expert Committee and American Diabetes Association recommendations.

Results: The prevalence of undiagnosed diabetes was 11% (95% CI 9.8-12.4) (262/2360) during the 3 month study (figure 1). A further 312 patients with known diabetes were admitted. The prevalence of undiagnosed diabetes was highest in the 65-74 age group. In this study, the A1C test cost was US$152 per new diagnosis of diabetes. Conservatively assuming an annual incidence of undiagnosed diabetes of 0.8% the ongoing cost of testing hospitalized patients using A1C would be US$1,900 per new diagnosis of diabetes. KPG was not sensitive or specific in diagnosing diabetes. Patients were poorly compliant with OGTT, with a 27% completion rate.

Conclusion: Undiagnosed diabetes is common in hospitalised patients. A1C is a simple, inexpensive screening test that can be automated using existing clinical blood samples. Hospital screening for diabetes needs to be coupled with resources for follow up and management in the community.

1000

1, 5-Anhydroglucitol as a marker of short term glucose variability in well-controlled type 2 diabetes mellitus

1Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, 2Department of Endocrinology and Metabolism, Hyundae Hospital, Namyangju Si, Gyeonggi-Do, 3Department of Endocrinology and Metabolism, Pochon CHA University, Seoul, Republic of Korea.

Background and aims: 1, 5-Anhydroglucitol (AG) is a glucose analogue present in the blood and its levels decrease when there is glycosuric hyperglycemia. The usefulness of AG in reflecting glycemic excursions have been demonstrated in moderately controlled patients to some extent, although some studies reveal controversial results. However, even patients with well-controlled diabetes, demonstrated by HbA1C <7%, may be subject to glycemic excursions and postprandial hyperglycemia. The aim of this study was to evaluate the role of 1,5-AG in patients with well-controlled type 2 diabetes in monitoring short term glycemic control and glucose variability, as assessed by the continuous glucose monitoring system (CGMS), when compared to fructosamine (FA).

Materials and methods: 33 patients with type 2 diabetes with HbA1C <7% with stable glycemic control were recruited. CGMS was applied to the patients for two consecutive 72-hour periods. A standardized and objective approach to measure glycemic variability by CGMS, the absolute group of signs (GOS) method, which has a high correlation with the mean amplitude of glucose excursion (MAGE), was calculated. This, along with the mean postmeal maximum glucose (MPMG) and area under the curve for glucose above 180 mg/dL (AUC180), which all reflect the daily glycemic status, were compared with 1,5-AG and FA at baseline, day 4, and day 7.

Results: Baseline characteristics of the enrolled subjects were as follows: age, 56 ± 9.6 yrs; BMI, 25.5 ± 3.6 kg/m²; DM duration, 4.9±5.0 yrs; HbA1C, 6.3±0.3%; basal 1,5-AG, 15.8±7.6 ug/mL; basal fructosamine, 276.1±23.5 mg/dL. Mean 1,5-AG levels were negatively correlated with MPMG (r = -0.287, p < 0.05), AUC180 (r = -0.264, p < 0.05) and absolute GOS (r = -0.253, p < 0.05), whereas FA levels were correlated positively with fasting plasma glucose (r = 0.319, p < 0.01), MPMG (r = 0.498, p < 0.01), AUC180 (r = 0.52, p < 0.01), and absolute GOS (r = 0.285, p < 0.05). When 1,5-AG levels were divided into two groups using 14 ug/mL as the cut-off value for well controlled DM, there was a statistically significant difference: 1,5-AG >14ug/mL group, compared to the 1,5-AG <14ug/mL group, had higher fasting plasma glucose (120.84±15.46mg/dl vs 109.24±11.13mg/dl, p = 0.002), MPMG (201.84±34.75mg/dL vs 173.13±24.41mg/dL, p = 0.001), AUC180 (5.30±5.49 mg/dL/day vs 1.56±2.27mg/dL/day, p = 0.003), and absolute GOS values (67.05±25.62 mg/dL vs 54.34 ±20.52mg/dL, p = 0.035), meaning greater glycemic variability.

Conclusion: 1,5-AG reflects glycemic variability and postprandial hyperglycemia even in well-controlled DM patients, which suggests the usefulness of this as a complementary marker along with fructosamine.

Supported by: sanofi-aventis
1001
Defining the phenotype of the fast and slow deglycators by analysis of the glycation gap
B.M. Singh, A.U. Nayak; Wolverhampton Diabetes Centre, United Kingdom.

Background and aims: Despite the reliability of the Haemoglobin A1c (HbA1c) assays, discordance between HbA1c and other measures of glycaemia is often encountered. It is now recognised that there are enzyme-dependent processes in the red blood cells that cause glycation and thus influence the HbA1c, independent of the prevailing glycaemia. Thus the HbA1c is not the net of the glycation and deglycation. The rates of intracellular deglycation may vary between individuals. Fructosamine is the glycation of albumin which is extracellular and so is not affected by the intracellular deglycating enzymes. Co-analysis of HbA1c and Fructosamine, using the Fructosamine to determine a predicted HbA1c, can define the ‘glycation gap’ (G-gap). Our objective is to determine if the glycation gap in any individual is consistent over time.

Materials and methods: We analysed all HbA1c estimations (n=111205) done over a 4 year period at New Cross Hospital. 4724 people had simultaneous HbA1c - Fructosamine estimations separated by 10±8 months. The G-gap was calculated as the HbA1c minus the standardised Fructosamine derived HbA1c equivalent (FHbA1c). A negative G-gap may denote a fast deglycation state with the HbA1c appearing to read lower than predicted, and a positive G-gap denotes a slow deglycation state. To ascertain the consistency of the G-gap, the G-gap for the 2nd HbA1c-Fructosamine pair was calculated expecting a consistency of distribution of negative through positive values. If so, the multiple of G-gap1 and G-gap2 (whether negative or positive) will always be positive if consistent but negative with any discordance.

Results: Of the 2263 people with at least two paired HbA1c - Fructosamine, their characteristics were age 60±14 years, males 55%, HbA1c 8.3±1.7 (4.0-17.7) % (mean±SD (range)) and Fructosamine 308±77 (143-978) µmol/l. The FHbA1c was 8.3±1.7 (4.6-23.4) % and the HbA1c minus FHbA1c was 0.0±1.2 (-8.2 to +5.9). Setting G-gap cut offs at <= -1, >-1 to <+1, and >= +1 as Fast, Neutral and Slow deglycators the cohort’s distribution was 421 (19%), 1448 (64%) and 394 (17%) respectively. The G-gap multiple (multiple of G-gap1 and G-gap2) was 1.2±2.6 (-6.1 to +40.9). The G-gap consistency was 97% in 421 Fast deglycators (G-gap <= -1) and 99% in 394 Slow deglycators (G-gap >= +1).

Conclusion: The G-gap is consistent over time, thus by inference an individual’s rates of deglycation appear to be consistent and thus this may be a method of defining the phenotypic expression of underlying metabolic and genetic processes.

1002
Association between grip strength and glycaemic control or diabetic complications in Korean patients with type 2 diabetes
S.-K. Kim1; J.-H. Noh2; Y.-J. Cho3; J.-H. Kim4; H.-U. Nam4; J. Lee5; J.-J. Kim6; H.-W. Baik7; H.C. Jang8; H.-Y. Bae9; Y.-H. Ahn10; Y.-W. Cho11; H.-U. Nam12; 1Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam; 2Department of Internal Medicine, Inje University College of Medicine, Koyang; 3Department of Internal Medicine, Seoul National Medical Center, Seoul; 4Department of Internal Medicine, Sung-Ae General Hospital, Seoul; 5Department of Internal Medicine, School of Medicine, Catholic University of Daegu; 6Department of Internal Medicine, Pusan National University School of Medicine, Busan; 7Department of Internal Medicine, Bundang Jesaeng Hospital, Daejin Medical Center, Seongnam; 8Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam; 9Department of Internal Medicine, Chosun University Hospital, Gwangju; 10Department of Internal Medicine, Hanyang University College of Medicine, 11Department of Internal Medicine, Hallym University College of Medicine, Seoul, Republic of Korea.

Background and aims: Age-related decline of muscle strength is closely related with a loss of muscle mass and an increase in fat, which are the important features in insulin-resistant states. However, very little data are available on the association of muscle strength with diabetic complications in patients with type 2 diabetes. The aim of this study was to investigate whether grip strength is associated with glycaemic control and status of diabetic complication in patients with type 2 diabetes.

Materials and methods: This was an observational study performed in 193 type 2 diabetic patients with duration of diabetes within 3 years and age- and sex-matched 40 healthy individuals. Grip strength was measured by isometric dynamometry. Thigh circumference was measured for each subject. Diabetic complications were ascertained via review of medical records. Chronic kidney disease was defined as estimated glomerular filtration rate < 60 mL/min/1.73 m².

Results: Grip strength was correlated with age (r=-0.491, P<0.001), body mass index (r=0.133, P<0.05), and diabetes duration (r=-0.184, P<0.001). Diabetic patients had lower grip strength than healthy individuals. Especially, grip strength of poorly glycemic controlled patients (HbA1c > 7.5%) had lower than that of well controlled patients (HbA1c ≤ 7.5%). And grip strength was lower in diabetic patients with retinopathy, neuropathy, chronic kidney disease, or cardiovascular disease, compared to those without these complications. With the exception of retinopathy, these trends remained significant after adjusting for age, body mass index, waist, diabetes duration, and medications.

Conclusion: Our findings suggest that grip strength is associated with glycaemic control and diabetic complications. The potential for grip strength to be used in the clinical practice of diabetic patients needs to be explored.
PS 94 Insulin pumps: a promise of improvement in metabolic control

1003

HbA₁c and sensor use in adults during a 1-year randomised controlled trial comparing sensor-augmented pump therapy and multiple daily injection therapy

A. Ahmann1, J.B. Buse2, R.M. Berganstal3, R. Tanenberg1;
1Oregon Health & Science University, Portland, 2University of North Carolina School of Medicine, Chapel Hill, 3International Diabetes Center at Park Nicollet, Minneapolis, 4Diabetes and Obesity Center, Greenville, USA.

Background and aims: Recent studies have shown that continuous glucose monitoring (CGM) combined with insulin pump therapy (sensor augmented pump, SAP) might improve A1C without increasing hypoglycemia.

Materials and methods: STAR 3 was a 1-year multicenter randomized controlled trial comparing SAP therapy to glargine- and aspart-based multiple daily injection (MDI) therapy in 329 adult (age 19-70 years) and 156 pediatric (age 7-18 years) subjects with type 1 diabetes. Preliminary results for the adult cohort of the following outcomes are given for overall A1C, A1C by age group, sensor use, and severe hypoglycemia.

Results: The primary endpoint of change in A1C from baseline to 1 year showed the decline in mean A1C levels was greater with SAP therapy compared to MDI therapy (SAP: from 8.3±0.5% to 7.3±0.7%; MDI: from 8.3±0.5% to 7.9±0.9%; treatment difference -0.6%; 95% CI, -0.77, -0.45; p=0.001). Severe hypoglycemia did not differ between treatment cohorts (p=0.53). There was a decrease in A1C from baseline to 1 year for all SAP adults of -0.9; for those 19-35 years (n=59), the decrease was -0.7; for those 36-50 years (n=58), the decrease was -1.1; and for those 51-70 years (n=49), it was -1.1. Treatment differences between groups in change in A1C significantly favored SAP therapy for all adults (-0.6, p<0.001) and in 2 age cohorts (-0.6 among subjects 19-35 years, p=0.01; -0.8 among subjects 36-50 years, p<0.001; with a favorable downward trend of -0.3 among subjects 51-70 years, p=0.16). Most SAP subjects used the glucose sensor ≥60% of the time (57.6% among subjects 19-35 years of age, 82.8% among subjects 36-50 years of age, and 91.8% among subjects 51-70 years of age). The Figure shows the r value of -.28 between sensor use and change in A1C from baseline to 1 year.

Conclusion: SAP therapy reduces A1C in adults of all ages with type 1 diabetes. Reduction in A1C appears to be related to sensor use, which showed a tendency to increase with age, but was relatively high across all ages.

Supported by: Medtronic, Inc.

1004

Improved glucose control with sensor-augmented pump therapy in youth with type 1 diabetes and elevated HbA₁c levels on multiple daily injection therapy in the STAR 3 Study

W.V. Tamborlane1, 2, R. Slover1, 3, A. Criego1, 4, M. Daniels5, C.M. Foster2, R.C. McEvoy1, 6, C. Orlowski1, 7, S. Weinzierl1, 8, N. White1, 8, S.M. Willi1, 2, 3, STAR 3 Study Group;
1Pediatries, Yale School of Medicine, New Haven, 2Pediatries, Barbara Davis Center for Childhood Diabetes, Aurora, 3International Diabetes Center, Minneapolis, 4CHOC, Orange, 5University of Utah, Salt Lake City, 6Children’s Hospitals and Clinics of Minnesota, Minneapolis, 7University of Rochester, Rochester, 8Washington University, St. Louis, 9CHOP, Philadelphia, USA.

Background and aims: The effectiveness of continuous glucose monitoring (CGM) in children with type 1 diabetes (T1D) maintained on pre-existing insulin pump or multiple daily injection (MDI) treatment remains unproven. No previous study has examined the effect of initiating both CGM and insulin pump therapy simultaneously in a large pediatric cohort with T1D.

Materials and methods: This 1-year multicenter, randomized controlled trial compared an integrated sensor-augmented pump (SAP) system to MDI therapy in 156 youths with T1D with sub optimal control (A1C >7.4 - 9.5%). A1C values were measured every 3 months and the primary outcome was the change in A1C from baseline to 12 months in the total cohort. Results were also stratified according to age (82 children, age 7-12 and 74 adolescents, age 13-18) and by the amount of time glucose sensors were worn in the SAP group.

Results: Baseline A1C levels did not differ between the SAP group (8.26±0.55%) and the MDI group (8.30±0.53%). At the end of 12 months, the change in A1C from baseline in the SAP group was -0.39±0.93% versus +0.16±0.95% in the MDI group, a between-groups difference of -0.49% (95% CI, -0.75 to -0.21; P=0.002). The proportion of subjects reaching ISPAD-recommended A1C values (i.e., <7.5%) was 29.5% in the SAP group versus 10.3% in the MDI group (P=0.0075). As shown in the Figure, the change in A1C at 12 months in 7-12 yr old subjects favored the SAP group by -0.44% (95% CI, -0.80 to -0.07; P=0.02 vs MDI subjects) and by -0.62% (95% CI, -1.09 to -0.15, P<0.01) in 13-18 year olds. In the entire SAP cohort, greater decrements in A1C were associated with increasing sensor wear (r=.30, P<0.008). Rates of severe hypoglycemia (<10 events/100 pt yrs) and DKA were low and did not differ between the two treatment groups.

Conclusion: SAP is an effective means of improving metabolic control and in achieving target A1C levels without increasing the frequency of acute complications in youth with T1D who have elevated A1C levels on MDI therapy. Increasing sensor use tends to improve the effectiveness of the SAP system.

Figure: Quarterly mean (±SEM) A1C levels in pediatric and adolescent subjects. Open squares, MDI treatment arm; filled circles; SAP treatment arm.

Supported by: Medtronic, Inc.

1005

Long term outcomes of intensive treatment with subcutaneous insulin infusion (CSII) in patients with type 1 diabetes mellitus

I. Gonzalez-Molero1, 2, M.E. Dominguez-Lopez1, E. Rubio3, M. Carreira3, S. Gonzalez-Romero3, M.S. Ruiz de Adana-Navas3, F. Soriguer-Escotef; 1Endocrinology, 2Psychology, Carlos Haya Hospital, Malaga, Spain.

Introduction: Several studies have shown that treatment with insulin pump is an effective therapy for selected type1 diabetes. Nevertheless, most of them analyse results in short period of time. The objective of this study is to evaluate long term effects on quality of life (DQOL) and metabolic control of CSII.

Material and methods: We did a longitudinal study of type 1 diabetic patients previously treated with multiple daily insulin (MDI) therapy who initiated insulin pump and maintained it for longer than three years. Initially we recruited 105 patients and after we excluded pregnant and patients using...
combined sensor-pump systems. Finally we analysed in 69 patients: diabetes duration, complications, cause of initiating CSII, total daily insulin require-
ments, hypoglycaemic, HbA1c, DQOL, physical evaluation, number of con-
trols and number of medical visits.

Results: The criteria for csii initiation were: 21,9% hypoglycaemic events, 37,5% poor metabolic control and 40,6% glycemic lability. After three years, 79,64% continue using insulin pump, 12,2% dropped out and 8,16% withdrew following medical reasons.

<table>
<thead>
<tr>
<th>Baseline data</th>
<th>6 month</th>
<th>0.06</th>
<th>1,03±0,29</th>
<th>92±16,15</th>
<th>0.97±0,44</th>
<th>82,5±14,0*</th>
<th>2,8±2,2*</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c</td>
<td>8.1±2.2</td>
<td>7.6±1,3*</td>
<td>7.8±0.9*</td>
<td>7.2±2.6*</td>
<td>8.2±0.9*</td>
<td>7.5±1.6</td>
<td>3,7±2,2</td>
<td>3,1±1,99</td>
<td></td>
</tr>
<tr>
<td>Severe Hypoglycemic events/year</td>
<td>0.43</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoglycemic events/week</td>
<td>4.5±3</td>
<td>3,3±2,8</td>
<td>2.1±1,7*</td>
<td>2.8±2,2*</td>
<td>2.7±1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoacidosis with hospital admission</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensibility factor</td>
<td>37.6±17.8</td>
<td>45.3±19.04</td>
<td>40.7±18.9</td>
<td>38.8±18.4</td>
<td>41.2±10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIRatio</td>
<td>1.05±0.5</td>
<td>0.86±0.44</td>
<td>0.95±0.46</td>
<td>0.97±0.44</td>
<td>1.03±0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoanalysis/day</td>
<td>3.6±2.5</td>
<td>3.1±1.99</td>
<td>3.8±1.9</td>
<td>3.7±2.2</td>
<td>3.2±1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visits/month</td>
<td>0.6±0.22</td>
<td>0.28±0.14</td>
<td>0.30±0.11</td>
<td>0.30±0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQOL</td>
<td>92.6±16.5</td>
<td>80.8±21.92*</td>
<td>82.12±19.1*</td>
<td>82.5±14.0*</td>
<td>82.5±14.0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Long term evaluation of CSII]

Conclusions: CSII achieve a good metabolic control during the first two years and an improvement in DQOL that is maintained during all the evaluated period of time.

1006

Insulin requirements, basal-bolus distribution and basal patterns used by type 1 diabetic patients (T1DM) starting insulin pump therapy (CSII) and after glucose control optimisation

I. Saigi, D. Tundidor, E. Jordana, M.A. Maria, R. Corcoy, A. Chico

Introduction: Insulin requirements of insulin at the beginning of CSII thera-
py is usually calculated from total daily doses (TDD) used with multiple daily injections (MDI). Basal-bolus distribution of 50% 50% with only one basal rate per day is the usual pattern at that time. However, there are only few evidences about the best form to start CSII in MDI treated patients.

Aim: The aim of the study was to assess insulin requirements, basal-bolus distribution and basal pattern rate used by a group of T1DM subjects using CSII after glucose optimization.

Patients and methods: 50 T1DM patients who started CSII therapy at 2008 were included (10 males, 40 women; 39.6±11 years; diabetes duration 19.9±11 years; HbA1c 7.9±0.9%). Indications: suboptimal glucose control (n=31) and pre-gestational optimisation (n=19). TDD was calculated reducing around 20% the previous TDD in MDI regimen. TDD was divided into 50% basal (proportionally distributed along the 24 hours) and 50% pre-meal boluses (distributed according to carbohydrate at each meal). Doses and pattern distribution were modified ac-
cording to glucose profile during the follow-up (1, 2 and 3-5 months after CSII initiation). After glucose profile optimization (4-6 months), TDD, basal-bolus dis-
tribution and number of basal rates were recorded and HbA1c was measured.

Results: In comparison to TDD in MDI, TDD at the beginning of CSII was reduced by 18.3%. At the end of the study the reduction of TDD was only

especially in women and patients with longer diabetes duration (around 60%). Basal profile should be divided in >3 patterns/day; because higher number of basal rates/day was related with better glucose control. HbA1c decreased by 0.8% 4-6 months after CSII initiation.

Supported by: FIS PI080669

1007

Good metabolic control with a continuous subcutaneous insulin infusion (CSII) in type 2 diabetic patients uncontrolled by insulin optimisation

1University Hospital Centre, Pointe à Pitre-Guadeloupe, 2Hospital Centre, Narbonne, 3Hospital Centre, Le Creusot, 4Hospital Centre, Auxerre, 5Hospital Centre, La Rochelle, 6Hospital Centre, Dunkerque, 7Hospital Centre, Bondy, 8Hospital Centre, Bar le Duc, 9Dinno Santé, Marne La Vallée, 10ABR Pharma, Paris, France.

Background and aims: Metabolic control in type 2 diabetic patients (T2D) treated with a continuous subcutaneous insulin infusion (CSII) is a real challenge. Moreover, it is a real great difficulty to reach in T2D the classic targets of GMC defined by normalization of HbA1c associated with no weight in-
creasing and no severe hypoglycemia so what is the efficacy of ambulatory insulin pump in this T2D population?

Materials and methods: A longitudinal observational study is performed since 2009, involving 28 French hospital centres in order to described cir-
sumstances of insulin pump initiation and patient management over 3 years. We have selected a population of T2D patients with a poor metabolic control despite optimization of insulin treatment (3 or 4 injections/day).

Results: To date, 161 patients have been included in the study. Follow-up data are available for 60 patients. 5 patients have stopped CSII (patient's wish - n=3, psychological reasons - n=2), and 55 patients were followed since one year: mean age 58±10 years, 49% male and BMI 34±6 kg/m². 27 patients (54%) have lost at least 10% of HbA1c since their inclusion and 19 patients didn't gain over 2 kg per point of HbA1c losing between inclusion and 1 year follow-up. A Good Metabolic Control (GMC) group has been defined a posteriori with the following criteria: patient with no hypoglycaemia reported since inclusion who didn't gain over 2 kg per point of HbA1c losing between inclusion and 1 year follow-up and who have lost at least 10% of HbA1c since their inclusion. According to those criteria, 16 patients (30%) in our cohort are in GMC. Despite the low number of patients, comparisons on principal criteria are presented in the table below: significant differences have been logically observed on weight and HbA1c criteria. A significant higher level of HbA1c at inclusion seems to be a predictive factor for reaching GMC criteria at 1 year follow-up (p=0.07).

Comparisons on principal criteria: GMC group versus Others group

Age (years)	62±6	57±11	
Sex (% women/ % men)	56/44	49/51	
Weight (kg)	92±16	96±20	
HbA1c (%)	9.9±2.34	8.7±1.51	
Severe hypoglycaemia (%)	Before T0	6	5
CSII associated with metformin (%)	T0	63	41

Conclusions: After 1 year of CSII, half of our patients obtain a good glucose control, and a third reach the targets of good metabolic control. These pre-
liminary data emphasize the benefit of this treatment for T2D patients with poor metabolic control despite basal bolus optimization. At this stage, it is
difficult to show predictive factors of targeting GMC criteria, but further data on the global cohort could be conclusive.

Supported by: DinoSañé

1008

Insulin pump therapy safely improved glycaemic control and patient reported outcomes in patients with type 2 diabetes suboptimally controlled with multiple daily injections

J.P. Friaś1, S.V. Edelman2, B.W. Bode3, T.S. Bailey4, M.S. Kipnes5, R.L. Brunelle1, X. Chen1

1Clinical Affairs, LifeScan, Inc., Milpitas, 2Department of Endocrinology and Metabolism, VA San Diego Healthcare Center, 3Atlanta Diabetes Association, 4AMCR Institute, Inc., Escondido, 5Cetero Research, San Antonio, 6Bowsher Brunelle Smith LLC, Carmel, USA.

Background and aims: Insulin pump therapy is an important treatment option for patients with type 2 diabetes (T2DM) who are suboptimally controlled with multiple daily injections (MDI). Limited data exist about pump therapy in this patient population. The objective of the present sub-analysis of a larger study was to assess the efficacy, safety and patient reported outcomes (PROs) of 16 wks of pump therapy in patients with T2DM suboptimally controlled with MDI therapy.

Materials and methods: In this 16-wk, open-label, multicenter study, 21 insulin pump naïve patients treated with MDI ± oral anti-diabetic agents (9 male, 12 female, age 57.3±13.3, DM duration 15.5±6y; A1C 8.4±1.0%, FPG 9.2±3.2mmol/l, body weight 98±20kg, BMI 34±5kg/m², total daily insulin dose 99±65U [1.0U/kg], mean±SD) discontinued all diabetes medications except metformin and initiated insulin pump therapy (Animas 2020 insulin pump with insulin glulisine) with one daily basal rate and bolus doses at each meal. Insulin doses were titrated to safely achieve the best possible glycaemic control. The primary outcome was assessment of insulin dose and insulin dosing patterns at Wk 16. Secondary outcomes included change in A1C, fasting and postprandial glucose, body weight, PRO (Insulin Delivery System Rating Questionnaire), and hypoglycaemia.

Results: Glycemic control improved significantly after 16 wks of pump therapy: A1C 7.3±1.0% (1.1±1.2%, p<0.001) and FPG 7.2±2.1mmol/l (2.0±1.4mmol/l, p<0.001). In patients with baseline A1C >8.5% (n=11, mean baseline A1C 9.1±0.5%), A1C was reduced by 1.9±1.3% (p<0.005). Mild hypoglycemia was experienced by 81% of patients at least once during the 16-wk study with no episodes of severe hypoglycaemia. At Wk 16, the mean daily basal, bolus, and total insulin doses were 66±36U, 56±40U, and 122±72U (1.2U/kg), respectively. 90% of patients were treated with ≤2 basal rates per day (1 basal rate 80%; 2 basal rates 10%). Body weight increased by 2.7±2.6kg (p<0.001). PRO measures improved significantly from baseline (Treatment satisfaction: 65±15 vs 81±15, p=0.001; Overall treatment preference: 58±14 vs 93±16, p<0.001; Scale of 0-100, Mean±SD).

Conclusion: Insulin pump therapy using a simple dosing regimen significantly improved glycemic control in patients with T2DM who were suboptimally controlled with MDI therapy. Patients experienced moderate weight gain, no severe hypoglycemia and preferred pump therapy to baseline treatment with insulin injections. Efforts to develop simple, cost-effective insulin pumps for patients with T2DM must continue. Future controlled trials are needed to further assess the benefits of insulin pump therapy in T2DM.

Supported by: Animas Corporation

1009

A head-to-head comparison of three bolus calculators in subjects with type 1 diabetes

H.C. Zisser1, R. Wagner2, S. Pleus3, C. Haug4, N. Jendrike5, C. Parkin6, G. Freckmann7

1Clinical Research, Sansum Diabetes Research Institute, Santa Barbara, USA, 2Global Medical Affairs, Roche Diagnostics Operations, Indianapolis, USA, 3Institute for Diabetes Technology, Ulm, Germany, 4Health Management Resources, Inc., Carmel, USA.

Background: Insulin pump systems now provide automated bolus calculators (ABCs) that electronically calculate insulin boluses to address carbohydrate (CHO) intake and out-of-range blood glucose (bg) levels. We compared the efficacy of three ABCs (ACCU-CHEK® Combo [Roche IDS] / Animas® 2020 [Animas] / MiniMed Paradigm Bolus Wizard® [MiniMed]) to safely reduce postprandial hyperglycemia (PPH) in type 1 diabetes mellitus (T1DM).

Methods: T1DM subjects (n=24) were recruited at a single center for a prospective, triple cross-over study. ABCs with programmed target range (80-140 mg/dl) were used in random order. PPH was induced by reducing the calculated bolus by 25%. At two hours after test meals, the ABCs were allowed to determine whether a correction bolus was needed. Differences between bg values at six hours after test meals that achieved 2-hour PPH and the mean of the target range (110 mg/dl) were determined.

Results: The mean difference between 6-h bg levels following test meals and the 110 mg/dl bg target with the MiniMed device (47.4±3.8 mg/dl) was significantly (P<0.05) higher than the Animas (17.3±20.9 mg/dl) and Roche (18.8±33.8 mg/dl) devices. The number of meals with 2-hour PPH and the bg levels at 2 hours was similar. Roche and Animas devices recommended correction boluses significantly more frequently than the MiniMed device (P<0.05). Significant hypoglycemia was not associated with ABC use.

Conclusion: In this study, the Roche and Animas devices were more efficacious in controlling PPH than the MiniMed device. Use of ABCs can assist in controlling postprandial glycaemia without significant hypoglycaemia.

Supported by: Roche

1010

Effects of evening meals with complex nutrient content on the nocturnal blood glucose levels of type 1 diabetes patients

S. Carstensen1, J.W. Huber2, M. Schouaera3, A. Thomas4

1Life Sciences, Roehampton University, London, United Kingdom, 2Akademische Lehrpraxis der Universität Leipzig, Germany, 3Medtronic GmbH, Meerbusch, Germany.

Background and aims: Currently no therapy recommendations are available as to how postprandial blood glucose levels can be improved after meals rich in protein and fat. Recent epidemiological studies reported reduced insulin sensitivity resulting from fat and protein intake. This implies a need for additional insulin in response to fat and protein intake; otherwise glycaemic control will be compromised. The aim of this study was to examine the effectiveness of calculating the insulin dosage required for an evening meal, taking into account the carbohydrate and the fat and protein content, in contrast to the usual concept of pure carbohydrate cover in adults with type 1 (T1) diabetes using insulin pumps. The study focused on pump-treated T1 diabetes patients.

Methods: Postprandial blood glucose values were examined over 12 hrs by continuous glucose monitoring (CGMS Medtronic), using a cross-over design. Fourteen insulin pump users took part in the study (10 females; age 39 ± 9 years (mean ± SD), diabetes duration 16.4 ± 6.7 years, insulin pump use 7.6 ± 3.3 years, HbA1c 7.3 ± 0.5%, BMI 26.4 ± 1.9 kg/m²). Patients with comorbidities or diabetes related complications were excluded. Participants received the same test meal (meat, potatoes, salad and vanilla ice-cream) on three successive evenings. The insulin doses were calculated using 5.5 carbohydrate unit (1 carbohydrate unit = 10g carbohydrate) and 5.5 fat protein unit (1 fat protein unit (FPU) = 100 kcal fat and protein). The insulin cover for the carbohydrate was a standard bolus (100% fast-acting) and a dual bolus (50% fast, 50% delayed over 8 hrs). As additional cover for fat protein unit the same bolus was used as for a carbohydrate unit. The insulin for the carbohydrate was administered immediately before the meal (quick acting) and for

332 to 576 Image
the fat protein unit delayed over 8 hrs (FPU bolus). Compared were the area under the curve (AUC) as a numerical integral from 145 (1 preprandial, 144 postprandial) sensor glucose values, as well as the number of values under (< 80 mg/dl), within (80-140 mg/dl) and above (> 140 mg/dl) the target area from the sensor glucose values.

Results: The FPU bolus in comparison with the standard bolus led to a significant improvement in the AUC (22.399 ± 5.909 versus 25.419 ± 6.139, p = 0.02) and highly significant both within (67 ± 51 versus 34 ± 36, p<0.01) and above (74 ± 52 vs. 108 ± 40, p = 0.01) the target area. For carbohydrate only based insulin dosage, no significant difference could be shown between the standard and the dual bolus; this applies to the total area under the curve and all 3 target areas from the sensor glucose values (25.419 ± 6.139 versus 25.292 ± 5.399, under 3 ± 7 versus 1 ± 2; within 34 ± 36 versus 31 ± 26, above target 108 ± 40 versus 108 ± 40; all p-values > 0.5). Regarding the comparison between FPU bolus and dual bolus, significantly more values lay within (67 ± 51 versus 31 ± 26, p = 0.04) and significantly fewer values above (74 ± 52 versus 108 ± 40, p = 0.03). The FPU bolus did not result in a difference for the lower target area (3 ± 6 versus 1 ± 2, p = 0.62).

Conclusions: The study therefore suggests that the therapy of T1 diabetes patients should consider insulin cover for the fat and protein portion of a meal as well as the carbohydrates, with the aim of optimising postprandial glucose values and glycaemic control. The study should be repeated in a larger group of insulin pump users with T1 diabetes.

Supported by: Abbott Diabetes Care

1011

Should the amount of fat and protein be taken into consideration to calculate preprandial insulin bolus?

Hospital Universitario de Santiago de Compostela, Spain.

Background and aims: Continuous subcutaneous insulin infusion (CSII) provides the most physiological way of insulin administration as we can program different basal rates and deliver different types of insulin boluses. Traditionally theses boluses are calculated according to the amount of carbohydrate (CH) eaten. However, there are very few data published related to changes in glycemic response according to meal composition (only carbohydrates (CH) or CH with protein and fat). Our aim is to determine whether the presence of protein and fat could influence a different postprandial glycemic response than that obtained with only CH.

Materials and methods: Observational prospective study. 19 type 1 diabetic patients (for at least 2 years) on CSII (for at least 3 months) wore a blind continuous glucose monitoring system sensor (Minilink real time, Medtronic) for three days. They ingested on different days two meals with the same CH content but different fat and protein content. Mean A1c was 7.7% (range 6.5-8.4%) and mean age was 34 years old (range 30-52). Exclusion criteria: celiac disease or any gastrointestinal disease, any diabetes complication and any medication that could modify gastric emptying. Our protocol was next:

- First day: The sensor was inserted and calibrated.
- Second day: Patients ate meal 1: 60g of pasta + 50ml of tomato sauce (meal composition: 50g CH, 3.3g of protein and 8.9g of fat).
- Third day: Patients ate meal 2: 50g of pasta + 50ml of tomato sauce + 150g of veal chop + 10ml of olive oil (meal composition: 50g of CH, 28.9g of proteins and 37.4g of fat).
- Fourth day: Sensor was removed.

During the monitoring, alcohol intake and exercise were not allowed. They performed one self-monitoring capillary blood glucose per hour and remained in rest for a least 3 hours after each meal. They used the standard single-wave insulin bolus based on each subject’s CH to insulin ratio and CH counting. Once downloaded the CGMS we analysed:

- Mean glucose 60 min pre-meal (Gm)
- Glucose Standard deviation (SD)
- Area under the curve described from the beginning of the meal until the glucose returned to levels pre-meal (AUC)
- Time (minutes) until glucose returned to values pre-meal (Tn)
- Maximum glucose peak (P)
- Time (minutes) to reach the maximum glucose peak (Tp) < hr

A p value < 0.05 was considered statistically significant.

Results: Patients started both meals with similar glucose levels. There were no statistical differences between both meals in Tn, AUC, P and Tp (Table 1). The greatest glucose peak was reached at 60 min and 79 min with meal 1 and 2 respectively.

Conclusion: The presence of protein and fat did not determine a different glycemic response. Although a delayed postprandial glucose peak was found in meal 2, this did not reach statistical significance. According to our results, there is no need in using a different insulin bolus when we ate an equilibrated amount of CH, fat and protein in a meal.

Table 1. Gm, AUC, Tn, P and Tp with meal 1 and 2

<table>
<thead>
<tr>
<th></th>
<th>Meal 1</th>
<th>Meal 2</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Gm (mg/dl)</td>
<td>125.5</td>
<td>124</td>
<td>0.8</td>
</tr>
<tr>
<td>Mean AUC (mg/dl/min)</td>
<td>28.1</td>
<td>32.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Mean Tn (minutes)</td>
<td>104.6</td>
<td>114</td>
<td>0.9</td>
</tr>
<tr>
<td>Mean P (mg/dl)</td>
<td>50</td>
<td>58.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Mean Tp (minutes)</td>
<td>59.6</td>
<td>79</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Supported by: sanofi-aventis
PS 95 Mapping and improving diabetes control and complications

1012
The PANORAMA pan-European survey: glycaemic control and treatment patterns in patients with type 2 diabetes
P. de Pablo-Lucas, C. Bradley, E. Eschwege, J.C. Goerder-Frederick, K.G. Parhofer, H. Vandenberge, D. Simon; 1Dr Neerin Hospital, Las Palmas University, Spain, 2Royal Holloway University of London, United Kingdom, 3INSEER U-1018, Paris, France, 4University of Virginia, Health System, USA, 5Klinikum der Universität, München, Germany, 6AstraZeneca, Zaventem, Belgium, 7Hôpital de la Pitié / INSERM U-1018, Paris, France.

Background and aims: The prevalence of type 2 diabetes (T2D) continues to rise across Europe. Despite effective treatments initiated after diet/lifestyle modifications, many patients still do not achieve an HbA1c target of <7%. PANORAMA is a large pan-European cross-sectional survey (NCT00916513) of patients with T2D treated with glucose-lowering therapies, aimed at assessing treatment satisfaction, quality of life and the proportion of patients achieving an HbA1c <7%. This abstract reports recent data from 8 countries on glycaemic control in patients with T2D in relation to treatment patterns.

Materials and methods: Patients with T2D were randomly or consecutively selected from physician practices (mainly in primary care) in 8 countries (Belgium, Germany, Greece, Italy, Netherlands, Spain, Turkey and UK). Eligible patients: aged ≥40 y, with a diagnosis of T2D for >1 y prior to study entry and an available medical record at the clinic of ≥1 y. All patients received dietary and exercise advice. Most patients were also being treated with either oral hypoglycaemic agents (OHAs) or injectables (insulin and GLP-1 receptor analogues) with or without OHAs. Treatment type was unchanged in the previous 3 months. HbA1c levels were measured using an identical portable diabetes monitoring system (Bayer’s A1Cnow) in each centre.

Results: 5,156 patients were included in the study from June to November 2009: 47.8% women; mean age 65.9 y (SD 10.3). Mean time since diagnosis: 9.0 y (SD 7.4). Patients were treated with advice only (10.9%), advice plus either 1 OHA only (33.3%), 2 OHAs only (26.6%), ≥3 OHAs only (7.6%), or injectables with or without OHAs (21.6%). Treatment patterns varied considerably between countries. Mean HbA1c of the entire group was 6.9% (SD 1.1). However, 36.7% of patients did not achieve an HbA1c <7%. The figure shows the percentage of patients in each treatment category who did not achieve the target HbA1c <7%.

Conclusion: When comparing the PANORAMA survey results with previous data, it appears that the level of glycaemic control in Europe may be improving. However, there is still a gap between current management and optimal treatment of patients with T2D. Furthermore, the percentage of patients not achieving target HbA1c increased as treatment was intensified. Possible explanations are that concerns over hypoglycaemia may have delayed treatment intensification, reduced treatment adherence or patients on more intensive treatment may have had more difficult to control T2D perhaps due to a longer duration of T2D. These results suggest that earlier and/or more effective intensification of treatment may be needed to enable patients to achieve target HbA1c as the disorder progresses.

Supported by: AZ & BMS
Clinical inertia in patients with type 2 diabetes and poor glycaemic control in a multicentric sample of patients cared for in primary care. The results support the urgent need to implement foot awareness programmes such as “Putting Feet First”.

Supported by: NHS Diabetes, Leicester, UK

1017

Clinical inertia in patients with type 2 diabetes and poor glycaemic control in a multicentric sample of patients cared for in primary care. The results support the urgent need to implement foot awareness programmes such as “Putting Feet First”.

Supported by: NHS Diabetes, Leicester, UK

1015

Socio-economic status, incidence of type 2 diabetes and relative mortality in Scotland 2001–2007

S.H. Wild, Scottish Diabetes Research Network Epidemiology Group; Centre for Population Health Sciences, University of Edinburgh, United Kingdom.

Background and aims: Relative risks of mortality associated with type 2 diabetes (T2DM) have been limited in recent years but are higher in women than men in many populations. The role of socio-economic status (SES) in risk of mortality among people with diabetes is not clear.

Materials and methods: We used data from a population-based national diabetes register to investigate the associations between T2DM, socio-economic status (SES) and mortality. SES was categorised with Q5 and Q1 representing the most deprived and most affluent quintiles from an area-based measure. Age-standardised incidence for 2004 and relative risks (RR) for all-cause mortality among people with incident T2DM of 35 to 84 years of age between 2001 and 2007 were estimated using general population data, the European standard population and Poisson regression models.

Results: Complete data were available for 111,441 people who developed type 2 diabetes between 2001 and 2007 and there were 8,775 deaths before the end of 2007. SES had a more marked effect on age-standardised incidence among of T2DM women (717.5 vs 357.2 per 100,000, age-adjusted RR for Q5 vs Q1 (95% confidence interval [CI]) 1.91 (1.62-2.25)) than men (comparable estimates 918.6 vs 569.0, 1.59 (1.38-1.84)). Age and SES adjusted RR (95% CI) for mortality were 0.97 (0.93 to 1.01) for men and 1.11 (1.07 to 1.16) for women. Age and sex adjusted RR for mortality associated with type 2 diabetes was lower for Q5 (0.93 (0.89-0.97)) than for Q1 (1.19 (1.12 to 1.27)).

Conclusion: Relative risks for mortality associated with incident T2DM were lower in +oral agents 21.4% (CI95% 20.9-33.3). Clinical inertia decreased with higher mortality in women compared to women without diabetes. SES modifies the effect of T2DM on mortality but does not explain sex differences in RR. Further work is required to establish whether these findings can be explained by risk factor patterns.

Supported by: Scottish Government, Scottish Health Informatics Programme

1016

The national inpatient diabetes audit reveals poor levels of inpatient foot care

G. Rayman1, C.G. Taylor Je1, R. Malik2, R. Hilson3; 1The Diabetes Centre, Ipswich Hospital, 2Kings College Hospital, London, 3The Department of Health, London, United Kingdom.

Background and aims: The standards of expected inpatient foot care have been recently outlined in the document “Putting feet first” however there has been no previous national assessments of the burden or quality of inpatient foot care.

Materials and methods: A national audit of clinical care was undertaken in acute hospitals in the UK on a single day between the 21st and 25th of September to determine diabetes prevalence, quality of care and patient experience. The audit form included key questions related to areas of foot care. The National Diabetes Inpatient Audit Day database was analysed to assess the standard of foot care.

Results: 14,259 patients in 219 hospitals were audited. 11.6% had a past history of foot disease. When diabetes was the primary reason for admission a foot problem was the most frequent diagnosis (24.9%), yet only 79% were referred to the foot team. 26% of hospitals did not have a multidisciplinary foot team. Mean length of stay was 22 days for those admitted with a foot complication compared with 15 days for other diabetes related admissions. Only 34% of patients recalled a visual foot inspection and only 30% a physical foot examination. In-hospital foot complications developed in 3%.

Conclusion: The figures are concerning. The audit confirms the significant inpatient burden of foot disease but also a disturbingly poor level of foot care. The results support the urgent need to implement foot awareness programmes such as “Putting Feet First”.

Supported by: Scottish Government, Scottish Health Informatics Programme
as HbA1c increased: 37.3% (CI95% 35.2-41.4) between 7.1 and 8%; 29.4% (CI95% 23.5-34.9) between 8.1 and 9% and 27.1% (CI95% 20.9-33.3) if ≥9%.

There were no differences in the characteristics of the patients in which the treatment was modified or not. The greatest opportunity for improvement lies in patients treated with diet or oral monotherapy (40.5%).

Conclusion: Clinical inertia affects a third of diabetic patients with poor glycaemic control and is more related to a close to objective HbA1c value than to the complexity of the treatment or the patient characteristics. The changes are introduced with a mean HbA1c well above the therapeutic goal.

1018

Poor glycaemic control in secondary care insulin treated patients correlates with bad process indicators

N. Debesch1, P Van Crombrugghe1; C. Mathieu1; F. Nobles2, V. Van Casteren1, A.J.L. Scheen3;

Background and aims: Evidence based medicine and quality control systems drive diabetes care, but room for improvement, not only in glycaemic control, but also in follow up of other outcome and process indicators, exists. In the present study we examine how glycaemic control is related to other outcome and process indicators.

Materials and methods: We used the 2009 data from a Belgian quality assurance study that has been carried out since 2001 in all hospital-based diabetes centres (n=113) and provides data (demographics, blood glucose control, cardiovascular risk status, diabetes complications, self-monitoring, and drug treatment) on a cross-sectional random 10% sample of the adult type 1 and type 2 diabetes patients on ≥2 daily insulin injections. Logistic regression analysis was used to examine the relationship of HbA1c with 5 process and 5 outcome indicators, while adjusting for age, diabetes duration and gender.

Results: In the type 1 diabetes population (n=3407; 57% males) the median age, diabetes duration and HbA1c were 47 years, 17 years and 7.5%, respectively. In the type 2 diabetes population (n=7879; 49% males) the median age, diabetes duration and HbA1c were 69 years, 14 years and 7.5%, respectively. Table 1 shows the performance in terms of process and intermediate outcome by HbA1c and diabetes type (Table legend: (1) p<0.05; (2) p<0.01; (3) p<0.001: Results from logistic regression analysis, after adjustment for age, gender and diabetes duration. HbA1c <7% is used as reference.) Especially in type 2 and to a minor extent in type 1 diabetes, patients with the worst glycaemic control (HbA1c ≥9%) were significantly less likely to be screened for complications (except for microalbuminuria screening) than the patients with optimal glycaemic control (HbA1c <7%). In both diabetes types, patients with suboptimal glycaemic control (HbA1c ≥7%) were significantly less likely to reach blood pressure and blood lipid targets compared to patients with optimal glycaemic control. Moreover in type 1 diabetes the proportion of smokers increased significantly with increasing HbA1c. These results were independent of age, diabetes duration and gender.

Conclusion: Quality of care in this population of diabetes patients with advanced disease stage was relatively good in terms of process and intermediate outcome. However suboptimal glycaemic control was found to go hand in hand with poorer results for both other outcome and process indicators. The identification of patients characterised by this cluster of poor performance and of the causal factors merits further investigation.

Table 1 shows the performance in terms of process and intermediate outcome indicators, while adjusting for age, diabetes duration and gender.

<table>
<thead>
<tr>
<th></th>
<th>Type 1 diabetes</th>
<th>Type 2 diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HbA1c</td>
<td>HbA1c</td>
</tr>
<tr>
<td></td>
<td><7% (n=692)</td>
<td><7% (n=2473)</td>
</tr>
<tr>
<td>% Screening microalbuminuria</td>
<td>89 88 88 87</td>
<td>86 86 84 82</td>
</tr>
<tr>
<td>% Eye examination</td>
<td>85 87 87 80<sup>1</sup></td>
<td>83 82 84 76<sup>1(1)</sup></td>
</tr>
<tr>
<td>% Foot sensation examination</td>
<td>88 87 85 84</td>
<td>81 81 81 77<sup>1(1)</sup></td>
</tr>
<tr>
<td>% Foot pulses examination</td>
<td>88 89 91 88</td>
<td>87 88 88 85<sup>1(1)</sup></td>
</tr>
<tr>
<td>≤ 3 HbA1c determinations/year</td>
<td>68 75<sup>1(1)</sup> 70 60<sup>1(1)</sup></td>
<td>57 60 57 48<sup>1(1)</sup></td>
</tr>
<tr>
<td>% Blood pressure <130/80 mmHg</td>
<td>40 32<sup>1(1)</sup> 33<sup>1(1)</sup> 32<sup>1(1)</sup></td>
<td>24 21<sup>1(1)</sup> 19<sup>1(1)</sup> 20<sup>1(1)</sup></td>
</tr>
<tr>
<td>% LDL <100 mg/dl</td>
<td>63 59 52<sup>2(1)</sup> 49<sup>2(1)</sup></td>
<td>65 66 62<sup>2(1)</sup> 53<sup>2(1)</sup></td>
</tr>
<tr>
<td>% Cholesterol <175 mg/dl</td>
<td>53 45<sup>1(1)</sup> 42<sup>1(1)</sup> 36<sup>1(1)</sup></td>
<td>60 58<sup>1(1)</sup> 55<sup>1(1)</sup> 46<sup>1(1)</sup></td>
</tr>
<tr>
<td>% BMI <25 kg/m<sup>2</sup></td>
<td>52 45 45 46</td>
<td>15 13 13 12</td>
</tr>
<tr>
<td>% non-smoking</td>
<td>84 82<sup>1(1)</sup> 77<sup>1(1)</sup> 67<sup>1(1)</sup></td>
<td>88 87 87 83</td>
</tr>
</tbody>
</table>
PS 96 Monitoring and delivering: practicalities for every day practice

1020
Use of an alcohol-based hand sanitiser did not affect readings of a blood glucose monitoring system

D. Price, J. Mahoney, J. Ellison, C. Chu, S. Nandagopalan, J.P. Frias; LifeScan, Inc., Milpitas, USA.

Background and aims: People with diabetes mellitus (DM) are instructed to wash their skin with soap and water prior to self-monitoring of blood glucose (BG) to remove any dirt or food residue that might alter the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether the use of a common hand sanitizer has any effect on BG results from a meter system.

Materials and methods: We enrolled 34 non-fasting subjects (14 male/20 female, mean age 45(SD 9.4) y, 2 with DM). Laboratory personnel prepared four separate fingers on one hand of each subject by: 1) washing with soap and water and towel drying (control finger); 2) cleaning with hand sanitizer (Purell®) Instant Hand Sanitizer with Aloe, active ingredient 65% ethyl alcohol, Johnson & Johnson Consumer Products, Skillman, NJ) per instructions (Purell finger); 3) coating with cola (Coca-cola, Coca-Cola Company, Atlanta, GA) and air drying (cola finger); and 4) coating with cola and cleaning with Purell after cola dried (Purell after cola finger). Fingersticks were performed on each prepared finger and BG was measured with the OneTouch® Ultra mini Blood Glucose Monitoring System (LifeScan Inc., Milpitas CA). YSI plasma glucose was also measured using the control finger. BG tests, shown in the table, were completed within 10 minutes.

Results: Mean BG values from the Purell finger and Purell after cola finger did not differ significantly from the control finger (p=0.07 and 0.08, respectively). Cleaning with Purell resulted in 100% and 99% accurate readings versus YSI based on ISO 15197 and consensus error grid (zone A) analysis, respectively. Coating the finger with cola was substantially higher than the other skin conditions. In 16 cases, cola residue caused blood samples to smear and produce error messages and in 3 cases, cola residue caused BG values > 600 mg/dL.

Conclusion: In our study, cleaning with Purell hand sanitizer did not affect fingerstick BG tests performed with the OneTouch® Ultra mini System.

Table: Glucose Mean (SD), N, and Finger Condition after Preparation (as described)

<table>
<thead>
<tr>
<th>Finger Skin Condition</th>
<th>N</th>
<th>Glucose, Mean (SD), mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control finger</td>
<td>34</td>
<td>100.6 (16.5)</td>
</tr>
<tr>
<td>Purell finger</td>
<td>34</td>
<td>103.6 (17.1)</td>
</tr>
<tr>
<td>Cola finger</td>
<td>15</td>
<td>182.9 (102.8)</td>
</tr>
<tr>
<td>Purell after Cola finger</td>
<td>34</td>
<td>103.8 (17.4)</td>
</tr>
</tbody>
</table>

1021
Improving the reliability of capillary blood glucose monitoring: using the first or second drop of blood

J. Hortensius1, J.R. Slingerland1, M.I. Fokker1, N. Kleefstra1, K.H. Groenier1, S.T. Houweling2, R.O.B. Gans1; 1Diabetes Centre, Isala Clinics, Zwolle, 2Clinical Chemistry, Isala Clinics, Zwolle, 3General practice, University of Groningen, 4General practice, Sleenwijk, Internal Medicine, University Medical Center, Groningen, Netherlands.

Background and aims: Self-monitoring of blood glucose (SMBG) is an important tool to achieve good glyemic control. Several aspects concerning SMBG need attention. First, in daily practice patients can wash their hands with water and soap, and thirdly, after soiling the fingers with apple or banana. Results were compared to a control measurement in each finger used in the study. Results were also assessed, looking at the frequency of differences ≥ 10 % higher glucose concentrations vs control.

Results: Recruitment took place between September 2009 and January 2010. Our study population consisted of 123 patients, 63 (51%) men, 66 (54%) T1DM patients, and 57 (46%) T2DM patients, mean age was 54±4 years (SD 14.2) mean HbA1c was 58 mmol/mol (or 7.5% SD 1.3) and mean BMI was 29 kg/m² (SD 6.2). The table shows glucose concentrations for the three different circumstances. Not washing hands led to more than 10% higher glucose concentrations in the first and in the second drops of blood in 30% of the patients (p<0.001). Fingers soiled with fruit led to more than 10% higher glucose concentrations in the first and in the second drop of blood in 91% and 13% of the patients, respectively (p<0.001 and p=0.002 respectively). After washing the soiled fingers, glucose concentrations were more than 10% higher in 2% and 4% of the patients, respectively. In 2-3% of the patients the glucose concentrations in the first drop of blood of clean hands were 10% higher than in the second drop of blood (not significant).

Conclusion: The first drop of blood of unclean hands should not be used to allow a reliable glucose measurement. Although wiping the first drop of blood of unclean hands improves readings considerably, in 10-13% of the patients the glucose concentrations are still 10% higher than the control measurement. The first drop of blood can probably only be used when the fingers are clean.

Table: Glucose Mean (SD), N, and Finger Condition after Preparation (as described)

<table>
<thead>
<tr>
<th>Finger Skin Condition</th>
<th>N</th>
<th>Glucose, Mean (SD), mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>not washing hands</td>
<td>8.9 (6.4 - 12.6)</td>
<td>8.9 (6.5 - 12.3)</td>
</tr>
<tr>
<td>washing hands</td>
<td>8.5 (6.3 - 12.2)</td>
<td>(is control)</td>
</tr>
<tr>
<td>soiled finger</td>
<td>15.0 (10.5 - 21.7)</td>
<td>8.8 (6.5 - 12.4)</td>
</tr>
<tr>
<td>washing hands</td>
<td>8.3 (6.3 - 11.9)</td>
<td>8.2 (6.3 - 12.0)</td>
</tr>
</tbody>
</table>

Supported by: sanofi aventis, Roche Diagnostics Nederland BV

1022
The effect of haematocrit on the results of measurements using glucose meters based on different techniques

B. Solnicka1, B. Kusnierzy- Cabala1, K. Slowinska-Solnica1, J. Skupien2, P. Witek3, A. Cempa2, M.T. Malecki1; 1Dept. of Diagnostics, Jagiellonian University Medical College, Krakow, Poland, 2JooLin Diabetes Center, Harvard Medical School, Boston, USA, 3Dept. of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.

Background and aims: Haematocrit (HT) affects the measurement accuracy of glucose meters. Glucose concentrations measured in samples with high HT values are decreased whereas in samples with low HT are increased as compared to the laboratory method. This effect caused mainly by plasma displacement may vary between different devices. The aim of the study was to evaluate the effect of HT on glucose meter assays based on different measurement techniques.

Materials and methods: We studied glucose meters utilizing the glucose dehydrogenase reaction and four measurement techniques. The HemoCue (HemoCue AB) uses colorimetry, the Accu-Chek Active (Roche Diagnostics) - reflectometry, The Optimum Xido (Abbott Diabetes Care) - amperometry and the Optimum Omega - coulometry. EDTA venous blood samples with glucose concentrations ranging from 40 to 412 mg/dl were used. We modified the samples HT by adding or removing defined aliquots of plasma. Glucose concentrations measurements were performed using each evaluated meter in 27 batches, each containing 5 blood samples with HT amounting to 20%, 30%, 40%, 50%, and 60%. Altogether, 540 glucose assays (108 batches) were performed.

Results: A significant relationship between HT and glucose reading in all meters was found - the relative decrease in glucose concentration per 1% increase in the HT value amounted from 0.51% for Optimum Omega to 1.28% for Optimum Xido (p<0.0001). Moreover, for all meters, except Optimum Xido, there was a significant modification of this relationship by glucose level. The mixed effects model after logarithmic transformation of glucose concentra-
1023

Use of GDH-PQQ glucose meter systems in patients receiving maltose-containing therapies

N.S. Virdi1, D. Price1, J. Ellison1, S. Yadalam1, S. Nigam2; 1LifeScan, Inc. Milpitas, 2Johnson & Johnson, New Brunswick, USA.

Background and aims: Blood glucose measurement (BGM) systems utilizing the enzyme, glucose dehydrogenase pyrroloquinoline quinone (GDH-PQQ), have led to falsely elevated “glucose” readings in patients on medications containing maltose or a maltose precursor. Examples include icodextrin (a peritoneal dialysate metabolized to maltose), and OCTAGAM® and abatacept, which contain maltose as excipients. Over the past 10 years FDA’s MAUDE Database and the literature have included multiple reports of severe hypoglycemia and death related to overtreatment with insulin or delayed detection of hypoglycemia, because of falsely high readings on GDH-PQQ meters. We reviewed a payor database to assess how frequently patients receiving abatacept, which contain maltose as excipients. Over the past 10 years FDA’s MAUDE Database and the literature have included multiple reports of severe hypoglycemia and death related to overtreatment with insulin or delayed detection of hypoglycemia, because of falsely high readings on GDH-PQQ meters. We reviewed a payor database to assess how frequently patients receiving abatacept or OCTAGAM or abatacept also use a GDH-PQQ meter system. Data were not available for peritoneal dialysis and limited for other maltose-containing therapies.

Materials and methods: The analysis used the Thomson Reuters Marketscan Database (years 2007 through Q1 2009), a large U.S. administrative claims database representing about 35.7 million employed, commercially-insured persons. We queried for persons with diabetes using glucose meters. This population was divided into three groups: Group 1 - Patients using only GDH-PQQ meters, Group 2 - Patients using only non-GDH-PQQ meters, and Group 3 - Patients using both GDH-PQQ and non-GDH-PQQ meters. The query identified patients who had received abatacept or OCTAGAM and ordered BGM test strips during the same quarter. As each quarter in the database is updated over time, the most recent quarters may be incomplete.

Results: The search identified 798,110 patients ordering BGM test strips during the two and one-quarter year period: 40.7% in Group 1, 54.7% in Group 2, and 4.6% in Group 3. Including those not using BGM, 5503 patients had received abatacept or OCTAGAM. The chart below compares the number of infusion events per group over the period Q1/2007 - Q1/2009. The majority (60%) of infusions were associated with Group 1 vs. 40% for Group 2. During the time period of observation, no decrease in the proportion of infusions associated with GDH-PQQ meters has occurred.

Conclusion: This study demonstrated that patients with diabetes on therapy with either abatacept or OCTAGAM frequently use GDH-PQQ meters, which are susceptible to maltose interference. Despite labeling (on both BGMs and medications) and FDA safety alerts, there is evidence that health care professionals and patients continue to prescribe and use, respectively, BGM systems susceptible to maltose interference despite patient exposure to therapies containing maltose. While use of abatacept and OCTAGAM is limited, the common usage of GDH-PQQ meters by patients taking these medications puts them at risk for obtaining falsely elevated blood glucose results that may contribute to or delay detection of hypoglycemia.

1024

Comparison of insulin diluent leakage post injection using two different needle lengths and injection volumes in obese patients with type 1 or type 2 diabetes mellitus

K.R. Kelly1, S. Sarwat1, M.A. Carey2, D.A. Ignaut1;
1Eli Lilly and Company, Indianapolis, 2i3 Statprobe/UHG, Minneapolis, USA.

Background and aims: Although the current market offers several different needle lengths for the injection of insulin, obese patients with diabetes are often advised to use longer needles (≥8-mm). Smaller, shorter needles have been shown to be safe and effective for insulin delivery while reducing patient discomfort. This study compared injections with 5-mm needles to injections with 8-mm needles regarding leakage, blinded pain, bleeding, and bruising at abdominal injection sites in obese patients with diabetes.

Materials and methods: Patients (n=56; 54% male; mean age=56; mean BMI=36 kg/m²; insulin pen-naïve) with type 1 (n=13) or type 2 (n=43) diabetes participated in a randomised feasibility trial with patients blinded to needle length. Patients were injected by the investigator 3-5 times (to obtain 3 injections without bleeding to accurately measure leakage) in the abdomen with either 20 U equivalent (200 μL) volumes or 60 U equivalent (600 μL) volumes of sterile insulin diluent with both a 5-mm and 8-mm needle using a conventional insulin pen injector, HumanaPen® Memoir®1. The primary objective was to evaluate leakage at the injection site (by blotting with filter paper and weighing the filter paper using a tared, calibrated analytical balance) following injections (20 U and 60 U equivalent volumes) with 5-mm and 8-mm needles using a 4-step gatekeeping strategy. The success criterion for each gatekeeping step was defined such that the upper limit of the 90% CI for median leakage was <5% of the injected volume. Non-inferiority of 5-mm needle leakage compared to 8-mm leakage was evaluated with similar methodology. Secondary objectives were to compare injections (20 U and 60 U equivalent volumes) with 5-mm and 8-mm needles for blinded pain, bleeding, and bruising at injection sites.

Results: Leakage with the 5-mm needle for both the 20 U and 60 U equivalent volumes was <5% of the total volumes and was non-inferior to the 8-mm needle (see table). Pain scores were numerically similar for both needles (see table). Proportions of injections with bleeding (5-mm/20 U, 10.5%; 5-mm/60 U, 4.9%; 8-mm/20 U, 5.8%; 8-mm/60 U, 6.6%) and proportions of patients with bruising (5-mm/20 U, 8.1%; 8-mm/20 U, 10.8%; p=0.6; 5-mm/60 U, 21.1%; 8-mm/60 U, 26.3%; p=0.7) at injection sites were similar.

Conclusion: The results of this study support the suitability of the 5-mm needle for the injection of insulin in obese patients with diabetes with regard to leakage, pain, bleeding, and bruising at abdominal injection sites.
We conducted a retrospective cohort analysis of 37 patients with type 1 diabetes (T1D), to enable them to adjust their own insulin doses as required. This programme has previously been shown to lower HbA1c, reduce the incidence of hypoglycaemia and improve quality of life. There is anecdotal evidence that these improvements are associated with significant reductions in insulin doses, suggesting that some are over-insulinised prior to the programme. However, no formal analysis of changes in insulin doses associated with participation in DAFNE training has been conducted. We sought to determine whether DAFNE training is associated with changes in insulin requirements.

Materials and methods

We conducted a retrospective cohort analysis of adults with T1D who attended DAFNE training in our centre between October 06 and December 09. The type and dose of insulin used at the pre-course assessment and on the fourth day of the DAFNE course were recorded. HbA1c at the pre-course assessment and the first measured HbA1c between 3 and 12 months after completion of the course were also recorded, as was the presence of clinically apparent lipohypertrophy (LH). Data are presented as means ± SD. A two-tailed t-test was used to compare pre- and post- DAFNE training variables.

Results

Over the three year study period, 335 patients underwent DAFNE training at our centre. Complete pre-course and follow-up data were available for 259 patients (77%) and these were included in the current analyses. 124 (48%) were female, 97% were Caucasian, mean age was 41 ± 14 years (range 18–74) and mean duration of diabetes was 19 ± 14 years. 43.1 % of patients had documented LH. There were significant reductions in daily total insulin (52 ± 24 to 44 ± 16 units), quick acting insulin (28 ± 14 to 24 ± 9) and basal insulin (24 ± 12 to 20 ± 10) on day 4 of DAFNE training compared to the pre-course doses (all p<0.001). The dose reduction was greater in patients with LH than in those with no LH (10.1 and 6.5 units, respectively). However, the insulin dose reductions were statistically significant even in those with no LH (p < 0.001). Most patients were using insulin analogues (Insulin Aspart 66%, Insulin Lispro 25%, Insulin Glargine 63%, Insulin Detemir 22%). We estimate that the 16% reduction in total daily insulin dose would lead to an annual reduction in insulin cost of approximately 90GBP (100 euro), based on current drug costs. Importantly, insulin dose reduction did not worsen glycaemic control, with a small trend for HbA1c to improve when first checked after DAFNE (8.4 ± 1.3 vs 8.30 ± 1.2 pre vs post-course, p =0.11).

Conclusion

We observed significant reductions in the short term in insulin requirements in T1D patients undergoing DAFNE training. Although it is possible that changes in physical activity during the course may have contributed, the changes seen likely reflect more appropriate insulinisation of these patients, which would account for reductions in hypoglycaemia. Our data suggest that patients with T1D who do not have access to structured education may be systematically over treated with insulin.

Safety evaluation of a new reusable insulin pen (ClikSTAR) in 2526 Canadian patients (pts) with type 1 and type 2 diabetes mellitus (DM) receiving insulin glargine

I. Gottesman, P. Perron, I. Berard, J. Stewart, K. Mittimano; University of Toronto, Mississauga, Sherbrooke University, Sherbrooke, Diabetes Research Group, Health Sciences Centre, Winnipeg, Sanofi-aventis, Laval, "Signature Medicine Centre Pharmacy, Calgary, Canada.

Background and aims

Insulin pens have increased the convenience, accuracy and flexibility of insulin therapy in comparison with traditional vial and syringe administration. ClikSTAR is a novel reusable insulin pen developed for use with insulin glargine and insulin glulisine. The aim of the study was to assess the safety profile of ClikSTAR after 6-12 weeks of use in type 1 & type 2 DM pts receiving insulin glargine.

Materials and methods

In this open-label, multicenter, non-randomized, uncontrolled, observational, prospective study pts with type 1 & type 2 diabetes receiving insulin glargine were eligible to participate. At baseline all pts received the ClikSTAR pen, instruction leaflet and a free-toll number for Technical Support, and had been trained on the pen use with insulin glargine cartridges. Baseline information was collected at the first visit. A follow-up visit assessment was performed by investigators at 6-12 weeks to collect any Product Technical Complaint (PTC). PTCs could be reported throughout the study and investigators used a decision tree guide to handle PTCs. All pens associated with a PTC were tested for Product Technical Failure (PTF) at the pen laboratory in Frankfurt. The risk acceptance criterion was that no validated PTF leading to a Serious Adverse Event (SAE) would occur within 2500 pts during a period of 6 to 12 weeks.

Results

2526 pts were enrolled (50% male and 44% female) in 104 sites across Canada, average age was 56 (SD = 14) years, 31% were type 1 DM and 69% type 2 DM. 93% of pts were pen users prior to study enrolment. 9% and 8% had visual and dexterity impairment respectively. A total of 84 PTCs, 24 SAEs and 85 non serious adverse events (AEs) were reported. 3 pts with SAEs and 9 with AEs were reported as having a causal relation with a PTC. Investigation results of PTCs associated with an SAEs showed that they were not due to a pen failure. A total of 75 (3%) pts withdrew from the study; 15 for a PTC and 19 for an AE. The most common PTCs were related to the plunger, the dose selector and in- sulin delivery. No PTF related to an AE or SAE identified throughout the study and most PTCs were due to handling error of the pen and not requesting additional information or assistance from their site personnel or the Call Center.

Conclusion

This first real life observational safety study had been designed to collect complaints and adverse events reported by pts with diabetes using ClikSTAR pen and insulin glargine. PTCs were infrequent and No PTF related to an AE or SAE reported. Results show that this new reusable pen is safe to be used with insulin glargine.

Supported by: Sanofi-aventis
1027

Lifestyle intervention by group-based rehabilitation versus individual counselling in type 2 diabetes: 1-year follow-up

E.S. Vadrstrup¹, A. Frølich², H. Perrild¹, E. Borg¹, M. Rodére³;¹Dept of Endocrinology and Gastroenterology, Bispebjerg Hospital, Copenhagen NV, Denmark, ²Department of Integrated Healthcare, Bispebjerg Hospital, Copenhagen, ³Health Care Centre Oesterbro, Copenhagen, ⁴Department of Cardiology and Endocrinology, Hillerød University Hospital, Denmark.

Background and aims: To compare the longer term effectiveness of delivering lifestyle intervention to type 2 diabetes patients as either group-based rehabilitation in primary care or individual counselling in an outpatient setting.

Materials and methods: We randomised 143 patients with type 2 diabetes to a 6-months group-based rehabilitation programme, including patient education, supervised exercise, and diet intervention, or to a 6-months individual counselling programme. Follow-up time was 12 months after baseline.

Results: In the rehabilitation group there was a decrease in HbA1c (-0.2%-point, 95%CI [-0.4 to 0.03]), systolic blood pressure (-6 mmHg [-9.3 to -2.5]), diastolic blood pressure (-4 mmHg [-6.3 to -2.4]), weight (-2.2 kg [-3.2 to -1.3]), and waist circumference (-2.0 cm [-3.2 to -1.1]). In the individual group there was a decrease in HbA1c (-0.4%-point [-0.6 to -0.1]), systolic blood pressure (-3 mmHg [-6.3 to 0.7]), diastolic blood pressure (3 mmHg [-4.7 to -0.7]), weight (1.6 kg [-2.6 to 0.7]), and waist circumference (1.6 cm [-2.5 to -0.6]). Self-rated vitality, fatigue distress, physical functioning and cardiovascular distress improved over time (P<0.05) in the two groups combined. Repeated measurement analysis did not result in significant differences between the groups of any outcome.

Conclusion: There were no significant differences between the two groups over time, but improvements in HbA1c, blood pressure, weight, waist circumference, self-rated vitality and fatigue distress in the two groups combined were significant. However, the resource use of the rehabilitation programme was twice as much as the individual programme.

Supported by: Jascha Foundation, National Board of Health, Danish Ministry of Health

1028

Randomised controlled trial of the DESMOND structured education programme for people newly diagnosed with type 2 diabetes: biomedical outcomes, psychosocial measures and illness beliefs at three years

K. Khunti¹, S. Heller², T.C. Skinner³, L.I. Gray⁴, H.M. Dallosso⁴, K. Realf⁵, M.E. Carey⁶, M.J. Davies⁷;¹Health Sciences, University of Leicester, United Kingdom, ²University of Sheffield, United Kingdom, ³Combined Universities Centre for Rural Health, Geraldton, Australia, ⁴Diabetes Research, University Hospitals of Leicester, United Kingdom, ⁵Cardiovascular Sciences, University of Leicester, United Kingdom.

Background and aims: DESMOND is a structured group self-management education programme (6 hours contact time) for patients newly diagnosed type 2 diabetes who were twice as much as the individual programme.

Materials and methods: Participants in the original trial who were eligible for follow-up at 3 years were sent a postal questionnaire (illness beliefs, symptoms of depression, quality of life, physical activity and smoking) and asked to visit their practice for biomedical measures (HbA1c, blood pressure, weight, blood lipids, waist circumference).

Results: Of the 743 people eligible for follow-up, biomedical data were collected on 604 (81.3%) and questionnaire data on 513 (69.0%). No statistically significant differences in biomedical measures were seen at 3 years, although a trend to greater improvement across all biomedical factors, smoking and physical activity was seen in those who received the intervention, for example mean change in HbA1c -1.32 (1.57, 1.06) versus -0.81 (-1.02, -0.59). The significant benefits in the intervention group across 4 out of 5 health beliefs seen at 12 months were sustained at 3 years. For example, those in the intervention group report higher illness coherence compared to the control group (0.93, 95% confidence interval (CI) 0.20 to 1.65, p=0.01). At 3 years there is a trend to lower depression scores in the intervention group (-0.29, 95% CI -0.74 to 0.15, p=0.19). There are no differences between the groups for the problems areas in diabetes scale or the measures of quality of life at 3 years.

Conclusion: A one-off structured group self-management education programme for patients with newly diagnosed type 2 diabetes showed significant improvements in weight and smoking status at 12 months with sustained positive changes in a range of illness beliefs at 3 years.

Supported by: Diabetes UK

1029

Fear of hypoglycaemia: low incidence in educated patients with diabetes mellitus

V. Hartung, K. Reise, C. Kloos, N. Müller, G. Wolf, U.A. Müller; University Hospital Jena, Department of Internal Medicine III, Germany.

Background and aims: Hypoglycaemia is the most frequent adverse effect of drug treatment of diabetes and can in worst cases cause death, either by itself or, for instance, when driving or operating heavy machinery. Hence fear of hypoglycaemia is a reasonable reaction but in which dimensions concerning ratio and intensity and what are the definite reasons? Novel contraction of diabetes and inability to handle could be the most likely assumption. Suffering from hypoglycaemia frequently in the past could be another reason. To find out exactly we studied the prevalence and intensity of fear in patients with diabetes mellitus type 1 and 2 in a German cohort.

Materials and methods: We assessed fear of hypoglycaemia (FOH) in 719 patients taking any diabetes medication (age 62.2years; time since diagnosis 16.3years; BMI 31.2kg/m²; HbA1c 7.31%) and treated at a university outpatient department using a standardised questionnaire. All patients had at least one structured education in the preceding 20 years. We used a scale from 1-6 to rate FOH (1: no fear at all; 6: extensive fear). The patients were grouped to no fear (score 1), low fear (score 2), medium fear (score 3), high fear (score 4), very high fear (score 5) and no FOH (score 6) was excluded to discount indecisive or uncertain decisions. Clinical and laboratory data are drawn from the electronic patient record EML (http://www.itc-ms.de). HbA1c was DCCT adjusted.

Results: 119 patients (8.1%) stated to have FOH. 492 patients (68.4%) are unafraid of hypoglycaemia. Patients with FOH were more female (49.2 vs 35.8%; p=0.007), younger (58.6 vs 63.7y; p=0.001), had a higher HbA1c (7.47 vs 7.24%; p=0.026), higher overall lifetime incidence of severe hypoglycaemia (0.69 vs 0.26; p=0.005), more non-severe hypoglycaemia (0.92 vs 0.46 per week; p=0.001), a higher plasma glucose threshold for symptoms of hypoglycaemia (3.8 vs 3.5mmol/l; p=0.01), did more blood glucose self monitoring (26 vs 21 per week; p=0.001), had more insulin injections (3 vs 2 per day; p=0.006) and had predominantly diabetes type 1 (33.1 vs 19.9%; p=0.002). Furthermore patients with FOH had a lower WHO (Five) Well-Being Index (12 vs 16; p=0.001; max. score 25), an increased impairment by hypoglycaemia (4 vs 3; p=0.001; max. score 6) and more difficulties at work caused by hypoglycaemia (3 vs 1; p=0.001; max. score 6) compared to the ones with no FOH. No significant differences were observed regarding time since diagnosis (17.2 vs 16.3years), the kind of therapy differentiated into therapy with insulin and oral hypoglycaemic agents (84.4 vs 76.4%), the daily insulin dose (52.7 vs 47.1U/d), last BMI (30.9 vs 31.5kg/m²), incidence of severe hypoglycaemia during the last 12 months (0.08 vs 0.04), the social status (10 vs 11; max. score 21), when nobody was around while hypoglycaemia (46.2 vs 40.2%) or when it arose at night (46.7 vs 39.7%).

Conclusion: There are proportionally fewer patients with diabetes who suffer from noteworthy fear of hypoglycaemia. General reasons for this fear are more likely its consequences such as impairment or difficulties at work, than the conditions per se. It may also be related to a certain type of personality, based on or interrelated with a poor Well-being Index. Because the patients in this survey were a selection from a university outpatient department, it is unclear to what extent these results can be transferred to the general population in which fear could either be less frequent or even more, when, for example, less participation in educational programmes is considered.
1030
Coaching by a dietician: a cost-effective alternative to diabetes management?

Background and aims: World prevalence of diabetes and associated burden of care and complications are rising. Cost-effective management alternatives are badly needed. Cardiovascular risk (CVR) management by dieticians is one alternative worth assessing over a long term. This 3-year randomized trial aimed to show that dietician-led therapy management with an endocrinologist, for purposes of annual follow-up and advice as needed, enables recommended diabetes outcomes and is less costly than regular care.

Materials and methods: Diabetic subjects (n=101, HbaA1c>7%) were randomized to a Dietician-Coached Group (DCG) or a Conventional Group (CG) with follow-up as usual by endocrinologistsgeneral practitioners. DCG met with coaches every 3 months (physical and biochemical measures, exercise, diet, smoking cessation, hypoglycaemia recording, capillary glucose monitoring and motivation) and had monthly follow-up phone calls with coach and a yearly endocrinologist follow-up. Variables were measured every 3 months for DCG vs. yearly for CG.

Result: At baseline, groups (DCG n=51/CG n=50) were similar in age (60±10/60±11 yrs), duration of diabetes (16±9/16±10 yrs), systolic and diastolic BP (sBP: 131±15/131±24; dBP: 74±9/77±10 mmHg), fasting plasma glucose (PGP: 8.8±3.2/8.4±3.3 mM), HbaA1c: (8.1±0.9/8.1±1.1%), triglycerides (1.88±1.26/1.78±1.23 mM), LDL (1.94±0.72/2.03±0.64 mM) and total cholesterol (3.99±1.63/3.90±1.27 mM). DCG subjects were heavier (BMI: 34±8/31±5 kg/m²; p=0.03, waist circumference (WC): 133±18/138±16 cm; p=0.03). At 2 years (DCG n=39/CG n=42), ANOVA with repeated measures showed evolution between groups differed for HbaA1c (DCG: baseline: 8.1±0.9; 1yr: 7.3±0.8; 2 yrs: 7.4±0.9% vs. CG: 8.1±1.1; 8.2±1.5; 7.8±1.1%; p=0.001), DBP (74±9/69±10/69±10 vs. 77±10/79±10/76±9 mmHg; p=0.004), and WC (111±18; 110±18; 110±20 vs. 106±13; 108±13; 108±14 cm; p=0.015). At 2 years, DCG had an HbaA1c value of 0.4% lower than CG, which is clinically significant. Moreover, in DCG, the greater improvement in HbaA1c was observed at 1yr vs. baseline (p=0.001) compared to 2yrs vs. 1yr (p=0.08). There was no difference for BMI, PGP, microalbuminuria and lipid profile which was already on target at baseline.

Conclusion: After 2 years, diabetic patients coached by a dietician clinically improve HbaA1c and DBP. This simpler model of dietician coaching seems to be superior to regular care at improving diabetes outcomes and CVF factors. Should our 3-year analysis confirm our preliminary results? Cost analyses are ongoing.

Supported by: Pfizer

1031
Including community health workers in an effective model of diabetes self-management education

D. Fillman1, D. Tonks2, L. Yukovljuk3, K. Fitzner1; 1American Association of Diabetes Educators, Chicago, 2ABQ Health Partners, Albuquerque, USA.

Background and aims: 24 million people in the USA have diabetes, a costly chronic disease. Self-management education or training (DSME) is a key step in improving health outcomes and quality of life for these people. A team approach to providing DSME provided by a multi-level diabetes education and care?”

Materials and methods: were to: a) define a model for DSME provided by a multi-level diabetes education and care team; and b) answer the question, “what are the unique roles and responsibilities of those who deliver diabetes education and care?”

Materials and methods: From 10/09-2/10, we conducted desk audits of 100 applications to the Diabetes Education Accreditation Program and examined 10 additional programs identified as having “best practices” to define the role of community health workers (CHW) in actual DSME practice and identify the education delivery models in which they worked. To be inclusive, the definition of CHWs included community health advocates, lay health advisors, lay health educators, community health representatives, tribal diabetes educators, peer health promoters, community health outreach workers, and promotores de salud. Findings from our review were compared to the National Standards for Diabetes Education and Requirements put forth by the U.S. Centers for Medicare and Medicaid Services. These criteria were used to examine the strengths and weaknesses of the different approaches, roles and models identified.

Results: The review found that CHWs are frontline public health workers who are trusted members of and/or have a uniquely close understanding of the community served. CHWs can effectively serve as bridges between ethnic, cultural and geographic communities and the health care providers. There are four scenarios in which CHWs have and experienced and/or credentialed diabetes educators can effectively work together. These four distinct DSME models are: 1) Shared Teaching, 2) Top-Down, 3) Multi-Class at One Time; and 4) Supportive Role. In these models, the professional educator provides the clinical instruction and serves as supervisor. CHWs, who are non-professional health care providers with little expertise in DSME and/or management, support the DSME services provided to people with diabetes.

Conclusion: A DSME team approach is effective in helping people with diabetes gain the skill and knowledge necessary to change their behaviors and effectively manage their illness. Diabetes education is provided by health care professionals from many disciplines, involving practitioners with varying levels of experience/expertise in diabetes management, diabetes education, and clinical care. Moreover, DSME is most effective and sustainable when it is managed by individuals and/or have a uniquely close understanding of the community served. It is within the practice level articulated in the Guidelines for the Practice of Diabetes Education. Within the context of four models of DSME, and when supervised by a professional and/or credentialed diabetes educator, CHWs can effectively assist, provide important linkages to the local community, and successfully serve as part of the DSME team.

1032
An interactive 1 hour educational programme for junior doctors delivered at their induction improves the quality of inpatient diabetes care

C.G. Taylor Jr, A. Scott1, R. Herring1, A. Crown1, D. Russell-Jones2, S.R. Kotsegoda3, J. Quin1, N. Vaughan1, C. Morris1, G. Rayman4; 1The Diabetes Centre, Ipswich Hospital, 2Royal Surrey County Hospital, 3Royal Sussex County Hospital, Brighton, 4University Hospital Lewisham, London, University of Bedfordshire, United Kingdom.

Background and aims: The prevalence of diabetes amongst the inpatient population is increasing and more rapidly than that in the general population as this represents a more aged population. This has increased the management decisions having to be made by junior doctors. Unfortunately postgraduate education does not routinely address the skills needed to appropriately manage this patient group and in hospitals in the UK relatively little time is given to teaching junior doctors about diabetes care.

Materials and methods: We designed interactive teaching programmes for medical and surgical junior doctors which can be delivered in 1 hour at their induction or within scheduled teaching. These were centered on adults learning theories. Key aspects of care were covered in a case based format. Reaction to the teaching sessions was evaluated using questionnaires. Learning was evaluated by assessing the change in the rating by trainees of their confidence in managing key areas of care assessed before and immediately after sessions. Whether this influenced practice was assessed by auditing aspects of inpatient care in the hospitals before and 3-5 months after completing education.

Results: 174 (85%) of 206 trainees provided feedback using Likert scales of 1-5. Clarity and ease of understanding scored highly (4.5) as did the response to the question of whether the designs of the programmes increase participation (4.5). The programmes were highly recommended (4.5). The most liked aspects were interactivity (21%), the case based format (22%) and teaching design (47%). Confidence in juniors’ management in five key areas of care increased significantly [from 1.74 (SD 3.9) to 2.47 (SD 2.6), p < 0.001]. Following the teaching sessions the most common key take home points were changes in clinical practice were related to improved glycaemic management (24 and 25% respectively), improved insulin infusion use (22 and 26%), avoiding prescription errors (20 and 22%) and foot assessment (19 and 13%). There were statistically significant improvements in the frequency of foot assessments, appropriate insulin infusion management and prescription errors (p < 0.05).

Conclusion: We have demonstrated that a well designed teaching programme on inpatient diabetes care can be effectively delivered within 1 hour and hence easily introduced to most hospitals. The interactive design, based on learning theories and using a case based format were likely to be central to the significant changes seen in trainees confidence; more importantly in the quality of inpatient care.
1033

Improving diabetes care through multidisciplinary training: The Christian Medical College-Vellore/WDF diabetes education project

A. Joseph1, V. Aruldas2, R. Daniel3, A.E.I. Pittal4, A. Kapur5, N. Thomas2; 1Schiefelin Institute of Health Research & Leprosy Centre, Karigiri, Tamil Nadu, India; 2Christian Medical Association of India, New Delhi, India; 3Christian Medical College, Vellore, Tamil Nadu, India; 4Albert Einstein College of Medicine, Bronx, USA; 5World Diabetes Foundation, Kongens Lyngby, Denmark.

Background and aims: Diabetes is a major health care issue in India, yet doctors and nurses often have outdated information on standards of care, and foot care is underemphasized despite low rates of footwear use. We sought to improve diabetes care in rural and semi-urban areas by training doctors, nurses, foot care technicians (FCTs), and cobblers through an existing network of mission hospitals.

Materials and methods: A multidisciplinary training program was developed by the Departments of Endocrinology and Biochemistry at Christian Medical College-Vellore (CMC), the Schiefelin Institute of Health Research & Leprosy Centre (SIHRLC) and the Christian Medical Association of India (CMAI). Eligible hospitals were identified by the Dept of Endocrinology and CMAI. Each hospital was invited to send at least 1 doctor, 2 nurses, 1 FCT, and 1 cobbler to receive comprehensive training in diabetes care. Doctors were trained in a 10-day course and nurses in a 14-day course taught by professors and diabetes nurse educators from CMC’s Department of Endocrinology, with support from other departments including Biochemistry, Rehabilitation and Ophthalmology. At SIHRLC, FCTs received 2 weeks of training in foot care and treatment of neuropathic foot problems, and cobblers received 1 month of training in orthopedic shoemaking. Key components of the program included emphasis on a team approach to diabetes care and the role of diabetes educators. Baseline data was collected from application forms. Follow-up questionnaires were sent by e-mail to all hospitals 6 months after completion of training. On-site monitoring visits were conducted for 20% of the trained hospitals.

Results: During 2004-2009, multidisciplinary training in diabetes care was provided for 100 mission hospitals in 22 states across India. At least 1 doctor was trained at 100% of hospitals, at least 1 nurse at 100%, at least 1 FCT at 58%, and at least 1 cobbler at 47%. Follow-up questionnaires were received from 36% of hospitals. Among those returning questionnaires, 89% had started diabetes clinics. There was an average of 53 new diabetes outpatients per hospital, an increase of 34% in patient capacity, by 6 months after training. Most hospitals (74%) joined CMC’s laboratory quality control program. Other activities were gathered for all teaching sessions. Follow-up questionnaires were sent by e-mail to all hospitals 6 months after completion of training. On-site monitoring visits were conducted for 20% of the trained hospitals.

Conclusion: Among diabetes patients with Chinese origins, those whose family physician also had Chinese origins achieved better glycaemic control. These differences persisted even after adjusting for patient age, sex and diabetes duration. The absence of an effect in the South Asian population may be due in part to their greater linguistic and cultural heterogeneity compared to the Chinese population, or because there is greater English-language use among Canadians with South Asian origins than those with Chinese origins. The findings suggest that health care providers with better cultural understanding can influence diabetes care for patients from certain ethnic groups.

Supported by: Heart and Stroke Foundation of Ontario

1034

Physician-patient ethnic concordance improves diabetes care for ethnic minority patients

B.R. Shah1,2, S. Anand1, D.G. Manuel12, J.E. Hux13; 1Department of Medicine, University of Toronto, 2Institute for Clinical Evaluative Sciences, Toronto, 3McMaster University, Hamilton, 4Ottawa Hospital Research Institute, Canada.

Background and aims: Non-White patients who receive care from physicians from the same ethnic group have greater satisfaction with care and improved health care utilisation. However, no studies have examined whether physician-patient ethnic concordance influences the quality of diabetes care, where greater cultural understanding may lead to improved dietary, physical activity and medication adherence. This study evaluated whether the quality of diabetes care for minority patients is influenced by the ethnicity of their family physicians.

Methods: Family physicians were randomly recruited from mutually exclusive neighbourhoods in the Toronto area with high concentrations of people with Chinese origins or people with South Asian origins. Recruitment was stratified by physician ethnicity. From each physician's practice, up to 10 diabetic patients with Chinese or South Asian origins were randomly selected. Diabetes quality indicators were collected by chart abstraction. The primary outcome was the last A1c achieved. Other outcomes were the last blood pressure and LDL-cholesterol achieved, and documentation in the chart of a foot examination. Within each ethnic group, outcomes were compared based on whether the physician was ethnically concordant or discordant with the patient. Generalised linear models were used to determine statistical significance, accounting for the clustered nature of the data within physician practices and adjusting for patient age, sex and diabetes duration.

Results: 45 family physicians were recruited and 416 patients were included. Most Chinese diabetic patients had Chinese family physicians. Chinese patients with Chinese family physicians achieved better glycaemic control than those with ethnically discordant family physicians. No difference in glycaemic control was seen among South Asian patients with ethnically concordant versus discordant family physicians, and no differences were seen in either group for other outcomes. There was a strong trend towards differences in foot examination rates, but because this outcome was highly clustered within physician practices, it was not statistically significant in either ethnic group.

Table: Quality of care for ethnic minority patients, stratified by physician ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Chinese diabetic patients</th>
<th>South Asian diabetic patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese physicians</td>
<td>Adjusted</td>
<td>Adjusted</td>
</tr>
<tr>
<td>n</td>
<td>148</td>
<td>22</td>
</tr>
<tr>
<td>A1c</td>
<td>0.070±0.010</td>
<td>0.077±0.013</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>129±12</td>
<td>128±14</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>76±8</td>
<td>78±8</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>2.2±0.8</td>
<td>2.6±0.9</td>
</tr>
<tr>
<td>Foot examination</td>
<td>84%</td>
<td>59%</td>
</tr>
</tbody>
</table>

Conclusion: Among diabetes patients with Chinese origins, those whose family physician also had Chinese origins achieved better glycaemic control. These differences persisted even after adjusting for patient age, sex and diabetes duration. The absence of an effect in the South Asian population may be due in part to their greater linguistic and cultural heterogeneity compared to the Chinese population, or because there is greater English-language use among Canadians with South Asian origins than those with Chinese origins. The findings suggest that health care providers with better cultural understanding can influence diabetes care for patients from certain ethnic groups.

Supported by: Diabetes Control and Complications Research Group

1035

Effects of a systematic smoking cessation intervention in diabetic patients

R. Candido1, E. Tommassi1, G. Jagodnik1, R. Alberti1, B. Baskar2, M. Stuper3, N. Daris1, E. Presti1, E. Caroli1, E. Manca1, A. Petrucco1, A. Vegliachi2, R. Purici3, B. Fabris3, R. Tommin3; 1Diabetes Center, A.S.S. 1 Triestina, 2Smokers Clinic, A.S.S. 1 Triestina, 3Department of Clinical Medicine and Neurology, University of Trieste, 4Department of Prevention, A.S.S. 1 Triestina, Trieste, Italy.

Background and aims: Cigarette smoking is the leading preventable cause of illness and premature death in developed countries. Several clinical studies have reported significant links between smoking and development of diabetes, micro- and macrovascular complications, and impairment of metabolic control. Although several studies have demonstrated the efficacy and cost-effectiveness of smoking cessation counseling in changing smoking behavior among the general population, the role of system-based approaches that make smoking a routine part of office contacts and provide multiple prompts, advice, assistance, and follow-up support in diabetic subjects remains to be clarified. Therefore, the aim of this study was to evaluate the effectiveness of a systematic smoking cessation intervention in diabetic patients as a routine component of diabetes care.

Materials and methods: All the afferent type 1 or type 2 diabetic patients at the Diabetes Center were systematically reviewed to confirm their smoking status. The diabetic subjects who were current smokers were considered...
to be candidates for intervention. The intervention protocol consisted of: 1) assessment of dependence and motivation to stop smoking; 2) measurement of carbon monoxide concentration of expired air by smokerlyzer; 3) face-to-face interview with a nurse who was a member of the team; 4) optional nicotine replacement therapy or other smoking cessation medication; 5) follow-up support program which included a telephone call 2 and 4 weeks after the cessation date, a follow-up visit after 3-4 months and a final visit after 12 months.

Results: A total of 95 diabetic smokers were invited to participate to the intervention program and 82 (78%) agreed to take part in the study. After 6 months, 22 patients (27%) reported that they had stopped smoking and this was confirmed by measuring the carbon monoxide concentration of expired air. Among participants who continued smoking, a significant reduction was evident in the average cigarette consumption. Of the 82 patients participating to the intervention program 23% were treated with nicotine replacement therapy or varenicline and 28% were referred to smokers clinic for a more comprehensive evaluation.

Conclusion: The present study shows that a structured intervention that makes smoking a routine part of office contacts seems to be effective in inducing smoking cessation in diabetic patients, thus suggesting that a systematic intervention including smoking cessation counseling and other forms of treatment should be a routine component of diabetes care.

PS 98 Tools for improving diabetes control

1036

Design and development of a computer assisted clinical decision support system to help physicians manage patients with type 2 diabetes mellitus

D. Rodbard¹, R.A. Vigersky²; ¹Clinical Research and Medical Informatics, Biomedical Informatics Consultants LLC, Potomac, ²Diabetes Institute, Walter Reed Army Medical Center, Washington, USA.

Background and aims: The increasing number of options for therapy and the failure of most patients to achieve A1C goals in a timely manner suggest the need for clinical decision support at the point of care. We sought to develop a customizable software system that could provide advice to primary care physicians at the point of care, providing recommendations and explanations.

Materials and methods: We have developed a computer-assisted decision support (CADS) system with customizable modules for patient, provider, and administrator. CADS is based on extensive statistical analysis and graphical displays of uploaded glucose data (SMBG); medication history; individualized glycemic goals; analysis of laboratory data (A1C, renal and hepatic function); and co-morbidities (cardiac, renal, hepatic, gastrointestinal). The software provides a concise report to the clinician regarding overall quality of glycemic control and identifies problems such as hypo- and hyperglycemia, excessive variability, insufficient glucose monitoring, and presence of various patterns. A rule-based expert system then makes recommendations to adjust dosage of current medications, discontinue medications, add new medications, or change the treatment regimen. We have constructed algorithms with recommended sequences for 61 regimens, including therapeutic lifestyle changes, 8 forms of monotherapy, 22 forms of dual therapy, and 30 forms of triple therapy utilizing 8 classes of medications: metformin, DPP-4 inhibitors, GLP-1 analogs, thiazolidenediones, sulfonylureas and glinides, alpha-glucosidase inhibitors, and basal insulins. Treatment pathways can be customized by the individual physician or clinic. The algorithm considers pharmacodynamics as well as relative and absolute contraindications, and offers alternatives and options. The user can override the program’s recommendations and can readily access brief or detailed prescribing information, clinical practice guidelines, or the medical literature. The logic of the program can be modified using a series of tables, without the need for reprogramming.

Results: A prototype system has been constructed, tested with real and synthetic data, and found to perform well. The program analyzes SMBG data, identifies problems (hypoglycemia, hyperglycemia, variability, or insufficient glucose data) and recommends adjustment of dosages, addition or discontinuation of medications. The program provides caveats appropriate to each case. Extensive safety testing has been performed. The recommendations of the program are consistent with the judgment of highly experienced endocrinologists in a large series of test cases. The software has been integrated with a Comprehensive Diabetes Management Program that provides reminders and alerts and interfaces with an electronic medical record. The program can also operate in a stand alone mode with manual entry of laboratory data and medication history.

Conclusion: This study demonstrates that computer assisted clinical decision support is feasible. The logic of the program can be custom tailored to the preferences of individual clinics and physicians.

Supported by: TATRC

1037

Acceptance and outcome of knowledge-based decision support in routine diabetes care is strongly related to HbA1c at baseline

P. Augstein¹, L. Vogt¹, K.-D. Kohnert¹, P. Heinke², E. Salzsieder³; ¹Research, Institute of Diabetes, ²Research, Diabetes Service Center Karlsruhe, Karlsruhe, Germany.

Background and aims: The Diabetiva program launched 2006 by the German health insurance fund BRK Gesundheit offers continuous glucose monitoring (CGM) and decision support generated by the Karlsruhe diabetes management system KADIS to their insured diabetics. Diabetiva is open for diabetics with cardiovascular risk and focuses on improvement of routine out-patient diabetes care according to the guidelines of the German Diabetes Association. We addressed the question, whether acceptance of decision support and metabolic outcome differs between general practitioners (GP) and diabetes specialists (DSP) involved in the Diabetiva program.

PS 98 Tools for improving diabetes control

1036

Design and development of a computer assisted clinical decision support system to help physicians manage patients with type 2 diabetes mellitus

D. Rodbard¹, R.A. Vigersky²; ¹Clinical Research and Medical Informatics, Biomedical Informatics Consultants LLC, Potomac, ²Diabetes Institute, Walter Reed Army Medical Center, Washington, USA.

Background and aims: The increasing number of options for therapy and the failure of most patients to achieve A1C goals in a timely manner suggest the need for clinical decision support at the point of care. We sought to develop a customizable software system that could provide advice to primary care physicians at the point of care, providing recommendations and explanations.

Materials and methods: We have developed a computer-assisted decision support (CADS) system with customizable modules for patient, provider, and administrator. CADS is based on extensive statistical analysis and graphical displays of uploaded glucose data (SMBG); medication history; individualized glycemic goals; analysis of laboratory data (A1C, renal and hepatic function); and co-morbidities (cardiac, renal, hepatic, gastrointestinal). The software provides a concise report to the clinician regarding overall quality of glycemic control and identifies problems such as hypo- and hyperglycemia, excessive variability, insufficient glucose monitoring, and presence of various patterns. A rule-based expert system then makes recommendations to adjust dosage of current medications, discontinue medications, add new medications, or change the treatment regimen. We have constructed algorithms with recommended sequences for 61 regimens, including therapeutic lifestyle changes, 8 forms of monotherapy, 22 forms of dual therapy, and 30 forms of triple therapy utilizing 8 classes of medications: metformin, DPP-4 inhibitors, GLP-1 analogs, thiazolidenediones, sulfonylureas and glinides, alpha-glucosidase inhibitors, and basal insulins. Treatment pathways can be customized by the individual physician or clinic. The algorithm considers pharmacodynamics as well as relative and absolute contraindications, and offers alternatives and options. The user can override the program’s recommendations and can readily access brief or detailed prescribing information, clinical practice guidelines, or the medical literature. The logic of the program can be modified using a series of tables, without the need for reprogramming.

Results: A prototype system has been constructed, tested with real and synthetic data, and found to perform well. The program analyzes SMBG data, identifies problems (hypoglycemia, hyperglycemia, variability, or insufficient glucose data) and recommends adjustment of dosages, addition or discontinuation of medications. The program provides caveats appropriate to each case. Extensive safety testing has been performed. The recommendations of the program are consistent with the judgment of highly experienced endocrinologists in a large series of test cases. The software has been integrated with a Comprehensive Diabetes Management Program that provides reminders and alerts and interfaces with an electronic medical record. The program can also operate in a stand alone mode with manual entry of laboratory data and medication history.

Conclusion: This study demonstrates that computer assisted clinical decision support is feasible. The logic of the program can be custom tailored to the preferences of individual clinics and physicians.

Supported by: TATRC

1037

Acceptance and outcome of knowledge-based decision support in routine diabetes care is strongly related to HbA1c at baseline

P. Augstein¹, L. Vogt¹, K.-D. Kohnert¹, P. Heinke², E. Salzsieder³; ¹Research, Institute of Diabetes, ²Research, Diabetes Service Center Karlsruhe, Karlsruhe, Germany.

Background and aims: The Diabetiva program launched 2006 by the German health insurance fund BRK Gesundheit offers continuous glucose monitoring (CGM) and decision support generated by the Karlsruhe diabetes management system KADIS to their insured diabetics. Diabetiva is open for diabetics with cardiovascular risk and focuses on improvement of routine out-patient diabetes care according to the guidelines of the German Diabetes Association. We addressed the question, whether acceptance of decision support and metabolic outcome differs between general practitioners (GP) and diabetes specialists (DSP) involved in the Diabetiva program.
Materials and methods: The Diabetiva® timeline includes an annual CGM followed by decision support for therapy optimization and quarterly medical check-up including HbA1c detection. Patients with two CGM readings (n=352) were analyzed retrospectively for acceptance of the KADIS®-based decision support by the GP or DSP using a questionnaire and the outcome of the Diabetiva™ program, with HbA1c as primary outcome parameter.

Results: After running Diabetiva® for 36 months 799 insured diabetics (95.9% Type 2 diabetes) were enrolled and had received 1,354 CGMs. Patients were cared for by 299 GPs and 44 DSPs. 352 patients performed already two or more CGM trails and could therefore be considered for the final outcome evaluation. For these patients approximately 74% of physicians accepted KADIS® as patient-focused support to optimize diabetes therapies; 39% used the therapeutic regimes without changes and 35% used slight modifications. 26% of physicians did not accept KADIS®-based decision support. Logistic regression revealed that KADIS® acceptance was significantly dependent on HbA1c at baseline (p<0.05). GP or DSP and type of therapy had no influence whether on acceptance nor on outcome parameters. Multiple regression analysis for the primary outcome parameters 24 months after enrolment into Diabetiva® depend only from acceptance of KADIS® and from HbA1c at baseline (p<0.001). Again, GP or DSP type of therapy, age, onset of diabetes, BMI, and gender had no significant influence on the outcome parameters. If KADIS® was accepted HbA1c could be decreased overall by -0.38 ± 0.69% (p=0.01), whereas HbA1c at baseline <6.5% HbA1c increased by +0.05 ± 0.39% (p<0.01) and decreased at 6.5-7.0% by -0.22% ± 0.49% (p=0.01); at 7.0 to 7.5% by ±0.42 ± 0.52% (p<0.01); at 7.5 to 8.0% by ±0.52 ± 0.44% (p<0.01); and at >8.0% by ±1.31 ± 0.79%. But if KADIS®-based decision support was declared the impact of Diabetiva® was completely diminished: overall increase of HbA1c by +0.40 ± 0.77% (p=0.01).

Conclusion: Decision support is highly accepted by GPs as well as DSPs especially for diabetics with elevated HbA1c at baseline. The high acceptance rate of 74% and the significant decrease in HbA1c reveal that KADIS® in combination with CGM is an useful tool to support effectively outpatient management in routine diabetes care.

1038

Self-management support - a comparison of current practices for diabetes care in the Danish Healthcare System and Kaiser Permanente

M.L. Schiotz, M. Strandberg Larsen, A. Frislich, A. Krasnik, J. Bellows, J.K. Kristensen, P. Vedsted, P. Eskildsen, H. Beck-Nielsen, J. Hau, Steno Health Protection Centre, Steno Diabetes Centre, Gentofte, Denmark, Section of Health Services Research, Institute of Public Health, Copenhagen, Denmark, Copenhagen Hospital Corporation, Bispebjerg Hospital, Copenhagen, Denmark, Care Management Institute, Oakland, USA, Research Unit for General Practice, Aarhus, Denmark, Koge Hospital, Denmark, Odense University Hospital, Denmark, Massachusetts General Hospital Department of Health Care Policy, Clinical Economics and Policy Analysis Program, Boston, USA.

Background and aims: Self-management support is considered an essential part of care for people with diabetes. Despite the availability of internationally accepted treatment guidelines describing optimal management of patients with diabetes many patients do not receive such level of care and support. The aim of this study was to investigate receipt of self-management support (SMS), and self-management behaviours of patients with diabetes in two healthcare settings: Kaiser Permanente, Northern California (KPNC) and the Danish Healthcare System (DHS).

Materials and methods: Using self-administered questionnaires administered in 2006 and 2007, 1871 diabetic patients (DHS=1548 subjects, 75% response rate; KPNC=323, 61% response rate) reported on the amount of SMS received during the past year. Using logistic regression approaches, we compared the percentages of patients reporting any receipt of each type of SMS and SM behaviours.

Results: Receipt of SMS varied substantially between the two systems. Diabetic patients in KPNC more frequently reported receiving all types of SMS for their disease than did patients in DHS: among KPNC and DHS patients respectively, 85% vs. 72% (P<0.0001) discussed methods to prevent disease deterioration with their doctor; 77% vs. 58% (P<0.0001) received support to set individual disease control goals; 73% vs. 47% (P<0.0001) engaged in making plans for their treatment; 59% vs. 26% (P<0.0001) had adverse effects of the medication prescribed to them explained; and 72% vs. 62% (P<0.005) experienced shared decision making. Substantially fewer patients in both systems used tools and approaches to support SM, though more patients in KPNC reported any use compared to DHS patients: 34% vs. 11% (P<0.0001)

used existing patient education programs or support groups; 38% vs. 28% (P<0.0005) used websites with information about health and illness; and 56% vs. 34% (P<0.0001) used written materials about managing their health condition. Less than half of the respondents in both systems reported that they took their diabetes medication as prescribed and followed the national guidelines for exercise.

Conclusion: While patient self-management is associated with better patient outcomes, not all patients receive support from their physicians in these efforts. We found substantial differences in the frequency of SMS received across the two health care systems. For all aspects of SMS KP performed better than the DHS. Patient self-management represents an important but under-supported area of care for those with chronic conditions. Eforts to improve SMS could help address quality concerns in both Denmark and the United States.

Supported by: The Rockwool Foundation and the Agency for Healthcare Research and Quality

1039

Type 2 diabetes treatment information for patients in the Internet. Is it useful for shared decision making?

G. Gimenez-Perez, O. Simó, A. Recaens, I. Castells; Diabetes, Endocrinology and Nutrition Unit, Hospital General de Granollers, Spain.

Internet is widely used by patients to retrieve updated health information. Consumer oriented treatment information should facilitate shared decision making between patients and health providers. The DISCERN tool has been developed and validated to evaluate quality of information about treatment choices. It scores 15 different items plus a global score from 1 (poor) to 5 (excellent). To facilitate shared decision making, uncertainty topics should be covered, and readability should be adequate.

Objective: To evaluate the quality of the information about treatment choices for type-2 diabetes available in consumer oriented websites using the DISCERN tool. To evaluate readability of consumer oriented web pages about diabetes treatments.

Materials and methods: The first thirty websites obtained from Google, Yahoo and MSN search engines using the terms "type 2 diabetes" and "treatment" were retrieved. Websites were selected by one investigator according to pre-specified inclusion and exclusion criteria. Non-selected websites were additionally reviewed by a second investigator to confirm the appropriateness of its non-selection. Selected websites were evaluated by a third investigator using the DISCERN instrument adapted to type-2 diabetes treatments. Two random samples of websites were evaluated by two additional investigators to evaluate the agreement between investigators using the weighted kappa statistic. Readability was evaluated using the Flesch Reading Ease and the Flesch-Kinkaid Grade Level scores obtained using a Microsoft Word processor. Additionally we evaluated the presence of any reference to the DCCT, UKPDS, ACCORD, ADVANCE and VADT studies.

Results: After the selection process 37 websites were finally evaluated. The main reason for exclusion was being retrieved in various search engines. Sixty-five percent of websites scored 3 or more in the global item indicating a moderate to excellent global information quality. More than 50% of websites scored less than 3 in the items "addressing uncertainty areas" (59%), "sources of information" (54%) and "benefits of treatments" (51%). We could not find any reference to the DCCT or UKPDS studies in 46% of websites and to the ACCORD, ADVANCE or VADT studies in 81% of them. Flesch Reading Ease was 44±13.2 (mean±SD) and Flesch-Kinkaid Grade Level 10.6±1.8 (mean±SD).

Conclusion: Although the global quality of diabetes information in the Internet seems adequate, flaws still exist in items of special interest for shared decision making about type-2 diabetes treatment choices such as uncertainty and benefits of diabetes treatments. The information available shows a tendency to more frequently cite studies with positive results instead of their counterparts. Readability scores of the evaluated websites are below the readability recommended for information addressed to the general population.
1040
Telemedicine support using the DIABEO software on a smartphone improves HbA1c in poorly controlled type 1 diabetic patients: the randomised, 6-month, multicenter TeleDiab-1 trial
P. Y. Benhamou1, J.-L. Bosson1, A. Penfornis1, D. Dardari2, S. Francé3, P. Schaepeleynck4, B. Catargy5, H. Hanaire6, L. Chailoul7, E. M. Renard8, J.-L. Quesada9, S. Halimi9, G. Charpentier10, TeleDiab Study Group; 1Endocrinologie Diabétologie Nutrition, CHU de Grenoble, 2Centre d’Investigation Clinique - INSERM, CU de Grenoble, 3Service de diabétologie Endocrinologie, CHU Jean Minjoz, Besançon, 4Service diabétologie, Hôpital Sud Francilien, Corbeil Essonnes, 5Service de Nutrition - Endocrinologie - Maladies Métaboliques, CHU Marseille, 6Hôpitaux Sud, 7Endocrinologie Diabétologie Nutrition, Hôpital Haut Leveque, Pessac, 8Service de Diabétologie, CHU Toulouse (Rangueil), 9Service d’endocrinologie, CHU Nantes, 10Service des maladies endocriniennes, CU Montpellier, France.

Background and aims: Diabeo software uploaded to a smartphone can determine the appropriate prandial insulin dose and basal adjustments for the patient, using personally tailored algorithms. Data transmission then facilitates follow-up through teleconsultations. We assessed the efficacy on HbA1c of the home use of Diabeo by chronically poorly controlled type 1 diabetic (TID) patients.

Materials and methods: Adult patients (n=180) with TID (> 1 year), using a basal-bolus insulin regimen (> 6 months), with HbA1c ≥ 8%, were randomized to a continuation of usual quarterly follow-up (G1), the home use of Diabeo on a smartphone suggesting insulin doses with quarterly visits (G2) or the similar use of Diabeo associated with phone calls every 2 weeks but no visit (G3) for 6 months.

Results: Six month HbA1c in G3 (8.41% ± 1.04%) was lower than in G1 (9.10% ± 1.16%; p = 0.0019). G2 displayed intermediate results (8.63% ± 1.07%). HbA1c decreased from baseline by 0.49% ± 0.89% (p=0.001) in G2 and 0.73% ± 0.64 (p<0.001) in G3; no improvement was seen for G1 (+0.18% ± 0.93%). HbA1c improvement in G3 compared to G1 was 0.91% [0.60; 1.21] (improvement in G2: 0.67% [0.35; 0.99]). There was no difference in the frequency of hypoglycemia or in medical time spent for hospital or telephone consultations. However, patients in G1 and G2 spent nearly five hours more than G3 patients attending hospital visits.

Conclusion: The Diabeo system allows a substantial improvement in HbA1c in poorly controlled TID patients without requiring more medical time than usual care.

Supported by: sanofi-aventis

1041
Patient evaluation of education using US Diabetes Conversation Maps in the IDEA Study

Background and aims: In an effort to improve self-efficacy and clinical outcomes, a new international approach to diabetes education using Conversation Maps (CM) has emerged. We are conducting a randomized trial to evaluate the effectiveness of this interactive, group-based learning experience using CM, which we call IDEA (Interactive Dialogue to Educate and Activate). In addition to clinical and behavioural outcomes, it is important to evaluate patient satisfaction with the experience of this novel, group-based learning method in comparison to conventional one-on-one diabetes education. The objective of this analysis is to report the data collected on the experience of patients who participated in the group and individual educational arms of the IDEA study.

Methods: 623 consented subjects with pre-existing type 2 diabetes and an A1c>=7% were randomized to group or individual education or to usual care (no education). Subjects receiving education were asked to complete a standardized evaluation regarding the subject content and the educator after each educational session. Evaluation forms contained no personally identifiable information, and included a sealable return envelope pre-addressed to the study coordinator. They were made up of like-sized questions with responses from 1-5, with 5 being the most affirmative. Overall evaluation scores were the sum of responses scaled to 100 for the content, educator, and group-spe-

1042
Carelink, Skype and Facebook improve diabetes control in adolescents on pump therapy
G. Petrovski1, C. Dimirovski1, M. Bogoev, I. Alhmeti; University Clinic of endocrinology, Skopje, The Former Yugoslav Republic of Macedonia.

Background and aims: To report results from Carelink, Skype and Facebook as tools to improve diabetes control in diabetic adolescents on Medtronic PRT (insulin pump with glucose sensor).

Materials and methods: A total of 38 adolescents with type 1 diabetes, ages 13-22, were randomized to two groups: Regular visits (Group 1) - as standard medical protocol with regular visits at clinic, where data was downloaded at the clinic and intervention (pump settings-basal bolus insulin, education) were given to the patient and Internet visits (Group 2) - as protocol using Carelink personal program (Medtronic Diabetes), where the data was downloaded by the patient at home and interventions (same as group 1) were given via Skype (sound and video) and Facebook (written reports and chats). A1C was obtained before, three and six months after the study.

Results: Regular visits were 11.2±1.2 patients in group 1 and Internet visits were 12.8±2.4 per patient in group 2 retrospectively. There was significantly improvement in both groups (group 1 and 2 retrospectively, 7.4 ±0.9% and 7.5±1.1% on beginning with 6.2±0.8 % and 6.3±1.0%, p<0.05). Internet visits were more preferable by the patients.

Conclusion: This brief trial suggests that adolescents with type 1 diabetes prefer to make contact with their health care providers via internet, where new technologies using specific software like Carelink, Skype and Facebook can improve diabetes control same as regular clinic visits.
The aim of study is to assess if glucose monitoring settings.

Background and aims: While blood glucose monitoring (SMBG) is known to be beneficial among insulin users, its value and utility in insulin-naive type 2 diabetes (T2DM) remains uncertain. The Structured Testing Protocol (STeP) study assessed the effectiveness of structured SMBG use in poorly-controlled, insulin-naive T2DM subjects.

Materials and methods: This 1-year, prospective, cluster-randomized, multicenter, clinical trial recruited 522 poorly-controlled (HbA1c ≥7.5%), insulin-naive T2DM subjects from 35 US primary care practices. Subjects were randomized to a structured testing protocol (STG) or active control (ACG). STG subjects used the Accu-Chek® 360° View Blood Glucose Analysis System, an easy-to-use paper tool that facilitates collection and interpretation of 7-point glucose profiles over 3 consecutive days. STG subjects completed the tool on a quarterly basis and brought it to medical visits. All STG subjects received standardized instruction in SMBG, pattern recognition and interpretation. STG physicians received an algorithm for suggested medication strategies in response to observed SMBG patterns. All STG and ACG subjects received free blood glucose meters and test strips.

Results: Intent-to-treat (ITT) analysis revealed that STG subjects evidenced significantly greater mean improvement in HbA1c than ACG subjects over the 12 months (-1.2% vs. -0.9%; Δ=0.3%; p=0.04). Unlike previous studies, there was a high degree of protocol adherence: 70% of STG subjects who completed the study recorded ≥80% of all SMBG measurements at ≥4 of the 5 quarterly protocol visits. Per protocol analysis revealed an even greater HbA1c reduction in STG vs. ACG subjects than was seen in the ITT analysis (-1.3% vs. -0.8%; Δ=0.5%; p<0.003). Examination of STG subjects’ 7-point profiles revealed significant reductions from baseline in glucose levels at all pre- and postprandial time points (p<0.01) and in HbA1c level. Group analysis of HbA1c changes over the 12 months indicated that STG subjects who reported no SMBG at baseline profited more from the intervention than those who had been previously using SMBG (≤16% vs. -9%; Δ=0.7%; p=0.001). Similar benefits were seen among STG subjects who were taking ≤1 oral hypoglycemic agent (OHA) compared with those taking >1 OHA (-1.5% vs. -0.9%; Δ=-0.6%; p=0.001).

Conclusion: Structured SMBG promotes significantly better glycemic control over time in insulin-naive-treated T2DM when both patients and physicians collaborate in the collection, interpretation and appropriate utilization of SMBG. Approximately two-thirds of patients adhered well to the treatment protocol, suggesting that structured quarterly testing is practical as well as beneficial. Structured SMBG may be of even greater benefit in those patients with little previous history of SMBG use and among those on relatively few OHAs at baseline.

Influence of glucose self-monitoring on glycemic control in patients with type 2 diabetes mellitus

L.G. Strøm, A.V. Petrov2, A.A. Kalinnikova3, S.P. Glebov2, 1Endocrinology and internal medicine of FOA, Nizhny Novgorod State Medical Academy, 2Regional Clinical Hospital, Nizhny Novgorod, Russian Federation.

Background and aims: The aim of study is to assess if glucose monitoring patients with diabetes mellitus type 2 (DM2) is associated with better glucose control in different groups of patients being observed in primary health care settings.

Materials and methods: Data have been collected as part of mobile diabetic center program in patients with DM2 observed in primary health care. Glucose self-monitoring was assessed by questioning the patient about use of glucometer, usual frequency of glucose self measurement and glucose levels in the week before visit. Patients measuring glucose at least once a week were referred to as performing glucose self-measurement. Glycemic control was determined by HbA1c level. Data are presented in M(SD) format, comparison of groups is done with Mann–Whitney U-criteria.

Results: 235 patients with DM2 have been examined with average age of 59(9.3) years and duration of diabetes of 9(6.7) years. 79% of patients were female. Level of HbA1c was 7.8(1.9%) Normalization neuropathy has been detected in 88% of patients, retinopathy in 44% and nephropathy in 53%. Treatment of diabetes included sulfonylurea drugs in 52%, metformin in 63% and insulin in 31% of cases (combined use of several drugs possible). 32% of patients performed glucose self-monitoring. No statistically significant difference was observed in level of HbA1c between patients with and without glucose self-monitoring (7.6(1.58) vs. 7.9(2.01)% p=0.48) as well as between those who did and did not perform measurement of preprandial glucose levels (7.6(1.63)% vs. 7.5(1.52)% p=0.47). Among patients who were treated with insulin and with duration of insulin treatment more than 1 year HbA1c was significantly lower if they performed glucose self-measurement (8.3(1.32) vs. 9.3(2.02)% p=0.035). Also lower HbA1c level (9.1(0.82) vs. 9.8(1.42)% p=0.007) was present in glucose self-measurement group in patients with HbA1c ≥8%. Levels of glycemic reported by patients correlated with HbA1c level (Spearman R = 0.59 for average glucose level, p < 0.0001).

Conclusion: Glucose self-monitoring improves effectiveness of insulin treatment in patients with DM2 if patients have some experience in using insulin. This confirms necessity of more frequent glucose monitoring in this group and can be explained by maximal flexibility of insulin therapy. Among uncompensated patients with DM2 there is better glucose control in people using glucose self-measurement due to lower number of persons with severe decompensation (there were no patients with HbA1c >12% among self-measurement group while such levels were observed in several patients without self-monitoring). Here results of glucose measurement may become warning signs and motivate patients and doctors for change in treatment therefore reducing time and severity of decompensation. At the same time among patients with moderate decompensation glucose measurements may be not so convincing evidence of poor treatment and therefore do not influence level of compensation. Also there can be significant group of patients with DM2 in whom good compensation can be achieved without need for complex changes in treatment and lifestyle and in whom glucose self-measurement will not affect results of treatment. These factors explain absence of difference of HbA1c depending on glucose monitoring in patients with DM2 without marked decompensation.

Influence of glucose self-monitoring on glycemic control in patients with type 2 diabetes mellitus

L.G. Strøm1, A.V. Petrov2, A.A. Kalinnikova3, S.P. Glebov2, 1Endocrinology and internal medicine of FOA, Nizhny Novgorod State Medical Academy, 2Regional Clinical Hospital, Nizhny Novgorod, Russian Federation.

Background and aims: The aim of study is to assess if glucose monitoring patients with diabetes mellitus type 2 (DM2) is associated with better glucose control in different groups of patients being observed in primary health care settings.

Materials and methods: Data have been collected as part of mobile diabetic center program in patients with DM2 observed in primary health care. Glucose self-monitoring was assessed by questioning the patient about use of glucometer, usual frequency of glucose self measurement and glucose levels in the week before visit. Patients measuring glucose at least once a week were referred to as performing glucose self-measurement. Glycemic control was determined by HbA1c level. Data are presented in M(SD) format, comparison of groups is done with Mann–Whitney U-criteria.

Results: 235 patients with DM2 have been examined with average age of 59(9.3) years and duration of diabetes of 9(6.7) years. 79% of patients were female. Level of HbA1c was 7.8(1.9%) Normalization neuropathy has been detected in 88% of patients, retinopathy in 44% and nephropathy in 53%. Treatment of diabetes included sulfonylurea drugs in 52%, metformin in 63% and insulin in 31% of cases (combined use of several drugs possible). 32% of patients performed glucose self-monitoring. No statistically significant difference was observed in level of HbA1c between patients with and without glucose self-monitoring (7.6(1.58) vs. 7.9(2.01)% p=0.48) as well as between those who did and did not perform measurement of preprandial glucose levels (7.6(1.63)% vs. 7.5(1.52)% p=0.47). Among patients who were treated with insulin and with duration of insulin treatment more than 1 year HbA1c was significantly lower if they performed glucose self-measurement (8.3(1.32) vs. 9.3(2.02)% p=0.035). Also lower HbA1c level (9.1(0.82) vs. 9.8(1.42)% p=0.007) was present in glucose self-measurement group in patients with HbA1c ≥8%. Levels of glycemic reported by patients correlated with HbA1c level (Spearman R = 0.59 for average glucose level, p < 0.0001).

Conclusion: Glucose self-monitoring improves effectiveness of insulin treatment in patients with DM2 if patients have some experience in using insulin. This confirms necessity of more frequent glucose monitoring in this group and can be explained by maximal flexibility of insulin therapy. Among uncompensated patients with DM2 there is better glucose control in people using glucose self-measurement due to lower number of persons with severe decompensation (there were no patients with HbA1c >12% among self-measurement group while such levels were observed in several patients without self-monitoring). Here results of glucose measurement may become warning signs and motivate patients and doctors for change in treatment therefore reducing time and severity of decompensation. At the same time among patients with moderate decompensation glucose measurements may be not so convincing evidence of poor treatment and therefore do not influence level of compensation. Also there can be significant group of patients with DM2 in whom good compensation can be achieved without need for complex changes in treatment and lifestyle and in whom glucose self-measurement will not affect results of treatment. These factors explain absence of difference of HbA1c depending on glucose monitoring in patients with DM2 without marked decompensation.
logbook. Subjects were seen at baseline, 6 weeks, 3 months, and 6 months with no mandated actions between visits. Baseline testing frequency was self-reported, and meters were downloaded at visit 2–4.

Results: For the primary endpoint of frequency of post-prandial testing, the Advanced testing group had significantly more frequent post-prandial tests per week (Table 1) and significantly more paired pre- and post-prandial tests than the Basic group at each follow-up.

Table 1. Post-prandial Weekly Tests

<table>
<thead>
<tr>
<th>System</th>
<th>Within ±5% or</th>
<th>Within ±10% or</th>
<th>Within ±15% or</th>
<th>Within ±20% or</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeStyle Freedom Lite</td>
<td>72.3%</td>
<td>95.5%</td>
<td>99.7%</td>
<td>100%</td>
</tr>
<tr>
<td>Accu-Chek Aviva</td>
<td>60.5%</td>
<td>91.9%</td>
<td>99.1%</td>
<td>100%</td>
</tr>
<tr>
<td>OneTouch Ultra2</td>
<td>49.2%</td>
<td>80.4%</td>
<td>95.2%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Contour</td>
<td>27.2%</td>
<td>59.5%</td>
<td>85.8%</td>
<td>97.3%</td>
</tr>
</tbody>
</table>

Conclusions: Current findings demonstrate that a meter with a meal marker + audible reminder increases post-prandial and paired testing.

Supported by: Bayer HealthCare Diabetes Care

1046

Can glucose meters meet tighter accuracy requirements?

R. Ng, J. Lock; 1Abbott Diabetes Care, Alameda, 2Internal Medicine and Endocrinology, Worcester, USA.

Background and aims: The ISO Standard (ISO 15197:2003) and various CLSI guidelines are undergoing revisions that are likely to result in tightening the accuracy requirements on blood glucose monitoring systems (BGMS). We evaluated four of the latest generation of BGMS to assess the potential impact of tighter criteria on system accuracy.

Materials and methods: The following 4 BGMS, each with 3 lots of strips, were evaluated for finger blood testing at a clinic: Bayer Contour®, LifeScan OneTouch Ultra2 (with the new OneTouch Ultra Blue test strip), Roche Accu-Chek Aviva and Abbott FreeStyle Freedom Lite system (with the new GDH-FAD test strip). A total of 150 diabetic subjects were included in the study. A trained operator tested the subject’s fingertip blood in duplicate with the 4 systems and 2 YSI glucose analyzers, which served as the reference.

The order of testing the 4 systems was rotated after each subject. To ensure sufficient number of finger blood samples with glucose concentrations below 2.8 mmol/L (50 mg/dL) and above 22.2 mmol/L (400 mg/dL) were tested, 8 samples were modified to lower the glucose concentration below 2.8 mmol/L (50 mg/dL) and another eight samples were modified to elevate above 22.2 mmol/L (400 mg/dL). The accuracy of the YSI analyzers was validated by testing the National Institute of Standards and Technology (NIST) Standard Reference Material SRM 965b. All systems and supplies were stored, handled and operated according to the manufacturer’s instructions.

Results: The blood glucose concentrations of the 150 subjects and the 16 modified samples ranged from 1.3 - 25.5 mmol/L (23 to 460 mg/dL), with a mean value of 9.7 mmol/L (175 mg/dL) and a median of 8.6 mmol/L (155 mg/dL). The hematocrits of the 150 subjects ranged from 32% to 54% (mean and median, 42%), and were within the product specifications. A total of 331 to 332 tests were performed on each BGMS with 166 blood samples from 150 patients. All 4 BGMS met the minimum acceptable accuracy required by ISO 15197:2003, with ≥95% of the individual glucose results falling within ±20% of the reference, and within ±0.83 mmol/L (15 mg/dL) at glucose concentrations <4.2 mmol/L (<75 mg/dL).†. When the accuracy criterion was tightened to ±15% of the reference, and within ±0.83 mmol/L (15 mg/dL) at glucose concentrations <5.6 mmol/L (<100 mg/dL), ‡, less than 95% of the Bayer Contour, LifeScan OneTouch Ultra2 and Roche Accu-Chek Aviva results met criterion; only the Abbott FreeStyle Freedom Lite system met this criterion.

Conclusion: Not all BGMS can meet tighter accuracy criteria. Manufacturers will need to be vigilant in improving the accuracy performance of their BGMS to be ready for the anticipated changes in accuracy standards and guidelines.
Background and aims: The role of self-monitoring of blood glucose (SMBG) in Type 2 diabetes (T2D) management is not adequately established. Aim of the present study was to assess the relationship between HbA1c and SMBG values in T2D patients, as well as determine SMBG values that define a satisfactory glycaemic control.

Materials and methods: A total of 1,000 consecutive T2D patients were examined in 3 outpatient Diabetes centers. SMBG values of the previous week were recorded as well as the HbA1c value at the visit index.

Results: A total of 926 patients reported they were performing SMBG at home, of which 872 had pre-prandial values and 774 also post-prandial values in their records. A very strong correlation was found between HbA1c and both pre- and post-prandial SMBG values (r=0.649, p<0.001, respectively). The correlation between HbA1c and the total SMBG values (both pre-prandial and post-prandial) was even stronger (r=0.706, p<0.001). In a multivariate analysis, pre- and post-prandial SMBG values had an independent association with HbA1c. According to these associations, the target value of HbA1c, 7.0% corresponded to a mean pre-prandial SMBG value of 120 mg/dl and to a mean 2-hour post-prandial SMBG value of 151 mg/dl.

Conclusion: In patients with T2D, SMBG values for 1 week satisfactorily define glycaemic control. Post-prandial values offer additional data for assessing diabetic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.

1049
Structured blood glucose monitoring reduces distress and depression, and enhances well-being in poorly controlled, non-insulin treated type 2 diabetes: results from the SteP Study
L. Fisher1, W. Polonsky2, C. Parkin3, Z. Jelsovsky4, M. Schweitzer2, R. Wagner1
1University of California, San Francisco, 2University of California, San Diego, 3Health Management Resources, Inc., Carmel, 4BioStat International, Tampa, 5Roche Diagnostics Corporation, Indianapolis, USA.

Background and aims: Recent reports have suggested that the promotion of SMBG among non-insulin treated patients with T2DM is associated with more depressive symptoms. In the Structured Testing Protocol (SteP) study, we investigated the impact of a structured SMBG intervention on diabetes distress, clinical depression and well-being over 12 months.

Materials and methods: In this prospective, cluster-randomized, multi-centered clinical trial with 522 randomly assigned, poorly-controlled (HbA1c ≥7.5%), insulin-naïve T2DM patients, we showed that patients in a structured testing SMBG group (STG) displayed larger reductions in HbA1c over 12 months than patients in an active control group (ACG). STG subjects used the Accu-Chek® 360° View Blood Glucose Analysis System, an easy-to-use factory glycaemic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.

Results: A total of 926 patients reported they were performing SMBG at home, of which 872 had pre-prandial values and 774 also post-prandial values in their records. A very strong correlation was found between HbA1c and both pre- and post-prandial SMBG values (r=0.649, p<0.001, respectively). The correlation between HbA1c and the total SMBG values (both pre-prandial and post-prandial) was even stronger (r=0.706, p<0.001). In a multivariate analysis, pre- and post-prandial SMBG values had an independent association with HbA1c. According to these associations, the target value of HbA1c, 7.0% corresponded to a mean pre-prandial SMBG value of 120 mg/dl and to a mean 2-hour post-prandial SMBG value of 151 mg/dl.

Conclusion: In patients with T2D, SMBG values for 1 week satisfactorily define glycaemic control. Post-prandial values offer additional data for assessing diabetic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.

1049
Structured blood glucose monitoring reduces distress and depression, and enhances well-being in poorly controlled, non-insulin treated type 2 diabetes: results from the SteP Study
L. Fisher1, W. Polonsky2, C. Parkin3, Z. Jelsovsky4, M. Schweitzer2, R. Wagner1
1University of California, San Francisco, 2University of California, San Diego, 3Health Management Resources, Inc., Carmel, 4BioStat International, Tampa, 5Roche Diagnostics Corporation, Indianapolis, USA.

Background and aims: Recent reports have suggested that the promotion of SMBG among non-insulin treated patients with T2DM is associated with more depressive symptoms. In the Structured Testing Protocol (SteP) study, we investigated the impact of a structured SMBG intervention on diabetes distress, clinical depression and well-being over 12 months.

Materials and methods: In this prospective, cluster-randomized, multi-centered clinical trial with 522 randomly assigned, poorly-controlled (HbA1c ≥7.5%), insulin-naïve T2DM patients, we showed that patients in a structured testing SMBG group (STG) displayed larger reductions in HbA1c over 12 months than patients in an active control group (ACG). STG subjects used the Accu-Chek® 360° View Blood Glucose Analysis System, an easy-to-use factory glycaemic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.

Results: A total of 926 patients reported they were performing SMBG at home, of which 872 had pre-prandial values and 774 also post-prandial values in their records. A very strong correlation was found between HbA1c and both pre- and post-prandial SMBG values (r=0.649, p<0.001, respectively). The correlation between HbA1c and the total SMBG values (both pre-prandial and post-prandial) was even stronger (r=0.706, p<0.001). In a multivariate analysis, pre- and post-prandial SMBG values had an independent association with HbA1c. According to these associations, the target value of HbA1c, 7.0% corresponded to a mean pre-prandial SMBG value of 120 mg/dl and to a mean 2-hour post-prandial SMBG value of 151 mg/dl.

Conclusion: In patients with T2D, SMBG values for 1 week satisfactorily define glycaemic control. Post-prandial values offer additional data for assessing diabetic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.

1049
Structured blood glucose monitoring reduces distress and depression, and enhances well-being in poorly controlled, non-insulin treated type 2 diabetes: results from the SteP Study
L. Fisher1, W. Polonsky2, C. Parkin3, Z. Jelsovsky4, M. Schweitzer2, R. Wagner1
1University of California, San Francisco, 2University of California, San Diego, 3Health Management Resources, Inc., Carmel, 4BioStat International, Tampa, 5Roche Diagnostics Corporation, Indianapolis, USA.

Background and aims: Recent reports have suggested that the promotion of SMBG among non-insulin treated patients with T2DM is associated with more depressive symptoms. In the Structured Testing Protocol (SteP) study, we investigated the impact of a structured SMBG intervention on diabetes distress, clinical depression and well-being over 12 months.

Materials and methods: In this prospective, cluster-randomized, multi-centered clinical trial with 522 randomly assigned, poorly-controlled (HbA1c ≥7.5%), insulin-naïve T2DM patients, we showed that patients in a structured testing SMBG group (STG) displayed larger reductions in HbA1c over 12 months than patients in an active control group (ACG). STG subjects used the Accu-Chek® 360° View Blood Glucose Analysis System, an easy-to-use factory glycaemic control. Pre-prandial values <120 mg/dl and 2-hour post-prandial values <151 mg/dl correspond to HbA1c values <7.0%.
PS 100 Continuous glucose monitoring systems: devices, practice and outcomes

1051
Prospective data evaluation of the application of a multisensor device for non invasive continuous glucose monitoring
M.S. Talary1, M. Mueller2, O. De Feo3, P. Zakharov1, A. Megel1, M. Donath3, J. Klisic1, W.A. Stahel4, A. Caduff2; 1R&D, Solianis Monitoring, 2Division of Endocrinology and Diabetes, University Hospital Zurich, 3Seminar for Statistics, ETH Zurich, Switzerland.

Background and aims: We have previously reported about the findings in clinical-experimental studies with a novel Multisensor system for non invasive continuous glucose monitoring. The Multisensor measures skin impedance and optical skin characteristics in several frequency bands of the electromagnetic spectrum as well as temperature, acceleration and humidity. In this study a Multisensor version with fully integrated sensors and battery in a miniaturised housing (54 x 65 x 13 mm) was experimentally tested to compare the outcome to previous findings using earlier versions.

Materials and methods: Six T1DM patients (age 44±16 y; BMI 24.1±1.3 kg/m², duration of diabetes 27±12 y; HbA1c 7.3±1.0%) wore the same Multisensor at the upper arm. In total these patients performed 45 in-clinic study days; each patient performed on average seven study days (min. 5 and max. 10 days). A study day lasted approximately 10 hrs (min. 9 and max. 11 hrs) and glucose changes were induced by the administration of an oral or i.v. glucose solution. Blood glucose was measured for reference using a HemoCue analyser. Several prospective data evaluation routines were applied. The first 22 study day’s data spanning all subjects were used to train a linear regression model. The global model derived was then prospectively applied to the data of the remaining 23 study days allowing for external validation. One initial baseline adjustment at the very beginning of each study day was used to adjust the level of the glucose estimate.

Results: Figure 1 shows the time series of all 23 externally validated study days. These profiles were obtained with fully prospective data evaluation using a global model with one initial calibration point. When comparing the estimated glucose to the blood glucose reference values, the model yielded a Mean Absolute Relative Difference (MARD) of 40.8%, a Mean Absolute Difference (MAD) of 51.9 mg/dL, and an R² of 0.70 on average per study day. The Clarke error grid analyses showed 89.0% of paired glucose values in A+B, 4.5% in C, 4.6% in D and 1.9% in the E region.

Conclusion: This work demonstrates that glucose variations under controlled conditions can be monitored non invasively by a prospectively applied multiple regression statistical model. The findings from this study indicate that further development steps in the Multisensor system should not affect the estimation performance. In this respect, the expected model performance can be more reliably judged at the stage of clinical validation.

1052
Simultaneous non invasive continuous glucose monitoring on the left and right arm using two multisensor devices
A. Caduff1, M. Mueller1, O. De Feo3, P. Zakharov1, A. Megel1, M. Donath3, J. Klisic1, W.A. Stahel4, M.S. Talary1; 1R&D, Solianis Monitoring, Zurich, 2Division of Endocrinology and Diabetes, University Hospital Zurich, 3Seminar for Statistics, ETH Zurich, Switzerland.

Background and aims: We have previously reported about the findings in clinical-experimental studies with a novel Multisensor system for non invasive continuous glucose monitoring. The Multisensor measures skin impedance and optical skin characteristics in several frequency bands of the electromagnetic spectrum. In this study a Multisensor version with fully integrated sensors and battery in a miniaturised housing (54 x 65 x 13 mm) was experimentally tested, investigating location related measurement characteristics.

Materials and methods: Four T1DM patients (age 43±9 y; BMI 24.5±3.7 kg/m², duration of diabetes 22±11 y; HbA1c 7.7±0.5%) performed 4 in-clinic study days with a Multisensor attached to the left and right upper arm. As a result, 32 datasets from 16 study days were obtained. The Multisensors were exchanged between the patients and the left and right arm according to a Graeco-Latin Square. Glycaemia was varied using 4 different glucose profiles. For each study day, one of the four different glucose profiles was induced via oral Carbohydrate loads. Blood glucose was measured for reference using a HemoCue analyser. Different data evaluation routines were applied to the Multisensor data in order to obtain global (identical coefficients) and personal (personal coefficients) models that were used for cross validation.

Results: Figure 1 shows all 32 glucose profiles obtained during the 16 study days, using the global model with a prospective initial baseline calibration (CEG A 44.9, B 48.0, C 3.6, D 3.0, E 0.5%). The following performance metrics was obtained from the different models. In each model an initial baseline calibration was used at the beginning of each study day (IB) as well as a full day baseline calibration (FB), with Average R² = coefficient of determination on average over the study days, MAD= Mean Absolute Difference [mg/dL], MARD= Mean Absolute Relative Difference [%]. Global IB: 0.76, 47, 32.3; Global FB: 0.75, 29.9, 21.3; Personal IB: 0.85, 43.3, 30.7; Personal FB: 0.84, 24.1, 17.6.

Conclusion: The glucose time courses estimated by the Multisensors from the two arms are repeatable comparable, even with a global model with one initial baseline calibration only. This indicates that the sensor signal characteristics are robust enough to allow changing from one arm to the other using the same device settings and calibration. This represents thus a further indication that the Multisensor approach for non invasive glucose monitoring under such conditions is possible. It is also an indication that a personal model may be able to track glucose more accurately than a global model.

Figure 1: Overview of all 32 predicted glucose profiles with a fully prospective data evaluation of the two Multisensor devices on the left (red) and right (green) arm using a global model with one initial calibration point (Global IB).

1053
Measuring within-patient glycaemic variability: a best practice
L. Kerr1, C.R. Heilmann, C. Jones, J.A. Jackson, S. Jacober; Eli Lilly and Company, Indianapolis, USA.

Background and aims: The role of glycaemic variability (GV) in the development of diabetes complications and hypoglycaemia in patients (pts) with diabetes remains controversial. Our aim was to compare current GV measures through simulated self-monitored blood glucose (SMBG) and continuous glucose monitoring (CGM) data points to determine which measure carries the highest statistical power and effect size.

Materials and methods: We simulated datasets for 1,000 trials with pts with type 1 (20%) and type 2 (80%) diabetes. Three days of 7-point SMBG profiles (n=240 pts/trial) and 288-point CGM profiles (n=20/trial) were generated using a gamma distribution which created two patient groups, Groups 1 and 2. To assess the effect of different GV measures independent of mean BG, we divided the highest statistical power and effect size.

Results: Using a gamma distribution which generated two patient groups, Groups 1 and 2. To assess the effect of different GV measures independent of mean BG, we divided the highest statistical power and effect size.
The Ambulatory Glucose Profile (AGP) has been supported by Eli Lilly and Company. The AGP analysis was performed utilizing 67 adult subjects (T1DM = 47, T2DM = 20) that participated in a study that began with 20 days of masked CGM, using the FreeStyle Navigator® System. Subjects were not able to see their CGM glucose values or trends and did not have glucose threshold or projected alarms available. Only masked data were evaluated in order to minimize effects of therapy adjustments on the evaluation. Statistics for each of 3 to 19 days of CGM data were compared to the 20-day values and evaluated on a per-subject basis. Overall summary statistics (mean, standard deviation, 10th, 25th, 50th, 75th, 90th percentiles, inter-quartile range, mean change in the hourly median curve), equivalence criteria of 90-110% of the 20-day value were evaluated. For overall rates of glucose above, below or within the target of 3.89-7.78 mmol/L (70-140 mg/dL), the absolute difference compared to the 20-day value was evaluated at equivalence criteria (based on scaling the standard error of the overall mean) of 6.40%, 1.45%, and 5.46%, respectively. For hourly AGP percentile lines (10th, 25th, 50th, 75th, 90th) the mean absolute relative difference compared to the corresponding 20-day line was calculated and evaluated against the equivalence criteria <10%.

Results: A summary of the 20-day statistics and the relationship between the number of days needed for an AGP statistic to meet the equivalence criteria for 70%, 80% and 90% of subjects is shown in Table 1. After 10 days, the glucose mean, standard deviation, 50th, 75th and 90th percentiles were within 10% of the 20-day value for more than 80% of subjects. After 14 days, the rates of above, below and within target, the 10th and 25th percentiles, and the hourly AGP percentile lines met the equivalence criteria for over 80% of patients. The interquartile range and mean change in the hourly median curve needed more days of CGM to approximate the 20-day value for 80% of subjects: 15 and 18 days, respectively.

Conclusion: AGP analysis promises to be an effective tool for identifying glucose abnormalities and may allow the use of evidence-based and protocol-driven medical practices to select appropriate therapies to address those abnormalities. Clinical evidence is lacking to support the assumption used in this study that AGP analysis of 20 days of CGM can identify clinically important glucose trends and patterns. Within that context, however, this analysis suggests that a minimum of 14 days of CGM provides identification of in-mean and 18 days, respectively.

Assessment of the minimum number of days of CGM needed to approximate the 20-day value for more than 80% of subjects. After 10 days, the glucose mean, standard deviation, 50th, 75th and 90th percentiles were within 10% of the 20-day value for more than 80% of subjects. After 14 days, the rates of above, below and within target, the 10th and 25th percentiles, and the hourly AGP percentile lines met the equivalence criteria for over 80% of patients. The interquartile range and mean change in the hourly median curve needed more days of CGM to approximate the 20-day value for 80% of subjects: 15 and 18 days, respectively.

Abbreviations: ADRR = average relative difference
AGP = Ambulatory Glucose Profile
AMR = Mean Absolute Relative Difference
AP = Absolute Percentage
SD = Standard Deviation
SD% = Standard Deviation of Percentage
T.C. Dunn, N. Crouther;
Abbott Diabetes Care, Alameda, USA.

Background and aims: The Ambulatory Glucose Profile (AGP) has been proposed as an effective way to identify trends in glucose abnormalities in people with diabetes using continuous glucose monitoring (CGM). The aim of this study was to evaluate the minimum number of days of CGM needed to arrive at stable glucose patterns revealed by AGP analysis.

Materials and methods: AGP analysis was performed utilizing 67 adult subjects (T1DM = 47, T2DM = 20) that participated in a study that began with 20 days of masked CGM, using the FreeStyle Navigator® System. Subjects were not able to see their CGM glucose values or trends and did not have glucose threshold or projected alarms available. Only masked data were evaluated in order to minimize effects of therapy adjustments on the evaluation. Statistics for each of 3 to 19 days of CGM data were compared to the 20-day values and evaluated on a per-subject basis. Overall summary statistics (mean, standard deviation, 10th, 25th, 50th, 75th, 90th percentiles, inter-quartile range, mean change in the hourly median curve), equivalence criteria of 90-110% of the 20-day value were evaluated. For overall rates of glucose above, below or within the target of 3.89-7.78 mmol/L (70-140 mg/dL), the absolute difference compared to the 20-day value was evaluated at equivalence criteria (based on scaling the standard error of the overall mean) of 6.40%, 1.45%, and 5.46%, respectively. For hourly AGP percentile lines (10th, 25th, 50th, 75th, 90th) the mean absolute relative difference compared to the corresponding 20-day line was calculated and evaluated against the equivalence criteria <10%.

Results: A summary of the 20-day statistics and the relationship between the number of days needed for an AGP statistic to meet the equivalence criteria for 70%, 80% and 90% of subjects is shown in Table 1. After 10 days, the glucose mean, standard deviation, 50th, 75th and 90th percentiles were within 10% of the 20-day value for more than 80% of subjects. After 14 days, the rates of above, below and within target, the 10th and 25th percentiles, and the hourly AGP percentile lines met the equivalence criteria for over 80% of patients. The interquartile range and mean change in the hourly median curve needed more days of CGM to approximate the 20-day value for 80% of subjects: 15 and 18 days, respectively.

Conclusion: AGP analysis promises to be an effective tool for identifying glucose abnormalities and may allow the use of evidence-based and protocol-driven medical practices to select appropriate therapies to address those abnormalities. Clinical evidence is lacking to support the assumption used in this study that AGP analysis of 20 days of CGM can identify clinically important glucose trends and patterns. Within that context, however, this analysis suggests that a minimum of 14 days of CGM provides identification of individual glucose patterns. Prospective studies are needed to provide clinical evidence establishing the benefits of identifying patterns with AGP analysis that affect treatment and improve outcomes.

Table 1. Summary of 20-Day AGP Statistics and Number of CGM Days Needed to Meet Equivalence

<table>
<thead>
<tr>
<th>AGP Parameter</th>
<th>Mean AGP Value</th>
<th>Number of Subjects</th>
<th>% of Subjects Meeting Equivalence Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean AGP Value</td>
<td>7.52 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.36 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>6.59 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>6.95 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>7.27 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>7.78 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>8.60 mmol/L</td>
<td>67</td>
<td>70%</td>
</tr>
</tbody>
</table>

Abbreviations: ADRR = average relative difference
AGP = ambulatory glucose profile
AMR = mean absolute relative difference
AP = absolute percentage
SD = standard deviation
S241

Supported by: Eli Lilly and Company

Supported by: Abbott Diabetes Care
1055
Assessment of postprandial glucose control; a consideration from continuous glucose monitoring
T. Tsukita, S. Nagasaki, N. Takahashi, D. Sekizawa, I. Kusaka, N. Saito, H. Yagyu, S. Ishibashi; Endocrinology and Metabolism, Jichi Medical University, Shimotsuke-city, Japan.

Background and aims: Importance of postprandial glucose control has been appreciated, although the consensus on its assessment is not established. This study was undertaken to reveal characteristics of postprandial glucose control and make a consideration on its assessment.

Materials and methods: Glucose levels until 3 hrs postprandial were measured with Continuous Glucose Monitor (CGM) in a total of 491 meals. These were obtained from a total of 103 diabetic patients (41 with type 1, 56 with type 2, and 6 with other types; with ages of 52.6±13.7 years, BMI 23.0±3.9 kg/m², and HbA1c 9.1±2.2%, mean±SD). Eighty-one patients were treated with insulin (mostly with multiple injections or CSII), 11 with oral hypoglycemic agents, and 11 with diet therapy alone. Most of the patients were admitted and given controlled diet comprising 50% of energy intake as carbohydrate.

Results: Median glucose levels of the 491 meals were 126 (pre-prandial), 155 (at 30 min postprandial), 175 (at 60), 172 (at 90), 166 (at 120), 156 (at 150), and 149 mg/dl (at 180), respectively. Maximal median value was 176 mg/dl at 65 min. Pre-prandial and maximal postprandial glucose levels after breakfast, lunch, and supper were 130 and 191 (at 60), 127 and 163 (at 75), 135 and 186 (at 80), respectively. Postprandial glucose levels 45–130 min after lunch were significantly lower than those after breakfast and supper, suggesting presence of second meal effect. Between patients with or without insulin therapy, glucose excursions after meal were essentially analogous and both glucose peaks were at around 60 min. When the subjects were divided into 4 groups according to pre-prandial glucose levels (109, 110–129, 130–159, and 160–200 mg/dl), corresponding maximal postprandial glucose levels were 150 (at 95), 165 (at 75), 183 (at 80), and 232 mg/dl (at 60), respectively. There was a trend that a glucose peak appears earlier as pre-prandial glucose levels increase. When the subjects were divided into 4 groups according to glucose levels at 2-hours postprandial (140, 140–179, 180–219, and 220–250 mg/dl), corresponding maximal postprandial glucose levels were 133 (at 45), 175 (at 65), 205 (at 65), and 262 mg/dl (at 105), respectively. There was a trend that a glucose peak appears later as 2-hours postprandial glucose levels increase. Then we divided the subjects into 4 groups according to glucose levels at 1-hour postprandial by using the same criteria at 2-hours. Corresponding maximal postprandial glucose levels were 117 (at 53), 163 (at 70), 205 (at 70), and 256 mg/dl (at 65), respectively. The glucose peaks were observed at around 60 min, irrespective of glucose control (Figure).

Conclusion: When postprandial glucose levels are assessed at 2-hours, “real” glucose peaks are observed at 45–105 min depending on glucose control. Given the glucose spike plays an important role on vascular complications, assessment at 1-hour would be appreciated since the glucose peaks are captured at this point irrespective of glucose control.

1056
Predictors of continuous glucose monitoring (CGM) variability and associations with patient satisfaction and health perceptions in insulin-treated diabetes
D.C. Simonson1, M.A. Testa2, J. Gill3, R.R. Turner2, L. Blonde2
1Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, 2Biostatistics, Harvard School of Public Health, Boston, 3sanofi-aventis, Bridgewater, USA

Background and aims: Glycemic variability is typically estimated using 7-point glucose profiles, which might not be sensitive to clinical predictors and patient-centered health outcomes. We modeled continuous glucose monitor (CGM) variability to determine if insulin regimen, type of diabetes, age, sex, BMI and HbA1c predict CGM within-day standard deviations (SD), and if SD changes are associated with patient satisfaction (PS) and perceived health (PH).

Materials and methods: We analyzed CGM data from 306 insulin-treated T2DM and 82 T1DM (47% male, age 54±11 yrs, HbA1c 7.8±0.7%) who were randomized to open-label daily insulin glargine + premeal glulisine (GG; n=192) or BID analogue premix 75/25 or 70/30 (PM; n=196) for 12 wks (P1), and then crossed over to the alternate treatment for 12 wks (P2). Patients were contacted weekly to ensure compliance with a titration algorithm with a target HbA1c ≤7.0%. Three-day CGM and HbA1c were obtained at Wks 0, 12 and 24. Patients completed clinic-based PS and PH questionnaires at Wks 0, 8, 12, 20 and 24. CGM estimates were obtained for each patient from the 3-day session (288 glucoses/day), and regression used to model independent variables. PS was represented by the net benefit composite scale, which included 4 subscales of advocacy, general satisfaction, glycemic effectiveness and preference. The PH scale included 3 subscales of health status, vitality and sleep quality.

Results: During P1, reductions from baseline for glycemic measures were larger for GG vs PM (p<0.001; see Table), except for % time < 3.9 mmol/l. P2 cross-over results (not shown) were similar to the between-group differences in P1. Baseline-adjusted PS (60.5±1.2 vs 45.4±1.2) and PH (427±3 vs 418±3) were higher for GG compared to PM during P1 and P2 (both p<0.01). CGM SD decreased with GG (-0.1±0.6 mmol/l, p=0.057), increased with T1DM (0.6±0.9 mmol/l), decreased by 0.02±0.004 and 0.01±0.003 mmol/l per unit increase in BMI and age, and increased by 0.4±0.04 mmol/l per unit increase in HbA1c (all p<0.001). Sex was not a significant predictor of CGM SD. The % time < 3.9 mmol/l was higher by 6.8±1.0% for T1DM vs T2DM, p<0.001. Improvement in PS was independently associated with decreases in HbA1c, CGM BG and SD (all p<0.015). PH improved with decreased CGM BG, SD and % time > 7.8 mmol/l (all p<0.05).

Table 1. Glycemic Control and Variability During Period 1 Treatment

<table>
<thead>
<tr>
<th>Period 1</th>
<th>GG Baseline</th>
<th>GG Wk 12</th>
<th>PM Baseline</th>
<th>PM Wk 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>7.8±0.05</td>
<td>7.1±0.05*</td>
<td>7.8±0.05</td>
<td>7.4±0.06</td>
</tr>
<tr>
<td>BG (mmol/l)</td>
<td>9.7±0.10</td>
<td>8.2±0.09*</td>
<td>9.7±0.09</td>
<td>9.1±0.09</td>
</tr>
<tr>
<td>SD (mmol/l)</td>
<td>2.7±0.04</td>
<td>2.4±0.05*</td>
<td>2.7±0.04</td>
<td>2.7±0.04</td>
</tr>
<tr>
<td>% time > 7.8 mmol/l</td>
<td>63.0±1.0</td>
<td>46.5±1.1*</td>
<td>63.9±1.0</td>
<td>55.6±1.0</td>
</tr>
<tr>
<td>% time < 3.9 mmol/l</td>
<td>5.3±0.4</td>
<td>7.4±0.4 (ns)</td>
<td>5.4±0.4</td>
<td>5.8±0.4</td>
</tr>
</tbody>
</table>

Conclusion: Lower CGM variability was associated with increased HbA1c and lower among T2DM, older, and higher weight patients. CGM variability, PS, and PH are useful patient-oriented measures to evaluate the comparative effectiveness of diabetes treatments.

Supported by: sanofi-aventis

1057
Withdrawn
Conclusions from recent systematic reviews have supported the use of a continuous glucose monitoring system (CGMS) for one month. The frequency of hypoglycemic episodes was reduced equally in both patients performing self-monitoring of blood glucose, and in patients carrying a continuous glucose monitoring device. However, we used a crossover design making the patients their own controls which strengthens the validity of our findings. The mean HbA1c level was fairly low at inclusion. This may have contributed to the small decline in HbA1c levels during intervention and the absence of a superior effect of CGMS in achieving good blood glucose control with less hypoglycemic events. CGMS compared to ICMF did not improve treatment satisfaction. The findings of our study illustrate the cost savings made from one aspect of the service and reinvest in another aspect.

Discussion: This study does not support previous findings that CGMS is superior to ICMF in order to lower HbA1c or reduce the burden of hypoglycemic episodes in adults. It could be argued that our results are based on a limited number of patients, evaluated over a short period of time, and in a patient population with moderate problems with glucose control and hypoglycemic episodes. However, we used a crossover design making the patients their own controls which strengthens the validity of our findings. The mean HbA1c level was fairly low at inclusion. This may have contributed to the small decline in HbA1c levels during intervention and the absence of a superior effect of CGMS in achieving good blood glucose control with less hypoglycemic events. CGMS compared to ICMF did not improve treatment satisfaction. The findings of our study illustrate the cost savings made from one aspect of the service and reinvest in another aspect.

Discussion: This study does not support previous findings that CGMS is superior to ICMF in order to lower HbA1c or reduce the burden of hypoglycemic episodes in adults. It could be argued that our results are based on a limited number of patients, evaluated over a short period of time, and in a patient population with moderate problems with glucose control and hypoglycemic episodes. However, we used a crossover design making the patients their own controls which strengthens the validity of our findings. The mean HbA1c level was fairly low at inclusion. This may have contributed to the small decline in HbA1c levels during intervention and the absence of a superior effect of CGMS in achieving good blood glucose control with less hypoglycemic events. CGMS compared to ICMF did not improve treatment satisfaction. The findings of our study illustrate the cost savings made from one aspect of the service and reinvest in another aspect.
Data were extracted from registers covering the
reductions were not statistically significant.
the small sample size, bootstrapped confidence intervals showed that the cost
were considerably lower for the analogue group (€1,738 vs. €2,647). Given
costs were offset elsewhere in the health care system. Hospital cost estimates
in the short-acting human insulin group. Bolus insulin treatment costs were
Results:
variables using propensity scores. Annual healthcare costs were extracted and
from the short-acting human insulin group (n=85) with respect to observable
prescriptions in the index period of a long-acting insulin analogues in combi
identified in a 1-year inclusion period (2005). Inclusion criteria were at least 2
registry regulations it was not possible to analyse brand specific data.
healthcare costs incurred by patients with type 2 diabetes (T2D) on a basal-
Virum, Denmark.
Background and aims: The aim of this study was to compare the direct
costs incurred by patients with type 2 diabetes (T2D) on a basal-bolus regimens using either fast-acting insulin analogues (Insulin Aspart, In-
sulin Lispro or Insulin Glulisine) or short-acting human insulin. Due to local registry regulations it was not possible to analyse brand specific data.
Materials and methods: Data were extracted from registers covering the
total Danish population, and included prescription data, in- and outpatient hospital data, primary care data, and demographic variables. Patients were identified in a 1-year inclusion period (2005). Inclusion criteria were at least 2 prescripions in the index period of a long-acting insulin analogues in combination with either fast-acting insulin analogues or short-acting human insulin with no switch to the other product during follow-up. Patients with at least one oral antidiabetic drug prescription were included as T2D, and patients with >1 prescription of fast-acting insulin analogues or short-acting human insulin were classified as basal-bolus. Individual patients from the fast-acting insulin analogues group (n=445) were matched individually with patients from the short-acting human insulin group (n=85) with respect to observable variables using propensity scores. Annual healthcare costs were extracted and analysed for a follow-up period of maximum 2 years after the inclusion date.
Results: Overall annual direct healthcare costs, including prescription medi-
cine, amounted to €4,163 in the fast-acting insulin analogue group and €3,130 in the short-acting human insulin group. Bolus insulin treatment costs were significantly higher for patients using fast-acting insulin analogues compared to patients using short-acting human insulin (€532 vs. €445). However, these costs were offset elsewhere in the health care system. Hospital cost estimates were considerably lower for the analogue group (€1,738 vs. €2,647). Given the small sample size, bootstrapped confidence intervals showed that the cost reductions were not statistically significant.
Conclusion: Using a matched cohort technique, patients with T2D on a ba-
sal-bolus regimen and fast-acting analogues are not more costly to the Dan-

Healthcare costs of fast-acting insulin analogues vs. short-acting human insulin in combination with long-acting insulin analogues for Danish patients with type 2 diabetes
J. Courtenay1, T. Christensen2, T. Thomsen3; 1Health & Economics, COWI A/S, Kongens Lyngby; 2Novo Nordisk A/S, Virum, Denmark.

Background and aims: The aim of this study was to compare the direct healthcare costs incurred by patients with type 2 diabetes (T2D) on a basal-bolus regimen using either fast-acting insulin analogues (Insulin Aspart, Insulin Lispro or Insulin Glulisine) or short-acting human insulin. Due to local registry regulations it was not possible to analyse brand specific data.

Materials and methods: Data were extracted from registers covering the total Danish population, and included prescription data, in- and outpatient hospital data, primary care data, and demographic variables. Patients were identified in a 1-year inclusion period (2005). Inclusion criteria were at least 2 prescriptions in the index period of a long-acting insulin analogues in combination with either fast-acting insulin analogues or short-acting human insulin with no switch to the other product during follow-up. Patients with at least one oral antidiabetic drug prescription were included as T2D, and patients with >1 prescription of fast-acting insulin analogues or short-acting human insulin were classified as basal-bolus. Individual patients from the fast-acting insulin analogues group (n=445) were matched individually with patients from the short-acting human insulin group (n=85) with respect to observable variables using propensity scores. Annual healthcare costs were extracted and analysed for a follow-up period of maximum 2 years after the inclusion date.

Results: Overall annual direct healthcare costs, including prescription medicine, amounted to €4,163 in the fast-acting insulin analogue group and €3,130 in the short-acting human insulin group. Bolus insulin treatment costs were significantly higher for patients using fast-acting insulin analogues compared to patients using short-acting human insulin (€532 vs. €445). However, these costs were offset elsewhere in the health care system. Hospital cost estimates were considerably lower for the analogue group (€1,738 vs. €2,647). Given the small sample size, bootstrapped confidence intervals showed that the cost reductions were not statistically significant.

Conclusion: Using a matched cohort technique, patients with T2D on a basal-bolus regimen and fast-acting analogues are not more costly to the Danish healthcare system than patients using short-acting human insulin despite higher insulin costs. The register-based study is ongoing and is expected to be updated with a longer time-horizon and more complete hospital data.
Table I: Results of Diabetes-Related Pharmacy and Total Costs

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Prefilled Pen</th>
<th>Vial/Syringe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic-related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>costs (mean, US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dollars)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from pre- to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>post-index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from pre- to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>post-index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of pharmacy costs</td>
<td>963</td>
<td>1,864</td>
</tr>
<tr>
<td>Difference</td>
<td>+901</td>
<td>+80</td>
</tr>
<tr>
<td>(pre-post index)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total costs</td>
<td>3,149</td>
<td>2,814</td>
</tr>
<tr>
<td>$1,384</td>
<td>+235</td>
<td>$2,975</td>
</tr>
<tr>
<td>$1,049</td>
<td>+61</td>
<td>$1,795</td>
</tr>
<tr>
<td>$0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1063

German real-life data indicate lower costs for basal supported oral therapy (BOT) with insulin glargine compared to combination therapy with exenatide and oral antidiabetic drugs S.M. Fuchs1, F.-W. Dippel2, K. Kostev3, W. Kotowa4
1Health Economics & Outcomes Research, IMS Health GmbH & Co. OHG, Nuremberg, 2
Evidenzbasierte Medizin und Gesundheitsökonomie, Sanofi-Aventis Deutschland GmbH, Berlin, 3IMS Health GmbH & Co. OHG, Frankfurt/Main, 4Health Economics & Outcomes Research, IMS Health GmbH & Co. OHG, Nuremberg, Germany.

Background and aims: Clinical efficacy of the new antihyperglycaemic injectable exenatide (EXE) in combination with oral antidiabetic drugs (OAD) is reported to be comparable to basal supported oral therapy (BOT) with insulin glargine (GLA). This study investigated the costs of a combination therapy of exenatide (EXE) and OAD vs. a BOT with GLA in type-2-diabetics (T2D) in Germany based on real-life data.

Materials and methods: A historical cohort study was performed using a representative patient database (IMS Disease Analyzer). T2D who initiated a BOT with GLA or a combination therapy with EXE and OAD between 1/2007 and 12/2008 and whose data were continuously documented at least 12 months before and 12 months after therapy initiation were included. The following variables were collected: age, sex, insurance status, region and specification of the practice, diabetes duration, HbA1c level and BMI. Resource utilization (RU) and costs (based on public prices) were determined for a time period of 12 months after initiation of therapy with GLA (BOT) and EXE (OAD), respectively. The diabetes-related direct treatment costs (DR-costs) were identified for both treatment regimens, containing GLA, EXE, OADs, glucose [i.v./glucagon, blood glucose test strips (BGT strips) and consumables such as lancets and needles. Additionally, direct costs for co-medication (antihypertensive, lipid lowering, anti-thrombotic and cardiovascular drugs) were assessed for GLA (BOT) and EXE (OAD). RU included the evaluation of the number of physician visits, referrals to specialists and hospital admissions. Applying regression analysis, adjusted RU and costs for GLA (BOT) vs. EXE (OAD) were calculated. The variables age, gender, specification of the practice, region, diabetes duration, HbA1c level and BMI were included into the model.

Results: 1,934 T2D were included, of which 1,484 received GLA (BOT) and 450 patients were treated with EXE (OAD). GLA-patients were older (70.2 years vs. 58.1 years; p=0.0001), had a longer diabetes duration (5.4 years vs. 3.9 years; p<0.0001), a higher HbA1c level (7.6% vs. 7.3%; p<0.0001) and a lower BMI (30.7 kg/m² vs. 35.6 kg/m²; p<0.0001) than EXE-patients at baseline. The unadjusted annual DR-costs were 1,068 € for GLA (BOT) and 1,740 € for EXE (OAD) (Δ = 672 €). The total annual adjusted DR-costs were lower in T2D on GLA (BOT) than on EXE (OAD); cost savings amounted to 640 € (p<0.0001) per year. This is mainly driven by the lower costs of GLA compared to EXE (Δ = 809 €; p<0.0001). Additionally, a cost advantage of GLA (BOT) vs. EXE (OAD) was found for the use of consumables (Δ = 37 € p<0.0001). In contrast, the adjusted cost of BGT strips were lower in EXE-patients than in GLA-patients (Δ = 203 €; p<0.0001). No significant differences were found for the expenses of OAD and co-medication, as well as for RU in both groups.

Conclusion: A randomized controlled trial showed similar efficacy of EXE and GLA, both in combination with OADs. This cost comparison yielded substantial cost savings in favour of the GLA treatment regimen. After adjustment the cost advantage of GLA remained stable. Therefore, the BOT treatment based on GLA compared to a combination therapy of EXE and OAD in T2D could lead to relevant cost savings in Germany.

Supported by: sanofi-aventis Deutschland GmbH

1064

Resource utilization and diabetes-related treatment costs of type-1 diabetic treated with ICT based on insulin glargine, insulin detemir or NPH insulin in Germany R.A. Bierwirth1, F.-W. Dippel2, K. Kostev3, S.S. Fuchs4, W. Kotowa5
1Ambulantes Diabetesszentrurn am Elisabeth-Krankenhaus, Essen, 2Sanofi-Aventis Deutschland GmbH, Berlin, 3IMS Health GmbH & Co. OHG, Frankfurt/Main, 4Health Economics & Outcomes Research, IMS Health GmbH & Co. OHG, Nuremberg, Germany.

Background and aims: The chronic course of the disease and the specific long-term complications of type 1 diabetes mellitus lead to substantial costs for the German health care system. Hence, the cost-effectiveness of different insulin formulations is gaining increasing importance. The aim of this study was to compare resource utilization and associated direct treatment costs of an intensified conventional therapy (ICT) with three different basal insulins in NPH, glargine (GLA) and insulin detemir (DET).

Materials and methods: A randomized controlled trial had started an ICT with NPH, GLA or DET between 7/2000 and 2/2008 were identified by using a representative German database (IMS Disease Analyzer). Patients whose data were continuously documented at least 12 months before and 18 months after initiation of an ICT were included. Patients who had a prescription of premixed insulin or were switched to another basal insulin within the observational period were excluded. The following variables were collected: age, gender, diabetes duration, HbA1c-level, Body Mass Index (BMI), insurance status (private versus statutory), geographical region and specification of the practice. Resource utilization was determined for a time period of 12 months and included the evaluation of basal and bolus insulin, blood glucose test strips, number of physician visits (general practitioner and specialist) and hospital admissions. Diabetes-related direct treatment costs (insulin, test strips, lancets, pens, needles, glucose i.v., glucagon) were calculated based on public prices for patients receiving NPH, GLA and DET, respectively. Finally, the evaluated resources and costs were adjusted for the variables age, gender, diabetes duration, HbA1c-level, BMI, specification of the practice and region, applying a multivariate regression model.

Results: 2,740 type-1-diabetics were included, of which 1,218 received an ICT with NPH, 1,079 with GLA and 443 with DET, respectively. The unadjusted annual diabetes-related direct treatment costs were 1,308 € for NPH, 1,512 € for GLA and 1,729 € for DET. After adjusting for potential confounders ICT with GLA showed economic advantages compared to ICT with NPH (-334 €/year; p<0.0001) or DET (-425 €/year; p=0.2800). The consumption of basal insulin and test strips was lower in patients treated with GLA compared to NPH (-6.00 U/day; p=0.3514 und -0.31 units/day; p=0.8291) or DET (-3.23 U/day; p<0.0001 und -0.59 units/day; p=0.0235). The number of referrals to specialists was lower for patients with GLA than in DET treated patients (-0.51/year; p=0.0009) but higher than in NPH treated patients (0.16/year; p=0.9184).

Conclusion: After adjustment for potential confounders this analysis of German real-life data showed that the ICT with GLA is related to lower annual treatment costs than the ICT with NPH or DET. In view of the equal clinical efficacy as reported in several randomized clinical trials and the economic advantages in comparison to NPH or DET, GLA should be regarded as the favored therapeutic option for type-1-diabetics in Germany.

Supported by: sanofi-aventis Deutschland GmbH

1065

Acute day hospital for medical care of hyperglycaemic crises in the last years of life J.F. Cano1, C. Claret1, D. Benages2, J. Puig1, M. Carrera2, F. Cots2, E. Corominas1, J. Flores1, J. Chillaron1, A. Goday1, 2Endocrinology and Nutrition, 3Sevei d’Estudis, Hospital Universitari del Mar, Barcelona, Spain.

Background and aims: Hyperglycaemic crises in oldest elder people have usually been treated in a hospitalization ward. The inhospital management is an expensive way of care and it may involve nosocomial complications. There are no studies comparing effectiveness and feasibility of Day Hospital treatment versus conventional hospitalization for patients older than 74 years.

Aims: 1.To assess the effectiveness of treating acute complications of diabetes (ACD) in a day hospital (DH) versus conventional hospitalization (CH) in older elder patients. 2. To evaluate glycaemic control at 3-6 months in both
groups. To compare short term re-admissions (3 months) due to diabetes and non-structural morbidity between study groups,

Materials and methods: A prospective, non-randomized, cohorts study with 6 months follow-up. We included all diabetic patients aged >74 years consecutively admitted in our hospital, with ketosis and/or acute hyperglycemia >300 mg/dl. We excluded patients presenting with HbA1C < 14 mLq. pH < 7.20, blood glucose >600 mg/dl, hemodynamic instability, severe intercurrent illness (infectious, CV disease ...), or Activities of Daily Living > D (Katz Index). Patients were assigned to DH or CH according to time of admission to the emergency-room. If patients were admitted out of DH opening hours they were assigned to CH. All patients included in the CH cohort could have been treated in DH if they had arrived during the DH opening hours. Investigators did not participate in group assignment. The cost calculation included structural cost and all visits (emergency ward, day hospital and outpatients consultations).

Results: During the four years study period, 101 patients met the inclusion criteria. 64 were attended in DH and 37 in CH. The average age was 80.5 ± 4.7 years (range 75-95), and there were 62.7% females, without differences between the groups. Cause of admission was acute hyperglycemia in 63.4% and Ketosis in 36.6%. Infection (37.5%) was the most common cause of ACD, followed by new onset diabetes (11.5%) and corticosteroid therapy (12.5%). During the first 15 days after discharge we observed 4 severe hypoglycemic events without differences between groups. The average cost per patient and year was 584.9 euros for the DH cohort and 1,796.0 euros for the CH group.

Conclusion: Our results prove the effectiveness and safety of ACD management in Day Hospital with a net economic saving of 1,211.1 euros/case with no differences in short term glycaemic control and hypoglycemic events, and with less frequent readmissions and pressure ulcers.

1066

Cost-effectiveness analysis of medical intervention in patients with early detection of diabetic retinopathy in a tertiary care hospital in Bangladesh
S.H. Habib, S. Saha, L. Ali; Health Economics Unit, BADAS, Dhaka, Bangladesh.

Background and aims: The economic burden resulting from diabetic retinopathy (DR) consumes a major portion of resources allocated for health-care services. Cost-effectiveness of various interventions on DR and its complications has relatively been well explored in developed countries, but these are almost absent in developing countries. The present study was undertaken to assess the cost-effectiveness of medical intervention in patients with DR.

Materials and methods: Two hundred patients with DR, with at least 1 year of follow-up, were purposively selected from the Out-Patient Department of BIRDEM (tertiary diabetes care hospital), Bangladesh. Of them 100 were late in detection of DR (LDR) & 100 were detected early (EDR). The degree & extent of complications like cardiopathy, peripheral neuropathy, nephropathy & vasculopathy, treatment outcome, clinical effectiveness of interventions and direct, indirect & incremental cost of complications were calculated. Comparison was made between the groups. Cost included drugs, hospitalizations, diagnostics & visits.

Results: A total of 200 patients were considered for an average of 365 days, amounting to 656 person-years of observation in total. In LDR group, 42.4% had mild nonproliferative DR (NPDR), 31.4% had moderate, 15.1% had severe NPDR & 11.1% had proliferative DR (PDR). In EDR group, 58.4% had mild and 41.6% had moderate NPDR. The mean±SD fasting serum glucose of the groups (LDR & EDR respectively) was 9.36±5.40 & 4.78±3.38 mmol/L, total cholesterol was 206.5±42.60 & 104.20±35.50 mg/dl, HbA1c was 9.80±0.50% & 5.70±0.38%, TG was 173.6±99.46 & 155.67±94.84 mg/dl, SBP was 172.5 ± 20.9 & 109.5±11.9 mmHg and DBP was 97.7±10.8 & 70.7±9.3 mmHg. About 17% patients in LDR & 34% in EDR were free of diabetic complications other than DR. In LDR & EDR, 18% & 46% had one complication, 27% & 8% had two and 30% & 4% had more than two complications respectively. The most frequent complication was cardiopathy, which affected 31% patients in LDR & 25% in EDR, followed by peripheral neuropathy 19% & 16%, nephropathy 15% & 11%, and vasculopathy 8 % & 4% respectively. The average annual cost of care was US$ 27954 (direct US$ 16983 & indirect US$ 10971), with an average US$ 140 per patient. Among the average annual cost LDR consumed US$ 19737 (US$ 197 per patient) & EDR US$ 8217 (US$ 82 per patient). US$ 13473 (48%) of costs was attributable to drugs for both groups of which US$ 10817 (80%) was for LDR & US$ 2656 (20%) for EDR, US$ 8739 (31%) to hospitalizations of which US$ 5211 (60%) for LDR & 3528 (40%) for EDR. In case of diagnostics & visits the corresponding values were US$ 2136 (60%) & 1419 (40%) and US$ 1673 (76%) & 514 (24%) for LDR & EDR respectively. The annual medical costs increased with the increased number of complications from US$ 1322 to 2298 & to 3991 in LDR with one, two & more than two complications (other than DR) which is increasing at a rapid rate and US$ 917 to 1556 & to 2372 in EDR respectively, increasing at a diminishing marginal rate. The regression equation showed that medical cost is significantly related to complications tested in both univariate (P<0.0001) & multiple linear regression analyses (R²=0.53; F=82.3, P<0.0001).

Conclusion: Proper management with regular screening substantially reduces the expenditure related to care of patient with diabetic retinopathy & related complications even in a developing country. Strategies aimed at preventing DR & early detection of the onset of retinopathy will reduce medical costs in a substantial way.
PS 102 Pregnancy - outcomes I

1068

Foetal exposure to maternal diabetes is associated with insulin secretory defect in females at adult age
L.-S. Fetita1,2, P. Boudou1, S. Choukem2, J.-P. Riveline1, S. Hadjadj1, C. Abi Khalil1, E. Larger2, L. Morbois3, T. Meas4, A. Penfornis1, R. Porcher1, P. Vexiau1, M. Marre1, P. Calvo1, J.-F. Gautier1,2
1Saint-Louis Hospital, Paris, France; 2Centre de Recherche des Cordeliers, INSERM, U 872, Paris, France; 3Medecine and Diabetes, Douala General Hospital, Douala, Cameroon; 4Diabetes and Endocrinology, Centre Hospitalier Sud Francilien, Corbeil-Essonne, France; 5Diabetes and Endocrinology, CHU Pottiers, France; 6Diabetes and Endocrinology, Bichat Hospital, Paris, France; 7Diabetes and Endocrinology, Hotel Dieu Hospital, Paris, France; 8Diabetes and Endocrinology, Institut Mutualiste Montsouris, Paris, France; 9Diabetes and Endocrinology, Lariboisiere Hospital, Paris, France, 10Diabetes and Endocrinology, CHU Besançon, Paris, France.

Background and aims: In humans, excess maternal transmission of type 2 diabetes supports the hypothesis that the intrauterine environment contributes to increased risk of type 2 diabetes in offspring. We have shown that fetal exposure to maternal diabetes is associated with an insulin secretion defect in response to glucose at adult age. The aim of the present study was to investigate whether fetal exposure to maternal diabetes is associated with a global (endocrine and exocrine) pancreatic dysfunction in non diabetic adult offspring.

Materials and methods: We investigated offspring of type 1 diabetic patients to circumvent the confounding effect of genetic factors related to type 2 diabetes. 29 adult offspring exposed to maternal type 1 diabetes during pregnancy (exposed group) were compared with 29 offspring of type 1 diabetic fathers (control group). Early insulin secretion in response to oral glucose defined as the ratio of Δ insulin to Δ glucose was measured during OGTT. Insulin and glucagon secretion were assessed during graded glucose infusion from 4 to 16 mg/kg/min followed by a 5-g arginine bolus. Insulin action was measured using a euglycemic hyperinsulinaemic clamp and percent body fat mass by DEXA. Exocrine pancreatic function was evaluated by quantitative stools analyses.

Results: Mean age, sex ratio, mean percent body fat and mean insulin sensitivity were similar in the exposed and control groups: 25.9 ± 6.2 (SD) vs 26.2 ± 6.1 years, 55 (F/M) vs 52 %, 26.3 ± 8.7 vs 24.5 ± 7.9 % fat mass and 11.5 ± 2.9 vs 11.7 ± 2.5 mg/kg of body fat free mass/min respectively. Impaired glucose tolerance was diagnosed in two offspring in each group. Early insulin secretion in response to oral glucose at adult age. The aim of the present study was to investigate whether fetal exposure to maternal diabetes is associated with a global (endocrine and exocrine) pancreatic dysfunction in non diabetic adult offspring.

Conclusion: Fetal exposure to maternal type 1 diabetes seems to be associated with a global pancreatic dysfunction at adult age. Insulin secretory defect in response to IV glucose is only observed in women suggesting sex-dependent epigenetic mechanisms.

Supported by: PHRC, SFD

1069

Glycaemic control, pre-eclampsia and gestational hypertension in pregnant women with type 1 diabetes
V. A. Holmes1, I.S. Young2, C.C. Patterson3, D.W.M. Pearson2, J.D. Walker2, M.J.A. Maresch1, D.R. McCance2, Diabetes and Preeclampsia (DAPIT) Study Group;
1School of Nursing and Midwifery, Queen’s University Belfast, 2Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 3Department of Diabetes, Aberdeen Royal Infirmary, 4Department of Diabetes, St. John’s Hospital at Howden, West Lothian, 5Department of Obstetrics and Gynaecology, St Mary’s Hospital for Women and Children, Manchester, 6Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, United Kingdom.

Background and aims: An association between glycaemic control and preeclampsia has been reported but the results are conflicting and the rela-
tive importance of early and late control for hypertensive complications of pregnancy remains unclear. The aim of this study was to assess the relationship between glycaemic control, preeclampsia and gestational hypertension in women with type 1 diabetes.

Materials and methods: HbA1c measurements were available from women taking part in the Diabetes and Preeclampsia Intervention Trial (a multicentre randomized controlled trial investigating the effect of antioxidants on the incidence of preeclampsia) at up to 6 months pre-pregnancy, at the first antenatal visit (booking), and at 26 and 34 weeks gestation. Results were categorized as poor (<8%), moderate (7-8%) and good (>7%) glycaemic control. Preeclampsia and gestational hypertension were defined using the International Society for the Study of Hypertension in Pregnancy guidelines. Logistic regression was used to estimate the odds on preeclampsia and gestational hypertension in women with poor and moderate control relative to women with good control both before and after adjustment for potentially confounding variables.

Results: Preeclampsia and gestational hypertension developed in 17% and 11% of pregnancies, respectively. Poor/moderate glycaemic control both before and during pregnancy were associated with significantly increased risk of preeclampsia compared with good glycaemic control. After adjustment for confounding variables the association between HbA1c and preeclampsia remained significant throughout pregnancy with highest odds ratios observed in the last trimester (see table). Glycaemic control during pregnancy was not significantly associated with gestational hypertension either before or after adjustment for confounders.

Glycaemic control before and during pregnancy and risk of preeclampsia and gestational hypertension

<table>
<thead>
<tr>
<th>Time-point</th>
<th>Glycemic control (HbA1c)</th>
<th>Preeclampsia*</th>
<th>Gestational hypertension*</th>
</tr>
</thead>
<tbody>
<tr>
<td><7%</td>
<td>Pre-pregnancy</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>7-8% vs <7%</td>
<td>1.70 [0.79-3.64]</td>
<td>0.62 [0.30-1.29]</td>
</tr>
<tr>
<td></td>
<td>>8% vs <7%</td>
<td>2.53 [1.19-5.36]</td>
<td>0.72 [0.36-1.43]</td>
</tr>
<tr>
<td></td>
<td>First antenatal visit</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>7-8% vs <7%</td>
<td>2.29 [1.22-4.31]</td>
<td>1.00 [0.54-1.86]</td>
</tr>
<tr>
<td></td>
<td>>8% vs <7%</td>
<td>3.46 [1.83-6.55]</td>
<td>0.91 [0.49-1.72]</td>
</tr>
<tr>
<td><7%</td>
<td>26 weeks gestation</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>7-8% vs <7%</td>
<td>2.01 [1.17-3.47]</td>
<td>0.80 [0.41-1.54]</td>
</tr>
<tr>
<td></td>
<td>>8% vs <7%</td>
<td>2.15 [0.84-5.50]</td>
<td>0.79 [0.26-2.46]</td>
</tr>
<tr>
<td><7%</td>
<td>34 weeks gestation</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>7-8% vs <7%</td>
<td>2.32 [1.14-4.72]</td>
<td>1.09 [0.53-2.24]</td>
</tr>
<tr>
<td></td>
<td>>8% vs <7%</td>
<td>5.87 [1.64-21.1]</td>
<td>0.79 [0.16-3.80]</td>
</tr>
</tbody>
</table>

*Adjusted Odds Ratio [95% Confidence Interval]. Adjusted for: treatment group, centre group, BMI, diabetes duration, parity, smoking, age, plasma ascorbate and serum α-tocopherol at randomisation, microalbuminuria before pregnancy.

Conclusion: Poor glycaemic control is associated with an increased risk of preeclampsia but not gestational hypertension. While glycaemic control is important before and throughout pregnancy, HbA1c during the last trimester (see table). Glycaemic control during pregnancy was not significantly associated with gestational hypertension either before or after adjustment for confounders.

Supported by: The Wellcome Trust

1071

Pregnancy outcomes in women with type 1 and type 2 diabetes in a Polish population

1Department of Metabolic Disease, Jagiellonian University, Medical College, Krakow, Poland; 2Department of Obstetrics and Perinatology, Jagiellonian University, Medical College, Krakow, Poland; 3Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, USA.

Introduction and aim: The number of pregnant women with type 2 (T2DM) is increasing worldwide. However, the majority of scientific reports on preeclampsia and gestational diabetes are associated with type 1 diabetes (T1DM). The knowledge on preeclampsia and gestational diabetes in women with T2DM is still incomplete. The purpose of this observational study was to assess gestational and pregnancy outcomes in women with gestational diabetes and to compare them with T1DM.

Methods: Medical records of 415 consecutive singleton pregnancies in women with gestational diabetes from 1999 to 2009 were analysed at the Department of Metabolic Diseases, Krakow, Poland. All women were Caucasian. Among them, there were 70 women with T2DM and 345 with T1DM. We compared HbA1c levels as well as selected maternal and foetal outcomes in both groups.

Results: Compared to T1DM, women with T2DM were significantly older (mean 33.1 years±5.2 vs. 27.8±5.0, respectively), heavier before pregnancy (mean weight 80.7 kg±17.8 vs. 64.5±10.1) and had shorter duration of diabetes (mean 3.3 years±3.2 vs. 11.5±7.3; p<0.0001 for all comparisons). T2DM women less weight gain during pregnancy than T1DM women (mean 10.4 months±2.7 vs. 13.8±6.5; p<0.0001), but final body weight before delivery were higher in T2DM group (mean 6.9±1.6 vs. 6.9±1.6; p=0.008). We observed a decrease of HbA1c level in both groups in the 2nd (1.7% ±0.9 vs. 5.9±0.8) and 3rd trimester (5.6% ±0.6 vs. 5.8±0.9), the differences in HbA1c were no longer significant. The rate of perinatal mortality (2.9% vs. 3.5%) and major congenital malformations (7.1% vs. 6.1%) as well as the proportion of preeclampsia ended by caesarean sections (56.3% vs. 63.9%) were similar in both groups. The birth weight was slightly smaller in T2DM than in T1DM (mean weight 3194.6±880 vs. 3419.2±681.3; p<0.04). The rate of babies born before 37 week of pregnancy was comparable in both groups, respectively 12.9% vs. 17.1%. We also observed a similar rate of stillbirths in both groups (8.6% vs. 7.0%; p=0.4).

Conclusion: In this large observational study we found similar pregnancy outcomes in women with T1DM and T2DM in a Polish population, despite better glycaemic control at the beginning of pregnancy in T2DM.

Supported by: Polish Ministry of Science
Pre-pregnancy body mass index and the risk of adverse pregnancy outcome in two thousand type 2 diabetes mellitus Bangladeshi women

S. Jahan,1, M.A. Chowdhury2, S.H. Habib3, S. Saha3; 1Department of Gynaecology & Obstetrics, BSMMU, 2Department of Cardiology, BSMMU, 3Health Economics Unit, BADAS, Dhaka, Bangladesh.

Background and aims: Obesity before pregnancy is associated with an increased risk of late fetal death, early neonatal death, preeclampsia & hyper-tensive disorders, preterm delivery, shoulder dystocia & macrosomia. The mother's being leaner than average on the other hand, is associated with an increased risk of delivering an infant of small for gestational age (SGA). The study was undertaken to assess the effect of the pre-pregnancy body mass index (BMI) on maternal & fetal outcome of 2000 type 2 diabetes singleton pregnant women who attended the obstetrics-diabetology Out-Patient clinic of a tertiary care hospital in Bangladesh.

Materials and methods: The women were categorized according to their BMI (kg/m2): lean < 20.0, normal from 20.0 to 24.9 and obese > 30.0 kg/m2. Information regarding maternal age, parity, complications during pregnancy or delivery and perinatal outcomes were obtained from hospital records. Late fetal death was defined as still birth occurring at 28 or more completed weeks of gestation and early neonatal death as death occurring during the first week after birth, preterm delivery was less than 37 completed weeks of gestation. SGA infants were defined as being below the mean birth weight for gestational age. Gestational age was estimated as based on ultrasound examination performed routinely at 12 weeks of gestation. The estimates were adjusted for maternal age, parity, smoking, education, and weight gain during pregnancy. The effect of pre-pregnancy BMI was analyzed by comparing the frequencies of various outcomes in three BMI groups by both univariate and multivariate logistic regression analysis. The results were expressed as odds ratio (ORs) and the corresponding 95% confidence intervals (CIs) & p values.

Results: The mean±SD age of the study subjects were 34±5 years, the median (range) duration of diabetes was 4 (3-5) years. The risk of late fetal death was consistently increasing with BMI (ORs were 1.2 (0.9-1.7), 1.6 (1.1-2.3) & 2.6 (1.7-3.8) for lean, normal & obese respectively). The risk of early neonatal death was also higher among women with higher BMI (ORs was 1.6 (1.1-2.3) for obese) (p=0.001). The rate of preeclampsia increased with increasing BMI (the values were 1.8%, 2.5% & 7.0% for lean, normal & obese respectively). Hypertensive disorders was also more common among obese (4.6%) compared with lean (1.3%) and normal (2.6%) (ORs 3.8 (2.5-5.6), 1.6 (1.1-2.2) & 2.5 (1.7-3.5) respectively). The risk of preterm delivery was significantly increased for obese group (4.2%), as compare to lean (2.2%) & normal weight (2.4%) (ORs 1.6 (1.3-2.1), 1 (0.8-1.6) & 1.2 (0.9-1.6) respectively) (p<0.001). The risk of SGA was significantly more in lean (2.7%) compared to normal weight (1.5%) & obese group (1.9%) (ORs 2.2 (1.7-2.8), 1.2 (0.9-1.5) & 1.0 (0.6-1.3) respectively). The risk of shoulder dystocia & macrosomic baby was higher in obese group.

Conclusion: Pre-pregnancy obesity increases the risk of late fetal death and perinatal mortality. As obesity prevents small for gestation age infant in Type 2 Diabetes subjects, the Type 2 DM lean women were advised to take adequate diet to meet the basic requirements of pregnancy. On the contrary obese women should reduce the body weight before pregnancy.

Methods: Fifty four women (10 with GDM - group 1, 17 with IDDM - group 2, 13 with IDDM until 3 years duration - group 3, 7 with IDDM from 3 to fifteen years duration - group 4 and 7 with IDDM more, than sixteen years duration - group 5) underwent 24-h Holter monitoring at the 37-39 weeks of gestation and 3-6 days postpartum. Heart rate variability (HRV) measures derived from 24-hour electrocardiography monitoring, calculated in the time (standard deviation of all normal RR intervals (SDANN), standard deviation of 5-minute RR intervals (SDANN), root-mean-square of difference of successive RR intervals (rMSSD), and percentage of adjacent RR intervals >50 ms different (pNN50) and frequency domain (total power - TP, power within low-frequency band - LF, and power within high-frequency band - HF).

Results: In group 3 HRV was higher: SDNN was 122±24,4ms vs 86,0±34,3ms in GDM, 110,7±60,5ms in group 2; 104,5±40,6ms in group 4 and 30,2±6,7ms (p<0.05) in group 5 respectively. HRV patients of groups 2 and 4 were characterized by wide dispersion of HRV, which reflected from other diseases (hypertension, preeclampsia etc). In type 1 diabetes mellitus HRV progressively declines with duration of illness. Extremely low activity of sympathetic nervous system (SDANN) and parasympathetic nervous system (rMSSD more than 45 ms) - with poor neonatal and maternal prognosis. After delivery there were no observed restoration HRV to normal in women with diabetes type 1.

Conclusion: The loss of the variability of the cardiac rhythm confirms that in women with IDDM has a chaos in cardiac pacing, which reflects autonomic neuropathy and other complications. In type IDDM neonatal prognosis correlates with maternal activity of sympathetic nervous system.

Supported by: RFBR №07-01-00376

Hypertension and end stage renal disease in women with a past history of gestational hypertension

K. Jahan1, F. Jebunnesa2, S. Sultana1, H. Chowdhury3, N. Sultana1, L. Ali1; 1Obstetrics and Gynaecology, DMC; 2Biochemistry and Cell Biology, BSMMU, Dhaka, Bangladesh.

Background and aims: Insulin resistance is thought to be a converging point in the pathophysiology of GH and it is postulated that women with this disorder have a much higher chance of developing hypertension and end stage renal disease (ESRD) at a later period after delivery. Prospective studies on this issue, however, are still limited. The aim of the present study was to investigate the long-term effect of GH on the postpartum development of hypertension and ESRD.

Materials and methods: The study design had both a cross- sectional and retrospective component. A total of 140 women [age in years 32.4±8.1(yrs) and BMI 23.5±4.1(kg/m2), m±SD] with a previous history of GH in any pregnancy were included. Clinical and anthropometric parameters were measured by standard techniques, lipids were measured by enzymatic colorimetric method, urinary total protein by pyrogallol red method, urinary protein by strip method and serum urinary creatinine were measured by alkaline picrate method. Systolic blood pressure 130 mmHg or diastolic blood pressure 90mmHg were taken as cut-off values for hypertension and urinary protein >35mg/dl was the marker for ESRD.

Results: Out of the 140 subjects 49 (35%) developed hypertension and 46 (32.9%) developed ESRD over duration of 5 to 12 yrs. 45(32%) of the subjects had both the complications. The hypertensive subjects had higher age (years, m±SD, 35.8±9.7 vs 30.5±6.4, p=0.001), BMI (kg/m2, 26.09±4.3 vs 24.6±3.9; p=0.045), uric acid (mg/dl, 7.38±1.1 vs 4.6±1.6; p=0.001) and total protein (mg/dl, 47.7±13.5 vs 15.5±5.4; p<0.001). On logistic regression analysis, hypertension showed a strong positive association with uric acid and total protein when the effects of age and BMI were adjusted. On the other hand ESRD showed strong positive association with uric acid when the effects of age, BMI, fasting blood sugar and Triglyceride were adjusted.

Conclusion: Women with history of GH has a high probability of developing hypertension and ESRD in postpartum life, and both the conditions seem to have association with uric acid as a risk factor.

Supported by: BADAS
1075

ATLANTIC DIP: persistent postpartum glucose intolerance in women with previous gestational diabetes along the Irish Atlantic seaboard
M.W. O'Reilly, G. Avalos, M.C. Dennyed, E.P. O'Sullivan, F. Dunne; Endocrinology/Diabetes Mellitus, University College Hospital, Galway, Ireland.

Background and aims: Gestational diabetes / Impaired Glucose Tolerance (GDM/IGT) is associated with adverse fetal and maternal outcomes. It also identifies women at risk of developing IGT and Type 2 diabetes (T2DM) later in life and in the postpartum period. Up to date prospective figures are not available for persistent glucose intolerance postpartum in the Irish population.

Materials and methods: We compared 357 women with abnormal (GDM/IGT) and 137 women with normal (NGT) glucose tolerance in pregnancy identified by 75g oral glucose tolerance test (OGTT) at 24-28 weeks gestation. This was repeated post partum to reassess glucose tolerance. Logistic regression analysis was used to identify maternal factors that increased the risk of persistent glucose intolerance.

Results: 494 women were tested. OGTT results were classified as NGT (FPG<5.6mmol/l; 2h<7.8mmol/l) or abnormal (IFG; 5.6-6.9, IGT; 2h 7.8-11.0, IFG+IGT; T2DM FPG≥7 ± 2h≥11.1). 2 of 137 (1.4%) women with NGT in pregnancy had abnormal glucose tolerance postpartum. 54 of 357 (15.1%) women with abnormal glucose tolerance (GDM/IGT) in pregnancy remained intolerant post partum. Risk factors for persistent glucose intolerance were family history of T2DM (OR 2.92, 95% CI 1.15-7.41, P=0.02), insulin use in pregnancy (OR 3.63, 95% CI 1.41-9.45, P=0.007). Fasting plasma glucose in pregnancy of 5.6-6.9mmol/l (OR 3.73, 95% CI 1.25-11.09, P=0.01) and ≥7(OR 16.89, 95% CI 3.31-86.02, P<0.001) were strong predictors of postpartum dysglycaemia. Age, BMI, ethnicity did not predict persistent dysglycaemia.

Conclusion: Along the Irish Atlantic seaboard the prevalence of persistent glucose intolerance in women with GDM/IGT in pregnancy is 15.1% compared to 1.4% in control women. This high prevalence suggests a robust follow up programme is necessary for early identification and intervention.

Pregnancy and postpartum glucose status

<table>
<thead>
<tr>
<th>Pregnancy glucose status</th>
<th>Postpartum glucose status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=137)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>135 (98.5%)</td>
</tr>
<tr>
<td></td>
<td>IFG</td>
</tr>
<tr>
<td></td>
<td>IGT</td>
</tr>
<tr>
<td></td>
<td>IFG+IGT</td>
</tr>
<tr>
<td></td>
<td>T2DM</td>
</tr>
<tr>
<td>IGT (n=263)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237 (90.1%)</td>
</tr>
<tr>
<td></td>
<td>14 (5.3%)</td>
</tr>
<tr>
<td></td>
<td>4 (1.5%)</td>
</tr>
<tr>
<td></td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>GDM (n=94)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66 (70.2%)</td>
</tr>
<tr>
<td></td>
<td>7 (7.4%)</td>
</tr>
<tr>
<td></td>
<td>10 (5.3%)</td>
</tr>
<tr>
<td></td>
<td>10 (10.6%)</td>
</tr>
<tr>
<td></td>
<td>6 (6.4%)</td>
</tr>
</tbody>
</table>

Total (n=494) 438 22 10 15 9

Supported by: HRB

1076

PS 103 Pregnancy - outcomes II

1076

Perinatal outcome in women with gestational diabetes mellitus in relation with fetal sex
D. Tundidor1, A. García-Patterson1, M. María1, J. Ubeda1, G. Ginovart2, J.M. Adelantado3, A. de Leiva4, R. Corcoy5;
1Endocrinology and Nutrition, 2Pediatrics, 3Obstetrics and Gynaecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background and aims: Male sex is a well-known risk factor for unfavorable perinatal outcome that has only occasionally been assessed in diabetic pregnancy. The aim of this study was to evaluate perinatal outcome in women with gestational diabetes mellitus (GDM) according to fetal sex.

Materials and methods: Database review including all singleton pregnancies of women with GDM progressing to ≥ 22 weeks, delivering in the center between 01/01/1981 and 31/12/2006. Evaluated maternal characteristics: anthropometrics, obstetric history, diagnosis characteristics (gestational age, blood glucose values), Hba1c (after diagnosis and in the third trimester). Outcome variables: preterm birth, abnormal Apgar, large and small for gestational age newborns, obstetric trauma, major and minor malformations, polycythemia, neonatal hypoglycaemia, hypocalcemia, jaundice, respiratory distress and fetal loss (intrauterine, neonatal, perinatal). Statistics: Chi-square, Student T and Mann-Whitney U tests. Significance was set at a two-sided p<0.05.

Results: A total of 2216 pregnancies were included. Maternal characteristics did not differ between groups except for a higher maternal weight in male newborns (59 vs. 58) and a higher rate of prior pregnancy in female newborns (65.5 vs. 61.1%). Higher figures were observed in 13 out of 15 perinatal outcome variables in male newborns but statistical significance was not reached in any of them.

Conclusion: In this group of women with GDM, perinatal outcome is not significantly worse in male newborns. Supported by: CIBER BBN

1077

Prevalence and outcome of gestational diabetes in Turkmenistan
K.G. Parhofer1, A. Ulugberdieva2, M. Abdullayeva2, A. Annamuhammedov2, M. Gaipov3, B. Melebayeva1, U. Hasbargen4, A.W. Flemmer5; 1Medizinische Klinik II - Grosshadern, Klinikum der Universitaet Muenchen, Germany, 2Department of Gynecology and Obstetrics, Ene Maehri Merkezi, Ashgabat, Turkmenistan, 3Department of Pediatrics, Ene Maehri Merkezi, Ashgabat, Turkmenistan, 4Department of Anesthesiology, Ene Maehri Merkezi, Ashgabat, Turkmenistan, 5Department of Gynecology and Obstetrics, Perinatal Center, Klinikum der Universitaet Muenchen, Germany, 6Division of Neonatology, Childrens Hospital, Perinatal Center, Klinikum der Universitaet Muenchen, Germany.

Background and aims: Very few data are available about the health care system in Turkmenistan a central Asian country with huge gas resources and rapidly increasing wealth and rates of obesity. As for other central Asian countries the prevalence of gestational diabetes (GDM) is unknown. The aim of this investigation was to prospectively determine the prevalence of GDM in Turkmenistan and the frequency of complications in newborns from GDM mothers.

Materials and methods: From March 2008 until September 2009 all pregnant women presenting to the perinatal center at the Ene Maehri Merkezi Hospital (University of Ashgabat) obtained a glucose screening (after 26 weeks of pregnancy; 50 g glucose orally). If the 60-min glucose concentration was ≥ 7.8 mmol/l an oral glucose tolerance test (75 gr) was performed. GDM was diagnosed if one or more glucose values were abnormal (≥5.0, ≥10.0, ≥8.0 mmol/l at 0-, 60-, 120-, 120- min, respectively). Birth weight, APGAR and 30 min glucose concentration was determined in all newborns.

Results: 25.4% of 1271 screened patients had a pathological screening test. Of those, 28.5% had GDM (overall prevalence 7.3%). Screening glucose (60-min) correlated with age (r=0.13; p<0.001), BMI (r=0.12, p<0.001), gravidity (r=0.12, p<0.001) and blood pressure (r=0.06, p=0.03). GDM patients were older (30.2±5.3 years vs. 27.1±4.9 years, p<0.001) and more obese (BMI 26.5±4.5 kg/m²; p=0.03) than controls. GDM patients obtained more frequently scheduled caesarean sections (12.0% vs. 8.9%, ns) and less frequently emergency caesarean sections (8.8% vs. 13.3%, ns). In newborns delivered after ≥37 weeks gestational age (controls vs. GDM) birth weight (3500±462 vs. 3605±409 g, p=0.06) and APGAR (8.4±1.5 vs. 8.3±1.3, ns) did not differ between both groups but GDM children had more often hypoglycaemia (13.9% vs. 27.3%, p<0.05).
Conclusion: In Turkmenistan GDM is characterized by the same risk factors as in European countries. Because of the rapidly increasing wealth and increasing prevalence of obesity the prevalence of GDM will probably further increase. Newborns from GDM patients tended to be heavier and had high rates of hypoglycemia. This study shows that medical prevention programs can also be successfully implemented in Turkmenistan.

1078

Analysis of pregnancy outcomes in immigrant women with gestational diabetes
1Medical and Surgical Sciences, Pharmacology and anaesthesiology, University of Padova, Italy.

Background and aims: Immigration is growing in all European countries, the populations diversity poses specific problems related to health care service and socio-demographic factors. Recent studies show adverse outcomes of pregnancy among immigrant women from countries with high diabetes rates. So we found of interest to analyse the outcomes in immigrant women affected by GDM compared to Italian ones.

Materials and methods: We compared maternal and fetal outcomes in 94 immigrant (ImPW) and 1246 Italian women (IPW) with GDM followed up at our center. Maternal characteristics considered were age, pre-pregnancy BMI, HbA1c, frequency of insulin treatment, timing and mode of delivery, and hypertensive disorders; and, for fetal outcome, infants large(LGA) or small(SGA) for gestational age and fetal complications.

Results: Pre-pregnancy BMI,2.6 ± 4.6 Kg/m² vs 24.8 ± 5.3 Kg/m², p<0.001 and HbA1c at diagnosis and at 3rd trimester 5.6 ± 0.6% vs 5.2 ± 0.6%, p<0.001) were higher in ImPW than in IPW, and more of them were on insulin (26.6% vs 17%, p=0.024). Gestational age at screening was not different: 23.6±5.8 vs 24.6±5.4 w. in IPW vs 24.6±5.4 w. in IPW No differences in time and mode of delivery (cesarean section 46.1% in immigrant women vs 42.9% in Italy ones) and hypertensive disorders (6.8% vs 8.8%) emerged between the 2 groups. A higher rate of LGA babies (30.3% vs 19.8%, p=0.03) were born to immigrant women than to Italians, but fetal morbidity was not different (4.2% vs 6.5%). In a regression logistic analysis LGA newborns were related to maternal age (p=0.002) and HbA1c at 3rd trimester.

Conclusion: Our ImPW show higher glucose levels during pregnancy, but their outcome could be considered satisfied and comparable with IWP, probably because these were women were subjected to GDM screening, diagnosis and treatment at the recommended gestational age. So immigrant GDM women have favorable outcomes if given access to health care, language and cultural barriers are removed.

1079

HbA1c above normal range in late pregnancy is associated with risk of infants’ large-for-gestational age in women with gestational diabetes mellitus
Departments of Endocrinology and Obstetrics, Rigshospitalet, Copenhagen, Denmark.

Background and aims: HbA1c is widely used as a measure of metabolic control during pregnancy and documented to be associated with diabetes related pregnancy complications in type 1 diabetes. In addition HbA1c can be measured independently of the patients’ compliance to glucose monitoring and is therefore of special value in women where the compliance to treatment is sub optimal. The value of using HbA1c as a treatment goal and risk marker of complications in the newborns of women with GDM is to our knowledge not previously described. The aims of the present study were 1) to determine the prevalence of pregnant women with gestational diabetes mellitus (GDM) not obtaining HbA1c within normal range before delivery and 2) examine whether elevated HbA1c values are associated with increased risk of large-for-gestational age (LGA) infants.

Materials and methods: The study population was 148 GDM women delivering in 2007 at Rigshospitalet. Inclusion criteria: GDM diagnosed <34 weeks, singleton pregnancies and at least two HbA1c test with more than 3 weeks interval. Data was extracted from medical records. The study population was divided in those obtaining HbA1c less than or equal to 5.6% or not. The primary outcome was LGA infants. Secondary outcomes were preeclampsia, preterm delivery, birth complications, neonatal hypoglycaemia, respiratory distress syndrome and jaundice.

Results: Fifty-one (35%) women did not obtain HbA1c less than or equal to 5.6% before delivery. The median HbA1c before delivery was 5.9% (range 4.5-7.6) vs. 5.3% (4.5-5.6) in the two groups. At baseline, BMI and HbA1c were higher in the women not obtaining the goal compared to the remaining women (30.9 (SD6) vs. 27.8 (SD7); 5.9% (5.7-7.8) vs. 5.1% (4.3-6.3)). Women with elevated HbA1c before delivery were characterised by a higher risk of LGA infants and neonatal hypoglycaemia (adjusted OR 3.1 (95% CI 1.3-7.6), and 6.2 (95% CI 1.3-29.0)). Other secondary outcomes were similar in the two groups.

Conclusion: Women with GDM not obtaining HbA1c within normal range before delivery had a three-fold increased risk of LGA infants and six-fold increased risk of neonatal hypoglycaemia.

1080

The prevalence of large for gestational age offspring and pregnancy complications before and after implementation of a new insulin treatment guideline in women with gestational diabetes
M.R. Mikkelsen, S.B. Nielsen, E. Stage, N. Begum, P. Damm, E.R. Mathiesen;
Departments of Endocrinology and Obstetrics, Rigshospitalet, Copenhagen, Denmark.

Background and aims: The best strategy for insulin treatment of women with gestational diabetes (GDM) under routine conditions is not well described. With the increasing prevalence of obesity the prevalence of gestational diabetes (GDM) under routine conditions is not well described. Because of the rapidly increasing wealth and increasing prevalence of obesity the prevalence of GDM will probably further increase. Newborns from GDM patients tended to be heavier and had high rates of hypoglycemia.

Materials and methods: The study population included all insulin treated women with GDM delivering in 2007 and 2009 at our hospital fulfilling the following inclusion criteria: GDM diagnosed and insulin treatment initiated < 34 weeks with the first HbA1c below 6.5%, singleton pregnancies and at least two HbA1c tests with ≥2 weeks interval. Data was extracted from medical records. The insulin treatment was initiated and adjusted by a nurse the 1st 14 days and thereafter by an endocrinologist. The 2007-cohort received biphasic human insulin twice daily with individual start dose and adjustments while biphasic insulin aspart (Novomix), which has a better impact on postprandial glucose levels, and furthermore to implement a written algorithm for initiating and adjusting insulin dose. Thus the aim of our study was to evaluate the effect of this change in the routine insulin treatment guideline on birth weight and the prevalence of pregnancy related complications.

Results: The study population included all insulin treated women with GDM delivering in 2007 and 2009 at our hospital fulfilling the following inclusion criteria: GDM diagnosed and insulin treatment initiated < 34 weeks with the first HbA1c below 6.5%, singleton pregnancies and at least two HbA1c tests with ≥2 weeks interval. Data was extracted from medical records. The insulin treatment was initiated and adjusted by a nurse the first 14 days and thereafter by an endocrinologist. The 2007-cohort received biphasic human insulin twice daily with individual start dose and adjustments while biphasic insulin aspart (Novomix), which has a better impact on postprandial glucose levels, and furthermore to implement a written algorithm for initiating and adjusting insulin dose. Thus the aim of our study was to evaluate the effect of this change in the routine insulin treatment guideline on birth weight and the prevalence of pregnancy related complications. The prevalence of large for gestational age offspring and pregnancy complications before and after implementation of a new insulin treatment guideline in women with gestational diabetes M.R. Mikkelsen, S.B. Nielsen, E. Stage, N. Begum, P. Damm, E.R. Mathiesen; Departments of Endocrinology and Obstetrics, Rigshospitalet, Copenhagen, Denmark.

Conclusion: The prevalence of large for gestational age infants and pregnancy related complications were lower after implementation of the new insulin treatment guideline as part of routine treatment. Whether this is due to the change in insulin treatment or other factors, as earlier initiation of treatment, remains speculative.

Clinical parameters before and after change in insulin treatment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2007-cohort</th>
<th>2009-cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-pregnancy BMI (kg/m²)</td>
<td>31.5(7)</td>
<td>29.6(7)</td>
</tr>
<tr>
<td>Gestational age at GDM diagnosis (days)</td>
<td>190(43)</td>
<td>180(51)</td>
</tr>
<tr>
<td>HbA1c at diagnosis of GDM (%)</td>
<td>5.7(0.4)</td>
<td>5.8(0.3)</td>
</tr>
<tr>
<td>Gestational age at delivery (days)</td>
<td>267(9)</td>
<td>269(8)</td>
</tr>
<tr>
<td>HbA1c last before delivery (%)</td>
<td>5.8(0.4)</td>
<td>5.8(0.4)</td>
</tr>
<tr>
<td>Insulin dose last before delivery (IU)</td>
<td>52(40)</td>
<td>49(36)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3516(441)</td>
<td>3297(491)*</td>
</tr>
<tr>
<td>Birth weight z-score (standard deviations)</td>
<td>0.8(1.4)</td>
<td>0.1(1.3)**</td>
</tr>
<tr>
<td>Large for gestational age</td>
<td>20(19%)</td>
<td>8(16%)</td>
</tr>
<tr>
<td>Pregnancy related complication</td>
<td>20(37%)</td>
<td>9(19%)</td>
</tr>
</tbody>
</table>

*p<0.05 and ** p<0.01 between groups. Mean(SD) or Number(%)
1081
Major congenital malformations in women with gestational diabetes mellitus: a systematic review and meta-analysis
M. Balsells1, A. García-Patterson2, I. Gich3, R. Corcoy1; 1Servei d’Endocrinologia i Nutrició, Hospital Mutua de Terrassa, 2Servei d’Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau, Barcelona, 3Servei d’Epidemiologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Gestational diabetes mellitus (GDM) has been associated with a higher rate of congenital malformations, but the association is not universally accepted.

Aim: To perform a systematic review and meta-analysis on major congenital malformations (MCM) in GDM.

Methods: A MEDLINE search using the terms (malformation OR outcome) AND (gestational diabetes) AND (pregnancy)) was performed, limiting the search to the period January 2000 to December 2009. Selection criteria: 1) GDM and control populations are not openly biased; 2) Paper contains information on MCM in women with GDM and in the reference population; data on MCM in pregestational DM was not an inclusion criterion, but if included in the paper, information was recorded. Statistical analysis: Revman 5.0, with a fixed effect method for meta-analysis.

Results: 1924 abstracts were retrieved, 108 full-text articles were reviewed and finally 9 cohort observational studies and 2 case control studies were included. In women with GDM, cohort studies displayed a high heterogeneity, precluding meta-analysis; in case-control studies, they had a higher rate of MCM (OR 1.40, CI95 1.22-1.62) in relation with the reference group. Women with pregestational DM had a higher rate of MCM vs reference group in both cohort (RR 2.34, CI95 2.02, 2.70) and case-control studies (OR 4.57, CI95 3.01, 6.95).

Conclusion: Infants of GDM mothers have a slightly higher increased risk of MCM, lower than that of women with pregestational DM.

Supported by: CIBER BBN

1082
Peripartum and gestational factors influencing neonatal hypoglycaemia in gestational diabetes: a prospective study
J.A. Flores-Le Roux1, D. Benajes1, E. Sagarrà2, E. Hernández-Rivas3, M.A. Lopez-Vilchez3, A. Mur2, J. Puig De Dou1, C. Clarét1, A. Goday1, J.E. Cano2; 1Endocrinology, Pediatrics, Hospital del Mar, Barcelona, Spain.

Background: Most studies on neonatal hypoglycemia in GDM women only take into consideration gestational and neonatal parameters whereas the possible influence of peripartum factors hasn’t been fully explored.

Objective: To evaluate peripartum, gestational and maternal factors influencing the development of neonatal hypoglycemia in infants of women with gestational diabetes.

Study design: Prospective observational study including all infants of GDM mothers born at our institution between October 2006 and February 2010. Data collected include maternal characteristics, gestational parameters (GDM treatment, weight gain, HbA1c), peripartum glycemic control (maternal capillary blood glucose (CBG) ketonemia, use of insulin) and CBG measurements in the newborn during the first 24 hours of life.

Results: A total of 183 infants were included with a mean weight of 3353 ± 505 grams and a gestational age of 39.2 ± 1.4 weeks. 30 newborns (16.4%) presented at least one CBG of less than 40mg/dl during the first 24 hours of life. The main maternal, gestational and peripartum characteristics in newborns born without neonatal hypoglycemia are presented in Table 1. There were no significant differences between hypoglycemic and euglycemic infants in terms of maternal weight, age, gestational age, duration of pregnancy, antepartum or intrapartum diabetes, parity, fetal macrosomia, abnormal presentation, birth trauma, duration of labor, birth weight and cord pH. Of all potential predictors, birth weight and delivery weight gain were significantly different (p <0.05). After multiple stepwise regression analysis, the only independent predictor of neonatal hypoglycaemia was gestational age (β = 0.417, p = 0.012). When considering all potential predictors, the model correctly classified 74% of the newborns born with hypoglycemia.

Conclusion: Peripartum and gestational factors do not influence the development of neonatal hypoglycemia. The only independent predictor of neonatal hypoglycemia is gestational age. This suggests that the timing of delivery may be an important factor in decreasing the risk of neonatal hypoglycemia.

1083
In gestational diabetes mellitus, pregestational body mass index is an independent predictor of neonatal hypoglycaemia
A. García-Patterson1, A. Aulinas2, M.A. María1, J. Ubeda1, I. Orellana2, J.M. Adelantado4, G. Ginovart2, A. de Leiva3, R. Corcoy4; 1Servei d’Endocrinologia i Nutrició, 2Servei d’Obstetricia, 3Servei de Pediatría, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Recently published data from the HAPO study reveals that pregestational body mass index (BMI) is a predictor of cord blood C peptide; significance was not reached for the prediction of neonatal hypoglycemia (NH).

Aim: To assess pregestational BMI as a predictor of NH in women with gestational diabetes mellitus (GDM).

Methods: Database review of all GDM pregnancies (singleton and twins) attended in the Diabetes and Pregnancy Clinic of the center from 1st January 1991 to 31st December 2006. Outcome variable: NH defined as capillary blood glucose fulfilling Cornblath cut-off criteria in >2 occasions in the first 48h of life. Screening for GDM was universal and used O’Sullivan test; diagnosis used NDDG criteria. We considered the following as potential predictors of NH: age, weight, height, BMI, weight increase during pregnancy, prior GDM, gestational age and glucose values at diagnosis, delay between diagnosis and treatment initiation, capillary blood glucose & HbA1c during pregnancy, insulin treatment, twin pregnancy and newborn sex; as potentially intermediate variables we considered maternal hypertension (chronic/pregnancy-induced), preterm birth, cesarean section, small and large-for-gestational age newborns, abnormal Apgar and respiratory distress. Statistical analysis: bivariate analyses comparing characteristics of pregnancies with and without NH; logistic regression analysis (backward method) with NH as the dependent variable and aforementioned variables as potential predictors.

Results: During the study period, 2492 newborns of mothers with GDM were delivered (2228 singleton) and NH was observed in 3% of them. Mothers of NH newborns differed in a number of characteristics, one of them being prepregnancy BMI (24.45 vs 23.19 kg/m2, p <0.02). Logistic regression analysis identified pregestational BMI as a predictor of NH both when potentially intermediate variables were included (OR 1.293, CI 1.007, 1.660) or not (OR 1.40, CI 1.22-1.62) in relation with the reference group. Women with GDM and control populations are not openly biased; 2) Paper contains information on MCM in women with GDM and in the reference population; data on MCM in pregestational DM was not an inclusion criterion, but if included in the paper, information was recorded. Statistical analysis: Revman 5.0, with a fixed effect method for meta-analysis.

Conclusion: Pregestational BMI is an independent predictor of NH in this cohort of women with GDM.

Supported by: CIBER BBN
PS 104 Pregnancy - treatment

1084

Intensive glycaemic control in type 1 diabetic pregnancy: a comparison of continuous subcutaneous insulin infusion and multiple daily injection therapy

K. Neff1, A. McCarthy2, R. Forde1, M. Foley3, S. Coulter-Smith4, S. Daly5, R. Farth6, M.M. Byrne7, B.T. Kinsley8; 1Mater Misericordiae University Hospital, National Maternity Hospital, 2Rotunda Maternity Hospital, 3Coombe Womens and Infants Hospital, Dublin, Ireland.

Background and aims: Continuous subcutaneous insulin infusion (CSII) has been used in pregnancy and data is thought to be non-inferior to a multiple daily injection (MDI) regimen. We reviewed a cohort of pregnant patients with type 1 diabetes mellitus (T1DM), and compared a cohort on CSII with a cohort treated with MDI, with the aim of assessing any difference in glycaemic control and pregnancy outcomes.

Materials and methods: We reviewed 507 women with T1DM who presented for antenatal care with our service over a 5-year period. There were 46 women treated with CSII and 461 treated with MDI. All subjects were asked to maintain daily 7-point profiles and these were reviewed weekly. Blood glucose measurement (BGM) targets were 5mmol/l or less pre-meals and 7mmol/l at one hour post-prandial. Maternal parameters including age, parity and weight were recorded. Glycaemic control represented by HbA1c in each trimester, attendance at a pre-pregnancy counseling clinic, and pregnancy outcome including Cesarean section rate, were recorded and differences were compared with Students’ t-test and an odds ratio where appropriate.

Results: Women on CSII were older (35 ± 4 years Vs 31 ± 5 years, p<0.001), and booked earlier (6 weeks ± 2 Vs 8 weeks ± 5, p<0.05) to antenatal diabetes care. Women treated with CSII had lower HbA1c levels at booking (6.5 ± 0.8 Vs 7.8 ± 1.4, p<0.001) and delivery (5.9 ± 0.3 Vs 6.3 ± 0.6, p<0.05). Cesarean section was recorded at a higher rate in those on CSII (67% Vs 46%, p<0.05). Birth weight did not differ between groups (3.6kg ± 0.6 Vs 3.5kg ± 0.8). There was no significant difference in perinatal mortality between groups. Those treated with CSII were more likely to attend the pre-pregnancy service (40% of all pregnancies Vs 10%, OR 5.8, p<0.001). Women attending the pre-pregnancy service had lower HbA1c values at booking than those who did not attend (6.7% ± 1.4 Vs 7.8% ± 1.5, p<0.001). Patients treated with CSII attending the pre-pregnancy clinic had lower HbA1c values at booking than those treated with MDI (6.5% ± 0.7 Vs 7.0% ± 0.9, p<0.05), but there was no significant difference in HbA1c values at delivery between these two groups (6.3% ± 0.6 Vs 6.2% ± 0.7).

Conclusion: Women treated with CSII were more likely to book earlier to antenatal services, to have attended pre-pregnancy services, and had better glycemic control than women treated with MDI. Cesarean section rates were higher in women treated with CSII despite similar birth weights at delivery in both groups. Peri-natal outcomes did not differ between groups. In our cohort CSII and MDI are both effective in improving maternal glycaemic control both pre-pregnancy and in pregnancy. CSII achieved lower HbA1c values at delivery. Both CSII and MDI are effective therapies for the management of T1DM in pregnancy.

1085

Conversion of pregnant patients with type 1 diabetes from multiple injection therapy to continuous subcutaneous insulin infusion in early pregnancy is safe and efficacious

M. Shannugasundaram1, H. Rogers1, P. Marks1, A. Jain2, M.S. Marsh1, C. Gayle1, S.A. Amiel1, P. Choudhary1; 1Diabetes Research Group, 2Obstetrics, Kings College Hospital, London, United Kingdom.

Background and aims: Adverse risks to mother and fetus in pregnant type 1 diabetic (T1DM) patients are attributed to poor maternal glycaemic control. Continuous subcutaneous insulin infusion (CSII) has not been proven to improve pregnancy outcome. Initiating CSII in early gestation due to poor glycaemic control or to replace long acting analogues may be associated with risk, as patients learn to use it. This study aimed to compare maternal glycaemic control, obstetric and fetal outcomes in diabetic pregnancies managed with CSII and multiple daily injections (MDI).

Materials and methods: In a retrospective case notes audit of 90 T1DM pregnancies (52 treated with CSII) between 2002 and 2009, we recorded HbA1c pre-conception and in each trimester; fetal ultrasound measurements; mode of delivery; age-corrected birth weight; APGAR scores and admission to neonatal intensive care unit (NICU). Primary comparison was between MDI and CSII. Secondary comparisons were between groups: CSII pre- (n=20) and post- (n=32) conception, MDI HbA1c <7.5% in trimester 1 (n=20) and MDI HbA1c >7.5% in trimester 1 (n=18). We compared MDI >7.5% with those converted to CSII due to poor control (n=8).

Results: CSII and MDI patients were comparable for age (31.9± 5.88 vs 29.9± 6.13 yrs p=0.1) and BMI (26.4± 4.04 vs 27.9± 5.92 yrs, p=0.2). CSII users were 84.6% Caucasian (vs 57.9% MDI, p=0.005), with longer diabetes duration (17.0± 7.05 vs 10.7± 7.98 yrs, p<0.001). CSII group achieved lower HbA1c in trimester 1 (7.0± 1.0 Vs 7.6± 1.7%, p=0.03) and 2 (6.3± 0.7 vs 6.8± 1.5%, p=0.04), with no significant difference in trimester 3 (6.2± 0.58 vs 6.4± 1.0, p=0.3). Severe hypoglycaemia rates were not different. Fetal growth velocity was not different. There were more emergency Cesarean sections (42 vs 24% p=0.07) in MDI patients, with no differences in macrosomia, age-corrected birth weight centiles, or NICU admission. There were no differences in outcome between CSII pre-conception and MDI <7.5%, nor between these groups combined and CSII post-conception. MDI >7.5% had significantly greater HbA1c in all trimesters, lower 5 minute APGAR score and greater NICU admission. Those converted to CSII post-conception due to poor control had lower HbA1c in trimester 1 (8.3± 0.67 vs 9.5± 2.0 p=0.08), 2 (6.9± 0.66 vs 7.8± 1.46 p=0.15), and 3 (6.7± 0.83 vs 6.9± 1.06 p=0.6), than MDI >7.5%. This CSII converted group had higher 5 minute APGAR score (9.17± 0.76 vs 8.7± 0.24 p=0.01) and less NICU admission (38 vs 56% p=0.6).

Conclusion: Appropriately used, MDI can provide similar pregnancy outcomes to those using CSII for clinical indications. In those with raised HbA1c at booking, or requiring different basal insulin replacement regimens, initiation of CSII in early pregnancy is safe and efficacious leading to improved glycaemic control, and less neonatal intervention requirement.

Comparison between MDI and CSII in type 1 diabetic pregnancies

<table>
<thead>
<tr>
<th></th>
<th>MDI</th>
<th>CSII</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c <7.5% in trimester 1</td>
<td>6.4 (0.61)</td>
<td>9.1 (1.50)</td>
<td>6.9 (0.80)</td>
</tr>
<tr>
<td>HbA1c >7.5% in trimester 1</td>
<td>6.0 (0.92)</td>
<td>7.8 (1.45)</td>
<td>6.3 (0.67)</td>
</tr>
<tr>
<td>Initiated CSII post-conception</td>
<td>5.9 (0.61)</td>
<td>7.0 (1.06)</td>
<td>6.3 (0.51)</td>
</tr>
<tr>
<td>Corrected birth weight centiles mean (SD)</td>
<td>63.0 (30.10)</td>
<td>68.8 (36.68)</td>
<td>63.0 (33.75)</td>
</tr>
<tr>
<td>% Macrosomia</td>
<td>25</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>% emergency Cesarean section</td>
<td>40</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>APGAR 5 minute mean (SD)</td>
<td>9.5 (0.87)</td>
<td>8.7 (2.08)</td>
<td>9.7 (0.49)</td>
</tr>
<tr>
<td>% admitted to NICU</td>
<td>11</td>
<td>56</td>
<td>30</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>1</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

1086

Glycaemic control and pregnancy outcomes in women with type 1 diabetes: a systematic review and meta-analysis comparison between long-acting and regular insulin

C. González-Blanco1, A. Chico2, I. Gich3, R. Corcoy2; 1Endocrinology, Eduab-HSP, 2Endocrinology, Eduab-HSP, Clinical Epidemiology, Hospital Sant Pau, Barcelona, Spain.

Background: There is limited evidence of the influence of insulin lispro (LP) vs regular (RI) on glycaemic control and pregnancy outcomes in pregnancies of women with Type 1 diabetes mellitus (T1DM).

Aim: To perform a systematic review and meta-analysis on glycaemic control and pregnancy outcomes in women with T1DM treated with insulin LP vs RI since before pregnancy.

Methods: A Medline and EMBASE search were performed using the terms (lispro OR Humalog OR insulin analog) AND pregnancy) without any limit. Abstracts (and full papers when appropriate) were reviewed by two independent reviewers. p ≤ 0.05 was selected as the level of significance.
independent researchers and differences set with a third one if needed. Inclusion criteria: T1DM, data on women treated with RI and LP since before pregnancy until delivery in the same paper, minimum number of 5 pregnancies in each group, information on at least one pregnancy outcome. Baseline characteristics, metabolic control during pregnancy and outcome data were extracted using predefined templates. Baseline characteristics were compared without performing a formal statistical analysis and outcome data were summarised with Revman 5.0.

Results: 267 abstracts were identified and 5 papers fulfilled inclusion criteria, of all of them corresponding to observational studies. Women treated with LP or RI were similar in terms of age, BMI, diabetes duration, chronic hypertension and pre-pregnancy clinic attendance. Outcome data: HbA\textsubscript{1c} were lower in patients treated with LP, at the beginning of pregnancy (mean difference (MD) -0.12; CI -0.49, -0.24) and in first (MD -0.33; CI -0.59, -0.08), second (MD -0.51; CI -0.83, -0.2) and third trimesters (MD -0.17; CI -0.38, -0.03). Gestational age at birth (MD 0.41; CI -0.04, 0.87), birthweight (MD 133.68; CI 19.55, 248) and the rate of large for gestational age newborns (LGA) (RR 1.35; CI 1.12, 1.61) were higher in the LP group. No differences were observed in the rate of pregnancy induced hypertension, preeclampsia, diabetic ketoacidosis episodes, spontaneous miscarriages, interruptions, total abortions, caesarean section, preterm birth, macrosomia, small for gestational age newborns, stillbirth, neonatal and perinatal mortality, neonatal hypoglycemia and major malformations.

Conclusions: In relation with women with T1DM treated with RI, those treated with LP display similar baseline characteristics, achieve better glycemcic control, deliver at a higher gestational age but birthweight and rate of LGA are higher.

1087
Exposure to teratogenic drugs and concomitant contraception in women of child-bearing age with type 2 diabetes: a population based cohort study

D.A. Webster1, K. Khunti1, E.G. Wilman2, B. Thakrar3, M.J. Davies4, A. Anwar5,

1University Hospital Coventry and Warwickshire, Coventry, United Kingdom, 2University Hospitals of Leicester, United Kingdom, 3University of Leicester, United Kingdom, 4PDB Epidemiology, Roche AG, Coventry, Switzerland.

Background and aims: Twenty years after the St. Vincent declaration, pregnancy outcomes remain poor in women with diabetes. Perinatal mortality and congenital anomaly rates are four and two times that of the background population respectively. Preconception care, optimal glycaemic control and folic acid supplementation are known to reduce pregnancy risk in women with type 2 diabetes (T2DM). Despite this, many women remain poorly prepared for pregnancy and it is often unplanned. Since the introduction of the Pay for Performance in the UK in 2004, there has been more aggressive management of cardiovascular risk in people with diabetes. Some of the medications advocated for primary and secondary prevention of cardiovascular disease are potentially teratogenic. The aim of this longitudinal study was to identify changes in the prescription of cardiovascular medications and contraception for women of childbearing age with T2DM between 2000 and 2007 in the UK.

Materials and methods: Data were extracted from the General Practice Research Database (GPRD) for all women of child bearing age (14-49 years) with T2DM. Data were collected from seven consecutive annual time points between 2000 and 2007 and included details on age, body mass index (BMI), blood pressure, diabetes complications and prescription of statins, ACE-inhibitors, angiotensin-II receptor blockers (ARBs) and oral contraception (OC). Data were analysed in SAS 9.1.

Results: In 2001 the GPRD contained records of 1,195,600 female patients, of whom 1968 (0.16%) were aged 14-49 with T2DM. The study cohort size increased yearly to 5263 in 2007 (0.34% of GPRD female records). The proportion of women in each age group was consistent across the seven year period: 40% of women were aged 45-49 years, 28.5% 40-44 years, 16.5% 35-39 years, 8% 30-34 years, 3.5% 25-29 years, 2% 20-24 years and 1% 14-19 years. Of the 2007 cohort, 40% had an HbA\textsubscript{1c} >8%, 70% were obese and 27% had hypertension. Retinopathy was recorded in 11%, acute coronary syndrome in 1% and stroke or transient ischaemic attack in 1%. The use of statin therapy increased significantly in these women from 14% in 2001 to 55% in 2007 (p=0.0001 for trend) whilst OC use remained around 11% (p=0.8 for trend) (see figure). In 2007, only 9.1% of women on a statin were also prescribed oral contraception.

Conclusion: Women of child bearing age with T2DM represent a high risk group. Despite increasing use of statins, ACE inhibitors and ARBs for primary and secondary prevention, OC prescription remains unchanged. This would suggest many women are at risk of pregnancy despite the prescription of potentially teratogenic drugs, further increasing the risk of poor pregnancy outcome. There is an urgent need to address preconception care in this rapidly expanding cohort of high risk women with T2DM.
A=2). In addition levels for significance were observed for Ponderal Index (kg/length^3) comparing A to I. No differences were observed for length (49.7±2.4 cm, APGAR 1 (8.7±0.62, APGAR 5 (9.7± 0.46), n° of hypoglycaemia (tot=5; 2 in EI and 3 in I), n° of hypocalcemia (2 in I).

<table>
<thead>
<tr>
<th>Table 1. Maternal and fetal outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight gain in pregnancy (kg)</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>A 12.14±3.87</td>
</tr>
<tr>
<td>B 8.57±3.68</td>
</tr>
<tr>
<td>Bl 5.87±5.55</td>
</tr>
<tr>
<td>I 9.6±3.93</td>
</tr>
<tr>
<td>El 13.61±6.11</td>
</tr>
</tbody>
</table>

Diet and exercise have been shown to be effective in women with GDM reducing the number of women requiring insulin treatment and reducing insulin dose in those requiring it.

Results: Demographics; women in clinic A: N=79 and Clinic B: N=130 were well matched for age (33.2±3.8 vs 33.1±4.8 years) and BMI (28.6±5.5 vs 27.2±6.4). Values mean±sd. Centres were well matched for ethnic distribution and represented a multi-ethnic population: 39 vs 35% Black African and Caribbean: 14 vs 12% Asian: 47 vs 25% Caucasian and 0 vs 26% not documented. Screening values (mean±sd) showed no statistically significant differences: GDTT 2hr-BG (8.8±0.3 vs 8.3±0.4mmol/l) and HbA1c (53.5±0.53±0.5%) vs 54.4±0.48%). Maternal Outcomes: women in clinic A had higher rates of induction (43% vs 21%), similar rates of caesarian section (CS) (39%); with lower emergency CS rates (35% vs 74%). Fetal outcomes: women in clinic A had earlier gestational age for delivery (38.6±1.3 vs 39.7±1.9 weeks P<0.001); lower birthweight (3322±304 vs 3556±625grams P<0.05) and lower macrosomia rate (>4Kg 9% vs 25%).

Conclusion: Diagnosis of GDM with a 75 gram OGTT 2hr-BG 7.8 - 8.9 mmol/l and treatment in a combined diabetes antenatal clinic is worthwhile with a decreased macrosomia rate and fewer emergency CS. There was an increased rate of induction, but no associated increase in CS.

1090

Comparing pregnancy outcomes for intensive versus routine antenatal treatment of gestational diabetes based on a 75gram oral glucose tolerance test 2-hour blood glucose 7.8-8.9mmol/l

C. Gayle, S. Germain, M.S. Marsh, D. Rajsaisingham, A. Brackenridge, F. Carroll, S.A. Amiri, S. Thomas;
1 Diabetes and Obstetrics, Kings College Hospital NHS Foundation Trust, London, 2 Diabetes & Obstetrics, Guys and St Thomas’ Hospital NHS Foundation Trust, 3 School of Medicine, Kings College London, United Kingdom.

Background and aims: The recent consensus guideline for gestational diabetes, from the HAPO group suggests a diagnostic 75 gram oral glucose tolerance test (OGTT) 2-hour blood glucose (2hr-BG) of 8.5mmol/l. Although HAPO and other trials show adverse outcomes for dysglycaemia in pregnancy, debate continues as to the efficacy of treating gestational diabetes (GDM) when the 2-hour blood glucose (2hr-BG) in the diagnostic 75 gm OGTT lies between 7.8 and 8.9 mmol/l. Our aim was to look at the effect of interventional treatment based on an OGTT 2-h blood glucose 7.8-8.9mmol/l.

Materials and methods: A retrospective study covering 3.5 years between 2005 and 2008 between two clinics in teaching hospitals serving the same local population. Clinic A used, WHO (2-hr BG 7.8 mmol/l and clinic B used, EASD (2-hr BG 8.6 mmol/l) diagnostic criteria for GDM. We compared pregnancy outcomes for intensive versus routine antenatal GDM treatment of gestational diabetes based on a 75gram oral glucose

1091

Metformin vs insulin in the treatment of gestational diabetes: impact of maternal pregestational BMI on birth weight and need for additional insulin during metformin

T. Rönnemaa, K. Tertti, U. Ekblad;
1 Department of Medicine, University of Turku, 2 Department of Obstetrics and Gynecology, University of Turku, Finland.

Background and aims: In the previous MIG trial metformin and insulin treated mothers with gestational diabetes had infants with similar birth weights and rates of macrosomia. It can be hypothesized that with respect to neonatal weight, obese mothers could benefit more than non-obese mothers from metformin treatment vs insulin as metformin is known to induce less neonatal weight, obese mothers could benefit more than non-obese mothers from metformin treatment vs insulin as metformin is known to induce less maternal weight gain, which in turn associates with fetal growth.

Materials and methods: We analyzed birth weight data from first 150 pregnancies in an ongoing randomized trial comparing metformin and insulin treatment of GDM. (Women with fasting P-glucose > 7.0 mmol/l or postprandial glucose > 11.0 mmol/l, were not included in this trial.) In the present study we stratified the mothers by pregestational BMI 30 kg/m2 into obese and non-obese. Seventy-five mothers were included in both treatment groups. Mean maternal age (metformin vs insulin 31.8 vs 32.2 years) and BMI (28.6±5.5 vs 27.2±6.4) did not differ (p=0.19). The former also had higher serum HDL-cholesterol (77±11 vs 73±9 mg/dl, p=0.006), and when needed insulin requirement was lower in the former (0.1±0.5 vs 0.3±0.2 IU/kg/day; p=0.05). End-pregnancy HbA1c levels were lower in obese than in non-obese women (4.8±0.3 vs 5.5±0.2%; p<0.004). The former also had higher serum HDL-cholesterol (77±11 vs 63±14 mg/dl, p=0.006), while no differences were observed in total- and LDL cholesterol levels as well as triglycerides. The difference in PA had no effect on delivery time, percent of caesarean sections, and newborn health status.

Conclusion: Mild physical activity contribute to improve metabolic control in women with GDM reducing the number of women requiring insulin treatment and reducing insulin dose in those requiring it.

Supported by: Laboratori Guidotti S.p.A
Conclusion: Compared with insulin, metformin is equally effective in the treatment of gestational diabetes in both obese (BMI > 30) and non-obese (BMI < 30) mothers. Additional insulin is needed in ca 20% of metformin treated mothers irrespective of obesity.

Birth weight and macrosomia stratified by treatment group and pregestational BMI

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>additional insulin</th>
<th>g</th>
<th>birth weight,</th>
<th>p for birth weight,</th>
<th>macrosomia,</th>
<th>n (p metfo vs insulin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin, all</td>
<td>75</td>
<td>19%</td>
<td>3629</td>
<td>0.41</td>
<td>4 (p=0.37)</td>
<td>3663</td>
<td>0.94 (3)</td>
</tr>
<tr>
<td>Insulin, all</td>
<td>75</td>
<td></td>
<td>3567</td>
<td></td>
<td>1</td>
<td>3519</td>
<td>0</td>
</tr>
<tr>
<td>BMI < 30, metformin</td>
<td>41</td>
<td>20%</td>
<td>3601</td>
<td>0.35</td>
<td>1</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI < 30, insulin</td>
<td>68</td>
<td></td>
<td>3519</td>
<td></td>
<td>1</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI > 30, metformin</td>
<td>34</td>
<td>18%</td>
<td>3663</td>
<td>0.94</td>
<td>3</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI > 30, insulin</td>
<td>27</td>
<td></td>
<td>3652</td>
<td></td>
<td>0</td>
<td>3652</td>
<td>0</td>
</tr>
</tbody>
</table>

Supported by: Local EVO grant

1092

Two-year outcomes following the institution of combined ADIPS Guidelines for the management of diabetes in pregnancy

G. Fulcher, C. Johnson, S. Buchanan, W.B. Giles; 1Endocrinology, Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, Australia.

Background and aims: In mid 2007, we reviewed our approach to the management of pregnant women with diabetes following a review of published guidelines. We noted that the recommendations for maternal and fetal monitoring and timing of delivery were not unified. For example North American authors suggest twice weekly non-stress CTG from 28-32 weeks. By contrast the Australian Diabetes in Pregnancy Society (ADIPS) Consensus Document states. Formal testing of fetal wellbeing (eg, cardiotocography, umbilical Doppler blood flow studies or biophysical profile) is not necessary in an otherwise uncomplicated pregnancy before 36 weeks gestation.

Materials and methods: In 2008 we adopted a more conservative approach to obstetric monitoring of diabetic women in pregnancy. This consisted of routine fetal heart rate (FHR) monitoring at 36 weeks and growth ultrasounds at 28, 32 and 36 weeks gestation. Insulin requiring women with unstable control were delivered at 39 weeks and those with optimal control were delivered at 40 weeks. Women with diet controlled gestational diabetes mellitus (GDM) were delivered by 41 weeks. The latter were followed throughout pregnancy in a routine antenatal clinic with review by obstetricians, diabetes educators, and dieticians. The aim of this review was to examine the outcomes of women managed with this approach during 2008 and 2009.

Results: The data are listed in the table. The one perinatal mortality was a feetal terminated at 20 0/7 weeks for Trisomy 13. There were fewer caesarean deliveries in those women with diet controlled GDM than in women taking insulin (34% vs. 48% P=0.005), fewer instrumented deliveries (9 vs. 22 P=0.028) and fewer admissions to SCN (1 vs. 16 P=0.001). There were no differences in birth weight, shoulder dystocia, admissions to NICU or 5 minute Apgar scores ≥7.

Conclusions: A more conservative approach in the management of diabetes in pregnancy is associated with good outcomes for a cohort of almost 400 women managed in our unit over a 2-year period. The majority of women in both groups delivered before the need for induction of labour.

Table 1. Pregnancy outcomes of the 390 women with diabetes in pregnancy.

<table>
<thead>
<tr>
<th>Median ±SE (range)</th>
<th>Diet GDM (N=187)</th>
<th>Insulin Requiring (N=203)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery (weeks)</td>
<td>39.3 ± 0.21</td>
<td>39.1 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>(20.6-41.5)</td>
<td>(24.5-40.6)</td>
</tr>
<tr>
<td>Birth Weight (g)</td>
<td>3240 ± 47</td>
<td>3325 ± 43</td>
</tr>
<tr>
<td></td>
<td>(395-4560)</td>
<td>(661-4850)</td>
</tr>
<tr>
<td>Delivery (wks)</td>
<td>39.2 ± 0.26</td>
<td>36.5 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>(25.5-41.3)</td>
<td>(21.6-41.5)</td>
</tr>
<tr>
<td>Birth Weight (g)</td>
<td>3372 ± 92</td>
<td>3105 ± 69</td>
</tr>
<tr>
<td></td>
<td>(685-4560)</td>
<td>(661-4396)</td>
</tr>
</tbody>
</table>

PS 105 Biomarkers in pregnancy

1093

Circulating vaspin levels are increased during pregnancy but shown no association with parameters of insulin sensitivity in women with gestational diabetes

L. Kosik1, A. Handisurya2, Y. Winhöfer3, J. Todoric4, A. Tura1, K. Klein1, D. Bancher-Todesca1, G. Pacini1, H. Esterbauer1, A. Kautzky-Willer1, 1Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria, 2Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Austria, 3Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria, 4Metabolic Unit, National Research Council, Institute of Biomedical Engineering, Padova, Italy, 1Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Medical University of Vienna, Austria.

Background and aims: Visceral adipose tissue-derived serpin (Vaspin) is a novel adipokine that might play a role in glucose metabolism. In humans, circulating vaspin levels were found to be increased in subjects with T2DM and to positively correlate with BMI and parameters of insulin sensitivity. In women with GDM, no differences in serum vaspin levels have been observed. However, acute glucose-induced changes under standardized conditions as well as effects of pregnancy itself on circulating vaspin levels remain to be elucidated.

Materials and methods: Plasma vaspin concentrations were measured in 20 pregnant women (10 GDM and 10 NGT) at 0, 30, 60 and 120 min of a 2h-75g-oral glucose tolerance test (OGTT) during gestational week 21-28 and three months after delivery by a commercially available ELISA kit (human Vaspin ELISA kit, Adipogen, Seoul, South Korea). Fasting insulin sensitivity was estimated by the homeostasis model assessment of insulin resistance (HOMA-IR).

Results: At all timepoints of the OGTT, circulating vaspin concentrations were similar in women with GDM and NGT during pregnancy (1.5±0.86 vs. 1.33±0.76, p=0.05) as well as three months after delivery (0.26±0.42 vs. 0.32±0.69, p=0.05). Post-partum, plasma vaspin levels decreased significantly in both groups (p<0.01, respectively), however, to similar extent (p=0.05). Only in women with GDM, circulating vaspin was significantly decreased 60 and 120 min after glucose ingestion during pregnancy (p<0.01). Plasma vaspin concentrations correlated significantly with glutamicoxaloacetic transaminase during pregnancy (r=-0.49, p=0.03) as well as serum estrogen levels (r=-0.51, p=0.03), sexual hormone-binding globulin (r=-0.46, p=0.05) and serum creatinine (r=0.53, p=0.02) three months after delivery. No association between circulating vaspin levels and parameters of insulin sensitivity including HOMA-IR, fasting glucose, insulin or C-peptide levels have been observed.

Conclusion: In contrast to previous studies, we found no association between parameters of insulin sensitivity and circulating vaspin concentrations in women with GDM. Interestingly, following glucose loading plasma vaspin concentrations decreased only in women with GDM. Additionally, pregnancy seems to result in an elevation of circulating vaspin.

1094

Plasma chemerin concentrations in relation to parameters of insulin sensitivity in women with gestational diabetes

A. Handisurya, Y. Winhöfer1, J. Todoric1, A. Tura1, K. Klein2, D. Bancher-Todesca1, G. Pacini2, H. Esterbauer1, A. Kautzky-Willer2, 1Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Austria, 2Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria, 3Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria, 4Metabolic Unit, National Research Council, Institute of Biomedical Engineering, Padova, Italy, 1Department of Obstetrics and Gynecology, Division of Feto-Maternal Medicine, Medical University of Vienna, Austria.

Background and aims: Chemerin, a novel adipokine, is a chemoattractant protein with several functions in innate and adaptive immunity and implicated in the regulation of glucose homeostasis. Previously, chemerin was found to enhance insulin-stimulated glucose uptake in 3T3-L1 adipocytes, to induce insulin resistance in skeletal muscle and to exacerbate glucose intolerance in mice, when administered exogenously. In humans, circulating

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>additional insulin</th>
<th>g</th>
<th>birth weight,</th>
<th>p for birth weight,</th>
<th>macrosomia,</th>
<th>n (p metfo vs insulin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin, all</td>
<td>75</td>
<td>19%</td>
<td>3629</td>
<td>0.41</td>
<td>4 (p=0.37)</td>
<td>3663</td>
<td>0.94 (3)</td>
</tr>
<tr>
<td>Insulin, all</td>
<td>75</td>
<td></td>
<td>3567</td>
<td></td>
<td>1</td>
<td>3519</td>
<td>0</td>
</tr>
<tr>
<td>BMI < 30, metformin</td>
<td>41</td>
<td>20%</td>
<td>3601</td>
<td>0.35</td>
<td>1</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI < 30, insulin</td>
<td>68</td>
<td></td>
<td>3519</td>
<td></td>
<td>1</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI > 30, metformin</td>
<td>34</td>
<td>18%</td>
<td>3663</td>
<td>0.94</td>
<td>3</td>
<td>3652</td>
<td>0</td>
</tr>
<tr>
<td>BMI > 30, insulin</td>
<td>27</td>
<td></td>
<td>3652</td>
<td></td>
<td>0</td>
<td>3652</td>
<td>0</td>
</tr>
</tbody>
</table>
Bone marrow-derived endothelial progenitor cells: Observational study of 107 consecutive pregnant women with type 1 diabetes
to prevalent insulin sensitivity, was higher (p<0.0001) in women with GDM as compared to pregnant, normal-glucose tolerant women. Thus, the potential role of chemerin in the pathogenesis of GDM remains to be determined.

1095
Circulating endothelial progenitor cells are reduced in pregnant women with abnormalities of glucose tolerance
L. Pucci1, D. Lucchesi1, C. Lencioni1, E. Storti1, M.C. Iorio2, R. Vanacore3, V. Resti4, R. Miccoli1, G. Penzo1, G. Di Cianni1, S. Del Prato1
1Endocrinology and Metabolism, 2Blood Bank, University of Pisa and Azienda Universitaria Ospedaliera Pisana, Pisa, Italy.

Background and aims: Bone marrow-derived endothelial progenitor cells (EPCs) contribute to support vascular integrity. A role for EPCs has been claimed also in development and maintenance of the vasculature during pregnancy whose cardiovascular adaptation sustains the developing foetus. Gestational diabetes is associated with systemic endothelial dysfunction, but no significant differences have been found in women with GDM as compared to pregnant, normal-glucose tolerant women. Thus, the potential role of chemerin in the pathogenesis of GDM remains to be determined.

Materials and methods: Plasma chemerin concentrations were measured in 20 pregnant women (10 GDM and 10 NGT) at 0, 30, 60 and 120 min of a 2h-75g-oral glucose tolerance test (OGTT) during gestational week 21-28 and three months after delivery by a commercially available ELISA kit (R&D Systems, Minneapolis, MO). Fasting insulin sensitivity was estimated by the homeostasis model assessment of insulin resistance (HOMA-IR).

Results: No differences in circulating chemerin levels at any timepoint of the OGTT were observed between GDM and NGT during pregnancy or after delivery (p>0.05). However, the decrease in plasma chemerin concentration between 0 min and 30, 60 or 120 min of the OGTT was more pronounced in women with GDM during pregnancy (p<0.05, respectively) but not post-partum. Fasting plasma chemerin levels correlated with HOMA-IR (r=0.54, p=0.01), fasting insulin (r=0.53, p=0.02) and fasting C-peptide levels (r=0.69, p<0.001), HDL-cholesterol (r=0.47, p=0.04), CRP (r=0.58, p=0.008) and uCRP (r=0.65, p=0.004) during pregnancy and with HOMA-IR (r=0.54, p=0.02), fasting insulin (r=0.56, p=0.02) three months after delivery. The decrease in plasma chemerin following delivery (p<0.05, respectively) tended to be higher in women with GDM (p=0.08).

Conclusion: Our study shows that plasma chemerin levels correlated with parameters of insulin sensitivity and inflammation also in women with GDM. However, no significant differences have been found in women with GDM as compared to pregnant, normal-glucose tolerant women. Thus, the potential role of chemerin in the pathogenesis of GDM remains to be determined.

1096
A high level of prorenin in early pregnancy is associated with development of preeclampsia in women with type 1 diabetes
L. Ringholm1,2, U. Pedersen-Bjergaard1, R. Thorsteinsdottir1,2, F. Boomsma1,
1Azienda Universitaria Ospedaliera Pisana, Pisa, Italy.

Background and aims: Preeclampsia is characterised by abnormal placental perfusion in early pregnancy, maternal systemic endothelial dysfunction and perturbation of the renin-angiotensin-system. Levels of semicarbazide-sensitive amine oxidase (SSAO) have been shown to be positively associated with angiotensin converting enzyme (ACE) activity and are elevated in patients with diabetes. SSAO is implicated in the pathophysiology of diabetic late complications and may be a marker of endothelial dysfunction and preeclampsia. We investigated whether SSAO and components of the renin-angiotensin system in early pregnancy are associated with development of preeclampsia in women with type 1 diabetes.

Materials and methods: Observational study of 107 consecutive pregnant women with type 1 diabetes for median 16 years (range 1-36) and HbA1c 6.6% (4.9-10.5) in early pregnancy. At 8, 14, 21, 27 and 33 weeks blood samples were drawn for measurements of prorenin, renin, angiotensinogen, ACE and SSAO; HbA1c, blood pressure and urinary albumin excretion (UAE) were recorded. Preeclampsia was defined as blood pressure >140/90 mmHg (two measurements) accompanied by UAE ≥300 mg/24h later than 20 weeks.

Results: Preeclampsia was recorded in nine women (8%) characterised by a longer duration of diabetes (median 20 years (range 10-32) vs. 16 (1-36), p=0.04) and higher levels of SSAO at 8 weeks (592 (372-914) μU/mL vs. 522 (264-872), p=0.04), normal range 35±2±100 μU/mL compared with women without preeclampsia. At 8 weeks prorenin levels tended to be elevated in women with subsequent preeclampsia (136 (50-296) μU/mL vs. 101 (21-316), p=0.06, normal range 88 to 390 μU/mL), whereas levels of renin, angiotensinogen and ACE were comparable (p=0.90, 0.73 and 0.91, respectively). From 8 to 33 weeks prorenin levels decreased slightly and similarly in women with and without preeclampsia, but throughout pregnancy, prorenin levels remained 28% higher (p=0.0096) and SSAO levels 16% higher (p=0.04) in women developing preeclampsia whereas levels of renin, angiotensinogen and ACE were comparable between the two groups (p=0.49, 0.75 and 0.53, respectively).

In univariate logistic regression analyses of continuous variables, development of preeclampsia was associated with prorenin levels at 8 weeks (odds ratio 4.4 [95% confidence interval 1.5-13.0], p=0.007), UAE (≥30 mg/24h) at 8 weeks (3.1 [1.3-7.7], p=0.01), SSAO levels at 8 weeks (1.8 [1.1-3.1], p=0.01) and duration of diabetes (1.1 [1.003-1.2], p=0.04). In multivariate logistic regression analysis, the only independent predictor of preeclampsia was prorenin levels at 8 weeks (4.4 [1.5-13.0], p=0.007), i.e. an increase of prorenin of 100 μU/mL results in a 4.4 times higher risk of developing preeclampsia.

Conclusion: In women with type 1 diabetes, a high level of prorenin in early pregnancy was associated with development of preeclampsia. Whether these changes in the renin-angiotensin system mainly reflect maternal susceptibility present before pregnancy or represent changes secondary to abnormal placentaion remain speculative.
Relationship between perinatal outcomes and thyroid-peroxidase antibodies (TPO) in a cohort of pregnant women with gestational diabetes (GD)

1Endocrinology, Hospital Infantia Santa, Madrid, 2Hospital Doce de Octubre, Obstetrics, Spain.

Background and aims: The prevalence of TPO antibodies in pregnant women ranges between 6-10%, in line with what is found in the average population.

The aim of the present study was to evaluate possible changes in serum osteocalcin, osteoprotegerin and RANKL between the women with GD and NGT both before (7.8 [5.6-10.5] ng/ml vs 9.5 [5.1-12.7] ng/ml, 6.3 [4.9-7.2] pmol/l vs 5.4 [3.8-7.2] pmol/l and 0.22 [0.14-0.59] pmol/l vs 0.31 [0.12-0.46] pmol/l, respectively) and after delivery (22.1 [16.3-29.6] ng/ml vs 23.1 [17.4-29.7] ng/ml, 4.2 [3.7-5.2] pmol/l vs 3.9 [3.4-4.5] pmol/l and 0.26 [0.13-0.48] pmol/l vs 0.31 [0.10-0.62] pmol/l, respectively). Twelve weeks postpartum serum osteocalcin concentrations increased (p<0.0001), whereas OPG levels decreased significantly (p<0.0001 in both groups of patients in comparison with the pregnant state. In the whole group studied there was a significant correlation between osteocalcin levels and gestational age (R=0.30, p=0.02). In healthy pregnant women osteocalcin levels correlated with gestational age (R=0.45, p=0.04) and BMI values (R=0.83, p=0.04), while OPG concentrations were related to glucose levels 60 and 120 min after glucose load (R=0.57, p=0.005 and R=0.50, p=0.01, respectively). In the same group there was also a negative correlation between RANKL concentrations and gestational age (R=-0.42, p=0.04). No associations of the parameters studied with insulin and HOMA-IR were noted.

Conclusion: It could be hypothesized that lower osteocalcin levels may be related to decreased insulin sensitivity and increased fat mass in pregnant women. On the other hand, increased OPG concentrations, possibly due to elevated estrogen levels during pregnancy, may play protective roles including inhibition of excessive bone resorption and anti-inflammatoriy actions. No effect of GD on serum osteocalcin and OPG/RANKL system was found in the present study.

Supported by: State Committee for Scientific Research

Vitamin D deficiency and isolated fasting hyperglycaemia in pregnancy

E. Anastasiou, A. Athanasiadou, V. Vasileiou, A. Giakoumi, G. Papageorgiou, E. Zapanti, M. Alevizaki; Alexander Hospital, Athens, Greece.

Background and aims: The relation between vitamin D deficiency and Gestational Diabetes Mellitus (GDM) has been rarely addressed in the literature with conflicting results. The aim is to determine the association between maternal serum 25(OH)D and glucose metabolism in Caucasian pregnant women.

Materials and methods: In a prospective study 157 pregnant women aged 21-28.8 years underwent a 100g OGGT in the third trimester of pregnancy, during which serum 25(OH)D, PTH, Ca, and P concentrations were measured. On the other hand, increased OPG concentrations, possibly due to gestational diabetes (GD). The presence of TPO antibodies has been independently related to increasing rates of spontaneous abortion, preterm delivery, and it has recently been demonstrated that in the first trimester there is a risk factor of perinatal death. The aim of this study was to evaluate the impact of maternal autoimmunity on perinatal outcomes and on maternal morbidities.

Materials and methods: GD was diagnosed in a cohort of 1501 pregnant women without pregestational thyroid dysfunction, gestational age in the first visit >12 week, singleton pregnancy and availability of TPO antibodies. Considering the high prevalence of positive TPO antibodies in pregnant GD and the increasing risk of developing postpartum dysfunc-

Conclusion: The prevalence of TPO antibodies in pregnant women ranges between 6-10%, in line with what is found in the average population.

The aim of the present study was to evaluate possible changes in serum osteocalcin, osteoprotegerin and RANKL levels in pregnant women with pregestational diabetes (GDM) and 35 healthy pregnant women in the 3rd trimester of pregnancy and 12 weeks postpartum.

Results: There were no significant differences in the concentrations of osteocalcin, OPG and RANKL between the women with GDM and NGT both before (7.8 [5.6-10.5] ng/ml vs 9.5 [5.1-12.7] ng/ml, 6.3 [4.9-7.2] pmol/l vs 5.4 [3.8-7.2] pmol/l and 0.22 [0.14-0.59] pmol/l vs 0.31 [0.12-0.46] pmol/l, respectively) and after delivery (22.1 [16.3-29.6] ng/ml vs 23.1 [17.4-29.7] ng/ml, 4.2 [3.7-5.2] pmol/l vs 3.9 [3.4-4.5] pmol/l and 0.26 [0.13-0.48] pmol/l vs 0.31 [0.10-0.62] pmol/l, respectively). Twelve weeks postpartum serum osteocalcin concentrations increased (p<0.0001), whereas OPG levels decreased significantly (p<0.0001 in both groups of patients in comparison with the pregnant state. In the whole group studied there was a significant correlation between osteocalcin levels and gestational age (R=0.30, p=0.02). In healthy pregnant women osteocalcin levels correlated with gestational age (R=0.45, p=0.04) and BMI values (R=0.83, p=0.04), while OPG concentrations were related to glucose levels 60 and 120 min after glucose load (R=0.57, p=0.005 and R=0.50, p=0.01, respectively). In the same group there was also a negative correlation between RANKL concentrations and gestational age (R=-0.42, p=0.04). No associations of the parameters studied with insulin and HOMA-IR were noted.

Conclusion: It could be hypothesized that lower osteocalcin levels may be related to decreased insulin sensitivity and increased fat mass in pregnant women. On the other hand, increased OPG concentrations, possibly due to elevated estrogen levels during pregnancy, may play protective roles including inhibition of excessive bone resorption and anti-inflammatory actions. No effect of GD on serum osteocalcin and OPG/RANKL system was found in the present study.

Supported by: State Committee for Scientific Research
1100
Markers oxidative stress and antioxidant status in women with late-onset gestational diabetes mellitus
C. López-Tinoco1, A. Garcia-Valero1, J. Bartha2, M. Aguilar-Diosdado1; 1Endocrinology, Obstetric, Hospital Puerta del Mar, Cádiz, Spain.

Background and aims: The relationship between late-onset gestational diabetes mellitus [GDM] and oxidative stress is not well known and the importance of the oxidant/antioxidant equilibrium in the clinical evolution and complications of late-onset GDM require elucidation. The aim of the present study was to evaluate the relationships between maternal serum levels of markers of oxidative stress in women with late-onset GDM which potentially may have considerable clinical implications in the pathogenesis and/or the evolution of GDM.

Material and methods: We performed a nested case-control study within a sample of a total of 126 pregnant women (63 with GDM, 63 controls), between the 24th and 29th week of gestation. Both groups were analyzed for demographic data, perinatal and obstetrics results and the levels of the markers oxidative stress and antioxidants status, that were measured in serum or plasma using a commercial kit (Cayman Chemical, Ann Arbor, MI, USA).

Results: In the univariate analysis, control versus patient results were: maternal age 30.5±4.05 vs. 31.4±3.4 years (p=0.1); pre-gestational body mass index [BMI] 23.3±1.4 vs. 27.1±1.6 kg/m² (p=0.001); weeks at delivery 39.2±3.05 vs. 38.9±1.8 (p=0.09); Caesarean delivery 12.5 vs. 43% (p=0.004); macromomia 4 vs. 9.4% (p=0.6); lipoperoxides [LPO] 2.06±1.00 vs. 3.14±1.55 umol/ml (p=0.001); catalase 3.2±1.41 vs. 2.52±1.3 nmol/min/ml (p=0.03); superoxide dismutase [SOD] 0.11±0.04 vs. 0.08±0.01 U/ml (p=0.0003); glutathione peroxidase [GPX] 0.03±0.06 vs. 0.22±0.066 nmol/min/ml (p=0.01); glutathione reductase [GSR] 0.004±0.002 vs. 0.004±0.004 nmol/min/ml (p=0.9); glutathione transferase [GST] 0.0025±0.0012 vs. 0.0027±0.0017 nmol/min/ml (p=0.7). Multivariate analysis that was performed using non-conditional logistic regression showed catalase having a protective effect against (OR=0.39, p=0.006) and LPO carried a significant risk for GDM (OR=2.44, p=0.034).

Conclusion: These data suggest an increase in oxidative stress and a decrease in antioxidative defence in women with late-onset GDM and, as such, may have considerable clinical implications in the pathogenesis and/or the course of the pregnancy in these patients.

1101
Oxidative stress may stay elevated after gestational diabetic and even healthy pregnancies
E.M. Horvath1, R. Benko1, R. Magenheim1, G. Tamas1, Z. Lacza1, T. Pek1, C. Szabo1; 1Institute of Human Physiologuy and Clinical Experimental Research, Semmelweis University, Budapest, Hungary, 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary, 3Department of Anesthesiology, The University of Texas Medical Branch, Galveston, USA.

Background and aims: The number of pathological and moreover healthy pregnancies increases the risk of cardiovascular morbidity. Parous women with no complicated births have a 1.95-fold higher cardiovascular disease prevalence compared to nulliparous. Among women with one or more pregnancy complications, cardiovascular disease prevalence is 2.67 times higher. It was shown that increased oxidative stress can be observed during the course of normal pregnancy. Gestational diabetes mellitus (GDM) is associated with a pronounced degree of oxidative stress in placental and umbilical cord tissues and also in the plasma of the mother and the newborn. It is also known that elevated levels of oxygen and nitrogen derived reactive species are major contributors in the development of cardiovascular morbidities. Our aim was to examine the level of possibly persisting oxidative stress and its correlation to other known cardiovascular risk factors after pregnancy.

Materials and methods: Serum total peroxide level was measured in healthy volunteers three years following healthy pregnancy (n=20); moderate GDM (carbohydrate-restricted diet, n=30) and severe GDM (insulin treatment, n=12) pregnancies. Controls were age and BMI matched males (n=10) and nulliparous women (n=14). In order to characterize their carbohydrate metabolism fasting glucose, HbA1c levels were measured and oral glucose tolerance test (oGTT, 75g) was performed. Serum glucose and insulin levels were determined in every 30 minutes, area under the curve was calculated. The following clinical parameters were also gauged: inflammatory markers, lipid profile, liver and kidney function, thyroid and sex hormones. Serum total peroxide level was measured in fasting conditions and 2hours following oGTT.

Results: The oGTT did not change the peroxide level in any study group. In fasting conditions the peroxide level of nulliparous women and men was similar. Previous healthy pregnancy significantly elevated (586.2±66.8 vs. 332.3±34.5umol/l, p<0.05) the peroxide level and previous moderate GDM did not increased it further on (657.2±46 umol/l). However severe GDM resulted in significant increase (951±147.7 umol/l p<0.05, vs. nulliparous, moderate GDM). Factors that may influence peroxide level were analyzed in multivariate regression model, in order to select significant variables stepwise method was used. According to the model peroxide level is significantly influenced by CRP (35.9umol/l, p<0.05) SHBG (2.7umol/l, p<0.05), total serum protein (22.8umol/l, p<0.05) and the number of pregnancies (b=78.6 umol/l, p<0.05) (r2=0.46). The number of pregnancies significantly correlates with CRP (Pearson correlation: 0.32, p<0.05), which shows that the effect of previous pregnancy on peroxide level is partially due to the increase in CRP level.

Conclusion: According to our results the elevated oxidative stress that can be measured during pregnancy can be still observed three years after delivery. The level of oxidative stress is only altered by previous severe GDM, but not moderate GDM. Immunological processes may play important role in this phenomenon. The elevated level of oxidative stress may contribute to the increased cardiovascular morbidity of child-bearing women.

Supported by: OTKA
1102

The effect of lactation on glucose and lipid metabolism in women with prior gestational diabetes

A. Colatrelia, C. Festia, G. Merolab, M. Bongiovannica, L. Matteib, A. Napolic
Clinical and molecular medicine, 2nd faculty of, Rome, Italy.

Background and aims: Lactation confers health benefits to women with a history of gestational diabetes (GDM). Breastfeeding improves glucose tolerance in the early postpartum period, but it is unclear whether future risk of metabolic alterations, like type 2 diabetes, is reduced. The aim of this study was to investigate the effect of lactation, three years after pregnancy, on glucose and lipid metabolism in women with prior gestational diabetes.

Materials and methods: A population of women with prior gestational diabetes, according to Carpenter and Coustan Criteria, was evaluated with comparison of results for lactating versus nonlactating women. A total of 81 women participated (62 breastfeeding [BF] and 19 nonbreastfeeding [<4 weeks, nonBF]). Each woman completed a 75-g oral glucose tolerance test (OGTT) to analyze glucose tolerance, insulin sensitivity / resistance and β-cell function. Fasting serum was used to investigate lipid profile (total cholesterol, high-density lipoprotein [HDL] cholesterol, low-density lipoprotein [LDL] cholesterol, and triglycerides), apolipoprotein B, apolipoprotein A1, homocysteine, fibrinogen, hs-CRP, uric acid, microalbuminuria. STATISTICA paired and Un-paired t-test, Mann-Whitney and χ² tests were used, as appropriate.

Results: The mean (+/- standard deviation) maternal age (37.1 +/- 4.6 versus 37.4 +/- 4.9 years), body mass index (26.3 +/- 5.6 versus 26.4 +/- 5.3 kg/m²), and parity (1.9 +/- 0.8 versus 1.7 +/- 0.8), were not different between the lactating and nonlactating women. No effect was visible on glucose tolerance, HOMA-IR and other β-cell function indexes as well as hs-CRP (not significantly lower in non BF), uric acid, total cholesterol, HDL and LDL cholesterol. Levels for significance were only found for: HOMA-IS (BF1.0 +/- 0.7 versus non BF 0.6 +/- 0.4, p = 0.04), Triglycerides (BF 83.8 +/- 46.7 versus non BF 123.2 +/- 94.0 mg/dl, p = 0.02).

Conclusion: Breastfeeding had no effects on glucose tolerance status three years after the delivery of women with prior GDM.

1105

Association of fatty liver index (FLI) with parameters of insulin sensitivity in women with prior gestational diabetes

C.S. Göbel1, L. Bokslur1, A. Tur2, A. Lug2, G. Pacini2, A. Gastaldelli2, A. Kautky-Willer2
1Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria, 2Metabolic Unit, Institute of Biomedical Engineering, Padova, Italy, 3Department of Biochemistry clinical Physiology, Consiglio Nazionale delle Richerche (CNR), Pisa, Italy.

Background and aims: Most of the important risk determinants of the metabolic syndrome, including obesity, insulin resistance, glucose intolerance, dyslipidemia and hypertension are present in women with prior gestational diabetes (pGDM) and indicate their high risk for developing type 2 diabetes and cardiovascular disease (CVD) in later life. Fatty liver (FL) is associated with insulin resistance, in particular in the liver, and with CVD. The aim of the study was to evaluate the relationship between pGDM, presence of FL and insulin resistance.

Materials and methods: A cross-sectional analysis was performed in 62 pGDM women and 28 women with normal glucose tolerance during pregnancy (NGT) until 3 months after delivery. According to ivOGTT insulin sensitivity index (SI), pGDM were divided into insulin resistant (IR SI<2.8 ± 10⁻⁴ min⁻¹/uU/ml) or insulin sensitive (IS). The fatty liver index (FLI=60·% lobularity >78% presence of FL; FLI<20·% lobularity >91% absence of FL) was calculated for each group and was correlated with metabolic parameters.

1.31%, in over-weight and obese patients it was 3.28% and 9.52% respectively. The frequency of the GDM significantly increases in obese patients at the pre-pregnancy period compared to the ones with normal BMI. The cases of group II and group III showed statistically significant positive results of 50 g GTT when they had excess weight gain compared to the ones whose weight gain stand in a normal range.

Conclusion: If the women with normal BMI gain more than the recommended weight range during their pregnancy, they should be regarded as having risk for GDM.
1107

Pancreatic islets in human gestational diabetes

M. Tancredi1, L. Marselli1, L. Volpe1, M. Masini1, C. Lencioni1, M. Bugliani1, F. Dotta1, P. Masii1, G. Di Ciani1, P. Marchetti1
1University of Pisa, Pisa, Italy, 2University of Siena, Italy.

Background and aims: Autopotic studies have shown an increased amount of islets and beta-cells in human pregnancy. However, no information is currently available on the properties of islet cells in human gestational diabetes. Here we describe several morphological, ultrastructural and functional properties of islets from a 33 yrs old woman with gestational diabetes (GD), who died for cerebral hemorrhage (rupture of a congenital aneurysm) at the 27th week of gestation. GD had been diagnosed at the 22nd week, and therapy at time of death was with 32 IU insulin per day. At last control, fasting plasma glucose was 104 mg/dl and HbA1c was 6.1%.

Materials and methods: Immunohistochemical stainings and electron microscopy (EM) analyses were performed on pancreatic samples before islet isolation. Islet preparation was accomplished by collagenase digestion and gradient purification. Insulin secretion from the isolated islets was studied in response to glucose (3.3 and 16.7 mM), arginine (20 mM) and glibenclamide (100 μM).

Results: Islets area (diameter > 50 μm) was reduced in GD (0.55%) compared to non-diabetic controls (Ctrl) (1.32 and 1.47%), whilst islet insulin-positive area was higher in GD (66.0%) compared to Ctrl (51.9 and 47.2%). Apoptosis (cleaved caspase 3 immunohistochemistry and EM) was not different between the three cases, and K67 immunohistochemistry did not show replicating cells in the islets studied. The percentage of ducts with insulin-positive cells in the wall or within five cells far from it was different between GD (27%) and Ctrl (45 and 23%); however, clusters (<10 cells) of insulin-positive cells scattered in the acinar tissue were more frequent in GD (1.35 pm²) compared to Ctrl (0.18 and 0.26 pm²). Ex-vivo insulin secretion was similar in GD and control islets.

Conclusion: In this case of human GD, a reduced amount of islets was observed; since apoptotic phenomena were similar in GD and control betacells, it is possible that not sufficient regeneration played a major role.

Supported by: European Community

1108

Hepatic and nonhepatic glucose uptake in a diet-induced model of gestational diabetes

M.C. Moore1, K.C. Coate1, M.S. Smith1, M. Shiotia1, P.E. Williams2
1Molecular Physiology & Biophysics, Surgery, Vanderbilt University, Nashville, USA.

Background and aims: Glucose delivery via the hepatic portal vein (or the "portal signal") enhances net hepatic glucose uptake (NHGU) but reciprocally inhibits nonhepatic and skeletal muscle glucose uptake. Thus the portal signal corrects the partitioning of glucose load among the tissues but does not increase whole body glucose uptake. Activation of glucokinase (GK) might explain the liver's response. We have shown that feeding a high-fat and -sugar diet (HFD; energy: 60% fat, 12% fructose or sucrose) to pregnant (P) dogs during gestational wks 5-8 (total gest =9 wk) alters the response to an OGTT, resulting in a canine model of gestational diabetes (GDM). It also worsens P-induced whole body and muscle insulin resistance and impairs suppression of hepatic glucose output during a hyperinsulinemic euglycemic clamp. We hypothesized that glucose disposal under hyperinsulinemic, hyperglycemic conditions in the presence of the portal signal would be impaired in HFD-fed P dogs.

Materials and methods: P dogs with chronic vascular catheterization to allow assessment of hepatic and hindlimb balance received a meat/chow diet (C; 26% fat, 42% CHO [2% sugar]) or the HFD during gest wks 5-8 (total gest =9 wk) and therapy at time of death was with 32 IU insulin per day. At last control, fasting plasma glucose was 104 mg/dl and HbA1c was 6.1%.

Results: Clamp period arterial (157±1 and 158±1 mg/dl) and portal (172±2 and 172±2 mg/dl) blood glucose, and arterial plasma insulin (25±2 and 28±3 μU/ml) and glucagon (48±5 and 37±2 ng/l) were not different in C and HFD, respectively. Subsequent data are for the last h of the clamp unless otherwise stated, and data are for C and HFD groups, respectively. The total glucose infusion rate was different between groups (9.6±0.6 and 9.4±1.0 mg/kg
It has been reported that diabetes-induced impaired glucose disposal. In P women with impaired glucose tolerance or GDM, blunted NHGU could contribute to postprandial hyperglycemia, increasing the portal signal was reduced in HFD-fed dogs, but not in association with impaired catalytic activity of GK. Despite the presence of insulin resistance in the HFD dogs, the reciprocal nature of liver and skeletal muscle glucose disposal was maintained such that there was no reduction in whole body glucose disposal. Maternal diabetes might increase oocyte apoptosis by a Bax-caspase-3 pathway to play a role in embryonic malformations or miscarriage. The objective of this study was to investigate the occurrence of apoptosis at an early stage of development, the oocytes and 2-cell embryos in streptozotocin (STZ)-induced diabetic mouse.

Materials and methods: Bax and Caspase-3 protein and mRNA were detected respectively by Immunofluorescent and quantitative reverse transcription-polymerase chain reaction in oocytes and 2-cell embryos from diabetic vs nondiabetic mice. Apoptosis was detected by Annexin-V staining. Furthermore, HE-stained ovarian sections were made to see the effect of hyperglycemia on the oocytes maturation and development, electron microscopy was used to see the effect of hyperglycemia on the ultrastructure of 2-cell embryos.

Results: The increased number of Annexin-V-positive cells occurred in diabetic oocytes compared to nondiabetic oocytes (P < 0.05). In quantitative RT-PCR and immunofluorescent, Bax and caspase-3 expression were significantly increased in diabetic oocytes than in nondiabetic oocytes (P < 0.05). HE-stained ovarian sections demonstrated that hyperglycemia resulted in delayed follicular growth as detailed by reduced number of growing follicles (P < 0.05) and a reduction in follicle size (P < 0.01). In contrast, no any Annexin-V-positive cells in 2-cell embryos were found in diabetic and nondiabetic mice. Although Bax expression was elevated in diabetic 2-cell embryos (P < 0.05), caspase-3 expression in 2-cell embryos was no significant difference between diabetic and nondiabetic mice (P > 0.05). Electron-Microscopy study revealed that more swollen mitochondria were found in diabetic 2-cell embryos.

Conclusion: Maternal diabetes might increase oocyte apoptosis by a Bax-caspase-3 pathway. Development of 2-cell embryos might be adversely affected by maternal diabetes, but not through Bax-regulated caspase-3 apoptotic pathway.
There was no difference in BMI between groups, before pregnancy (GDM: 24.76±1.3 vs NGT: 23.71±1.6) (p=0.66) as well as for the weight gained during pregnancy (GDM:13.58±1.6 vs NGT: 12.34±1.8 kg) (p=0.615). The placental superoxide dismutase levels were significantly lower in GDM than NGT (519.98±29.5 vs 671.17±49.1 μM) (p=0.028). In conclusion, the difference in the antioxidant biomarker level indicate that regardless the euglycemic condition in GD, there is an increased oxidative load and thus an exhaustion of the cell antioxidant capacity. These data may point toward a cellular pathway that may contribute in the higher prevalence of adverse outcomes in GD.

PS 107 Neuropathy - diagnostic tools

1111

Validity of DN4 as a screening tool for neuropathic pain of painful diabetic polyneuropathy

V. Spallone\(^1\), R. Morganti\(^1\), C. D’Amato\(^1\), C. Greco\(^1\), L. Cacciotti\(^1\), S. Rotella\(^1\), G. Marfa\(^2\);

\(^1\)Internal Medicine, Endocrinology, \(^2\)Neurological Sciences, Neurology, Tor Vergata University, Rome, Italy.

Background and aims: Among the screening tools developed for distinguishing neuropathic from nociceptive pain, the DN4 (Douleur Neuropathique en 4 Questions) use both interview questions (DN4-interview) and limited bedside physical tests. DN4 has not been specifically validated in diabetes. This study was aimed at assessing the validity and diagnostic accuracy of DN4 as a screening tool in identifying neuropathic pain associated with painful diabetic polyneuropathy (PDPN).

Materials and methods: In 135 diabetic patients (age 53±16 years, diabetes duration 16±12 years, BMI 30±7 Kg/m\(^2\); 68 male, 38 with type 1 diabetes), clinical parameters, symptoms and signs of diabetic polyneuropathy (DPN), the vibration perception threshold (VPT), the cold (CTT) and warm sensation thresholds (WTT), and neuropathic pain were evaluated using the Michigan Neuropathy Screening Instrument Questionnaire (MNSI-Q), the Michigan Diabetic Neuropathy Score (MDNS), the Biothesiometer, the Neuro Sensory Analyzer TSA-II, a pain history, an 11-point numerical rating scale (NRS), the Short-Form McGill Pain Questionnaire (SF-MPQ), the Brief Pain Inventory (BPI), and DN4 (the latter administered by “a blinded” investigator). PDPN was defined as the presence of DPN (at least 2 abnormalities among symptoms, signs, VPT, thermal thresholds, and 10 g monofilament) plus clinician-diagnosed chronic neuropathic pain with the same distribution as the neurological deficits and attributable to DPN.

Results: Forty-five patients fulfilled the criteria for PDPN (PDPN\(^+\)), 33 for DPN (DPN\(^+\)) and 57 were DPN free (DPN\(^-\)). The DN4 score was related to both neurological (Vs. MNSI-Q: rho=0.82, P<0.0001; Vs. MDNS: rho=0.62, P<0.0001; Vs. VPT hallux: rho=0.48, P<0.0001; Vs. number of 10 g monofila-

ment correct answers: rho=-0.42, P<0.0001; Vs. CTT: rho=-0.28, P=0.0026; Vs. WTT: rho=-0.31, P=0.0099) and neuropathic pain indices (Vs. 24h average pain NRS: rho=0.30, P=0.049; Vs. SF-MPQ sensory dimension: rho=0.56, P=0.0003; Vs. BPI pain now: rho=0.43, P=0.005; Vs. BPI general activity interference: rho=0.33, P=0.029; Vs. BPI mood interference: rho=0.32, P=0.033). Using ROC analysis, the DN4 score showed a high diagnostic accuracy in discriminating between PDPN\(^+\) and both DPN\(^+\) and DPN\(^-\) (AUC: 0.95±0.02, 95% C.I. 0.91-0.98), as well as between PDPN\(^+\) and DPN\(^+\) or DPN\(^-\) (AUC: 0.93±0.03 and 0.96±0.02, respectively). The DN4-interview score showed a similar diagnostic accuracy (AUC: 0.94±0.02, 95% C.I. 0.89-0.97). At the cut-off score of 4, DN4 displayed a sensitivity of 79%, a specificity of 92%, a positive predictive value of 84%, a negative predictive value of 89%, and a likelihood ratio for a positive result of 9.89. At the cut-off score of 3, DN4-interview displayed a sensitivity of 79%, a specificity of 85%, a positive predictive value of 74%, a negative predictive value of 88%, and a likelihood ratio for a positive result of 5.33.

Conclusion: This study demonstrates for the first time the diagnostic accuracy of DN4 in identifying neuropathic pain in PDPN and supports its usefulness as a screening tool for diabetic peripheral neuropathic pain. The DN4-interview has quite similar diagnostic accuracy as the full version of DN4 with the additional advantage of a possible use as a self-questionnaire.

1112

Neuropad and corneal confocal microscopy: new indicators for human diabetic neuropathy

M. Tavakoli, C. Quattrini, P. Regum, H. Fadavi, A.J.M. Boulton, R.A. Malik; University of Manchester, United Kingdom.

Objectives: Evaluation of early nerve damage is important to define diabetic patients at risk of developing pain and foot ulceration. The earliest nerve damage occurs to the small fibres detected by skin biopsy. Corneal confocal microscopy (CCM) and the Neuropad test provide non-invasive structural (c-fibres) and functional (sympathetic cholinergic fibres) measures of small fibre damage and may act as screening tools for diabetic neuropathy.

Methodology: 100 diabetic patients (Type I/II: 61/39) and 14 healthy volunteers underwent assessment of neuropathic severity using the Neuropathy

1114
Comparing skin biopsy with corneal confocal microscopy: diagnostic yield of nerve fiber density
C. Quartrini1, M. Tavakoli1, P. Kallinikos1, A. Marshall1, N. Efron1, A.J.M. Boulton2, R.A. Malik2,3
1University of Manchester, United Kingdom, 2Department of Neuropathology, Manchester, United Kingdom, 3Institute of Health and Biomedical Innovation, Brisbane, Australia.

Background and aims: The assessment of intra-epidermal nerve fiber density (iENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of iENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (sSFN); 4) severe small fiber neuropathy (sSFN).

Materials and methods: 55 diabetic patients underwent assessment of neuropathic deficits using neuropathy disability score (NDS), nerve conduction studies, vibration perception threshold (VPT) using the Neurothesiometer, the diagnostic threshold (CDT), minimal heat-as-pain threshold (0.5 HP-VAS) and autonomic function testing (DB-HRV) using the CASE IV.

Definition of DPN was: 1) NDS ≥ 3/10, 2) peroneal motor nerve conduction velocity (PMNCV) ≤ 42 m/sec, 3) at least one positive small fiber assessment among DB-HRV≤53 pc, CDT≥95 pc, HP-VAS≥95 pc (CASE IV normality range), 4) VPT ≥ 15 V. Definition of RFU was: 1) NDS ≥ 6/10, 2) VPT ≥ 25, and one among the following: PMNCV ≤ 53 m/sec, CDT ≥ 98 pc, HP-VAS ≥ 98 pc, DB-HRV ≤ 53 pc. Definition of sSFN was: any value outside the 5th - 95th pc range (whichever end of the distribution applied) for CDT, 0.5 HPVAS and DB-HRV. All patients then underwent skin biopsy to quantify iENFD and CCM to quantify CNFD.

Results: The sensitivity of iENFD in diagnosing DPN was 78%, RFU-88%, sSFN-69% and sSFN-86% with respective specificities of 56%, 54%, 63% and 46%. The sensitivity of CNFD in diagnosing DPN was 56%, RFU-63%, iSFN-50% and sSFN-86% with respective specificities of 75%, 72%, 84% and 69%.

Conclusion: Although the sensitivity for detecting different severities of DPN is greater for iENFD compared to CNFD, the specificities for the latter are greater. Specifically for detecting sSFN, CNFD has a comparable and high sensitivity but higher specificity than iENFD. However, the major advantage of CCM is that it is a non-invasive technique.

1115
Extensor digitorum brevis muscle atrophy in diabetic patients
Department of Neurology, Aomori Prefecture Medical Centre, Aomori-City, Japan.

Background and aims: Diabetic polyneuropathy is clinically sensory dominant. However, electrophysiological assessment i.e. F-wave latency study indicates early motor fibre involvement even in an asymptomatic patient. We assessed atrophy of extensor digitorum brevis (EDB) muscle in diabetic patients, whether this small foot muscle atrophy has diagnostic value for diabetic polyneuropathy or not.

Materials and methods: We examined EDB muscle atrophy and other neuropathic signs in 42 diabetic patients, and score of the michigan neuropathy diagnostic instruments (MNDI) was assessed. Motor and sensory nerve conduction studies were carried out in the tibial, peroneal and sural nerves bilaterally. The EDB muscle atrophy was graded as follows: Grade 0: no atrophy, Grade I: just wasted and visible, Grade II: palpable or visible by toes dorsiflexion, Grade III: neither palpable nor visible.

Results: EDB muscle atrophy was clearly and easily detectable by inspection and palpation. Number of patients of each group was as follows: G-0; 7, G-I; 15, G-II; 13, G-III; 7. Average scores of MNDI are: G-0; 2.4, G-I; 3.5, G-II; 3.7, G-III; 3.9. CMAP amplitudes of EDB after giving supramaximal electric shock to the deep peroneal nerve at the ankle were: G-I; 2.9mV, G-II; 1.4mV, G-III; 0.9mV. Distal latency time and MCV were most abnormal in G-II. CMAP of the abductor hallucis muscle evoked by the tibial nerve stimulation and CSAP of the sural nerve were as follows, respectively: G-0; 10.5mV, 6.2uV, G-I; 8.0mV, 5.8uV, G-II; 7.9mV, 6.0uV, G-III; 2.9mV, 2.3uV.

1113
A simple method for detecting ‘at risk feet’ in hospitalised individuals with diabetes
P.R.J. Vas1, N. Baker2, C. Taylor2, A.I. Adler1, G. Rayman3;
1The Diabetes Centre, Ipswich Hospital NHS Trust, 2The Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, United Kingdom.

Background and aims: Approximately 3% of hospitalised individuals with diabetes develop a foot lesion during admission. Y et, care providers infre...
Fifty-nine patients with type 1 diabetes were examined twice, 43 already in year 1994, and 16 in year 2000. From onset of diabetes all patients were treated with multiple insulin-injection therapy. Duration of diabetes at the second examination was 20.1 +/- 5.4 (range 10-31) years. The first examination included motor nerve conduction velocity (MCV), compound muscle action potential (CMAP) in peroneal and median nerves and sensory nerve conduction velocity (SCV) and nerve action potential (SNAP) in sural and median nerves. The second examination included also assessment of quantitative sensory thresholds (QST), neuropathy impairment assessment (NIA) and neuropathy symptom assessment (NSA). Symptomatic neuropathy was defined as NSA of ≥ 1.

Conclusion: Despite multiple insulin-injection therapy symptomatic neuropathy is seen in 20 percent of patients after 20 years of type 1 diabetes. Overt diabetic neuropathy with symptoms is preceded by a subclinical form detectable by studies of nerve conduction.

Supported by: County Council of Östergötland

Diabetic neuropathy is being increasingly recognised. We have previously demonstrated the presence of spinal cord atrophy not only in subjects with established-DN but also in early, subclinical DSP. In a further proton magnetic resonance spectroscopy (H-MRS) study, subjects with established-DN were found to exhibit thalamic neuronal dysfunction. In this study we looked at the relationship between spinal cord atrophy and thalamic neuronal function in DSP.

Methods: Twenty subjects [6 healthy volunteers; 14 diabetic subjects (8 No-DN and 6 Established-DN)] underwent detailed assessment of peripheral nerve function including: neuropathic symptom evaluation, clinical examination to determine the Neuropathy Impairment Score of Lower Limbs (NIS[LL]), 5 attributes of nerve electrophysiology, vibration detection threshold and heart rate with deep breathing test. MR imaging of the cervical spine and thalamic H-MRS were conducted within one year. Cervical cord cross-sectional area at disc level C2/C3 was calculated. Established markers of neuronal function [N-acetyl aspartate/choline (NA:Cho)] were obtained from the thalamus using long echo time H-MRS.

Results: There was no significant difference in subgroup demographics [age: HV 42.5(15.4), No-DN 42.8(8.7), and Established-DN 48.4 (11.3)]. NIS[LL] +7 test score was significantly higher in subjects with Established-DN [21.8(15.2)] compared with No-DN [11.4(1.07); p<0.05]. Subjects with Established-DN had significant reduction in both cervical cord area [ANOVA p=0.002; Established-DN mean(SD) 52.1(4.1) vs No-DSP 68.8(8.20), p=0.001 and Established-DN vs HV 68.7(10.4), p=0.002] and thalamic NA: Cho [ANOVA p=0.013; Established-DN 1.58(0.16) vs No-DN 1.80(0.15)] and Established-DN vs HV 1.74(1.0)] compared to the other groups. Among subjects with diabetes, cervical cord area was significantly related to thalamic NA: Cho (r=0.42, p<0.04).

Conclusion: Diabetic subjects with Established-DN had the greatest level of spinal cord atrophy and thalamic neuronal dysfunction compared those with No-DN and HV. Significant positive correlations between spinal cord area and thalamic NA:Cho suggest progressive, concomitant involvement of the central nervous system in DN. The pathophysiological insult on the nervous system caused by DN appears more generalised, involving both the peripheral and central nervous systems.

Supported by: Diabetes UK

Symptomatic neuropathy in type 1 diabetes is preceded by subclinical electrophysiological abnormalities - a prospective study

N. Alstrand 1, J. Ludvigsson1; L. Hyllienmark1; J. Wahlberg2;
1Department of Medical and Health Sciences, Division of Internal Medicine, Faculty of Health Sciences, Linköping; 2Department of Clinical and Experimental Medicine, Division of Pediatrics, Faculty of Health Sciences, Linköping; 3Department of Clinical Neuroscience, sections of Neurology and Clinical Neuropathology, Karolinska Institutet, Stockholm, Sweden.

Background and aims: It is assumed that overt neuropathy with symptoms is preceded by a subclinical form which can be detected by studies of nerve conduction velocity. However, long-term studies in patients with type 1 diabetes with multiple insulin-injection therapy are lacking. The aim of the study was to elucidate if subclinical electrophysiological abnormalities can predict symptomatic neuropathy in patients with type 1 diabetes.

Materials and methods: Fifty-nine patients with type 1 diabetes were examined twice, 43 already in year 1994, and 16 in year 2000. From onset of diabetes all patients were treated with multiple insulin-injection therapy. Duration of diabetes at the second examination was 20.1 +/- 5.4 (range 10-
Significant impact of mood disturbances on pain perception in painful DN: time to re-evaluate current practice?

A. Sankar1, D. Selvarajah2, R. Gandhi2, M. Olozo1, C. Emery3, S. Tesfaye2
1Diabetes Research Department, University of Sheffield, 2Diabetes Research Department, Royal Hallamshire Hospital, Sheffield, United Kingdom.

Diabetic neuropathy (DN) is a common and often painful complication in diabetes mellitus. However, little is known about prevalence, severity, determinants and impact of mood disturbances on pain perception in DN. This observational study was performed in a large hospital in the Netherlands.

Materials and methods: A total of 720 patients with type 1 (DM1, n=334) or type 2 (DM2, n=386) diabetes mellitus (T2DM) attending the outpatient clinic for Diabetes Department, Metabolic Disease Hospital of Tianjin Medical University, China.

Background and aims: To investigate the association between peripheral nerve function and bone mineral density (BMD) in patients with type 2 diabetes mellitus (T2DM).

Materials and methods: A total of 169 patients with type 2 diabetes were enrolled. All the patients were tested with fasting blood glucose (FBG), post-prandial 2h blood glucose (PPBG), hemoglobin A1c (HbA1c), triglycerides, cholesterol, urinary albumin excretion, serum , serum calcium, serum phosphorus, serum magnesium, serum bone alkaline phosphatase isoenzyme . Lumbar and hip BMD were measured by dual-energy X-ray absorptiometry and according to the T-score ,all the patients were categorized into the osteoporosis group (T-scores < -2.5), the osteopenia group (2.5 < T-scores < -1) and the control group (T-score ≥ -1). The factor affecting T-score was analyzed.

Results: Mean age DM1 44.1±12.9, DM2 61.9±12.6 years (p<0.001); duration of disease DM1: 25.9±14.7, DM2: 15.0±8.3 years (p<0.001); males: DM1: 43.5; DM2: 60.2% (p<0.01); 93.4% patients with DM2 on insulin. Prevalence of CPDN in DM1 was 13.4% and 26.6% in DM2 (p<0.001). Both in DM1 and DM2, CPDN had a major, statistically highly significant (p<0.001) negative effect on daily activities, mood and well-being, professional activities, domestic and family activities, social relations, sexual activities as well as on sleep quality. S100 was 57.6±19.3 with pain and 77.0±16.5 without pain in DM1 (p<0.001); percentages in DM2 50.9±18.8 and 70.2±18.8 (p<0.001). S100 was significantly higher in DM1 than in DM2 in subjects without CPDN whereas S100 was comparable between DM1 and DM2 with CPDN.

Conclusion: In conclusion, chronic painful distal neuropathy is a common complication in both type 1 and type 2 diabetes, significantly more so in DM2 compared to DM1 and has a major negative influence on all aspects of quality of life. Quality of life constitutes a major effect parameter.

Supported by: Pfizer
too. Nerve function was assessed by 10-g monofilament detection, vibra-
tion threshold, and bilateral sural nerve amplitude (CMAP) nerve conduction
velocity (NCV) y, peroneal amplitude and NCV on the dominant side, and me-
dian motor and sensory amplitudes and NCVs on the nondominant side.

Results: Among the female patients, a higher proportion of postmenopausal
women in osteoporosis group compared with controls (P<0.05). Patients with
osteoporosis had older age (P<0.05) and longer T2DM duration (P<0.05) than
control group both in male and female patients. No difference of the param-
eters of laboratory was seen among the groups, while, except the parameter of
bone metabolism, B-ALP was elevated in osteoporosis group compared with
controls, monofilament detection, and peroneal NCV) and CMAP were sig-
ificantly lower in Patients with osteoporosis as well as the vibration thresh-
old was significantly higher in them compared with control group. Relative
analysis showed that the lumbar spine and hip BMD of T2DM group had
negative correlation with age, duration menopause, severity of diabetic neu-
ropathy and positive correlation of B-ALP. After adjusting for age, diabetic
course, B-ALP, menopause, poor nerve function (lower nerve conduction
amplitude) and vitamin D depletion was associated with lower T-score of both lumbar
spine and hip BMD significantly.

Conclusion: Lower BMD was associated with poor peripheral nerve function
(both sensory nerve and motor nerve) in the type 2 diabetes mellitus, diabetic
neuropathy was an independent risk factors of osteoporosis inT2DM. The pathophysiologically mechanism of bone metabolism and diabetic neuropa-
thy should be the concern of further research.

1122
High prevalence of vitamin D deficiency in type 2 diabetic patients with
neuropathy
S. Skalli1, M. Muller2, S. Pradines1, S. Halmi1, N. Wion-Barbot1;
1Diabetology Department, 2Pharmacy Department, CHU Grenoble, France.

Background and aims: The pro-inflammatory profile (IL-6, TNF-a, IL-
1, IL-8) in monocytes from type 2 diabetic patients is down-regulated by
1,25(OH)2D3D, and levels of acute-phase proteins are significantly associated
with neuropathic deficits in diabetic patients. Several studies have demon-
strated alterations in vitamin D metabolism in those patients and adverse
outcomes associated with vitamin D insufficiency have been described in the
human musculoskeletal, innate immune, and cardiovascular systems. We re-
port a pilot study assessing the relationship between peripheral neuropathy
in type 2 diabetic patients and vitamin D depletion.

Materials and methods: We conducted a prospective and observational
study of 111 consecutive type 2 diabetic patients ambulatory treated in Dia-
betology Department between January and April 2009. Subjects were tested for
deep tendon reflexes at patella, and Achilles, sensory loss using vibra-
tion threshold assessment with 128-Hz tuning fork by the on-off method, and pressure
perception with 10 g Semmes-Weinstein monofilament. Exclusion criteria
were neuropathy from other etiologies (e.g., familial, alcoholic, nutritional
and uremic) and vitamin D supplementation. Following data were recorded:
Age, body mass index (BMI), glycated haemoglobin (HbA1c), duration of
diabetes, peripheral neuropathy status (PN), intact serum parathyroid hor-
mone (PTH), serum 25-OH vitamin D (25OHD) concentration, total serum
calcium concentration and serum creatinine.

Results: Overall, 111 patients were evaluated and the majority (55.85%) of
them had peripheral neuropathy. Patients with PN were significantly older,
70.58±10.85 vs 57.57±12.27 years respectively (p<0.0001) and had signific-
antly longer diabetes duration, 17.61±5.92 vs 10.21±6.97 years respectively
(p<0.0001). No significant differences were observed in BMI and HbA1c. Sig-
ificantly decreased 25OHD levels were found in the PN group, 24.61±11.98
vs 34.7±17.26 nmol/l (p<0.0001). Frank vitamin D deficiency rate (25OHD
< 50 nmol/l) was significantly higher in PN group, 95% vs 79.5% (p<0.05). Vitamin D insufficiency rate (25OHD between 50-75 nmol/l) and 20-
30 nmol/l did not differ significantly between the two groups 5% in the PN
group vs 16.5%. PTH levels and creatininemia were significantly increased in the
PN group (p<0.05).

Conclusion: In type 2 diabetic patients, peripheral neuropathy is associated
with significantly lower levels of 25OHD. Although these data do not prove
the existence of a causal link between vitamin D status/insufficiency and
PN, they have major clinical and therapeutic implications for the manage-
ment of PN. Vitamin D-deficient status potentially increases risk of non
vascular and hip fracture in this older population with muscle weakness at
higher risk. Although these data do not prove the existence of a causal link between vitamin D deficiency/insufficiency and adverse
responses in this PN population at higher risk for foot ulcers. On the other
hand, the importance of the Nerve Growth Factor, which is up-regu-
lated by Vitamin D, has been established in the development of diabetic PN
using diabetic animal model. Further studies are needed to understand the
causal and to investigate the clinical significance of vitamin D replacement
therapy in PN diabetic patients. Determining what is the adequate vitamin D
level for PN diabetic patients and how much supplementation is necessary is
now a matter of crucial concern in the management of diabetic PN.

1123
Association between symptoms of neuropathy, nerve conduction and
levels of heat shock protein 27 in type 2 diabetes
K. Pourhamidi1, L.B. Dahlín2, O. Rolandsson1;
1Family Medicine, Department of Public Health and Clinical Medicine,
Umeå University, 2Department of Clinical Sciences Malmö – Hand Surgery,
Skåne University Hospital, Lund University, Malmö, Sweden.

Background and aims: Increased levels of serum hsp27 (sHSP27) are
associated with distal symmetric polyneuropathy (DSPN) in type 1 diabetic
patients. However, the association between nerve function and sHSP27 has
not been studied in subjects with type 2 diabetes (T2D) and impaired glucose
tolerance (IGT). Thus, our objectives were to investigate the association be-
 tween nerve conduction in the legs, symptoms of distal polyneuropathy and
sHSP27 levels.

Methods: Subjects were consecutively recruited from the population-based
Varmland Intervention Program (VIP) (n=39, mean age 61±0.6 years, IGT
(n=29, m/f=15/14, mean age=61±0.8 years), T2D (n=51, m/f=30/21, mean age=61±1.3 years). Nerve conduction studies were performed.
Z-scores for motor conduction velocity (CV) of the peroneal
nerve, and the sensory CV and amplitude of the sural nerve were measured
and compiled into a composite Z-score of the right leg (Z score leg). Neuro-
 logical Disability Score (NDS), including examination of sensory perception,
reflexes and muscle strength, were used to evaluate symptoms of neuropathy
in the leg. NDS and Z-score leg were categorized into tertiles, respectively.
sHSP27 levels were measured and divided into low and high levels.

Results: Subjects in the highest NDS tertile had lower sHSP27 levels (328 ±
287 pg/ml) compared to subjects in the lowest NDS tertile (558 ± 404 pg/
ml; p=0.04). Subjects in the lowest tertile of Z-score leg were in the lowest
sHSP27 group (63%) compared to the subjects in the highest group (38%,
p=0.034). The highest tertile of Z-score leg was associated with high levels of
sHSP27 (OR 3.8, 95% CI 1.2, 11.5, p=0.02); adjusted for age and sex. How-
ever, this association was attenuated when adjusted for T2D status (OR 3.1,
95% CI 0.9; 9.9, p=0.06).

Conclusion: In summary, increased sHSP27 levels were associated with an
increasing Z-score of the leg; thus, a better nerve conduction, and fewer
symptoms using the whole study population. The attenuation of the associa-
tion when including diabetic status indicates an altered sHSP27 production in
T2D patients compared to controls and subjects with IGT.

1124
The relationship between brachial-ankle pulse wave velocity and
peripheral neuropathy in type 2 diabetes
J.Y. Park1, C.W. Lee2, B.H. Kim2, J.Y. Mok2;
1Internal medicine, Busan St. Mary’s Medical Center, 2Internal medicine,
Pusan national university school of medicine, Busan, Republic of Korea.

Background and aims: Brachial-ankle pulse wave velocity (baPWV)
has been shown to be a good surrogate marker of clinical atherosclerosis. The
aim of the study was to determine the relationship between baPWV and pe-
ripheral neuropathy in patients with type 2 diabetes.

Materials and methods: We assessed 692 patients with type 2 diabetes (314
men, 378 women, mean age 56.9±10.9 years, mean diabetes duration 7.9 ±
6.3 years). The intensity of neuropathic symptoms (pain, burning sensation,
paresthesia, and numbness) was scored according to numeric visual analog
scales. The total symptom score was calculated from the sum of each neu-
ropathic symptom scores. The neurological assessment (ankle reflexes and
10-g monofilament test) was performed. The baPWV was measured using
an automated device.

Results: In bivariate correlation analysis, the presence of peripheral neuropa-
thy (increased total symptom scores or abnormal neurological assessment)
was significantly correlated with maximal baPWV (r = 0.127, p < 0.01), age
(r = 0.119, p < 0.01) and sex (r = 0.128, p < 0.01). After analysis using inde-
pendent t- test, the patients with peripheral neuropathy had higher maximal

Comparison of anthropometric characteristics of diabetes with and without peripheral neuropathy

<table>
<thead>
<tr>
<th>Variables</th>
<th>DPN (n = 253)</th>
<th>Control (n = 439)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59 ± 11</td>
<td>56 ± 11</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Male (%)</td>
<td>63 ± 5</td>
<td>50 ± 5</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>8.5 ± 7.1</td>
<td>7.6 ± 5.8</td>
<td>NS</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64 ± 10</td>
<td>64 ± 10</td>
<td>NS</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>139 ± 21</td>
<td>135 ± 17</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>82 ± 12</td>
<td>81 ± 9</td>
<td>NS</td>
</tr>
</tbody>
</table>

Conclusion: Peripheral neuropathy was significantly correlated with baPWV in patients with type 2 diabetes.

Materials and methods: Experiments were performed in Zucker lean and Zucker fa/fa rats, a model of prediabetes and obesity. Zucker fa/fa rats of 16 wks of age displayed obesity, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and increased serum NEFA concentrations. They developed sensory nerve conduction velocity (SNCV) deficit and small sensory nerve fiber dysfunction manifest by thermal and mechanical hyperalgesia and tactile allodynia.

Results: In the Zucker fa/fa rats, a 4-wk treatment with the niacin derivative acipimox significantly reduced serum insulin (p < 0.01), NEFA (p < 0.05), and triglyceride concentrations (p < 0.01) without affecting impaired glucose tolerance and total and VLDL-LDL cholesterol concentrations. It also reversed SNCV deficit (p < 0.01) and alleviated small sensory fiber neuropathy.

Conclusion: Our findings suggest that impaired insulin signaling, hypertriglyceridemia, and/or increased fatty acids, but not impaired glucose tolerance or hypercholesterolemia are responsible for development of prediabetic neuropathy. The latter provides rationale for new early stage interventions, to stop progression of this devastating diabetic complication.

1126

Effects of long-term administration of moderate amounts of insulin on small and large peripheral nerve fiber function and structure in non-diabetic Wistar rats

K. Sugimoto1, Y. Maksimchyk2, P. Watcho1, S. Lupachyk1, I.G. Obrosova2; 1Medizinische Klinik III, Universitätsklinikum Dresden, Germany; 2Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA.

Background and aims: Evidence for the presence of diabetes-like neuropathy at prediabetic stage, prior to development of overt hyperglycemia, is emerging from both experimental and clinical studies. Until now, it has not been sorted out whether prediabetic neuropathy results from glucose intolerance, or other factors such as impaired insulin signaling, hypertriglyceridemia, hypercholesterolemia, and/or increased fatty acid concentrations, come into play. This study was aimed at evaluating relative roles of the afore-mentioned factors in peripheral nerve function in prediabetic condition.

Materials and methods: Experiments were performed in Zucker lean and Zucker fa/fa rats, a model of prediabetes and obesity. Zucker fa/fa rats of 16 wks of age displayed obesity, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and increased serum NEFA concentrations. They developed sensory nerve conduction velocity (SNCV) deficit and small sensory nerve fiber dysfunction manifest by thermal and mechanical hyperalgesia and tactile allodynia.

Results: In the Zucker fa/fa rats, a 4-wk treatment with the niacin derivative acipimox significantly reduced serum insulin (p < 0.01), NEFA (p < 0.05), and triglyceride concentrations (p < 0.01) without affecting impaired glucose tolerance and total and VLDL-LDL cholesterol concentrations. It also reversed SNCV deficit (p < 0.01) and alleviated small sensory fiber neuropathy.

Conclusion: Our findings suggest that impaired insulin signaling, hypertriglyceridemia, and/or increased fatty acids, but not impaired glucose tolerance or hypercholesterolemia are responsible for development of prediabetic neuropathy. The latter provides rationale for new early stage interventions, to stop progression of this devastating diabetic complication.

PS 109 Neuropathy - experimental

1125

Dyslipidaemia and peripheral prediabetic neuropathy

U.A. Julius1, Y. Maksimchyk2, P. Watcho1, S. Lupachyk1, I.G. Obrosova2; 1Medizinische Klinik III, Universitätsklinikum Dresden, Germany; 2Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA.

Materials and methods: Experiments were performed in Zucker lean and Zucker fa/fa rats, a model of prediabetes and obesity. Zucker fa/fa rats of 16 wks of age displayed obesity, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and increased serum NEFA concentrations. They developed sensory nerve conduction velocity (SNCV) deficit and small sensory nerve fiber dysfunction manifest by thermal and mechanical hyperalgesia and tactile allodynia.

Results: In the Zucker fa/fa rats, a 4-wk treatment with the niacin derivative acipimox significantly reduced serum insulin (p < 0.01), NEFA (p < 0.05), and triglyceride concentrations (p < 0.01) without affecting impaired glucose tolerance and total and VLDL-LDL cholesterol concentrations. It also reversed SNCV deficit (p < 0.01) and alleviated small sensory fiber neuropathy.

Conclusion: Our findings suggest that impaired insulin signaling, hypertriglyceridemia, and/or increased fatty acids, but not impaired glucose tolerance or hypercholesterolemia are responsible for development of prediabetic neuropathy. The latter provides rationale for new early stage interventions, to stop progression of this devastating diabetic complication.
Painful diabetic neuropathy was recently shown to strongly contribute to quality of life, leading to a bleak prognosis in diabetic patients.

1127 The comparison of peripheral nerve damage according to the glucose control period in the experimental diabetes

J. Heung Yong, K.A. Lee, J.J. Park, T. Park, H. Baek; Chonbuk National University, Jeonju, Republic of Korea.

Background and aims: Besides tight glucose control, early intensive therapy has been reported to be more important for the prevention of diabetic micro- and macro-complexion. However, it was not known exactly about the quantitative difference according to the timing delay in the glucose control and whether early period control is really better than late control in the diabetic peripheral neuropathy. Therefore, in this study we investigated the effect of timing difference in glucose control on the peripheral nerves in the course of diabetes.

Materials and methods: The five groups (6-8 number in each group) comprised: Normal glucose rats (Normal), rats with hyperglycemia (designated: DM), rats with glucose control for entire 28-week period (designated: INS (W0-28)), rats with glucose control for early 14-week period followed by hyperglycemia for late 14 weeks (designated: INS (W0-14)), and rats with hyperglycemia for early 14 weeks followed by glucose control for late 14-week period (designated: INS (W15-28)).

Results: In the results, the current perception threshold (CPT) was more reduced in INS (W0-28) and INS (W15-28) group compared with INS (W0-14) or DM group (P<0.05). Mean myelinated axon area was larger significantly in INS (W0-28) and INS (W15-28) group (63.5±2.32 and 60.1±2.14 um) than INS (W0-14) or DM group (55.5±2.81 or 51.5±2.64 um) (P<0.05) and intraepidermal nerve fibers (IENF) density was less reduced significantly INS (W0-28) and INS (W15-28) group compared with INS (W0-14) or DM group (59.5±0.32 or 53±0.39) (P<0.05). More increased trend of nerve fiber number was also observed in INS (W0-28) group than INS (W15-28) group although there was no significant difference.

Conclusion: Our results indicate that continuous glucose control is necessarily important to alleviate the peripheral nerve damage and moreover poor glycemic control during the later period prior to aggravate the neuropathy is more harmful than inappropriate early period management. Therefore, besides earlier management, the importance of continuous glucose control including later period of diabetes should also be emphasized in the diabetic peripheral neuropathy.

1128 Amelioration of diabetic enteropathy in chronic experimental diabetic rats transplanted with autologous adipose-tissue-derived mesenchymal stem cells

H. Mizukami, K. Takahashi, K. Sugimoto, M. Baba, S. Yagashita; 1Department of Pathology and Molecular Medicine, Hiroshima University Graduate School of Medicine, 2Department of Laboratory Medicine, Hirokasi University Graduate School of Medicine, 3Department of Neurology, Aomori Prefectural Central Hospital, Japan.

Background and aims: Gastroenteropathy is a serious complication of diabetics and impairs quality of life, leading to bleak prognosis in diabetic patients. There is no effective treatment for this serious disorder. Cell therapy using adipose-tissue derived mesenchymal stem cells (ADSC) is now a promising approach for the reparative therapy and we applied ADSC to enteropathy in chronic diabetic rats.

Materials and methods: Streptozotocin-induced diabetic rats with 16 wk-duration were transplanted with autologous ADSC (x10^6), retrieved from subcutaneous region prior to diabetes onset, into the serosa of terminal ileum. After 6 wk observation period, thickness of mucosal villi, mRNA expressions of various growth factors and neuronal nitric oxide synthase (nNOS) as well as choline acetyltransferase (CHAT), and neuropathology of intestinal walls were examined in transplanted diabetic rats and compared with those in untreated diabetic rats and non-diabetic control animals.

Results: Mucosal villi in the intestine were thickened in diabetic rats and ADSC transplantation (Tx) nearly normalized the thickness of the mucosal wall. Neuronal distribution as demonstrated by PGP9.5 staining disclosed significant reduction of myenteric neuronal area and intramural axonal fibers in diabetic rats and these changes were improved by ADSC-Tx. Consistent with PGP9.5 staining, tissue contents of PGP9.5 were reduced in diabetic rats and corrected by Tx. Similarly, expressions of both PKB/Akt and pAkt were suppressed in the intestinal tissues of diabetic rats and corrected by Tx. There were also reduced mRNA expressions of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1, nNOS and CHAT in the intestine of diabetic rats, and Tx almost ameliorated the expressions. There was no significant influence of Tx on the mRNA expressions of these factors in normal control rats. The microscopy of transplanted sites revealed increased microvessels and sparse infiltration of inflammatory cells in diabetic and normal control animals.

Conclusion: The results demonstrated that topical application of autologous ADSC into the gut wall improved diabetic enteropathy in rats, warranting the future clinical application of ADSC transplantation for hitherto untreatable condition of diabetic enteropathy.

1129 Oxidative stress damage at pain control serotoninergic and noradrenergic brainstem centres during diabetic neuropathy

C.S.C. Morgado1,2, P. Pereira-Terra1,2, M. Martins-Oliveira1,2, F. Neto1,2, I. Tavares1,2; 1Institute of Histology and Embryology, Faculty of Medicine of Oporto, 2IBMC, Porto, Portugal.

Background and aim: Painful diabetic neuropathy was recently shown to be due to central mechanisms, both in humans and animals. Loss of serotoninergic and noradrenergic neurons at brainstem pain control centres was shown to occur in streptozotocin-diabetic rats (STZ-rats). This impairment in descending modulation may account for spinal hyperactivity and exacerbates pain behavioural responses. Oxidative stress is common in diabetes, affecting peripheral sensory system and central areas involved in cognition and memory. Here, we evaluated the occurrence of oxidative stress damage at serotoninergic and noradrenergic brainstem areas directly involved in descending pain modulation.

Materials and methods: Male Wistar rats were injected with streptozotocin (60 mg/kg) or saline and were sacrificed at 10 weeks post-injection. Brainstem sections were immunoreacted for thryptophan hydroxylase (TpH) and tyrosine hydroxylase (TH) to detect serotoninergic and noradrenergic neurons, respectively; and for 8-hydroxy-2’-deoxuguanosine (8-OH-dG), the marker of oxidative DNA damage. Rostroventralmedial tegmentum (rVM) was analysed for TH immunoreactivity. The A5, A6 and A7 noradrenergic cell groups were studied for TH expression. Another set of sections was analysed for 8-OH-dG expression in the above mentioned serotoninergic and noradrenergic areas. Data were collected by independent sample t test and presented as mean±SEM.

Results: STZ-rats presented marked hyperglycaemia and behavioural signs of painful diabetic neuropathy (mechanical hyperalgesia and tactile allodynia). Blood glucose levels were elevated significantly in STZ-rats compared by independent sample t test and presented as mean±SEM.
Conclusion: The association between decreases in the numbers of serotoninergic and noradrenergic neurons and oxidative stress damage suggests that this may be a leading mechanism in the impairment of inhibitory descending pain modulation in STZ rats. It is likely that a reversal of oxidative stress damage at the brainstem should prevent the observed neuronal losses. This study shows the importance of increasing the intake of antioxidants in diabetic patients in order to control neuronal dysfunction and pain during diabetic neuropathy.

Supported by: FCT project – PTDC/SAU/64643/2006

1130

Role for endoplasmic reticulum stress in prediabetic and diabetic neuropathy
I.G. Obrosova, P. Watcho, Y. Maksimenchyk, H. Shevalye, R. Stavnichuk, S. Lupachyk;
Mechanisms of Diabetes Complications, Pennington Biomedical Research Center, Baton Rouge, USA.

Background and aims: Endoplasmic reticulum (ER) stress caused by accumulation of unfolded proteins in the ER lumen, contributes to beta-cell loss, insulin resistance, and plays an important role in the pathogenesis of both Type 1 and Type 2 diabetes. Taking into consideration that ER stress is associated with impaired cell signaling and oxidative damage, we evaluated the role of this phenomenon in the pathogenesis of prediabetic and diabetic peripheral neuropathies.

Materials and methods: The experiments have been performed in 1) Zucker lean and Zucker fa/fa rats, a model of obesity and Type 2 prediabetes, and 2) control and streptozotocin (STZ)-diabetic rats, a model of Type 1 diabetes. Peripheral neuropathy endpoints included sciatic motor nerve conduction velocity (MNCV), hind-limb digital sensory nerve conduction velocity (SNCV), thermal algesia (paw withdrawal latency), tactile allodynia (tactile response thresholds), and intraepidermal nerve fiber density (fluorescent immunohistochemistry). ER was evaluated by expression of BiP/GRP78 and GRP94 in the peripheral nerve (Western blot analysis).

Results: Both 16-wk-old Zucker fa/fa rats and STZ-diabetic rats with 12-wk duration of diabetes displayed ER stress response manifest by overexpression of BiP/GRP78 and GRP94 in the peripheral nerve. They also had nerve conduction velocity slowing and small nerve sensory fiber dysfunction. STZ-diabetic rats displayed reduced intraepidermal nerve fiber density. Treatment with the chemical chaperone trimethylamine N-oxide (TMAO), 1 mmol kg⁻¹ in the drinking water, for 4 wks, reversed SNCV deficit and alleviated thermal hypalgesia and tactile allodynia in Zucker fa/fa rats. The same treatment also prevented SNCV deficit and partially prevented MNCV deficit and small sensory nerve fiber dysfunction and degeneration in STZ-diabetic rats. In both studies, TMAO did not affect blood glucose concentrations.

Conclusion: ER stress is implicated in the pathogenesis of prediabetic and diabetic peripheral neuropathies. Studies of biochemical mechanisms of ER stress-induced peripheral nerve damage are in progress.

PS 110 Autonomic neuropathy - clinical observations

1131

The reproducibility of cardiovascular reflex tests is not influenced by actual glucose values in young type 1 diabetic patients
T.T. Várkonyi1, V. Szidó1, A. Szász2, R. Laurenti2, E. Bőrcseki1, C. Lengyel1, T. Nyár1, P. Kempler3, T. Wittmann1;
11st Department of Medicine, University of Szeged, 2Department of Medical Informatics, University of Szeged, 31st Department of Medicine, Semmelweis University, Budapest, Hungary.

Background and aims: The reproducibility of cardiovascular reflex tests (CRT) is well-documented, but the possible role of the current glucose levels on the heart rate and blood pressure responses in diabetic patients is unknown. The aim of our study was to analyse the CRT-s as well as continuously measured glucose values during the tests on three consecutive days in young patients with short-standing type 1 diabetes (DM).

Materials and methods: 10 young type 1 DM patients were included into the study (duration of DM: 8.2±6.7 yrs, age: 23.3±0.7 yrs, HbA1c: 8.8±0.6%; mean±SE). The five conventional Ewing CRT-s were performed on three consecutive days. During the tests the current glucose values were detected by continuous subcutaneous glucose measuring system (CGMS; Medtronic Ltd). One-way ANOVA test was applied for the statistical evaluation.

Results: The CRT results did not differ significantly between the days (mean values of the days: Valsalva ratio: 1.57-1.54-1.67; heart rate response to deep breathing: 26.4-22.25-27.7 beats/min; 30/15 ratio: 0.96-0.99-0.96; diastolic blood pressure response to handgrip: 24.8-19.8-23.9 mm Hg; orthostatic systolic blood pressure response: 7.7-8.9-6.3 mm Hg; AN scores: 2.7-2.4-2.5, p>0.05 for all tests). The subcutaneous current glucose levels did not show any statistical association with the daily results of the CRT-s. The fluctuation of glucose was not significant during the three days (mean glucose levels of the days: 7.2-9.6-5.7 mmol/l; p>0.05).

Conclusion: Our results confirm the high reproducibility of the cardiovascular reflexes in young type 1 diabetic patients. Data suggest that the short-term variability of cardiovascular responses is not influenced by the actual glucose levels. Our observations might indirectly support the importance of long-term glycemic exposure on the cardiovascular autonomic function in type 1 diabetes.

1132

Gastric neurostimulation significantly relieves symptoms of severe diabetic gastroparesis and reduces frequency of hospital contacts
F. Rask1, P.P. Jensen2, N. Ejskjaer3;
1Department of Surgery, 2Department of Endocrinology MEA, Aarhus University Hospital, Aarhus, Denmark.

Background: Gastric neurostimulation significantly relieves symptoms of severe diabetic gastroparesis. Gastric neurostimulation significantly relieves symptoms of severe diabetic gastroparesis. In its most unremitting form diabetic gastroparesis may present with continuous nausea and vomiting leading to hospitalisation for fluid substitution and blood glucose control. Fortunately the condition is often more limited, although frequently resistant to standard pharmacological and symptomatic treatment. It is, however, commonly accepted that diabetic gastroparesis, symptomatic or asymptomatic, may severely impact blood glucose control and hamper the efficiency of pharmacotherapy.

Method: Selected Type 1 diabetes patients suffering severe symptoms of diabetic gastroparesis underwent extensive clinical examination to exclude other causes of dyspepsia. All were before and after implantation of a high-frequency low-intensity gastric neurostimulator subjected to detailed clinical studies including scintigraphic gastric emptying studies, cardiac autonomic function tests, gastroscopies, visceral-biomechanical studies, 24h-antroduodenal motility testing and qualitative symptomatic testing using a validated questionnaire. Patients: Fifteen patients, 7 male and 8 female, all Type 1 diabetes, all long duration of diabetes, all presenting with an array of late diabetic complications and attending the out-patient clinic at Department of Endocrinology, Aarhus University Hospital. All had suffered symptoms of diabetic gastroparesis for several years resistant to standard treatment measures and all attempts of pharmacotherapy. All were frequently admitted to hospital for this condition. A proportion of the patients had been considered to be candidates for irreversible gastrointestinal surgery.

Result: Fifteen patients have been relieved to varying degrees of their symptoms of diabetic gastroparesis. Two male patients and three female patients...
C-reactive protein (CRP) and interleukin-6 serum levels were measured, and in 30 patients with type II diabetes mellitus (age 62±8 years, 19 men).

Materials and methods: A 24-hour electrocardiogram Holter recording was performed both at baseline and after 24 hours from adjuvant influenza A vaccine in 30 patients with type II diabetes mellitus (age 62±8 years, 19 men). C-reactive protein (CRP) and interleukin-6 serum levels were measured, and monocytes platelets aggregates (MPA) were assessed before and after vaccination.

Results: Following vaccination, inflammatory cytokines, MPAs and monocyte-platelet receptor expression increased (e.g., CRP: 2.6±2.8 vs. 7.5±5.7 mg/L; p<0.001), whereas HRV decreased (e.g., very low frequency [VLF] amplitude: 34.6±11.8 vs. 31.0±10.2 ms; p=0.002). The changes in CRP correlated with those of most HRV variables, but greater CRP increases were associated with lower HRV reductions; the most significant correlation was between changes in CRP and in SDNNR (r=0.43; p=0.02) and VLF amplitude (r=0.39; p=0.03). MPA changes did not correlate with changes in CRP levels or in HRV variables.

Conclusion: In this study, we showed that an attenuated infectious stimulus induces, together with the expected inflammatory reaction, a relative increase of adrenergic tone in the symphatho-vagal balance of cardiac autonomic function. However, enhanced inflammatory reaction seemed to cause a vagal activation which limited the impairment of HRV and was likely finalized to antagonize the inflammatory related tissue damage. Influenza vaccination in our type 2 diabetic patients also induced increased monocyte and platelet activation that might transiently increase the risk of acute cardiovascular events after the treatment.

1135

Erectile dysfunction, androgen deficiency and chronic complications in male diabetic patients

O. Georescuc, M. Ursache, C. Barbu, S. Pica; Endocrinology, Diabetes and Nutrition, Elias Emergency Hospital, Bucharest, Romania.

Background and aims: Erectile dysfunction (ED) can be present in male diabetic patients not only induced by androgen deficiency, but also as a consequence of chronic complications. The aim of our study was to evaluate the correlation between ED, sex-hormonal status and chronic complications in patients with diabetes mellitus (DM).

Materials and methods: 292 patients (44 T1DM/248 T2DM) aged between 20-75 years (mean 52.06±3.7 years) were evaluated by sex-hormonal status (DHEA, free testosterone) and by presence of chronic micro- and macrovascular angiopathy. ED was diagnosed by a score under 22 of the 5-item IIEF questionnaire. All patients with free-testosterone under 70 pg/ml were considered hypogonadic.

Results: The prevalence of ED was 84.24% in whole study group (higher in T2DM 87.5%, than in T1DM 65.9%). In patients with ED the prevalence of hypogonadism was 31.57% in T1DM and 26.73% in T2DM. From hypogonadic T2DM subjects 93.9% have ED, while in hypogonadic T1DM only 66.6% have ED (p<0.04). In older man with T2DM (over 60 years) IIEF-score was significant correlated with DHEA value (r=0.37, p=0.008). We did not found any correlation between ED and macrovascular diseases. There was a significant correlation between ED and retinopathy (r=0.37, p=0.003) in T1DM and also with neuropathy (r=0.42, p=0.04) in T2DM.

Conclusion: ED is frequent in diabetic patients more associated with microvascular complications. Hypogonadic status can explain 30% of ED. In older diabetic men the severity of ED is related to low DHEA value.

1136

Erectile dysfunction in diabetics and non-diabetics due to macrovascular lesions

A.Z. Akbarov, G.N. Rakhimova; Diabetology, Centre for the Scientific and Clinical Study of Endocrinology, Tashkent, Uzbekistan.

Background and aims: To study incidence of erectile dysfunction (ED) in the diabetics and non-diabetics by macrovascular lesions.

Materials and methods: We examined 601 male patients with type 1 and type 2 diabetes mellitus and 413 non-diabetic persons aged from 20 to 70 in both groups. The examinees were differentiated by presence of ischaemic heart disease (IHD), myocardial infarction, cerebral circulation disturbance and stroke as per medical history, clinical-laboratory investigations and instrumental data. They were inquired with the International Erectile Function Index questionnaire.

Results: ED incidence in the diabetics with IHD (85.4±2.65%) was 18.7% higher (P<0.001) than in the diabetics without macrovascular lesions (66.7±2.5%). Similar tendency in ED incidence was observed in the non-diabetics, thus in persons with IHD but without DM the incidence (79.2±8.29%) was 45.3% higher (P<0.001) than in the non-diabetics and macrovascular
lesions (33.9±2.4%). Comparison of ED incidence in groups of the non-diabetics without macrovascular lesions with ED incidence in the group of the diabetics without macrovascular lesions (66.7±2.3%) showed that it was 32.8% higher (P<0.001) than in the non-diabetics without macrovascular lesions (33.9±2.4%). ED incidence in the diabetics with myocardial infarction (85.0±5.6%) was 18.3% higher (P<0.001) than in the diabetics without macrovascular lesions (66.7±2.5%). Similar trend was observed in the non-diabetics with and without myocardial infarction. Thus, in 3 of 3 non-diabetics with IHD (100%+0%) ED of moderate severity was found in one person, the most severe one being registered in two, while in the non-diabetics without IHD the parameter was 33.9±2.4% (P<0.001). ED incidence in the diabetics with cerebral circulation disturbances was 83.3±7.6%. It is 16.6% lower than the parameter in the non-diabetics. The highest ED incidence could be seen in the diabetics after the stroke (100%). In the group of the non-diabetics without macrovascular lesions the stroke was registered in one patient with ED of intermediate severity. As a whole in both diabetics and non-diabetics with macrovascular lesions higher ED incidence can be observed than in patients with normal blood circulation and non-diabetics without the lesions. ED incidence was 66.7±2.5% and 33.9±2.4% respectively. At the same time in the diabetics and non-diabetics with the macrovascular lesions ED incidence was found 85.9±2.1% and 84.2±5.9%, respectively.

Conclusion: Thus, in patients with macrovascular lesions (IHD, myocardial infarction, cerebral circulation disturbance and stroke) regardless of DM presence ED incidence is higher than in persons without the lesions in question.

1137
Sexual dysfunction in pre-menopausal normal and diabetic women; clinical, psychologic, cardiovascular, and neurophysiological correlates
A. E. Pontiroli1,2, D. Cortelazzi1, C. Mauri1, A. Marconi1, M. Guazzi1, M. Cristina2, B. Zecchin2, C. Cattalini2, A. Innocenti2, G. Bosco1
1Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli studi di Milano, 2Ospedale San Paolo, Milano, Italy.

Background and aims: Female Sexual Dysfunction (FSD) is frequent in women with diabetes mellitus or metabolic syndrome. Aim of this study was to analyze clinical, cardiovascular, and neurophysiological correlates of FSD.

Materials and methods: We evaluated 66 pre-menopausal women, 42 healthy and 24 with diabetes (8 T1DM, 16 T2DM, duration 9.6±1.9 y, with no clinical micro-, macro-angiopathic, or neurologic complications), through ad-ministration of Female Sexual Function Index questionnaire (FSFI). In all women we studied: physical activity, smoking habits, parity, weight, BMI, waist circumference (WC), Beck Depression Inventory (BDI), Diabetic Somatic Neuropathy Score (DSN), endothelium-mediated blood flow, ECG (for heart rate and Qtc, indexes of sympathetic activity), intima-media thickness (IMT), insulin, fasting glucose, HOMA-IR index, fibrinogen, cholesterol (total, HDL-, LDL-), triglycerides, Hba1c, HS-PCR, electromyography (amplitude and conduction of peroneal, posterior tibial, and sural nerves).

Results: Diabetic women differed from healthy women for BDI, fasting glucose, triglycerides, Hba1c, nerve conduction (p<0.05 to p<0.001), and at FSFI for orgasm (p<0.05). In healthy and diabetic women considered together, FSFI score was directly correlated with physical activity (r = .266), and with peroneal nerve amplitude (r = .289), and inversely with parity (r = .298), BDI (r = .483), DSN (r = .439), IMT (r = .329). (p=0.05 to p<0.01).

Conclusion: These data indicate that: 1) FSFI is reduced in reasonably healthy diabetic women even in the absence of complications; 2) FSFI correlates with psychologic, neurophysiologic, and cardiovascular parameters. Longer observation periods are required to evaluate FSFI as a possible risk factor for cardiovascular events.

PS 111 Autonomic neuropathy - blood pressure and heart

1138
Heart rate variability during the night is related to hyperglycaemia in patients with type 2 diabetes
K. Makrilakis1, S. Liatis1, P. Thomakos1, S. Kalopita1, I. Vlahodimitris1, N. Katsilambros1
1First Department of Propaedeutic Medicine, Athens University Medical School, 2Department of Cardiology, Laiko General Hospital, Athens, Greece.

Background and aims: Heart rate variability (HRV) represents a non-invasive technique that allows a detailed study of the cardiac autonomic nervous system, by assessing the spontaneous fluctuations of heart rate. HRV is reduced in patients with diabetes and is considered a risk factor for cardiovascular mortality. Aim of the present study was to assess the relationship between glycaemia (measured by continuous glucose monitoring subcutaneously [CGMS]) and HRV (measured by continuous ECG monitoring) simultaneously in patients with Type 2 diabetes (T2D).

Materials and methods: A total of 31 (20 males) T2D patients (mean age [±SD] 56.2±9.9 years, diabetes duration 5.5±4.2 years), treated with oral antidiabetic agents, underwent ECG recording and CGMS, simultaneously and continuously, for 48 hours. HRV was calculated by frequency and time domain analysis. A separate analysis was performed regarding HRV during the day and night period (11.00 pm to 08.00 am). CGMS was performed by a needle electrode placed subcutaneously in the abdomen, acquiring data every 5 min (288 measurements/day), with a microdialysis system.

Results: There was no correlation between HRV and Hba1c or 48-h mean plasma glucose. Weak negative correlations were found between HRV indices and hyperglycaemia, expressed as the area under the curve (AUC) of glucose values above 180 mg/dl (AUCG180). Strong negative correlations were observed, however, between HRV indices during the night period and 48-h AUCG180. No such correlations were observed during the day time (Table). HRV, in both frequency and time domain analysis, was significantly higher during the night period than during the day (P values for all indices <0.001).

Conclusion: HRV during the night period is negatively correlated with 48-h hyperglycaemia, while no such association is observed during the day. It may be hypothesized that this finding reflects a relation between HRV and hyperglycaemia, being unmasked during sleep, when HRV is not affected by day-time activities.

Linear regression of indices of HRV during night and AUCG180 (adjusted for duration of diabetes)

<table>
<thead>
<tr>
<th>Indices of HRV</th>
<th>β-coefficient</th>
<th>β-coefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Time domain analysis</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
</tr>
<tr>
<td>Percent of differences between normal- to normal RR intervals >30 ms (PNN-30)</td>
<td>-0.19</td>
<td>-0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Percent of differences between normal- to normal RR intervals >50 ms (PNN-50)</td>
<td>0.03</td>
<td>-0.48</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Root mean square of successive normal- to normal RR interval difference in ms (RMSSD)

-0.05 | -0.36 | 0.80 | 0.052 |

B. Frequency domain analysis

Total power of HRV (TP) | -0.1 | -0.38 | 0.87 | 0.03 |

High-frequency domain of HRV (HF) | -0.25 | -0.38 | 0.18 | 0.051 |

Low-frequency domain of HRV (LF) | 0.10 | -0.20 | 0.61 | 0.29 |

1139
Heavy smoking blunts the circadian rhythm of heart rate variability in patients with type 2 diabetes
S. Liatis1, K. Makrilakis1, P. Thomakos1, S. Kalopita1, I. Vlahodimitris1, N. Katsilambros2
1First Department of Propaedeutic Medicine, Athens University Medical School, 2Department of Cardiology, Laiko General Hospital, Athens, Greece.

Background and aims: Autonomic nervous system control of the cardiovascular system has a distinct circadian rhythm and this may be an important mechanism underlying the diurnal distribution of cardiac events. Heart rate variability (HRV) represents a non-invasive technique that allows a detailed
study of the cardiac autonomic nervous system, by assessing the spontaneous fluctuations of heart rate. HRV is reduced in patients with T2D, while it is known that smoking also decreases HRV. Aim of the present study was to assess the effect of smoking on circadian rhythm of HRV in patients with Type 2 diabetes (T2D).

Materials and Methods: Sixty three consecutive non-smokers and 35 consecutive smokers, attending the diabetes outpatient clinic of a University Hospital, treated with oral antidiabetic agents, underwent continuous ECG monitoring for 24 hours. HRV was calculated by frequency and time domain analysis. A separate analysis was performed regarding HRV during the day and night period. Both smokers and non-smokers had higher HRV during the night (all P-values <0.05). Heavy smokers, however, showed a statistically significant increase in HRV during the night period only for some domains of HRV analysis (high-frequency domain [HF], low frequency domain [LF] and percentage of differences between normal-to-normal RR intervals >30 ms [PNN-30]). In one-way repeated-measures ANOVA, heavy smoking was associated with a blunted increase of HRV during the night (Figure). This finding was consistent for all indices of HRV, both in frequency and time domain analysis.

Conclusion: Smoking >10 pack-years blunts the circadian rhythm of HRV in patients with T2D. This effect may be implicated in the increased cardiovascular risk of this population.

1140

Autonomic neuropathy as the cause of the QTc dispersion in diabetes type 2

J. Tatoń1, M. Bernas1, Z. Szczeklik-Kumala1, M. Chmielowski2;
1Department of Internal Diseases and Diabetology, 2Department of Cardiology, Medical University of Warsaw, Poland.

Background and aims: The increase of the QTc dispersion reflects the electrical instability of the diabetic heart. It is an important risk factor of sudden death caused by ventricular fibrillation. It occurs in persons with diabetes mellitus more frequently than in the general population. A closer determination of the pathogenetic factors involved in QTc dispersion should improve the preventive measures.

Materials and methods: For the study, a) a general cohort of 185 males with diabetes mellitus type 2 without symptoms of ischemic heart disease, aged 57.6±7.1 years, and b) 52 persons without diabetes mellitus and without symptoms of ischemic heart disease - males, aged 58.8±7.2 years - were qualified. The following investigations were conducted on those under study: standard clinical examination, indices of metabolic compensation of diabetes mellitus (daily glycaemia profiles, HbA1c, lipid profile), serum potassium, sodium, creatinine and magnesium levels, resting ECG, exercise test according to Bruce protocol and the battery of tests for the autonomic innervation of the heart according to Clarke protocol. The subgroup of diabetes mellitus type 2 with a diagnosis of autonomic neuropathy was composed of 84 subjects, males aged 56.8±6.5 years. The QT length was derived from the average of 30 readings from a 12-leads ECG and calculated with the Bazett's formula: QTc = QT / square root of R-R interval.

Results: In diabetes mellitus type 2 under study, without clinical symptoms of ischemic heart disease, the statistically significant (p<0.001) increase of QTc (to 41±21 ms) was observed in the QTc in the control group, while statistical significance was attained only for high and low-frequency markers of autonomic neuropathy. Such correlation was not found in the subgroup without symptoms of heart ischemia or with the asymptomatic ischemia of the heart without autonomic neuropathy. Therefore, in cardiological care for diabetic persons, early testing for autonomic neuropathy should be included as a matter of routine.

Diabetes mellitus type 2
no clinical heart ischemia
no silent heart ischemia
no heart ischemia
autonomic neuropathy present
autonomic neuropathy absent
24±11 ms
23±14 ms (p<0.05)
Diabetes mellitus type 2
no clinical symptoms
no silent heart ischemia
no heart ischemia
autonomic neuropathy absent
53±18 ms
38±2 ms (p<0.05)

1141

The prognostic value of sudomotor function for the development of cardiovascular disease and retinopathy: a 3-year follow up of diabetic patients

D.S. Tesic1, V. Popovic2, M. Mitrovic2, J. Novakovic-Pavlovic2, B. Vukovic2;
1Clinic of Endocrinology, Diabetes and Metabolic Diseases, Institute for Internal Diseases, 2Clinic of Vascular Surgery, Institute for Surgical Diseases, Novi Sad, Serbia.

Background and aims: The aim of the present study was to evaluate the risk for vascular morbidity or death and retinopathy in relation to an abnormal response to a commercially available test of distal autonomic function (Neuropad®).

Materials and methods: To that end, we performed a 3-year follow-up study of type 2 diabetic patients attending the outpatient clinic. A total of 348 adult patients were evaluated for the degree of retinopathy and levels of HbA1c, blood pressure, serum creatinine and proteinuria. Somatic sensory neuropathy was documented using the Neuropathy Disability Score, and autonomic neuropathy (sudomotor neuropathy) was determined on the sole of the foot using the Neuropad® response including time to colour change. Patients were divided into two groups: those without and with new vascular morbidity and causes of death which were registered by one and the most severe event only.

Results: Initially there were 348 patients with type 2 (159 male, mean age 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y). NDS was >5 (abnormal) in 83 (23.9%) and no change in Neuropad® colour by 10 minutes was observed in 62.0±8.8y; mean disease duration 14.8±8.6y).
sponding age and sex. Male gender (62.8% vs. 45.6%, p=0.04), age (68±8.6y vs. 64±9.1y, p=0.01), high BMI (30.3±5.9 vs. 27.1±2.3, p=0.01), high triglycerides (3.1±0.9 vs. 2.0±0.7mmol/l, p<0.01), low HDL cholesterol (1.06±0.3 vs. 1.16±1.7mmol/l, p<0.01) and time to complete Neuropod colour change (22.6±5.8mins vs. 9.1±6.7mins, p<0.01) were associated with vascular disease or death. Time until total colour change was found to be a prognostic marker for the development of vascular disease and death in patients treated with insulin at baseline (23.3±5.9mins vs. 8.7±4.7mins, p<0.01), whereas this was not the case in patients treated with oral agents at baseline (11.3±4.5mins vs. 7.4±5.6mins, NS). However, insulin treatment per se was not associated with an increased mortality or morbidity. Time until total colour change was correlated with incidence of proliferative retinopathy regardless of diabetes treatment (17.3±6.9mins vs. 9.1±5.4mins, p<0.01).

Conclusion: This study showed that abnormal test of sudomotor function was a prognostic factor for vascular morbidity and death in type 2 diabetic patients treated with insulin but not in patients treated with oral agents.

1142
99mTc - Myoview gated - SPET and heart rate variability measurement in detection of early cardiovascular changes in diabetic patients

M. Mokan1, M. Migra1, M. Kutlak1, A. Lacko2, P. Galajda2
1,1 Internal Clinic, Faculty Hospital in Martin, Slovakia, 1,2 Internal Clinic, Central Military Hospital, Ružomberok, Slovakia.

Background and aims: Chronic metabolic alteration in diabetic disease implies the changes in myocardial perfusion and autonomic nervous system. Risk of myocardial infarction is 3 times higher compared to whole population. We decided to examine diabetic patients without history of cardiovascular disease for presence of cardiac autonomic cardiomyopathy and compare the results from standard examining methods (treadmill test and echocardiography) to 99mTc - Myoview gated - SPET findings.

Materials and methods: We examined 47 patients, 20 individuals with T1DM (13 men, 7 women), average age 37 ± 12.7 years and 27 individuals with T2DM (14 men, 13 women), average age 60 ± 9.2 years. Written consent was obtained from all patients prior to the study. In all patients we provided echocardiography and battery of Ewing’s testing combined with heart rate variability (HRV) examination. Thereafter patients underwent treadmill test and stress 99mTc - Myoview gated-SPET. Vascular and metabolic determinants were recorded. Collected data were analysed using nonparametric statistical methods.

Results: Treadmill test was negative in all patients. Echocardiography revealed diastolic dysfunction in 10 % of T1DM and 11 % of T2DM, no patient had systolic dysfunction. Sцинтigraphy confirmed hypoperfusion in 35 % T1DM (p = 0.01) and in 60 % T2DM (p = 0.001). Diagnosis of cardiac autonomic neuropathy based on Ewing’s testing and examination of HRV was estimated in 60 % of T1DM patients (p = 0.001) and 77 % of T2DM patients (p = 0.001). In T1DM group we found association between cardiac autonomic neuropathy (CAN) and frequency of hypoglycemia (p = 0.04) and trend with duration of diabetes mellitus (p = 0.069). We did not find any correlation in the examined parameters in patients with T2DM.

Conclusion: We revealed high incidence of cardiovascular changes characterised with myocardial hypoperfusion and cardiac autonomic neuropathy among diabetic patients while treadmill test and echocardiography showed negative finding. Therefore we suggest that heart disease develops in diabetic patients many years undetected and advanced preventive arrangement is needed.

1143
The effect of cardiovascular autonomic neuropathy on progressing chronic heart failure in patients with type 2 diabetes mellitus

S.N. Botova1, L.G. Strongin1, I.G. Pochinka2, Nizhny Novgorod State Medical Academy, Russian Federation.

Background and aims: Chronic heart failure (CHF) in patients with diabetes mellitus (DM) is a frequent and with poor prognosis. Cardiovascular autonomic neuropathy (CAN) is a common complication of DM, associated with increased mortality and myocardial ischemia. Aim: to study the influence of CAN on progressing CHF in patients with Type 2 DM.

Materials and methods: Fifty - nine patients with CHF and Type 2 DM with CAN (Group A) and 29 patients with CHF and Type 2 DM without CAN (Group B) were enrolled in the study. Both groups were comparable in age, gender, BMI, stage of CHF, there were no patients with acute myocardial infarction (MI) or advanced diabetic nephropathy. The 6 minutes walking test, echocardiography, and evaluation of the heart rate variability (HRV) by 5 minutes ECG monitoring were performed. The study lasted for a year.

Results: Within a year the MI has developed in 10 patients of group A and 1 patient of group B (p = 0.049). The patients of group A, who have suffered MI during supervision, were characterized by especially low parameters of standard deviation of all NN-intervals (SDNN). In particular, of patients of group A with the level SDNN < 20 ms 8 patients (32 % from all patients with level SDNN < 20 ms) have suffered MI, on the contrary, in patients with parameter of SDNN within the limits of 20 - 33 ms MI has developed only in 2 (p = 0.016). In both groups severity of CHF has increased, but in group A progressing CHF was more expressed. It has been demonstrated by worsening of clinical features, decrease of the left ventricle function. The decrease of the ejection fraction of the left ventricle, in 1 year was significantly higher in group A compared to group B (Median [25th; 75th percentiles] [4; 7] v [2; 5]), p = 0.019). In a year a decrease according to 6 minutes walking test was significantly higher in group B (Median [25th; 75th percentiles] 50 [20; 80] v 15 [4; 45], p = 0.023).

Conclusion: The risk of myocardial infarction of the patients with combination of Type 2 diabetes mellitus and chronic heart failure was higher in the presence of cardiovascular autonomic neuropathy. The level of SDNN lower than 20 ms is the precursor of a negative cardiovascular prognosis. Cardiovascular autonomic neuropathy causes the progressing chronic heart failure in the patients with Type 2 diabetes mellitus.

1144
Autonomic function and circadian blood pressure changes in patients with impaired glucose tolerance

N. Nemeth1, Z. Putz12, Å. G. Tabák1, I. Istvenci1, T. Martos2, A. Kőrei1, Z. Hermányi12, K. Keresztes1, G. Jermendy2, P. Kempler1
1,2 Ist Dept of Internal Medicine, Semmelweis University, 3rd Dept of Internal Medicine, Bácsy Zsilinszky Hospital, Budapest, Hungary.

Background and aims: Diminished circadian blood pressure changes may be present in patients with diabetes mellitus, in particular related to autonomic neuropathy.

Materials and methods: The aim of our study was to evaluate whether or not a similar connection may exist in patients with impaired glucose tolerance (IGT). We examined 46 patients with IGT (age: 53.04±11.10 years, fasting blood glucose 5.40±0.57 mmol/l; 120 min blood glucose: 8.61±1.01 mmol/l; HbA1c: 5.97±0.38 %; x±SD) while 45 healthy subjects (age: 55.84±11.41 years) served as controls. Cardiovascular autonomic neuropathy was detected by the five standard tests of cardiovascular function. Systolic and diastolic blood pressure (BP) means just as systolic and diastolic diurnal indices were assessed by 24-hour ambulatory blood pressure monitoring.

Results: Significant differences were found between IGT and control subjects regarding the following parameters: beat-to-beat variation (11.90±5.70 vs. 19.50±4.10 beats/min; p=0.001), Valsalva ratio (1.23±0.25 vs. 1.46±0.22; p=0.001) and increase of diastolic blood pressure during sustained handgrip (19.90±7.90 vs. 23.70±6.10 mmHg; p=0.012) were lower, while postural systolic blood pressure changes (4.37±5.70 vs. 6.01±2.00 mmHg; p=0.001) were higher in patients with IGT versus control group. Both systolic (9.58±7.59 vs. 13.70±5.90; p=0.003) just as diastolic and diastolic diurnal indices were assessed by 24-hour ambulatory blood pressure monitoring.

Results: Significant differences were found between IGT and control subjects regarding the following parameters: beat-to-beat variation (11.90±5.70 vs. 19.50±4.10 beats/min; p=0.001), Valsalva ratio (1.23±0.25 vs. 1.46±0.22; p=0.001) and increase of diastolic blood pressure during sustained handgrip (19.90±7.90 vs. 23.70±6.10 mmHg; p=0.012) were lower, while postural systolic blood pressure changes (4.37±5.70 vs. 6.01±2.00 mmHg; p=0.001) were higher in patients with IGT versus control group. Both systolic (9.58±7.59 vs. 13.70±5.90; p=0.003) just as diastolic and diastolic diurnal indices were assessed by 24-hour ambulatory blood pressure monitoring.

Conclusion: Our data suggest that the presence of cardiovascular autonomic neuropathy is associated with diminished circadian blood pressure changes in patients with impaired glucose tolerance.

1145
Influence of vagosympathetic changes on arterial stiffness in diabetic and obese patients

Q. Chen1, H. Dabire2, S. Chiheb1, I. Banu1, E. Cosson1
1Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, BONDY, France, 2Shanghai Clinical Center for Endocrine and Metabolic diseases, Shanghai Institute of Endocrine and Metabolic Diseases, China, 1INSERM U841, Maisons alfort, France.

Background and aims: Arterial stiffness is often increased in patients with diabetes or obesity. Several data suggest the role of vagosympathetic changes
in arterial hypertension. The aims of the present study were to examine the role of cardiovascular vагosympathetic changes on peripheral and central arterial stiffness in patients with type 2 diabetes or obesity.

Materials and methods: We included 207 patients (142 hypertensive) with type 2 diabetes (T2D) and 68 non diabetic obese (22 hypertensive) patients. Arterial stiffness was evaluated by measuring carotid to femoral pulse wave velocity (PWV) (Complior®) and by brachial and finger pulse pressure (PP), vagosympathetic activity by spectral analysis of heart rate (HR) and blood pressure (BP) variations (Finapres®; HF: high frequency and LF: low frequency peak).

Results: In T2D patients as compared with obese patients, PWV (p < 0.01), brachial (p < 0.001) and finger (p < 0.05) pulse pressure (PP) were significantly higher and HF-HR (p < 0.05) lower, and this was confirmed after age and blood pressure adjustment. In T2D patients, PWV correlated significantly with age, systolic BP, LF-systolic BP, microalbuminuria and duration of diabetes and negatively with creatinine clearance and HF-HR and was significantly higher in the patients with peripheral neuropathy or peripheral vascular disease (p<0.05 to <0.001); brachial and finger PP also correlated significantly with all these parameters. In obese patients PWV and similarly brachial and finger PP correlated with age, systolic BP, microalbuminuria and negatively with creatinine clearance and HF-HR (p = <0.01 to < 0.001). In multivariate analyses including these parameters as independent variables, PWV was significantly associated with age both in T2D and obese patients, and with systolic BP and BMI in T2D patients; brachial PP correlated with age in both groups; finger PP correlated with HF-HR, LF-systolic BP and age in T2D patients (p<0.001, 0.01 and 0.05) and with HF-HR and systolic BP in obese patients (p <0.01 for both).

Conclusion: These data strongly suggest that in T2D and non diabetic obese patients, vagosympathetic changes play a major role in stiffness of small but not large peripheral arteries.

PS 112 Diabetic foot - clinical observations

1146

Diabetes related amputation incidence in an inner city multiethnic population in the UK before and after the introduction of multidisciplinary diabetes foot care, 2000-2008

M. Rossi1, P. Tzoulis1, D. Bradney1, J. Buchanan1, J. Preece1, A. Wilson2

1 Department of Diabetes, 2 Department of Surgery, The Whittington Hospital NHS Trust, London, United Kingdom.

Background and aims: Previous studies have suggested that appropriate multidisciplinary diabetes care can reduce the incidence of lower extremity amputations. According to the UK National Centre for Health Development Data for 2003-04, our inner city area in London was reported to have a higher number of diabetic amputations than the national average and amongst the highest within London. The Combined Foot Clinic was established in 2003 to offer multidisciplinary diabetes care for patients with diabetes related foot ulcers. We introduced care pathways and protocols for managing diabetic foot ulcers and raised awareness of the diabetic foot among primary care health care professionals through an educational programme. The aim of this study was to assess changes in diabetes-related lower extremity amputations in a multiethnic population over an 8-year period following the introduction of a multidisciplinary foot team. We reviewed the diabetes care of patients with diabetic amputations prior to, during and after admission.

Materials and methods: Our hospital covers a multiethnic population in an inner city area of London. All diabetes related lower extremity amputations in our institution between 2000 and 2008 were identified via coding. Data were collected retrospectively and were analysed for the period before (2000 - 2005) and after (2006 - 2008) the introduction of the multidisciplinary foot team.

Results: From 2000 to 2005, 104 amputations in 64 patients (mean age 68.6 years, 70% males and 30% females, mean duration of diabetes 15 years) were identified with an incidence of 17.3 amputations/year. There were 38 major amputations (6.3/year) and 66 minor (11/year). Perioperative mortality was 6.6%. From 2006 to 2008, 44 amputations in 33 patients (mean age 70.1 years, 72% males and 28% females, mean duration of diabetes 15 years) were identified with an incidence of 14.7 amputations/year. There were 9 major amputations (3/year) and 35 minor (11/year). Perioperative mortality was 4.6%. During admission, between 2006 and 2008, 75% of patients had Hba1c (median Hba1c 7.3%) compared with 41% between 2000 and 2005 (median Hba1c 7.9%). During admission, 81% of the patients were reviewed by Podiatry/Tissue Viability team compared with 40% for the previous period. After discharge, the proportion of patients who had follow-up by the Diabetes team increased from 62% to 73% and by Podiatrist from 43% to 80%. Overall, considerable improvement in the involvement of diabetes team and podiatry services was reported. Improvement in foot care services after 2005 led to a 53% reduction in the incidence of major diabetes related amputations from 6.3/year to 3.1/year and a 15% reduction in total diabetic amputations in our population from 17.3/year to 14.7/year. Overall, the incidence of major diabetes related amputations in our area has decreased to 1.2/100,000 general population/year and of total amputations to 5.8/100,000 population/year and is much lower than the national incidence of 3.4/100,000/year and 8.7/100,000/year respectively. Our perioperative (1-month) mortality rate is 4.6% compared to 6.6% nationally.

Conclusion: We demonstrated considerable improvements in outcomes of diabetes related amputations following improvements in foot care through multidisciplinary team work.

1147

Changes in the incidence of lower extremity amputations in people with and without diabetes in England between 2004 and 2008

E.P. Vamos, A. Bottle, A. Majeed, C. Millett

Department of Primary Care & Public Health, Imperial College London, United Kingdom.

Background and aims: During the last decade, there was a consistent upward trend in the number of non-traumatic lower extremity amputations in people with diabetes in England. However, there is a lack of national data on the incidence of diabetes-related amputations. The aim of this study was to describe recent trends in non-traumatic amputations in people with and without dia-
The diabetic foot syndrome is a preventable long-term complication of diabetes mellitus. One of the St. Vincent targets from 1989 was a 50% reduction in amputation. This target is generally not reached. But to show the prevalence and incidence of limb-amputation is difficult because complete epidemiological data do not exist. The aim of the study was to show the prevalence of limb-amputation in people with diabetes in Germany remained unchanged between 2004 and 2008. The increased relative risk of amputation among people with diabetes compared to those without appears to have marginally increased during the study period although this might be explained by decreased risk among people without diabetes.

Supported by: European Community

1148

High prevalence of limb amputation in people with diabetic foot syndrome
S. Lauterbach;
Red Cross Hospital Kassel, Germany.

Background and aims: The diabetic foot syndrome is a preventable long-term complication of diabetes mellitus. One of the St. Vincent targets from 1989 was a 50% reduction in amputation. This target is generally not reached. But to show the prevalence and incidence of limb-amputation is difficult because complete epidemiological data do not exist. The aim of the study was to show the prevalence of limb-amputation in people with diabetic foot syndrome and the mean survival time after the first diagnosis in Germany.

Materials and methods: Anonymous data were obtained from the prospective compiled DMS Disease Analyzer database. All patients with a first diagnosis of diabetic foot syndrome between January 1, 2001 and December 31, 2005 were included. Patients were required to have continuous data for at least 3 years after the first diagnosis of diabetic foot syndrome (ID). The maximum observation period was 10 years. The primary outcome measure of the study was disease-free survival following a diagnosis of diabetic foot syndrome. The documentation of an amputation (ICD10-Codes: Z9894-899) indicated the end of disease-free survival. Kaplan-Meier plots were generated to analyse the probability of amputation and the amputation-free survival time.

Results: A total of 4,068 patients with diabetic foot syndrome were included in the study. The overall mean age at diagnosis was 64.9 (SD: 11.9) years. 39.2% were female, the middle HbA1c was 8.05% (SD: 2.24) and 13.1% of the patients with DMS has a polynuropathy and 12.1% has peripheral angiopathy. 3,407 patients were in 679 general practitioner practices and 661 patients were in 57 diabetes practices. Within observation time 737 (18.1%) patients had a limb-amputation: 45.2% an amputation of foot and ankle or toes, 32.7% of leg at or below knee 18.1% of leg above knee and 4.0% amputation of both lower limbs. Limb-amputations were registered among 16.6% in general practitioner practices and 26.0% in diabetology practices, 20.2% in male and 15.5% in female patients. The mean amputation-free survival time was 7.8 years (SD: 12.2 days).

Conclusion: Results from this analysis of a large representative German database show, that the prevalence of limb-amputation in people with diabetic foot syndrome is high. Screening methods to find out high risk foot problems and appropriate education in protective foot care for people with diabetes mellitus are established but obviously not effective enough. More long lasting avoiding methods are necessary.

1149

Cost of an episode of diabetic foot ulcer in Spain J. Marinello1, J.R. March2, J.I. Blanes1, E. Martinez-Aguilart, J.R. Escudero4, A. Masegosa2
1Hospital de Mataró, 2Hospital de Getafe, Madrid, 3Hospital Dr Peset, Valencia, 4Hospital de Navarra, Pamplona, 5Hospital Sant Creu I Sant Pau, Barcelona, 6Complejo Hospitalario Universitario, Albacete, Spain.

Background and aims: The economic burden of diabetic foot is substantial, due to long term treatments, high recurrence rate and high risk of lower extremity amputation associated. In addition, diabetic foot ulcers cause high disability and decrease the health related quality of life. The objective of this study was to obtain data concerning resource consumption in patients with diabetic foot syndrome and to estimate the direct sanitary costs per patient associated to an episode of non-complicated superficial full-thickness neuropathic ulcer of diabetic foot in Spain.

Materials and methods: This is an observational, retrospective and multi-center design. Diabetics with non-complicated superficial neuropathic ulcer of at least 10 cm2 without lower extremity ischemia, and with the study ulcer completely resolved due to wound healed or amputation. Ischemic or neuro-ischemic ulcers or with foot infection at the time of inclusion were excluded. The study period for each patient was the duration of the complete selected ulcer episode. Collection of study data was performed in an unique visit. The estimation of costs was performed by identification and subsequent quantification of health resources used in the treatment of the diabetic foot episode, assigning a specific unitary cost to each of these resources. Analysis was carried out according to the perspective of the National Health System, taking into account direct sanitary costs, exclusively. Results are shown as total cost per ulcer episode and expressed in Euros ($€) from year 2009. The study was performed from a hospital perspective.

Results: The average cost per patient with an episode of diabetic foot ulcer in Spain is estimated at 12525.12€. Only direct sanitary costs have been considered and not the indirect costs related to the loss of productivity of patients and caregivers. The hospital admissions, topical ulcer care and surgery represent the highest percentages of the direct costs, 50.4%, 19.2% and 22.8% respectively. In our study the average cost of amputations as unitary resource cost, and considering the Diagnosis-related groups values, was estimated at 7,730,14€. Taking into account the percentage of patients in the sample that suffered an amputation, this cost represent 1649.49€ per amputation (surgery procedure only) and ulcer episode. In consequence, our study could be underestimating the cost of amputations, one of the costs with highest impact in the average cost per patient.

Conclusion: Diabetic foot is one of the complications of diabetes mellitus that produces a high economic impact in the health systems. In consequence, after estimation in this study and others published in different countries, of the costs that its management involves, it would be necessary to carry out primary and secondary prophylaxis programs in order to decrease the occurrence of diabetic foot ulcers in patients with diabetes. Additionally, it would be necessary to establish an adequate management of the lesion including treatments for accelerating the healing process and cures at home in order to shorten hospital stays. By doing this, the decrease in health related quality of life of these patients would be avoided, as well as the risk of losing the extremity and also the use of the high number of sanitary resources its treatment involves.

1150

Comparison of outcome of diabetic foot ulcer treatment in 3 different centres of North West England M.S.A. Soliman1, G. Jones2, E.B. Jude3, S. Rajbhandari1
1Medicine, Lancashire Teaching Hospitals foundation trust, NHS, Chorley, 2Medicine, East Lancashire Hospitals foundation trust, NHS, Blackburn, 3Medicine, Tameside General Hospital, NHS, Ashton Under-Lyne, United Kingdom.

Background and aims: Diabetic foot ulcers are managed at different centres as per local protocol, which may vary from place to place depending on availability of local expertise. This may affect the outcome of ulcers. To assess this...
we retrospectively studied the outcome of 50 diabetic foot ulcers that pre-
Aim ed to 3 different centres in the North West England. The aim of this study was to assess outcome of diabetic foot ulcers in these centres.

Materials and methods: We retrospectively analysed the clinic notes of first 50 patients that attended 3 diabetic foot clinics of North West England from 1st January 2008. The list of patients that presented to diabetic foot clinic was obtained from the hospital system and their notes retrieved. Data was collect-
ed in pre-designed form. If needed other hospital IT systems were checked.

Results: Case notes of 148 patients (Mean age 66.3 +/- 12.9 years & 33.8% Fe-
male) were studied. Centre A had 46 patients (Mean age 68.7 +/- 13.2 years & 32.6% Females), Centre B had 51 (Mean age 66.0 +/- 11.4 years & 23.5% Females) and Centre C had 51 (Mean age 64.6 +/- 14.0 years & 43.1% Females) patients. There was no difference (p>0.05) in age and sex of patients between these centres. Similarly there was no difference in HbAlc, total cholesterol serum creatinine and blood pressure in patients attending these centres. Table 1 shows the results com-
paring these 3 centres, which clearly shows improved outcome in Centre B.

Discussion: Our study shows that there was significantly more proportion of ulcers healed by 12 weeks in Centre B, which is due to extensive use of cast and higher proportion of neuropathic ulcers. This trend of improved healing continued for 52 weeks of the study. There was no difference in the presence of infection, proportion of osteomyelitis confirmed on X-ray and amputation rate between these centres. There was a trend for reduced mortality in centre C which could be due to more proportion females in that centre.

Conclusion: This study confirms that there is variable outcome of diabetic foot ulcers even within a small geographical area. This is mainly due to varia-
ble use of cast. Similar comparative studies are necessary in order to compare quality of care provided to patients with diabetic foot ulcers.

Table 1: comparison of centre A, B, and C for different aspects of the outcome

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Centre A</th>
<th>Centre B</th>
<th>Centre C</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healing by 12 weeks</td>
<td>34.8%</td>
<td>47.1%</td>
<td>19.6%</td>
<td>0.01</td>
</tr>
<tr>
<td>Healing by 24 weeks</td>
<td>41.3%</td>
<td>68.6%</td>
<td>47.1%</td>
<td>0.06</td>
</tr>
<tr>
<td>Healing by 36 weeks</td>
<td>60.9%</td>
<td>76.5%</td>
<td>56.9%</td>
<td>0.09</td>
</tr>
<tr>
<td>Healing by 52 weeks</td>
<td>69.6%</td>
<td>86.3%</td>
<td>70.2%</td>
<td>0.09</td>
</tr>
<tr>
<td>Total Death by 52 weeks</td>
<td>4%</td>
<td>17.6%</td>
<td>17.3%</td>
<td>0.06</td>
</tr>
<tr>
<td>Use of Cast</td>
<td>23.9%</td>
<td>72.5%</td>
<td>9.8%</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence of Infection</td>
<td>56.5%</td>
<td>47.1%</td>
<td>62.7%</td>
<td>>0.05</td>
</tr>
<tr>
<td>Osteomyelitis in X ray</td>
<td>34.8%</td>
<td>19.6%</td>
<td>19.6%</td>
<td>>0.05</td>
</tr>
<tr>
<td>Neuropathic ulcers</td>
<td>45.7%</td>
<td>74.5%</td>
<td>52.9%</td>
<td><0.01</td>
</tr>
<tr>
<td>Amputation</td>
<td>17.9%</td>
<td>15.7%</td>
<td>7.8%</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

1151

Diabetic foot screening: an observational study in a population of diabetics in Forli’ (Northern Italy)

S. Acquatili, L. Gagliardi, S. Taroni, A. Tartaglia, L. Buci, R. Manini, F. Donadolo, C. Ragazzini, G. Silvani, M. Nizzoli; Endocrinology and metabolic disease department, Forli, Italy.

Background and aims: Diabetic foot problems are among the most serious and costly complications of diabetes. Epidemiologic reports indicate that over one million amputations are preceded by ulcers. Despite being the most serious complications of diabetes, foot complications can be effectively pre-
vented. Several studies show how the identification of patients at high risk of ulcer and the subsequent education of these patients represent an important step to prevent this complication.

Subjects and methods: In April 2006 in our department we started a diabetic foot screening for all diabetics followed in our clinic, in a managed care or-
ganization, in order to intensify primary prevention. Until October 2008 we evaluated 920 patients affected by diabetes (mean age 67.4+12.2 yrs, mean duration of diabetes 10.5+10.8 yrs, mean HbAlc 7.5+1.5 %). Every patient underwent accurate anamnesis, foot examination, ABI and VPT measure-
ment, Semmes-Weinstein monofilament perception, HbAlc measurement.

Results: In April 2006 in our department we started a diabetic foot screening for all diabetics followed in our clinic, in a managed care or-
ganization, in order to intensify primary prevention. Until October 2008 we evaluated 920 patients affected by diabetes (mean age 67.4+12.2 yrs, mean duration of diabetes 10.5+10.8 yrs, mean HbAlc 7.5+1.5 %). Every patient underwent accurate anamnesis, foot examination, ABI and VPT measure-
ment, Semmes-Weinstein monofilament perception, HbAlc measurement.

Results: In April 2006 in our department we started a diabetic foot screening for all diabetics followed in our clinic, in a managed care or-
ganization, in order to intensify primary prevention. Until October 2008 we evaluated 920 patients affected by diabetes (mean age 67.4+12.2 yrs, mean duration of diabetes 10.5+10.8 yrs, mean HbAlc 7.5+1.5 %). Every patient underwent accurate anamnesis, foot examination, ABI and VPT measure-
ment, Semmes-Weinstein monofilament perception, HbAlc measurement.

Results: In April 2006 in our department we started a diabetic foot screening for all diabetics followed in our clinic, in a managed care or-
ganization, in order to intensify primary prevention. Until October 2008 we evaluated 920 patients affected by diabetes (mean age 67.4+12.2 yrs, mean duration of diabetes 10.5+10.8 yrs, mean HbAlc 7.5+1.5 %). Every patient underwent accurate anamnesis, foot examination, ABI and VPT measure-
ment, Semmes-Weinstein monofilament perception, HbAlc measurement.

Results: In April 2006 in our department we started a diabetic foot screening for all diabetics followed in our clinic, in a managed care or-
ganization, in order to intensify primary prevention. Until October 2008 we evaluated 920 patients affected by diabetes (mean age 67.4+12.2 yrs, mean duration of diabetes 10.5+10.8 yrs, mean HbAlc 7.5+1.5 %). Every patient underwent accurate anamnesis, foot examination, ABI and VPT measure-
ment, Semmes-Weinstein monofilament perception, HbAlc measurement.

more cases of Charcot foot that are misdiagnosed or undetected in the WPR. In order to improve prognosis and reduce amputations in the WPR, it is essential to have a high index of suspicion for Charcot foot, increase awareness of it and to encourage early presentation of the patient.

Supported by: Japanese Government

1153

Brachial-ankle pulse wave velocity predicts healing of diabetic foot ulcers among patients with type 2 diabetes

D. Cho, J. Chung, D. Chung, M. Chung;
Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.

Background and aims: Some 7-10% of diabetic patients develop chronic foot ulcers, a severe and expensive complication that leads to minor or major amputation in 10-15% of the patients. Peripheral arterial occlusive disease contributes to the impaired healing process. Measurement of pulse wave velocity (PWV) is a useful non-invasive index of arterial distensibility, and predicts cardiovascular morbidity and mortality. Several studies demonstrated that pulse wave velocity is a sensitive predictor for peripheral artery disease and cerebrovascular disease among diabetic patients. The objective of this study was to determine whether brachial-ankle pulse wave velocity (baPWV) can predict healing of diabetic foot ulcers.

Methods and materials: We recruited a total of 86 type 2 diabetic patients (52 men and 34 women) with chronic foot ulcers. The age was 62.7±12.3 years, and the diabetes duration was 15.6±11.2 years. Anthropometric, clinical, and laboratory data were measured. All patients were seen weekly for debridement, offloading, and other treatments during the initial 8 weeks. The PWV was measured between the brachial and ankle regions (baPWV), and the baPWV was measured in all patients using a waveform analyser.

Results: At 8 weeks, 31 of the 86 ulcers had completely healed. The 86 patients were divided into two groups according to the clinical outcome of ulcer healing at 8 weeks. There were no differences in age, duration of diabetes, HbA1c, or initial size of the ulcer between the healed and unhealed groups. The healing time of foot ulcers in healed group was 5.2±2.3 weeks (range 1.2-7.7). The baPWV was significantly (P<0.05) higher in the unhealed group (1768±290 cm/s) as compared with the healed group (1553±312 cm/s). Age (r = 0.504; p<0.01), duration of diabetes (r = 0.279; p<0.05), ankle-brachial index (ABI) (r = -0.328; p<0.05) and toe-brachial index (TBI) (r = -0.281; p<0.05) were significantly correlated with baPWV. However, systolic and diastolic BP were not correlated with baPWV. Univariate analysis revealed that baPWV was significantly correlated with healing rate of diabetic ulcers (r = 0.283, p<0.05) and age (r = 0.452, p<0.01).

Conclusion: We report that increased baPWV is closely associated with the healing time of diabetic ulcers. Our results suggest that the degree of systemic arterial stiffness is predictor of the healing of diabetic ulcers in patients with type 2 diabetes.

1154

Does the type of off-loading have any impact on the quality of life in patients treated for the diabetic foot?

V. Fejfarova, A. Zirkovská, E. Dragomirecká, R. Bern, M. Dubský, V. Woskova, V. Lanska;
1Diabetes Center, Institute for Clinical and Experimental Medicine, 2Psychiatric Center, Prague, Czech Republic.

Background: We often meet in patients with the diabetic foot ulcers (DFU) with invalidisation, higher morbidity and mortality that could lead to deterioration of quality of life (QoL) and enhancement of depression scale. However, there exist extensive inter-individual psychological differences even in patients with DFU that could be influenced by variety of external factors including the method of DFU off-loading which affects patient’s mobility, social relations, employment possibilities, etc.

Aims: In our study we assessed the differences in QoL and depression scale in relation to the type of DFU off-loading and DFU duration between patients with DFU treated by half shoes, orthoses and wheelchairs.

Methods: In total, 48 patients with chronic DFU (mean age 60.6±9.4 years, 77% of males, 80% of patients with Type 2 diabetes, mean diabetes duration 20.5±9.6 years, mean DFU duration 16.5±18.7 months) treated in our outpatient foot clinic from 1/2010 to 3/2010 were consecutively included into our study. Patients were divided into 3 study groups according to the type of using off-loading device - patients treated by half shoes (HS group - 26), by different types of orthoses including TCC (O group - 10) and by wheelchairs (WCh group - 12). QoL was evaluated by standardize questionnaire WHO-QoL-Bref assessing 4 domains (physical capacity, psychological well being, social relationships and environment). Depression scale was assessed by Gender Depression Scale (GDS).

Results: The WCh group did not differ significantly in the depression scale as compared with the HS and O groups (mild form of depression was presented in 85.7% vs. 82.6% vs. 100% of patients; NS; no severe form of depression was found in all study subjects). Moreover, in particular domains of the WHOQoL-Bref, the results of WCh group were similar to the HS and O group (physical capacity-12.5±3.5 vs. 12.3±2.7 vs. 12.7±3.2; psychological well being:14.3±3.1 vs. 14.7±2.7 vs. 15.1±1.6; social relationships-15.3±4.7 vs. 14.7±2.7 vs. 15.3±1.8; environment-14.2±6.5 vs. 14.2±2.1 vs. 14.6±1.5; all NS). Study groups differed significantly only in DFU duration (7.3±7.5 weeks in WCh group vs. 14.5±15.9 in HS group vs. 33±25.9 months in O group; p<0.01); other evaluated parameters did not differ significantly between the study groups. Suicidal tendencies and pain symptoms were described in 9.1% (4/44) and 56.1% (23/41) of all questioned patients.

Conclusion: The type of off-loading device including wheelchairs did not influence significantly QoL nor depression scale in patients treated for DFU. We suggest the DFU duration rather than the type of DFU off-loading has a greater impact on QoL and depression in diabetic foot patients.

Supported by: VZ MZO 00023001.
PS 113 Diabetic foot - biomarkers and mechanisms

1155
The study on mechanisms of epidermal keratinocyte migration impaired by glycated matrix
Z. Song1, Y. Demin1, W. Runxiu1, T. Ming2, X. Ting3, H. Fei1, Y. Guozi2, L. Shalee1, G. Tringali1, T. Musella2.
1Key Lab of Hormones and Development, Ministry of Health, China, Tianjin, 2First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 3Ruijin Hospital, Shanghai Second Medical University, China.

Background and aims: Diabetes mellitus is one of the most common disease in human life. Many kinds of complications caused by diabetes metabolism disorder and its metabolite, including nonhealing wound, now is becoming a difficulty in clinical treatment and academic research. Keratinocyte is the mainly repair cell participating wound healing, whose migration function is the base of wound re-epithelization. Keratinocyte continuously migrates on the wound edge, while wound size reduces to complete healing. If keratinocyte migration is blocked, then it means that the wound can't heal. So the study of keratinocyte migration behavior is of profound significance for evaluating the rate of wound healing. This study is to study that keratinocyte migration is impaired by glycated matrix and its mechanism.

Materials and methods: Keratinocytes from six male Sprague-Dawley rats' back, cultured for two to three generations, were used for experiments. Glycated laminin model were made by laminin cultured in glycolaldehyde and AGEs concentrations were assessed by detecting total fluorescence in glycated laminin model and immunohistochemistry assay. Keratinocytes were cultured on glycated laminin and normal laminin as study group and control group respectively. Keratinocyte migration was measured by scratch wound healing assay. Adhesion rate was expressed by Optical Density(OD), determined with MTT assay. Keratinocyte morphous was observed by scanning electron microscope and inverted microscope. F-actin was observed by immunofluorescence. Integrinα3 was determined by flow cytometry.

Results: The amount of migrating keratinocyte in study group is significantly less than control (13±4/HP vs 61±11/HP, P<0.05), which confirmed that keratinocyte migration is definitely inhibited by glycated matrix. There was no difference of adhesion rate between study group and control group(12h OD: 0.102±0.014 vs 0.134±0.062; 24h OD: 0.181±0.050 vs 0.187±0.061, P>0.05), however the morphous of keratinocyte on glycated laminin indicates that the cell body was small and hardly spread compared with that on normal laminin. Microfilament of the keratinocyte on the glycated laminin was sparsely distributed in the cytoplasm and around cell nuclear, but the expression of microfilament in the control group was intensively and distributed on the cell membrane, especially on the free edge. The expression of keratinocyte integrinα3 on normal laminin is significantly higher than that on glycated laminin (1.23±0.27% vs 36.58±11.24%, P<0.05).

Conclusion: Keratinocyte migration is inhibited by the glycated laminin. The reason behind the phenomenon is possibly that integrin signaling disorder leads to decrease of integrin and actin expression, followed by the drop of lamellipodia and filopodia development, and the ultimate consequence would be the contribution to the restrained migration.

Supported by: Major State Basic Research Development Program of China

Materials and methods: Monocytes were obtained from peripheral blood of 10 diabetic Donors (D), 10 subjects with CN not in acute phase and 10 subjects with diabetic neuropathy (DN) but without CN. They were incubated with LPS, that is an inflammatory stimulus and in vitro inhibits RANK mRNA expression, or IGF-1 and then was measured the production of RANK (expressed as percentage variation compared to C) and prostaglandin E2(PGE-2) levels (RIA method, pg/ml) as marker of inflammatory activation.

Results: At baseline there were no differences about Rank expression and PGE-2 levels among CN, ND and C. After incubation with LPS, CN showed a significant smaller reduction of RANK compared to ND and C, while there were not significant differences about PGE-2 levels, although they were slightly higher in CN (402.2 ± 35.64 vs 353.2 ± 40.88 in C and 381.6 ± 54.87 in ND). After incubation with IGF-1, there were not significant differences about RANK expression among three groups while CN showed a significant increase of PGE-2 levels (144.9 ± 30.93) if compared to DN (46.33 ± 12.24) and C (28.89 ± 6.24) p<0.01.

Conclusion: This study seems to support for the first time the possible involvement of IGF-1 as mediator of inflammation in Charcot Neuroarthropathy and would be the contribution to the restrained migration.

1157
Wound healing is selectively modulated by estrogen receptors in diabetes Y.G. Sunkari1, J. Grünr1, S. Lindberg2, J.R. Botusan1, O. Savu1, K.R. Steffensen1, K. Brismar2, S.B. Catrina2

1Department of Molecular Medicine and Surgery, 2Department of Biosciences, Karolinska Institutet, Stockholm, Sweden.

Background and aims: Impaired wound healing in diabetes is a major medical and economical problem. It is therefore a need to find new therapeutic approaches. The effects of estrogen on cutaneous wound healing are well established and it might explain the defective wound healing in elderly. Estrogen receptors beta (ERβ) have been linked to venous ulcers. However, the effect on diabetic wounds is still unexplored. The present study analyzed the contribution of the Estrogen receptors (ERα and ERβ) to wound healing in diabetic mice.

Materials and methods: We studied the effect of streptozotocin induced diabetes on wound healing rate in estrogen receptor knock out (ERα-ERKO & ERβ-BERKO) and in wild type mice (C57/BL6). The wound model consists of full-thickness wounds made on the dorsum of the animals. The wound area were determined every second day using a digital camera. Wound granulation, dermal and epidermal regeneration were evaluated by hematoxylin and eosin staining and angiogenesis by G5-1 solectin staining. Markers for inflammation, endothelial precursor’s cell recruitment and cell migration were analyzed by qRT-PCR. Invitro cell migration assay was carried out in Human dermal fibroblasts (HDFs) in order to determine rate of migration in presence of agonists for estrogen receptors alpha and beta.

Results: Diabetic BERKO mice but not diabetic ERKO mice have a faster wound healing rate compared to diabetic wild type mice (50% wound closure at 3.4 +/- 0.3 days (p<0.05), 4.5 +/- 0.5 days respectively 4.7 +/- 0.5 days). HDs were treated with either specific alpha or beta estrogen receptor agonists showed a significant increase in migration rate.

Conclusion: After induction of diabetes β-receptor knock-out (BERKO) mice display an accelerated wound healing rate when compared to α-receptor knock-out (ERKO) or wild type mice (C57BL/6). These data suggest the use of specific ER agonists for therapeutic trials. The different effect of the ERs on wound healing rate is not due to a specific effect on fibroblast migration rate.

Supported by: Erling Persson Foundation

1158
Emotional distress may impede diabetic foot ulcer healing through elevated levels of interleukin-6: preliminary findings
L. Villekty1, B.-J. Shen1, M.J. Hardman1, R.S. Kirsner2, A.J.M. Boulton1, N. Schneiderman1

1Medicine, University of Manchester, United Kingdom, 2Psychology, University of Southern California, Los Angeles, USA, 3Life Sciences, University of Manchester, United Kingdom, 4Dermatology, University of Miami, USA, 5Psychology, University of Miami, USA.

Background and aims: Emotional distress induced up-regulation of Interleukin-6 (IL-6) has been found to be detrimental to health. As diabetic foot ulcers are characterized by chronic inflammation, it is plausible that emo-
Ischemic diabetic foot ulcers represent an unmet need.

Three groups of subjects were included: a) T2DM patients without DFS (n=9); b) T2DM with DFS with ulceration(s) (n=3), and c) healthy controls (n=11).

Conclusion: These preliminary findings suggest that emotional distress-related IL-6 up-regulation may be one of the mechanisms linking psychological stress to chronicity of diabetic foot ulcers.

Supported by: NHI/NI/II/RO1/ICDK/1066-01A4

1159

Characterisation of circulating stem and progenitor cells in type 2 diabetic patients with foot ulceration

T. Koblik, 1 E.K. Zuba-Surma, 2 P. Witek, 2 W. Nowak, 2 A. Jozkowicz, 2 M.T. Malecki, 2 J. Dulak 2

1Department of Metabolic Diseases, 2Department of Medical Biotechnology, Jagiellonian University of Krakow, Poland.

Background and aims: Type 2 diabetes (T2DM) is a major health problem in Europe due to severe complications, for example the diabetic foot syndrome (DFS). Ulcers that are often difficult to heal. Their pathogenesis may be associated not only with metabolic abnormalities but also with alterations in stem and progenitor cell mobilization. It has been shown that both the functionality and the number of endothelial progenitor cells (EPC) circulating in peripheral blood (PB) are altered in diabetic patients. However, other stem cell populations such as mesenchymal stem cells (MSC) and adult pluripotent stem cells (PSC) including very small embryonic-like (VSEL) SC, have not been examined in T2DM. Aim of the study was to examine the phenotype and level of SC circulating in PB in T2DM subjects with and without DFS as compared to healthy controls.

Materials and methods: Three groups of subjects were included: a) T2DM patients without DFS (n=9); b) T2DM with DFS with ulceration(s) (n=3), c) controls without diabetes (n=4). We employed flow cytometry to evaluate the presence of the following SC populations based on the surface markers: i) EPC (CD34+CD133+CD45-), ii) MSC (CD45-, CD146+, CD90+, CD29+, CD45-), iii) PSC (Lin-CD45-CD133+). With regard to clinical endpoints, complications were associated with a higher migratory activity of lineage-positive subpopulations of the MSC pool, whereas no difference was found in the number and migratory activity of EPCs. Ad interim analysis of independent variables (number and migratory activity) indicates that the designed study is adequately powered to reach definite conclusions on the predictive value on major endpoints.

Conclusion: This is the first longitudinal study assessing the predictive value of circulating progenitor cells in patients with foot ulcers and critical limb ischemia. Results indicate that diabetes impairs the migratory deficit of circulating progenitors and that unbalanced migratory activity of different MSC subfractions may be associated to a higher risk for complications in the diabetic cohort. Our preliminary data also indicate that the study has enough power to determine whether circulating progenitor cells may represent a valuable biomarker of vascular events in patients with foot ulcers undergoing revascularization.

Supported by: RF-MUL-2007-63361

1160

The diabetic foot: relevance of endothelial progenitor cells as a prognostic marker of mortality and disease progression

O. Fortunato 1, G. Spinetti 1, D. Cordella 1, P. Portarano 1, E. Faglia 1, P. Maeddu 1

1IRCCS Multimedica, Milan, Italy; 2University of Bristol, United Kingdom.

Background and aims: Ischemic diabetic foot ulcers represent an unmet clinical need. To date, the prediction of clinical outcome relies on clinical data rather than on endogenous repair mechanisms. Circulating endothelial progenitor cells (EPC) are implicated in healing processes but reduced in patients with diabetes and inversely correlated with severity of vascular complications. Here, we report the preliminary results of a longitudinal study aimed to verify whether the abundance and functional activity of EPCs predict major endpoints such as amputation and post-angioplasty restenosis.

Materials and methods: The project was designed to enrol 150 diabetic (type 1 and 2) patients and 30 age- and sex-matched non-diabetic subjects referring to our Institution for chronic critical ischemia as defined by the guidelines of the Inter-Society Consensus (TASC) for the management of peripheral artery disease. Baseline testing includes measurement of glycemia, HbA1c, echodoppler, transcutaneous oxygen (TO) and angiography. A blood sample (30mL) is obtained for isolation of mononuclear cells (MNCs). The migratory activity of isolated MNCs is measured in a transwell migration assay using SDF-1α (100ng/ml) as a stimulus. The antigenic profile of freshly isolated and migrating MNCs is evaluated by flow cytometry. All patients are subjected to percutaneous angioplasty and follow up visits are scheduled at 1, 3, 6, 12 and 18 months.

Results: Thirty-four diabetic patients and seven non-diabetic subjects were enrolled to date with an average follow up of 7 months. No fatal event was recorded; 1 major amputation and 5 restenosis occurred in the diabetic group. The number of MNCs did not differ between the 2 groups. EPCs (CD34+KDR+CXCR4+CD45low) tended to be reduced in diabetic patients (0.09±0.02% vs. 0.12±0.03% in non-diabetic p=0.4). In non-diabetic, SDF-1α stimulation resulted in a 2-fold enrichment of EPCs in the migrated fraction, whereas the response of diabetic EPCs to SDF-1α was totally abrogated. With regard to clinical endpoints, complications were associated with a higher migratory activity of lineage-positive subpopulations of the MNC pool, whereas no difference was found in the number and migratory activity of EPCs. Ad interim analysis of independent variables (number and migratory activity) indicates that the designed study is adequately powered to reach definite conclusions on the predictive value on major endpoints.

Conclusion: This is the first longitudinal study assessing the predictive value of circulating progenitor cells in patients with foot ulcers and critical limb ischemia. Results indicate that diabetes impairs the migratory deficit of circulating progenitors and that unbalanced migratory activity of different MNC subfractions may be associated to a higher risk for complications in the diabetic cohort. Our preliminary data also indicate that the study has enough power to determine whether circulating progenitor cells may represent a valuable biomarker of vascular events in patients with foot ulcers undergoing revascularization.

Supported by: European Union structural funds, Innovative Economy Operational Programme

1161

Explanations for lower peak plantar foot pressures in Indian Asians versus Europeans with type 2 diabetes

C.A. Abbott 1, S. Naqvi 2, N. Chaturvedi 2, R.A. Malik 1, A.J.M. Boulton 1

1Cardiovascular Research Group, University of Manchester, Manchester Heart & Lung Institute, Imperial College, London, United Kingdom.

Background and aims: Risk of diabetes-related foot ulceration and amputation is substantially lower in Indian Asians versus White Europeans in the UK. We have also recently demonstrated that neuropathy (large and small fibre) is less prevalent in Asians, probably accounting for much of the reduced Asian ulcer risk. We now aimed to: (i) compare peak plantar foot pressures, an established risk factor for ulceration, in Indian Asian and European diabetic subjects; (ii) explain any ethnic pressure differences found.

Materials and methods: From our cross-sectional study of a population-based sample of age- and sex-matched adults with type 2 diabetes of European and Asian descent in the UK, a random sub-cohort of 104 Europeans (50 female: 54 male) and 105 Indian Asians (36 female: 69 male) underwent an established risk factor for ulceration, in Indian Asian and European diabetic subjects; (ii) explain any ethnic pressure differences found.

Results: Thirty-four diabetic patients and seven non-diabetic subjects were enrolled to date with an average follow up of 7 months. No fatal event was recorded; 1 major amputation and 5 restenosis occurred in the diabetic group. The number of MNCs did not differ between the 2 groups. EPCs (CD34+KDR+CXCR4+CD45low) tended to be reduced in diabetic patients (0.09±0.02% vs. 0.12±0.03% in non-diabetic p=0.4). In non-diabetic, SDF-1α stimulation resulted in a 2-fold enrichment of EPCs in the migrated fraction, whereas the response of diabetic EPCs to SDF-1α was totally abrogated. With regard to clinical endpoints, complications were associated with a higher migratory activity of lineage-positive subpopulations of the MNC pool, whereas no difference was found in the number and migratory activity of EPCs. Ad interim analysis of independent variables (number and migratory activity) indicates that the designed study is adequately powered to reach definite conclusions on the predictive value on major endpoints.

Conclusion: This is the first longitudinal study assessing the predictive value of circulating progenitor cells in patients with foot ulcers and critical limb ischemia. Results indicate that diabetes impairs the migratory deficit of circulating progenitors and that unbalanced migratory activity of different MNC subfractions may be associated to a higher risk for complications in the diabetic cohort. Our preliminary data also indicate that the study has enough power to determine whether circulating progenitor cells may represent a valuable biomarker of vascular events in patients with foot ulcers undergoing revascularization.

Supported by: RF-MUL-2007-63361

S460

Ulcer specimens were processed for smear for transcutaneous oximetry (TcPO2) and duplex scanning (DS). Patients were palpation of pedal pulse, ankle brachial index (ABI) measurement, doppler, age 65±17 years; male/female 47/53%; Type 2 DM 92%; mean diabetes mellitus administration contrast medium (CM).

Background and aims: Research Center of Endocrinology, Moscow, Russian Federation. O. Bondarenko with critical limb ischaemia after contrast angiography/peripherial transluminal angioplasty (PTA) before and after administration contrast medium (CM).

Methicillin resistant staphylococcus aureus in diabetic foot ulcers of a Chinese care hospital: risk factors for infection and prevalence S. Wang1, Y. Gao2, Y. Yuan1, Z.-L. Sun1; 1The Department of Endocrinology; 2Department of Neurology and Institution of Cerebral Vascular Disease, affiliated ZhongDa Hospital of Southeast University, NanJing, China.

Background and aims: Retrospective case-control study of 118 (M: F , 68:50) Chinese type 2 diabetic patients with foot ulcers (Wagner's grade 3-5) were studied to determine the prevalence and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection, in relation to community or hospital original parameters.

Materials and methods: Ulcer specimens were processed for smear for Gram's staining, aerobic culture, and susceptibility identifications. Staphylococcus species were tested for methicillin resistance by using oxacillin.

Results: S. aureus was the most frequent pathogen (25.6%) in this population, a high proportion of S. aureus isolates were MRSA (63%). 65.4% met the definition of hospital associated MRSA (HA-MRSA) infections. Size of ulcer (adjusted OR 1.61; 95% CI 1.22-2.12) and osteomyelitis (adjusted OR 18.51, 95% CI 2.50-137.21) were independent predictors of MRSA infection. The HA-MRSA group had significantly different distributions from the community associated MRSA (CA-MRSA) group with respect to age, long history of diabetes, and length of hospital stay (all P<0.001). Neuropathy, vascular disease (all P< .049), and osteomyelitis (P= .026) were the most common underlying conditions observed in the HA-MRSA group.

Conclusion: This study makes contribution to precaution against the emergence of MRSA including different acquired MRSA among the Chinese population with diabetic foot ulcers based on their original or clinical parameter.

Supported by: National Nature Science Foundation of China

1163

The influence of contrast medium on renal function in diabetic patient with critical limb ischaemia after contrast angiography/peripheral transluminal angioplasty

O. Bondarenko, K. Pryakhina, I. Sitkin, G. Galstyan, I.I. Dedov; Department of the Therapeutic and Surgical treatment methods of Diabetic foot, Research Center of Endocrinology, Moscow, Russian Federation.

Background and aims: The aim of the study was to assess the renal function of diabetic patient with critical limb ischemia (CLI), who underwent contrast angiography (CA)/peripheral transluminal angioplasty (PTA) before and after administration contrast medium (CM).

Materials and methods: 82 patients with PAD recruited in the study (mean age 65±17 years; male/female 47/53%; Type 2 DM 92%; mean diabetes mellitus (DM) duration 17±10 years). Peripheral artery disease was assessed by palpation of pedal pulse, ankle brachial index (ABI) measurement, doppler, transcutaneous oximetry (TcPO2) and duplex scanning (DS). Patients were divided according frequency and volume of CM and accuracy of DS results into 3 groups. The groups were matched by type of DM, age, duration of DM, sex. Group A (n=28) were underwent CA with the mean volume of CM 200 ml and consecutively PTA with the mean volume CM 130 ml. In group B (n=36) endovascular revascularizations were performed with the mean volume CM 130 ml without CA, because of highly valuable of DS results. In group C (n=18) multiple CA and PTA were done with the mean volume CM 480 ml summary. Glomerular filtration rate (GFR calculated by MDRD equation) assessed before and after administration CM on 3-5 days and in a 14 months in all groups.

Results: Initial albumin excretion rate (AER) and GFR were not different in comparing groups. The decrease of mean GFR was 20.2±2.1 ml/min/1.73m2 in group A; 14.3±1.7 ml/min/1.73m2 in group B; 19.1±1.9 ml/min/1.73m2 in group C on 3-5 days after administration of CM. pA<0.01, pB<0.2, pC<0.01. The decrease of mean GFR was 22.2±1.6 ml/min/1.73m2 in group A; 15±1.6 ml/min/1.73m2 in group B; 24±1.7 ml/min/1.73m2 in group C in a 14 months. pA<0.01, pB<0.2, pC<0.01. 1 case of contrast-induced acute renal failure was registered in group A. Microalbuminuria progression according AER was observed in 3 cases in group A and in 2 cases in group C. Neither AER progression nor renal failure were documented in group B. The accuracy and sensitivity of duplex scanning was comparable in the selection of aorto-iliac lesions (86% and 88%) and femoro-popliteal lesions (91% and 93%) in A and B groups, but in infrapopliteal axis these characteristics were significantly higher in group B versus group A, 90% and 78%, respectively.

Conclusion: The results of this study showed that the risk of progression diabetic nephropathy in patients with CLI after CA/PTA increased and depend on frequency and volume of CM. The high accuracy DS in diabetic patients with CLI permits to reduce the frequency of preliminary angiography and prevent the development of deteriorating of renal function.
PS 114 Diabetic foot - treatment

1164

Podiatric insoles cause foot ulcers in diabetic patients

M. van Putten1, P. Leffers1, N.C. Schaper2
1School of Podiatry Eindhoven, Epidemiology, University Maastricht, 2Internal Medicine, Maastricht University Medical Center, Netherlands.

Background and aims: Inadequate footwear is an important contributor of foot ulceration in diabetic patients with polyneuropathy and prescription of protective footwear is seen as a cornerstone in preventing ulcers. In several countries preventive diabetic foot care is provided by podiatrists, who can also prescribe insoles. However, recent publications have casted doubt about the effectiveness of these insoles to reduce plantar pressure. Therefore we studied the effect of podiatric insoles on the incidence of diabetic foot ulcers.

Materials and methods: This study was part of the Podopoof trial; in this RCT we compared podiatric (n=284) with usual care by diabetologists (n=285), in diabetic patients with neuropathy and moderate risk (category 2 IWGDF) for ulceration. Podiatric care consisted of ≥ 2 consultations/year and included preventive foot care as well as prescription of podiatric insoles to reduce plantar pressure, if deemed necessary. New cases of diabetic foot ulcers were ascertained during a follow-up period of up to 3 years.

Results: As reported earlier no difference were observed in ulcer incidence between the podiatry and usual care groups. 28 vs 30; data of the intervention and control group were therefore combined. The mean age was 63 years, the modified neuropathy disability score was 3.1, 52% were male. Insoles were prescribed in 184 patients, 177 (62%) in the podiatry and 7 (2%) in the usual care group. Of the patients with an ulcer 65% had insoles. Of the patients with insoles 22 (12%) developed an ulcer, while this occurred in 6 (1%) without insoles (p=0.01). Multivariable Cox regression analysis showed that the time to ulceration in the insole-group is shorter than in the non-insole group. Subgroup analysis showed that men develop more ulcers than women and that the detrimental effect of insoles was also larger in men.

Conclusion: Prescribing preventive insoles for diabetic patients with moderate risk for ulceration with the goal to prevent ulceration can have opposite effects: in the insole-group more ulcers occurred than in the non-insole group. It is our belief that podiatrists should not prescribe insoles in these patients to prevent ulceration.

Supported by: CVZ, Netherlands

1165

Rate of relapses diabetic osteoarthropathy and its dependence on the terms and a carrying mode of weight-bearing bandage TotalContactCast at patients with acute Charcot foot

M. Vanyan, I. Ulyanova, G. Galstyan, M. Yaroslavtseva
Therapeutical and Surgical treatment methods of Diabetic Foot, Scientific research Center of Endocrinology, Moscow, Russian Federation.

Background and aims: The aim was to estimate the results of the treatment of Charcot foot (Ch.f) in type 1 and 2 diabetic patients with weight-bearing by TotalContactCast at acute stage of Ch.f.

Materials and methods: In total 47 patients with diabetes mellitus (DM) 1 type (n = 21) and 2 types (n = 26), mean age of patients - 49.7±13.8 years. All patients divided in 2 groups by temperature criteria: group 1 at 22 patients (ΔT= 5.7±2.7), and Group 2 - at 25 (ΔT=4.2±2.1). Mean of HbA1c at patients in Group 1 was 9.3 ± 2.34 %, in Group 2 - 8.7 ± 1.6. Difference between occurrence of clinical symptoms diabetic osteoarthropathy and start of treatment was 10.5 ± 9 months at patients in group 1, 19.7 ± 13.5 years at patients in group 2. To all patients duration with treatment by TotalContactCast of group 1 was 4.9 ± 1,8 month, in group 2 -7.7 ± 3.6 month. To all patients' correction of therapy diabetes mellitus (DM) metabolic control has done. Differences between groups were examined by using Fisher criteria, significance level is p<0.05. Duration of follow-up period was 24 ± 2.4 months.

Results: In 24 months the decrease of A HbA1c achieved at patients in group 1 - 7.2 ± 1.53%, and 6.9 ± 1.9% in group 2. From 47 patients, 68 % (n=32) had good compliance of caring TotalContactCast and at 28% (n=9) relapse osteoarthropathy was observed. 31% of patients (n=15) didn’t follow the term of recommended treatment and the relapse of osteoarthropathy was significantly high and observed in 67 % cases (n = 10); remission in 23%, (p = 0.023). In group 1-22 patients only 63 % (n=14) followed recommendations about carry- ing period of TotalContactCast and unloading, thus relapse in group 1 observed at 43 % (n=6). Significantly associated in 36 % (n=8) patients, who stopped therapy before term, relapse was revealed at 62 % of patients (n=5), (p = 0.008). In group 2 of 25 patients - of 72 % (n=18) followed the term of carrying TotalContactCast and lower extremity unloading (relapse - at 17 % of patients, n=3). From 28 % (n=7) the patients without observing a mode of unloading, in 71 % of cases (n=5) relapse osteoarthropathy (p = 0.037) is revealed.

Conclusion: Weight-bearing bandage is a highly effective method of treatment of the first choice for therapy Charcot foot: remission of the complication is reached in 72 % of cases, in both groups. At non-observance of conditions fixing therapies remission in 2 year evaluating period makes only 23 % of investigated patients. Thus, the mode of weight-bearing and its duration is crucial to lower the relapse rate of diabetic patients with acute osteoarthropathy, within glycemic control.

1166

Diabetic foot osteomyelitis can be successfully treated with antibiotics

S. Acharya
Endocrinology and Diabetes, Lancashire Teaching Hospitals NHS Trust, Chorley, United Kingdom.

Background: Osteomyelitis (OM), a common complication of diabetic foot ulcer, is associated with higher risk of amputation. In our centre we treat OM primarily with antibiotics and we wanted to study the outcome of patient who had diagnosis of OM.

Aims of study: The aim of this study was to analyse clinical outcome of subjects who had diagnosis of OM in the past 5 years.

Subjects and methods: In this retrospective study, cases were selected from the electronic record with the diagnosis of OM. Results were crosschecked with radiology database. Pathology and microbiology database were also used to collect data.

Results: 147 cases had clinical diagnosis of OM out of which 130 (mean age 66.2±14.4 years and mean duration of diabetes 13.2±10.9 years) had diagnosis reconfirmed on at least one of the established criteria (Probe to bone 102, X-Ray changes 69, Bone scan 27, leukoscan 4 and bone biopsy 5). Of these reconfirmed cases, majority (66.9%) were male and had type 2 diabetes (80%) with mean HbA1c of 8.1 ± 2.1 and cholesterol of 4.2±1.3 mmol/L. Peripheral vascular disease, defined by absence of palpable pulses, was present in 61 (46.9%) subjects.

Blood count performed on 112 cases showed raised neutrophil count (>7.5) only in 26 (23.2%). 64 had staphylococcus isolated from wound swab of which 20 (31.3%) had MRSA. Flucloxacillin and fusi- date combination was used in 81 cases whereas ciprofloxacin and clindamy- cin combination was used only in 17 cases. 87 (66.9%) healed with single (n=46) or multiple (n=41) courses of antibiotics. 18 (13.8%) had amputation of which 16 (12.3%) were minor (Toes or Ray amputation) and 2 (1.5%) were major (above or below knee). 12 (9.2%) had vascular intervention (angioplasty & 4 bypass) and 8 (6.2%) died within 12 months of diagnosis due to other causes. There were no differences in outcome between subjects with or without x-ray changes. When compared between those which healed (n=87) and those patients who died or needed amputation (n=26), there was no difference in age sex, duration of diabetes, site of ulcer, presence of x-ray changes or peripheral vascular disease. OM due to MRSA was the only factor that predicted adverse outcome (21.1% vs 53.3%; p=0.04). Higher rate (p=0.01) of adverse outcome was noted in patients using combination of ciprofloxacin and clindamycin, which may be due to its use as a last resort in our clinic.

Discussion: Our data confirms that OM can be successfully treated with anti- biotics. Flucloxacillin and fusid- ate combination was used as first line treatment in majority of cases. Surgery should be reserved only for cases that fail to respond to medical treatment.

1167

Efficacy of moxifloxacin in the treatment of diabetic foot infections: results of the RELIEF study

N. Schaper1, M. Dryden2, P. Kujath3, D. Nathwani4, P. Arvis5, P. Reimnitz6, J. Alder7, B. Hampel7, I. Gyssens8
1University Medical Centre, Maastricht, Netherlands, 2Royal Hampshire Hospital, Winchester, United Kingdom, 3University Clinic of Luebeck, Germany, 4Ninewells Hospital and Medical School, Dundee, United Kingdom, 5Bayer Schering Pharma, Loos, France, 6Bayer Schering Pharma AG, Wuppertal, Germany, 7Bayer HealthCare, Montville, USA, 8Bayer Schering Pharma AG, Berlin, Germany, 9Radboud University Nijmegen Medical Centre, Netherlands.

Objectives: Diabetic foot infections (DFIs) cause substantial morbidity. As DFIs are usually polymicrobial, broad-spectrum antibiotics play an important
role in therapy. Due to their wide antimicrobial coverage and pharmacodynamic properties, fluoroquinolones, such as moxifloxacin (MXF), may have several advantages over other antimicrobial classes. The RELIEF study was conducted to provide further data on the efficacy of MXF in specific complicated skin and skin structure infections. Data on DFUs are presented here.

Methods: In this double-dummy, double-blind, randomised, controlled trial, patients with a DFI requiring antimicrobial therapy were stratified according to infection severity and the requirement for surgery. Patients received either IV/PO MXF 400 mg qd or IV piperacillin/tazobactam 4.0/0.5 g iv followed by PO amoxicillin/clavulanate 875/125 mg bid (PIP/TAZ-AMC), for 7-21 days. The DFI diagnosis was based on predetermined criteria, documented by repeated photographs and confirmed by an independent data review committee (DRC). The primary efficacy variable was resolution of infection 14-28 days after completion of study medication (test-of-cure, TOC) as determined by the DRC.

Results: A total of 206 patients (mean age 59.2 years) were valid for the efficacy analysis (MXF=110, PIP/TAZ-AMC=96). Of these, 65.3% of MXF- and 70.8% of PIP/TAZ-AMC-treated patients had clinical signs of peripheral arterial disease (ankle brachial index <0.9, foot pulses barely or non-palpable). Most patients had DFIs with a PEDIS score of 3, i.e. moderate in severity (MXF 81.3%; PIP/TAZ-AMC 86.2%). In the microbiologically-validated (MBV) population, polymicrobial infections were common (MXF: 60.9%; PIP/TAZ-AMC: 62.4%); the most frequently isolated pathogen was S. aureus (MXF 69.6%; PIP/TAZ-AMC 81.2%). Metillin-resistant S. aureus was relatively uncommon in the MBV population (MXF 12.0%; PIP/TAZ-AMC 14.1%). A total of 150 (72.8%) patients had initial surgery (MXF 70.9%; PIP/TAZ-AMC 75.0%), including amputation in 46.4% (MXF) and 34.4% (PIP/TAZ-AMC) of patients. MXF and PIP/TAZ-AMC had similar efficacy with respect to clinical cure at TOC (Table). A total 20.9% MXF and 25.0% PIP/TAZ-AMC patients had additional surgeries >48 hours after the start of therapy and were assessed as clinical failures. Bacteriological success rates were comparable between treatment arms (Table).

Conclusion: IV/PO MXF had similar efficacy to IV PIP/TAZ-AMC in patients with DFI. MXF can be considered a valuable option for the treatment of moderate-to-severe DFIs.

Table: Clinical and bacteriological success rates at TOC overall and by most commonly isolated pathogen

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>MXF</th>
<th>PIP/TAZ-AMC</th>
<th>P* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical cure</td>
<td>84/110 (76.4)</td>
<td>75/96 (78.1)</td>
<td>0.650 (-1.45, 9.0)</td>
</tr>
<tr>
<td>Bacteriological success (MBV population)</td>
<td>Overall</td>
<td>66/92 (71.7)</td>
<td>61/85 (71.8)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>43/53 (81.1)</td>
<td>39/57 (68.4)</td>
<td>-</td>
</tr>
<tr>
<td>Metillin-susceptible</td>
<td>8/11 (72.7)</td>
<td>10/12 (83.3)</td>
<td>-</td>
</tr>
<tr>
<td>Metillin-resistant</td>
<td>6/8 (75.0)</td>
<td>6/9 (66.7)</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>19/30 (63.3)</td>
<td>20/29 (69.0)</td>
<td>-</td>
</tr>
</tbody>
</table>

*P<0.05

Supported by: Bayer Schering Pharma AG

1168

The effect of topical phenytoin on healing in diabetic foot ulcers: a randomised controlled trial

J. Shaw1, C.M. Hughes2, K.M. Lagan2, M.R. Stevenson1, C.R. Irwin1, P.M. Bell1

1Podiatry, Regional Centre for Endocrinology and Diabetes, University of Ulster, 2Department of Medical Statistics, Epidemiology and Public Health, Queen’s University, School of Dentistry, Queen’s University, Regional Centre for Endocrinology and Diabetes, Belfast, United Kingdom.

Background and aims: Phenytoin (PHT) may have a positive effect on wound healing by increasing collagen production and reducing bacterial load and wound exudate. A randomised, controlled, double-blind, clinical trial was conducted to evaluate the effect of topical PHT on healing in diabetic foot ulcers (DFU).

Materials and methods: A PHT dressing and a control dressing were manufactured. Participants of ≥18 years of age with peripheral neuropathy, stable vascular status, and a DFU ≥4 weeks duration were included. Participants with renal disease, acute ischaemia, necrosis, worsening infection or osteomyelitis were excluded. Subjects were independently randomised to either PHT or Control groups, received standard wound care, and dressing application. Primary end-point analysis (DFU closed or not at 16 weeks) was calculated by Survival Analysis. Analysis of secondary outcome (percentage change in DFU area over time) used an Ordinal Regression Model.

Results: Participants (n=65, 52 with Type 2 Diabetes) were randomised to the PHT (31) or Control group (34). Following a maximum of 16 weeks treatment, 60% of the DFUs closed overall (18 PHT: 20 Controls) with no statistically significant differences in complete healing or in DFU area over time between the two groups. Pain levels were reduced in the PHT-treated group. At 24 weeks, 1 DFU had recurred.

Conclusion: There were no differences in DFU closure rates or in DFU area over time between the two groups. This study does not support the use of PHT in the treatment of DFUs.

Supported by: HSC/R&DNI

1169

Improved survival in patients with diabetes and chronic foot ulcers after hyperbaric oxygen therapy. Outcome of a randomised double-blind placebo controlled study

M. Löndahl1, P. Katzman1, A. Nilsson1, M. Landin-Olsson2

1Endocrinology, Clinical Sciences, Lund, 2Internal Medicine, Ängelholm, Sweden.

Background and aims: Presence of diabetic chronic foot ulcers (DFU) is associated with an increased mortality risk. Hyperbaric Oxygen Therapy (HBOT) has been suggested as a treatment modality of DFU. HBOT increases oxygenation and stimulates angiogenesis. The aim of this study was to evaluate if HBOT improves survival in patients with diabetes and chronic foot ulcers.

Materials and methods: Hyperbaric oxygen therapy in patients with Diabetes and chronic foot Ulcers (HODFU) study is a prospective randomised double-blind placebo-controlled study evaluating the effect of 40 HBOT sessions as compared to 40 treatments with hyperbaric air (placebo). Patients receiving more than 35 treatment sessions were included in the predefined per-protocol analysis. Three-year mortality rates were evaluated in this study. Categorical variables were analyzed using Fischer’s exact test, continuous variables using Mann-Whitney U-test and Kaplan-Meier curves using Cox-Mantel test. A two-sided p-value <0.05 was taken as statistical significant.

Results: 75 patients (38 HBOT and 37 placebo) with a similar median age (67 and 71 years (n.s.) (HBOT and placebo)) and a diabetes duration of 22 and 21 years (n.s.) were included in this analysis. No differences were seen in mortality between groups. Mortality rates were 10.5 % and 29.7 % (p=0.04) respectively after three years follow-up. Median ages of deceased patients were 79 and 75 years (n.s.).

Conclusion: This study indicates that HBOT may improve survival in patients with diabetes and chronic foot ulcers.

Supported by: Mrs Thelma Zoesgaard Foundation

1170

Pathogenetic criteria of differentiation tactics at surgical treatment of purulent necrotic wounds in patients with diabetic foot

M.V. Svyrydov1, N. Bondarenko2, 3, S. Bolgarska2, 3

1Surgery, National Medical University, Donetsk, 2Diabetology, State Institution “V.P. Komisarenko Institute of endocrinology and metabolism of the Academy of Medical Sciences”, Kiev, Ukraine.

Background: A search for informative criteria for a wound process course in the treatment of destructive forms of Diabetic Foot Syndrome (DFS) presents a serious clinical problem, which requires new scientific approaches in its solution.

Aims: Development of prognostic criteria for a wound process course allowing choosing pathogenetically justified methods of surgical treatment of wounds in patients with DFS.

Supported by: Medical Group EFDA
Material and methods: The results of a surgical treatment of 186 patients with destructive forms of DFS have been analyzed in accordance with PEDIS classification with P1, E1, D1, I1 present. The condition of the intracutaneous tyrosinase system, the content of cytokines (IL-1β, IL-4, TGFα, TNFα) and eicosanoids (PGE2, LTB4, PGL2) in blood at different stages of the treatment have been studied. A wound coating, autolocry, a tamponade by dermo-fat flap (DFF) and a culture of cultivated autiftroblasts have been used as means of covering postoperative wound defects, stabilization of a destructive process and acceleration of tissue reparation.

Results: The individual peculiarities of a wound process course were directly dependent on the area and depth of tissue destruction, power of the tyrosinase system, which finds its expression in the results of the tyrosinase index. After a surgical treatment of the wound, changes in the intercytokine coefficient allowed predicting the course of a proliferation phase - 50% and higher increase of the coefficient was a favorable sign and an indication for the use of a wound coating or autolocry. 10% decrease of the coefficient and lower appeared to be an unfavorable sign and required the use of a tamponade of a graft wound coating (DFF) and/or a culture of cultivated autiftroblasts with a further plastic covering of the wound. 14.3% decrease of the eicosanoid coefficient during 3-5 days after a necrosectomy was accompanied by a high efficiency of a wound coating and autolocry application, quick wound healing, 33.5% and higher increase of the eicosanoid coefficient against the background of LTB4 and PGI2 deficiency testified to the humoral control disorder of inflammatory reparative processes which were accompanied by spread of inflammatory processes, a more prolonged period of wound healing and/or resulted in performing big amputations.

Conclusion: The reparation humoral regulators revealed reflect individual peculiarities of a wound process course and give an opportunity to make a prognosis concerning the outcome of wound healing in patients with DFS operated on.

Outcome of surgical treatment in diabetic foot osteomyelitis

R. Da Ros, R. Assaloni, B. Brunato, S. Carlucci, C. Tortulli; Diabetologic Service, Monfalcone Hospital, Italy.

Background and aims: Osteomyelitis is one of the most frequent infections of the diabetic foot. The treatment of osteomyelitis of the foot in diabetic patients continues to be debated, most experts considered that the standard should be the surgical removal of infected bone. Aim of this study is to determine efficacy and relapse rate of surgical treatment of osteomyelitis.

Materials and methods: We performed a surgical removal of infected bone in 206 consecutive diabetic patients. Forefoot osteomyelitis were confirmed by probe to bone test and radiological signs of osteomyelitis.

Results: Osteomyelitis were localized in 140 patients at phalangeal level (68%), in remaining 66 patients at metatarsal level: 19 first head (9%), 9 second head (4%), 5 third head (3%), 4 forth head (2%), 29 fifth head (14%). Bone culture was performed in 122 patients, in 118 patients was positive and Staphylococcus aureus was the organism isolated in majority of cultures (42%). Kind of surgical treatment: 152 conservative surgical procedures were performed (74%), in the remaining cases: 23 distal finger amputations, 20 finger amputations, 11 ray amputations. 154 patients (75%) healed, mean healing time was 62±42 days. Causes of healing failure were: 19 patients for ischemic relapse, 21 patients for residual osteomyelitis, 12 patients for other causes. 37 patients (18%) healed with a second surgical procedure. Once healed wound relapse was observed in only 5 patients (3%) in a mean follow up of 12±4 months.

Conclusion: Surgical removal of infected bone in forefoot osteomyelitis seem a safe procedure with an elevated healing rate and large possibility of conservative management. Relapse rate is low when healing is reached.

Health Technology Assessment (HTA) on the importance of growth factors for the treatment of Diabetic Foot Ulcers (DFU)

B. Buchberger1, M. Follmann2, H. Huppertz2, J. Wasmann2; 1University of Duisburg-Essen, Essen, 2German Cancer Society, Berlin, Germany.

Background: Ulcers as a result of Diabetes mellitus is a serious problem with an enormous impact on the overall global disease burden due to the increasing prevalence of diabetes. Because of long hospital stays, rehabilitation, often required home care and the use of social services diabetic foot complications are costly. Therapy with growth factors could be an effective and innovative add-on to standard wound care. The aim of the HTA on behalf of the German Institute of Medical Documentation and Information DIMDI is to assess the safety and efficacy of growth factors alone or in combination with other technologies in the treatment of DFU including medical, economical, social, ethical and juridical aspects.

Methods: We systematically searched relevant data bases limited to English and German language and publications since 1990. Cost values were adjusted for the price level in 2008 and converted into Euro. Review and assessment of the quality of publications followed methods conforming to widely accepted standards for evidence-based medicine and health economics.

Results: We identified 25 studies (14 randomized controlled trials (RCT), nine cost-effectiveness analyses, two meta-analyses). The RCTs compared an add-on therapy to standard wound care with standard wound care/placebo alone or extracoronal wound matrix: 6 studies used becaplermin, two rhEGF, one bFGF, and five studies the metabolically active skin grafts Dermagraft and Apligraf. Study duration ranged from 12 to 20 weeks and the study population comprised between 17 and 382 patients, average 130 patients. Treatment with becaplermin, rhEGF and growth factors secreting skin implants Dermagraft and Apligraf showed in eight out of 13 studies an advantage concerning complete wound closure and the time to complete wound healing with statistically significant differences. Evidence for a benefit of treatment with bFGF could not be found. In four out of the 14 studies the proportion of adverse events was 30% per study group with no difference between the treatment groups. The methodological quality of the studies was affected by significant deficiencies. Economic evaluations showed becaplermin being cost-effective whereas no obvious statement can be made regarding Dermagraft and Apligraf because of diverging cost bases and incremental cost-effectiveness ratios.

Discussion: Differences in standard wound care are complicating the comparison of study results. Taking into consideration the small to very small sample sizes and other methodological flaws with high potential of bias the validity of the results with regard to effectiveness and cost-effectiveness has to be considered limited. The duration of treatment and follow-up examinations is not long enough to assess sustainability of intervention and surveillance of ulcer recurrences or potential treatment related adverse events like development of malignancy.

Conclusion: There are indications of an advantage for the add-on therapy with growth factors in DFU concerning complete wound closure and the time to complete wound healing. Further more studies of high methodological quality with adequate sample sizes and sufficient follow-up periods are necessary, also investigating patient-relevant parameters like health-related quality of life, acceptance and tolerance of intervention in addition to clinical outcomes.

Supported by: DIMDI
PS 115 Retinopathy - prevalence and mechanisms

1173

S. Roy Chowdhury1, R.L. Thomas2, S.D. Luzio2, S.L. Hale2, R.V. North2, D.R. Owens2;
1Diabetes Research Unit, Cardiff University, 2Department of Ophthalmology, Cardiff and Vale University Health Board, 3School of Optometry, Cardiff University, United Kingdom.

Background and aims: To report the prevalence of diabetic retinopathy (DR) in subjects with diabetes who attended for their first screening event with the Diabetic Retinopathy Screening Service for Wales (DRSSW) between 2005 and 2009.

Materials and methods: 135,152 subjects with diabetes (55.3% male, 42.6% female, 2.1% not documented) attended for their first screening event. Digital photography (2x 45° field of each eye) was performed following mydriasis with tropicamide 0.5%; retinal grading was based on the UK National Consensus Grading Protocol with the highest (worst) grade for either eye taken as the final grade. Referral to hospital eye services were made for those cases where the level of DR seen was pre-proliferative (PDDR) or proliferative (PDR) with or without the presence of maculopathy or maculopathy only i.e. referable diabetic retinopathy (RDR). The level of DR was considered to be of a sight-threatening level (STDR) if either or both PDR and maculopathy were present.

Results: 88,131 subjects (65.2%) had no DR and 47,021 (34.8%) (57.5% male, 40.1% female, 1.5% not documented) had evidence of DR. In those subjects with DR at first screen the mean ±SD age was 63.3 (14.8) years, duration of diabetes was 9.6 (9.0) years, 11.6% were T1DM, 64.9% T2DM and for 23.5% type not recorded. 13.9% of subjects were diet controlled, 42.2% received additional oral hypoglycaemic agents and 23.8% insulin. In 20.1% the treatment modality was not documented. During the five year screening period (Table 1) the prevalence of BDR at first screening remained essentially unchanged at approximately 80% of those patients with any evidence of DR. PDR increased from 0.9 to 2.6% over the 5 year period but maculopathy remained essentially unchanged between 4.4-5.1%. The number of people requiring referral to ophthalmologists increased slightly following the first year but then remained unchanged.

Conclusion: In a national screening programme at first screen 65.2% of patients had no DR. Of those with DR (34.8%) the majority had BDR (~80%) which did not require referral to the hospital eye service. In summary only 5.6% of the total population at first screen required further assessment at the hospital eye service.

Table 1 Presence of DR at first screen (2005 - 2009)

<table>
<thead>
<tr>
<th></th>
<th>All Years</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>BDR</td>
<td>36,724</td>
<td>78.1</td>
<td>80.8</td>
<td>76.5</td>
<td>76.3</td>
<td>76.7</td>
</tr>
<tr>
<td>PDR</td>
<td>2,490</td>
<td>5.3</td>
<td>4.9</td>
<td>5.6</td>
<td>5.6</td>
<td>5.1</td>
</tr>
<tr>
<td>PDR</td>
<td>736</td>
<td>1.6</td>
<td>0.9</td>
<td>1.4</td>
<td>1.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Maculopathy</td>
<td>2,222</td>
<td>4.7</td>
<td>4.4</td>
<td>5.1</td>
<td>4.8</td>
<td>4.6</td>
</tr>
<tr>
<td>STDR1</td>
<td>5,115</td>
<td>3.8</td>
<td>3.1</td>
<td>4.2</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>STDR2</td>
<td>5,115</td>
<td>10.9</td>
<td>8.5</td>
<td>11.8</td>
<td>11.5</td>
<td>12.5</td>
</tr>
<tr>
<td>RDR1</td>
<td>7,605</td>
<td>5.6</td>
<td>4.9</td>
<td>6.3</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>RDR2</td>
<td>7,605</td>
<td>16.2</td>
<td>13.4</td>
<td>17.4</td>
<td>17.1</td>
<td>17.6</td>
</tr>
</tbody>
</table>

BDR-Background DR; PDR-Preproliferative DR; PDR-Proliferative DR; Maculopathy-Exudates within 1 disc diameter of fovea retinal thickening; STDR-Sight threatening DR of the total population; STDR1-Sight threatening DR of those with DR; RDR-Referable DR of the total population; RDR2-Referable DR of those with DR.

1174

Prevalence and associated risk indicators of retinopathy in rural Bangladeshi population with and without diabetes

A. Akhter1, K. Fatema2, A. Afroz1, S.M.A. Hannan Miah1, A.S.M. Nurullah Awal1, A. Raihan1, L. Ali1, A. Hussain1;
1Dept of Epidemiology & Biostatistics, Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh, 2Dept of Ophthalmology, Thakurgaon Swasthojota Hospital, Thakurgaon, Bangladesh, 3ORBIS International, Dhaka, Bangladesh, 4Dept of Biochemistry & Cell Biology, Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh, 5Dept of International Health, University of Oslo, Norway.

Background and aims: Retinopathy, a potential sight threatening condition, is a significant public health problem. The absence of reliable population based epidemiological data on retinopathy in Bangladesh is a serious impediment to the effective national planning of eye care programmes. In the above context, we planned to carry out an epidemiological study to create a baseline data focused on retinopathy. We aimed to observe the prevalence of retinopathy among people with normal and abnormal glucose metabolism in a remote rural community of Northern Bangladesh and to identify the associated risk indicators for developing retinopathy in this population.

Materials and methods: This population based cross-sectional study was conducted through screening in camp settings, which included a total of 836 participants (468 male, 368 female), aged at or above 25 years. Retinopathy was determined by ophthalmoscope and fundus photography. Anthropometric measurements (BMI and WHR), OGT, glycosylated haemoglobin (HbA1c), blood pressure, lipid profile, serum creatinine and urine albumin-creatinine ratio (UACR) were also observed. Serum glucose (fasting and 2 hr after 75 gm glucose) was measured by glucose oxidase method, HbA1c by high performance liquid chromatography (HPLC), total cholesterol, triglyceride and HDL were analyzed by enzymatic-colorimetric method, LDL was estimated by Friedewald's formula, serum creatinine and urine creatinine were measured by alkaline picrate method and urine albumin by pyrogallol red method. Logistic regression analysis was used with adjustment for potential confounders.

Results: The overall prevalence rate of retinopathy was 5.4% (95% CI 3.9–6.9). Moreover, the prevalence of retinopathy among the diabetic, prediabetic and nondiabetic subjects were 21.6% (95% CI 11.2–32.0), 13% (95% CI 3.4–22.6) and 3.5% (95% CI 2.2–4.8), respectively. Females (6.0%) had higher prevalence of retinopathy compared to males (4.9%). The peak prevalence of retinopathy (10.7%) was found in the older age group (above 55 years).

Age, BMI, WHR, blood pressure, serum glucose (fasting and 2 hr after 75 gm glucose), HbA1c by high performance liquid chromatography (HPLC), total cholesterol, triglyceride and HDL were analyzed by enzymatic-colorimetric method, LDL was estimated by Friedewald's formula, serum creatinine and urine creatinine were measured by alkaline picrate method and urine albumin by pyrogallol red method. Logistic regression analysis was used with adjustment for potential confounders.

Conclusion: The data suggest that, in addition to serum glucose control in diabetic patients, screening for hypertension, obesity and proteinuria as well as adequate treatment of these risk indicators may prevent retinopathy in rural Bangladeshi population.

Supported by: Bangladesh Diabetic Somitti & ORBIS International Bangladesh

1175

Early-onset type 2 diabetes: high risk for premature significant diabetic retinopathy

S.H. Song, C.A. Hardisty;
Diabetes Centre, Northern General Hospital, Sheffield, United Kingdom.

Background and aims: The incidence of early onset (age of diagnosis <40) type 2 diabetes (T2D) is increasing. Given the potential long duration of exposure to the deleterious diabetic milieu, this cohort is at risk of developing premature diabetes complications. Diabetic retinopathy is a significant cause of morbidity in T2D and at present, the impact of early age of diabetes onset on the burden, severity and prematurity of retinopathy complication remains unclear.

Materials and methods: A cross-sectional study using hospital diabetes register and eye screening database to identify T2D subjects and quantify se-
Glycated hemoglobin (HbA1c) is commonly em-
1 plemented in clinical trials as a surrogate marker of diabetes control and the risk for diabetic complications in type 2 diabetes mellitus (T2DM). To date, several trials have examined the relationship between HbA1c and microvascular complications, but no systematic review (SR) has been published. We performed a SR and meta-analysis to examine the association between HbA1c and the appearance and progression of diabetic retinopathy (DR) in T2DM.

Materials and methods: We conducted a systematic literature search in electronic medical databases (MEDLINE, CENTRAL) with highly sensitive search strategies. The following covariates were included. Estimates were made of the adjusted relative risk (RR) of complications for an increase in HbA1c of 1%. Weighted mean differences (WMD) were used to compare mean glucose levels and mean HbA1c levels between the case (with DR) and the control group (without DR). The following covariates were included. Estimates were made of the adjusted relative risk (RR) of complications for an increase in HbA1c of 1%. Weighted mean differences (WMD) were used to compare mean glucose levels and mean HbA1c levels between the case (with DR) and the control group (without DR).

Results: We identified 17 trials that fulfilled the inclusion criteria, involving a total of 10,236 patients. Based on two RCT (n = 240), pooled RR for incidence of DR was calculated as 1.57 (confidence interval [CI]: 1.21-2.03; p < 0.001) for an increase in HbA1c of 1%. Meta-analysis of OS confirmed the results from RCT (RR = 1.61; CI95% [1.29-2.01]; p = 0.001). Pooled data from 5 RCT (n = 514) showed that RR of the incidence or progression of DR was 1.48 (CI95% [1.04-2.10]; p = 0.029) for an HbA1c increase of 1%. The cumulative results of five OS were similar (RR = 1.50, CI95% [1.28-1.77]; p < 0.0001). Based on data from RCTs and OS there were no significant correlation between incidence of proliferative DR and increase of HbA1c of 1%. Weighted mean differences (WMD) were used to compare mean glucose levels and mean HbA1c levels between the case (with DR) and the control group (without DR). The following covariates were included. Estimates were made of the adjusted relative risk (RR) of complications for an increase in HbA1c of 1%. Weighted mean differences (WMD) were used to compare mean glucose levels and mean HbA1c levels between the case (with DR) and the control group (without DR).

Conclusion: The results of our SR indicate a significant correlation between HbA1c level and appearance and progression of DR in T2DM. Thus, HbA1c may be considered an appropriate surrogate endpoint for DR in T2DM.
ease, and clouting disorder. On the basis of the fundus photography, the participants were divided into four groups, including normal individuals (n=120), diabetes mellitus (DM) (n=45), DM with non-proliferative DR(NPDR) (n=60), and DM with proliferative DR(PDR) (n=45). The lipid profile, C-reactive protein (CRP), glucose, insulin, platelet count, prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer and Fibrinogen were determined using routine laboratory methods. We determined generation of thrombin-antithrombin complexes (TATs) and soluble CD40 ligand (sCD40L), a platelet activation marker, at the site of microvascular injury, together with ex vivo plasma fibrin clot permeability and lysis time.

Results: The DR patients had increased maximum rates of formation and total production of TATs (by 52.9%, P < 0.01, and by 22.5%, P < 0.01, respectively) as well as sCD40L release (by 19.2%, P < 0.01, and by 18.3%, P < 0.01, respectively) compared with those with hyperglycemia, whereas PDR patients had the highest values of TATs and sCD40L variables (P < 0.01 for all comparisons). Patients with DR had longer clot lysis time (by 21%, P<0.01) similar to that in diabetic subjects, but not lower clot permeability compared with that in normoglycemic subjects. PT and aPTT were similar for all the four groups; however, their corresponding fibrinogen levels were significantly different between PDR group and controls (4.55 ±2.12g/L vs. 3.06±1.25g/L, P<0.05). There was no difference in fibrinogen levels between NPDR group, DM group and control group.

Conclusively, diabetic patients, with retinopathy especially with proliferative retinopathy, are associated with enhanced local thrombin generation and platelet activation, as well as unfavorably altered clot features. Our results suggested that prothrombotic alterations in diabetic patients might be implicated in the pathogenesis of diabetic retinopathy.

Supported by: National Nature Science Grant by Chinese Government

1179

Retinopathy modulates taurine transporter expression in peripheral mononuclear blood cells of type 2 diabetic patients

G. Segheri1, R. Anichini1, A. De Bellis2, A. Berti1, L. Bianchi1, Z. Napoli1, L. Della Corte1, F. Fraciosa1.

1Dpt. of Internal Medicine, Spedali Riuniti, Pistoia, 2Dpt. of Clinical Chemistry, Spedali Riuniti, Pistoia, 3Dpt. of Pharmacology, University of Florence, 4Dpt. of Pharmacology, University of Sassari, Italy.

Background and aims: Taurine, a semi-essential amino acid which acts as an antioxidant, cell osmolyte, and modulator of trans-membrane calcium and glucose metabolism, is more concentrated (about 10-fold) in the intra-cellular compartment than in the extra-cellular milieu due to the action of a specific Na-dependent amino acid transporter namely the taurine transporter (TauT), whose expression has so far been either morphologically and functionally well characterized. TauT is well represented in retinal epithelial cells where is acutely down regulated by high glucose concentrations in vivo. At the same time taurine appears to be very important in the retinal function besides its known role as modulator of glucose metabolism. However since taurine appears to be very important in the retinal function, its possible selective protective role against the development of this microvascular complication.

Materials and methods: We measured plasma taurine by HPLC and TauT gene expression by real-time PCR analysis in MPT of 74 type 2 diabetic patients with or without micro/macrovascular complications and in 44 age- and sex-matched controls. In diabetic patients, presence of retinopathy, nephropathy, neuropathy and cardiovascular disease was ascertained by appropriate clinical and instrumental investigations.

Results: Median value (interquartile range) of TauT expression, represented as arbitrary units (AU), was significantly higher in diabetic patients than in age- and sex-matched controls (2.08 [2.42]AU vs. 1.07 [2.68]AU; P<0.009) and was weakly related to HbA1c (r=0.29; P=0.001). As compared with uncomplicated individuals a trend toward decreased TauT expression was observed in patients with macroangiopathy (n=16; 1.16 [1.55]AU vs 2.24 [2.23]AU), peripheral neuropathy (n=17; 1.71[0.96]AU vs 2.16 [2.10]AU) or persistent micro/macroalbuminuria (n=21; 2.06 [2.35]AU vs 2.30 [4.20]AU; P>0.05 in all cases). Patients with retinopathy (n=23) had a significantly lower TauT expression than those who were unaffected, exhibiting a median value similar to the value of controls (1.159 [1.554]AU vs 2.240 [2.226]AU; P=0.006). There was no difference in median plasma levels between controls and diabetics, either with or without retinopathy (29.6 [15]μmol/l vs. 28.9 [17.2]μmol/l).

Conclusion: TauT gene expression in MPT is modified by type 2 diabetes, being significantly increased in patients without retinopathy, hypothesising its possible selective protective role against the development of this microvascular complication.

Supported by: Fondazione Cassa di Risparmio di Pistoia e Pescia, Italy

1180

Immunoexpression of the vascular endothelial growth factor and its receptors in diabetic lens

D.V. Lipatov, A.G. Kuzmin, A.U. Abrosimov, O.M. Smirnova, M.V. Shestakova; Endocrinology Research Centre, Moscow, Russian Federation.

Background and aims: The diabetic cataract is one of the causes of blindness among diabetic patients. There are many different factors leading to the cataract formation. It is known that cataract appears earlier in diabetic patients than in general population and has several morphological features. Excessive glucose oxidation, poloy pathway, hyperosmolarity, deposition of advanced glycation end products in the lens and damage of its matrix are shown to lead to lens opacity in diabetic patients. The aim of the study was to indentify the vascular endothelial growth factor (VEGF) and its receptors 1 and 2 (VEGF-R, and VEGF-R, respectively) in lens tissue after cataract surgery carried put in diabetic patients.

Materials and methods: 10 extracted diabetic lenses were studied. The mean age of included patients was 69.9±7.69 years, all patients had type 1 and type 2 diabetes mellitus, almost all patients were treated with insulin. For the immunohistochemical staining the paraffin-embedded tissue sections (4 μm) of the formalin-fixed lenses were prepared. Before staining the slides were deparaffinized and rehydrated. The 20 min heat-induced epitope retrieval was done (for VEGF determining - with DakoCytomation Target Retrieval Solution, Ph9; for VEGF-R, and VEGF-R, - with Citrate buffer, Ph6). The sections were incubating in 10% hydrogen peroxide for 20 min to blocking the endogenous peroxidase activity. The primary anti-VEGF (monoclonal mouse anti-human VEGF clone VG1, “DAKO”) was using at a dilution range of 1:50 and applied on sections using 30 min incubation at room temperature. The primary anti-VEGF-R, and anti-VEGF-R, receptor polyclonal anti-VEGF Receptor 1 and rabbit polyclonal anti-VEGF receptor-2 respectively, “Novus biologicals”) were using at a dilution range of 1:50 and applied on sections using 60 min incubation at 36.6°C. The colored end product were developed by using the universal secondary antibodies, detection system “EnVision”, “DAKO”, and following incubation with 3,3’-diaminobenzidine for 5 min in dark place.

Results: We observed immunoexpression of VEGF only in 2 of 10 diabetic cataracts on the cytoplasmic membrane of the lens fibers. There wasn’t found the immunoexpression of VEGF-R, in lens sections. But in all lenses the VEGF-R, was found both on the cortical subcapsular lens fibers and lens epithelium cells. The immunoexpression was strong and higher in the superficial subcapsular lens fibers.

Conclusion: VEGF is known as the necessary factor for normal growth and development of the eye. For example, it supplies metabolic effect to the retinal pigment epithelium and also is detected in normal lens during ontogeny. In diabetic patients the lens opacification develops earlier than among nondiabetic population. Our investigation may explain the extensive cataract formation and cortical localization of lens opacity due to the metabolic and proliferative effects of VEGF to lens epithelium via its receptor VEGF-R. Activation of VEGF-R, in lens epithelium and subcapsular lens fibers may cause excessive permeability and proliferation of lens epithelium and lead to the lens opacity.
PS 116 Retinopathy - new screening tools

1181

Characterising the development of diabetic retinopathy in the Diabetes Care System West-Friesland, the Netherlands

H. Zavrelova1, T. Hoekstra2, M. Alssema1, L.M.C. Welschen1, G. Nippels1, A.C. Müller1, B.C.P. Polak1, J.M. Dekker1;
1Ophthalmology, 2The EMGO Institute for Health and Care Research, 3Health Sciences, General Practice, VU University Medical Center, Amsterdam, Netherlands.

Background and aims: The development and progression of diabetic retinopathy is known to be influenced by risk factors such as HbA1c, blood pressure and lifestyle variables. It is also known that the pace at which diabetic retinopathy develops, progresses or regresses is heterogeneous. Firstly, we therefore identified distinct developmental patterns of diabetic retinopathy; secondly, we assessed the patient characteristics of these patterns.

Materials and methods: A cohort of type 2 diabetes patients participating in the Diabetes Care System in West-Friesland, The Netherlands was followed for 2 to 8 years, between 1998 and 2005. The first visit was considered baseline. Annually, risk factors were measured and 2-field fundus photographs were taken with a non-mydriatic camera and graded according to EURO-DIAB. Latent Class Growth Analyses were used to identify distinct developmental patterns of diabetic retinopathy. Baseline characteristics of these patterns were assessed with ANOVA with post hoc Bonferroni corrections and Chi-square tests or with a Kurskal Wallis test in case of skewed distribution.

Results: A total of 3392 patients were included in the study. Five clusters of patients with distinct developmental patterns of diabetic retinopathy were identified: A) patients without any signs of diabetic retinopathy, B) patients with fluctuating background diabetic retinopathy, C) patients with mild background diabetic retinopathy progressing to preproliferative diabetic retinopathy, D) patients with severe non-proliferative diabetic retinopathy progressing to (pre)proliferative diabetic retinopathy, and E) patients with persistent proliferative diabetic retinopathy. Risk factors characterizing the various patterns are shown in Table 1. Results show cluster A as the largest cluster characterized by low fasting plasma glucose levels and HbA1c and a short diabetes duration.

Conclusion: Identification of different developmental patterns of diabetic retinopathy is possible and might help understand the influence of certain risk factors on the course of diabetic retinopathy in individual diabetes patients.

Table 1. Selected baseline characteristics of five distinct developmental patterns of diabetic retinopathy (mean ± sd or median (interquartile range)).

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Cluster A</th>
<th>Cluster B</th>
<th>Cluster C</th>
<th>Cluster D</th>
<th>Cluster E</th>
<th>P < 0.05 between clusters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2955 (n=2955)</td>
<td>917 (n=297)</td>
<td>414 (n=71)</td>
<td>518 (n=41)</td>
<td>54 (n=28)</td>
<td></td>
</tr>
<tr>
<td>Albumin-creatinine ratio</td>
<td>3.2 ± 14.0</td>
<td>5.5 ± 17.9</td>
<td>6.4 ± 19.5</td>
<td>9.7 ± 25.1</td>
<td>11.2 ± 22.3</td>
<td>A vs. E</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.19 ± 0.32</td>
<td>1.20 ± 0.32</td>
<td>1.35 ± 0.81</td>
<td>1.13 ± 0.31</td>
<td>1.26 ± 0.35</td>
<td>C vs. A/B/D</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/l)</td>
<td>8.8 ± 3.4</td>
<td>9.8 ± 3.1</td>
<td>9.9 ± 2.8</td>
<td>10.9 ± 3.6</td>
<td>10.7 ± 4.2</td>
<td>A vs. B/D/E</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.1 ± 5.3</td>
<td>28.8 ± 4.8</td>
<td>29.3 ± 4.6</td>
<td>30.7 ± 5.7</td>
<td>31.6 ± 5.6</td>
<td>A vs. B</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>142 ± 21</td>
<td>145 ± 22</td>
<td>149 ± 24</td>
<td>145 ± 26</td>
<td>148 ± 22</td>
<td>A vs. C</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.6 ± 1.8</td>
<td>8.1 ± 1.9</td>
<td>8.1 ± 1.6</td>
<td>9.5 ± 2.1</td>
<td>9.0 ± 1.8</td>
<td>A vs. B/D/E</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
<td>2 (1-5)</td>
<td>5 (1-9)</td>
<td>6 (3-12.5)</td>
<td>10 (4.5-14)</td>
<td>13 (7.5-24.5)</td>
<td>P < 0.001</td>
</tr>
</tbody>
</table>

1182

Information technology to control screening for diabetic retinopathy

A. Gudmundsdottir1, E. Stefansson1, E. Olafsdottir1, T. Aspelund1, O. Palsson1, O. Thorisdottir1, T. Bot1;
1Landspitali, Reykjavik, Iceland, 2University of Iceland, Reykjavik, Iceland, 3Risk Medical Solutions, Reykjavik, Iceland, 4Aarhus University, Denmark.

Background and aims: Annual screening for diabetic eye disease is effective, but may be too frequent and costly for low risk patients. The aim of the study is to use computer based individual risk assessment to make diabetic eye screening programs less expensive and safer.

Materials and methods: We used epidemiological data to create a mathematical algorithm, which calculates individual risk of sight threatening retinopathy. The individual’s risk level is then used to determine his/her screening interval. The algorithm was tested against the diabetes database in Árhus, Denmark (5210 patients, 20 years).

Results: In the diabetes database the algorithm (set at risk margin 4%) suggested an average screening interval of 27 months, with a range of 6 to 60 months. 95 patients progressed to sight threatening retinopathy within the recommended screening interval. At risk margin 2% the respective numbers are 17 months and 33 patients. In comparison, with the standard 12 month follow-up program 149 patients progressed to sight threatening retinopathy within the recommended screening interval. Our algorithm, at risk margin 4%, increases safety by 36% while reducing cost of diabetic screening programs by 55% as compared to yearly screening exams. At 2% risk margin increased safety was 79% and cost reduction 30%.

Conclusion: The use of information technology based on epidemiological data allows individual risk assessment, standardization of risk and an individualized determination of screening intervals. The reduction in screening visits decreases cost of diabetic screening programs by more than 50% compared to programs with yearly screening exams.

Supported by: Technology Development Fund

1183

Genomic and proteomic characterisation of non-proliferative retinopathy in a mouse model

A. Riba1,2, P. Villacampa1,2, V. Hauri1,2, C.J. Mann1,2, E. Bosch1,2;
1CIBER of Diabetes and Associated Metabolic Disorders, Barcelona, Spain, 2CIBER of Diabetes and Associated Metabolic Disorders, Barcelona, Spain.

Background and aims: Diabetic retinopathy is the leading cause of loss of visual acuity and blindness in adulthood. Transgenic mice overexpressing Insulin-like Growth Factor (IGF-I) in the retina have retinal alterations characteristic of non-proliferative retinopathy and, with age, mice develop alterations that mimic the proliferative stage of diabetic retinopathy such as neovascularization in the vitreous cavity and retinal neovascularisation. The aim of this study was to perform genomic and proteomic analyses in IGF-I transgenic retinas to identify key molecular markers in early developmental stages of the pathology.

Materials and methods: Retinas from 4 month-old transgenic and wild-type animals were collected, homogenised and total RNA and protein extracts were obtained. We compared gene expression profiles in transgenic and wild-type retinas with microarrays and confirmed the expression of selected genes by RT-PCR. Retinal protein extracts were separated by bidimensional electrophoresis and protein spots were identified using mass-spectrometry.

Results: Gene profile analysis detected 37 genes differentially expressed, 25 of which were up-regulated and 12 were down-regulated more than 1.5-fold in transgenic retinas compared with wild-type. Most of the up-regulated genes were classified in three categories: gliosis, retinal stress and angiogenesis. This overexpression was maintained or even increased in transgenic retinas to identify key molecular markers in early developmental stages of the pathology.

Conclusion: Identification of different developmental patterns of diabetic retinopathy is possible and might help understand the influence of certain risk factors on the course of diabetic retinopathy in individual diabetes patients.
human diabetic retinas, suggesting that the activation of glial and stress-response genes plays a key role in initiating the pathology. Overall, these findings also validate the IGF-1 transgenic mouse model as an excellent tool to find therapeutic targets for early stages of retinopathy and to assay new therapies.

1184
Metabolic fingerprints of proliferative diabetic retinopathy. An 1H NMR-based metabonomic approach using vitreous humour
R. Simó1, I. Barbá1, C. Hernández1, M.A. Alonso1, L. Masmiquel2, D. García-Dorado2, M. García-Ramírez2;
1Diabetes Research Unit and CIBERDEM, Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain;
2Laboratory of Experimental Cardiology and RECAVA, Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain;
*Ophthalmology Department, Hospital Son Llàtzer, Palma, *Endocrinology Department, Hospital Son Llàtzer, Palma, Spain.

Background and aims: To explore the metabolic profile of vitreous fluid from patients with proliferative diabetic retinopathy (PDR) using 1H NMR based metabonomic analysis.

Material and methods: Vitreous samples from 22 type 1 diabetic patients with PDR and 22 vitreous samples from non-diabetic patients with macular hole (MH) control group, closely matched in terms of age (46±1±2 vs. 45±3±1±5 years) were selected from our vitreous bank. The exclusion criteria were as follows: 1) previous vitreoretinal surgery; 2) photocoagulation in the preceding 6 months; 3) recent vitreous hemorrhage (less than 3 months before vitrectomy), macroscopic hemovitreous or intravitreous hemoglobin >5 mg/ml; 4) history of glaucoma; 5) renal failure (plasma creatinine ≥ 120 μmol/l); and 6) other chronic diseases apart from diabetes. 1H NMR spectra were acquired on a 400 MHz (9.4 T) magnet interfaced to a Bruker Avance 400 spectrometer (Bruker, Rheinstetten, Germany). Data analysis included a principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). In addition, 1H-H and 1H-13C HMOC (Heteronuclear Multiple Quantum Coherence) correlation spectra were acquired for the identification of metabolites. Furthermore, the main metabolites accounting for the differences in metabolic profile were also assessed by current biochemical methods.

Results: Lactate was the most abundant metabolite and it was higher in samples from PDR patients than non-diabetic patients (p=0.02). Glucose was significantly higher in samples from PDR patients than non-diabetic patients (p=0.03). After removing the lactate peak at 1.35 ppm, and using PLS-DA, a model was obtained which was able to correctly classify 19 out of 22 patients with PDR and 18 out of 22 controls, resulting in a sensitivity of 86% and a specificity of 81%. The main metabolites involved in this specific pattern recognized were galactitol and ascorbic acid (AA), and they were significantly lower in PDR patients.

Conclusion: 1H NMR based metabonomic analysis of vitreous fluid permits to obtain a metabolic signature of PDR. Apart from the higher abundance of lactate and glucose, significant deficits of galactitol and AA are the main metabolic fingerprints of vitreous fluid from PDR patients. Supported by: SAF2009-07408 (MCINN), CIBERDEM

1185
Identification of new pathogenic candidates for diabetic macular oedema using fluorescence-based difference gel electrophoresis (DIGE) analysis
M. Villarroel1, M. García-Ramírez1, C. Hernández1, N. Colome2, L. Corraliza1, L. García-Pascal1, J. Casado3, F. Canals2, R. Simó1;
1Diabetes Research Unit and CIBERDEM, Institut de Recerca Hospital Universitari Vall d’Hebron, 2Proteomics Laboratory, Vall d’Hebron Institute of Oncology, *Endocrinology Department, Hospital Mútua de Terrassa, Ophthalmology Department, Hospital Mútua de Terrassa, Barcelona, Spain.

Background and aims: Diabetic macular edema (DME) is the main cause of visual impairment in diabetic patients. The aim of the present study was to explore the differential proteomic pattern of the vitreous fluid from DME patients by means of fluorescence-based difference gel electrophoresis (DIGE).

Material and methods: Samples of vitreous from 8 type 2 diabetic patients (4 with DME without proliferative diabetic retinopathy [PDR] and 4 with PDR without DME), and 8 from non-diabetic subjects with idiopathic macular hole (control group) were selected from our vitreous bank for proteomic analysis. To further confirm the potential candidates identified by DIGE, eighteen additional samples (6 PDR, 6 DME and 6 MH, matched by age) were analyzed by ELISA. Exclusion criteria included photocoagulation during the preceding 6 months and recent vitreous hemorrhage or intravitreous hemoglobin higher than 5 mg/ml.

Results: Selecting an abundance ratio of 1.5-fold, p≤0.05, as the threshold for the study, 4 proteins were specifically associated with DME. Hemopexin was significantly higher in the vitreous fluid of patients with DME in comparison with both control subjects and PDR patients. By contrast, clusterin, transferrin and crystalline S were significantly decreased in the vitreous of patients with DME. The differential production of hemopexin, clusterin and transferrin was further confirmed by ELISA. In view of the current information, hemopexin and clusterin seems to be more directly related to the development of DME. Hemopexin is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome (SSNS). T-cell-associated cytokines like tumor necrosis factor-alpha (TNF-alpha) are able to enhance hemopexin production in mesangial cells in vitro and this effect is prevented by corticosteroids. It should be noted that proinflammatory cytokines have been involved in the development of DME and, therefore, hemopexin might be a mediator of the disruption of the blood-retinal barrier. Clusterin is associated with protection from apoptotic retinal cell death. Recently, it has been demonstrated that clusterin effectively inhibited vascular endothelial growth factor-induced hyperpermeability in human retinal microvascular endothelial cells (HMECs) and in retinal vessels from streptococci-induced diabetic mice. Since clusterin plays an essential role in restoring tight junctions and limiting the inflammatory response after injury (two capital features in the pathogenesis of DME), it seems reasonable to propose clusterin deficit as a contributor to DME development.

Conclusion: Proteomic analysis by DIGE was useful in identifying new potential candidates involved in the pathogenesis of DME. These results could open up new strategies in the treatment of DME.

Supported by: SAF2009-07408 (MCINN) and CIBERDEM

1186
Retinal blood flow in patients with type 1 diabetes mellitus with and without diabetic retinopathy
H.-T. Nguyen1, E. van Dunkenkerk1,2, M. Diamant3, P.J. Ringens4, B.C.P. Polak1, F.D. Verbraak1, A.C. Moll1;
1Department of Ophthalmology, Diabetes Centre / Department of Internal Medicine, 2Department of Medical Psychology, 3Department of Ophthalmology, Academic Medical Centre, Amsterdam, Netherlands.

Background and aims: Proliferative diabetic retinopathy (pDRP) is a common microvascular complication in patients with long-standing type 1 diabetes (T1DM) and is often associated with poor glycemic control. However, it is currently uncertain whether T1DM, and more in particular, pDRP causes hemodynamic changes in the retina. Therefore, we measured retinal hemodynamic function in T1DM patients with and without pDRP and controls.

Materials and methods: Thirty-three T1DM patients with DRP treated with panretinal photocoagulation (pDRP, 8 T1DM patients with background retinopathy (bDRP) and 32 T1DM patients without retinopathy or other microvascular complications (nDRP) were compared to 44 controls. Retinal blood flow was measured temporal and nasal of the optic disc, using Heidelberg scanning laser doppler flowmetry. Blood flow values of the right eye were used. To control for possible effects of extreme blood glucose values, the T1DM patients had to range between 4 - 15 mmol/l. Blood was drawn to determine lipid levels and HbA1C. 24-hour urine samples were collected to determine albumin:creatinine ratio. MANCOVA corrected for age and hypertension was used to determine group differences and regression analysis for determinants of changes.

Results: Overall, the T1DM group showed increased retinal blood flow as compared to controls for both the nasal and temporal locatios (both P < 0.05). Regression analysis showed proliferative DRP and albumin:creatinine ratio to be positively associated with retinal flow (both P < 0.05). In a separate analysis, the pDRP group showed significantly higher levels of flow as compared to nDRP patients and controls. Furthermore, a linear trend for retinal blood flow across groups was found (all P < 0.05).

Conclusion: In T1DM as compared to controls, retinal blood flow was increased, most pronounced in patients with pDRP. The significant linear trend might be an indication of increasing retinal blood flow with increasing retinopathy severity. The increased blood flow might be a compensatory mechanism for hypoxia, caused by the closure of retinal capillaries. Interestingly, the pDRP group shows higher blood flow even though this group is treated with panretinal photocoagulation. This is most likely caused by the remaining vasculopathy and reduced number of retinal vessels after photocoagulation.
PS 117 Treatment

1187

Positive effects of insulin in early pericyte loss
E. Berroca, E. Beltramo, S. Tarallo, M. Porta; Internal Medicine, University of Turin, Italy.

Background and aims: Hyperglycaemia is a major risk factor for the typical alterations of diabetic retinopathy, such as loss of retinal pericytes and thickening of the basement membrane. Although many believe “pericyte drop-out” to be the result of glucose damage, the exact mechanism(s) underlining their degeneration has not been conclusively elucidated. Recently, a protective role of insulin from microvascular cell apoptosis was suggested. The objective of this study was to verify the effects of insulin on survival, intracellular glucose and expression of glucose transporters (GLUT 1, 2, 3, 4) in HRP cultured in intermittent high glucose (HGint).

Materials and methods: Pericytes were kept alternatively in high (28 mM, HG) or normal (5.6 mM, NG) glucose at 48 intervals for 8 days, with or without insulin (Ins) 100 mM or 1μM. Control cells were cultured in stable NG or HG. GLUT transporter mRNA expression was determined by RT-PCR, intracellular glucose and apoptosis by ELISA, and cell proliferation by cell counts.

Results: HRP express GLUT 1, 3 e 4, but not GLUT2. GLUT1 expression was increased in intermittent HG (HGint) (+19.7% p<0.05 vs NG) but reduced when insulin was added to HGint (Ins100nM: -30.4%, Ins1μM: -31%, vs HGint). In contrast, GLUT4 was reduced in HGint (+47.8% p<0.05 vs NG) and increased in the presence of insulin 100nM (+34.6% p<0.004 vs HGint). GLUT3 mRNA was unchanged in all the above experimental conditions. In HGint, intracellular glucose levels were increased (+72.4% p<0.05 vs NG), and reduced by 1μM insulin (-68.3% p<0.05 vs HGint). Cell counts were reduced in HGint (-19.2% p<0.05 vs NG) and increased by insulin (Ins100nM: +49.5%, Ins1μM: +83.6%, p<0.05 vs HGint). Apoptosis increased with HGint (p<0.001 vs NG) and was completely normalized by insulin at both concentrations (p<0.001 vs HGint).

Conclusion: Insulin may influence the expression of glucose transporters in HRP and protect them from proliferation impairment and increased apoptosis induced by intermittent HG.

Supported by: Compagnia di SanPaolo, Torino, Italy and Regione Piemonte, Italy

1188

Fenofibric acid activates survival signalling and prevents activation of stress kinases in human retinal pigment epithelial cells
A.M. Valverde1,2, S. Miranda1,2, A. Gonzalez-Rodriguez2,3, M. Garcia-Ramirez1,2, C. Hernandez1,2, R. Simo1; 1Consejo Superior de Investigaciones Cientificas, Madrid, 2CIBERDEM, Madrid, 3Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, 4CIBERDEM, Barcelona, Spain.

Background and aims: Diabetic retinopathy (DR) remains the leading cause of blindness among working-age individuals in developed countries. In the FIELD study on DR, fenofibrate reduced the frequency of first laser treatment for macular edema by 31% and for proliferative retinopathy by 30%. However, little is known regarding the molecular mechanisms by which fenofibrate exerts its beneficial effects. The aim of the present study was to explore for the first time the effects of fenofibric acid (the active metabolite of fenofibrate) on stress and survival signalling pathways in human retinal pigment epithelium (RPE) cell line under culture conditions mimicking the diabetic milieu.

Materials and methods: Human RPE cells (ARPE-19) were cultured in 5 mM or 25 mM glucose for 21 days. Then, some dishes were treated with fenofibric acid (100 μM) for a further 3 days. At day 3, cells were placed into the hypoxic chamber (1 % oxygen) for 6 or 24 h. As a control, some dishes were maintained under normoxic conditions. At the end of this experimental protocol, cells were harvested and collected for RNA or protein extraction. Immunoprecipitations, Western blot analysis and quantitative real-time PCR were performed.

Results: ARPE-19 cells cultured under hyperglycaemic conditions induced the expression of the hypoxia-inducible factor HIF-1α and the phosphorylation of stress-activated kinases (JNK and p38 MAPK). Under hypoxic conditions, the phosphorylation of JNK as well as its substrate c-Jun and p38 MAPK was increased in parallel with the induction of HIF-1α. This effect was increased by the combination of hyperglycaemic and hypoxic conditions.

Cells pre-treated with fenofibric acid were protected against the activation of stress-inducible kinases by hyperglycaemia, hypoxia or both. Moreover, fenofibric acid increased the survival signalling, measured by the expression and phosphorylation of insulin-like growth factor (IGF-I) receptor, IRS-1, IRS-2, Akt/PKB and p44/p42 MAPK, at 6 h of hypoxia plus hyperglycaemia.

Conclusion: The diabetic milieu triggers the activation of stress-inducible kinases in cultured ARPE-19 cells. Under this condition, fenofibric acid elicited a dual protective effect through the down-regulation of stress signalling and the induction of survival pathways. These mechanisms could be involved in the reported beneficial effects of fenofibrate on DR.

Supported by: Grants SAF2009-08114, SAF2009-07408 (MCINN) and CIBERDEM (ISCIII), Spain

1189

Fenofibrate reduces fibronectin overexpression in human retinal pigment epithelial cells cultured under conditions mimicking the diabetic milieu
S. Roy1, K. Traudeau, C. Hernandez1, M. Villarroel2, R. Simo1, S. Roy3; 1Medicine and Ophthalmology, Boston University School of Medicine, Boston, USA, 2Diabetes and Metabolism Research Unit, Institut de Recerca Hospital Universitari Vall d’Hebron and CIBERDEM, Barcelona, Spain.

Background and aims: Diabetic retinopathy is the leading cause of blindness and vision loss in the working age population. The fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study showed significant benefit of reducing the risk of microvascular complications in diabetic patients including the need for laser treatment for diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) by 30%. However, it is unclear how fenofibrate prevents the progression of DME. Having shown that inhibition of fibronectin overexpression restores blood retinal barrier in diabetes, in this study, we examined the effect of fenofibrate on fibronectin expression in a human retinal pigment epithelial (RPE) cell line under culture conditions mimicking the diabetic milieu.

Materials and methods: ARPE-19, a spontaneously immortalized human RPE cell line, was cultured for 18 days in medium supplemented with 10% fetal bovine serum in high glucose condition (25 mM D-glucose). To study the effect of fenofibrate on fibronectin expression, 100 μM fenofibric acid was added in the last 3 days of the experiment (days 19, 20, 21) to cells grown in high glucose medium or high glucose medium plus IL1β (10 ng/ml for 2 days, days 20, 21) until the end of the experiment. The combination of high glucose + IL1β was used to provoke the disruption of the monolayer, thus mimicking the effects of the diabetic milieu. The cells were subjected to serum starvation (1% FBS) during the treatments. Fibronectin expression was evaluated by real time RT-PCR and Western blot analysis. Barrier function of RPE (permeability) was assessed by measuring apical-basolateral movements of FITC-dextran (40 kDa).

Results: Compared to cells grown in normal (5.5 mM glucose) medium, cells grown in high glucose medium or in high glucose medium plus IL1β showed significant upregulation of fibronectin mRNA expression, the latter group showing a more robust (3 fold) fibronectin upregulation. Similarly, fibronectin protein expression was also upregulated in both experimental groups compared to the control. Treatment of cells with fenofibric acid significantly reduced overexpression of fibronectin both at the mRNA and protein level in cells grown in high glucose medium or cells grown in high glucose medium plus IL1β. Tubulin and beta-actin protein levels used as controls were not altered by fenofibrate. Treatment with fenofibric acid decreased excess permeability induced by high glucose and IL1β.

Conclusion: These results indicate that downregulation of fibronectin overexpression by fenofibric acid may have a protective effect on the leakage of the outer blood-retinal barrier. This could be one of the mechanisms involved in the beneficial effects of fenofibrate against the development of excess permeability associated with diabetic retinopathy.

Supported by: NEI, NIH; UROP, BU
Background and aims: Retinal pericyte loss is one of the histopathological hallmarks of early diabetic retinopathy. Puerarin (4’-7-dihydroxy-8-beta-d-glucosylsophorolavone), an isoflavone-C-glucoside isolated from Pueraria lobata, has various pharmacological effects, including anti-hyperglycemic and anti-inflammatory activities.

Materials and methods: In the present study, we determined the efficacy and the possible mechanism of puerarin on advanced glycation end products (AGEs)-induced apoptosis of cultured bovine retinal pericytes and retinal microvascular cells in intravitreally AGEs-modified rat serum albumin-injected eyes of rats. We also examined the potential preventive effect of puerarin on diabetic retinopathy in streptozotocin (STZ)-induced diabetic rat. Puerarin (10 and 50 mg/kg body weight) was treated once a day orally for 16 weeks.

Results: Puerarin significantly inhibited pericyte apoptosis as well as reactive oxygen species (ROS) generation, NADPH oxidase activity and phosphor-ylation of Rac1 and p47phox induced by AGEs treatment. Further studies revealed that puerarin treatment remarkably suppressed the activation of nuclear factor-kappaB (NF-κB). In vivo retinal pericyte apoptosis of rats evoked by intravitreally injection of AGEs was evidently attenuated by the treatment of puerarin. In addition, the long-term administration of puerarin also prevented several histological changes, such as pericyte ghosts and acellular formation of capillaries in STZ-induced diabetic rats. In fluorescein angiography, the changes of retinal vasculature (non-perfusion of fluorescein, fluorescein leakage and vessel narrowing) were significantly reduced in STZ-induced diabetic rats treated with puerarin.

Conclusion: These results demonstrate that puerarin may exert inhibitory effects on AGEs-induced pericyte apoptosis via interfering with Rac1-dependent ROS pathways and blocking NF-κB activation, thus resulting in the amelioration of diabetic retinopathy in STZ-induced diabetic rats.

Figure 1. Effects of puerarin on diabetic retinopathy. The trypsin-digested retinal vessels from a normal rat (NOR), STZ-induced diabetic rat (DM) and diabetic rat treated with puerarin (10 and 50mg/kg, Puerarin-10 and -50) were stained with Periodic acid-Schiff and TUNEL. Acellular capillary (black arrow) and TUNEL-positive retinal pericytes (white arrow) were observed in STZ-induced diabetic rats. In fluorescein angiography, white thick arrow and white arrowhead indicate the vessel narrowing and fluorescein leakage, respectively. All data were expressed as mean±SE. *p<0.01 vs. normal rat, #p<0.01 vs. diabetic rat.

Supported by: Korea Institute of Oriental Medicine
1192

Efficacy and safety of ranibizumab monotherapy or adjunctive with laser versus laser therapy in patients with diabetic macular oedema: 12-month results of the RESTORE study

P. Massin, on behalf of the RESTORE study group;
Ophthalmology, Hôpital Lariboisière, Paris, France.

Background and aims: Diabetic macular edema (DME) is the leading cause of blindness in diabetic patients (pts). The pathogenesis of DME is characterized by elevated levels of vascular endothelial growth factor (VEGF) in the vitreous of patients. The RESTORE study was designed to demonstrate superiority of ranibizumab 0.5mg monotherapy or as adjunctive therapy to laser photocoagulation compared to laser alone, based on mean best-corrected visual acuity (BCVA) change from baseline over 12 months in patients with DME. We present the 12-month efficacy and safety results of the RESTORE study.

Materials and methods: Randomized, double-masked, multicenter, laser-Diabetes was induced in spontaneously hypertensive rats (SHR) by streptozotocin (55 mg/kg, intraperitoneally). The rats were randomly assigned to a control group (n=14), receiving normal saline (10 ml/kg, intraperitoneally), or a treatment group (n=14), receiving daily freshly prepared GT (13.3 g/L). After 12 weeks, the animals were euthanized and the retinas collected. The results were compared by Analysis of Variance (ANOVA) followed by Fisher's protected least significant difference test.

Results: As expected, body weight was lower and glycaemia was greater in diabetic than in control SHR's (p<0.0001). The treatment with GT compared with no treated groups (p=0.0006). The treatment with GT reestablished all of the above-mentioned parameters.

Conclusion: GT prevented the oxidative damage and reduced the activation of the constitutive NOS isoforms in retina from diabetic hypertensive rats. As a consequence, it was observed an ameliorating in DR indicators. These findings suggest that GT displays protective effects against retinal diabetic disease.

Supported by: State of São Paulo Research Foundation (FAPESP)

1194

Diabetic retinopathy before and after cataract surgery

S. Khutsurauli1, A. Memarne2, R. Kurashvili1, L. Tsitakridze2;
1High Medical School “Aieti”, 2High Medical School, 3Georgian Diabetes Center, Tbilisi, Georgia.

Background and aims: Increased retinopathy progression has been reported after cataract surgery in patients with diabetes mellitus. To assess the influence of cataract surgery on visual acuity and retinopathy progression, all diabetic patients who were subjected to cataract surgery during 2007-2009 have been followed up at the Ophthalmology Clinic.

Materials and methods: One eye of each of 70 patients was included in the study, 35 monocularly and 35 binocularly operated on. Sixteen of the 70 patients had proliferative diabetic retinopathy (PDR) at baseline. The degree of glycaemic control was assessed by measurements of HbA1c.

Results: Most patients obtained improved visual acuity; a postoperative visual acuity of 0.5 or better was achieved in 89% of diabetic surgical eyes. Progression of the retinopathy occurred in 30 out of the 70 eyes, and was associated with mean level of HbA1c (p=0.04), duration of diabetes (p=0.02), insulin treatment (p=0.001), and presence of retinopathy at baseline (p=0.01). Patients who progressed had a significantly higher incidence of macular oedema (p=0.006) than those who did not progress. No significant differences were found when operated and non-operated eyes were compared in the 35 patients with monocular surgery. Two patients in this group, however, ended up with macular oedema and worse vision in the operated eye than in the eye which was not operated on. Both patients had background retinopathy before surgery.

Conclusion: Patients in this study, also those with PDR, obtained good visual acuity, better than in most treated studies. Poor glycaemic control was a factor of importance for the progression of diabetic retinopathy after cataract surgery.
PS 118 Diabetic nephropathy: clinical observations

1195

Prescription of medications: Cumulative costs in outpatients with type 1 diabetes (The FinnDiane Study)

R.H. Lithovius1,2, V. Harjutsalo1, P.-H. Groop1,2, C. Forsblom1,2, FinnDiane Study Group;
1 Institute of genetics, Folkhalsan Research Center, 2 Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.

Background and aims: Diabetes' high prevalence, chronic nature, and its association with complications increase the use and the costs of medications. The identification of subgroups of patients may give a more precise view of the real costs. The aim of this study was to estimate the cumulative costs of medications according to the complication status and duration of diabetes.

Materials and methods: The Finnish Diabetic Nephropathy Study (FinnDiane) data (N=3,721) were linked to the Drug Prescription Register (mean age 39±11.8 yrs, 51% men, mean duration of diabetes 30.9±11.4 yrs), 11-year cumulative costs of medication for each patient were calculated between 1998 and 2008. Costs were inflated to year 2008 Euros using the Consumer Price Index. Patients were divided in 10-year groups according to the duration of diabetes in 1998. Data on macrovascular diseases (MVD) and progression to end stage renal disease (ESRD) were retrieved from follow-ups visits, medical files, or death certificates for all patients until 2008. One quarter of patients (n=883) had MVD (stroke, AML, CHD, coronary revascularization, amputation) and/or ESRD (dialysis, kidney transplantation). Based on the complica- tion status the patients were divided into 4 groups: no MVD or ESRD, MVD only, ESRD only, and both MVD and ESRD. Generalized linear mixed models were used to evaluate the 11-year cumulative costs. Costs were adjusted for age, sex, duration of diabetes, total insulin dose/day and body mass index, complication status and contributing years.

Results: The observed cumulative medication costs were 11 000 (no MVD or ESRD), 15 200 (MVD only), 80 900 (ESRD only), and 67 200 € (both MVD and ESRD) in the respective complication status groups. The average costs per year were 1 000, 1 600, 8 000, and 7 500 €, respectively. On average men's costs were 16% higher than women's. After adjustment, the cumulative costs of medications were 65% higher when MVD was present (increased from 11 600 to 19 000 € per patient). Notably, costs increased substantially when ESRD was present, being 7.5 times higher and, when antidiabetic medications (ATC A10) were excluded, even 22 times higher. The costs were approximately 10% lower when both MVD and ESRD were present probably due to the high mortality rate in this group (54% of the patient died during 1998-2008) and hospitalisation (inpatient medications costs were not included). The costs of antidiabetic medication remained rather stable, irrespective of complication status or duration of diabetes. However, when complications were present these costs were markedly lower in all 10-year duration groups. Without complications the costs of medications related to comorbidity (other than MVD and ESRD) were low in all duration groups (3 000 – 5 700 €). In contrast, with complications these costs increased remarkably.

Conclusion: The cumulative costs of medications increased substantially when ESRD was present. Since no considerable differences were observed in the costs of antidiabetic medications, the observed increase was entirely due to the increase in the costs of medications related to comorbidity.

1196

Cardiovascular risk factors differ between type 2 diabetic patients with and without renal impairment

M.K. Svensson1, J. Cederholm2, B. Eliasson1, B. Zethelius1, H. Agha1, H. Hallmér1, S. Gudbjörnsdottir2,1; 1 Department of Medicine, Sahlgrenska Academy at the University of Gothenburg, Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, 2 Department of Public Health and Caring Sciences/Geriatrics, University of Uppsala, Department of Nephrology, Kårnsjukhuset, Skövde, Sweden.

Background and aims: Diabetes, albuminuria and renal impairment are all major determinants of cardiovascular disease. The aim of this cross-sectional study was to assess potential differences in cardiovascular risk factors in type 2 diabetic patients with and without renal impairment. This was done in National Diabetes Register (NDR), a large nation-wide population-based diabetes register.

Materials and methods: 62 661 patients with T2D aged 18-80 years with complete datasets on albumin excretion, renal function (eGFR and albuminuria) and clinical characteristics reported to the Swedish National Diabetes Register in 2008 were included. Albuminuria was defined as urinary albumin excretion rate > 20 µg/min and renal impairment as estimated glomerular filtration rate ≤ 60 ml/min/1.73 m2 according to MDQR. Values are given as crude means and standard deviations (SDs). In addition, data was analysed with least square (LS) means and frequencies, standard errors (SE) for clinical characteristics, comparing patients with renal impairment and those with no renal impairment at GLM regression adjusting for all other variables. P-values for each variable are given after these adjustments.

Results: 15% of all patients had renal impairment (n=9 308) and 58% of these patients were non-albuminuric. Several differences in cardiovascular risk factors were found between patients with and without renal impairment. Patients with renal impairment were older (71±6.7 vs. 64±9.3), had a longer diabetes duration (11.1±7.7 vs. 7.8±6.4 yrs), were more often women (50 vs. 40%), had significantly lower total- and HDL-cholesterol (4.6±1.0 vs. 4.7±0.1 and 1.23±0.4 vs. 1.28±0.4 mmol/L, respectively), higher triglycerides (2.0±1.2 vs. 1.8±1.1 mmol/L), higher HbA1c (7.1±1.1 vs. 7.0±1.1 % (DCCT)), higher BMI (30.2±5.3 vs. 29.7±5.2 kg/m²) and higher systolic blood pressure (138±18 vs. 137±16 mmHg). In addition, fewer patients with renal impairment performed physical activity ≥ 3 times a week (44 vs. 52%) and a smaller proportion were smoking (10 vs. 15%) (All p-values <0.001) compared to patients without renal impairment. When patients with renal impairment were compared with those without renal impairment at GLM regression adjusting for all other variables similar relationships were found for all variables except for HbA1c and systolic blood pressure where adjusted values were lower in patients with renal impairment (7.0±0.1 vs. 7.1±0.1 % (DCCT) and 135±0.2 vs. 137±0.1 mmHg, respectively).

Conclusion: The majority of patients with type 2 diabetes and renal impairment were non-albuminuric. Several differences in cardiovascular risk factor pattern were found between type 2 diabetic patients with and without renal impairment. Interestingly, patients with renal impairment had better glycemic control and blood pressure when adjusting for all other variables. This finding should be further investigated. The cause-effect relationship and potential treatment effects could not be assessed in this cross-sectional study and thus prospective studies are warranted.

1197

Relation between echocardiography and coronary artery disease in asymptomatic type 2 diabetic patients with elevated urinary albumin excretion rate

H. Reinhard1, P.R. Hansen2, N. Winberg2, C.L. Petersen3, H.-H. Parving4, F. Rossing2, P.K. Jacobsen1,2; 1 Steno Diabetes Center, Gentofte; 2 Department of Cardiology, Gentofte University Hospital; 3 Department of Clinical Physiology and Nuclear Medicine, Frederiksberg University Hospital; 4 Department of Medical Endocrinology, University Hospital of Copenhagen, 5 Faculty of Health Science, Aarhus University; 6 The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark.

Background and aims: Coronary artery disease (CAD) is the major cause of morbidity and mortality in type 2 diabetic patients, especially in patients with elevated urinary albumin excretion rate. Left ventricular (LV) hypertrophy and systolic/diastolic abnormalities has been suggested as part of the diabetic cardiomyopathy, but relation to CAD is unclear. This study examined echocardiographic parameters, including LV mass index, LV systolic and diastolic function, and their relation to screen detected previously undiagnosed CAD in type 2 diabetic with urinary albumin excretion rate (UAER) >30mg/24h.

Materials and methods: The study included 200 type 2 diabetic patients without previous CAD. Patients with plasma NT-proBNP ≥452 ng/L and/or coronary calcium score >100 were arbitrarily stratified as high risk patients for CAD (n=133), and all other patients as low risk patients (n=67). High risk patients were examined by myocardial perfusion imaging (MPI; n=109), and/or CT-angiography (CTA; n=20), and/or coronary angiography (CAG; n=86). High risk systolic and/or diastolic dysfunctions were evaluated in all patients by conventional echocardiography and tissue Doppler imaging, Moderate-severe LV hypertrophy was defined by LV mass index >131 g/m² in men and >108 g/m² in women.

Results: Patients received multifactorial treatment, yielding mean (SD) HbA1c 7.9 (1.3)%, plasma total cholesterol 3.9 (0.9) mmol/L and arterial blood pressure 130 (17)/75 (11) mmHg. The LV mass index was 87 (21) g/m² and 8 (4%) patients had moderate-severe LV hypertrophy. LV systolic function was well preserved (LV ejection fraction 59 (3)% and impaired (<50%) in only 5% of patients. LV diastolic dysfunction (LVDD) was found in 109 patients (54.5%),
of whom 7 (3.5%) had impaired relaxation and 102 (51%) had a pseudonormal pattern of LV filling. In 70 high-risk patients, significant CAD was demonstrated by MPI, and/or CAG. In a multiple regression model, the adjusted odd ratio (OR, 95% CI) for having significant CAD was 2.91 (1.41-6.00) in patients with LV mass index above the median. Patients with right atrial volume above the median (>49.1 ml) had higher risk of CAD (unadjusted OR 2.20 (1.06-4.56) than other patients. LVDD was not associated with LV mass index or significant CAD but was associated with poor metabolic control (adjusted OR 1.46 (1.14-1.87) per 1% increase of HbA1c, \(p = 0.003 \)).

Conclusion: In our study of asymptomatic type 2 diabetic patients with elevated UAER but receiving multifactorial treatment, the prevalence of abnormal LV mass and function was low. However, even within normal range LV mass index was an independent predictor of significant CAD. LVDD was common but not associated with CAD.

Supported by: an EFSD Clinical Research Grant

1198

Changes in skin microcirculation and large arterial vessels in patients with diabetic nephropathy

M. Walus-Miarka¹, P. Miarka², M. Dubiel¹, M. Stompór¹, E. Chowaniec¹, M. Krzanowski¹, T. Grodzicki¹, B. Idzior-Walusz¹, W. Sowulowicz¹;

¹Department of Metabolic Diseases, ²Department of Nephrology, Jagiellonian University Medical College, Krakow, Poland.

Introduction: Diabetic vascular complications are divided into microangiopathies (pertaining to microvasculature) and macroangiopathies (pertaining to large vessels) that lead to the development of atherosclerosis that clinically manifests as ischemic heart disease or cerebral stroke. Increasing vessels stiffness and intima-media thickness (IMT) are indicators of macroangiopathy progression. Abnormalities of microcirculation are the basis of microvascular complications in diabetes and present in many organs. The doppler laser method allows for direct evaluation of skin microcirculation.

Aim: Study aim is to assess changes in the macro- and microcirculation in patients with diabetic nephropathy, as well as the influence of nephroprotective therapy on the evaluated parameters.

Materials and methods: 70 patients diagnosed with diabetes mellitus type II were studied: group 1- 48 patients with nephropathy, group 2- 22 patients with diabetes mellitus without vascular complications (comprising the control group), and group 3- 25 patients with nephropathy, examined 36 months post intensive nephroprotective therapy. Visual diagnostic procedures evaluating macro- and microvessels were performed in all patient groups using ugg (IMT) and laser doppler [skin mean basal flow (MFb), post occlusion flow (PF)].

Results: In the group with diabetic nephropathy, significantly higher values of PWV, as well as IMT were noted in cervical arteries when compared to the control group (\(p = 0.01 \)). In this group, significantly slower flow in microcirculation (MFb) at rest was noted (\(p = 0.01 \); as well as post occlusion (PF) (\(p = 0.05 \) when compared to the group without complications. After 36 months of nephroprotective therapy in the studied group - stabilization of renal function and no substantial differences were noted in aortic pulse wave velocity (AoPPWV) and also in IMT when compared to initial values at the beginning of the study. However, improvement was noted in skin microcirculation parameters when compared to initial values (\(p = 0.05 \); as well as a trend for improvement of maximal flow post occlusion (\(p = 0.09 \)) and at the temperature of 44°C (MF44) (\(p = 0.05 \)). Results are presented in the table.

Conclusion: Study results point to an existence of advanced atherosclerotic changes and decreased microcirculation flow in the group of patients with nephropathy than in the patient group without diagnosed nephropathy. After 36 months of observation and intensive nephroprotective therapy - stabilization of macrocirculation changes and regression of skin microcirculatory abnormalities were observed.

* **Parameter**
* **Study group**
* **Control group**
* **Study group after 36 month**

- AoPPWV m/s: 14.1±2.9, 11.8±2.1, 13.5±2.1
- IMT-L mm: 0.87±0.22, 0.81±0.22, 0.9±0.2
- IMT-P mm: 0.86±0.2, 0.77±0.21, 0.9±0.2
- MFb PU: 7.7±5.1, 12.17±1.7, 10.58±1.1
- PF PU: 27.42±22.2, 30.8±10.7, 33.7±24.9
- MF44 PU: 88.5±46.8, 94.6±47.3, 103.9±67.1

1199

Serum uric acid is related to cardiovascular events and correlates to NT-proBNP and albuminuria in patients with diabetes mellitus

M. Clodi¹, M. Resl¹, H. Kormoser¹, S. Neuhold¹, M. Hülsmann¹, A. Luger¹, R. Pacher²;

¹Department of Endocrinology and Metabolism, ²Department of Cardiology, Medical University of Vienna, Austria.

Background and aims: Hyperuricemia is a risk factor for cardiovascular events and renal insufficiency. It correlates to intima media thickness and microalbuminuria. The aim of this study was to evaluate the relationship between NT-proBNP as an established marker for subclinical cardiovascular disease and uric acid in patients with diabetes mellitus.

Materials and methods: In a prospective observational study we recruited 494 patients with diabetes mellitus. Serum uric acid, NT-proBNP, urinary albumin to creatinine ratio and HbA1c as well as other cardiovascular risk factors were evaluated at baseline. Patients were then followed for 12 months and hospitalisations due to cardiac events (ischemic heart disease, rhythm disturbances, heart failure) were recorded.

Results: The mean duration of diabetes was 13 ± 11 years. Patients were 60 ± 13 years old and mean HbA1c was 7.7 ± 3.2%. At baseline mean uric acid was 5.3 ± 1.6 mg/dl. NT-proBNP was 248 ± 412 pg/ml and mean albumin to creatinine ratio was 96 ± 361 mg/g; Uric acid significantly correlated to NT-proBNP (r = 0.258 p < 0.001) and urinary albumin to creatinine ratio (r = 0.198 p < 0.001). In a logistic regression model including the variables uric acid, NT-proBNP, systolic blood pressure and urinary albumin to creatinine ratio, NT-proBNP was the best predictor of cardiac events (Hazard Ratio 1.002, Wald 37.2 p < 0.001). In a second step uric acid provided additional prognostic information (Hazard Ratio 1.353 Wald 7.0 p < 0.05).

Conclusion: Serum uric acid is a predictor of cardiac events and correlates to NT-proBNP underscoring the importance of uric acid as a cardiovascular risk marker in patients with diabetes mellitus.

1200

Serum osteoprotegerin is related coronaary artery calcification, urinary albumin excretion, and diabetic retinopathy in Japanese patients with type 2 diabetes

Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Japan.

Background and aims: Osteoprotegerin (OPG), a secreted glycoprotein identified as an inhibitor of bone resorption, has recently been indicated to act as an important regulatory molecule in the vasculature. Recent studies also suggest that serum OPG levels are associated with endothelial dysfunction, coronary artery calcification (CAC), and micro- and macroangiopathy in Type 2 diabetes, and, in addition, diabetic microangiopathy is correlated with macroangiopathy. However, a mechanism(s) underlying a relationship between diabetic macro- and microangiopathy is unclear. Therefore, we have measured serum OPG levels and cross-sectionally investigated relationships among OPG levels, macroangiopathy, and diabetic microangiopathy (retinopathy and nephropathy) in 82 Japanese patients with type 2 diabetes mellitus.

Materials and methods: Blood samples were obtained in fasting state. Variables analyzed were age, sex, blood pressure, BMI, waist/hip ratio, daily blood glucose profile, M value and MAGE as markers of blood glucose fluctuation, HDL-C, Lp(a), uric acid (UA), homocysteine, adiponectin, leptin, and PAI-1, and urine C-peptide (CPR), surrogate markers of macroangiopathy [cardiot IMT and plaque, pulse wave velocity (PWV), ankle-brachial index (ABI), and CAC score (CACs)], and presence of microangiopathy [Diabetic vascular complications (DM) and/or significant CAD but was associated with poor metabolic control (ad-justed OR 1.46 (1.14-1.87) per 1% increase of HbA1c, \(p = 0.003 \)).

Conclusion: Serum osteoprotegerin is a predictor of cardiac events and correlates to NT-proBNP underscoring the importance of uric acid as a cardiovascular risk marker in patients with diabetes mellitus.
waist, systolic BP, PWV, IMT, BUN, UA, postprandial glucose excursion, and MAGE, whereas smokers with NGS had higher PWV than those without NGS (p = 0.024). Between the two groups of patients (DNP + NGS and DNP without NGS) no significant differences were found.

Conclusion: Thus, these results indicate serum OPG level was an independent predictor for PWV and UA, and vice versa in Japanese patients with type 2 diabetes. The results imply that there may be a bilateral interaction between coronary artery atherosclerosis, diabetic retinopathy and nephropathy in Type 2 diabetic patients.

1201

Chronic cigarette smoking could contribute to diabetic nodular glomerulosclerosis

R. Halmai, L.A. Szijártó, P. Degrell, Á. Mérei, P. Brasnyó, I. Wittmann; 2nd Department of Internal Medicine, University of Pécs, Medical Faculty, Hungary.

Background and aims: Nodular glomerulosclerosis, glomerulomegaly, thickening of glomerular basement membrane and arteriolar hyalinosis are present both in diabetic nephropathy with nodular glomerulosclerosis and in idiopathic nodular glomerulosclerosis, which suggests a common mechanism. Chronic smoking is known as a risk factor in the former and a potential causative factor in the latter disease. We hypothesized that there are more smokers among patients with diabetic nephropathy with glomerulosclerosis (DNP + NGS), than among patients with diabetic nephropathy without nodular glomerulosclerosis (DNP without NGS).

Materials and methods: A retrospective analysis of all native renal biopsy specimens (n=890) available in the Renal Pathology Laboratory at our clinic from 2002 to 2009 was performed. The characteristics of patients were collected from medical documents and the smoking habits were confirmed by a questionnaire.

Results: The data revealed significantly more smokers (10 out of 11) among patients with diabetic nephropathy and nodular glomerulosclerosis (DNP + NGS) compared to the random selected patients (4 out of 10) with diabetic nephropathy without histological signs of nodular glomerulosclerosis (p=0.024). Between the two groups of patients (DNP + NGS and DNP without NGS) no significant difference was found in the age (56±14.7 vs. 53±7.7 years, p=0.875), body mass index (30±5.6 vs. 31.9±4.1 kg/m², p=0.578), duration of diabetes mellitus (12.11±5.67 vs. 8.89±6.51 years, p=0.279), prevalence (89% both) and duration (10.43±8.92 vs. 12.25±13.55 years, p=0.573) of hypertension, serum total cholesterol (7.5±5.3 vs. 6.9±2.2 mmol/l, p=0.781), serum triglyceride (4.5±5.4 vs. 2.8±1.0 mmol/l, p=0.344), serum creatinine (225±136.2 vs. 187±79.4 µmol/l, p=0.479), estimated (MDRD) renal function (39.51±21.88 vs. 45.24±26.92 ml/min, p=0.685) and the renin-angiotensin system blocker treatment (100% vs. 75%, p=0.155) at the time of the kidney biopsy.

Conclusion: Our results show, that chronic cigarette smoking could be a potential cause of nodular glomerulosclerosis seen in diabetic nephropathy patients.

1202

Erythropoietin therapy affects HbA1c levels in patients with diabetes mellitus and chronic kidney disease not on haemodialysis

J.M. Ng1, M. Cooke2, S. Bhandari1, S.L. Atkin1, E.S. Kilpatrick2; 1Hull York Medical School, 2Hull Royal Infirmary, United Kingdom.

Background and aims: Glycated haemoglobin (HbA1c) is the most widely accepted and used method of assessing chronic glycaemia in patients with diabetes mellitus (DM). Treatment of anaemia in patients with chronic kidney disease (CKD) using erythropoietin stimulating agents (ESAs) has resulted in significant improvements to quality of life and levels of anaemia without the need for blood transfusions. Although some studies have shown a fall in HbA1c in patients treated with ESA therapy it is not known whether there is a change in mean blood glucose. This study has therefore sought to establish the effect of ESA therapy on both HbA1c and mean blood glucose amongst a group of patients with diabetes and known CKD.

Materials and methods: This was a prospective study of patients with DM and CKD stage III or IV selected for treatment with erythropoietin stimulating agents (ESA) from Jan 2009 to December 2009 inclusive. All patients were requested to perform 7 point glucose monitoring (7PGM) 3 times weekly for a month before commencement of ESA until the end of the study. Continuous glucose monitoring (CGMS) was performed measurements of interstitial glucose levels were made. Mean blood glucose (MBG) of each patient was calculated by averaging daily capillary glucose readings on days where patients had more than 3 readings a day or more and discerning the results of the CGMS.

Results: There were 15 patients (11M 4F; median age 70 (IQR 62.75)) with Type 2 DM. The mean follow up time of was (mean±SD) 17±3±3 weeks. There was a statistically significant change in haemoglobin and haemostic levels following ESA therapy and no significant change in the eGFR. The HbA1c levels fell without discernible alteration in glycaemic control. The mean HbA1c fell from 7.3 to 6.6% (p=0.001, paired t test). This change occurred in the presence of a MBG which remained unchanged (8.7 mmol/L vs 8.7 mmol/L, p=0.89).

Conclusion: Anaemia is a common phenomenon in patients with CKD. This study confirms the fall in HbA1c as a result of ESA treatment and proves that this is independent of a change in glycaemia. In these patients, therefore, alternative markers of glycaemia are needed to accurately assess their glucose control.

Table: Patients on ESA therapy

<table>
<thead>
<tr>
<th></th>
<th>Before ESA</th>
<th>After ESA</th>
<th>p (paired t test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>7.31 (6.42,8.54)</td>
<td>6.63 (6.03,7.36)</td>
<td>0.01</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>9.52 (8.19,9.86)</td>
<td>11.51 (11.15,11.85)</td>
<td><0.01</td>
</tr>
<tr>
<td>Mean blood glucose (mmol/L)</td>
<td>8.72 (7.31,10.12)</td>
<td>8.78 (7.47,9.99)</td>
<td>0.89</td>
</tr>
</tbody>
</table>

1203

Irbesartan treatment does not influence plasma levels of the advanced glycation end products CML and CEL in patients with type 2 diabetes and microalbuminuria. An IRMA2 substudy

L. Engelsen1,2, F. Persson1, I. Ferreira1, P. Rossing3, P. Hovind4,5, T. Teerlink3, C.D.A. Stehouwer3, H.-H. Parving3, C.G. Schalkwijk6; 1Internal Medicine, Maastricht University Medical Centre, Netherlands, 2Cardiovascular Research Institute Maastricht (CARIM), Netherlands, 3Steno Diabetes Center, Gentofte, Denmark, 4Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre, Netherlands, 5Clinical Physiology and Nuclear Medicine, Glostrup Hospital, Denmark, 6Clinical Chemistry, VU University Medical Center, Amsterdam, Netherlands, 7Medical Endocrinology, University Hospital of Copenhagen, Denmark, 8Faculty of Health Science, University of Aarhus, Denmark.

Background and aims: Guidelines state that patients with type 2 diabetes who develop microalbuminuria should be treated with angiotensin receptor blockers (ARBs). In vitro studies and animal experiments have shown inhibiting effects of ARBs on advanced glycation end products (AGEs), which are known to be involved in the development of cardiovascular complications in diabetes. However, human data to confirm such beneficial effects of ARBs are lacking.

Materials and methods: We analysed data from a multicentre, double-blind, randomised controlled trial in patients with type 2 diabetes and microalbuminuria, the primary goal of which was to examine the renoprotective effects of irbesartan (150 or 300 mg once daily). Secondary endpoints included, among others, measures of the plasma levels of the AGEs N′(carboxymethyl)lysine (CML) and N′(carboxyethyl)lysine (CEL) in the treatment arm receiving 300 mg irbesartan (n = 139) and in the placebo group (n = 125). Effects of treatment at 1- and 2-year follow-up were analysed by means of generalized estimating equations.

Results: Levels of CML and CEL (as well as all other patients' characteristics) did not differ between groups at baseline. No significant changes were observed in CML and CEL over time in either group and there was no effect of treatment at any time-point. Mean differences between groups over time were -0.96 nM/mM lysine (95%CI: -3.34; 1.51) for CML and -0.10 nM/mM lysine (95%CI: -0.76; 0.56) for CEL (Figure 1).

Conclusion: Long-term irbesartan treatment does not influence plasma levels of the AGEs CML and CEL in patients with type 2 diabetes and microalbuminuria.
albuminuria. These findings do not support the concept that ARBs inhibit the process of advanced glycation in humans.

PS 119 Nephropathy - role of renal function

1204

Direct correlation between initial glomerular filtration rate and long-term urinary albumin excretion in patients with type 1 diabetes

S.L. Hyer1, C. Soper2, A. Tran1, A. Rodin1;
1Diabetes, St Helier University Hospital, Carshalton, United Kingdom,
2Diabetes, Mayday University Hospital, Croydon, United Kingdom.

Background: Increased glomerular filtration pressure and glomerular filtration rate (GFR) occur early in type 1 diabetes although their significance in the pathogenesis of diabetic nephropathy remains controversial.

Aims: To examine the relationship between initial GFR and urinary albumin excretion after at least 10 years follow-up.

Methods: 77 male patients (aged 18-42) with type 1 diabetes of short duration (4-8 years) and normal urinary albumin excretion (albumin: creatinine ratio (ACR)< 2.5 mg/mmol on 3 occasions) were studied at baseline using inulin clearance (ICL) to assess GFR. At baseline, 13 patients had evidence of glomerular hyperfiltration (ICL>145 ml/min/1.73m2). Mean HbA1c: 8.3%. All patients were invited to attend a follow-up study after a median of 163 (151-168) months where they provided 3 consecutive early morning urine samples for ACR.

Results: Complete data collection was available for 12 patients; the others were either untraceable or declined to participate in the follow-up study. At follow-up, all were normotensive (mean BP: 127/75), with normal renal function; mean HbA1c 7.6%; eight patients were taking statins and 3 were on ACE-inhibitor drugs. One patient had developed overt microalbuminuria. A significant correlation was shown between baseline ICL and follow-up mean (log) ACR (r²=0.4; p=0.028). Baseline and follow-up HbA1c were closely correlated (r²=0.52; p=0.008). When HbA1c was entered as a covariate, the correlation between ICL and ACR just failed to achieve significance (p=0.055).

Conclusion: The results of this study support a link between GFR measured by inulin clearance and the development of nephropathy reflected by urinary albumin excretion. The relationship is, however, strongly influenced by the prevailing glycaemic control.

Supported by: UK CRN

1205

High-normal albuminuria and cardiovascular risk factors in patients with type 2 diabetes and no evidence of kidney impairment

O. Lamacchia1, M. Cignarelli1, L. Gesualdo2, S. Farìello3, A. Pacilli3, S.A. Santini4, S. De Cosmo3;
1Department of Medical Sciences, Unit of Endocrinology, 2Department of Molecular Medicine, Unit of Nephrology, 3Unit of Endocrinology, Scientific Institute “Casa Sollievo della Sofferenza”, SGR, 4Unit of Clinical Chemistry, Scientific Institute “Casa Sollievo della Sofferenza”, SGR, Foggia, Italy.

Background and aims: Albuminuria in the ‘high-normal’ range, is a predictor of cardiovascular morbidity and mortality. Which factors account for this increased risk and whether such a prediction is maintained also in the absence of a concomitant reduction of glomerular filtration rate (GFR) is unclear yet. The aim of the present study was to explore, in a large cohort of patients with type 2 diabetes (T2DM) with normoalbuminuria and no evidence of kidney impairment, the association between traditional cardiovascular risk factors and urinary albumin excretion.

Materials and methods: This was a cross-sectional study investigating 1148 (556M/592F) patients with T2DM, age 60.4 ± 10.1 yrs, duration of diabetes 10.5 ± 9.1 yrs, with normoalbuminuria [ACR 0.80 (0.01 - 3.49) mg/mmol] and estimated-GFR > 60 ml/min/1.73m2 (89.5 ± 20.8 ml/min/1.73m2). Normoalbuminuria was defined if the albumin/creatinine ratio (ACR) was <2.5 in men and < 3.5 mg/mmol in women. Estimated-GFR was derived by serum creatinine.

Results: ACR significantly and independently correlated with gender (p=0.016), age (b=0.112, p=0.001), HbA1c (b=0.137, p =<0.0001), BMI (b=0.106, p=0.036) and SBP (b=0.076, p=0.013). A gradual increase by tertiles of ACR in the proportion of patients with HbA1c ≥ 7% [269 (70.4%) vs 305 (79.6%) vs 313 (81.7%), p<0.0001], hypertension [282 (73.8%) vs 286 (74.6%) vs 322 (84.0%), p =0.020], Metabolic Syndrome [291 (76.1%) vs 298 (77.8%) vs 324 (84.5%), p=0.021] and retinopathy [83 (21.7%) vs 120 (31.3%) vs 128 (33.4%), p=0.001] was also observed.
Anemia is a common complication of chronic kidney disease (CKD) particularly in patients (pts) with diabetic kidney disease (DKD). In DKD anemia occurs early and is more severe than in non diabetic CKD. The aim of the study was to estimate the prevalence of anemia in diabetics mellitus (DM) pts with and without renal damage.

Materials and methods: A total 2015 DM type 1 (DM 1) (n=807; 40%) and type 2 (DM 2) (n=1208; 60%) pts were screened for presence of anemia. Their mean clinical data: age - 50.0±16.1 years, DM duration - 12.2±8.6 years, HbA1c - 8.7±2.0 %, hemoglobin (Hb) - 134.8±17.8 g/l. Mean glomerular filtration rate (GFR) was calculated using the MDRD formula - 107.6±39.8 ml/min/1.73 m². The 66.3% pts had arterial hypertension. Anemia was defined as Hb < 13.0 g/dl for men and Hb < 12.0 g/dl for women by the gender specific definition of WHO for pts without DKD and Hb < 13.5 g/dl for men and Hb < 12.0 g/dl for women by the definition of anemia in CKD by National Kidney Foundation/Kidney Disease Outcome Quality Initiative (NKF/KDOQI) for pts with DKD. Evaluation of the distribution of anemia was based on 5 stages of CKD categories according NKF/KDOQI. Patients with GFR<15 ml/min/1.73 m² (5 stage of CKD) and treated by erythropoiesis-stimulating agents were not included.

Results: The prevalence of anemia in DKD pts (n=971; 48.2%) was 32.4% compared to 13.8% in pts without renal damage (n=1044; 51.8%) (p<0.001). In DM 1 with DKD, the anemia prevalence was significantly higher than in DM 2 (41.9% and 23.7%, respectively (p<0.001)). Comparison of anemia prevalence based on pts gender did not find significant discrepancy in total group of DKD pts and pts DM 1 with DKD, except in pts DM 2 (male - 30.5% vs female - 21.9%, respictevely (p<0.05). The prevalence of anemia significantly increased in pts with evident renal injury and achieved to 47.1% in proteinuric pts (n=333), that greatly higher compared to pts with microalbuminuria - 25.7% (n=607) (p<0.001) and normoalbuminuria - 14.3% (n=1085) (p<0.001). Anemia prevalence significantly increased when the renal failure progresses (Table 1; *p<0.05; **p<0.01 between CKD 1 stage and other CKD stages). In DKD the Hb had strong association with GFR (R=0.41; p<0.001), DM duration (R=-0.27; p<0.001). Independent factors for Hb level by multiple logistic regression analysis were DM type 1 (beta = -0.21), gender - male (beta = -0.30), albuminuria (beta = -0.10), hypertension (beta = -0.08) and GFR (beta = 0.33) (p<0.001).

Conclusion: Anemia is a prevalent finding in pts with DKD, especially in DM 1. In half of DM 1 pts and in one of third type DM 2 pts anemia develops when the mild decrease of GFR (60-89 ml/min/1.73 m²) occurs. The prevalence of anemia in DKD is clearly related to the degree of albuminuria and decreasing rate of GFR.

Anemia prevalence in diabetic kidney disease patients according to CKD stages (%)

<table>
<thead>
<tr>
<th>Stage</th>
<th>CKD 1 stage</th>
<th>CKD 2 stage</th>
<th>CKD 3 stage</th>
<th>CKD 4 stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFR > 90 ml/min/1.73 m²</td>
<td>n=523</td>
<td>21.1</td>
<td>35.9**</td>
<td>46.7**</td>
</tr>
<tr>
<td>60-89 ml/min/1.73 m²</td>
<td>n=231</td>
<td>25.5</td>
<td>46.5**</td>
<td>66.1**</td>
</tr>
<tr>
<td>30-59 ml/min/1.73 m²</td>
<td>n=169</td>
<td>18.2</td>
<td>27*</td>
<td>36.4**</td>
</tr>
<tr>
<td>GFR < 30 ml/min/1.73 m²</td>
<td>n=48</td>
<td>18.2</td>
<td>27*</td>
<td>36.4**</td>
</tr>
</tbody>
</table>

1207

Renal perfusion is reduced in apparently uncomplicated type 1 diabetic patients

S.M. Marshall1, R. Taylor1, P.E. Thelwall2

1ICM, Newcastle University, 2Newcastle Magnetic Resonance Centre, Newcastle University, United Kingdom.

Background and aims: Magnetic resonance imaging (MRI) offers novel, non-invasive techniques for investigation of diabetic nephropathy. We assessed renal perfusion in control subjects and Type 1 diabetic patients with and without microalbuminuria.

Materials and methods: 8 Type 1 diabetic patients (T1C) (age 40.1±6.7 years, duration diabetes 24±8.2 years, eGFR 76.1±24.8 ml/min/1.73 m², albumin: creatinine ratio (ACR) persistently <2.5 mg/mmol, BP <130/80 mmHg on no treatment, nor or minimal background retinopathy), 8 Type 1 diabetic patients with microalbuminuria (T1M) (ACR persistently >5.0 mg/mmol), eGFR 78.1±9.9 ml/min/1.73 m², age 41.2±7.3 years, duration diabetes 27±5.6 years, all with significant retinopathy, and seven healthy control subjects (C), age 39.0±7.9 years, on no medication, participated. Six T1M participants were studied on (T1Mon) and after 4 weeks off (T1Moff) RAAS inhibition. Blood pressure (BP) control off RAAS inhibition was maintained by non-RAAS drugs.

Results: Renal arterial flow rate (RAF), corrected for body surface area and pulse rate, was higher in the control subjects (791±253 ml/min/1.73 m² body surface area) compared to T1C (622±128) and T1Moff (580±188; ANOVA p=0.05), with no significant difference between T1C and T1Moff. There was no change with water loading. RAF (587±118 vs 580±188 ml/min/1.73 m²) and eGFR (71.1±10.4 vs 78.1±9.9 ml/min/1.73 m²) were similar in T1Mon and T1Moff. RAF correlated with eGFR in all diabetic patients (r=0.59, p=0.031), and in T1C (r=0.84, p<0.01) but not in T1Mon (r=0.39, p=0.52) or T1Moff (r=0.08, p=0.99).

Conclusion: In longstanding apparently otherwise healthy Type 1 diabetic patients with clinically normal renal function, renal perfusion is decreased to a level similar to that in Type 1 microalbuminuric patients. Perfusion is unaltered by water diuresis or RAAS blockade. The different relationships between eGFR and RAF in the normo- and micro-albuminuric patients suggest different haemodynamic changes. The reasons for reduced perfusion are unclear.

Supported by: DRWF

1208

Determinants of decline in glomerular filtration rate in association with progression of albuminuria in type 2 diabetes

H. Yokoyama1, S. Kannmo1, S. Takahashi1, D. Yamada1, J. Honjo2, H. Sone3, M. Haneda2

1Internal Medicine, Jiyugaoka Clinic, Obihiro, 2Department of Medicine, Ashikawa Medical College, 3Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine, Japan.

Background and aims: Some normalbuminuric type 2 diabetic subjects have a reduced glomerular filtration rate (GFR), but common and independent risks for GFR decline and albuminuria progression remain unclear.

Materials and methods: An observational 4-year cohort study was performed on 1,002 subjects with preserved GFR (699 normalbuminuric), and the predictive value of baseline variables on the GFR slope was investigated. GFR decliner and albuminuria progressor were defined as a GFR slope <-4.0 ml/min/1.73 m²/year.

Results: Multiple linear regression analysis indicated that GFR slope was predicted by baseline variables of urinary albumin, GFR, HbA1c, systolic blood pressure, plasma total protein, and retinopathy. The effects of these risks appeared variable according to whether individuals had high or low urinary albumin and GFR levels. Subjects cross-classified according to GFR decliner/albuminuria progressor consisted of 51%(-/-), 13%(+/-), 28%(-/+), and 8%(+/+). Common risks for GFR decline and albuminuria were retinopathy, neuropathy, HbA1c, and urinary albumin. Independent significant risks for GFR decline were baseline GFR, systolic blood pressure, total protein, and hypertension. Proportion of progression to albuminuria was similar between GFR decliners and non-decliners.
Conclusion: In type 2 diabetes, the GFR slope was predicted and affected at various stages by multiple factors. Isolated GFR decline and albuminuria progression are not rare, and common and independent risk factors predictive for GFR decline and albuminuria progression exist.

1209
The chronic kidney disease collaboration equation: not of additional value compared to the modification of diet in renal disease equation in diabetic patients
I. Drion1, H. Joosten1-2, L.J. Ubink-Veltmaat1, L.G. Lieverse3, K.J.J. Van Hateren1, K.H. Groenier1, N. Kleefstra3, H.J.G. Bilo1-2;
1Diabetes Center, Zwolle; 2Internal Medicine, University Medical Center Groningen, 3General practice ‘t Veen, Hattem, ‘Internal medicine, Maxima Medical Center, Eindhoven, ‘General practice, University Medical Center Groningen, ‘Langerhans Medical Research Group, Zwolle, ‘University Medical Center Groningen, Netherlands.

Background and aims: Equations to estimate the glomerular filtration rate (GFR) are routinely used to assess kidney function. Due to the systematic underestimation and limited precision of the current prediction equations, especially when GFR is ≥60ml/min/1.73m², a new prediction equation was developed with the aim to reduce these problems: the chronic kidney disease collaboration equation (CKD-EPI). We aimed to compare the outcomes of the CKD-EPI and MDRD-4 equation with the creatinine clearance (CrCl) in a cohort of diabetic adults.

Materials and methods: In this retrospective cohort study of 844 diabetic outpatients, the MDRD-4 and the CKD-EPI were calculated and compared by means of correlation to the 24 hour CrCl, the golden standard of daily practice. MDRD-4 was correlated to CKD-EPI to assess in which clearance ranges differences between the two prediction equations were present. Bias and precision were evaluated to determine the degree of reliability and consistency of both equations. Furthermore, the percentage of subjects having an under- or overestimated kidney function was calculated.

Results: Both the MDRD-4 and the CKD-EPI equation were similarly, though only moderately correlated with CrCl (r=0.69 and r=0.73, respectively). The MDRD-4 showed a high correlation with the CKD-EPI (r=0.98) for patients with an eGFR ≥90ml/min. The correlation decreased to r=0.46 for patients with an eGFR >90ml/min (figure 1). Mean overall bias (SD) of the MDRD-4 and CKD-EPI compared to CrCl were -32.8 (±32.3) ml/min/1.73m² and -33.3 (±32.6) ml/min/1.73m², respectively (p=0.2). Mean bias (SD) between CrCl and MDRD-4 / CKD-EPI in the clearance category >60ml/min were -37.1 (±31.5) ml/min (1.73m²) / -37.8 (±31.5) ml/min (1.73m²) respectively (p=0.14). In the different KDOQI stages, the differences between MDRD-4 and CKD-EPI were small and non-significant. When using either CKD-EPI or MDRD-4 for identifying patients with CKD, only approximately 50% of the patients were correctly classified, even when a dispersion of 30% compared to CrCl was accepted.

Conclusion: The CKD-EPI appeared to have no additional value compared to the MDRD-4 when used in a cohort of diabetic patients with a relative preserved renal function. Our data do not support adjustment of current guidelines towards the use of this new prediction equation.

1210
Estimation of glomerular filtration rate in patients with diabetes mellitus type 2: comparison of CKD EPI equation and cystatin C-based formula
T. Didangelos1, A. Ntemka1, E. Iliaidis1, A. Makelou1, C. Margaritidis1, E. Papanastasiou1, K. Makedou1, A. Gotzamanis-Psarakou1, D. Grekas1;
1Diabetes Division, 1st Propedeutic Department of Internal Medicine, Laboratory of Lipids, 2nd Paediatric Department, Laboratory of Nuclear Medicine, ‘AHEPA’ Hospital of Thessaloniki, Aristotle University of Thessaloniki, Greece.

Background and aims: The estimation of Glomerular Filtration Rate (GFR) by the Modification of Diet in Renal Disease (MDRD) equation, which is based on serum creatinine (Scr), has recognised limitations. A new equation was proposed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) to improve estimation of GFR. The CKD-EPI equation showed improved performance compared to the MDRD equation. Moreover, serum cystatin C (CysC) has been proposed as a potential replacement of Scr in GFR estimation. We compared the CKD-EPI equation to a Scyst based formula for GFR estimation in patients with type 2 diabetes.

Materials and methods: We studied 368 Caucasians participants with type 2 diabetes, 168 (45.7%) men, with [mean (SD)]; age 65 (10) years, BMI 30.7 (5.1) Kg/m², HbA1c 7.0 (1.5)%. GFR was measured using plasma clearance of 51Cr-EDTA (mGFR). In parallel, GFR was estimated twice, using the CKD-EPI equation [If female and Scr ≤0.7 mg/dl, CKD-EPIGFR = 144 × (Scr/0.7)1.209 × (0.993)−0.567 - if female and Scr >0.7 mg/dl, CKD-EPIGFR = 144 × (Scr/0.7)1.209 × (0.993)−0.567 - if male and Scr ≤0.9 mg/dl, CKD-EPIGFR = 141 × (Scr/0.9)1.209 × (0.993)−0.567 - if male and Scr >0.9 mg/dl, CKD-EPIGFR= 141 × (Scr/0.9)1.209 × (0.993)−0.567] and the Stevens equation which is based on Scyst[cystCGFR: 127.7 / (Scyst 1.17 × (age −0.21) × (0.91 if female)]. Estimated GFR results were compared with isotope GFR by means of two-tailed, paired t tests and by Levene’s test for equality of variance. Bland-Altman plots were obtained.

Results: MGFR was 72.0 (22.3) ml/min per 1.73 m², CKD-EPIGFR was 83.0 (20.5) ml/min per 1.73 m² (p=0.05 for difference from mGFR) and cystCGFR was 72.5 (27.9) ml/min per 1.73 m² (NS difference between mGFR and cystCGFR). Bland-Altman plots showed that 95.1% and 93.9% of estimations for CKD-EPIGFR and cystCGFR respectively, lie within the ± 1.96SD of the mean difference. Bias (mean difference between estimated GFR and mGFR) was 10.5 and 0.45 ml/min per 1.73 m² for CKD-EPIGFR and cystCGFR respectively (p=0.05 for difference in bias between CKD-EPIGFR and cystCGFR). Precision (SD of the bias) was 13.8 and 21.96 ml/min per 1.73 m² for CKD-EPIGFR and cystCGFR respectively (p=0.05 for difference in precision between CKD-EPIGFR and cystCGFR). Accuracy 10% (proportion of estimated GFR results within 10% of mGFR) was 34.8% and 33.2% for CKD-EPIGFR and cystCGFR respectively (NS difference in accuracy 10% between CKD-EPIGFR and cystCGFR). Accuracy 30% (proportion of estimated GFR results within 30% of mGFR) was 72.4% and 72.6% for CKD-EPIGFR and cystCGFR respectively (NS difference in accuracy 30% between CKD-EPIGFR and cystCGFR).

Conclusion: Stevens cystatin C based formula was less biased than and CKD-EPI equation. On the other hand CKD-EPI equation was more precise and presented higher agreement with measured GFR. These results support the superiority of CKD-EPI equation over Stevens cystatin C based formula for estimation of GFR in patients with type 2 diabetes.
1212

Microalbuminuria but not reduced GFR is a marker of subclinical atherosclerosis and arterial stiffness in type 2 diabetes

P Sjöblom,1 J. Engvall,1 T. Länne,1 F. Nyström,2 C. Östgren;1
1Department of Medical and Health Sciences, Linköping University,
2Department of Clinical Physiology, Linköping University Hospital, Sweden.

Background and aims: Microalbuminuria is a strong predictor for cardiovascular disease in patients with type 2 diabetes. However, the role of reduced renal function, expressed as an estimated Glomerular Filtration Rate (GFR) as a risk assessment tool for macrovascular complications is unclear. The aim of this study was to explore the associations between GFR vs. microalbuminuria and subclinical organ damage in patients with type 2 diabetes.

Materials and methods: Baseline data were analysed from 706 patients who participated in the Cardiovascular Risk factors in Patients with Diabetes - a Prospective study in Primary care (CARDIPP). The Patients, aged 55-65 years, were consecutively recruited 2005-2008 from 22 primary health care centres in Sweden. Urine and blood samples for laboratory analyses were taken in the morning following 10 hours fasting. Presence of microalbuminuria (alb) was defined as u-albumin/creatinine ratio (ACR) >3.0 mg/mmol. GFR was calculated by use of the MDRD formula and reduced renal function defined as < 60 ml/min/1.73m². Office blood pressure (BP) was measured by dedicated nurses and 24h-ambulatory BP was also performed. The carotid intima-media thickness (IMT) was determined by ultrasonography. Arterial stiffness was evaluated by pulse wave velocity (PWV) measured as transit time between the carotid and femoral arterial pulse waves. Left ventricular mass was measured echocardiographically, corrected for body surface area expressed as left ventricular mass index (LVMI).

Results: Patients with alb had increased IMT (0.78 vs. 0.73 mm), PWV (11.5 vs 10.1 m/s) and LVMI (134.4 vs 118.3 g/m²) compared to subjects with no alb. The table shows the results further divided and analysed for significance. There were no statistically significant differences in IMT, PWV or LVMI between patients with reduced renal function according to GFR compared to subjects with GFR > 60 ml/min/1.73m².

Conclusion: We conclude that microalbuminuria defined as ACR, but not impaired renal function according to GFR, is a marker for subclinical organ damage in terms of atherosclerosis, arterial stiffness and increased left ventricular mass in patients with type 2 diabetes.

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>**eGFR (ml/min) (±17)</td>
</tr>
<tr>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Diabetes duration (years)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
</tr>
<tr>
<td>PWV (m/s)</td>
</tr>
<tr>
<td>LVMI (g/m²)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
</tbody>
</table>

1213

Albuminuria is associated with angiographically determined coronary atherosclerosis both in patients with type 2 diabetes and in non-diabetic individuals

C. Boethen1,2, P. Rein1,2, C.H. Saely1,2, A. Vombank1,2, S. Beer1,2, J. Jankovic1,2, J. Breuss1,2, L. Rischi1, H. Drexel1,2
1Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria; 2Private University of the Principality of Liechtenstein, Trien, Liechtenstein.

Background and aims: Albuminuria is associated with atherothrombotic events and all-cause mortality in patients with diabetes as well as in non-diabetic individuals. In the present study we aimed at investigating whether albuminuria is associated with directly visualised atherosclerosis in the same manner.

Supported by: FORSS
Materials and methods: We enrolled 909 consecutive Caucasian patients, including 226 patients with type 2 diabetes (T2DM) and 683 non-diabetic subjects who were referred to coronary angiography for the evaluation of stable coronary artery disease (CAD). Elevated urinary albumin excretion (UA) was defined as an urinary albumin to creatinine ratio (ACR) ≥30 μg/mg; significant CAD was diagnosed in the presence of coronary artery lumen narrowing ≥50%.

Results: The prevalence of significant CAD was significantly higher in patients with an elevated UA than in those with normal UA (65.9 vs. 51.4%; p < 0.001). Logistic regression analysis adjusting for age, gender, smoking, hypertension, LDL cholesterol, HDL cholesterol, CRP BMI, use of ace/angiotensin II antagonists, aspirin and statins, as well as for the gomerular filtration rate (eGFR) and for T2DM confirmed elevated UA as a significant predictor of angiographically determined CAD (OR=1.68 [1.15-2.44]; p=0.007). Similarly, the ACR was significantly associated with significant CAD when treated as a continuous variable (standardized adjusted OR=1.45 [1.13-1.86]; p=0.004). The prevalence of elevated UA was significantly higher in patients with dialysis (75.0 vs. 60.9%); p = 0.028) and in those without diabetes (59.3 vs. 49.1%; p = 0.040). Concordantly, the ACR proved significantly predictive of significant CAD both in patients with T2DM (1.66 [1.01 - 2.74]; p = 0.0495) and in patients without diabetes (1.42 [1.05 - 1.92]; p = 0.0233) in a fully adjusted model.

Conclusion: In conclusion, an elevated UA is strongly associated with angiographically determined coronary atherosclerosis both in patients with T2DM and in non-diabetic patients, independent of conventional cardiovascular risk factors and of the eGFR.

1214
Seasonal variations of urinary albumin/creatinine ratio in subjects with type 2 diabetes and nephropathy
Y. Wada, Y. Hamamoto, Y. Iwasaki,1 J. Fukushima, S. Honjo, Y. Kawasaki, M. Mori, H. Ikeda, K. Nomura, H. Koshiyama;1
1Center for Diabetes and Endocrinology, The Tazuke Kofukai Foundation Medical Research Institute Kitano Hospital, Osaka, 1Department of Laboratory Medicine, The Tazuke Kofukai Foundation Medical Research Institute Kitano Hospital, Osaka, 1Ikeda Hospital, Amagasaki, 1Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Japan.

Background and aims: It has been recognized that blood pressure shows significant seasonal changes. There have been some reports about seasonal change of glycemic control and onset of diabetes. But it remains unknown whether diabetic nephropathy may show a seasonal variation in relation to blood pressure. In the present study, we investigated whether there may be a seasonal change in albumin/creatinine ratio (ACR).

Materials and methods: A total of 430 subjects (male : n=275, female : n=155) with type 2 diabetes and early nephropathy were included, whose mean age was 64.8±0.8 SE years. Those who had advanced stage of nephropathy with treated as a continuous variable.

Results: Significant seasonal variations in ACR, systolic blood pressure and A1C. The mean ACR was higher in winter (December - February : 72.8±4.4mg/gCr) than in summer (June - August : 54.6±3.4mg/gCr) (p<0.001). The mean systolic blood pressure was higher in winter (136±5.68mmHg) than in summer (132±6.08mmHg) (p<0.001). The ACR variations showed similar curve to that of the seasonal variation of systolic blood pressure. In contrast, A1C did not show similar curve to that of ACR or systolic blood pressure. The mean A1C was higher in spring (March - May : 7.39±0.03 %) than that in fall (September - November : 7.16±0.03 %) (p<0.001). No significant seasonal variation was observed in estimated glomerular filtration rate and diastolic blood pressure.

Conclusion: Our results suggest that there is a hitherto unknown seasonal variation in ACR, and that it may be necessary to consider the seasonal change of ACR especially when we perform intervention study of the nephropathy.

1215
Factors associating with renal interstitial fibrosis in type 2 diabetics with renal artery stenosis and in type 1 and 2 diabetics with diabetic nephropathy

Aims: to estimate renal interstitial fibrosis and endothelial dysfunctions factors in type 2 diabetics patients (T2DP) with renal artery stenosis or diabetic nephropathy (DN) and in type 1 diabetes with DN.

Methods: We studied 33 T2DP without renal pathology (I group), 33 T2DP with renal artery stenosis (II group), 24 T2DP with DN (III group) and 30 diabetic type 1 patients with DN (IV group). Patients with T2DP were invited to undergo multispiral computer tomography or selective angiography of renal arteries to define the presence of renal artery stenosis (renal artery stenosis more than 60%). We have measured following parameters in blood: transforming growth factor (TGF · β 1), monocyte chemotactic peptide-1 (MCP-1), regulated on activation normal T-cell expressed and secreted (RANTES), matrix metalloproteinase 9 (MMP · 9),vascular endothelial growth factor (VEGF), vascular cell adhesion molecule (VCAM-1), inhibitor activator of plasminogen (IAP-1), asymmetric dimethylarginine (ADMA), factor von Willebrand (FW), homocystein (HCYST) were measured. The control group included normotensive persons of more than 45 years without diabetes (n=20). Glomerular filtration rate (GFR) was calculated by the MDRD equation.

Results: Studied parameters were higher in groups with renal pathology than in group I (Table 1).

1216
Urinary proteomics for early diagnosis in diabetic nephropathy
P. Rossing1, P. Züribg1, S. Panagiotopoulos2, S.E. Nielsen, 3P. Hovind1, R.J. Malsacc1, H. Mischak2, G. Jerums1, H.-H. Parving1, 1Steno Diabetes Center, Gentofte, Denmark, 2Mosaiques-diagnostics GmbH, Hannover, Germany, 1Austin Health, Melbourne, Australia, 2Endocrinology, Rigshospitalet, University of Copenhagen, Denmark, 3Faculty of Health Sciences, University of Aarhus, Denmark.

Background and aims: Diabetic nephropathy may be detectable even at early stages in the urinary proteome. In this study we present recent data indicating that urinary proteome analysis is a valuable tool for early and sensitive
1217
Adiponectin is differently associated with nephropathy in type 1 and type 2 diabetes
S. Ljubicic, B. Novak, A. Jabec, A. Pilja, T. Kerum, M. Vucic Lovrenic1, 2Vuk Vrhovac University Clinic, 1University of Zagreb, Croatia.

Background and aims: The aim of this study was to compare the relation between adiponectin and nephropathy in type 1 and type 2 diabetes.

Materials and methods: ApN, C-reactive protein (CRP), fibrinogen (FIB), homocysteine (HCY), Lipoprotein(a) (Lp(a)), creatinine clearance (CrCl), creatinine, fasting (FPG), and postprandial plasma glucose (ppPG), glycated haemoglobin (A1c), blood pressure (BP), liver function, lipids, ferritin, uric acid (UA), creatine phosphokinase and leucocyte count (WBC) were determined in 164 patients with type 1 diabetes (DM1) and type 2 diabetes (DM2). The patients were assigned to subgroups based on their 24-h albumin excretion rate (AER) (<30 NA), 30-300 MA and CrCl (normal >83.3 mL/sec for women and >117.1 mL/sec for men (CrCl1)). Differences between types of DM were tested using Student t test or Mann Whitney test if assumption of homogeneity of variance was not met. Differences between ApN according to AER and CrCl were tested using factorial analysis of variance.

Results: Statistically significant differences were found among ApN values according to AER (F=8.45, df=2, p<0.001) in DM1 (NA=12.37±6.62, MI=21.38±7.98 and MA=31.85±18.05) and DM2 (NA=9.05±5.63, MI=7.46±5.48 and MA=5.26±3.3). An statistically significant difference in ApN between the types of DM (F=73.402, df=1, p<0.001) and an interaction between the protein expression levels of PEDF or MMP-2 and TGF-β (Bonferroni) was observed. All the subgroups of DM1 had significantly higher ApN than DM2. Significant within-group differences for ApN were found in DM1 between the NA and MI, and the NA and MA subgroups using Tukey post hoc test, while between-group differences in ApN were found in the MI and MA subgroups of DM1 and DM2. In a model for ApN as a dependent variable and the type of DM, CrCl and interaction DM type and CrCl as factors, a statistically significant difference was found for all analysed factors. ApN was found to be higher in CrCl2 than in CrCl1 (F=12.7, df=1, p<0.001) in both types of diabetes (DM1: CrCl1=13.94±7.93 vs. CrCl2=23±12.8 and DM2: CrCl1=7.63±4.76 vs. CrCl2=9.86±6.25). Post hoc test showed that ApN was significantly increased in both CrCl subgroups of DM1 as compared to DM2. In a model for Lp(a) as a dependent variable and the type of DM (F=0.82; df=1; p=0.37), AER (F=0.21; df=2; p=0.81) and interaction between type of DM and AER (F=0.06; df=2; p=0.93) as factors, there were no statistically significant differences. After stepwise regression in DM1 for ApN, the best model (R²=0.902) included CrCl, BMI, LDL, WBC, CRP and age, whereas in DM2 the best model (R²=0.2882) included FPG, LDL, and UA. In DM1 ApN correlated significantly (p<0.05) with HCY (r=0.57), CrCl (r=0.61), AER (r=0.61) and creatinine (r=0.40), and in DM2 with HCY (r=0.25), CrCl (r=0.22), creatinine (r=0.20) and diastolic BP (r=0.19). ApN and HDL were significantly increased (p<0.001) in DM1, whereas CRP (p=0.04), FIB (p<0.001), HCY (p<0.001) and gamma-glutamyl-transpeptidase (p<0.05) were significantly increased in DM2.

Conclusion: ApN was increased in both DM1 and DM2 in the subgroups with decreased CrCl, but with a different albuminuria-related behaviour, showing an increase with a progression of albuminuria in DM1, and a decrease with a progression of albuminuria in DM2. Other inflammatory markers were decreased in DM1. The interaction between renal insufficiency and albumin loss appears to significantly affect ApN level, which is consistent with different courses of nephropathy in DM1 and DM2.

1218
The expression of pigment epithelium-derived factors, matrix metalloproteinase-2 and transforming growth factor-β, and the effects of rosiglitazone in diabetic rat kidney
Endocrinology, Hebei Medical University, Shijiazhuang, China.

Background and aims: To investigate the expressions of pigment epithelium-derived factors, matrix metalloproteinase-2 and transforming growth factor-β, and the effects of rosiglitazone on such changes.

Materials and methods: 45 male SD rats were randomly divided into normal group (NC), diabetic control group (DC) and rosiglitazone treated group (DR), with 15 respectively. After 12 weeks, kidney mass/body mass, 24-h urinary albumin excretion (UAER), serum neopterin (Scr), blood urea nitrogen (BUN) of every group were measured and the expression of PEDF, MMP-2 and TGF-β in the kidney were determined by immunohistochemistry and RT-PCR methods.

Results: 1)KI, BUN, Scr, UAE, TG in DC group were higher than NC group, but decreased in DR group compared with DC group, the differences were statistically significant. 2) Immunohistochemistry showed that renal PEDF, MMP-2 expression in DC and DR group were lower than NC group (P<0.01), while TGF-β1 expression in DR group decreased compared with DC group (P<0.01). 3)RT-PCR analysis showed that rosiglitazone can enhance the expression of PEDF mRNA in the kidney, the differences were statistically significant. 4)Correlation analysis showed that there was a negative correlation between the protein expression levels of PEDF or MMP-2 and TGF-β1 in the kidney of diabetic rats (r=-0.906,P=0.016, r=0.916,P=0.05). The protein expression levels of PEDF and MMP-2 showed a positive correlation in the kidney of these rats (r=0.827,P<0.001).

Conclusion: Renoprotection of rosiglitazone on diabetic rats may be mediated through increasing the expression of PEDF and MMP-2 and decreasing the expression of TGF-β1.

1219
Abnormalities of the OPG/RANKL axis in progressive kidney failure: the variable influence of diabetes
D.K. Singh1, P. Winocour2, B. Summerrhayes3, A. Viljoen3, G. Sivakumar2, K. Farrington2
1Diabetes and Renal, Lister Hospital, Stevenage, 2Diabetes and Endocrinology, QEI Hospital, Welwyn Garden City, 3Biochemistry, Lister Hospital, Stevenage, 4Renal Unit, Lister Hospital, Stevenage, United Kingdom.

Background and aims: The high prevalence of cardiovascular disease and vascular calcification in chronic kidney disease (CKD) is associated with both traditional and uremic-specific risk factors. These include hyperphosphatemia, high calcium x phosphate product, chronic inflammation, dyslipidemia and other dialysis-related factors. Recently the role of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-β ligand (RANKL) in bone and vascular adaptations has become apparent. This study was designed to investigate the influence of kidney failure on this axis in diabetic and non diabetic subjects.

Materials and methods: Seventy patients were studied - 20 with Stage 3 CKD (CKDm), 20 with Stage 4 and 5 CKD (CKDw) and 30 on Haemodialysis (CKDh). Each group had equal number of diabetics and non-diabetics. Serum OPG and RANKL were measured along with parameters reflecting renal function and mineral metabolism.

Results: Mean OPG levels in the CKDm group were higher than in the CKDw group (p<0.001) and the CKDh group (p<0.001) (9.8 vs. 5.8 vs 5.4)
Oxidative stress is at the center of pathogenesis of nephropathy. The OPG/RANKL ratio is significantly different across the groups (p = 0.038). Median OPG/RANKL ratio was higher in the CKD stage group than in the CKD_D group (p = 0.016) and the CKD_D group (p = 0.006) (109 vs. 45 vs. 61 respectively). In the CKD_D group OPG levels were higher in diabetic patients than in non-diabetics (6.1 vs. 4.5 pmol/l; p = 0.032). The same was true in the CKD stage group (6.7 vs. 4.6 pmol/l; p = 0.032). However, in the CKD_D group, diabetics had lower OPG levels (8.6 vs. 10.9 pmol/l), though this difference did not reach statistical significant (p = 0.079).

Conclusion: OPG is secreted by endothelial cells and tends to protect against VC. Rising OPG levels in progressive kidney failure imply mobilisation of protective adaptations to the increased calcific stimulus generated by falling kidney function. The higher OPG levels in diabetics in moderate to advanced CKD can be similarly interpreted. The reversed ratio in HD patients suggests relative failure of protective mechanisms in diabetics in this setting, resulting in an increased calcification potential.

Supported by: Shire Pharmaceuticals

PS 121 Nephropathy - treatment

1220

Blockade of advanced glycation end products receptor signalling prevents the glycated albumin induced overexpression of collagen IV

A.I. Serban¹, M.C. Munteanu², M. Costache³, A. Dinischiotu²;
¹Biochemistry and Molecular Biology, University of Agricultural Science and Veterinary Medicine, ²Biochemistry and Molecular Biology, University of Bucharest, Faculty of Biology, Romania.

Background and aims: The expansion of mesangial cells, accumulation of extracellular matrix protein, thickening of glomerular and tubular basement membranes, tubulointerstitial fibrosis and glomerulosclerosis occur in the diabetic kidney and AGEs play an important role in these pathological changes. AGEs may promote pro-fibrotic cellular responses by interacting with their receptor-RAGE or by other pathways in which TGF-β has a pivotal role. Our aim was to investigate the relationship between AGE, RAGE and TGF-β1 in collagen IV expression in cultured human embryonic kidney cells (HEK293) exposed to glycated BSA (AGE-BSA).

Materials and methods: Cultured cells were treated for 24 hours with AGE-BSA or BSA (control) at concentrations between 50-200 μg/ml in the presence or absence of 20 ng/ml anti-RAGE antibodies. The level of RAGE, TGF-β1 and procollagen α1 (IV) mRNAs was analyzed by quantitative real-time PCR whereas their protein expression was assessed by Western immunoblot (RAGE and collagen IV) and ELISA (TGF-β1).

Results: The mRNA relative expression ratio (R) increased for all target genes proportionately with AGE-BSA concentration. At 100 μg/ml AGE-BSA, R increased to 1.41+/- 0.12, 1.23+/- 0.05, 2.68+/- 0.17 for RAGE, TGF-β1 and procollagen α1 (IV), whereas at 200 μg/ml AGE-BSA was the highest increase of R to 1.83+/- 0.2, 3.4+/- 0.09 respectively 4+/- 0.12. The protein levels of RAGE, TGF-β1 and collagen IV were in good correlation with the mRNA expression. The co-treatment with anti-RAGE antibody and 100μg/ml AGE-BSA versus anti-RAGE antibody and 100μg/ml BSA decreased R to 0.65+/- 0.09 for procollagen α1 (IV), whereas the mRNA expression of TGF-β1 remained unchanged. In addition, R increased to 2.1 +/- 0.2 for RAGE. The relative proteins levels decreased to 0.42 for collagen IV and to 0.62+/- 0.12 for protein TGF-β1 but the RAGE one was 1.6 suggesting that the presence of ligand stimulated RAGE expression.

Conclusion: This study demonstrated that the collagen IV synthesis is modulated by the axis AGE-RAGE-TGF-β1, and was increased in an AGE-BSA concentration dependent manner. It appeared that the presence of AGE-BSA induced the increase of RAGE expression when the number of receptors was diminished by anti-RAGE antibodies treatment. These events were probably involved in the development of fibrosis processes related to diabetic nephropathy.

Supported by: The National Research Council of Higher Education Romania

1221

Aldosterone blockade ameliorates nephropathy by increasing glucose-6-phosphate dehydrogenase activity and reducing oxidative stress in diabetic hypertensive rats

M.V. Shanmuganathan, B.S. Pessoa, E.B. Peixoto, J.M. Lopes de Faria, J.B. Lopes de Faria;
Renal Pathophysiology Laboratory, University of Campinas (UNICAMP), Sao Paulo, Brazil.

Background and aims: Oxidative stress is at the center of pathogenesis of diabetic nephropathy. Hyperglycemia decreases glucose-6-phosphate dehydrogenase (G6PD) activity that makes cells very sensitive to oxidant damage via reducing NADPH formation. Spironolactone, a mineralocorticoid receptor blocker, diminishes hyperglycemia induced reduction in G6PD activity. In the present study we investigated whether spironolactone improves nephropathy by increasing G6PD activity and reducing oxidative stress in hypertensive diabetic rats.

Methods: Spontaneously hypertensive rats were rendered diabetic by intravenous injection of streptozotocin (50 mg/kg), control rats received citrate buffer. The diabetic animals were randomized to receive or not receive spironolactone (50mg/kg/day) for 8 weeks. Albumin excretion rate was determined in 24 h urine by ELISA. Renal expression of fibronectin and p47phox were assessed by Western blot. G6PD activity was determined in 24 h urine by ELISA. The antioxidant system,
glutathione, was estimated as the ratio of reduced form of glutathione (GSH) / oxidized form of glutathione (GSSG) by an enzymatic method. Compari-
sions between groups were done with one-way analysis of variance (ANOVA)
followed by Bonferroni test. Nonparametric data were analyzed by Kruskal-
Wallis test (for multiple groups) and Mann-Whitney U test (for 2 groups).
A value of p<0.05 was considered significant.

Results: Plasma glucose levels were higher (p<0.0001) in diabetic rats and it
was not modified by spironolactone. Likewise, systolic blood pressure was
unaltered by diabetes or by treatment. Albuminuria and renal expression of
fibronectin were higher (p=0.01 and p=0.03, respectively) in the diabetic
group compared to control, and these parameters were reduced with the
mineralocorticoid receptor blocker. G6PD activity and the GSH / GSSG
ratios were reduced (p=0.008 and p=0.02, respectively) in diabetic rats and
the treatment restored to control levels. Urinary levels of 8-hydroxy-2-deoxi-
guanosine (8-OHdG), a marker of oxidative stress-induced DNA damage
was determined by ELISA and found to be higher (p=0.02) in diabetic rats
when compared to controls, and the treatment reduced to control levels.
The results of the present study showed an increased expression of
p47phox, an isoform of NADPH oxidase, was higher (p=0.009 and p=0.004,
respectively) in diabetic rats when compared to controls and was significantly
reduced in treated rats.

Conclusion: These results suggest that spironolactone ameliorates nephrpny-
thesis in the diabetic hypertensive rats by blocking ROS activity and dimin-
ishes oxidative stress without affecting blood pressure.

Supported by: CAPES and FAEPESP

1222
Uncoupled endothelial nitric oxide synthase is ameliorated by green tea (camellia sinensis) in diabetic SHR rats
A.M. Faria, M.V. Shanmuganathan, J.M. Lopes de Faria, J.B. Lopes de Faria;
Faculty of Medical Sciences, State University of Campinas, Brazil.

Background and aims: It has been shown that in hypertensive diabetic rats
green tea (GT, Camellia sinensis) ameliorates nephropathy by reducing oxy-
diastatic stress. In experimental diabetic nephropathy NADPH oxidases and
eNOS uncoupling are major sources of local superoxide production. Uncou-
pled eNOS is a consequence of a reduction in tetrahydrolbiopterin (BH4), an
essential cofactor required for the synthesis of nitric oxide (NO). Therefore,
uncoupled eNOS leads to a reduction of NO bioavailability which is associ-
ated with progression of diabetic nephropathy. The aim of the present study
was to investigate if green tea can ameliorate uncoupled eNOS in hyper-
diabetic rats. Materials and methods: Twelve-week-old spontaneously hypertensive rats (SHR) were rendered diabetic by intravenous injection of streptozotocin (50 mg/kg/17 days) rats received citrate buffer. Diabetic SHR rats were ran-
domized to receive no treatment or treatment with daily, freshly prepared,
GT (13.3 g/L). After 12 weeks of treatment, endothelial and oxidative stress
markers were assessed in renal cortex. The levels of BH4 were measured in
urine and renal cortex samples using UPLC (Ultra Performance Liquid Chro-
matography). The results were compared by analysis of variance (ANOVA)
followed by Fisher’s protected least-significant difference test. Results: The systolic blood pressure did not differ between groups of the study. However, body weight was less (p < 0.0001) and glycemia was greater in diabetic SHR rats (treated or not with GT) than in nondiabetic rats (p < 0.0001). Oxidative stress, assessed by NADPH oxidase induced superox-
dide production, was higher in diabetic rats than in controls (p=0.01). The formation of peroxynitrite, a result of the binding of NO to superoxide also
increased in diabetic rats (p = 0.01). GT attenuated renal ROS production by decreasing the production of superoxide (p=0.01) and nitrotyrosine (NT)
(p = 0.04). In diabetic animals, the cavenol-1 (CAV-1), a negative regulator of
eNOS expression, was significantly increased (p=0.02) and reinstated by GT
treatment (p=0.01). Immuno-precipitation studies revealed a significant de-
crease in the CAV1-eNOS binding in diabetic rats (p=0.03). Total bipterin,
BH4 and oxidation rate of BH4 were measured in urine and renal cortex to
assess the bioavailability of NO and the eNOS uncoupling. In diabetic rats, we
observed a significant decrease (p<0.0001) in the levels of total bipterin and
BH4 and moderate change (p=0.004) in oxidation rate of BH4 in both urine and
renal tissue. GT reversed oxidation of BH4 (p=0.05), but not modified BH4
production. Conclusion: In summary, green tea GT ameliorated superoxide production and improved the eNOS uncoupling by reversing CAV-1 expression and ox-
diation of BH4.

Supported by: CNPq and FAEPESP

1223
Cilnidipine additively inhibits the progression of renal impairment in
diabetic rats when used in combination with an angiotensin II receptor
blocker (ARB)
K. Matsurata¹, Y. Morii¹, S. Aritomi¹, K. Ninuma¹, T. Konda², Y. Itoh¹, J. Yokoyama¹, N. Tajima²;
¹Division of Diabetes, Metabolism and Endocrinology, Department of
Internal Medicine, Jikei University School of Medicine, Tokyo, R & D
Division, Exploratory Research Laboratories, Ajinomoto Pharmaceuticals
Co., Ltd, Kawasaki, Japan.

Background and aims: Cilnidipine represents the only calcium channel
blocker (CCB) currently available that antagonizes not only the L-type but
the N-type calcium channels and is known to provide renal protection by
decreasing the activity of the sympathetic nervous system and the renin-an-
giotensin system (RAS). However, few studies evaluated cilnidipine for
renal protection in diabetic nephropathy. In this study, therefore, we investi-
gated the effect of the L/N-type CCB cilnidipine, as compared to the L-type
CCB amloidipine, on diabetic nephropathy in spontaneously type 2 diabetic
rats (OLETF rats), when used in combination with an angiotensin II receptor
blocker (ARB).

Materials and methods: Seventeen-week-old OLETF rats were randomly
assigned to receive cilnidipine (Cil), amloidipine (Aml), valsartan (Val), Cil +
Val, Aml + Val, or vehicle (5% HMC; control) for 22 weeks via a gastric tube,
with a total of 16 rats assigned to each group.

Results: Antihypertensive potency was found to be nearly equal between the
monotherapy groups and the between the combination therapy groups com-
pared. Blood pressure lowering with either treatment did not significantly
affect the glycemic variables evaluated. However, the increases in urinary al-
bumin excretion (UAEx) seen with progression of diabetic renal impairment
were significantly suppressed in the rats given Cil or Val, with their additive
suppression seen in those given Cil + Val. Furthermore, the 8-hydroxy-2-deoxi-
genosine (8-OHdG), a marker of oxidative stress-induced DNA damage
level in the renal tissue as an indicator of sympathetic nervous system
activity was shown to be significantly decreased in those given Cil + Val. With
regard to the plasma RAS-related variables, Val tended to increase plasma
renin activity (PRA) and angiotensin II (Ang II) activity through a feedback
mechanism resulting from inhibition of the Ang II type 1 receptor (AT1-
R). Additionally, while significant increases in PRA and Ang II were seen in
those given Aml + Val, as may be the case with antihypertensive therapy, no
increases in PRA and Ang II were seen in those given Cil + Val, a comparably
potent antihypertensive regimen.

Conclusion: Study results revealed that cilnidipine produces additive anti-
hypertensive and UAE-lowering effects when combined with an ARB even
in type 2 diabetic rats. Furthermore, combination therapy with cilnidipine
and valsartan has been shown to significantly reduce NE secretion, suggest-
ing that cilnidipine suppresses the increases in PRA and Ang II associated
with antihypertensive therapy by inhibiting the activity of the sympathetic
nervous system through its N-type calcium channel antagonism. Thus it is
suggested that cilnidipine may inhibit the progression of nephropathy in type
2 diabetes by inhibiting the activity of the sympathetic nervous system as
an N-type CCB.

1224
Telmisartan, an angiotensin II type 1 receptor blocker, prevents renal
injury via inhibition of the Notch pathway in ins2 Akita diabetic mice
M. Koshizaka, M. Takemoto, K. Yokote;
Clinical Cell Biology and Medicine, Chiba University, Japan.

Background and aims: There are an increasing number of patients with end-
stage renal disease caused by diabetic nephropathy (DN). It has been recently
reported that the Notch pathway is involved in the pathogenesis of DN and
the activated Notch pathway induces apoptosis to the podocytes. We inves-
tigated the activation of the Notch pathway in ins2 Akita (Akita mouse), a
murine model of DN, and the effects of telmisartan, an angiotensin II type1
receptor blocker, on the Notch pathway and whether telmisartan could pre-
vent podocytes apoptosis.

Materials and methods: Seventeen-week-old insulin deficient mutant Akita
mice (AKA) were treated with various doses of telmisartan for 22 weeks via
a gastric tube, with a total of 16 rats assigned to each group.

Results: There was a significant increase in the number of apoptotic cells
in the glomeruli and tubulointerstitium of AKA mice at a high dose level
(60 mg/kg) of telmisartan compared to the control group. However, at a
lower dose level (10 mg/kg) of telmisartan, the number of apoptotic cells
was significantly suppressed at high dose levels of telmisartan compared to
the control group. Furthermore, the expression of Notch1, which is
activated by the Notch pathway, was significantly increased in the glomer-
uli of AKA mice at a high dose level of telmisartan compared to the control
group. The expression of Notch1 was significantly decreased at a lower
dose level of telmisartan compared to the control group. Conclusion: These
results suggest that telmisartan is a potent agent that may be useful for the
management of DN. Furthermore, future studies are needed to evaluate the
effects of telmisartan on the Notch pathway.
We conducted a double-blind placebo (PLC) controlled study in 28 patients (24 men, 4 women, mean age 66.1 ± 9.1 y) with type 2 diabetes, proteinuria > 300 mg/24 h (despite the use of ACE-inhibitor or angiotensin receptor blocker) and an estimated glomerular filtration rate (GFR) < 60 ml/min. Patients were randomly assigned to RSG (5 mg b.i.d.) or matching PLC in addition to their previous antidiabetic medication. GFR and renal plasma flow were measured by inulin- and para-aminohippurate clearance before and after the blockade of nitric oxide (NO) by intravenous administration of N-nomomethyl-L-arginine-acetate (L-NMMA).

Results: During 12 months of follow up there was a significant reduction of proteinuria in the RSG group (2.46 ± 2.3; 1.25 ± 1.2 and 1.6 ± 1.4 g/24 h at baseline; 6 and 12 months respectively; P<0.05) but not in the PLC group (1.56 ± 1.4; 1.63 ± 1.9 and 1.66 ± 1.9 mg/24 h at baseline; 6 and 12 months respectively). HbA1c within each treatment group did not change significantly (7.3 ± 0.8 vs. 7.3 ± 1.1 % for PLC and 6.9 ± 0.8 vs. 6.5 ± 0.7 % for RSG; baseline vs. 12 months follow up; respectively). Decline of GFR during the study was equal between RSG and PLC (4 ml/min). RSG increased intrarenal NO bioavailability as indirectly shown by the infusion of L-NMMA. RSG treatment was associated with more adverse events: most common were increase of body weight and development of peripheral edema, however congestive heart failure did not occur.

Conclusion: RSG reduced proteinuria in overt DN and improved intrarenal NO bioavailability. RSG treatment did not deteriorate GFR but was associated with fluid retention.

1226

Influence of rosiglitazone on proteinuria and renal haemodynamic in type 2 diabetic patients with overt diabetic nephropathy

E. Frosch,1 2 3 K. Herbrig,1 J. Passauer,1 B. Kimbell,1 P. Gross,1 S.R. Bornstein;1 4Nephrology, Dept of Medicine, University Hospital, 2Centre for Clinical Studies, Technical University, 3Endocrinology, Dept of Medicine, University Hospital, Dresden, Germany.

Background and aims: Proteinuria reflects overt glomerular damage and its degree determines the progression of diabetic nephropathy (DN). Recent studies demonstrated an improvement of renal endothelial function and a reduction of microalbuminuria by activation of the PPAR gamma receptor in early stages of DN. The aim of the present study was to investigate the influence of the thiazolidinedione rosiglitazone (RSG) on proteinuria and renal endothelial function in overt DN.

Materials and methods: We conducted a double-blind placebo (PLC) controlled study in 28 patients (24 men, 4 women, mean age 66.1 ± 9.1 y) with type 2 diabetes, proteinuria > 300 mg/24 h (despite the use of ACE-inhibitor or angiotensin receptor blocker) and an estimated glomerular filtration rate (GFR) < 60 ml/min. Patients were randomly assigned to RSG (5 mg b.i.d.) or matching PLC in addition to their previous antidiabetic medication. GFR and renal plasma flow were measured by inulin- and para-aminohippurate clearance before and after the blockade of nitric oxide (NO) by intravenous administration of N-nomomethyl-L-arginine-acetate (L-NMMA).

Results: During 12 months of follow up there was a significant reduction of proteinuria in the RSG group (2.46 ± 2.3; 1.25 ± 1.2 and 1.6 ± 1.4 g/24 h at baseline; 6 and 12 months respectively; P<0.05) but not in the PLC group (1.56 ± 1.4; 1.63 ± 1.9 and 1.66 ± 1.9 mg/24 h at baseline; 6 and 12 months respectively). HbA1c within each treatment group did not change significantly (7.3 ± 0.8 vs. 7.3 ± 1.1 % for PLC and 6.9 ± 0.8 vs. 6.5 ± 0.7 % for RSG; baseline vs. 12 months follow up; respectively). Decline of GFR during the study was equal between RSG and PLC (4 ml/min). RSG increased intrarenal NO bioavailability as indirectly shown by the infusion of L-NMMA. RSG treatment was associated with more adverse events: most common were increase of body weight and development of peripheral edema, however congestive heart failure did not occur.

Conclusion: RSG reduced proteinuria in overt DN and improved intrarenal NO bioavailability. RSG treatment did not deteriorate GFR but was associated with fluid retention.

1227

Comparison of nifedipine retard and ACE inhibitor with respect to the influence on renal function in hypertensive patients with type 2 diabetes - J-MIND study / reanalysis using eGFR

G. Yoshino1, T. Kanzumi, R. Kikwata;

1Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, 2Department of Food Science and Nutrition, School of Human Environment, Mukogawa Women’s University, Nishinomiya, 3Health and Welfare Policy Division, Shiga Prefecture, Otsu, Japan.

Background and aims: It has been described in JSIH2009 that strict blood pressure control as well as glycemic control is important for hypertensive patients with diabetes, and the target blood pressure is aimed at lower than 130/80 mmHg. However, although the first-line drug for this disease is ARB or ACE inhibitor, administration of Ca antagonist with strong antihypertensive effect is needed for attaining the target blood pressure. We have conducted the J-MIND (The Japan Multicenter Investigation of Antihypertensive treatment for Nephropathy in Diabetes) study, a 2-year randomized comparative study of nifedipine retard (N group) and enalapril (E group) with respect to the effect on the onset/progression of nephropathy in hypertensive patients with type 2 diabetes, and reported that the renal protection effect indexed by urinary albumin excretion rate was similar in both groups. Since a formula for estimated glomerular filtration rate (e-GFR) suitable for Japanese was newly established currently, the influence on renal function was comparatively studied using eGFR between the 2 groups.

Table 1: Comparison of baseline characteristics of the study patients. N group and E group. Table 2: The change in renal function parameters. N group and E group.

Table 1: Comparison of baseline characteristics of the study patients. N group and E group. Table 2: The change in renal function parameters. N group and E group.
PS 122 Cardiovascular risk and assessment

1229

Benchmarking cardiovascular event rates in type 2 diabetes controlled clinical studies by modification of the UKPDS risk engine

M. Stewart1, J. Ye2, E. Yang3
1GlaxoSmithKline, King of Prussia, 2GlaxoSmithKline, Research Triangle Park, USA.

Background and aims: With the release of the new FDA recommendations for evaluating CV risk in new antidiabetic therapies, models predicting population CV event rates have become critical to the design of clinical trials. In order to successfully demonstrate no increased CV risk, these trials must be adequately powered, with consideration of the appropriate patient demographics and CV history. Although recent outcomes studies have provided evidence of CV safety for specific agents or agent combinations, baseline patient characteristics and underlying CV risk in these populations are not uniform across studies. While the UKPDS risk engine provides a well-accepted basis for estimating CV risk in patients with newly diagnosed disease, the aim of this analysis was to develop a CV risk prediction benchmark for the general diabetes population.

Materials and methods: Summary CV risk data from ADAPT, ADVANCE, VAIDT, ACCORD, RECORD, PROactive and BARI-2D studies was directly applied to the UKPDS model, and an evaluation/comparison on the prediction of annualized Major Acute Coronary Events (MACE) event rates (myocardial infarction, stroke and CV death) was performed.

Results: The direct prediction of the annualized CV event rate based on the original UKPDS model was inconsistently over-estimated for all studies except for PROactive [predicted event rate vs. observed event rate with mean (SD) = 1.5 (0.26)]. However, when previous CV history is added to the UKPDS model and evaluated across these studies, a more consistent (yet higher) prediction across all studies was generated [Table, observed vs. predicted rate mean (SD) = 2.1 (0.12)].

Conclusion: The modified UKPDS risk model provides a consistent benchmark for CV event rates in clinical study populations more closely resembling a general population of patients with type 2 diabetes.
Residual cardiovascular risk due to persistent dyslipidaemia in statin-treated patients with diabetes mellitus in Ireland: results of the Dyslipidaemia International Study

J.O. Ryan1, J. Crowley2, J. Feely3, B. McAdam4, E. Shanahan5, C. Vaughan5
1Department of Endocrinology & Metabolism, Cork University Hospital, 2Cardiology Department, University College Hospital Galway, 3Department of Pharmacology & Therapeutics, St. James’ Hospital, Dublin, 4Department of Cardiology, Beaumont Hospital, Dublin, General Practice, Farranfore, 5Department of Cardiology, Mercy University Hospital, Cork, Ireland.

Background and aims: Dyslipidaemia is an established independent risk factor for cardiovascular disease (CVD) in patients with diabetes mellitus (DM). This study examined the number of patients with DM on treatment with a statin that had normal and abnormal lipid levels according to ESC/EASD guidelines.

Materials and methods: The Dyslipidaemia International Study (DYSIS) was a multi-national cross-sectional study. In Ireland, patients were recruited consecutively by 58 general practitioners and 4 cardiologists. Entry requirements included age >45 years, statin-treatment for >3 months, consent to physical examination, and at least one lipid profile in the past 6-12 months.

Results: In Ireland 980 eligible patients were studied. 181 patients (20.1%) had DM. Despite patients with DM having significantly lower LDL-c levels than patients without DM, triglyceride and HDL-c levels were less likely to be normal in patients with DM (Table 1). The Odds Ratio (O.R.) for a parental history of DM was 3.32 in the DM group versus the non-DM group. Significant differences in systolic blood pressure levels and anti-hypertensive agents used existed between the groups.

Conclusions: The results of DYSIS in Ireland show that triglyceride and HDL-c levels remain abnormal in statin-treated patients with DM. This is in keeping with the international findings in this study. These patients remain at increased CVD risk and supplementary treatment may be indicated.
Cardiovascular disease risk communication for patients with type 2 diabetes: the @RISK Study

2. EMGO Institute for Health and Care Research, Amsterdam, 3CAPHRI School for Public Health and Primary Care, Maastricht, Netherlands.

Patients with type 2 diabetes (T2DM) underestimate their risk to develop severe complications, and they do not understand the risk communication of caregivers. According to Leventhal's Self-regulation Theory, patients are not willing to change their lifestyle if they are not informed why this is important. People have correct or incorrect perceptions concerning their disease which determine how they manage their risks to develop severe complications. Providing understandable information on the disease by means of risk communication may change illness perceptions. The aim is to investigate the effects of an intervention focussed on the communication of the absolute 10-year risk to develop CVD on risk perception and illness perceptions in patients with T2DM.

Materials and methods: A randomised controlled trial was performed with newly referred T2DM patients to the Diabetes Care System West-Friesland, a managed care system in the Netherlands. The intervention group (n=131) received CVD risk communication, consisting of an explanation on the causes and consequences of CVD, and possibilities for prevention on top of standard managed care of the DCs. The 10 year risk of developing CVD was explained in natural frequencies and visualised by a population diagram. Controls (n=130) received standard managed care. Outcome measures were appropriateness of risk perception and illness perceptions assessed at baseline, at 2 weeks (immediately after the intervention or control visit), and 12 weeks. Risk perception was measured by asking 'How would you rate your risk of developing CVD in the next 10 years?' The absolute difference between risk perception and the actual CVD risk on the UKPDS risk engine was calculated. The Brief Illness Perception Questionnaire was used to assess illness perceptions. An overall score was calculated by summarizing scores on the 8 items, measured on a 10-point Likert scale. A higher score indicates a more threatening view of the illness. Differences in changes between time points were analysed by t-tests in the intervention and control group.

Results: Mean age was 58.4 ± 10.3 years, the median of diabetes duration was 0.36 (IQR 0.1 - 1.4) years, HbA1c was 6.7 ± 1.3% and 57% were men. In the intervention group, the difference between the actual CVD risk and the risk perception improved significantly between baseline and 2 weeks (see Table 1). This effect remained at 12 weeks. In the control group, no changes were found. No effects were found on illness perceptions.

Conclusion: This innovative risk communication method improved patients' risk perception and this effect remained at the long term. The hypothesis that patients might be better able to manage their disease was not supported, as their illness perceptions showed no changes. Table. Differences in risk perception and illness perceptions in the intervention and control groups.

<table>
<thead>
<tr>
<th>Risk perception (difference between risk perception and CVD risk)</th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7 (7.4 - 18.5)</td>
<td>9.4 (19 - 11.5)</td>
<td>5.8 (1.8 - 12.1)</td>
</tr>
<tr>
<td>0.00 *</td>
<td>0.00 *</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Illness perceptions

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9 (9.4 - 13.5)</td>
<td>8.9 (5.0 - 14.7)</td>
</tr>
<tr>
<td>8.0 (3.6 - 16.3)</td>
<td>0.79</td>
</tr>
<tr>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± SD or median (interquartile range). * P < 0.05

Supported by: Dutch Diabetes Research Foundation

1234

Characteristics, complications and management of a large multiethnic cohort of younger adults with type 2 diabetes

K. Benhalima1, S.H. Song2, E.G. Wilmot1, K. Khunti1, L.J. Gray1, I. Lawrence1, M.J. Davies2

1. Diabetes Research, University Hospital of Leicester, 2. Diabetes Centre, Northern General Hospital, Sheffield, 3. Cardiovascular Sciences, University of Leicester, 4. Health Sciences, University of Leicester, United Kingdom.

Background and aims: An increasing number of young people are diagnosed with type 2 diabetes (T2DM), leading to a high lifetime risk for developing diabetes-related complications. Whether this cohort receives appropriate risk factor management in relation to older T2DM subjects remains uncertain. Our aim is to describe the characteristics and management of a multiethnic cohort of people with T2DM <40 years (<40 cohort) and to compare with T2DM subjects aged ≥ 40 years (≥ 40 cohort).

Patients and methods: Retrospective analysis of data extracted from the last clinic visit of 648 adults (<40 cohort) attending 2 specialist diabetes centres (A and B) in the UK and a ≥ 40 cohort of 3582 T2DM subjects coming from the specialist centre A. In the <40 cohort, differences between the first (≤22) vs. fifth quintile (≥33) of age of diagnosis were analysed.

Results: Characteristics of the <40 cohort: 57.9% female, 54.5% Caucasian, 45.5% Black or Minority Ethnic origin (BME, 91.9% from South Asian origin). Median age at diagnosis was 28 years (24-31). Data were extracted after a median diabetes duration of 4.0 years (1.9-7.0). The median BMI was 33.0 kg/m² (28.3-38.7), higher in Caucasians (35.0 vs. 30.9 in BME, p=0.0001) in women (34.0 vs. 31.9 in men, p=0.003). Median HbA1c was 8.2% (6.8-9.9) with an HbA1c > 7% in 70% Cardiovascular risk factors were frequent: 71.8% total cholesterol > 4mmol/l, 54.9% triglycerides > 1.7mmol/l, 45% hypertension. Microvascular complications were also prevalent: 19.8% retinopathy, 14.6% abnormal foot exam, 24.0% microalbuminuria (only available for centre A). Oral antidiabetic drugs were used in 71.6%, insulin alone in 18.6% and both in 24.7%. Insulin was more often used in Caucasians (49.4% vs. 36.2% in BME, p=0.001). 27.7% received antihypertensives, 31.5% a statin and 13.9% aspirin. Women were less likely to be treated for hypertension (22.7% vs. 34.8%, p=0.001) and dyslipidaemia (22.1% vs. 45.1%, p=0.001) than men. The first quintile of age of diagnosis had more often retinopathy (22.1% vs. 16.9%, p=0.021) and was treated less aggressively compared with the fifth quintile. Fewer were on insulin (45.6% vs. 46.4%, p=0.039), many were managed with diet only (9.6% vs. 6.2%, p=0.005) and they were less likely to be treated for hypertension (23.2% vs. 32.3%, p=0.053) and dyslipidaemia (30.4% vs. 39.2%, p=0.049). Data were generally comparable between the 2 centres, except for a higher proportion of BME (50.6% vs. 46.4%, p=0.039) and lower median HbA1c (8.1% vs. 8.7%, p=0.012) in centre A compared to centre B. Compared to the ≥ 40 cohort, patients in the < 40 cohort were more often female (57.9 vs. 53.5%, p=0.001) and women (61.3% vs. 51.5%, p=0.009) and lower median HbA1c (8.1% vs. 8.7%, p=0.012) in centre A compared to centre B. Compared to the ≥ 40 cohort, patients in the < 40 cohort were more often female (57.9 vs. 46.1, p<0.001) and of BME origin (45.5 vs. 30.2, p<0.0001), had a higher median BMI (33.0 vs. 30.4, P=0.001) and a higher median HbA1c (8.2 vs. 7.5, p<0.0001).

Conclusion: The <40 cohort represents a more extreme phenotype compared to the ≥ 40 cohort with a high prevalence of inadequately treated risk factors. In particular, patients from the first quintile of age of diagnosis were less aggressively treated. There is a need for tailored strategies to manage this high-risk group.

1235

LDL-cholesterol is not the best blood lipid predictor of CHD risk in type 2 diabetes

P. Eliasson1, S. Gudbjornsdottir2, K. Eeg-Olofsson1, A.-M. Svensson2, B. Zethelius1, J. Cederholm1

Background and aims: Although frequently used in clinical practice, the validity of LDL-cholesterol (LDL) as a risk factor for coronary heart disease (CHD) is uncertain. We assessed the roles of different measures of blood lipids in an observational study of type 2 diabetes from the Swedish National Diabetes Register (NDR).

Materials and methods: 23,001 patients aged 30-75 years, 16% with previous CHD, 43% with lipid-lowering drugs, were followed from 2003 to 2007, with 1709 fatal/nonfatal CHD events. LDL was calculated with Friedewald’s equation.
Results: Adjusted hazard ratios (HR) at Cox regression for fatal/nonfatal CHD per 1 SD of each lipid measure were 1.21 (1.15-1.26) with non-HDL/HDL, 1.19 (1.13-1.24) with LDL/HDL, 1.18 (1.13-1.24) with non-HDL, and 1.14 (1.09-1.19) with LDL; all p<0.001 when adjusted for age, sex, diabetes duration, HbA1c, type of hypoglycaemic treatment, systolic blood pressure, antihypertensive drug use, smoking, BMI, and microalbuminuria (≥20 µg/min). Goodness-of-fit with global likelihood ratio X² values were 771, 762, 757, 729, respectively. Figure 1 shows splines for adjusted 5-year CHD rates as a cubic function of lipids in a Cox model. CHD rates increased progressively with higher non-HDL/HDL ratio as well as non-HDL. When 7889 patients with a combination of non-HDL/HDL >2.9, non-HDL >3.6, and LDL >2.8 mmol/l was used as reference (median values chosen as limits), fully adjusted HR for CHD risk was 0.61 (0.53-0.70) with non-HDL/HDL <2.3 mmol/l (recently often used target; n=6116), HR was 0.67 (0.60-0.76) with non-HDL <3.3 mmol/l (recent target, suggested useful if higher triglycerides; n=7623), while HR was higher 0.74 (0.66-0.83) with LDL <2.5 mmol/l (recent target in guidelines; n=7766). HR with LDL <1.9 mmol/l was 0.65 (0.54-0.80) (suggested target in high-risk patients; n=1889). All HR were p<0.001.

Conclusion: Non-HDL/HDL and non-HDL, which both are reliably measured in the non-fasting state, were more strongly associated with risk of CHD than LDL. Risk reductions for CHD were larger with targets presented here for the non-HDL/HDL ratio and non-HDL, than for LDL. Splines of CHD rate by non-HDL/HDL and non-HDL values underline the "the lower the better" concept for these lipids and CHD risk in type 2 diabetes.

![Figure 1: Coronary heart disease (CHD)](image)

1236

Silent myocardial ischaemia and prediabetes in combination are associated with adverse prognosis in healthy subjects

T. Intzilakis1, A. Sajadieh2, A. S. Haaggaard3

1Department of Cardiology, University Hospital of Copenhagen, Bispebjerg, 2Department of Internal Medicine, University Hospital of Copenhagen, Amager, 3Clinical Research Centre, University Hospital of Copenhagen, Hvidovre, Denmark.

Background and aims: Silent myocardial ischaemia (SMI) is prognostic for deaths and myocardial infarction. Prediabetes increases risk of diabetes and cardiovascular disease. It was hypothesized, therefore, that prediabetes deteriorates prognosis in persons with SMI.

Materials and methods: Five-hundred-and-ninety-six non-diabetic subjects from the community of age 55 to 75 years and free of any known cardiovascular disease and cancer were examined by ambulant 48h continuous electrocardiogram monitoring. SMI was defined as at least 1 mm depression of the ST interval on the electrocardiogram of at least 1 min duration. Prediabetes was defined as fasting plasma glucose ≥ 5.6 but < 7.0 mmol/L. During a median follow-up of 6.3 years, 77 subjects met the predefined combined endpoint of acute myocardial infarction and/or death.

Results: Two-hundred-and-twenty-nine subjects had prediabetes (38%), which was not associated with SMI (P=0.69). Subjects with prediabetes and SMI (5% of subjects) more often met the combined endpoint (36%) than subjects with prediabetes and non-SMI (15%), subjects with normal fasting glucose (NFG) and SMI (12%), and subjects with NFG and non-SMI (10%), respectively, (P<0.001). Both in a univariate analysis and in a Cox multivariate analysis, the latter of which included the four study groups of interest, and in addition, gender, age, smoking habits, blood pressure and total cholesterol, respectively, only subjects with combined prediabetes and SMI exhibited an increased risk for meeting the predefined endpoint (hazard ratio, HR: 4.0 (2.0-8.1), P<0.001 and HR: 2.5, CI95% 1.2-5.2, P=0.016, respectively; subjects with combined NFG and non-SMI as reference). Including also high sensitive C-reactive protein and NT pro-brain natriuretic peptide in the Cox multivariate model, subjects with prediabetes and SMI exhibited more than a 3-fold increased risk of meeting endpoint compared with reference subjects (HR: 3.2, CI95% 1.5-6.7, P<0.005).

Conclusion: Combined silent myocardial ischemia and prediabetes suggest increased risk of myocardial infarction and/or death among apparently healthy subjects living in the community, thus, this clinical entity calls for screening and treatment.

![Table: Relative Risks for Overall Cardiovascular Events by Diabetes Risk Score](image)

Supported by: The Danish Heart Foundation

1237

Incident myocardial infarction is five-fold higher in subjects at high risk for type 2 diabetes

M.P. McKenna1, M.W. Rowe1, J.A. Kolberg2, O. Pedersen3, K. Borch-Johnsen1, T. Jørgensen4

1Research, Tethys Bioscience, Emeryville, USA, 2Faculty of Health Science, University of Copenhagen, Denmark, 3Steno Diabetes Center, Copenhagen, Denmark, 4Research Centre for Prevention and Health, Glostrup University Hospital, Denmark.

Background and aims: A simple and accurate test comprised of circulating biomarkers (Diabetes Risk Score, DRS) provides a quantitative estimate of the 5-year risk of developing type 2 diabetes mellitus (T2DM). It is established that T2DM is a major risk factor for cardiovascular disease, and that a significant portion of that risk occurs in the prediabetic state. A model using the circulating biomarkers composing the DRS was applied to the Inter99 study to assess the 5-year risk of cardiovascular events (CVE) in groups of subjects at low, moderate and high risk for T2DM.

Materials and methods: Serum samples collected at baseline from 5452 subjects free of diabetes were tested. 2924 (53.6%), 1975 (36.2%) and 553 (10.1%) subjects were classified as low, moderate and high risk for T2DM, respectively, (P<0.001). Both in a univariate analysis and in a Cox multivariate analysis, the latter of which included the four study groups of interest, and in addition, gender, age, smoking habits, blood pressure and total cholesterol, respectively, only subjects with combined prediabetes and SMI exhibited an increased risk for meeting the predefined endpoint of acute myocardial infarction and/or death. (RR) estimates for overall CVEs and for each of the 4 classes of CVEs (myocardial infarction (MI), revascularization (RV), angina (ANG), and stroke (STR)) were calculated as ratios of moderate-low and high-low. P values and confidence intervals were calculated by bootstrap estimation.

Results: The results are summarized in the table below. Relative risks for overall CVEs and all classes of CVEs were significant with the exception of STR.

Conclusion: Several studies have demonstrated that risk of MI is 3-fold higher in diabetics compared to non-diabetics. The data shown here demonstrate similar levels of cardiovascular risk stratification among non-diabetics using the DRS, suggesting that cardiovascular risk factors for patients with a high DRS should be managed carefully.
Assessing the influence of modelling subsequent cardiovascular events into a type 2 diabetes cost-effectiveness model

P.H. McEwan, M. Evans, K. Bergenheim, M. van den Donk, K.J. Gorter, G.E.H. Rutten; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands.

Background and aims: Type 2 diabetes mellitus (T2DM) is associated with increased risk of cardiovascular morbidity and mortality. Assessing the cost-effectiveness of risk factor modification is commonly based on the analysis of avoiding primary events. The aim of this study was to calibrate published equations to allow the prediction of primary and subsequent events and to assess the economic implications of this within a cost-effectiveness model.

Materials and methods: Routine hospital data from across the UK were analysed between 2000 and 2005 to identify patients with T2DM with first, second and third myocardial infarction (MI) or stroke admissions. The ratio of events (primary + subsequent) to primary event was used to calibrate the cardiovascular risk equations using a published diabetes prevalence-based model. The impact of the calibrated equations was then assessed using a published cost-effectiveness model assessing two treatment strategies: 1st line metformin (a) and (b); 2nd line sulphonylurea add-on (a) versus DPP-4 inhibitor add-on (b); 3rd line thiazolidinedione add-on (a) versus DPP-4 inhibitor add-on (b). The model was run using a UKPDS demographic and risk factor profile with a payer perspective for 40 years with costs and benefits discounted at 3.5%.

Results: Between 2000 and 2005, 1,124,846 T2DM patients were identified, of whom 55,688 and 65,436 experienced a primary MI and stroke, respectively. There were 2,159 (3.86%) and 185 (0.003%) second and third MI admissions, respectively, and 5,808 (8.88%) and 755 (0.012%) second and third stroke admissions, respectively. Incorporating subsequent events into the model had little impact on the cost per quality-adjusted-life-years (QALYs), which ranged from £3,105 to £3,129 with and without subsequent events allowed, respectively. The impact on cost per life-year gained (LYG) was more noticeable: £257,902 with primary events only, and £90,055 with primary and subsequent events.

Conclusion: The inclusion of subsequent cardiovascular events into diabetes models provides greater face validity; however, this has little impact on cost-effectiveness. This study supports the conclusion that the economic assessment of therapies that modify cardiovascular risk factors but do not incorporate subsequent MI and stroke events are not significantly biased - due to the relatively small number of subsequent events. Importantly, this does not imply that treatment in clinical practice should be stopped after first event. Where concerns are raised regarding the suitability and generalisability of risk equations in general, and the UKPDS equations in particular, research should focus on deriving and/or validating primary event risk equations to ensure that the assumption of generalisability is indeed robust. For a general cohort of T2DM patients this would appear to be more pressing than the accurate prediction of subsequent events.
249 subjects, distributed into four age-, sex- and glucose intolerance on future MI was explored in conditional logistic based on an OGTT and data on treatment at baseline. The impact of leptin identified in the Northern Sweden MI registry. Matched (age, sex, survey date and location) referents (n=1082, 40% women) free of CVD were recruited from 24 subjects with NGT and IGT as well as between NGT group and either of the prediabetic groups. No correlation was established between MMP-9 level and glycaemic control parameters. Significant negative correlation was established between MMP-9 and HDL-cholesterol level (r=-0.24, p<0.05). We have found significant correlation between MMP-9 and hsCRP (r=0.482, p=0.04) as well as between MMP-9 and BMI (r=0.391, p<0.01) and visceral fat area (r=0.346, p=0.02).

Conclusion: In early stages of impaired glucose homeostasis - prediabetes and newly diagnosed type 2 diabetes, serum MMP-9 levels do not differ significantly from those in subjects with normal glucose tolerance. In prediabetes and NDD serum MMP-9 correlates mainly with anthropometric (BMI, visceral fat area) and inflammatory (hsCRP) markers and shows weak correlation with parameters of metabolic control (HDL-cholesterol). Probably MMP-9 activity in these states is related to inflammatory changes rather than to metabolic ones.

Supported by: Medical University, Sofia

Results: At baseline, both males and females with MI had higher leptin levels (2.3 (1.3-4.1) and 2.4 (1.3-4.0), respectively. After further stratification, leptin predicted ST elevation MI but not non-ST elevation MI in males, 2.9 (1.4-6.4) and 1.4 (0.6-3.6), respectively. After adjustments including leptin, DM and IGT associated with MI, ORs 2.3 (1.3-4.1) and 2.4 (1.3-4.0), respectively. After stratification for sex, DM associated with MI in men and IGT with MI in women, ORs 2.5 (1.4-4.5) and 4.1 (1.4-12.1), respectively.

Conclusion: High leptin and glucose intolerance predict first-ever fatal and non-fatal MI, notably with a clear gender difference.

Materials and methods: 249 subjects, distributed into four age-, sex- and BMI-matched groups, were enrolled in the study - 63 subjects with normal glucose tolerance (NGT) (32 males and 31 females, mean age 49.4±11.1 years, mean BMI 30.6±5.8 kg/m²), 62 subjects with IGT (33 males and 31 females, mean age 49.0±13.8 years, mean BMI 30.6±5.7 kg/m²) and 62 subjects with newly diagnosed type 2 diabetes (32 males and 30 females, mean age 48.7±10.6 years, mean BMI 35.0±5.3 kg/m²). Glucose tolerance was studied during oral glucose tolerance test with evaluation of venous plasma glucose at 0 min and 120 min by a hexokinase method (Roche Diagnostics). hsCRP, lipid profile, MMP-9 and Hba1c, were estimated at fasting. hsCRP was measured turbidimetrically (Roche Diagnostics). Lipid profile (total cholesterol, HDL-cholesterol, triglycerides) was assessed by an enzymatic colorimetric method (Roche Diagnostics). LDL-cholesterol was calculated using Friedewald’s formula. MMP-9 was assessed immunoenzymatically (ELISA, CalBiochem) and Hba1c, - immunoturbidimetrically (Roche Diagnostics). BMI and visceral fat area were measured with body composition analyzer using eight-point multi-frequency bioelectric impedance analysis (InBody 720, BIOSPACE). Statistical analysis was performed with SPSS 16.

Results: No significant difference in MMP-9 level was found between the groups with NGT and NDD as well as between NGT group and either of the prediabetic groups. No correlation was established between MMP-9 level and glycaemic control parameters. Significant negative correlation was established between MMP-9 and HDL-cholesterol level (r=-0.24, p<0.05). We have found significant correlation between MMP-9 and hsCRP (r=0.482, p=0.04) as well as between MMP-9 and BMI (r=0.391, p<0.01) and visceral fat area (r=0.346, p=0.02).
1243

High osteoprotegrin serum levels in newly diagnosed type 2 diabetic males with or without known coronary artery disease

M. Boyadzhieva1, K. Hristov2, S. Georgiev1, R. Yordanov3, T. Chernenkova1, N. Usheva1, 1Endocrinology, University Hospital, 2Clinic of Interventional Cardiology, University Hospital, Laboratory of Clinical Immunology, University Hospital, Social Medicine and Health Care, Medical University, Varna, Bulgaria.

Background and aims: Osteoprotegrin (OPG) is an inhibitor of osteoclastogenesis, but is produced from vasculature too. Recently increased circulating OPG levels were found in diabetics and in patients with coronary artery disease (CAD). Elevated serum OPG appears to be a powerful predictor for cardiovascular mortality. Up to date there are insufficient data for OPG concentrations in newly diagnosed type 2 diabetic patients. The aim of our study was to determine serum OPG in males with newly diagnosed T2DM associated or not with known concomitant CAD and to investigate the relationship between OPG and metabolic components.

Materials and methods: Serum OPG levels were measured in 45 newly diagnosed type 2 diabetic males and 20 age- and BMI-matched normoglycemic male subjects. The newly diagnosed diabetics consisted of 28 diabetics without history of CAD and 17 diabetic patients who underwent percutaneous coronary interventions (PCI) for CAD. Mean intima-media thickness (IMT) of common carotid arteries in diabetics without known CAD was measured by B-mode ultrasonography. All newly diagnosed glucose abnormalities were detected during 2 screening programs among risk groups. Glucose tolerance was defined by performing a standard OGTT. OPG was measured by ELISA (BioMedica).

Results: OPG was significantly higher in newly diagnosed type 2 diabetics compared to controls (4.4 ± 0.2 vs 3.3 ± 0.4 pmol/l; p=0.02) but there was no significant difference between diabetic males with performed PCI or those without known CAD: 4.2 ± 0.3 vs 4.6 ± 0.3 pmol/l; p=0.41 respectively. In total group of subjects, there was positive correlation of OPG levels with fasting plasma glucose (r=0.37, p=0.008), 120 min post-OGTT glucose (r=0.42, p=0.004) and HbA1c (r=0.50, p=0.0002). Interestingly, in newly diabetic males OPG correlated only with HbA1c (Pr 0.40, p=0.099). Moreover in diabetics without known CAD, OPG correlated significantly with carotid IMT (Pr 0.48, p=0.03) and age (p=0.04). There was no association with fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), systolic and diastolic blood pressure, BMI or waist circumference. From lipid parameters OPG showed positive correlation only with HDL-cholesterol (r=0.34, p=0.02).

Conclusion: We found higher serum OPG levels in newly diagnosed type 2 diabetic males independently of presence of known CAD. OPG showed association with glucose parameters, early markers of atherosclerosis and probably they may be involved in the regulation of OPG. We suggest that OPG rises early in the evolution of diabetic disorders but further investigations are needed.

Supported by: Medical University-Varna

1244

Serum YKL-40 levels predict the development of vascular complications in patients with type 2 diabetes

Y Suzuki1, Y Sakuma2, R. Iwai3, T. Yamane1, S. Yoshida1, N. Hashimoto1, 1Diabetes and Metabolic disease, Asahi General Hospital, Asahi-City, Chiba, 2Clinical Laboratory, Asahi General Hospital, Asahi-City, Chiba, 3Diabetes, Endocrine and Metabolic disease, Tokyo Women’s Medical University, Yachiyo-City, Chiba, Japan.

Background and aims: Macrophages in atherosclerotic plaques and vascular smooth muscle cells secrete YKL-40, associated with inflammation, endothelial dysfunction and increased tissue remodeling. Progression of nephropathy with increasing levels of albuminuria has been reported to be intimately linked to an increased risk of cardiovascular (CV) disease. The aim of the present study was to examine the changes in serum YKL-40 levels in patients with type 2 diabetes with increasing levels of albuminuria and macroangiopathy.

Materials and methods: A total of 396 patients with type 2 diabetes were enrolled in this study: 212 males/184 females, age 60±13 years, estimated duration of the disease 12±8 years, body mass index (BMI) 26.0±4.6 kg/m², HbA1c 7.4±1.4%. Two hundred fifteen patients had normoalbuminuria, and 122 had persistent microalbuminuria, and 59 had overt proteinuria (macroalbuminuria). Ninety patients showed the past history of CV events (macroangiopathy). The control group consisted of 100 healthy individuals with normal glucose tolerance matched for gender and age. Examination included blood and urine samples for CV risk factors, and markers including lipids, high sensitive C-reactive protein (hsCRP), interleukin (IL)-6 and adiponectin in addition to YKL-40.

Results: Serum YKL-40 levels were positively correlated with age (r=0.33, p<0.0001), systolic blood pressure (r=0.14, p<0.005), serum creatinine (r=0.21, p<0.0001), urinary albumin-to-creatinine ratio (r=0.27, p<0.0001) and IL-6 (r=0.24, p<0.0001). However no significant correlation was found between YKL-40 and parameters such as BMI, HbA1c and hsCRP. Serum levels of adiponectin were not related to levels of YKL-40 in patients with normoalbuminuria (r=0.005, p=0.9045) but both parameters interestingly showed significant correlation in patients with microalbuminuria (r=0.266, p<0.005). YKL-40 levels had no gender differences, and were significantly elevated in patients with type 2 diabetes compared with control subjects (155.8±94.7 vs. 80.7±58.3 ng/ml; p<0.0001). YKL-40 levels were evidently increasing with advancing stages of nephropathy (normoalbuminuria 105.2±74.0, microalbuminuria 156.5±98.0 and macroalbuminuria 205.3±107.8 ng/ml; p<0.005 for all comparisons). Patients with the past CV events showed significantly higher YKL-40 levels than other patients (165.4±99.4 vs. 126.3±91.5 ng/ml; p<0.0001).

Conclusion: YKL-40 levels are significantly elevated in patients with type 2 diabetes with advancing stages of nephropathy, and also in patients with macroangiopathy. These findings suggest that YKL-40 has the usefulness as a novel marker predicting the progressing vascular complications in patients with type 2 diabetes.
Abdominal obesity, hypertension and cardiovascular risk in diabetic patients: Poland compared to North-West Europe Region - insights from IDEA sub-study

M. Wróbel1, M. Chrostowska2, A. Szymborska-Kajane1, P. Paczwa1, J.-P. Després3, K. Narkiewicz2, K. Strojek1; 1Department of Internal Diseases Diabetology & Nephrology, Silesian Medical University, Zabrze, Poland, 2Hypertension Unit, Dept. of Hypertension & Diabetology, Medical University Gdańsk, Poland, 3Sanofi Aventis, Warszawa, Poland, 1Quebec Heart and Lung Institute, Université Laval, Canada.

Background and aims: The cluster of anthropometric and metabolic disorders define the risk of cardiovascular disease (CVD). The IDEA (International Day for Evaluation of Abdominal Obesity) study was an international cross sectional study including 168159 primary care patients in 62 countries. The aims of the present report were: (i) to compare the prevalence of abdominal obesity (AO), hypertension (HT) and cardiovascular disease (CVD) in Poland-PL and North-West Europe Region -NW (Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Netherlands, Norway, Sweden, Switzerland) in diabetic (DM) sub-population of IDEA study; (ii) to assess the impact of DM and AO, HT on CVD in Polish population.

Materials and methods: In Poland, 200 randomly selected general practitioners included 5371 consecutive patients, aged 18 to 80 years, 2024 men and 3347 women. Waist circumference (WC), BMI, the presence of DM, HT and CVD (defined as coronary heart disease, stroke, or revascularization) were recorded. AO was diagnosed according to the NCEP criteria (WC >102 cm for male and >88 cm for female (F)).

Results: The prevalence of DM in PL vs. NW was 12.7% vs. 12.9% in M and 10.8% vs. 8.8% in F (p<0.001), respectively. The prevalence (%) of abnormalities in risk factors in diabetic sub-population is shown in the table. In multiple logistic model, age (OR=1.075, 95% CI. 1.07-1.08, P<0.001), AO (OR=1.41, 95% CI. 1.15-1.73, P<0.001), male gender (OR= 1.60, 95% CI. 1.37 - 1.85, P<0.001), DM (OR= 1.70, 95% CI. 1.4 - 2.06, P<0.001) and HT (OR= 3.15, 95% CI. 2.7 - 3.68, P=0.001) were independent predictors for CVD in Poland. The impact of AO, HT and DM on CVD were independent of gender (P>0.1 for interaction). DM added to combination of AO and HT increased the aged-adjusted probability of CVD (95% CI) from 41% to 54% in M (p<0.001) and from 30% to 42% in F (p<0.001), respectively.

Conclusion: The population profile of cardiovascular risk factors in diabetic patients is worse in Poland when compared with North and Western Europe.
1248

Screening strategy for asymptomatic coronary heart disease in Japanese patients with diabetes mellitus
Y. Kawasaki1, S. Honjo, Y. Hamamoto, H. Ikeda, Y. Wada, H. Koshiyama; Center for Diabetes and Endocrinology, Kitano Hospital, Osaka, Japan.

Background and aims: Although type 2 diabetes has been indicated to be an equivalent risk to myocardial infarction in Finnish study, Japanese subjects with type 2 diabetes has been indicated to be less frequently associated with coronary heart disease (CHD) than Caucasians. In the present study we investigated screening methods of asymptomatic CHD with type 2 diabetes.

Materials and methods: All patients with type 2 diabetes of our outpatient department (OPD) (n=558) were checked with electrocardiography (ECG) at rest, and all of inpatients with type 2 diabetes (n= 573) were checked with both ECG at rest and Treadmill tolerance test (TTT). Those with previous history of CHD or contraindication for TTT were excluded. The OPD patients with abnormal ECG findings were investigated with TTT and/or thallium 201 cardiac scanning (TCS). Therafter the subjects (both IN and OUT) with abnormal TTT and/or TCS findings were examined with coronary angiography (CAG) in order to make a final diagnosis of CHD.

Results: Among 558 OPD patients, 134 subjects had abnormal ECG at rest, and 52 of them received TTT and/or TCS. A total of 4 subjects received CAG, and all of them were finally indicated to have CHD. Among 573 IN patients, a total of 70 had positive TTT, and 61 patients received TCS. Among 61 patients, a total of 22 (36.1%, ie 3.8 % of total) had positive TCS. There were no significant differences of basal clinical parameters between the TCS-positive group and TCS-negative group, except for female dominance in negative group. Thirty-seven (52.9%) of TTT-positive patients and 10 (45.5%) of TCS-positive patients had one or more of the following: abnormal ECG at rest, history of other macroangiopathy, or more than two cardiovascular risk factors. Among TCS-positive patients, a total of 14 subjects received CAG, and eight of them (ie 57.1%) were finally indicated to have CHD; five cases received percutaneous coronary intervention (PCI), two cases received coronary bypass surgery (CABG), and the remaining one case was followed with medication.

Conclusion: These results suggest that a risk factor-guided screening approach for asymptomatic CHD may not be sufficiently adequate, at least, in Japanese patients with type 2 diabetes.

1249

Diabetic retinopathy is a risk factor for cardiovascular disease in Japanese patients with type 2 diabetes. The Otowa Hospital Diabetes Observational Study 2 (OHDOS 2)
K. Inoue1, T. Shimada2, H. Koyama2, M. Shigemoto3, K. Doi1;
1 Department of Endocrinology and Metabolism, 2 Department of General Internal Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan.

Background and aims: Type 2 diabetes is a potent risk factor for cardiovascular disease (CVD). Recently microvascular complications of diabetes are increasingly recognized as independent risk factors for CVD. For example, there is increasing evidence that nephropathy has strongly and independently been associated with the development of CVD. Diabetic retinopathy is also increasingly recognized as an independent CVD risk factor, but there is less evidence than nephropathy. Therefore, the aims of our study were to further explore the relationship of retinopathy with CVD in Japanese patients with type 2 diabetes.

Materials and methods: Overall 568 consecutive outpatients with type 2 diabetes who came to Rakuwakai Otowa Hospital in Kyoto, which is a teaching hospital with 588 beds, in 2003 were studied retrospectively for 6 years or until they experienced a cardiovascular event or died. CVD during follow-up was defined as myocardial infarction, angina, silent myocardial ischemia and stroke. Retinal findings were classified into three categories according to the grade of retinopathy. After 6 years follow-up, 102 patients had incident CVD (18.0%). Figure 1 shows Kaplan-Meier curves for the cumulative incidences of CVD by the grade of retinopathy. After 6 years follow-up, both nonproliferative retinopathy (Cox model hazard ratio [HR] 2.58; 95% confidence interval [CI] 1.58 to 4.20; p=0.001) and proliferative retinopathy (HR 3.59; 95% CI 2.00 to 6.44; p<0.001) had increased CVD risks. These associations were independent of sex, age, duration of diabetes, history of smoking, LDL cholesterol, HDL cholesterol, chronic kidney disease (CKD), hypertension, and history of CVD. In the group of patients with history of CVD, HRs of incident CVD were 2.29 (95% CI 1.07 to 4.89; p=0.032) and 3.26 (95% CI 1.39 to 7.64; p=0.007) in patients with nonproliferative and proliferative retinopathy. In the group of patients without history of CVD, both nonproliferative retinopathy (HR 2.98; 95% CI 1.54 to 5.75; p=0.001) and proliferative retinopathy (HR 4.09; 95% CI 1.67 to 9.61; p=0.002) had strongly increased CVD risks.

Conclusion: This study shows that Japanese type 2 diabetes patients with nonproliferative or proliferative retinopathy had an increased risk for incident CVD.
PS 124 Cardiac complications

1250

Targeting intensive glycemic control versus conventional glycemic control in type 2 diabetes mellitus - a meta-analysis of 29,000 patients

Background and aims: Patients with type 2 diabetes mellitus (T2D) have increased mortality primarily due to increased risk of cardiovascular disease (CVD). Epidemiological studies suggested an association between elevated blood glucose and the development of both micro- and macrovascular complications. However, recent randomised clinical trials (RCTs) have questioned the benefit of intensive glucose control. The aim of this systematic review was to assess the effects of targeting intensive versus conventional glycemic control in patients with T2D.

Materials and methods: RCTs that specified different targets of blood glucose control in the intervention arms were identified through searches of The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS and CINAHL. We contacted relevant companies, experts and conference proceedings from major diabetes congresses. RCTs in adults with T2D irrespective of language and publication status were included. Two authors independently extracted data. If needed additional information was obtained from authors.

Results: Nineteen RCTs were included, randomising 29,977 patients with T2D (16,085 to intensive control, 13,860 to conventional control). The mean duration of the intervention varied from 3 days to 12.5 years. The relative risk (RR) for the primary outcomes of all-cause mortality (fixed RR 1.90, 95% CI 0.93 to 1.08) or CVD mortality (fixed RR 1.05, 95% CI 0.95 to 1.17) was not significant. Meta-regression for all-cause mortality showed no significant influence of disease duration, HbA1c or fasting blood glucose at baseline. However, the risk of all-cause mortality was negatively correlated to duration of the intervention (P = 0.08). The risk of CVD mortality was not influenced by the variables explored by meta-regression. Intensive glycemic control significantly reduced the risk of non-fatal myocardial infarction (fixed RR 0.86, 95% CI 0.78 to 0.96; P = 0.006) and amputation of lower extremity (fixed RR 0.64, 95% CI 0.44 to 0.95; P = 0.03). The RRs of non-fatal stroke, cardiac revascularization and peripheral revascularization were not significant. Intensive glycemic control reduced the risk of all microvascular complications (fixed RR 0.85, 95% CI 0.78 to 0.93; P = 0.0003), including nephropathy (fixed RR 0.80, 95% CI 0.70 to 0.91; P = 0.007) and retinal photocoagulation (fixed RR 0.79, 95% CI 0.69 to 0.91; P = 0.002). Non-hypoglycaemic serious adverse events were more common when targeting intensive glycemic control (fixed RR 1.00, 95% CI 1.00 to 1.11; P = 0.003). The risk of severe hypoglycemia was increased when targeting intensive glycemic control (fixed RR 2.71, 95% CI 2.42 to 3.02; P = 0.002). The cost-effectiveness of intensive glycemic control was neutral. It was not possible to meta-analyse quality of life.

Conclusion: There is insufficient evidence to determine whether targeting intensive glycemic control versus conventional glycemic control reduces all-cause mortality and CVD mortality. Meta-regression showed negative correlation between duration of the intervention and all-cause mortality. Intensive glycemic control reduces key clinical, including all microvascular outcomes. However, conventional glycemic control reduces the risk of severe hypoglycaemia and other serious adverse events.

Supported by: CIMIT Group

1251

Differences in the short-term medium-term and long-term outcomes between newly diagnosed diabetes patients known diabetic and prediabetic patients after an acute coronary syndrome

Background and aims: Diabetes is a major contributor to cardiovascular diseases, as well as an independent predictor for adverse outcomes in patients after an Acute Coronary Syndrome (ACS). The impact of different categories of glucose metabolism on patient outcome after discharge varies according to elapsed time after ACS. The aim of this study is to determine the correlation of these categories with the incidence of short-term and long-term complications after an ACS.

Materials and methods: 520 patients mean aged 66.1±11.9 years that were admitted to the coronary care unit and discharged were included in this longitudinal, prospective, observational, study. The study’s end-points were: death (of cardiovascular cause), myocardial infarction, cardiac failure (clinical and echocardiographic determination) and unstable angina after hospitalization. Short-term was defined at 30 days after discharge, medium-term at 6 months, and long-term at 12 months. Non-diabetic patients went through an Oral Glucose Tolerance Test one month after discharge and IGTs were categorized. Adjusted and unadjusted logistic regression analyses were carried out in order to find the correlation between the glycemic status of the patients and the incidence of complications during the first 30 days and one year after their discharge.

Results: Out of the study’s 520 patients, diabetes was previously diagnosed (Group A) in 152 (29.2%) patients, newly diagnosed (Group B) in 57 (10.9%) patients, and IGT (Group C) was observed in 110 (21.1%) patients while 201 (38.8%) were patients with normal glucose regulation (Group D). Regarding the patient outcome after the first 30 days following ACS, group B had the worst outcome (HR:2.15, 95% CI: 1.190-4.156, p=0.001), followed by groups A (HR:1.87, 95% CI: 1.228-5.231, p=0.003) and C (HR:1.22, 95% CI: 0.976-2.983, p=0.112) using group D as a reference group after adjustment for age, gender, smoking, waist circumference, HDL, triglycerides, total cholesterol, metabolic syndrome (NCEP-ATP III criteria) and hypertension. According to patients’ outcome six months after ACS, group A shows the worst outcome (HR: 2.05, 95% CI:1.211-5.781, p=0.001) followed by group B (HR:1.49-4.483, p=0.001) and group C(HR:1.149-1.493, 95%CI: 1.043-2.593, p=0.05) using group D as reference category. There was no difference between groups A and B (p=0.244). Concerning patient outcome during the first 12 months after ACS, group A showed the worst outcome (HR:2.66, 95% CI:1.234-5.315, p=0.001) followed by groups B(HR:1.84, 95% CI:1.129-4.328, p=0.022) and C(HR:1.25, 95% CI:1.115-3.289, p=0.046) using group D as reference group after adjustment to the before mentioned factors.

Conclusion: Newly diagnosed diabetic patients with ACS show a worse short-term outcome compared to known diabetic patients due to the fact that those patients have diabetes that was neither appropriately recognized nor treated before hospitalization. Patients with known diabetes mellitus have a worse long-term outcome after ACS compared with newly diagnosed and IGT patients, while there are no differences between known and newly diagnosed diabetes patients in medium-term outcome.

1252

Ethnic differences in the prevalence of cardiovascular disease and its risk factors in subjects with and without diabetes in Oslo, Norway

A.T. Tran1, A.K. Jenum1, H.E. Meyer2, K.I. Birklend3, J. Straand1

1‘Section for General Practice and Community Health, Institute of Health and Community, University of Oslo, 2The Diabetes Research Center, Aker University Hospital, 3Institute of Health and Community, University of Oslo, Norway.

Background and aims: The population in Oslo is multiethnic due to the immigrants from Asia and Africa in the last decades. In these ethnic minority groups, we have previously reported a high prevalence of diabetes, however after adjusting for age, gender and smoking, diabetes was diagnosed at a young age and the glycemic control was poorer compared to Norwegians. The aim of the present study was to assess the prevalence of self-reported diabetes and cardiovascular disease (CVD) and its risk factors related to diabetes status in five minority groups compared with the Norwegians.

Materials and methods: Data from three population-based health surveys conducted in Oslo between 2000 and 2002 were merged. Of 54473 invited individuals 24749 (45.4%) participated. Our study was restricted to participants born in Norway, Turkey, Iran, Sri Lanka, Pakistan and Vietnam between 1940 and 1971 (N=18417). Data about self-reported diabetes, CVD (dilated heart disease and/or stroke), physical inactivity, body mass index (BMI), blood pressure (BP), glucose and lipids for subjects with and without diabetes were analyzed. We used country of birth as proxy for ethnicity as the minorities in this study are mainly 1. Generation immigrants. Chi-square tests, multiple regression and logistic regression were used.

Results: Of the 17854 study subjects with known diabetes status, 562 reported diabetes. Table 1 gives the age, ethnic composition, disease prevalence and risk factors of the study population. The prevalence of self-reported diabetes varied from 1.9 % (Norwegians) to 13.3% (Pakistanis), p<0.001, and the eth-
nic minority groups reported more CVD (4.1 to 7.6%) compared to Norwegi-
ans (2.9%, p<0.001), despite being younger. Ethnic differences were found for
most risk factors irrespective of diabetes status. For subjects not report-
ning diabetes, the OR for CVD adjusted for age and gender was higher in all
the ethnic minority groups (2.6 to 4.1, p<0.001) compared with Norwegians,
whereas for subjects with diabetes OR for CVD was only significantly higher
compared to Norwegians for the Vietnamese 4.0 (p=0.01).

Conclusion: All ethnic minority groups reported higher prevalence of dia-
betes and CVD than Norwegians. The excess risk of CVD in ethnic minori-
ties was more profound in subjects not reporting diabetes than in those with
diabetes, indicating the need to improve primary prevention of CVD in these
groups.

Table 1. Crude prevalence of self-reported diabetes, CVD and risk factor levels by ethnicity

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Diabetes, no.</th>
<th>CVD, no.</th>
<th>Age (years)</th>
<th>Mean age (years)</th>
<th>HDL-cholesterol (mmol/l)</th>
<th>BMI > 25 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>13967</td>
<td>548</td>
<td>62.4</td>
<td>49.6</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Turkey</td>
<td>595</td>
<td>356</td>
<td>62.4</td>
<td>49.6</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1127</td>
<td>859</td>
<td>62.4</td>
<td>49.6</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Vietnam</td>
<td>658</td>
<td>385</td>
<td>62.4</td>
<td>49.6</td>
<td>1.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Materials and methods: 520 patients were admitted to the coronary care unit
and discharged February 2006 - October 2007 were included in this longi-
tudinal, prospective, observational, study. First-year end points were: death
of cardiovascular cause), myocardial infarction, cardiac failure (clinical and
echoangiographic determination) and unstable angina after hospitalization.
Non-diabetic patients went through an OGTT one month after discharge and

IGTs were categorized. To evaluate the impact of different glucose measure-
ments on first-year complications after the ACS incidence, separate logistic
regression models were performed for each measurement. The accuracy of
these logistic regression models in predicting complications for the predeter-
ned time period was assessed using the Receiver- Operating Characteristic
(ROC) curves, and their respective areas under the curve (AUC).

Results: Diabetes was previously diagnosed (Group A) in 152 (29.2%) pa-
tients, newly diagnosed (Group B) in 57 (10.9%) patients, an IGT (Group C)
was observed in 110 (21.1%) patients while 201 (38.8%) patients were with
normal glucose regulation (Group D). The incidence of one-year complic-
as was 24.3%, 21.1%, 13.6% and 11.9% in groups A, B, C and D respectively
(p<0.014). AUC of ROC curves for the probabilities of the logistic regression
models (adjusted for age, gender, smoking, waist circumference, HDL, trig-
llycerides, total cholesterol, metabolic syndrome (NCEP-ATP III) and hyper-
tension) for the admission glucose was 0.697 (p=0.001) 0.627 (p=0.010) 0.601
(p=0.022) and 0.578 (p=0.049) for A, B, C and D Group respectively. AUC
for the fasting glucose was 0.632 (p=0.021), 0.581 (p=0.033) for groups A, B
respectively. Statistically significant AUC for the postprandial glucose was just
for Group A [0.611, (p=0.033)] while significant AUC for the mean value of
the glucose during hospitalization was 0.601 (p=0.026) 0.578 (p=0.036) and
0.557 (p=0.048) for Groups A, B and C respectively. AUC for the HbA1c was
0.592 (p=0.033) and 0.522 (p=0.043) for groups A and B respectively, show-
ing no statistical significance as to the outcome of the other two groups.

Conclusion: Admission glucose in ACS incidents shows the most significant
correlation with first-year end-points even in normoglycemic patients among
different glucose values during hospitalization. The postprandial glucose is
related with end-points only in known diabetics while the fasting glucose
shows a significant correlation only in diabetic patients. Prolonged hypergly-
cemia expressed by mean glucose values during hospitalization affects newly
diagnosed, known diabetic patients and IGT patients.

1254

Evidence of diastolic dysfunction in NAFLD: A study using tissue
Doppler echocardiography
C.K. Wong1, M.J. Burgess1, A. Irwin1, C.J. Pugh1, K. George1, P. Richardson1,
D.J. Cuthbertson1; 1Clinical Sciences Centre, University of Liverpool, 2Liverpool John Moores
University, 3Royal Liverpool and Broadgreen University Hospital Trust,
United Kingdom.

Background and aims: Non alcoholic fatty liver disease (NAFLD) is consid-
ered the hepatic manifestation of metabolic syndrome and such patients have
increased risk of cardiovascular events (myocardial infarction, stroke, coro-
nary revascularisation and cardiovascular death). Recent data suggests that
patients with NAFLD had a hazard ratio of 2 for developing a cardiovascular
endpoint in 6.5 years. Abnormalities in diastolic function often presage car-
diac disease. Diastolic dysfunction may progress to symptomatic heart failure
without systolic impairment. The aim of this study is to compare diastolic
dysfunction in patients with NAFLD compared with age matched controls
using tissue Doppler echocardiography, a method which can measure dif-
f erential velocities within a region of interest.

Materials and methods: 15 patients with NAFLD and 15 normal controls
were recruited. The diagnosis of NAFLD was as per local guidelines. Subjects
underwent transthoracic echocardiography using a GE Vivid Q machine
(2.5MHz phased array transducer). Colour tissue Doppler loops (3 cardiac
cycles) in each of the apical 4-chamber, 2-chamber and long axis imaging
planes were acquired triggered to the ECG and saved digitally for subsequent
off line analysis by a single experienced operator data who produced the
strain and strain rate curves using Echopac V9.01 (GE, Horten, Norway).

Results: The control and NAFLD groups were matched for age, BMI and
systolic blood pressure: 50.8±8.6 vs 48.4±13.2 years, 28.1±5.0 vs 28.1±4.9kg/
m², 126±12.8 vs 128±6.8mmHg. Nor was there a significant difference in
ejection fraction 57.1±12.3 vs 62.4±8.9% or left ventricular mass index
74.1±14.2 vs 79.8±15.1/g/m². E/A ratio is a marker of LA pressure which acts as a sur-
rogate for diastolic dysfunction. Patients with NAFLD showed significant re-
ductions in both diastolic velocities and peak early diastolic strain rate com-
pared with normal controls, supporting the presence of diastolic dysfunction.
There is also a non significant trend suggesting patients with NAFLD have
reduced systolic velocity and strain.

Conclusion: These results suggest diastolic dysfunction in patients with
NAFLD compared with controls. Diastolic dysfunction, left untreated, may
Heart failure is still the main cause of death in patients with type 2 diabetes and especially women with diabetes have an increased cardiovascular risk compared to their male counterparts. Since cardiac complications are often present at the time of diagnosis of diabetes mellitus type 2, the question appeared if alterations in cardiac function are already present in prediabetic stages or if the diagnosis of diabetes is often delayed. Since women with prior gestational diabetes (pGDM) display a young, female population at increased risk for developing type 2 diabetes, the aim of this study was to investigate cardiac function via magnetic resonance imaging in women with pGDM with normal glucose tolerance, impaired glucose tolerance and overt type 2 diabetes as well as in women with no history of gestational diabetes and normal glucose tolerance (CON).

Materials and methods: 1H magnetic resonance imaging of the myocardium, an oral glucose tolerance test for the assessment of glucose tolerance and blood sampling for the measurement of HbA1C and lipid profile were performed in 8 normal glucose tolerant (NGT), 6 pGDM with impaired glucose tolerance (IGT), 12 pGDM with type 2 diabetes (DM) and 10 women with no history of gestational diabetes and normal glucose tolerance during pregnancy (CON), who served as controls. The median follow-up period since pregnancy was 10 years.

Results: DM showed a significant reduction of the E/A-ratio compared to IGT (1.09 vs 1.9; p=0.002) as well as a decreased stroke volume compared to all other groups (60.1±14.5 vs 79.4±14.6 ml;p=0.008) and significantly higher triglycerides (p=0.03) and lower HDL-values compared to NGT and CON (CON:64.8±9.2, NGT:56.4±17.6, IGT:33.5±12.8, DM:46.8±12.0; p=0.0047). E/A ratio and stroke volume were inversely correlated with systolic blood pressure (R=-0.6; p=0.002), triglycerides (R=-0.5; p=0.003) and HbA1C (R=−0.5; p=0.001) and positively correlated with HDL (R=0.4; p=0.03). DM were older compared to NGT and IGT, but comparable to CON. There was no difference in BMI between the groups.

Conclusion: According to our results women with overt diabetes are characterized by alterations of diastolic cardiac function and lipid metabolism. The latter seems to develop at the prediabetic stage. Hence, early detection of overt hyperglycemia and dyslipidemia in women at high risk should be the primary aim in the prevention of cardiac complications in diabetes mellitus type 2.
PS 125 Cardiovascular effects of interventions

1259

The impact of smoking cessation on metabolic factors in newly diagnosed patients with type 2 diabetes: a one-year prospective study

C. Voulgaris, C. Stathi, A. Kokkinos, K. Makrilakis, N. Katsilambros, N. Tentolouris, First Department of Propaedeutic and Internal Medicine, Laiko Hospital, Athens, Greece.

Background and aims: Smoking is an independent risk factor for cardiovascular morbidity and mortality. Patients with type 2 diabetes-mellitus (T2DM) are at increased risk for cardiovascular events and smoking cessation is a priority for the prevention of macrovascular and microvascular complications. In the present prospective study we evaluated the impact of smoking cessation on glycaemic control and metabolic factors in subjects with newly-diagnosed T2DM.

Materials and methods: We recruited 193 smokers (96 male/97 female; age: 57±7.8 years) with newly-diagnosed T2DM, without macrovascular complications, who were educated to smoking cessation, diet and exercise. A detailed history of smoking habits (years-frequency of smoking, types of tobacco used) was obtained. All subjects were contacted by phone every 2-weeks in the first 2-months and monthly thereafter with emphasis on smoking cessation. Ankle-brachial-pressure index (ABI) was measured by ultrasonography. Demographic, biochemical parameters, insulin-resistance and albumin-excretion-rate (AER) were measured at baseline and 1 year after smoking cessation.

Results: At baseline, smoking habit was associated significantly with younger age [OR, 95% C.I. 1.86 (1.79-1.94)], female gender [1.19 (1.04-1.96)], higher BMI [1.85 (1.73-2.00)], systolic-blood-pressure (SBP) [1.02 (1.00-1.05)], HbA1c [1.97 (1.05-1.99)] and insulin-resistance [1.62 (1.03-2.54)], dyslipidaemia (low HDL-cholesterol and/or high triglyceride levels and/or high LDL-cholesterol) [1.96 (1.94-1.99)], higher AER [1.62 (1.00-1.90)] and lower ABI [0.005 (0.00-0.83)]. Marital status was associated with lower odds [0.09 (0.01-0.68)] whereas a higher education level with higher odds of smoking [3.80 (1.02-14.5)]. At the end of the 12-month period, 62.2% (n=120) of the studied population reported successful cessation. Pharmacological interventions for hyperglycaemia, dyslipidaemia and blood-pressure control were not different between the studied groups. Towards baseline, after adjustment for dietary-factors and exercise-level, smoking cessation had the highest contribution in the reduction of HbA1c [0.116 (0.081-0.158)], insulin-resistance [0.184 (0.03-0.35)], dyslipidaemia [0.94 (0.82-0.99)], SBP [0.34 (0.32-0.43), AER [0.50 (0.23-0.72)] and increased ABI [0.001 (0.00-0.15)]. No significant differences were found between patients who continued smoking and those who quit regarding BMI and waist-circumference. Microalbuminuria was reduced by 38% in subjects quitting smoking and by 16% in those who continued smoking (P=0.001).

Conclusion: Smoking cessation strategies are effective in subjects with T2DM. Smoking cessation improves glycaemic control and lipid profile and reduces blood-pressure and microalbuminuria. Stricter counselling and interventions for quitting smoking are warranted in patients with T2DM for the prevention of microvascular and macrovascular complications.

1260

Achievement of specified lipid and hs-CRP levels with ezetimibe/simvastatin vs atorvastatin in metabolic syndrome patients with and without atherosclerotic vascular disease

J. Rosen, J. Robinson, H.-H. Parving, C. Ballantyne, S. Grundy, W. Fusha, J. Lin, A. Shah, M.E. Hanson, A.M. Trushkowsky, A. Theodossi, S. Matsagos, G. Dimitriadi, A. Meldonis; 1st Clinic of Internal Medicine, Tzanio General Hospital, Piraeus, 2nd Department of Internal Medicine, Research Institute and Diabetes Center, University of Athens, Medical School, Greece.

Background and aims: Soluble ST2 is a member of the IL-1R receptor family and it has been used in several studies as a sensitive biomarker of cardiac failure. This biomarker has never been studied before in diabetic population, compared to healthy controls. The aim of this study was to find any possible differences of the value of ST2 among diabetic and non diabetic subjects with preserved LV systolic function. The second aim was the revelation of any other biological parameters of diabetic patients that impact on the value of ST2.

Materials and methods: We recruited 106 subjects, 36 healthy and 70 diabetic volunteers that underwent extensive ultrasonographic check of their cardiac function, using the latest revised guidelines of ACC/AHA. All subjects that had an ejection fraction <50% were excluded. Exclusion criteria were also subjects with history of active malignancy and/or chemotherapy, chronic use of corticosteroids or thiazolidiones and history of autoimmune diseases. Subjects with history of active malignancy and/or chemotherapy, chronic use of corticosteroids or thiazolidiones and history of autoimmune diseases.

Results: Mean age of the total 106 subjects were at 56.45±9.19 years, without any differences between the 2 groups. No difference was observed also at the sex distribution in the groups. The mean value of ST2 in group A (non diabetic controls) was 9.76±5.21, statistically significantly lesser than the 13.48±5.75 of group B (diabetic patients) (p=0.017). There was no significant difference on the BNP levels among the 2 groups (group A: 36.08±13.10, group B: 31.36±31.85, p=0.307). Similarly, no statistically significant difference was noticed on the values of hsCRP, Fibrinogen, estimated GFR. We measured all the classical biomarkers (where as blood count, biochemistry, lipidemic profile, hs CRP, Fibrinogen, BNP) and the ST2 with the ELISA technique by using the Presage® ST2 assay kit by Critical Diagnostics.

Conclusion: No study until now has focused on the role of sST2 on diabetic people. In our study we showed that diabetic people with preserved LV systolic function have higher levels of ST2 compared to non diabetic controls. This value seems to be affected by the level of glycemic control (HbA1c), fasting glucose and H.D.L. Further research needs to be done to uncover the underlying pathophysiological mechanisms.

Supported by: H.N.D.C.
Statins are the most efficacious drugs for decreasing low-density lipoprotein cholesterol levels; they reduce both primary and secondary cardiovascular risk in the general population. The objective of this study was to determine the effect of statin therapy (atorvastatin) on serum aspartaminotransferase and alaninaminotransferase levels in patients with type 2 diabetes (T2DM) and hepatitis C. However, less is known about the safety of statin use in patients with liver disease.

Materials and methods: We selected 64 patients with type 2 diabetes mellitus and chronic hepatitis C who were treated with atorvastatin, 20 mg for 6 months. We evaluated body weight, blood pressure, liver enzymes, lipids, adipocytokines (adiponectin, leptin, resistin, TNFalfa, IL-6), insulin resistance (Homeostasis model assessment - HOMA-IR) at baseline, 1 and 6 months. The liver fibrosis was non-invasively assessed using the Forns index; a value < 4.2 excludes liver fibrosis and a value > 6.9 is a predictor for significant fibrosis. Results: Plasma triglycerides and cholesterol decreased (p<0.05), HDL-cholesterol and HOMA-IR increased (p<0.05), after 6 months. Aspartaminotransferase and alaninaminotransferase increased but we did not find significant statistically differences (median increased was 15.6 U/L for ALT and 7.2 U/L for AST). Forns index decreased at 6 months (p=0.048). Atorvastatin treatment had no effect on plasma adiponectin (p=0.569) but we observed reduction of leptin and resistin level (p=0.032 respectively p=0.0048). TNFalfa and IL-6 decreased but not significantly statistically.

Conclusion: Among patients with hepatic C no significant elevation of liver enzymes during statin treatment was observed. Statin therapy should not be stopped or contraindicated in this patient population; however, more prospective clinical trials are needed to confirm the safety and efficacy. Supported by: Romanian National Authority for Scientific Research

1262 Effect of nicotinic acid on combined hyperlipidaemia: A kinetic study on reverse cholesterol transport in humans

M. Krempf, Y. Zair, M. Chetveau, L. Flei, T. Magot, K. Ouguerram; Clinique d’endocrinologie, Institut du Thorax, Nantes, France.

Nicotinic acid improves the combined dyslipidemia frequently observed in patients with type 2 diabetes or metabolic syndrome. The highest treatment increase of HDL-C is observed with this drug but the underlying mechanisms are unclear. The aim of this study was to give further insights on the effect of nicotinic acid in humans by using a new dual stable isotope technique to estimate the cholesterol transport and metabolism in HDL and other lipoproteins. We recruited 8 patients with combined hyperlipidemia submitted to 8 week treatment with LAR nicotinic acid (2 g/d) associated with aspirin (300 mg/d). The patients were submitted before and at the end of the treatment to a dual infusion of 2H3 lecine and 13C2 acetate. The tracer/trace ratio was analyzed by mass spectrometry in Apo B100, Apo A1 and cholesterol (free and esterified) in VLDL, IDL, LDL and HDL. The compartmental model to analyze the data was developed on SAAM II. With LAR nicotinic acid triglycerides declined (2.21±0.67 vs 1.19±0.62, p<0.05) as total cholesterol (2.15±0.63 vs 1.80±0.38, p<0.05) and LDL-C (1.28±0.45 vs 1.03±0.29, p<0.05) while HDL-C increased (0.41±0.13 vs 0.49±0.10, p<0.05). There was no change on hepatic ApoB100-VLDL production but conversion rate of ApoB100-VLDL to ApoB100-LDL increased (0.09±0.03 h-1 vs 0.12±0.01, p<0.05). There was no significant change on ApoA1-HDL kinetics. An increase of free cholesterol esterification was observed within HDL (0.12±0.05±h-1 vs 0.13±0.03±h-1, p<0.05) and an increase of esterfied cholesterol esterification in HDL (0.04±0.01 vs 0.07±0.03±mg.kg-1.h-1, p<0.09) associated with a decrease of esterfied cholesterol transfer to VLDL and LDL (0.45±0.11 vs 0.32±0.14 h-1, p<0.05) through CETP. We concluded that LAR nicotinic acid decreased triglycerides by increasing vascular lipolysis and increased reverse cholesterol transport by increasing cholesterol esterification and catalolism.
Study of apparent aspirin resistance in 100 consecutive patients with type 2 diabetes in primary cardiovascular prevention

A. Decaudain1, H. Legall1, C. Baralot2, N. Jutrasche1, S. Charriere1, L. Grosne1, M. Hanss1, M. Moulsma1, P. Moulin1, 2Endocrinology, cv hospital, Lyon Bron, 1hemostasis, GHE, Lyon Bron, 2Biochemistry, HEH, Lyon, 1Endocrinology, HCL/univ Lyon1, Lyon Bron, France.

Background and aims: Occurrence of aspirin resistance in type 2 diabetes (D2) is controversial. It has been considered as a cardiovascular risk factor whatever the underlying mechanism. However it is difficult to distinguish authentic platelet resistance to the inhibitory effect of acetyl salicylic acid from non compliance. The aim of this study was to establish the prevalence of aspirin resistance in type 2 diabetic patients in primary cardiovascular prevention, submitted to multiple therapies and consequently more likely to be inobservant.

Materials and methods: 100 consecutive aspirin treated D2 patients in primary cardiovascular prevention were included in an observational prospective mono centric study. Patients were 65±8 years old, had D2 for 16±8 years, HbA1c = 7.7±1.4%, and were treated by low dose of aspirin (75 - 325 mg/d). Platelet aggregation was assessed by arachidonic acid (0.5 mg/ml) on platelet rich plasma. Normal platelet function was established in 55 D2 patients not treated by aspirin (CTRL), (57±11 years old, D2 for 11±7 years, HbA1c 7.6±1.2%). Blood was drawn in the fasting state, in the morning, before any treatment administration.

Results: Mean aggregation level in CTRL D2 was 81.3±13.7%. 83% of D2 patients treated by low dose of aspirin had an aggregation level below 60%, cut off corresponding to the lowest aggregation level found in CTRL D2. All these aspirin sensitive D2 patients had an aggregation level lower than 25% (mean 6.3±7.9%). In univariate analysis, no criteria (age, sex, duration of diabetes, micro-angiopathic complications, smoking, number of pills taken daily) was associated with the occurrence of unaltered aggregation function under aspirin treatment. In the 17 D2 patients with apparent resistance, 6 (35%) admitted to have omitted to take aspirin the day before assessment of platelet function. In the 11 remaining patients, 6 were tested again after giving special advice to take aspirin the day before. Platelet aggregation level was found below 25% in all these patients upon this second test.

Conclusion: In the present study, 17% of D2 patients in primary cardiovascular prevention had an apparent aspirin resistance. However the second test showing the expected platelet aggregation inhibition suggests that non compliance plays a major role in the occurrence of apparent resistance to aspirin.

Supported by: HCL

Pioglitazone in addition to metformin improves erythrocyte deformability in patients with type 2 diabetes mellitus. Results from the PIOlix study

S. Forst1, M. Löbig1, U. Lehmann2, C. Holberg3, C. Friedrich1, W. Fuchs1, A. Pfützner1; T. Forst1.
1Institute for Clinical Research and Development, Mainz, 2Medical Department, Takeda Pharma, Aachen, Germany.

Background and aims: Changes in hemorheology and blood viscosity were shown to contribute to the development of micro- and macrovascular complications. In patients with diabetes mellitus, increased hematocrit levels and reduced erythrocyte deformability are considered to impair microvascular blood flow and to reduce tissue oxygenation. In recent studies, treatment with pioglitazone was shown to improve endothelial function and to improve the overall risk for vascular complications in patients with type 2 diabetes mellitus. The aim of this study was to compare the effect of adding pioglitazone or glimepiride to metformin treatment on erythrocyte deformability in patients with type 2 diabetes mellitus (T2DM).

Materials and methods: This two arm, parallel study, covered 23 metformin treated T2DM patients (16 male, age: 57.2±10.7 years; BMI 32.7±4.3 kg/m2) with an HbA1c above 6.5%. Patients were randomized to receive either 15 mg Pioglitazone (PIO) bid. or 1 mg Glimepiride (GLIM) bid. in combination with 850 mg Metformin bid. for 6 months. Blood samples were taken for the measurement of fasting glucose, HbA1c, fasting insulin, intact proinsulin, adiponectin, and hematoctrit (Hct1). In addition, the erythrocyte elongation index (EI) was measured using laserdiffactoscopy (Rheodyn SSD, Myrene GmbH, Roetgen, Germany) at a shear stress range from 0.3 Pa to 60 Pa.

Results: Both treatments significantly improved HbA1c levels (PIO - 0.9±0.8%; GLIM -0.6±0.4%; p<0.05 respectively) and end up in comparable HbA1c levels after 6 months (PIO 6.3 ± 1.2; GLIM 6.2 ± 0.4) Treatment with PIO reduced fasting insulin (8.2±15.1 mU/L; p=0.097), and intact proinsulin levels (-11.3±9.2 pmol/l; p=0.05), and increased adiponectin levels (8.1±4.6 µg/ml; p<0.05). Hct slightly decreased during PIO treatment (-1.3±2.3%; p=0.09). No significant changes in these parameters could be observed during GLIM treatment. As shown table 1, PIO improved the EI, resulting in a significant improvement at all physiological shear stress ranges (0.6 to 6.0 PA). At a physiological shear stress rate of 1.2 Pa, the improvement in EI correlated with the increase in adiponectin levels (r=0.74; p<0.0001), and inversely with intact proinsulin levels (r=0.47; p<0.05).

Conclusion: This is the first study showing an improvement in erythrocyte deformability during treatment with pioglitazone which was correlated to an increase in adiponectin and a decrease in intact proinsulin levels, but independent from glycaemic control.

Supported by: TPNA, Inc.
Subjects were 144 female patients with type 2 diabetes mellitus.

Pramlintide was approved by the US FDA in 2005 as an adjunctive treatment for patients with diabetes who use mealtime insulins or without oral antihyperglycemic drugs who have not achieved desired glucose control. The FDA recently issued guidance on the type of evidence required to demonstrate that a new type 2 diabetes therapy is not associated with unacceptable cardiovascular risk. In the absence of guidance for currently marketed antidiabetic therapies, the cardiovascular risk of pramlintide was examined following the guidance for new therapies.

Materials and methods: Analysis of an integrated database of 5 randomised controlled type 2 diabetes trials (16 to 52 weeks) compared relative risk (RR) and hazard ratio (HR) of cardiovascular events with pramlintide vs a pooled comparator treated with either placebo or rapid-acting insulin. Background therapies included at least one type of insulin and in some cases oral antidiabetic agents. The primary endpoint was primary major adverse cardiovascular events (MACE) including cardiovascular mortality, myocardial infarction, stroke, acute coronary syndrome hospitalisation, and urgent revascularisation procedures. Subset MACE analysis used narrower criteria including only cardiovascular mortality, myocardial infarction, and stroke, while SMQ MACE included all Standardised MedDRA Query terms for these events. The broader secondary endpoint included the primary endpoint terms plus arrhythmia, heart failure, and mechanical-related events.

Results: The population included 1434 pramlintide and 582 pooled comparator subjects treated for a total of 960 and 359 patient-years, respectively. Demographics were comparable between groups (mean age 56-57 y, 52-54% M, BMI 32-33 kg/m², HbA₁c 9.0-9.1%). RR and HRs between pramlintide and pooled comparator ranged from 0.86 to 1.11, depending on the endpoint and analysis method used. Corresponding 95% upper CI limits were below or close to the FDA-specified 1.8 threshold, suggesting no unacceptable increase in cardiovascular risk.

Primary MACE

<table>
<thead>
<tr>
<th>Ratio (95% CI)</th>
<th>Ratio (95% CI)</th>
<th>Ratio (95% CI)</th>
<th>Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR (Mantel-86)</td>
<td>0.86 (0.55, 1.34)</td>
<td>0.90 (0.46, 1.76)</td>
<td>1.10 (0.62, 1.96)</td>
</tr>
<tr>
<td>RR (Cox)</td>
<td>0.88 (0.56, 1.38)</td>
<td>0.92 (0.47, 1.78)</td>
<td>1.11 (0.62, 1.99)</td>
</tr>
<tr>
<td>RR (A. Han-son)</td>
<td>0.93 (0.62, 1.38)</td>
<td>0.95 (0.50, 1.81)</td>
<td>1.10 (0.64, 1.86)</td>
</tr>
</tbody>
</table>

In addition, study of postmarketing reports has not revealed evidence of a signal for cardiovascular risk.

Conclusion: Based on these analyses, there appears to be no increased risk of cardiovascular adverse events associated with pramlintide treatment. However, interpretation of this type of analysis has the following caveats: these trials were not designed to assess cardiovascular outcomes, events were adjudicated retrospectively after unblinding, the number of cardiovascular events was small, and the duration of the trials was ≤52 weeks.

Supported by: Amylin Pharmaceuticals, Inc. and Eli Lilly & Co.
PS 126 Peripheral and cerebral arteries

1268
Effects of early detection and intensive treatment on peripheral arterial disease - ADDITION Denmark
M. Charles\(^1\), D.R. Witte\(^2\), N. Ejkjaer\(^3\), K. Borch-Johnsen\(^1\), T. Lauritzen\(^1\), A. Sandbaek\(^1\)
\(^1\)Dept of General Practice, School of Public Health, Aarhus, \(^2\)Steno Diabetes Center, Gentofte, \(^3\)Dept of Endocrinology, Aarhus University Hospital, Denmark.

Background: Peripheral arterial disease (PAD) is a marker of systemic atherosclerotic disease and an independent risk factor for foot ulcers and amputations. Measurement of ankle brachial index (ABI) is widely used in the diagnosis of PAD. People with diabetes have an increased risk of developing PAD. Prevalence among diabetic individuals aged over 50 years is estimated to be 29%. Evidence exists on treatment of these patients but there is no evidence on treatment or prevention of PAD in people with screen detected diabetes. Our aim was to study the effects of intensive multifactorial treatment and routine care on PAD in persons with screen detected diabetes in a cluster randomized controlled study.

Methods: We recruited 466 individuals with screen-detected diabetes identified through a screening programme in 87 general practices in the Danish arm of the ADDITION Study. Practices were randomized to intensive treatment (IT) or routine care (RC) before initiation of the screening programme. Individuals in the IT practices (45 practices) received a multi-factorial treatment programme including lifestyle advice (concerning diet, physical activity, medication adherence, and smoking cessation), prescription of aspirin and stepwise increases in pharmacological treatment of blood pressure, glucose and lipids according to strict targets. The RC group (42 practices) were offered treatment according to national guidelines. Anthropometric measures and blood samples were collected at baseline and at five year follow-up. At follow-up ABI was measured according to a standardized protocol. ABI was calculated using the highest blood pressure in each foot divided by the highest blood pressure in either arm. An ABI of <0.9 in either leg was considered “abnormal”. A X\(^2\) test was used to assess the hypothesis of no difference in prevalence of PAD between the IT and RC group at follow-up. Logistic regression, accounting for the cluster design, was used to calculate the odds of ABI<0.9 in the IT compared to the RC group.

Results: Baseline characteristics are shown in Table 1. The IT group had a prevalence of abnormal ABI in either leg of 7% (4; 10) compared to 9% (4; 13) in the RC group (p=0.43). The odds ratio of ABI<0.9 in IT compared to RC was 0.76 (0.38; 1.52), p=0.43.

Conclusion: The prevalence of PAD 5 years after a screen-detected diagnosis of diabetes was lower in the Danish arm of the ADDITION trial compared to cohorts of people with known diabetes. This could indicate that screening for diabetes identifies people at an earlier stage in the trajectory of PAD and/or that general diabetes prevention and treatment has improved significantly over the past decade. We did not find that intensive multi-factorial treatment in general practice led to a significant reduction in the prevalence of PAD compared to routine care as recommended by national guidelines.

Table 1 - Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Routine</th>
<th>Intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Patients</td>
<td>171</td>
<td>295</td>
</tr>
<tr>
<td>Male</td>
<td>57.9%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>50.0 (7.0)</td>
<td>50.3 (6.6)</td>
</tr>
<tr>
<td>HbA1c</td>
<td>6.4 (1.1)</td>
<td>6.4 (1.4)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>145.1 (17.6)</td>
<td>144.4 (18.5)</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>30.4 (3.4)</td>
<td>30.3 (3.2)</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>103.1 (13.9)</td>
<td>103.3 (13.0)</td>
</tr>
<tr>
<td>Total Cholesterol (mmol/l)</td>
<td>5.82 (1.19)</td>
<td>5.64 (1.10)</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.37 (0.32)</td>
<td>1.38 (0.37)</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.7 (1.3)</td>
<td>1.6 (1.0)</td>
</tr>
<tr>
<td>Smoking Current</td>
<td>33.7%</td>
<td>31.3%</td>
</tr>
</tbody>
</table>

Supported by: DCSR, DRFGP, DCEHTA, AURF, NNF, NBH, DMRC, DDA, AFMøller, BMKT, CINE, DCN

1269
The association between long term glycaemia and arterial stiffness is detectable with HbA\(_1c\) but not advanced glycation end-products in people with diabetes risk. The ADDITION-PRO study

N.B. Johansen\(^1\), S.S.S. Rasmussen\(^1\), N. Winberg\(^2\), D. Vistisen\(^1\), D.R. Witte\(^1\)
\(^1\)Steno Diabetes Center A/S, Gentofte, \(^2\)Department of Endocrinology, Hvidovre University Hospital, \(^3\)Department of Clinical Physiology, Frederiksberg Hospital, Denmark.

Background and aims: Increased arterial stiffness is one of the initial steps in the development of atherosclerosis. Long term exposure to hyperglycaemia is associated with arterial stiffness. Glycated proteins such as haemoglobin (HbA\(_1c\)) and advanced glycation end-products (AGE) reflect glycaemia during a longer period. HbA\(_1c\) is frequently used assessment of long term exposure to glycaemia and is known to be associated with arterial stiffness. However, it is unknown whether the non-invasive assessment of AGE can detect the same association. We aimed to study how strongly HbA\(_1c\) and AGE are associated with arterial stiffness in a population at high diabetes risk.

Materials and methods: A Danish population at high diabetes risk originally identified through a stepwise screening programme was invited for a health examination in 2009 including assessments of HbA\(_1c\) and AGE by non-invasive skin autofluorescence. Plasma lipids, blood pressure, height, weight, and carotid-femoral pulse wave velocity (PWV) as an assessment of arterial stiffness were measured. Information of anti-diabetic treatment and smoking was self-reported. Individuals on anti-diabetic medication were excluded in the analysis. The effect of HbA\(_1c\) and AGE on PWV was assessed through linear regression models adjusted for age, sex, and pulse pressure, and furthermore adjusted for BMI, smoking, HDL cholesterol, and triglycerides. The standardized regression coefficients were compared.

Results: 378 individuals (mean age 66.2 years (SD: 6.2), 57% men, mean BMI 27.7 kg/m\(^2\) (SD: 4.4), mean HbA\(_1c\) 5.9% (SD: 0.4), mean AGE 2.25 arbitrary units (SD: 0.52)) were included in the analysis. HbA\(_1c\) was assessed PWV in the model adjusted for age, sex and pulse pressure (Table 1). This association remained significant after further adjustments. AGE was not associated with PWV at a statistically significant level.

Conclusion: Among individuals at high diabetes risk HbA\(_1c\) but not AGE measured by a non-invasive method is associated with arterial stiffness. These differences in associations could be explained by the high risk population, and that HbA\(_1c\) reflects a shorter period of glycaemia than AGE. The other explanation could be that HbA\(_1c\) is a more precise measurement of long term glycaemia than AGE measured by skin autofluorescence.

Table 1 Change in PWV (m/s) per 1 SD increase in the variable

<table>
<thead>
<tr>
<th></th>
<th>PWV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>HbA(_1c)</td>
<td>0.45 (0.25;0.65)</td>
</tr>
<tr>
<td>AGE</td>
<td>0.16 (-0.05;0.37)</td>
</tr>
</tbody>
</table>

1270
Increased chemerin levels are associated with peripheral arterial occlusive disease and increased urinary albumin excretion rate in type 2 diabetic patients

F. Hoellerl\(^1\), J.M. Brix\(^1\), G.-H. Schernthaner\(^2\), G. Schernthaner\(^3\)
\(^1\)Department of Medicine I, Rudolfstiftung Hospital, Vienna, \(^2\)Department of Medicine II, Medical University Vienna, Austria.

Background and aims: Chemerin is a recently discovered adipokine that regulates adipocyte differentiation and modulates chemokinesis and activation of dendritic cells and macrophages. Chemerin was found to be associated with obesity, insulin resistance and the metabolic syndrome. In addition, recent studies have demonstrated that chemerin has angiogenetic properties. Given the convergence of adipocyte and macrophage function, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis in humans. Thus, the aim of our study was to determine whether

Diagram
A total of 74 patients (148 feet) with T2DM were included. The results of the study are as follows:

Materials and methods: Serum Chemerin levels were determined in 128 patients with Type 2 diabetes mellitus (T2DM) and different levels of albuminuria (54 with normoalbuminuria (NA), 45 with microalbuminuria and 29 with macroalbuminuria (MA)) as well as in 28 healthy control subjects (CO). Mean Age of the patients was 66±11 years and mean duration of diabetes was 13.8±8 years. Chemerin was measured by an ELISA (BioVendor, Heidelberg, Germany). Within the T2DM patients 32 patients had a history of peripheral arterial occlusive disease (PAOD), 26 with coronary heart disease, 11 with stroke and 57 with any cardiovascular disease (CVD).

Results: Circulating Chemerin levels are significantly elevated in diabetic patients compared to CO (240.7±77.5 vs 175.6±43.5 ng/ml, p<0.001). In the diabetic patients, serum chemerin levels are significantly associated with urinary albumin excretion rate (UAE, mg/24h; p=0.001). The highest chemerin levels were observed in patients presenting with MA (290.9±84.5 vs 223.1±53.9 ng/ml in NA, p<0.001). In univariate analysis regression of all quantitative variables chemerin was significantly associated with BMI (p=0.009), HbA1c (p=0.019), creatinine (p<0.001), estimated glomerular filtration rate (p=0.002), age (p<0.001) and UAE (p=0.001). The multivariate model revealed UAE (β=0.341, p<0.001), age (β=0.229, p=0.029) and BMI (β=0.231, p=0.028) as predictors of chemerin. Chemerin levels were significantly higher in patients with PAOD versus those without PAOD (264.6±74.9 vs. 217.0±72.5 ng/ml, p=0.002) and in those with any CVD vs those without (255.3±71.6 vs. 208.0±70.5 ng/ml, p<0.001), but did not differ between patients with or without history of myocardial infarction and stroke.

Conclusion: These are the first findings demonstrating that chemerin levels are significantly increased in T2DM patients presenting with PAOD, the most advanced vascular disease in diabetic patients, but not in those with a history of myocardial infarction or stroke. The strong relationship between chemerin and urinary albumin excretion rate could be of clinical relevance in particular since proangiogenic properties were recently found for this adipokine.

1271

Severe peripheral arterial obstructive disease predicts cardiovascular events in type 2 diabetes mellitus: Is there a gender difference?

K. Bonomo, M. Chirio, M. Secchi, P. Poy, A. Pagliarino, M. Trovati, F.L. Cavaldol; Department of Clinical and Biological Sciences, Faculty of Medicine San Luigi Gonzaga, University of Turin, Orbassano (TO), Italy.

Background and aims: Peripheral Arterial Obstructive Disease (PAOD) predicts cardiovascular (CV) events both in the general and in the diabetic population: aim of the present study is to evaluate whether this predictive power is different in men and women affected by Type 2 diabetes mellitus (T2DM).

Materials and methods: We examined all Type 2 diabetic patients submitted to revascularization procedures (mainly percutaneous angioplasty) because severe PAOD at our Unit from 1997 to 2009: 50 women and 87 men (46%) were included. Each of them was associated with a control subject matched for gender, age, diabetes duration and length of follow-up at our Unit, but without PAOD (identified as “Controls”). In Cases and Controls, we evaluated: a) CV risk factors at the entry in the study (i.e., in Cases at the time of admission threshold (VPT).

Results: In Cases, women differed from men for age (73.8±7.5 vs 69.4±8.8 years, p<0.001) and diabetes duration (21.7±11.8 vs 16.4±10.0 years, p<0.001); similarly in Controls (age 73.7±8.3 vs 69.6±8.3 years, p<0.001), diabetes duration 21.4±11.8 vs 16.1±10.3 years, p<0.001). Smoking habit (actual or previous) was present in 41.4% of men Controls vs 88.5% of men Cases and in 4% of women Controls vs 44% of women Cases. CV events occurred in 16/50 (32%) women Cases vs 7/50 (14%) women Controls, and in 53/87 (37.9%) men Cases vs 18/87 (20.7%) men Controls. CV mortality occurred in 16/50 (32%) women Cases vs 6/50 (12%) women Controls and in 26/87 (29.9%) men Cases vs 10/87 (11.5%) men Controls. Total mortality occurred in 23/50 (46%) women Cases vs 10/50 (20%) women Controls, and in 34/87 (39.1%) men Cases vs 17/87 (19.5%) men Controls. HR (and C.I.) of Cases vs Controls corrected for smoking habit were: a) for CV events, 3.177 (1.126-8.967, p=0.029) in women and 3.505 (1.666-7.373, p<0.001) in men; b) CV mortality, 3.261 (1.169-9.094, p=0.024) in women and 3.303 (1.281-8.521, p=0.013) in men; c) for total mortality, 3.122 (1.352-7.210, p=0.008) in women and 2.818 (1.301-6.105, p=0.009) in men. After correction for HbA1c, serum creatinine, LDL-cholesterol, HDL-cholesterol, triglycerides and smoking habit, HR for CV events were 7.71 (2.101-28.289, p=0.002) in women and 3.513 (1.423-8.676, p=0.006) in men. HR conferred by male vs female gender adjusted for age, diabetes duration and smoking habit were: a) for CV events, 3.565 (1.222-10.403, p=0.028) in Controls and 0.867 (0.439-1.710) in Cases; b) for CV mortality, 3.752 (0.912-15.40, p=0.067) in Controls and 0.932 (0.448-1.939) in Cases; c) for total mortality, 3.080 (1.050-9.033, p=0.040) in Controls and 0.961 (0.501-1.843) in Cases.

Conclusion: In T2DM, PAOD requiring revascularization affects women at a more advanced age and after a longer diabetes duration: women are thus partly protected from this complication. However, when severe PAOD occurs, it completely eases the CV protection conferred by female gender also in T2DM and predicts CV events, CV and total mortality with a comparable strength in the two genders.

Supported by: Regione Piemonte Research Grant

1First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, 2Laboratory of Experimental Surgery and Surgical Research, Athens University Medical School, Greece.

Background and aims: Increased OPG levels have been found in diabetic patients with micro- and macrovascular complications. Recent studies have shown that serum osteoprotegerin (OPG) concentrations correlate with coronary artery calcification in patients with type 2 diabetes mellitus (T2DM). Lower extremity arterial calcification (LEAC) is common diabetes. However, no data exists on the association between serum OPG concentrations with LEAC in patients with T2DM. The aim of this study was to look for potential association between serum OPG levels and LEAC in patients with T2DM.

Materials and methods: A total of 74 patients (148 feet) with T2DM were recruited (mean age 67.8±9.0 years, duration of diabetes 15.3±10.9 years). In all patients radiographs were taken of both feet and ankles. LEAC was graded in a scale from 0-5 at 4 locations (posterior tibial and dorsalis pedis arteries bilaterally) as 0: absent; 1: barely visible; 2: slightly visible; 3: specific outline; 4: very dense equal to or lower than 2 cm; 5: very dense greater than 2 cm. The total LEAC score (0-20) at all 4 locations was calculated. Serum OPG levels were measured using ELISA. Diagnosis of peripheral arterial disease (PAD) was based on the presence of either biphasic, monophasic or blunted waveforms at the posterior tibial artery, while diagnosis of PN on neuropathy symptom score (NSS), neuropathy disability score (NDS) and vibration perception threshold (VPT).

Results: Patients with PAD (n=36) had significantly higher serum OPG levels in comparison with those without PAD (18.9±5.9 vs 14.2±3.9 pmol/l, p<0.001). Patients with PN (n=34) also had higher OPG levels than patients without PN (17.8±6.2 vs 14.9±4.0 pmol/l, p=0.021). Patients without or with less LEAC (grade 0-2 based on the maximum LEAC grade at one out of 4 locations; n=44) had lower OPG levels compared with patients with more severe LEAC (grade 3-5; n=30) (14.9±9.4 vs 18.6±1±6.0 pmol/l, p<0.001). The total LEAC score was significantly associated with age (r=0.23, p=0.011), pulse pressure (r=0.41, p<0.001), glomerular filtration rate (r= -0.20, p=0.026), albumin-to-creatinine ratio (r=0.36, p<0.001), VPT (r=0.26, p=0.002), serum OPG levels (r=0.25, p=0.004) and there was a trend for association with diabetes duration (r=0.17, p=0.055). The association between the total LEAC score and OPG concentrations remained significant after adjustment for age (p=0.003), GFR (p=0.021), diabetes duration (p=0.009) and PN status (p=0.003).

Conclusion: Serum OPG levels are increased in diabetic patients with PAD and are associated with severity of LEAC.
Background and aims: Diabetes is associated with increased incidence of peripheral arterial disease (PAD) and its complications (ulcers, cardiovascular mortality). Intracellular glycosylation is increased in diabetes and is linked to vascular complications and may thus be involved in the increased risk for PAD in diabetes. Methylglyoxal is the key precursor for intracellular glycosylations. The glyoxalase pathway catalyzes the conversion of methylglyoxal to D-lactate. The aim of the present study was to investigate, first, whether urinary D-lactate, possibly a reflection of methylglyoxal, is increased in type 2 diabetes; second, whether D-lactate levels are associated with the presence of PAD; and third, whether this association is explained by intracellular hyperglycaemia.

Materials and methods: We investigated 510 (192 women, mean age: 72±22.5) participants of the Cohort on Diabetes and Atherosclerosis (CODAM study) and 59.5±7.0) participants of the Cohort on Diabetes and Atherosclerosis (CODAM study) with normal glucose metabolism (NGM; n=269), impaired glucose metabolism (IGM; n=114) and type 2 diabetes (DM2; n=127). Urinary D-lactate levels were measured with UPLC-MSMS and corrected for urine creatinine levels. Severity of PAD was determined by the ankle brachial index (AAIx). We used linear regression analyses to investigate the association between D-lactate and AAIx, first with adjustments for sex, age and smoking and then for other risk factors (i.e. HDL, triglycerides, eGFR, mean arterial pressure and body mass index). We next determined whether the association could be explained by intracellular hyperglycaemia by further adjustment for HbA1c.

Results: We developed a new method for the detection of D-lactate with UPLC-MSMS with intra- and interassay coefficients of variation of 2.6% (n=10) and 3.6% (n=10) respectively. Median and interquartile range of D-lactate levels were 0.65 (0.34-1.39), 0.78 (0.37-1.51) and 1.39 (0.55-3.89) μmol/mmol creatinine for NGM, IGM and DM2 respectively (p for trend <0.001). AAIX decreased by 0.016 (95%CI: -0.027 to -0.005, p=0.005) per each standard deviation increase in D-lactate in analyses adjusted for age, sex and smoking, and by 0.014 (95%CI: -0.022 to -0.001, p=0.004) per adjustment for other risk factors. After additional adjustment for HbA1c, this association was attenuated by 40% to -0.010 (-0.022 to 0.001), p=0.077.

Conclusion: We found that higher urinary D-lactate, as a marker of intracellular methylglyoxal levels, is associated with PAD (as reflected by lower AAIX). We used linear regression analyses to investigate the association between D-lactate and AAIx, first with adjustments for sex, age and smoking and then for other risk factors (i.e. HDL, triglycerides, eGFR, mean arterial pressure and body mass index). We next determined whether the association could be explained by intracellular hyperglycaemia by further adjustment for HbA1c.

Materials and methods: We studied 212 diabetic patients [80(37.7%) men and 132(62.3%) women], 74.9±6 (SD) years old suffered IS. Acute stroke was defined according to World Health Organization criteria. The diagnosis of ischemic stroke was established by neurological examination and confirmed by computed tomography. Baseline neurological examination developed according to NIHSS, OPS and SSS at admission to the hospital. End point was considered new incidence of stroke or death during one year. Evaluation of the linear relationship between NIHSS, OPS and SSS was calculated using Spearman's rank correlation coefficient. Logistic regression analysis models were conducted to investigate how accurate the neurological scales predict end points. The goodness of fit of the models was tested by Hosmer and Lemeshow Test and by Omnibus Test. Statistically significant values were considered for p<0.05.

Results: After 12 months 48(22.6%) diabetic patients [8(3.8%) men and 40(18.9%) women] have had new stroke or died. Analysis using Spearman’s rank correlation coefficient indicates a statistically significant linear relationship between NIHSS and OPS (r=0.93, p<0.001). For these data mean±(SD) for NIHSS is 14.85±8.82 and for OPS 3.62±1.22. There was also significant correlation between NIHSS and SSS using Spearman’s rank correlation coefficient (r=0.88, p<0.001). For these data mean±(SD) for NIHSS is 14.85±8.82 and for SSS 35.26±12.2. At logistic regression model baseline NIHSS (RR=0.69 95% CI: 0.56-0.85, p=0.001) and SSS (RR=0.780 95% CI: 0.69-0.87, p<0.001) were significant predictors of new stroke or death, but OPS (RR=4.08 95% CI: 0.92-18.06, p=0.064) was not related to the end points of IS in a year. For every one point increase in NIHSS, the relative risk of new stroke or death in diabetic patients increased by a factor of 0.69, while for every one point decrease in SSS, such risk increased by a factor of 0.78.

Conclusion: Neurological stroke scales can be used to predict likelihood of outcome in diabetic patients that suffered IS. NIHSS, OPS and SSS are strongly correlated and a lot of the standardized assessments of each scale are comparable to each other. Baseline NIHSS and SSS are significant predictors of new stroke or death in diabetic patients in one year. SSS has a slightly higher prognostic capacity compared with NIHSS in diabetic patients. Further studies in larger population may reveal more interesting conclusions.
and 80(37.7%) women [total 152(71.7%)]. At discharge diabetes duration (OR=0.93 95% CI: 0.89-0.98, p=0.005) was significant predictor of outcome but APG, FPG, PPG, GS and HbA1c were not significant to functional outcome. At 3 months significant prediction of outcome was made by diabetes duration (OR=0.91 95% CI: 0.86-0.96, p=0.001) and HbA1c (OR =2.72, 95% CI: 1.27-5.83, p=0.01). At 6th month significant predictors of aggravation were diabetes duration (OR=1.08 95% CI: 1.01-1.15, p=0.012) and APG (OR=1.01 95%CI: 1.00-1.03, p=0.039). At 12th month APG (OR=1.01 95% CI: 1.00-1.03, p=0.018) and HbA1c (OR=1.76 95% CI: 1.06-2.91, p=0.027) predicted significantly the outcome.

Conclusion: Hyperglycemia worsens the neurological outcome of IS in diabetic patients. Each glycemic index corresponds to a significant predicting factor in different time period. Diabetes duration in addition to its recent prior regulation as expressed by HbA1c contribute critically to prognosis of IS in diabetic patients. Long diabetes duration predicts negative outcome of IS at discharge, 3rd and 6th month. HbA1c is a significant predictor of neurological outcome at 3 and 12 months. APG appears to have an important effect on the prognosis of IS at 6th and 12th month.

PS 127 Complications in type 1 diabetes

1276

Macrovascular complications may be associated with tighter glycaemic control in patients with type 1 diabetes: An analysis of primary care data in the UK

E.J. Edson1, T.K. Le1, D.R. Nelson1, D. Haldane1, A.B. Mendelson1, S. Pillemer2, B.H. Curtis3;

1Global Health Outcomes, Eli Lilly and Company, Indianapolis, 2Clinical Research, Macrogenics, Inc., Rockville, USA.

Background and aims: The Diabetes Control and Complications Trial (DCCT) and follow-on Epidemiology of Diabetes Interventions and Complications Study (EDIC) conducted in the US and Canada demonstrated beneficial effects of tight glycaemic control on the micro- and macrovascular complications of type 1 diabetes mellitus (T1DM) in a randomised controlled clinical trial setting. However, the outcomes of intensive glycaemic control in clinical practice are not known. We conducted the present study to 1) identify and describe a cohort of patients with T1DM from the General Practice Research Database (GPRD) and 2) compare cumulative rates of micro- and macrovascular complications, based on the degree of HbA1c control achieved within 10 years of diagnosis.

Materials and methods: Data were derived from GPRD that collects data from medical practices within the UK. Logistic regression was used to create pairwise propensity scores between three groups of patients: tightly controlled (TC=HbA1c ≤6.5%); reasonably controlled (RC= HbA1c >6.5 and ≤7.5%); poorly controlled (PC=HbA1c >7.5%). Analyses of clinical endpoints utilized logistic regression with independent variables of propensity score quintiles, pairwise comparison of the HbA1c control group, and interaction of those two. Adjusted event rates were based on logistic regression models with all three groups included. Endpoints included microvascular complications (e.g. diabetic retinopathy, nephropathy) and macrovascular/cardiovascular (CV) events (e.g. myocardial infarction, ischemic heart disease, stroke). Endpoints were determined by diagnosis codes within the GPRD.

Results: The average age of study patients (N= 1086) at baseline was 25.8 (SD: 16.0) years; 60% male. Microvascular complications did not differ significantly between groups, although numerically the RC group demonstrated lower adjusted rates when compared to both the TC and PC groups (Table 1). There were no significant differences in macrovascular/CV events between either TC or PC patients when compared to RC, however a significant difference was noted after propensity score adjustment in the TC group compared to the PC group (OR=3.13; 95% CI, 1.39-7.14; p=0.006).

Conclusion: Using data from routine medical practice, we found, in contrast with the DCCT/EDIC results, no significant microvascular or CV benefit in T1DM patients treated intensively to control blood glucose versus those treated conventionally. Additionally, we observed increased macrovascular/CV events in TC versus PC patients. In light of results from recent high profile trials in type 2 diabetes mellitus which suggest increased mortality related to intensive glycaemic control and its inherent risk of hypoglycemia, additional investigation of this association is warranted in T1DM patients.

<table>
<thead>
<tr>
<th>Microvascular Complications</th>
<th>Macrovascular/CV Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC vs. RC</td>
<td>TC vs. PC</td>
</tr>
<tr>
<td>PC vs. RC</td>
<td>TC vs. PC</td>
</tr>
<tr>
<td>TC vs. RC</td>
<td>TC vs. PC</td>
</tr>
<tr>
<td>PC vs. RC</td>
<td>TC vs. PC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odds Ratio (95% CIs)</th>
<th>p-value</th>
<th>Adjusted Rates (95% CIs)</th>
<th>Adjusted Rates (95% CIs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.75-5.26)</td>
<td>0.17</td>
<td>16.9% / 2.4%</td>
<td>16.4% / 2.4%</td>
</tr>
<tr>
<td>(0.97-3.07)</td>
<td>0.07</td>
<td>16.9% / 2.4%</td>
<td>16.4% / 2.4%</td>
</tr>
<tr>
<td>(0.53-2.13)</td>
<td>0.88</td>
<td>16.9% / 2.4%</td>
<td>16.4% / 2.4%</td>
</tr>
<tr>
<td>(0.79-5.56)</td>
<td>0.14</td>
<td>6.1% / 2.7%</td>
<td>6.1% / 2.7%</td>
</tr>
<tr>
<td>(0.29-0.13)</td>
<td>0.11</td>
<td>2.7% / 2.7%</td>
<td>2.7% / 2.7%</td>
</tr>
<tr>
<td>(1.39-7.14)</td>
<td>0.006</td>
<td>6.1% / 2.7%</td>
<td>6.1% / 2.7%</td>
</tr>
</tbody>
</table>

Table 1: Microvascular Complications and Macrovascular/CV Events by Glycemic Control Groups

1277

Tei Index identifies the early phase of left ventricular dysfunction in young patients with long-lasting type 1 diabetes mellitus and preserved systolic function

K. Kurnicka, B. Lichodziewska, D. Liszewska-Pfleger, A. Lipinska, M. Czuryzynski, K. Grudzka, P. Pruszczyk; Internal Medicine and Cardiology, Medical University of Warsaw, Poland.

Background and aims: The Tei Index (TI) is an easily obtained and reproducible Doppler parameter which reflects combined left ventricular (LV) systolic and diastolic function. Increased values of TI were found in patients with dilated cardiomyopathy and myocardial infarction and were proved to be an independent prognostic factor for higher mortality. The clinical usefulness of TI for young patients with type 1 diabetes mellitus (DM1) has not yet been fully studied. The aim of our study was an echocardiographic assessment of LV global function in patients with long-lasting DM1, below 45 years of age, treated with intensive insulin therapy.

Materials and methods: The study group (DM): 100 pts (51F, 49M), mean age 30.0 y, with mean diabetes duration 15.7yrs, without drugs except insulin (mean 44 units/24h), with mean HbA1c 9.4%, without hypertension and overt heart disease, with good LV ejection fraction (>60%). The control group (C): 60 healthy persons (29F, 31M) in similar age. Mitral valve flow (MVF) and aortic valve flow spectra were registered using pulse-wave Doppler. The TI, which is a ratio of the sum of isovolumetric contraction time and isovolumetric relaxation time (IVRT) to LV ejection time was calculated.

Results: There were no differences in mean values of heart rate, systolic and diastolic blood pressure, Body Mass Index, Body Surface Area, LV mass and LV mass index, lipids parameters and percentage of cigarette smokers between groups. In MVF assessment the mean E/A value (the ratio of early to atrial maximal velocity) was significantly lower in DM than in C group (1.3±0.3 vs 1.4±0.3, p=0.03), but it remained within the normal range for this age group. Mean TI value was especially significantly higher in DM than in C group (0.4±0.09 vs 0.38±0.05, p<0.001). In 51 pts of DM group TI exceed the value of 0.49, the upper normal limit (mean value = 0.55 ± 0.05). All persons in C group had normal TI, with maximal value 0.46. The TI elevation is probably dependent on LV prolonged relaxation, due to the mean IVRT value was significantly higher in DM than in C group (60.1±8.0 vs 57.6±6.2 ms, p=0.03). There were no significant differences between the TI values related to duration and the level of metabolic control of DM1, number and type of complications, as well as between subgroups of women and men or younger and older patients. Correlation and multivariate analyses did not identify any important factor which might exert a significant effect on increased TI values in young diabetics.

Conclusion: Significantly higher Tei Index values observed in young patients with long-lasting type 1 diabetes mellitus with preserved LV systolic function may identify subjects with preclinical impairment of LV diastolic function.

The significance of this phenomenon requires further investigation.

1278

Family history of hypertension or diabetes predicts IMT in well-controlled patients with type 1 diabetes

A. Hiuska1, E. Happlö2, M.-R. Taskinen1, P.-H. Groop2,3, S. Makimattila1; 1Department of Medicine, Helsinki University Central Hospital and Biomedicum, 2Department of Medicine, Helsinki University Central Hospital, Folkhälsoanst Institute of Genetics, Folkhälsoanst Research Center and Biomedicum, Helsinki, Finland.

Background and aims: In middle-aged subjects with type 1 diabetes, mortality due to ischemic heart disease is increased four- to seven-fold. Carotid intima-media thickness (IMT) is used as a surrogate marker of preclinical atherosclerosis. We searched for predictors of IMT in adults with type 1 diabetes in a prospective setting.

Materials and methods: A total of 57 patients (F/M = 27/30) were followed after their diagnosis until they reached 41±4 years of age, when duration of diabetes averaged 31±3 years. Cardiovascular risk markers [lipids, blood pressure, smoking, urinary albumin excretion rate (AER), alcohol consumption, family history] were evaluated at the 10-year, 20-year, and 30-year visits. During follow-up, IMT of the carotid arteries was determined.

Results: The patients were reasonably well-controlled with Hba1C of 7.7±0.9%, blood pressure of 133±16/78±11mmHg and LDL-Chol of 2.8±0.9mmol/L. Altogether 30 patients had positive family history of hypertension and/or diabetes (FHD+). These patients and those with FHD- did not differ concerning smoking, glycemia, lipids, AER, or BMI at any study visit. FHD+ patients had higher systolic blood pressure at the 20 year visit (129±16 vs. 117±11, p=0.042), despite having more antihypertensive medications. At any visit, other blood pressure values did not differ. At the 30 year visit, measures of IMT were significantly higher in FHD+ patients (eg. maximum IMT 1.03±0.12mm vs. 0.95±0.09mm, p=0.005) and their carotid plaque score was two-times higher compared to the FHD- group (p<0.005). Of the single measures from the 10 year visit, BMI showed the best correlation to the 30-year IMT (r=0.437, p<0.001).

Conclusion: Patients with type 1 diabetes and a positive family history of hypertension have higher carotid IMT than patients without such history. Even if well-controlled regarding risk factors, these patients are exposed to high cardiovascular risk.

1279

Association of risk factors and glycaemic control with endothelium-dependent vascular dysfunction in type 1 diabetes

A.S.M. da Costa1, E. Tibiriçá2,3, P.B. da Silva1, M.B. da Matta1, M.B. Gomes1; 1Diabetes Unit, State University of Rio de Janeiro (UERJ), 2Laboratory of Neuro-Carrovascular Pharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.

Background and aims: Endothelial dysfunction in patients with type 1 diabetes (T1DM) is an early event in the pathogenesis of vascular complications. However, little is known about the potential risk factors associated with impairment of the vascular reactivity in this population. The purpose of this study was to assess endothelial function in the microcirculation, correlating with possible factors involved such as glycemic control and potential markers of cardiovascular risk (uric acid and C reactive protein - CRP), and compare the results with those of healthy controls.

Materials and methods: A cross-sectional study was conducted in 57 T1DM patients, aged 32.5 (13-61) years with a 15 (1-48) years disease duration, and 53 age-, sex-, and weight- matched controls. The median Hba1c was 9,3 (5,4-12,1). Skin perfusion was measured at the forearm using laser Doppler flowmetry during low-current iontophoresis of acetylcholine (ACh) (endothelium dependent response) and sodium nitroprusside (SNP) (Endothelium-independent response). Post occlusive reactive hyperemia (PORH) and maximum vasodilator function during thermal hyperemia were also assessed.

Diabetic patients underwent clinical and laboratory evaluation (disease duration, daily insulin dose, blood pressure, body mass index, urinary albumin excretion, lipid profile, glycemic control, uric acid and CRP).

Results: Microvascular response to ACh was significantly reduced in patients (p<0.05). However, despite the reduction of area under curve (AUC) of NPS, the analysis with repeated measures disclosed no difference between the groups in relation to the dose (p=0.15). Maximal skin microvascular vasodilation induced by thermal hyperemia was found to be higher in the control group than among patients (93,6 PU(perfusion units) (24,5-379,9) and 56,6 PU (31,5-204,5), respectively p=0,004). On the other hand, during PORH, maximal increase in flux and AUC of hyperemic response did not differ between patients and controls, although the time frame to reach maximum flux and the time to half recovery after hyperemia was longer in patients than in controls (P=0.02). Endothelium-dependent response was correlated to diabetes duration (r=-0,33 p=0,01), tryglycerides (r=-0,37 p=0,005), insulin dose (r=-0,28 p=0,03), fasting glycemia (r=-0,3 p=0,02) and hyperglycemia (r=-0,34 p=0,001) and uric acid (r=-0,3 p=0,005), as well as independent-endothelium responses were correlated to capilar glycemia(r=-0,30 p=0,02) and CRP (r=-0,29 p=0,02). Uric acid levels were higher in non-diabetic than in diabetic subjects (4,4±0,7 vs 4,1±0,6, respectively p=0,03), and were unrelated to endothelium-dependent response(r=0,08 p=0,55).

In diabetics, on stepwise multivariate analysis, age, hba1c and uric acid were the most important factors involved such as glycemic control and potential markers of cardiovascular risk (uric acid and C reactive protein - CRP), and compare the results with those of healthy controls.

Conclusion: Endothelial dysfunction in patients with type 1 diabetes (T1DM) is an early event in the pathogenesis of vascular complications. However, little is known about the potential risk factors associated with impairment of the vascular reactivity in this population. The purpose of this study was to assess endothelial function in the microcirculation, correlating with possible factors involved such as glycemic control and potential markers of cardiovascular risk (uric acid and C reactive protein - CRP), and compare the results with those of healthy controls.
Impaired 24-hour blood pressure variation in adolescents and adult normoalbuminuric type 1 diabetes patients

Background and aims: The absence of \(\geq 10\% \) blood pressure (BP) drop at night (‘non-dipping’ phenomenon) is being recognized as a significant risk factor of vascular complications of diabetes. Little is known on the role of vascular factors like endothelium function and subclinical inflammation in the development of disturbed 24-hour blood pressure rhythm in type 1 diabetes (T1DM). The aim of the study was to assess blood pressure rhythm in adolescent and adult subjects with type 1 diabetes.

Materials and methods: The study comprised two groups of normoalbuminuric T1DM patients: Group A - 52 adolescents (mean age 14.1±3.0 yrs, diabetes duration 5.1±2.2 yrs, HbA1c 7.2±1.0%) with; Group B - 62 adults (mean age 34.1±7.2 yrs, diabetes duration 4.8±2.5 yrs, HbA1c 7.2±1.1%) and a group of healthy controls (Group C; mean age 23.1±4.4 yrs). All subjects had 24-hour blood pressure monitoring performed with the use of SpaceLabs 90207. Fasting plasma adhesion molecules sVCAM and sICAM, sE-selectin, adiponectin, inter leukin-IL-6, and TNF-alfa concentration were measured.

Results: 25 (48%) subjects from Group A and 9 (13%) from Group B were ‘non-dippers’; no ‘non-dippers’ were found in Group C. There were no statistically significant differences in vascular and inflammatory parameters between ‘dippers’ and ‘non-dippers’ from Group A and Group B or the controls (table). However, mean 24-hour systolic (SBP) and diastolic blood pressure (DBP) was significantly lower in Group A than in Group B and C: 118±10 and 66±5; 128±11 and 73±6, and 128±12 and 73±6 mmHg (p<0.01). In particular, SBP at night was significantly lower in ‘non-dippers’ than in ‘dippers’ from Group A: 105±8 and 113±10 mmHg (p<0.01), while DBP was similar: 57±3 and 60±7 mmHg, respectively. There was a significant positive correlation between 24-hour SBP and body mass index (BMI) in Group A and B subjects (r=0.41 and r=0.32, respectively).

Conclusion: In adolescent or adult patients with T1DM non-dipping phenomenon is not associated with endothelial dysfunction or increased subclinical inflammation. In addition, unusually high prevalence of non-dipping in adolescent subjects with T1DM suggests that establishing this diagnosis with traditional criteria might not be at all appropriate in this population. Children and adolescents with T1DM display lower BP than the older persons, therefore they physiologically might not be subject to \(\geq 10\% \) decrease of BP at night. For the assessment of diurnal blood pressure variation in adolescent T1DM patients different criteria of BP nighttime reduction might be necessary to apply.

Co-morbidity and survival of patients with type 1 diabetes on renal replacement therapy

J. Helve, M. Haapio, C. Grönhagen-Riska, P. Finne

1Department of Medicine, Lappi Central Hospital, Rovaniemi, Finland, 2Division of Nephrology, Helsinki University Central Hospital, Helsinki, 3Department of Medicine, Helsinki University Central Hospital, Finnish Registry for Kidney Diseases, Helsinki, Finland.

Background and aims: Mortality among patients with type 1 diabetes on renal replacement therapy is high. The effect of co-morbidities on their survival has not been previously estimated. The aim of this study was to estimate effect of co-morbidities on survival of type 1 diabetes patients on renal replacement therapy.

Materials and methods: An incident cohort of all type 1 diabetes patients entering chronic renal replacement therapy (n=656) in Finland between 2000 and 2008 was followed until death or the end of follow-up on 31 December 2008. All data were obtained from the Finnish Registry for Kidney Diseases, which collects information on co-morbidities at the start of renal replacement therapy. The main outcome was crude and adjusted relative risk of death according to co-morbidities.

Results: At start of renal replacement therapy 22% of the type 1 diabetic patients had coronary artery disease, 18% had peripheral vascular disease, 10% had cerebrovascular disease, 33% had left ventricular hypertrophy, and 7% had heart failure. All observed co-morbidities were significant predictors of death when analyzed univariably (RR 1.56-4.87). The 5-year survival probability of patients without (reported) co-morbidities was 74%, while it was 56% and 57%, respectively, for those with one or more than one co-morbidities. When the co-morbidities were studied in a multivariate model, also adjusting for age and gender, peripheral vascular disease (RR 1.88), left ventricular hypertrophy (RR 1.68) and heart failure (RR 2.50) remained independent risk factors of death.

Conclusion: Co-morbidities are common among type 1 diabetes patients entering renal replacement therapy, and they are strong predictors of death. Therefore, it is essential to diagnose and adequately treat co-morbidities.

Supported by: Diabetes Research Foundation

Increased oxidative damage to de novo synthesized ApoA-1 in untreated type 1 diabetic patients - a novel method to identify the relative age of proteins

A. Jaleel, G. Henderson, B. Madden, K. Klaus, D. Morse, S. Gopala, K. Nair; Endocrinology, Mayo Clinic & Foundation, Rochester, USA.

Background and aims: Oxidative damage and other post-translational modifications (PTM) in proteins, and accumulation of these proteins, may cause complications in diabetes. In order to address this issue, we developed a novel methodology to identify relative age of protein isoforms and to assess post-translational modifications by studying Apolipoprotein A-1.

Materials and methods: This method involves in vivo stable isotope labeling of proteins, protein isoform purification by two dimensional gel electrophoresis (2DGE), and isotopic enrichment (IE) and PTM analysis by tandem mass spectrometry. To label newly synthesized proteins, \(\text{[ring-}^{13}\text{C}]\text{-}\text{phenylalanine} \) was intravenously infused for 8 hours in type 1 diabetic (T1D) participants with (I+) and without (I-) insulin treatment and non-diabetic (ND) participants (plasma glucose mmol/L; T1D I+ = 17.0±0.6, T1D I- = 5.2±0.2, ND = 4.9±0.1).

Results: Only protein isoforms synthesized during infusion would incorporate the isotope label. In 2DGE and we identified 3 isoforms of ApoA-1. Pro-ApoA-1 (gel spot E) contained higher IE (ratio of \(\text{[ring-}^{13}\text{C}]\text{-}\text{phenylalanine} \) to total phenylalanine), while older forms with higher degrees of damage (oxidation, deamidation) displayed less IE. Insulin deprivation in T1D increased the amount of oxygen in ApoA-1 (P<0.05) with more rapid maturation and damage of \(\text{de novo} \) synthesized pro-ApoA-1 (P<0.05) (\(\text{[ring-}^{13}\text{C} \))-labeling of mature ApoA-1 vs pro-ApoA-1: T1D I+ = 13±3, T1D I- = 6±1, ND = 5±1).

Conclusion: The results show that ApoA-1, important for lipoprotein metabolism, is oxidatively damaged soon after synthesis during insulin deficiency that likely contributes to the cardiovascular complications during insulin deficiency and poor glycemic control in T1D.
Background and aims: To observe the changes of myocardial enzymogram and electrocardiogram confirmed the myocardial damage during diabetic ketosis (DK) or diabetic ketoacidosis (DKA) in middle-aged patients.

Materials and methods: 78 hospitalized patients (45 male and 33 female) with DKA were recruited. Standard of Admission: Under 45 years old; Above urine acetone bodies 2+; Without evidence of overt ischaemic heart disease; Without obvious infection and chronic disease history. Myocardial enzymogram which included creatine phosphokinase (CK), creatine phosphokinase isoenzyme (CK-MB) and aspart aminotransferases (AST) were measured on admission at ketosis stage and at 7 days after ketosis recovery. Electrocardiograms were also performed and compared during two stages.

Results: 78 hospitalized patients with DK or DKA had significantly higher levels of myocardial enzymogram CK, CK-MB and AST at ketosis stage compared to at stable stage. The changes of ECG were found in 46 cases (58.9%) of all the patients. The highest morbidity of ECG abnormality was ST-T change which was found in 32 cases (41.0%). ST segment depression in 8 cases, ST segment height in 1 case; T wave flat or inversion in 24 cases, sinus tachycardia in 18 cases (23.1%). 32 cases out of abnormal ECG in 46 cases improved at 7 day after ketosis recovery. Electrocardiograms were also performed and compared during two stages.

Conclusion: Diabetic ketoacidosis, particularly when severe, has a nonspecific myocardial injury, the level of myocardial enzymogram caused by diabetic ketoacidosis could be abnormally higher. We should monitor the heart change and take an effective protective action during ketosis episode, the patients should be followed up and evaluated after recovery.
Background and aims: Agents that act on the renin-angiotensin-aldosterone system (RAAS) are considered drugs of choice for the treatment of hypertension in patients with diabetes mellitus. Direct renin inhibitors (DRIs) bind to and inhibit renin, which catalyzes the rate-limiting step of the RAAS. This 8-week, double-blind study compared the blood pressure lowering (BP) efficacy and safety of aliskiren/hydrochlorothiazide (ALI/HCT) combination vs. amlopidine (AML) in 860 male and female adults with stage 2 systolic hypertension (mean sitting systolic BP [msSBP] ≥ 160 and < 200 mmHg) and type 2 diabetes mellitus.

Materials and methods: After a 1-4 week washout, eligible patients (mean age: 59.8 years; mean BMI: 34.6 kg/m²) were randomized to ALI/HCT 150/12.5 mg (n = 428) or AML 5 mg (n = 432). After 1 week, doses were force-titrated to ALI/HCT 300/25 mg or AML 10 mg, and patients were treated for an additional 7 weeks. The primary efficacy variable was change from baseline in msSBP at the Week 8 endpoint. Analysis to assess non-inferiority was performed, followed by superiority testing if ALI/HCT was shown to be non-inferior to AML.

Results: Baseline BP levels were similar between the two groups: ALI/HCT: 168.0/91.4 mmHg and AML: 167.4/91.3 mmHg. At Week 8 endpoint, least squares (LS) mean reductions in msSBP were significantly greater with ALI/HCT vs. AML (-28.8 mmHg vs. -26.2 mmHg, LS mean difference: -2.6 mmHg; p < 0.0001 non-inferiority; p = 0.0102 superiority). At study endpoint, a significantly greater percentage of patients receiving ALI/HCT achieved the BP goal of <130/80 mmHg compared with AML (23.2% vs. 13.8%; p < 0.0001).

Conclusion: Initial treatment with ALI/HCT 300/25 mg is significantly more effective than AML 10 mg at reducing msSBP and maintaining BP control in patients with stage 2 systolic hypertension and type 2 diabetes mellitus.

Supported by: Novartis Pharmaceuticals Corporation

PS 128 Hypertension

Initial combination therapy with aliskiren and hydrochlorothiazide is more effective than amlopidine in patients with stage 2 systolic hypertension and diabetes mellitus

R.R. Townsend, A. Forker, P. Rumpelt, C. Cherif, X. Li, A. Yadao; University of Pennsylvania Medical Center, Philadelphia, USA, Saint Luke’s Lipid and Diabetes Research Center, Kansas City, USA, Novartis Pharmaceuticals Corporation, East Hanover, USA, Novartis Pharma AG, Basel, Switzerland.

Background and aims: Agents that act on the renin-angiotensin-aldosterone system (RAAS) are considered drugs of choice for the treatment of hypertension in patients with diabetes mellitus. Direct renin inhibitors (DRIs) bind to and inhibit renin, which catalyzes the rate-limiting step of the RAAS. This 8-week, double-blind study compared the blood pressure lowering (BP) efficacy and safety of aliskiren/hydrochlorothiazide (ALI/HCT) combination vs. amlopidine (AML) in 860 male and female adults with stage 2 systolic hypertension (mean sitting systolic BP [msSBP] ≥ 160 and < 200 mmHg) and type 2 diabetes mellitus.

Materials and methods: After a 1-4 week washout, eligible patients (mean age: 59.8 years; mean BMI: 34.6 kg/m²) were randomized to ALI/HCT 150/12.5 mg (n = 428) or AML 5 mg (n = 432). After 1 week, doses were force-titrated to ALI/HCT 300/25 mg or AML 10 mg, and patients were treated for an additional 7 weeks. The primary efficacy variable was change from baseline in msSBP at the Week 8 endpoint. Analysis to assess non-inferiority was performed, followed by superiority testing if ALI/HCT was shown to be non-inferior to AML.

Results: Baseline BP levels were similar between the two groups: ALI/HCT: 168.0/91.4 mmHg and AML: 167.4/91.3 mmHg. At Week 8 endpoint, least squares (LS) mean reductions in msSBP were significantly greater with ALI/HCT vs. AML (-28.8 mmHg vs. -26.2 mmHg, LS mean difference: -2.6 mmHg; p < 0.0001 non-inferiority; p = 0.0102 superiority). At study endpoint, a significantly greater percentage of patients receiving ALI/HCT achieved the BP goal of <130/80 mmHg compared with AML (23.2% vs. 13.8%; p < 0.0001).

Conclusion: Initial treatment with ALI/HCT 300/25 mg is significantly more effective than AML 10 mg at reducing msSBP and maintaining BP control in patients with stage 2 systolic hypertension and type 2 diabetes mellitus.

Supported by: Novartis Pharmaceuticals Corporation

ALiskiren reduces albuminuria independent of baseline blood pressure in combination with losartan in patients with type 2 diabetes and nephropathy

H.-H. Parving, A. Forker, J.B. Lewis, J.E. Lewis, N.K. Hollenberg; Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark, Faculty of Health Sciences, Aarhus University, Denmark, Steno Diabetes Center, Gentofte, Denmark, School of Medicine, Vanderbilt University, Nashville, USA, Medical Center, Rush University, Chicago, USA, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA.

Background and aims: Elevated blood pressure (BP) is a key contributor to development and progression of proteinuria and nephropathy in patients with type 2 diabetes. Direct renin inhibition with aliskiren (ALI) may offer renoprotective effects beyond BP reduction. This post hoc analysis assessed the influence of baseline BP on the antiproteinuric effect of ALI or placebo (PBO) added to losartan (LOS) in the ALiskiren in Diabetics (AVOID) study.

Materials and methods: In AVOID, 599 patients aged 18-85 years with hypertension and diabetic nephropathy received 6 months ALI (150 mg force titrated to 300 mg after 3 months) or PBO added to LOS 100 mg daily and optimal antihypertensive therapy. Key exclusion criteria were non-diabetic kidney disease, eGFR <30 ml/min/1.73 m² and serum potassium >5.1 mmol/l. Changes in early morning urinary albumin/creatinine ratio (UACR) and eGFR at week 24 endpoint were assessed by subgroups of baseline BP: Group A, <130/80 mmHg (n = 159); Group B, <140/90 mmHg but >130/80 mmHg (n = 189) and Group C, >140/90 mmHg (n = 251).

Results: Mean baseline BP values (mmHg) for each subgroup were 120/71 (Group A), 133/78 (Group B) and 145/81 (Group C). The demographic, clinical and laboratory data were balanced between the three groups. The antiproteinuric effects of ALI were consistent across BP subgroups (19-22% reduction in UACR vs PBO, p = 0.977 for interaction). In Group C (BP >140/90 mmHg at baseline), the decline in eGFR was significantly lower with ALI than with PBO (p = 0.0096). There were no significant differences in the change in BP from baseline in any subgroup.

Conclusion: This post hoc analysis of the AVOID trial suggests that aliskiren 300 mg added to losartan 100 mg plus optimal antihypertensive therapy provides renoprotective effects independent of baseline BP in patients with type 2 diabetes and nephropathy.

Supported by: Novartis

Patients with type 1 or type 2 diabetes have similarly increased pulsatility stress at comparable age of 50 years

A.J.L. Scheen, J.-C. Philips, M. Marchand; Division of Diabetes, Nutrition and Metabolic Disorders, CHU Sart Tilman, Liège, Belgium.

Background and aims: Arterial pulse pressure (PP) is considered as an independent cardiovascular risk factor in both patients with type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. However, patients with each type of diabetes are exposed to a quite different toxic vascular environment. We compared PP and PP x heart rate (HR) double product (PPxHR = “pulsatile stress”) during an active orthostatic test in patients with T1DM and patients with T2DM matched for age (40-60 years).

Materials and methods: 40 patients with T1DM (mean age 50 years, diabetes duration 23 years, body mass index - BMI - 23.0 kg/m², HbA1c 8.4%) were compared to 40 patients with T2DM (respectively, 50 years, 8 years, 29.7 kg/m², 7.6%). Patients taking antihypertensive agents or with renal insufficiency were excluded. All patients were evaluated with a continuous noninvasive arterial blood pressure monitoring (Finapres®) in standing (1 min), squatting (1 min) and standing position again (1 min). Patients with T1DM or T2DM were compared with two groups of 40 age- and BMI-matched healthy subjects (sex ratio 1/1 in all groups)(Figure).

Results: Despite similar mean arterial pressure (MAP), patients with T1DM and patients with T2DM showed significantly higher PP, HR and PPxHR double product levels than corresponding controls: in T1DM, 59 vs 52 mm Hg for PP (P = 0.016) and 5263 vs 4121 mmHg/min for PPxHR (P = 0.0004); in T2DM, 58 vs 52 mm Hg for PP (P = 0.045) and 5359 vs 4321 mmHg/min for PPxHR (P = 0.0025). However, there were no significant differences between patients with T1DM and T2DM regarding mean overall values of MAP (126 vs 128 mmHg), PP (59 vs 58 mmHg), HR (89 vs 88/min), and PPxHR product (5263 vs 5359 mmHg/min). During the transition from standing to squatting position, PP increase (+10 vs +8 mm Hg) and HR reduction (-6 vs -6 beats/min) were significant but similar in both groups, resulting in a similar modest and non significant rise in PPxHR (+557 vs +449 mmHg/min).

Conclusion: Patients with T1DM have similarly increased PP, an indirect marker of arterial stiffness, and PPxHR double product, an index of pulsatile stress, as non-hypertensive patients with T2DM at similar mean age of 50 years. We hypothesize that such comparable pulsatile stress despite quite different natural history of the diabetic disease may be explained by a much longer exposure to chronic hyperglycaemia in patients with T1DM, on the one hand, and by the presence of associated risk factors such as obesity and insulin resistance in patients with T2DM, on the other hand.
1288
Pulse pressure and systolic non-dipping, but not ambulatory arterial stiffness index, are independent predictors of macrovascular disease in patients with type 2 diabetes mellitus
E. Laugesen¹, N.B. Rossen¹, P.L. Poulsen¹, K.W. Hansen¹, E. Ebbehol¹, S.T. Knudsen¹;¹Department of Endocrinology and Internal Medicine, Aarhus University Hospital, ²Department of Internal Medicine, Regional Hospital Silkeborg, Denmark.

Background and aims: Patients with type 2 diabetes mellitus are at increased risk of cardiovascular disease (CVD). We examined the predictive ability of ambulatory blood pressure monitoring (ABPM) parameters for fatal and non-fatal CVD in patients with type 2 diabetes mellitus.

Material and methods: 108 patients with type 2 diabetes mellitus (mean duration 6.6 years) were followed for 9.5 (0.5-14.5) years. At baseline, all patients underwent ABPM.

Results: 43 patients experienced at least one CV event (35 non-fatal and 10 fatal). In bivariate analysis, CVD during follow-up was predicted by 24-h ambulatory pulse pressure (PP), (p<0.01), ambulatory arterial stiffness index (AASI), 24-h systolic blood pressure (BP) and systolic and diastolic non-dipping (defined as less than 10% nightly BP reduction) (p<0.05 for all). In Cox regression analysis with adjustment for established risk markers, 24-h PP and impaired nocturnal systolic BP decline, but not AASI, were independent predictors for CVD in type 2 diabetes patients.

Figure 1:

Supported by: Novo Nordisk Belgium

1289
Mechanisms of effect of weight loss on blood pressure
L. Flores¹, R. Morinigo¹, J. Vidal¹, J. Viaplana², E. Esmatjes³;¹Obesity Unit, Clinic Hospital, ²Obesity Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer, ³Diabetes Unit, Clinic Hospital, Barcelona, Spain.

Weight loss has a clear blood pressure-lowering effect, the pathophysiological mechanisms are not completely understood. The aim of this study was to evaluate the effect of significant weight loss on blood pressure (BP) and its pathological mechanisms.

Patients and methods: Patients with documented hypertension who underwent laparoscopic gastric bypass were studied. Antihypertensive treatment was withdrawn one week before the evaluation. Anthropometric, BP (24-h ambulatory BP measurement) assessment, and blood samples for renin-angiotensin-aldosterone system [RAAS, plasma renin activity (PRA), aldosterone, angiotensin II and angiotensin converting enzyme] and sympathetic nervous system (metanephrine, normetanephrine and noradrenaline) analysis were performed before surgery at 4 and at 12 months postoperatively.

Results: Eighteen patients were studied, 12 females, with 50.8 (38-63) years old, with hypertension duration of 6.4 (1-20) years and excess body weight of 55.6 (36-73) kg. Twelve months after surgery: the BMI decreased from 45.6 to 32.1 Kg/m²; excess body weight loss was -37.2 Kg; 13 (72%) patients had completed resolution of hypertension while 5 (28%) patients had improvement; 24-h systolic -18.8/diastolic -7-7 mmHg), daytime and night-time BP values decreased significantly. The PRA (0.30 to 0.21 ng/mL·h), aldosterone (5.3 to 3.1 ng/dl) and noradrenaline (121.5 to 77.5 pg/mL) also had a significant decrease.

Conclusion: Weight loss is associated with reduction of the BP, RAAS and sympathetic system in obese hypertensive subjects.

1290
Assessment of pulsepen for detection of pseudohypertension in diabetic patients
C. Cugnet Anceau¹, A. Serusclat², X. André-Fouet³, G. Finet³, G. Rioufol³, F. Gueyffier³, F. Douek³, P. Moulin²;¹U11 Fédération d’endocrinologie, ²Service d’imagerie Hôpital Cardiologique, ³Service de cardiologie, Bron, France.

Background and aims: In the diabetic population, hypertension is often severe and resistant despite the combination of several antihypertensive drugs. Stiffness of brachial arteries may induce an overestimation of intra-arterial
blood pressure (BP) called pseudohypertension. Evidence for pseudohypertension is difficult to establish in clinical practice. A new non invasive method (Pulsepen) based on the estimation of central aortic pressure by applanation tonometry has been proposed for this purpose but was not previously assessed in diabetic patients.

Materials and methods: To compare Pulsepen and Dinamap versus intra-arterial pressure (method of reference) and to assess the capacity of Pulsepen to screen pseudohypertension in diabetic patients with resistant hypertension, BP was simultaneously recorded in diabetic patients by the three methods during an endovascular procedure (arteriography or coronarography).

Results: Our study population included 11 type 2 diabetic patients (7 men and 4 women), aged 66±6.9 years, with a duration of diabetes of 23.7±5.4 years, a mean BMI of 31.5±5.3 kg/m² and a mean HbA1c level of 8.5±1.5%, with persistent hypertension despite two antihypertensive drugs at the time of inclusion. Seven patients were in secondary prevention of cardiovascular disease. Systolic BP (SBP) was significantly underestimated by -10.6±8.24 % with Pulsepen (p=0.009) and by -4.63±6.89 % with Dinamap (p=0.04). Diastolic BP (DBP) was insignificantly underestimated of +11.7±19.5 % (p=0.09) and by +15.3±19.9 % (p=0.06), respectively. The regression coefficients versus intra-arterial values were: SBP r² 0.82 (p=0.0001), DBP r² 0.64 (p=0.002) for Pulsepen and SBP r² 0.87 (p=0.001), DBP r² 0.65 (p=0.002) for Dinamap. According to pseudohypertension determined from the dinamap measurements, one patient had spurious pseudohypertension and two patients diastolic pseudohypertension. The Pulsepen was unable to detect the 3 cases of pseudohypertension.

Conclusion: Our data suggest that Pulsepen is not a reliable method in order to estimate intraarterial BP and to detect pseudohypertension in diabetic patients with resistant hypertension. This study underlies the difficulties to accurately measure BP in diabetic patients.

Systolic, Diastolic, Mean, Pulse blood pressure differences

<table>
<thead>
<tr>
<th></th>
<th>Pulsepen BP</th>
<th>Dinamap BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
<td>18.8±15.5</td>
<td>8.7±12.3</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>+7.6±15.1</td>
<td>+10.1±15.4</td>
</tr>
<tr>
<td>Mean BP</td>
<td>-3.2±10.7</td>
<td>+3.8±9.9</td>
</tr>
<tr>
<td>Pulse BP</td>
<td>-28.6±24.7</td>
<td>-18.8±22.3</td>
</tr>
</tbody>
</table>

1292

In subjects with type 2 diabetes, liraglutide, a once-daily human GLP-1 analogue, reduces systolic blood pressure with negligible impact from weight loss

V.A. Fonseca1, R.R. Henry2, R. Tabanera y Palacios3, J. Brett4, J. Plutzky5, 6
1Tulane University Medical Center, Tulane University Health Sciences Center, New Orleans, 7University of California, San Diego, 8Novo Nordisk Inc, Princeton, 9Harvard Medical School, Brigham & Women's Hospital, Boston, USA.

Background and aims: Hypertension is a major risk factor for myocardial infarction and stroke, and is more common in individuals with type 2 diabetes (T2D) than in the general population. Modest weight loss can result in significant long-term reductions in blood pressure and thereby reduce the risk for hypertension. In phase 3 clinical trials, in addition to improving glycated haemoglobin (HbA1c) by 1.0–1.5%, liraglutide also improved systolic blood pressure (SBP) by 2–7 mmHg and produced sustained body weight (BW) reductions of 2–3 kg. However, the specific nature of the relationship between the effect of liraglutide on SBP and BW is not well-characterised.

Materials and methods: A meta-analysis of six randomised phase 3 clinical trials (n=3967) was performed in the liraglutide (1.2 and 1.8 mg) and placebo arms to investigate the relationship between changes in SBP and BW from baseline to each post-randomisation visit up to 26 weeks using an analysis of covariance (ANCOVA) model with treatment, trial, previous OAD treatment as fixed effects, country as random effect, and change in BW from baseline as covariate. The percentage of the change in SBP predicted by the change in BW is given by the 100 × R² (the square of the Pearson correlation coefficient), a goodness-of-fit index. The closer the R² is to 1, the stronger the relationship between change in SBP and BW.

Results: The analyses show a consistent trend of a very weak correlation between change in SBP and change in BW over time. At Week 2, up to 2% of the change in SBP could be predicted by the change in BW for both liraglutide doses and placebo. At Week 26, both liraglutide arms and placebo had a percentage of R² below 2%. The Pearson correlation between the change in SBP and the predicted change in SBP obtained from the ANCOVA model was also very weak with R² below 4%.

Conclusion: A minimal amount of the observed effect of liraglutide on change in SBP is predicted by change in BW. As a result, the effect of liraglutide on SBP cannot be explained by weight loss alone. In order to better understand the effect of liraglutide on SBP, mechanistic studies are warranted.

Supported by: Novo Nordisk

1291

A proteomic approach to the long-term experimental hypertension-diabetic myocardium

O. Lorenzo1, B. Picatoste2, S. Ares3, A. Caro4, E. Ramírez5, E. Camañosa1, J.A. López1, J. Egido1, J. Tuñón1, 1Vascular Pathology, Instituto de Investigaciones Sanitarias Fundación Jiménez Diaz, 2Veterinary Faculty, Universidad Complutense de Madrid, 3Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.

Background and aims: Diabetes is a worldwide pandemic that may damage the heart. Myocardial protein alteration has been described in short-term injury. However there is not information about the chronic pathology and its association with hypertension.

Aim: To analyze the myocardial proteome and molecular pathways of long-term diabetic hypertensive rats.

Materials and methods: Normotensive and spontaneously hypertensive (SHR) rats received either streptozotocin or vehicle. After 22 weeks, type-1 diabetic (DM1), SHR, DM1/SHR and control rats were sacrificed and the left ventricles studied by a proteomic approach based on DIGE and MALDI-MS. Differential proteins were validated by immunohistochemistry, Western blot and Electrophoretic Mobility Shift assay (EMSAs) and clustered into different biochemical pathways using bioinformatics tools.

Results: Long-term DM1 and hypertensive hearts are characterized by hypertrophy, fibrosis and apoptosis. By proteomics, we found 29, 35 and 38 proteins altered in the myocardium of long-term DM1, SHR and DM1/SHR rats, respectively (ratio≥ ± 1.5 fold with p<0.05). Among these, DM1 myocardium presented over-expression of cytokines and apoptosis proteins and down-regulation of anti-apoptotic and mitochondrial metabolic enzymes. In SHR and DM1/SHR rats these changes were exacerbated and, in addition, fatty acid ß-oxidation enzymes were decreased. Other enzymes for amino acid and alcohol metabolism were also altered. Bioinformatics suggested the implication of specific cytoskeleton factors, cytokines and fatty acid nuclear receptors in these pathologies. Peroxisome-activated receptors (PPARs) were stimulated whereas hepatocyte nuclear factor-4α receptor (HNF-4α) was not.

Conclusion: Long-term DM1 and markedly SHR and DM1/SHR hearts presented altered proteomes. Down-regulation of fatty acid and carbohydrate metabolisms and up-regulation of hypertrophic and apoptotic proteins may contribute to the hypertensive and diabetic-hypertensive cardiomyopathy. New unveiled factors as fatty acid nuclear receptors may be used as potential therapeutic targets for these diseases.

Supported by: SAF2009-08367
Background and aims: Yemenite Jews who immigrated to Israel during the years 1948-1950 had a very low prevalence of diabetes (0.05%) which increased to 12% within 40 years in parallel with their lifestyle changes. However, previous limited data suggested that the prevalence of hypertension (HTN) in Yemenite Jews remained lower than the prevalence in the general Israeli population. The aims of the current study were to determine in a group of patients with type 2 diabetes of Yemenite (Y-DM) or non-Yemenite (NY-DM) origin the prevalence of HTN and lifestyle patterns including their adherence to the Dietary Approaches to Stop Hypertension (DASH) diet.

Materials and methods: A cross-sectional study of 63 Y-DM patients (2 parents of Yemenite origin) and 120 NY-DM patients (neither parent of Yemenite origin) was conducted at a Diabetes Clinic. Medical and lifestyle information was collected including food frequency questionnaire (FFQ). Results: The age and sex distribution were similar in the Y-DM and NY-DM groups (63 ± 7 years vs. 64 ± 7 years; 57% males vs. 56% males, respectively). The duration of diabetes in the Y-DM group was 16 ± 10 years vs. 13 ± 9 years in the NY-DM (P = 0.07) and the Y-DM group had lower weight and waist circumference (72 ± 13 kg vs. 85 ± 17 kg and 95 ± 11 cm vs. 105 ± 13 cm, P < 0.001). The prevalence of HTN was significantly lower in the Y-DM group compared with the NY-DM group (63% vs. 83%, P = 0.003). Despite having similar blood pressure control, patients in the Y-DM group necessitated less blood pressure medications than patients in the NY-DM (1.6 ± 1.8 vs. 2.5 ± 1.7, P= 0.002). In addition, in only 30% of the Y-DM group HTN was diagnosed before or concomitantly with the diagnosis of diabetes compared with 51% in the NY-DM (P= 0.035). In a logistic regression analysis, Non-Yemenite origin was independently associated with a higher prevalence of HTN (odd ratio 3.0, 95% CI :1.5-6.3, P= 0.0025). There were no significant differences between the 2 groups in physical activity, total calories consumed and the DASH score (30 ± 3 vs. 31 ± 3).

Conclusion: Despite the marked increase in the prevalence of type 2 diabetes in Yemenite Jews who immigrated to Israel, the prevalence of HTN in diabetics of Yemenite origin remained significantly lower compared with Non-Yemenite diabetics and blood pressure control necessitated less medications. These results are not due to differences in life style including adherence to the DASH diet and other mechanisms have to be explored.

Backgound and aims: Both hypercholesterolemia and prediabetes increase cardiovascular disease risk. Colesevelam has been shown to reduce LDL-C and fasting plasma glucose (FPG) in patients (pts) with hypercholesterolemia and prediabetes. A 16-week (wk), randomized, double-blind, placebo-controlled, multinational study evaluated the lipid- and glucose-lowering effect of colesevelam in pts with hypercholesterolemia and prediabetes.

Materials and methods: This post-hoc analysis evaluated the effect of colesevelam in a subpopulation of Hispanic pts (those self identified enrolled in Colombia, Mexico, and the US) included in the 16-wk study. Adults with untreated prediabetes (2-h post-OGTT glucose: 7.8-11.1 mmol/L and/or FPG: 6.1-6.9 mmol/L, LDL-C ≥2.6 mmol/L, and triglycerides (TG) <5.7 mmol/L were randomized 1:1 to colesevelam 3.75 g/d or placebo. Primary endpoint was percent change in LDL-C from baseline to Wk 16. All efficacy analyses were performed using last observation carried forward at Wk 16.

Results: In total, 153 Hispanic pts received colesevelam (n=77) or placebo (n=76). There was a significant LS mean percent change with colesevelam vs placebo from baseline to Wk 16 in: LDL-C (-14.7% vs 4.8%; treatment difference [TD]: -19.4%; P<0.0001), non-HDL-C (-10.2% vs 1.8%; TD: -12.0%; P<0.0001), total cholesterol (-6.9% vs 2.8%; TD: -9.7%; P<0.0001), apoB (-8.0% vs 2.2%; TD: -10.2%; P=0.0002), and TG (median: 5.9% vs -8.1%; TD: 15.4%; P=0.003). ApoA-I increased with both colesevelam (5.0%) and placebo (4.4%) at Wk 16. A significantly greater proportion of pts achieved LDL-C <2.6 mmol/L with colesevelam vs placebo at Wk 16 (27% vs 11%; P=0.002). Colesevelam vs placebo also produced significantly greater reductions from baseline in FPG (median: -0.2 vs -0.1 mmol/L; TD: -0.1 mmol/L; P=0.024) and HbA1c (mean: -0.14% vs -0.02%; TD: -0.12%; P=0.009) at Wk 16. The proportion of pts achieving normalization of glucose (FPG <5.6 mmol/L) was significantly greater with colesevelam vs placebo (44% vs 23%; P=0.0497). Overall, colesevelam was well tolerated in Hispanic pts with hypercholesterolemia and prediabetes (Table).

Conclusion: In Hispanic pts with hypercholesterolemia and prediabetes, colesevelam may be a suitable option for lowering LDL-C and improving the metabolic profile. Further investigation regarding the effect of colesevelam on progression to type 2 diabetes is warranted.

Summary of Adverse Events

<table>
<thead>
<tr>
<th>n (%)</th>
<th>Colesevelam (n=81)</th>
<th>Placebo (n=78)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients reporting AEs</td>
<td>44 (54)</td>
<td>46 (59)</td>
</tr>
<tr>
<td>Patients reporting drug-related AEs</td>
<td>13 (16)</td>
<td>10 (13)</td>
</tr>
<tr>
<td>Patients reporting SAEs</td>
<td>2 (3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>AEs occurring in ≥5% of patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back pain</td>
<td>3 (4)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Constipation</td>
<td>9 (11)</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4 (5)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Headache</td>
<td>6 (7)</td>
<td>10 (13)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1 (1)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Influenza</td>
<td>9 (11)</td>
<td>7 (9)</td>
</tr>
</tbody>
</table>

Supported by: Daiichi Sankyo, Inc., who markets colesevelam in the US.
1295

Meta-analysis evaluating the proportions of patients with and without diabetes achieving lipid/lipoprotein goals with ezetimibe/statin combination therapy versus statin alone

1Merck Sharp & Dohme Corp, Whitehouse Station, USA, 2Duke University Medical Center, Rahleigh, USA, 3Royal Free & University College London Medical School, USA, 4Point Medical, Dijon, France, 5Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada, 6Merck Sharp & Dohme Corp, Rahway, USA.

Background and aims: Treatment guidelines identify low-density lipoprotein cholesterol (LDL-C) as a major target of treatment in hypercholesterolemic patients with non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein (apo) B and high-sensitivity C-reactive protein (hs-CRP) as secondary targets or emerging risk factors. This meta-analysis compared proportions of hypercholesterolemic patients with and without diabetes achieving various targets specified levels following treatment with ezetimibe 10 mg plus statin therapy (pooled across statin dose/type; EZE/statin) versus statin monotherapy (pooled across statin dose/type).

Materials and methods: This was a pooled analysis of 27 previously published, randomized, double-blind, active or placebo-controlled clinical trials conducted in 21794 adult patients (age range: 18-81 yr) with elevated LDL-C (LDL-C range: 1.81-6.48 mmol/L) receiving EZE/statin or statin alone for 4-24 wk. Patients were classified as having diabetes (either type 1 or 2). This meta-analysis evaluated % of patients achieving various treatment goals at study endpoint in patients with (n=6541) and without diabetes (n=15253). Adjusted odds ratios (95% CIs) were calculated to evaluate the between-treatment ability to achieve specified levels in the overall population and within subgroups.

Results: Calculated odds ratios for the single levels are presented in the Table. Significantly more patients with and without diabetes achieved LDL-C (<2.59, <1.99, and <1.81 mmol/L), non-HDL-C (<3.37 and <2.59 mmol/L), apo B (<0.9 and <0.80 g/L) and hs-CRP (<2 and <1 mg/L) levels with EZE/statin vs statin alone. Patients with diabetes were more likely to reach single LDL-C and apo B targets than those without diabetes. Greater goal attainment rates with EZE/statin vs statin alone also were seen for the dual (LDL-C <2.59 mmol/L and apo B <0.9 g/dL), LDL-C <1.81 mmol/L and apo B <0.8 g/L, LDL-C <1.99 mmol/L and apo B <0.8 g/L as well as hs-CRP <2 mg/L and LDL-C <2.59 mmol/L and triglycerides (TG) 150-600 mg/dL were randomized (week 0) for a 12-week treatment period to the F160 mg/P40 mg and E10 mg triple therapy or the combination of S20 mg and E10 mg, followed by a 12-week open-label period where all patients received the triple therapy. The primary efficacy comparison was the mean percent (%) changes in non-HDL-C (F/P+E vs S+E). Secondary end-points included LDL-C, HDL-C, TG, ApoB and fibrinogen.

Conclusion: At week 12, no significant differences were observed between the F160/P40+E10 group and the S20+E10 group in reducing non-HDL-C (-21.2% vs -24.7%; p=0.09) and ApoB (-15.7% vs -18.1%; p=0.149), and in increasing HDL-C (+3.5% vs +0.5%; p=0.066). The changes in LDL-C were -19.8% in the F160/P40+E10 group and -25.1% in the S20+E10 group (p=0.05). The triple therapy was more effective than S20+E10 in reducing TG (-22.8% vs -8.2%; p=0.007) and fibrinogen (-11.8% vs -6.6%; p=0.0001). The triple therapy was generally well tolerated with a safety profile comparable to the S20+E10 combination therapy. Especially no cases of myopathy or rhabdomyolysis were reported.

Supported by: SMB Laboratories Belgium

1296

Comparative efficacy of fenofibrate/pravastatin/ezetimibe and simvastatin/ezetimibe therapies in type 2 diabetic patients with combined hyperlipidaemia and cardiovascular disease

M. Farnier1, A. Steinmetz2, A. Cassar3, K. Retterstol4, M. Dluzniewski5, 1Point Medical, Dijon, France, 2St. Nikolaus-Stiftshospital GmbH, Andernach, Germany, 3State Health Center, Budapest, Hungary, 4Oulu University Hospital - Rikshospitalet, Norway, 5Warsaw Hospital, Poland.

Background and aims: Very high risk patients with type 2 diabetes (T2D) and cardiovascular disease often require combination therapy to achieve recommended LDL-cholesterol (LDL-C) and non-HDL-cholesterol (non-HDL-C) goals. This study evaluated the efficacy and safety of Fenofibrate (F) 160 mg/Pravastatin (P) 40 mg fixed-dose combination and Ezetimibe (E) 10 mg compared to Simvastatin (S) 20 mg and E10 mg in T2D patients with cardiovascular disease and not at goals on S20 mg.

Materials and methods: This randomized, double-blind, parallel group study was conducted at 73 European centers. After a 6-week run-in period on S20 mg, 273 patients with non-HDL-C ≥300 mg/dL or LDL-C ≥70 mg/dl and triglycerides (TG) 150-600 mg/dl were randomized (week 0) for a 12-week treatment period to the F160 mg/P40 mg and E10 mg triple therapy or the combination of S20 mg and E10 mg, followed by a 12-week open-label period where all patients received the triple therapy. The primary efficacy comparison was the mean percent (%) changes in non-HDL-C (F/P+E vs S+E). Secondary end-points included LDL-C, HDL-C, TG, ApoB and fibrinogen.

Results: At week 12, no significant differences were observed between the F160/P40+E10 group and the S20+E10 group in reducing non-HDL-C (-21.2% vs -24.7%; p=0.09) and ApoB (-15.7% vs -18.1%; p=0.149), and in increasing HDL-C (+3.5% vs +0.5%; p=0.066). The changes in LDL-C were -19.8% in the F160/P40+E10 group and -25.1% in the S20+E10 group (p=0.05). The triple therapy was more effective than S20+E10 in reducing TG (-22.8% vs -8.2%; p=0.007) and fibrinogen (-11.8% vs -6.6%; p=0.0001). The triple therapy was generally well tolerated with a safety profile comparable to the S20+E10 combination therapy. Especially no cases of myopathy or rhabdomyolysis were reported.

Supported by: SMB Laboratories Belgium

1297

Effect of one year treatment with insulin and oral glucose-lowering agents on lipid levels in non-obese patients with type 2 diabetes

1Sreno Diabetes Center, Gentofte, 2Hagedorn Research Institute, Gentofte, 3Dep of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark.

Background and aims: In non-obese patients with type-2 diabetes (T2DM), metformin has been suggested to be enhanced by concomitant statin therapy. It is unknown if these effects persist when treatments are combined with insulin therapy. We aimed to study the effect of repaglinide (an insulin secretagogue) versus metformin both in combination with insulin therapy on lipid levels in non-obese T2DM patients. Furthermore, the effect of statin use was of interest.

Materials and methods: 101 non-obese T2DM patients (BMI ≤27 kg/m²) with HbA1c ≥6.5% on oral agents were randomised to one year treatment with insulin (biphasic insulin aspart 70/30) in combination with either repaglinide 6 mg or metformin 2g (double-masked). Insulin doses were adjusted aiming for HbA1c <6.5%. Those patients who did not start or stop statin treatment during follow-up were analysed (n=88).

Results: In statin users, insulin plus metformin (n=43) significantly lowered fasting total and Non-HDL cholesterol (Non-HDLLC) compared with insulin plus repaglinide (n=40) (mean [95% CI] baseline-adjusted difference between treatments for Non-HDL-C: -0.26 mmol/l [−0.49,-0.02]). Furthermore, the effect of statin use was of interest.

Supported by: Merck
changes in statin doses. Insulin doses and HbA1c were similar between treatment groups (previously reported).

Conclusion: In non-obese T2DM patients using statins one-year treatment with insulin plus metformin rather than insulin plus an insulin secretagogue might improve proatherogenic cholesterolamia. This supports potential cardioprotective effects of metformin when combined with insulin even in statin users.

Supported by: Novo Nordisk A/S

1298

Loss of the association between plasma Pro-protein Convertase Subtilisin/Kexin type 9 (PCSK9) and LDL-apolipoprotein 1 catabolism in type 2 diabetes

B. Verges1,2, P. Costet1, L. Duvillard1, M.-C. Brindisi1, M. Krempf1, B. Carion1; 1Endocrinology- Diabetology, Hôpital du Bocage, Dijon, 2INSERM CRI866, Dijon, 3INSERM U915, Nantes, France.

Background and aims: Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of LDL metabolism because of its ability to facilitate degradation of LDL receptors. It has recently been shown, in non-diabetic men, that plasma PCSK9 level was inversely correlated with LDL apolipoprotein B100 fractional catabolic rate (FCR) suggesting an influence of plasma PCSK9 on LDL catabolism. However, the association between plasma PCSK9 and LDL catabolism remains unknown, in patients with type 2 diabetes.

Materials and methods: This prompted us to perform a kinetic study of LDL-apoB100, using C13 leucine, in 38 individuals (20 men, 18 women) including 23 non diabetic normolipidemic subjects and 15 patients with type 2 diabetes.

Results: Plasma PCSK9 levels were not significantly different between non diabetic subjects and patients with type 2 diabetes (271 ± 109 vs. 301 ± 96 ng/ml). In the non diabetic group, plasma PCSK9 was positively correlated with age (r=0.38, p=0.018), LDL-cholesterol (r = 0.43, p=0.006), apoB (r=0.44, p=0.005) and inversely correlated with LDL-apolipoprotein B100 FCR (r=0.52, p=0.001). In multivariate analysis, LDL-apolipoprotein B100 FCR was independently associated with PCSK9 (p=0.0066) and gender (p=0.038), but not with age or BMI. Plasma PCSK9 concentration explained, in this non diabetic population, 37% of the variance in LDL-apolipoprotein B100 FCR. On the other hand, in the population with type 2 diabetes no correlation was found between plasma PCSK9, on the one hand, and LDL-cholesterol, apoB and LDL-apolipoprotein B100 FCR, on the other hand. In both groups, no correlations were found between plasma PCSK9 and LDL-apolipoprotein Production Rate.

Conclusion: Our data indicate that plasma PCSK9 influences significantly the catabolism of LDL-apolipoprotein B100 in individuals without diabetes but not in patients with type 2 diabetes. The reasons for this los of association between plasma PCSK9 and LDL catabolism, in type 2 diabetes, remain to be determined.

1299

Effects of extended release niacin/laropiprant on lipoprotein subfractionation in patients with type 2 diabetes mellitus

E. O’Neill1, A. MacLeans1, H. Giezek1, D. Maccubin1; 1Merk Sharp & Dohme Corp, Rahway, USA, 1Merk Sharp & Dohme Corp, Brussels, Belgium.

Background and aims: Lipid management guidelines emphasize reducing LDL cholesterol as the primary goal of pharmacologic treatment. However other lipoprotein parameters, including increased plasma concentrations of small LDL and IDL particles, and reduced plasma concentration of medium/large HDL particles, may also place patients at increased risk for coronary heart disease. Patients with T2D are especially prone to this atherogenic lipoprotein phenotype. Extended release niacin/laropiprant (ERN/LRPT) is a fixed-dose combination tablet containing 1 g of ERN and 20 mg of LRPT, a prostaglandin D2 receptor antagonist that reduces ERN-induced flushing while preserving ERN’s LDL-C and triglyceride lowering, and HDL-C raising effects. In this assessment, the effects of 12 weeks of treatment with ERN/LRPT in patients with T2D on plasma lipoprotein particles were evaluated.

Materials and methods: In a multicenter, double-blind, placebo-controlled, 36-week study, T2D patients (n=796) were randomized 4:3 to ERN/LRPT (1 tablet / day) or placebo (PBO). After 4 weeks 2 tablets / day of ERN/LRPT were given for the remainder of the study. LDL, HDL, VLDL, and chylomicron particle size and concentration were evaluated at week 12 by NMR. Lipoprotein subfraction data are reported as summary statistics without adjustment for covariates.

Results: At week 12, ERN/LRPT produced significant (p<0.001 for all changes in LDL-C (-17.9%), HDL-C (-23.2%), and triglycerides (-23.1%). Compared with PBO, ERN/LRPT treatment was associated with a relative shift in the plasma concentration of HDL particles from small to large diameter, and a decrease in the plasma concentrations of all LDL and IDL particles (Table). ERN/LRPT also produced large reductions in the plasma concentrations of all VLDL and chylomicron particles relative to PBO.

Conclusion: In patients with T2D, 12 weeks of treatment with ERN/LRPT shifted the overall lipoprotein profile toward a potentially less atherogenic pattern: reducing the plasma concentration of small LDL and IDL particles and increasing the plasma concentration of large HDL particles compared with PBO.

<table>
<thead>
<tr>
<th>PLASMA LIPOPROTEIN CONCENTRATIONS MEDIAN BASELINE / MEDIAN CHANGE FROM Baseline at Week 12 a</th>
<th>TREATMENT</th>
<th>HDL</th>
<th>HDL</th>
<th>HDL</th>
<th>LDL Very</th>
<th>LDL</th>
<th>LDL Medium / LDL</th>
<th>LDL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small a</td>
<td>Medium a</td>
<td>Large a</td>
<td>Small a</td>
<td>Medium a</td>
<td>Large a</td>
<td>Small a</td>
<td>Medium a</td>
</tr>
<tr>
<td>ERN</td>
<td>13.5</td>
<td>0.7</td>
<td>0.0</td>
<td>5.7</td>
<td>2.0</td>
<td>602.0</td>
<td>746.5</td>
<td>148.0</td>
</tr>
<tr>
<td>LRPT</td>
<td>2.9</td>
<td>-100.0</td>
<td>-116.0</td>
<td>-24.5</td>
<td>-3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: Our data indicate that plasma PCSK9 influences significantly the catabolism of LDL-apolipoprotein B100 in individuals without diabetes but not in patients with type 2 diabetes. The reasons for this los of association between plasma PCSK9 and LDL catabolism, in type 2 diabetes, remain to be determined.

1300

Role of HDL glycation and glycoxidation in counteracting the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation

M.-C. Brindisi1,2; L. Percé1; L. Duvillard1; D. Rago1; B. Verges1; 1Diabetology, Teaching Hospital, 2Physiopathology of dyslipidaemia, Inserm Research Center 866, 3Research Federative Institute 100, Teaching Hospital, Dijon, France.

Background and aims: In healthy normolipidaemic and normoglycaemic control subjects, HDL are able to reverse the inhibition of vasodilation induced by oxidized LDL. We have previously shown that in type 1 diabetic patients, HDL do not protect against the inhibition of endothelium dependent vasorelaxation induced by oxidized LDL. This defect was not explained by abnormalities in HDL composition, size or paraoxonase activity. The aim of this study was to analyse the role of glycation or glycoxidation of HDL on this vasodilation effect.

Materials and methods: Blood samples were collected from healthy patients. Extracted HDL particles, separated by ultracentrifugation, were glycated or glycoxidized in vitro. Vasoreactivity was evaluated by the relaxation response to acetylcholine of rabbit aorta rings pre-contracted with noradrenaline, before and after two hours incubation with or without different lipoprotein fractions (Kreb’s/buffer; ox-LDL; normal, glycated or glycoxidized HDL alone; normal, glycated or glycoxidized HDL + ox-LDL).

Results: The lipid composition of normal, glycated and glycoxidized HDL was similar. The mean of the Fructosamine/ApoA1 ratio was 17.58 µmol/g of protein for normal HDL and 48.67 and 53.63 µmol/g of protein for glycated and glycoxidized HDL, respectively. The oxysterol level of glycoxidized HDL was significantly higher than that for normal and glycated HDL (p=0.009 and p=0.016 respectively). Oxidized LDL inhibited endothelium vasorelaxation (maximal relaxation (Emax) = 53.34 ± 27.06 vs 98.67 ± 10.16 % for incubation in Kreb’s/buffer, p<0.005). Normal HDL were able to counteract the oxidized LDL-induced inhibition of vasorelaxation (Emax = 78.75 ± 19.72 vs 53.34 ± 27.06 %, p=0.003), whereas glycated and glycoxidized HDL had no effect (p=0.35 and 0.092 respectively). No difference was observed between glycated and glycoxidized HDL (p=0.28).

Conclusion: Our data indicate that glycation of HDL is responsible for the inability of HDL particles to counteract the oxidized LDL-induced inhibition of endothelium-dependent vasorelaxation. The oxidation of glycated HDL brings no additional effects. Glycation of HDL is probably one important factor that explains the absence of effect of HDL particles in patients with diabetes.
1301
Insulin restores selective insulin resistance in type 2 diabetic mellitus patients with severe hypertriglyceridaemia
S.R. Henderson, R. Maitland, O.G. Mustafa, M. Crook, S.R. Kottegoda; Metabolic Medicine Unit, University Hospital Lewisham, London, United Kingdom.

Introduction: Severe hypertriglyceridaemia (SHTG) is a recognised complication of type 2 Diabetes Mellitus (T2DM) and poses significant risk of premature atherosclerosis and pancreatitis. Altered regulation of triglyceride (TG) metabolism by hepatic and adipose tissue remains critical in T2DM patients. Hyperglycaemia is associated with resistance of hepatic transcription factor FoxO1 and adipose tissue lipoprotein lipase (LPL) to the actions of insulin, resulting in uncontrolled gluconeogenesis and reduced hydrolysis of serum TG. Conversely, recent research has highlighted that hepatic TG production remains sensitive to circulating insulin, through the activation of transcription factor SREBP-1c, perpetuating the detrimental effects of hyperglycaemia and SHTG. We report the novel use of continuous intravenous (IV) insulin to restore this selective insulin resistance and reduce the risk of SHTG in T2DM.

Methods: Patients with hyperglycaemia and SHTG (serum TG >15mmol/L) treated with continuous insulin were retrospectively evaluated within our centre. Demographics, admission details, lipid profiles, glycaemic control and adverse events were recorded. Patients receiving treatment dose heparin were excluded to minimise effect on LPL.

Results: Fifteen patients were reviewed. Mean patient age 46 (27 - 70) years. Patients included 8 Caucasians, 5 Afro-caribbeans and 2 Indo-asians. New onset T2DM was diagnosed in 7 cases. Mean disease duration in the remaining cohort was 60 (2 - 96) months. Median admission HbA1c measured 9.6% (6.1 - 16.1). Pre-admission insulin was utilised in 75% (n=6) and Metformin in 25% (n=2) patients. Acute pancreatitis was diagnosed in 3 patients prior to insulin infusion. Median admission serum TG measured 26.23mmol/L (15.09 - 48.43) and serum cholesterol 11.24mmol/L (5.39 - 19.62). Continuous insulin was infused for an average 48 hours (24 - 72). Median serum TG reduced to 15.79mmol/L (0.79 - 36.59) following 24 hours insulin infusion (n=15) and 12.15mmol/L (5.74 - 32.49) at 48 hours duration (n=8). Insulin infusion continued for 72 hours in 7 patients with median serum TG measuring 10.20mmol/L (5.74 - 24.03). Median discharge serum TG measured 5.75mmol/L (0.79 - 11.66) and serum cholesterol 5.90mmol/L (3.65 - 10.74) correlating with significant reduction in serum TG following IV insulin (p<0.05). Median length of hospitalisation was 4 days (3 - 15). Concomitant lipid lowering therapy included statins (n=9) and omega-3-acid ethyl esters (n=9). Continued administration of Fenofibrate occurred in 2 patients. Prophylactic low molecular weight heparin was given to all patients (Enoxaparin 20-40mg).

Conclusion: These results detail SHTG associated with hyperglycaemia in a heterogeneous group of T2DM patients ranging from new onset diabetes to established disease. Yet, in all patients, administration of continuous insulin appears to not only achieve normoglycaemia but also dramatically correct SHTG. Insulin stimulates the action of LPL in adipocytes and these findings support this theory owing to the rapid clearance of serum TG. In addition, we speculate that administration of insulin may also regulate gluconeogenesis and hepatic TG synthesis in hyperinsulinemic patients; restoring selective insulin resistance. Ultimately, the administration of continuous insulin in T2DM patients with SHTG is a simple method of reducing the immediate risk associated with this metabolic complication.

1302
Underutilisation of statins in patients with type 2 diabetes treated with an antihyperglycaemic regimen
L. Radican1, A.Z. Fu2, Q. Zhang3, S.-R. Pentakota1, T. Seck4;
1Global Outcomes Research, Merck Sharp & Dohme, Corp., Whitehouse Station, 2Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, 3School of Public Health, University of Medicine & Dentistry of New Jersey, Whitehouse Station, 4Merck Research Laboratories, Rahway, USA.

Background and aims: Patients with type 2 diabetes (T2DM) are at a high risk for cardiovascular (CV) events. Diabetic dyslipidaemia is a key CV risk factor and statin therapy has been demonstrated to reduce CV risk. Therefore use of statins is widely recommended in current treatment guidelines for patients with T2DM. The purpose of this study was to estimate the proportions of patients with T2DM treated with an antihyperglycaemic agent (AHA) who needed a statin therapy based on ADA recommendations and of patients who received statin therapy in clinical practice.

Materials and methods: The study used the GE Healthcare’s electronic medical record database, and included patients who were ≥25 years with T2DM and received AHA (oral or insulin) prescription (Rx) between 7/2006 and 6/2008 (index period). The index date was the date of the first AHA Rx within the index period. Patient eligibility for statin therapy according to the ADA Standards of Medical Care in Diabetes (2008) was assessed using patient medical records 1 year prior to (baseline) and 1 year after (follow-up) the index date. Concomitant statin use with AHA therapy was based on Rx records during the follow-up period. Logistic regression was performed to estimate the likelihood of statin use in relation to baseline characteristics, co-morbidities, clinical and laboratory measures, and medication use.

Results: Of the 113,906 patients with T2DM treated with AHAs, 48% were male and mean (SD) age was 63 (13) years. At baseline, LDL-C was ≥ 2.6 mmol/L (100 mg/dL) in 49% of the patients not on a lipid-lowering agent (LLA) and in 34% of the patients on a LLA. While 98% of the patients met ADA eligibility standards for statin therapy, only 64% of patients actually received a statin Rx during the follow-up period. The adjusted logistic regression showed that older age, male, smoking, baseline antihypertensive Rx, and baseline blood thinner Rx are factors associated with increased likelihood of statin use (all p<0.001).

Conclusion: Although nearly all patients with T2DM on AHA were eligible for statin therapy per ADA recommendations, only 64% were treated with statin in our study. This indicates that statins are underused in current clinical practice and a more integrated approach is needed to improve statin utilization to reduce CV risk in patients with T2DM.

Supported by: Merck
1303

Arterial stiffness and endothelial dysfunction in type 1 diabetes mellitus

G. Llaurado1, M.P. Gil2, N. Freixenet1, A. Caixas1, O. Giménez-Palop1, M. Rigla1, J. Vendrell1, J.M. González-Clemente1;
1 Diabetes, Endocrinology and Nutrition, Hospital de Sabadell, Corporació Sanitària i Institut Universitari Parc Taulí, Sabadell, 2 Diabetes, Endocrinology and Nutrition, Hospital Universitari Joan XXIII. Institut Universitari Pere Virgili. CIBERDEM, Tarragona, Spain.

Background and aims: Subjects with type 1 diabetes mellitus (T1DM) have a very high cardiovascular (CV) risk, which is not fully understood by the classical CV risk factors. Arterial stiffness (AS) can provide some additional information regarding CV risk in these subjects. Endothelial dysfunction is involved in the atherosclerotic process. The studies regarding the relationship between AS and endothelial dysfunction in T1DM are few and contradictory. We aimed at evaluating the relationship between (1) AS and CV risk factors and (2) AS and endothelial dysfunction.

Materials and methods: Sixty-eight subjects with T1DM were evaluated by (1) sex, age, BMI, WHR, systolic (SBP) and diastolic (DBP) blood pressure, smoking, HbA1c and lipid profile; (2) microvascular complications; (3) insulin resistance (by way of the Williams’ mathematical estimation of the glucose disposal rate- eGDR); (4) AS as aortic pulse wave velocity (PWV) measured by applanation tonometry (Sphygmocor®) and (5) endothelial dysfunction assessed non-invasively by reactive hyperemia-peripheral arterial tonometry (RH-PAT, EndoPAT®).

Results: We evaluated 34 men aged 35.5±9.5 years, diabetes duration: 14.5±8.5 years; BMI: 26.0±3.3 kg/m², WHR: 0.91±0.08, SBP: 131.5±10.9 mmHg, DBP: 76.7±7.1 mmHg, smokers: 36.6%, fasting plasma glucose (FPG) 156.2±68.7 mg/dl, HbA1c: 7.4±1.1%, LDL: 100.5±26.1 mg/dl, microvascular complications: 27.3% and 34 women aged (35.2±11.2) years, diabetes duration: 12.9±8.0 years; BMI: 25.3±3.9 kg/m², WHR: 0.81±0.07, SBP: 118.3±9.6 mmHg, DBP: 69.1±7.9 mmHg, smokers: 35.3%, FPG 172.7±64.0, HbA1c: 7.97±1.2%, LDL 104.5±27.5 mg/dl, microvascular complications: 23.5%.

In the whole group, PWV correlated positively with age (r=0.53, p<0.001), diabetes duration (r=0.27, p=0.028), BMI (r=0.57, p<0.001), WHR (r=0.38, p=0.001), SBP (0.36, p=0.003) and DBP (r=0.26, p=0.031). In addition, we found a negative correlation between PWV and eGDR (r=-0.31, p=0.011). No association was found between PWV and smoking, lipid profile, FPG, HbA1c, microvascular complications and RH-PAT. In multivariate regression analysis, age (β=0.46, p<0.001) and BMI (β=0.40, p<0.001) were the only predictors of PWV (model R=0.686). Although PWV was similar in both genders (men: 7.13±1.34 vs women: 6.86±1.71, p=0.48), in multivariate regression analysis stratifying for sex, age (β=0.43, p=0.007) and BMI (β=0.34, p=0.029) were the only predictors of PWV in men (R=0.609) and age (β=0.29, p=0.020), BMI (β=0.48, p<0.001) and diabetes duration (R=0.35, p=0.012) in women (R=0.786).

Conclusion: In subjects with T1DM, the main determinants of PWV were age and BMI. Additionally, diabetes duration was another determinant in women. We did not find any other independent relationship between PWV and the rest of the classical CV risk factors or glycemic control, suggesting that the measurement of PWV could be useful in the assessing of CV risk. Finally, we did not find any association between PWV and endothelial dysfunction measured by RH-PAT.

Supported by: ACD (2º Beca G. Llovers); F. Marató TV3 (081410)

1304

Endothelial dysfunction and arterial stiffness are linked in hypertensive patients with type 2 diabetes mellitus

E. Russo1, L. Pucci1, D. Lucchesi2, R.M. Bruno1, E. Storti1, C. Bianchi1, G.A. Daniele1, L. Giadossi1, T. Taddle1, R. Miccoli1, G. Penno1, S. Del Prato1, 1Endocrinology and Metabolism, 2Internal Medicine, University of Pisa and Azienda Universitaria Ospedaliera Pisana, Pisa, Italy.

Background and aims: In diabetic as well as in hypertensive patients, increased arterial stiffness and endothelial dysfunction both have been associated with an increased risk of cardiovascular events. Arterial stiffness has been usually ascribed to vascular structural alterations, although a “functional” component contributing to the compliance of large arteries has been demonstrated recently. An inverse correlation between endothelial dysfunction and arterial stiffness was reported in healthy subjects, while this inter-

relationship has been poorly explored in subjects at high risk of cardiovascular disease, such as patients with hypertension or diabetes. In this study this relationship has been evaluated in hypertensive patients with or without type 2 diabetes mellitus.

Materials and methods: Hypertensive patients with (DM+, n. 69) and without diabetes (DM-, n. 68), matched for age, gender, blood pressure, duration of hypertension and number and class of antihypertensive medications, were included. Brachial artery endothelium-dependent flow-mediated dilation (FMD) and endothelium-independent dilation by 25 μg sublingual glyceryl trinitrate (GTN) were assessed by high-resolution ultrasound and computerized edge detection system. Applanation tonometry was used to measure aortic pulse wave velocity (aPWV), as index of arterial stiffness.

Results: DM+ patients showed higher BMI, waist circumference, blood glucose and HbA1c values, as well lower total, LDL and HDL cholesterol levels compared with DM-. Urinary albumin to creatinine ratio (UACR) was within the normal range in both groups and no difference in hsCRP was found. DM+ showed lower FMD (3.5±2.2 vs 5.0±3.2%, p<0.0001) than DM-, while GTN response was similar. Aortic PWV was higher in DM+ than in DM- patients (10.3±12.2 vs 8.8±14.1 m/s, p<0.0001). The difference remained statistically different (p=0.003) when mean BP, age and BMI were considered as covariates. An increased PWV, defined on the basis of the cut-off of 8.3 m/s, was found in 84% of DM+ and in 64% of DM- (p=0.006). Multiple regression analysis, driven by simple regression, was used to identify independent predictors of aPWV, including in the model age, systolic blood pressure, heart rate, blood glucose, HDL cholesterol, triglycerides, BMI and waist circumference. Age (r=0.05, p=0.002), systolic blood pressure (r=0.08, p=0.001), BMI (r=0.07, p=0.003), and FMD (r=0.04, p=0.03), were independently related to PWV (full model r=0.45). In DM+, FMD (β=0.21, p=0.003), systolic BP (β=r=0.14, p=0.006) and BMI (β=0.08, p=0.02), remained independent predictors of aPWV (full model: r=0.33). In DM-, age, but not FMD, was an independent predictor of PWV (r=0.16).

Conclusion: We demonstrated that increased aortic stiffness is associated with endothelial dysfunction in hypertensive type 2 diabetic patients. The absence of this correlation in normoglycemic hypertensive patients, who have lower aortic stiffness and better endothelial function, suggests specific mechanisms related to the presence of diabetes.

1305

Circulating omentin-1 is associated with endothelial function independently of insulin sensitivity in subjects with altered glucose tolerance

1Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona. CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Spain.

Background and aims: Omentin-1 is a novel soluble lectin expressed exclusively in the endothelial cells of the blood vessels found in the visceral adipose tissue. Omentin-1 has a vasodilating effect on isolated blood vessels, which is mediated through endothelium-derived NO. To gain insight in the relationship between obesity and cardiovascular risk factors, we aimed to explore the interaction among circulating omentin-1, metabolic parameters and endothelial function according to glucose tolerance status in a human cross-sectional study.

Materials and methods: Circulating omentin-1 (ELISA) was studied in 155 healthy Caucasian men according to glucose tolerance status. Insulin sensitivity was measured using the frequently sampled intravenous glucose tolerance test in 106 subjects. Vascular reactivity was measured by high-resolution ultrasound of the brachial artery in 59 of these subjects.

Results: Circulating omentin-1 concentration was significantly increased in non-obese compared with obese subjects with altered glucose tolerance (AGT, 47.6± 15.8 vs. 40.5±13.2 ng/ml, p<0.04). In AGT subjects, serum omentin-1 was negatively associated with obesity parameters [body mass index (r=-0.24, p=0.04), waist to hip ratio (r=-0.23, p=0.04)] and mass (r=0.29, 0.01), blood pressure [systolic and diastolic blood pressure (r=-0.27, p=0.02 and r=-0.26, p=0.025, respectively)] and circulating IL-6 (r=0.43, p=0.001) and positively linked to insulin sensitivity (r=0.36, p=0.03), endothelium-independent (r=0.50, p=0.007) and dependent (r=0.33, p=0.04) vasodilatation. Circulating omentin-1 (p=0.02) and systolic blood pressure (p=0.01) contributed independently to endothelium-dependent but not to endothelium-independent vasodilatation variance after controlling for confounding factors in AGT subjects.
Conclusion: Omentin-1 might constitute a biomarker for endothelial function in AGT subjects.

Supported by: Ministerio de Educación y Ciencia and CIBERObn

1306
The extent of endothelial dysfunction in polycystic ovarian syndrome is moderated by obesity status

V.S. Spruingle1, D.J. Cuthbertson1, C.J. Pugh1, G. Atkinson1, A. Irwin2, N. Azzu3, G.J. Kemp4, H. Jones4;
1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, 2Department of Diabetes and Endocrinology, University Hospital Aintree, 3Department of Gynaecology, Liverpool Women's Hospital, 4Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, United Kingdom.

Background and aims: Females with PCOS are at increased risk of cardiovascular disease (CVD). Recent reports suggest that endothelial dysfunction, an early marker of CVD, measured using the flow mediated dilatation (FMD) is evident in PCOS patients. Nevertheless, the supporting evidence remains equivocal, potentially due to differences in obesity and/or insulin resistance which are associated with increased CVD risk and also manifest in PCOS. The aim of this study was to examine the degree to which obesity moderates endothelial function in PCOS patients and controls using a formal meta-analytical approach.

Materials and methods: A systematic review of published studies comparing endothelial function in PCOS patients to control individuals was performed. Nine published and 1 recent unpublished study (PCOS n=621; control n=297 participants) that measured endothelial-dependent FMD were included. At whole study level PCOS patient demographics included age range of 22.7±3.5 yrs and BMI 23.8±3.8kg/m² while control participants age ranged between 21.9-36.7yrs and the BMI from 22.8-37.3 kg/m². All participants were normoinsulative and PCOS patients demonstrated at least two out of the three Rotterdam criteria. The FMD values for PCOS and controls were compared and meta-regressed against BMI. Data are described as means±SD.

Results: The meta-analysed pooled reduction in FMD was found to be 3.7% (95% CI = 2.7 to 4.8%) in PCOS patients when compared with matched controls (P<0.0005). Significant inter-study heterogeneity was detected (I²-square = 68%, P=0.001). Therefore, meta-regression methods were used to explore the influence of BMI status on FMD reduction. The difference in FMD between PCOS and controls was less pronounced (group difference reduced by 0.2% per kg/m²) when participants were obese (P=0.0005). There was no evident publication bias (P=0.52).

Conclusion: There is overwhelming evidence that FMD is lower in PCOS patients compared with controls matched for BMI. Nevertheless, it is apparent from this analysis that the endothelial dysfunction in PCOS is influenced by obesity; with larger differences in FMD between PCOS and control individuals when these individuals are normal weight, suggesting that obesity outweighs the PCOS effect on FMD.

1307
Integrated endothelial function assessment in morbidity obese subjects

M. Pavlovska1, P. Grzelak2, M. Saryusz-Wolska1, E. Szymanska-Garbac3, A. Borkowska4, M. Gilewski1, J. Loba1, L. Stefanczyk1, L. Czupryniak1; 1Diabetology, 2Radiology, Medical University of Lodz, Poland.

Background and aims: Endothelial function, particularly endothelial-dependent vasodilation is impaired in overweight subjects and is thought to contribute to their increased risk of cardiovascular events. The mechanisms responsible for the adiposity-related reduction in endothelial vasodilatation function are not completely understood. We investigated endothelial function, inflammatory and glucose metabolism parameters in morbidity obese (BMI>40kg/m²) but otherwise healthy subjects.

Materials and methods: We studied 17 (5 men, 12 women, mean age 37.1+/−8.4, BMI 44.1+/−3.9 kg/m²) normotensive obese subjects without prior diabetes diagnosis. 13 age-matched healthy non-overweight subjects served as controls. All subjects underwent oral 75 g glucose tolerance test (OGTT) with plasma insulin measurements. Fasting plasma subclinical inflammation markers (interleukin-6, IL-6; tumor necrosis factor-α, TNF-α), leptin, endothelial dysfunction parameters (intercellular adhesion molecule, ICAM; vascular cell adhesion molecule, VCAM; E-selectin, thrombomodulin) were measured. In addition, endothelial function was assessed as flow mediated dilation (FMD) and sublingual nitroglycerin response (nitrate-induced dilation, NID) in the brachial artery in all subjects. Intima-media thickness (IMT) of carotid artery was measured as well.

Results: During OGTT, as compared to the controls, obese subjects had higher glucose level at 60 min (141±38 vs 103±36 mg/dl; p<0.03) and 120 min (121±33 vs 90±28 mg/dl; p<0.03) as well as fasting insulin level (28±25 vs 10±8 μU/mL; p<0.04) and insulin level at 60 min (115±63 vs 33±21 μU/mL; p<0.001). Moreover, in the obese subjects HOMA-IR (6.25±5.4 vs 2.3±4.16, p<0.03), TNF-α (24.1±11.0 vs. 13.3±6.9 ng/ml), IL-6 (6.82±4.1 vs 3.85±1.4 pg/ml; p<0.001), leptin (63.2±16.3 vs 26.2±18.1 mg/ml), VCAM (857±312 vs 613±210 ng/ml; p<0.02), sE-selectin (40.7±17.6 vs 25.8±19.6 pg/ml; p<0.04), thrombomodulin (3.67±2.8 vs 1.1±0.53 pg/ml; p<0.004) were greater than in the controls, whilst NID (8.67±22 vs 14.5±3.2% p<0.001) and FMD (4.73±1.9 vs 8.4±1.9%, p<0.001) parameters were lower in the controls. IMT was higher in the study group (0.69±0.12 vs 0.59±0.1 mm; p<0.04). There was a significant and remarkable correlation between body weight and NID (r = −0.69, p=0.04) as well as FMD (r = −0.7; p<0.04) in the obese subjects, but a positive one with IMT (r=0.48; p<0.04). Glucose at 60 and 120 min of OGTT inversely correlated with NID (r = −0.51 and r = −0.54; respectively, p<0.04) and FMD (r = −0.76 and r = −0.63; p<0.04), also plasma insulin at 60 and 120 min showed the same relationship with NID (r = −0.56 and r = −0.45; respectively, p<0.04) and FMD (r = −0.76 and r = −0.51; respectively, p<0.04). There were no differences between both groups in regard to plasma lipid profile, systolic and diastolic blood pressure.

Conclusion: Non-diabetes morbidly obese subjects already present with mild post-challenge hyperglycemia and hyperinsulinemia as well as endothelial dysfunction and subclinical inflammation. The results of our study suggest that vascular injury associated with obesity precedes diabetes development. This finding might have important implications for adopting prevention measures of cardiovascular disease in morbidity obese individuals.

Supported by: 502-18-835

1308
Brown fat lipoproteinaemia with age is sufficient to induce obesity, vascular dysfunction and vascular insulin resistance

Y.F. Otero1,2, A. Gomez-Hernandez1,2, N. de las Heras1,4, O. Escriva3,2, V. Cachoferos3,4, V. Lahera1,4, M. Benito1,2;
1Biochemistry and Molecular Biology, School of Pharmacy, Madrid, 2CIBERDEM, Barcelona, 3Physiology, School of Medicine, Madrid, 4RECAVA, Madrid, Spain.

Background and aims: Recently, it has been described that functional brown adipose tissue (BAT) is prevalent in adult humans and has a protector role against obesity in older patients. Our aim was to study glucose metabolism and vascular alterations in BAT insulin receptor knockout mice (BATIKRO), a mouse model characterized by a conditional-dependent loss of interscapular brown fat and an insulin secretion defect.

Material and methods: In the present work, we have analyzed vascular function, vascular insulin signaling and the expression of genes involved in vascular alterations in the aorta artery from 35- and 52-weeks old Control and BATIKRO mice. Results: BATIKRO mice at 52 weeks showed more severe glucose intolerance and mild fasted hyperglycemia as compared with BATIKRO mice at 33 weeks. This fact is owing to an insulin secretion defect. We have also observed a significantly reduction of endothelium-dependent relaxation induced by acetylcholine in aortic rings from BATIKRO mice at 52 weeks-old as compared with at 33 weeks-old BATIKRO mice. In contrast, endothelium-independent relaxations to sodium nitroprusside were comparable in all groups. In addition to endothelial dysfunction, we observed a higher constrictor response to angiotensin II in aortic rings in 52 weeks BATIKRO mice as compared with all other groups studied. In addition, we observed a significant increase of genes markers of vascular dysfunction (ET-1 and ICAM-1) and inflammation (MCP-1, iNOS, TNF-α, TNFRs and PAI-1) in the aorta artery from 52 weeks BATIKRO mice as compared with all other groups studied. Finally, we analyzed vascular insulin resistance as vasorelaxing response to insulin in phenylephrine pre-contracted rings. A significant decrease trend of relaxing response to insulin in aortic rings was observed in 52 weeks BATIKRO mice versus all other groups studied. Consequently, insulin signaling was dramatically impaired in the aorta artery from BATIKRO mice at 52 weeks as revealed the lack of phosphorylation of AKT (Ser473) and eNOS (Ser1177) as compared with all other groups.

Springer

Conclusion: Our results demonstrate that the lack of brown fat tissue mass during aging is sufficient to induce obesity, glucose intolerance, vascular dysfunction and vascular insulin resistance without an overall insulin resistance.

Supported by: GRANTS SAF2005/00014, SAF2007/00058 AND SAF2008/00031 FROM MICINN.

1309

Microvascular reactivity and oxidative stress after standard breakfast in patients with recently diagnosed type 2 diabetes

E. Horova, M. Prazman, J. Škeda; 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.

Background and aims: The aim of the study was to compare skin microvascular reactivity (MVR) with oxidative stress and metabolic parameters at fasting status and postprandially in patients with recently diagnosed Type 2 diabetes.

Materials and methods: Twenty patients with Type 2 diabetes (mean age 58.6 ± 6.6 years, HbA1c 8.0 ± 0.5%, diabetes duration 2.1 ± 1.3 years, metformin treatment only) were included in the study. Blood samples were taken before and after 60, 120 and 180 minutes after standard breakfast. MVR was measured before and after 60 and 180 minutes. Standard breakfast consisted of one roll (40 g), jam (20 g), butter (10 g) and 200 ml of defined supplemental nutrition Resource (in total 2006 kJ, proteins 22.26 g, carbohydrates 62.94 g, fat 15.51 g). Skin MVR was measured by the laser Doppler flowmetry during post-occlusive (PORH) and thermal hyperemia (TH). Glycemia, insulinemia and β-hydroxybutyrate (BHB) concentration were evaluated and malondialdehyde (MDA) and conjugated dienes (CD) were used for the estimation of oxidative stress.

Results: Blood glucose increased from baseline 6.9 ± 0.6 mmol/l to 8.0 ± 1.6 mmol/l after 60 minutes and 7.6 ± 1.2 mmol/l (p < 0.01) after 120 minutes in the postprandial phase. Glycemia consequently decreased after 120 minutes down to baseline level (6.2 ± 0.8 mmol/l). Insulinemia increased significantly (baseline, 60, 120, 180 minutes, respectively: 39 ± 16 - 142 ± 85 - 106 ± 63 - 55 ± 39 mU/l, p < 0.01) while BHB decreased (0.24 ± 0.16 - 0.16 ± 0.06 - 0.15 ± 0.07 - 0.16 ± 0.06 mmol/l, p < 0.01). MDA concentration was significantly lower after 120 minutes than at baseline (3.02 ± 0.48 vs. 2.80 ± 0.40 mmol/l, p < 0.05). Changes of several parameters of MVR were detected: maximal perfusion during PORH decreased after 180 minutes compared to baseline (235 ± 66 vs. 198 ± 53 PU, p < 0.01), although maximal perfusion (expressed in % of baseline perfusion) during PORH increased after 60 and 180 minutes (baseline, 60, 120 minutes, respectively: 165 ± 46 - 237 ± 211 - 273 ± 194 %, p < 0.05). Significant decrease was found in maximal perfusion during TH after 180 minutes compared to baseline (113 ± 53 vs. 145 ± 71 PU, p < 0.05). Negative correlation was found between fasting glycemia and maximal perfusion during PORH (r = -0.51, p < 0.05) and positive correlation was observed between the concentration of CD and velocity of perfusion increase during TH (r = 0.63, p < 0.01). Positive correlation was found also between fasting concentration of CD and MDA (r = 0.53, p < 0.05) as well as between maximal perfusion during PORH and insulineemia after 60 minutes (r = 0.65, p < 0.01). Statistically significant positive relation was found between blood glucose and insulin after 180 minutes (r = 0.90, p < 0.001) as well as between CD concentration and time to maximal perfusion during TH at the same time (r = 0.59, p < 0.01).

Conclusion: Significant metabolic changes were observed postprandially in patient with early stage of Type 2 diabetes in this study. In accordance with other studies, microvascular reactivity was probably mostly influenced by increased insulineemia and vasodilatory effect of insulin. Moreover, MVR may also be modulated by the oxidative stress. The relationship between MVR and insulineemia may imply that the B-cell dysfunction can consequently lead to microvascular dysfunction through the effect of insulin. However, to confirm this hypothesis, further research in this field is necessary.

1310

Reduced number of early circulating vascular progenitor cells and increased central arterial stiffness in polycystic ovary syndrome

J. Karaliullieva, M. Reza, G. Sivakumar, C. Dessapt, L. Grundl; Cardiovascular Division, King’s College London, United Kingdom.

Background and aims: Subjects with Polycystic ovarian syndrome (PCOS) are at risk of type 2 diabetes and associated cardiovascular disease. The mechanism of this enhanced risk is unclear. The number and function of circulating vascular progenitor cells (VPC) and arterial stiffness are independent predictors of cardio-metabolic risk. Aim: To study the number and function of VPC and arterial stiffness in non-obese PCOS subjects as compared to age and body mass index (BMI) matched healthy controls.

Materials and methods: Subjects with a confirmed diagnosis of PCOS with BMI ≤ 30 (n = 17) attending a University hospital outpatient clinic and healthy controls (n = 12) were studied. VPC number was measured by fluorescence-activated cell sorting. VPC function was assessed in vitro by tube formation and VPC migration assay. Augmentation index (Alx) a measure of central arterial stiffness and central aortic blood pressures were measured by applanation tonometry at the radial artery.

Results: There was no statistically significant differences between the Alx of PCOS vs. control group in, mean ± SEM, age. (26.4 ± 1.0 vs. 23.2 ± 1.5 years), weight (61.0 ± 1.2 vs. 65.9 ± 3.1 kg), BMI (24.2 ± 0.8 vs. 23.0 ± 0.7 kg/m², p < 0.26) and waist circumference (86.3 ± 2.5 vs. 82.1 ± 1.8 cm) p > 0.05 for all. Brachial systolic blood pressure, mean arterial pressure and pulse pressures were similar between the two groups. Compared to controls subjects with PCOS had higher central SBP (103.7 ± 2.4 vs. 94.9 ± 2.2 mmHg, p = 0.01), central DBP (75.6 ± 1.8 vs. 69.7 ± 2.4 mmHg, p = 0.06) and central pulse pressure (28.2 ± 1.0 vs. 25.1 ± 1.1 p > 0.04). Alx was significantly, more than 3 fold, higher in PCOS subjects compared to control (18.4 ± 1.9 vs. 4.9 ± 2.0 p < 0.001). Subjects with PCOS had reduced a significantly reduced number of the early VPC CD34+133+ (mean±SEM, 328.1 ± 47.9 vs 591.0 ± 120.5 p = 0.02). Other putative VPC (CD34+KDR+, CD34+133+KDR+) were not statistically different between groups. VPC function was not impaired in PCOS as compared to healthy controls. CD34+133+ VPC number and Alx was not correlated.

Conclusion: Non obese PCOS is characterized by reduced numbers of early VPC but preserved function. PCOS subjects have increased central arterial stiffness. These two unrelated changes may explain the enhanced cardio-metabolic risk of this population.

1311

Hypertension and neuropathy are the main determinants of impaired total arterial compliance in type 2 diabetic patients

M. Nguyen1, E. Cosson1, J. Pham1, A. Nitenberg1, P. Valensi1,2

1Endocrinology-Diabetology-Nutrition, 2Department of Physiology, Jean Verdier Hospital, Bondy, France.

Background and aims: Total arterial compliance (TAC) of the systemic arterial tree may be estimated by left ventricle stroke volume index/ pulse pressure ratio (i.e. a substitute for volume changes of the arterial system/ an index of arterial stiffness). This ratio has been validated against invasive measurements of arterial compliance. A low TAC level has been associated with an increased risk of subsequent cardiovascular events in hypertensive patients and in elderly men. TAC has not yet been evaluated in the diabetic population, in particular as regards to cardiac ischemic disease. Objective was to examine the determinants of TAC in asymptomatic high-risk diabetic patients with known cardiac ischemic status.

Materials and methods: We included 287 asymptomatic patients, 166 men, 59±8 years, with diabetes duration 13.5±7 years, with at least one additional risk factor (hypertension 73%, dyslipidemia 70%, smokers 22%, nephropathy 38%) and without heart failure. All of them were prospectively screened for silent myocardial ischemia (SMI), defined as an abnormal stress myocardial perfusion scintigraphy. TAC was calculated using echocardiographic left ventricle measurements and brachial blood pressure measurement. Cardiac autonomic neuropathy (CAN) was assessed using standard tests (deep-brushing, lying-to-standing and Valsalva).

Results: Mean TAC was 0.68 ± 0.23 ml/m²/mmHg. Lower TAC levels were associated with higher age (p < 0.05) and diabetes duration (p < 0.04) and LDL cholesterol (p < 0.004), and with peripheral neuropathy (p = 0.001) and hypertension (p < 0.001), respectively, but neither with SMI nor CAN. In multivariate analysis including all the significant correlates, hypertension (OR 2.5 [1.2-5.0], p < 0.01) and peripheral neuropathy (OR 2.2 [1.3-3.7], p < 0.004) were independent predictors of TAC < 0.56 (first tertile). In addition left ventricle stroke volume index was lower (p = 0.02) and pulse pressure higher (p < 0.01) in patients with than in patients free of peripheral neuropathy.

Conclusion: In high-risk but asymptomatic type 2 diabetic patients, hypertension and peripheral neuropathy are the main determinants of a reduced TAC. Peripheral neuropathy might contribute to TAC by altering vessel tone and vasomotion and increasing blood volume.
PS 131 Endothelium and vasculature

1312

Involvement of p66Shc in TNF-alpha-induced endothelial dysfunction

M.R. Orlando, L. Laviola, F. Tortosa, M. Incalza, A. Leonardi, M. Melchiorre, R. Labaruta, S. Perrini, A. Natalechico, F. Giorgioni; Endocrinology & Metabolic Diseases, D.E.T.O., University of Bari, Italy.

Background and aims: The pro-inflammatory cytokine TNF-alpha impairs endothelial function by modulating gene expression and increasing intracellular reactive oxygen species (ROS). The p66Shc isoform has been proposed as a sensor of cellular oxidative stress, through its phosphorylation on Ser36, and mediates stress signals in multiple cell types. The aim of our study was to investigate the role of p66Shc in TNF-alpha action in human umbilical vein endothelial cells (HUVECs).

Materials and methods: Expression and phosphorylation levels of specific signaling molecules were assessed by immunoblotting techniques. Intracellular ROS generation, in the presence of the DHE probe, was evaluated by fluorometric analysis. Gene expression was evaluated by quantitative RT-PCR (qRT-PCR). Wild-type p66Shc and mutant p66Shc, in which Ser36 had been replaced by Ala (p66Shc-Ala36), were selected overexpressed following infection with recombinant adenoviruses.

Results: Exposure of HUVEC to TNF-alpha (10-50 ng/ml) resulted in increased E-Selectin and IL-8 mRNA levels (p<0.05), evaluated by qRT-PCR, and in increased intracellular ROS concentrations (p<0.05), assessed by fluorometry. Treatment with TNF-alpha was also associated with increased phosphorylation of the stress kinase JNK-1/2 (p<0.05 at 30 min), of ERK 1/2 (p<0.05 at 30 min), and of p66Shc on Ser36 (p<0.05 at 30 min). Pre-incubation of HUVEC with the JNK inhibitor SP600125 prevented JNK activation by TNF-alpha and the effect of this cytokine on E-Selectin mRNA (p<0.05 vs TNF-alpha alone), but not that on IL-8 gene expression, and also reduced TNF-alpha-induced p66Shc phosphorylation on Ser36 and ROS generation. By contrast, treatment of HUVEC with the ERK inhibitor PD98059 blocked TNF-alpha-induced ROS production (p<0.05 vs TNF-alpha alone), but had no effects on E-Selectin gene expression and p66Shc phosphorylation on Ser36. We next obtained a selective 3-fold overexpression of p66Shc in HUVEC by adenoviral transfer (HUVEC/p66Shc). HUVEC/p66Shc showed increased p66Shc Ser36 phosphorylation both under basal conditions and following exposure to TNF-alpha (p<0.05 vs controls). This was associated with an increase in E-Selectin mRNA and ROS levels, both basally and after TNF-alpha exposure (p<0.05 vs controls). Pretreatment of HUVEC/p66Shc with the JNK inhibitor SP600125 significantly reduced the induction of E-Selectin mRNA levels and ROS synthesis following TNF-alpha (p<0.05). In addition, pretreatment of HUVEC/p66Shc with the ERK inhibitor PD98059 prevented TNF-alpha-induced ROS generation (p<0.05), but did not modify p66Shc phosphorylation on Ser36. Conversely, overexpression of a phosphorylation-defective p66Shc protein, in which Ser36 had been mutated to Ala, did not augment E-Selectin mRNA and ROS levels beyond those found in wild-type cells.

Conclusion: p66Shc acts as a novel signaling intermediate in the TNF-alp-MAF pathways mediating endothelial cell dysfunction, and its actions require p66Shc phosphorylation at Ser36.

Supported by: Italian Ministry of University and Research (MUR)

1314

Tissue kallikrein is essential for invasive capacity of circulating proangiogenic cells

G. Spinetti1, O. Fortunato1, D. Cordella1, P. Portararo1, N. Kraenkel2, G. Sala-Newby3, G. Tonolo1, S. Cherchi1, C. Emanuelli1, P. Madeddu2,3; IRCCS Multimedica, Milan, Italy, 1University of Bristol, United Kingdom, 2OC San Giovanni di Dio, Osimo, Italy.

Background and aims: The function of circulating proangiogenic cells (PACS) is altered in diabetes and inversely correlated with severity of vascular complications, but underpinning mechanisms remain unclear. We investigated the possibility that components of the kallikrein-kinin system, which are constitutively expressed in human PACs, may be downregulated in diabetes thus contributing to reduced PAC motility and invasiveness.

Materials and methods: Type 2 diabetic patients (T2D, n=22) and age- and gender-matched healthy subjects (n=16) were studied. Circulating mononuclear cells (MNCs) and culture-selected PACs were analyzed for expression of human tissue kallikrein (hK1) and kinin B2 receptor (B2R) by qRT-PCR, western blotting, immunofluorescence staining, and flow cytometry. Secretion of K1 by PACs was determined by measuring K1 levels in conditioned media by ELISA and enzymatic activity assay. Moreover, the functional role of the hK1/B2R duo was assayed by analyzing in vitro cell invasion potential (modified Boyden chambers assay), proangiogenic action (matrigel assay) and activation of matrix metalloproteinase-2 (MMP2, in situ- and gel-zymography) in the presence or absence of K1 silencing by siRNA, B2R antagonism by icatibant or MMP inhibition by GM6001. The activity of Akt was assayed as a measure of B2 receptor coupling to downstream signaling machinery. Adenovirus-mediated gene transfer of K1 (Ad.hK1) and B2R (Ad.B2R) was used to rescue the impaired T2D PACs phenotype.

Results: The two groups did not differ in smoking habit and LDL levels. T2D patients had higher BMI (30.7±6.4 vs. 25.2±5.3% in healthy) and HbA1c levels ranging between 5 and 7.5 (average value 6.6±1.8), all patients were on diabetic diet, 18 out 22 were on metformin therapy. MNCs and culture-selected PACs from healthy subjects express and release mature hK1 protein. K1 gene silencing impaired migration/invasion and proangiogenic capacities and reduced MMP2 activity in healthy PACs. T2D PACs showed reduced invasion and proangiogenic potential (~1.8 and 2.0 fold vs. controls, p<0.05) and lower K1 protein (~56.6±0.05), but normal hK1 mRNA abundance, pointing at a post-transcriptional defect. Furthermore, T2D-PACs expressed normal levels of B2R, but the receptor was not conductive as verified by re-
duced Akt activity following kinin stimulation. Ad.hK1 increased the migratory (1.6 fold) and invasive (1.8 fold) activity of healthy PAGCs, and stimulated their capacity to promote angiogenesis on matrigel (1.4 fold) (p<0.05 vs. Ad.Null, for all comparisons). Inhibitory experiments ascribed the effects of hK1 overexpression to B,R- and MMP-dependent mechanisms. Importantly, Ad.hK1 was unable to rescue the impaired invasion capacity of T2D-PAGCs and combined genetic engineering with hK1 and B,R was necessary to correct the diabetic phenotype.

Conclusion: Human PACs bear active hK1, which cooperates with B,R and MMP2 for invasion. T2D-induced deficit of hK1 results in PACs dysfunction. In diabetes, different components of the kallikrein-kinin system need to be overexpressed to restore proper invasiveness. This study unravels new molecular mechanisms underpinning PACs dysfunction in T2D.

Supported by: PG/06/035/20641, RBIN04NAYA

1315
Exendin-4, GLP-1(7-36) and GLP-1(9-36) stimulate proliferation of human coronary artery endothelial cells through PKA- and PI3K/Akt/eNOS-dependent pathways.

Ö. Erdogdu1, D. Nathanson2, Å. Stjoholm3, T. Nyström4, Q. Zhang5; 1Department of Clinical Science and Education, 2Department of Internal Medicine, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.

Background and aims: We recently showed that the glucagon-like peptide-1 (GLP-1) receptor is expressed in human coronary artery endothelial cells (HCAECs) and that GLP-1 improves endothelial dysfunction in type 2 diabetic patients with coronary artery disease. Exendin-4 is a stable GLP-1 receptor agonist and has been approved for clinical use against type 2 diabetes. In contrast to their glycemic effects, the role of GLP-1 and its analogues on eNOS-dependent pathways has not been studied. We, therefore, investigated the effects of exendin-4, GLP-1(7-36) and GLP-1(9-36) on cell proliferation in HCAECs in vitro.

Materials and methods: HCAECs were treated with exendin-4 (1-10 nM), GLP-1 (7-36) (100 nM) or the major GLP-1 metabolite GLP-1 (9-36) (100 nM), respectively, in serum-deficient medium in the presence of 5 mM glucose for 48 h. Phosphorylation and expression of the endothelial nitric oxide synthase (eNOS), Akt and MAP kinase were examined by Western blotting using anti-phospho-eNOS (Ser1177), anti-eNOS, anti-phospho-Akt (Ser473), anti-Akt, and anti-phospho-MAPK antibodies, respectively. “H-thymidine incorporation was assayed in 96-well plates as a measure of DNA synthesis after 48 h incubation.

Results: Incubation of HCAECs with exendin-4 for 48 h resulted in a dose-dependent increase in DNA synthesis; subsequent neogenesis was confirmed by an increased cell number. Exendin-4 dose-dependently enhanced phospho-Akt (1-10 nM) and eNOS phosphorylation (10 nM) after a 48-h incubation. The exendin-4-induced activation of eNOS was associated with an increased NO production. In addition, incubation of HCAECs with exendin-4 resulted in an increased Akt phosphorylation. The exendin-4-stimulated activation of eNOS and Akt was prevented after treatment of the cells with Rp-cAMP[S], LY294002, Akt inhibitor IV and caspase-3 inhibitor for 24 h. In contrast to their glycemic effects, even of GLP-1 and its analogues on endothelial regeneration is not known. The aim of the present study was to investigate the effects of exendin-4, GLP-1(7-36) and GLP-1(9-36) on cell proliferation in HCAECs in vitro.

Conclusion: Our results indicate that exendin-4, GLP-1(7-36) and GLP-1(9-36) stimulate proliferation of HCAECs by PKA and PI3K/Akt/eNOS-dependent pathways. Proliferation of endothelial cells is involved in endothelial repair (arterial healing) and angiogenesis, a powerful mechanism to ensure blood supply to tissue at risk if a main artery is chronically occluded. These beneficial effects of exendin-4, GLP-1(7-36) and GLP-1(9-36) on human coronary artery endothelial cells may add yet another salutary non-glycemic property to incretin-based antidiabetic therapy, increasing its clinical utility in type 2 diabetic patients in whom endothelial dysfunction is a salient feature that adversely affect their survival.

Supported by: an EFSD/GSK grant

1316
The role of osteopontin in endothelial progenitor cell function
E.E. Vaughan1, A. Duffy2, T. O’Brien3; 1REMEDY, NUI Galway, 2Medtronic Inc, Galway, Ireland.

Background and aims: We, and others, have shown that endothelial progenitor cells (EPCs) obtained from patients with diabetes are dysfunctional. We previously identified the angiogenic protein osteopontin (OPN) as being down regulated in diabetic EPCs and furthermore we determined that OPN deficient mice do not recover as well as wild-type mice from hindlimb ischemia. Thus, we hypothesized that OPN may play a critical role in the angiogenic response mediated by EPCs. We aimed to establish the role OPN plays in EPC function and to determine if exposure to OPN could restore the function of OPN knockout EPCs in vivo.

Materials and methods: EPCs were obtained from OPN knockout mice as well as wild-type controls and cultured for 7 days followed by use in a matrigel tubule formation assay. Conditioned media from these cells was also used in the tubule formation assay as well as in a protein array. OPN knockout EPCs or knockout EPCs incubated with recombinant OPN were injected into the ischemic hindlimb of OPN knockout mice and laser Doppler blood flow analysis was performed immediately following surgery as well as at days 7 and 14.

Results: To elucidate the role of OPN in EPCs, a matrigel tubule assay was used to assess in vitro angiogenic potential. KO EPCs induced significantly less tubule formation than WT EPC (p<0.05, n=3). However, knockout EPCs that were pre-incubated with recombinant OPN induced tubule formation similar to WT and significantly higher than KO cells that were not incubated with OPN (p<0.05, n=3). Further, conditioned media (CM) from WT cells induced tubule formation to the same levels as the EPCs themselves suggesting that secreted proteins are responsible for angiogenic effect. Interestingly, when KO EPC were pre-incubated with OPN, the CM media induced tubule formation to WT levels (n=3), even though there was no OPN directly in the media. Hence, we further hypothesized that OPN is acting on EPC to induce the secretion of angiogenic cytokines. Thus a protein-array was performed on EPC from WT, KO and KO EPCs exposed to OPN. WT EPCs expressed FGFα at a much higher level than KO cells. Further, WT cells expressed IL-6 and TGF-α whereas KO cells did not express these proteins at detectable levels. Interestingly, when KO cells are exposed to OPN these proteins are expressed at WT levels. Additionally, we demonstrated that EPCs from humans and diabetic rabbits incubated with OPN had increased angiogenic potential in a tubule assay (p<0.05 n=3) further suggesting that OPN plays a critical role in EPC function. When OPN KO EPCs were injected into the ischemic hindlimb of OPN KO mice blood flow to the limb was improved significantly at days 7 (p<0.05 n=6) and 14 (p<0.01). Conclusion: Taken together, this data suggests that the decreased OPN expression in diabetic EPCs may contribute to their dysfunction. We propose that OPN increases the angiogenic potential of EPCs via an autocrine mechanism whereby OPN is secreted by the EPC and subsequently induces the expression of a variety of angiogenic proteins. Further, we have demonstrated that incubation of OPN deficient EPCs with recombinant OPN is sufficient to restore function of the EPCs even when returned to an in vivo setting.

Supported by: SFI and Medtronic

1317
Impaired ischaemia-induced angiogenesis in diabetic mice depends on glycaemic variability
D. Pitocco, F. Zaccardi, F. Biscetti, G. Straface, P. Rizzo, T. Musella, A. Flex, S. Caputo, G. Ghirlanda; Internal Medicine, Catholic University, Rome, Italy.

Background and aims: Glycemic variability (GV) is an adjunctive risk factor for diabetic vascular complications. However, neither a cause-effect correlation between glucose instability and vascular dysfunction, nor the molecular bases of such a dysfunction have been investigated previously. The aim of this study was to investigate the role of GV in diabetic vascular complications and to explore the molecular pathways modulated by glycemic “swings”.

Materials and methods: Diabetes was first induced by streptozocin in 60 mice. Then 30 diabetic mice received basal insulin administration once daily plus two oral boluses of saline solution (variable group, VG) and another 30 mice received basal insulin once daily plus two oral boluses of saline solution (stable group, SC) for a period of 30 days. Glycemia was measured eight times daily to detect GV. Post-ischemia neovascularization, induced by hindlimb
the Zucker fatty rat has been chosen as model of diabetes. GLO-I protects arterial rather than cardiac function after STZ induced diabetes and thereby decreases AGEs in diabetic rats.

Conclusion: This is the first murine model of GV. Our data indicate that GV causes a significant impairment of ischemia-induced angiogenesis in diabetes, regardless of average blood glucose levels, and that this impaired collateral vessel formation depends on an altered VEGF pathway. These findings provide new information to understand the biological and clinical effects of GV.

1318

Overexpression of glyoxalase-I improves vascular function in a rat model of diabetes

O. Brouwers1, P.M.G. Niessen1, T. Miyata2, T. Teelinck1, B.J. Janssen1, J.G.R. De Mey4, C.D.A. Stehouwer5, C.G. Schalkwijk1, 1Internal Medicine, Maastricht University, Netherlands, 2Centre of Translational and Advanced Research, Tohoku University, Sendai, Japan, 3Clinical Chemistry, VU University Medical Center, Amsterdam, Netherlands, 4Pharmacology & Toxicology, Maastricht University, Netherlands.

Background and aims: The reactive advanced glycation endproduct (AGE) precursor methylglyoxal (MGO) and MGO-derived AGES are associated with diabetic vascular complications. In this study glyoxalase-1 (GLO-I) transgenic rats were used to explore whether overexpression of this MGO-detoxifying enzyme reduces levels of AGES, and thereby improves cardiovascular function in a rat model of diabetes.

Materials and methods: Diabetes was induced in wild type (WT) and GLO-I overexpressing animals by a single tail vein injection with streptozotocin (STZ). After 12 and 24 weeks of diabetes, before termination, cardiac function was monitored by ultrasound and mean arterial blood pressure was measured intra-arterially, under isoflurane anaesthesia. After termination, vascular function of isolated mesenteric resistance arteries (MrA) was assessed by wire myography. Blood was drawn and multiple tissues were collected for further analysis. Circulating levels of glyoxal (GO), MGO, 3-deoxyglucosone (3-DG), and the AGES Nε-(1-carboxymethyl)lysine, Ne-(1-carboxyethyl)lysine and hydroimidazolone, were assessed by high performance liquid chromatography with fluorescence or tandem mass spectrometry detection. Gene-expression levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in MrA were measured by real time PCR.

Results: GLO-I activity was significantly elevated in multiple tissues of all transgenic rats. STZ treatment resulted in a fivefold increase of blood glucose concentrations irrespective of GLO-I overexpression. Levels of GO, MGO, 3-DG and AGES were elevated in the diabetic WT rats (p<0.01). In diabetic GLO-I rats, GO and MGO were significantly decreased by 80 % (p<0.05), and plasma AGES by 50% (p<0.05). In WT rats, STZ treatment significantly decreased mean arterial pressure (91±2 vs. 83±2 mmHg; p<0.01) and cardiac output (108±12 vs. 81±7 mL/min; p<0.05). GLO-I overexpression in diabetic rats significantly blunted the fall in mean arterial blood pressure (76±3 vs. 73±2 mmHg; p<0.05 compared with WT diabetic rats) without affecting the cardiac output response following administration of STZ (80±7 mL/min). In isolated MrA, STZ treatment significantly attenuated potassium-induced contractions and endothelium-dependent relaxations (p<0.05). These consequences of diabetes were significantly reduced by GLO-I overexpression (p<0.05). Furthermore, the increased mRNA levels of VCAM-1 and ICAM-1 in the MrA of the diabetic WT rats were normalised by GLO-I overexpression.

Conclusion: This study shows that overexpression of GLO-I detoxifies methylglyoxal and thereby decreases (MGO) derived AGES in diabetic rats. The fact that GLO-I overexpression is associated with higher blood pressures and improved vascular function ex vivo, but not cardiac function, suggests that GLO-I protects arterial rather than cardiac function after STZ induced diabetes in rats.

Supported by: SFI, IRSCET, Medtronic

1320

Ablation of vascular endothelial phosphoinositide-dependent protein kinase-1 deteriorates the volume of blood flow in skeletal muscle

K. Tawaramoto1, M. Hashimorito2, K. Kotani3, W. Ogawa4, F. Tatsumi5, S. Hamamoto5, M. Shimoda5, Y. Kanda5, M. Kasuga5, K. Kaku5, 1Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Okayama, 2Department of Internal Medicine, Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Hyogo, 3Research Institute, International Medical Center of Japan, Tokyo, Japan.

Background and aims: Diabetes mellitus was well-known disorder complicated with lowered angiogenesis and ischemic status especially in heart and skeletal muscle. Regulation of abundant endothelial growth factor with phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent protein kinase 1 (PDK1)-Akt signal in vascular endothelial cells (ECs) is believed the most important signal during the step of angiogenesis, which might be interfered by hyperglycemia. To evaluate the systemic pathway of angiogenesis under PI3K signal, we generated ECs specific PDK1 knock out mice using Cre-loxP system and investigated the degree of impaired angiogenesis of skeletal muscles under the normo- and hyperglycemia status.
Materials and methods: Mice with PDK1 deficiency in ECs (VEPDK1KO) were obtained by crossing PDK1^{lox/lox} mice with Tie2-Cre PDK1^{lox/+} mice. To obtain diabetic VEPDK1KO, streptozotocin (STZ; 150mg/kg BW, i.p.) was intraperitoneally injected into 2-month-old male mice. After 1 month of injection, blood flow in lower leg-skeletal muscle was evaluated by the non-invasive blood flowmeter (ADVANCE co).

Results: PDK1 protein levels in ECs were reduced by 80-90% in VEPDK1KO. The phosphorylation of Akt at Thr308 stimulated with insulin or vascular endothelial growth factor (VEGF) was reduced by 58% or 64%, respectively. In STZ-induced diabetic mice, body weight decreased and blood glucose was elevated, though which were similar between both genetics (BW: CON 33.9±1.7, KO 32.2±1.3, STZ-CON 21.5±1.3, STZ-KO 23.6±1.7 g, blood glucose: CON 83.3±7.9, KO 70.0±7.0, STZ-CON 152±15.1, STZ-KO143.4±34.7 mg/dl). In normoglycemic mice, the basal blood flow in lower leg was similar in both groups of mice (CON 4.0±0.9, KO 4.3±2.1 ml/min/100g), but the blood flow stimulated with insulin (10μU/g BW, 10min) was significantly lower in VEPDK1KO mice compared with the control (CON 5.9±1.4, KO 4.0±1.2 ml/min/100g). The phosphorylation of eNOS, critical regulator of angiogenesis, at Ser-1177 of skeletal muscle was also decreased in VEPDK1KO by 40%. On the other hand, the basal blood flow readily decreased in diabetic mice (STZ-CON 2.4±0.8, STZ-KO 2.3±0.1 ml/min/100g), and insulin injection did not alter the blood flow in both control and VEPDK1KO mice (STZ-CON 2.2±0.2, STZ-KO 2.2±0.4 ml/min/100g). VEGF expression in skeletal muscles was similar in normoglycemic CON and KO (102 % of CON), but lowered in diabetic mice (STZ-CON 71%, STZ-KO 68% of CON).

Conclusion: The present results suggest that the PI3K signal of ECs is critical for insulin-induced angiogenic phenomena in normoglycemic status. In diabetic state, however, other pathways related with complicated metabolic disorders might be comprehensively meaningful for angiogenesis in skeletal muscle.

1321

Human C-peptide decreases hyperglycaemia-induced reactive oxygen species (ROS) and activation of apoptotic pathways in human aortic endothelial cell

V. Cifarelli, M. Trucco, P. Luppi; Pediatrics, University of Pittsburgh Medical School, Pittsburgh, USA.

Background and aim: High glucose is toxic to endothelial cells through stimulation of reactive oxygen species (ROS) and inflammation, which cause cellular stress leading to apoptosis. Our previous studies have shown that C-peptide antagonizes high glucose-induced endothelial dysfunction by displaying a beneficial anti-inflammatory activity directly on endothelial cells. The aim of this study was to investigate whether C-peptide is able to retrieve high glucose-induced vascular damage by reducing the generation of ROS in Human Aortic Endothelial Cells (HAEC). We focused on the possible effect of C-peptide on the assembly of the NAD(P)H oxidase machinery under high glucose conditions. Activation of apoptotic pathways in HAEC was also investigated.

Materials and methods: HAEC were exposed to high glucose (25mmol/L) and Tumor Necrosis Factor-α (TNF-α; 20ng/μl) for 12-48h in presence or absence of physiologic concentrations of either C-peptide (2-10 nM) or scrambled C-peptide as a control. ROS production was determined by using the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) by Flow Cytometry. Translocation of the NAD(P)H oxidase subunits p47phox and Rac-1 from the cytosol to the plasma membrane was investigated as a prove of the activated enzymatic machinery for ROS generation. Apoptosis was assessed by determination of cytoplasmic histone-associated-DNA-fragments and Caspase-3 activity using ELISA kits. Mitochondrial and cytoplasmic protein extracts were separated and analyzed by Western blotting using anti-Bcl-2, anti-Caspase-3, anti-p47phox and anti-Rac-1 antibodies.

Results: • High glucose-induced ROS generation is significantly reduced by C-peptide (p<0.01) in HAEC to levels detected in normal glucose (see figure below). C-peptide affects translocation of NAD(P)H subunits p47phox and Rac-1 from cytoplasm to plasma membrane.
• C-peptide decreases high glucose-induced apoptosis of HAEC (38% lower vs. control) compared to high glucose alone as shown by reduced DNA fragmentation and Caspase-3 enzymatic activity.
• C-peptide increases Bcl-2 expression (survival gene) in HAEC exposed to high glucose and TNF-α.

Conclusion: Our results indicate that C-peptide at physiologic concentrations reduces high glucose-induced oxidative stress and activates cell survival pathway in endothelial cells. These results strengthen the idea that supplementation of C-peptide in Type 1 diabetic patients might prevent endothelial dysfunction and high glucose-associated vascular complications.

Supported by: Children’s Hospital of Pittsburgh, PA, USA
1322

Impaired glucose metabolism and type 2 diabetes are associated with hypercoagulability as determined by thrombin generation in plasma: the role of central obesity and low-grade inflammation. The Hoorn Study

I. Ferreira1,2, J.J.B. Beijers1, H.M. Spronk1, B. Bravenboer1, J.M. Dekker1, G. Nigels1, H. Ten Caté1, C.D.A. Stehouwer1, 1Internal Medicine, Maastricht University Medical Centre, 2Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, 3Internal Medicine, Catharina Hospital, Eindhoven, Netherlands, 4Laboratory for Clinical Thrombosis and Haemostasis, Maastricht University Medical Centre, 5EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, Netherlands.

Background and aims: Individuals with type 2 diabetes (DM2) have a greater risk for cardiovascular disease (CVD). A substantial portion of the diabetes-related CVD is due to atherothrombotic events, which could, at least in part, be explained by prothrombotic alterations in these individuals. Recently, a method was developed - the Calibrated Automated Thrombogram (CAT) - to quantitatively measure thrombin generation in vitro; in brief, it generates a thrombin generation curve that mimics the overall plasma coagulability potential when a thrombogenic stimulus appears. Prothrombotic alterations in individuals with impaired glucose metabolism (IGM) and DM2 have not been examined before according to this method. We have therefore investigated the extent to which individuals with IGM and/or DM2 had greater levels of thrombin generation than those with normal glucose metabolism (NGM). In addition, we examined whether any such differences were independent of other cardiovascular risk factors, such as smoking, hypertension, dyslipidaemia, (micro)albuminuria, glycemic control and (central) obesity, and/or were mediated by low-grade inflammation (high-sensitivity C-reactive protein - hsCRP).

Materials and methods: We studied 747 individuals (374 women, mean age 68.5±7.1 years) from the Hoorn Study, a population-based cohort study including individuals with NGM (n=276), IGM (n=177) and DM2 (n=294). Thrombin generation in platelet-poor plasma was measured using the CAT method and two parameters were derived; the endogenous thrombin potential (ETP, i.e. area under the thrombin generation curve, which represents the total amount of active thrombin formed after activation of the coagulation cascade) and the peak height of this curve. Data were analyzed with the use of multiple linear regression analyses.

Results: After adjustments for age, sex, prior CVD and smoking status, individuals with IGM or DM2 were characterized by a higher ETP (8=41.39 nM*min (95%CI: 6.19 to 76.59)) and peak height (8=8.92 nM (0.12 to 17.71)) as compared with those with NGM (but did not differ from each other with regard to these parameters). These differences were attenuated to 8=2.99 nM (-7.09 to 13.06) and 23.52 nM*min (-16.66 to 63.70), respectively, and were thus no longer significant, when further adjusted for waist circumference and hsCRP. Adjustments for other risk factors did not materially change the differences between groups, however.

Conclusion: Individuals with IGM or DM2 have higher levels of thrombin generation as compared with subjects with NGM and these differences may be explained, to a great extent, by their higher levels of central adiposity and low-grade inflammation.

Supported by: a Netherlands Heart Foundation grant to I. Ferreira

1323

Body composition as determinant of thrombin generation in plasma. The Hoorn Study

H.J.B. Beijers1, I. Ferreira2, H.M. Spronk1, B. Bravenboer1, J.M. Dekker1, G. Nigels1, H. Ten Caté1, C.D.A. Stehouwer1,

1Internal Medicine, Maastricht University Medical Centre, 2Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 3Clinical Epidemiology and Medical Technology Assessment and Care and PublicHealth Research Institute, Maastricht University Medical Centre, 4Cardiovascular Research Institute Maastricht and Laboratory for Clinical Thrombosis and Haemostasis, Maastricht University Medical Centre, 5EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, Laboratory for Clinical Thrombosis and Haemostasis, Maastricht University Medical Centre, Netherlands.

Background and aims: The association between obesity and cardiovascular disease might, at least partially, be explained by a hypercoagulable state. The extent to which body fat mass and its distribution contribute to a hypercoagulable state is unknown. We investigated the association between body composition and thrombin generation, and evaluated the potential mediating role of low-grade inflammation (i.e. high-sensitivity C-reactive protein - hsCRP) herein.

Materials and methods: We studied 588 individuals from the Hoorn Study, a population-based cohort of individuals with normal and impaired glucose metabolism and type 2 diabetes (mean age 69.7 ± 6.5 years, 300 women) in whom total and regional (i.e. trunk, arms and legs) body composition was assessed by whole body dual-energy absorptiometry. Thrombin generation was measured using the Calibrated Automated Thrombogram, a method developed recently which generates a thrombin generation curve that mimics the overall plasma coagulability when a thrombogenic stimulus appears. The area under this curve is the endogenous thrombin potential (ETP) and represents the total amount of active thrombin formed after activation of the coagulation cascade. Data were analyzed with multiple linear regression models in men and women separately. All analyses were adjusted for age, glucose metabolism status and smoking.

Results: Men and women differed with respect to total body fat % (28.7 ± 4.2 vs. 42.7 ± 7.4), trunk (12.7 ± 5.5 vs. 14.7 ± 5.5) and peripheral (i.e. arms + legs) fat (9.5 ± 2.9 vs. 14.9 ± 4.6) and lean (24.9 ± 3.4 vs. 17.1 ± 2.4) masses (in kg), but not with respect to ETP (1188 ± 234 vs. 1186 ± 204 nM*min, respectively). Total body fat % was positively associated with ETP in women (standardized regression coefficient 8β=0.20 (95%CI: 0.09 to 0.32), but not in men (8β=0.02 (-0.15 to 0.11)). Detailed analyses of regional body composition in women showed that trunk (8β=0.23 (0.05 to 0.40)), but not peripheral fat mass (8β=0.02 (-0.18; 0.15)) was associated with greater ETP, and that there was a trend towards an inverse association with peripheral lean mass (8β=0.12 (-0.25 to 0.01)). The strength of the positive associations between total and trunk fat and ETP in women did not materially change after further adjustments for blood pressure, dyslipidaemia or microalbuminuria, but were attenuated by 35% [to 8β=0.13 (0.01 to 0.26)] and 45% [to 8β=0.10 (-0.04; 0.23)], respectively, when further adjusted for hsCRP.

Conclusion: Body fat mass, in particular a central pattern of fat distribution, is associated with higher levels of thrombin generation in elderly women, but not in men. This association is partially explained by adiposity-related low-grade inflammation.

Supported by: a Netherlands Heart Foundation grant to I. Ferreira

1324

Oxidative stress is involved in the inhibitory effects exerted by high glucose on platelet sensitivity to aspirin

G. Afnossi, I. Russo, M. Viretto, L. Mattiello, G. Doronzo, M. Trovati; Department of Clinical and Biological Sciences, University of Turin, Internal Medicine and Metabolic Disease Unit, San Luigi Gonzaga Hospital, Orbassano, Italy.

Background and aims: According to therapeutic guidelines, the largest majority of type 2 diabetic patients should be treated by aspirin: a high prevalence of aspirin-resistance, however, has been observed in these subjects, inducing to investigate the mechanisms involved. Aspirin reduces platelet function both by decreasing the synthesis of thromboxane A2 (TXA2) and by increasing the synthesis on nitric oxide (NO), a powerful physiological anti-aggregating agent. In a recent study carried out in 45 healthy subjects,
we demonstrated that a short-time in vitro platelet exposure to high glucose reduces the aspirin anti-aggregating effect by decreasing the aspirin ability to increase NO synthesis, without influencing TXA
formation. Aim of this study is to evaluate whether oxidative stress is involved in this intriguing phenomenon.

Materials and methods: The study has been carried out in 8 healthy volunteers (F/M: 4/4, age: 24.1±0.9 years; BMI: 22.58±0.4 kg/m²), non smokers, with normal glucose tolerance and insulin sensitivity. In platelet-rich plasma (PRP) and washed platelets from venous blood samples, we evaluated the influence of a 30-min exposure to lysine acetylsalicylate (LAS: 5-300 micromol/l) on platelet aggregation induced by sodium arachidonate (NaAA; 1 mmol/l) and ADP (20 micromol/l) (Born’s method), and on the NO synthesis (conversion of 3H-arginine to 3H-citrulline) without and with a 60 min pre-incubation with 25 mmol/l D-glucose, both in the absence and in the presence of the thiol antioxidant compound amifostine (200 micromol/l) added 20 min before LAS.

Results: High glucose reduced LAS ability to inhibit platelet responses agonists: actually, in PRP, Maximal Aggregation (MA) in response to NaAA was 70.4±2.9 without vs 64.7±2.3 with 25 mmol/l glucose (p=0.002) and MA in response to ADP was 64.5±1.4% without vs 90.1±4.0% with 25 mmol/l glucose (p=0.0001). Platelet exposure to amifostine did not modify platelet responses to agonists, but blunted the inhibitory effects exerted by high glucose on the LAS anti-aggregating action: in the presence of amifostine, MA in response to NaAA was 64.6±1.5 without and 67.1±1.8% with 25 mmol/l glucose (ns), MA in response to ADP was 56.8±2.1 without and 61.8±2.4% with 25 mmol/l glucose (ns). Furthermore, in washed, high glucose inhibited the LAS-induced ability to enhance NO synthesis, which was (pmol/min/mg protein): 0.134±0.019 at baseline, 0.272±0.022 with LAS in the presence of 5 mmol glucose (p=0.001) and 0.127±0.026 with LAS in the presence of 25 mmol/l glucose (ns vs baseline). Washed platelet exposure to amifostine did not modify NO synthesis, but blunted the inhibitory effect exerted by high glucose on LAS-induced NO enhancements: in the presence of amifostine, NO synthesis (pmol/min/mg protein) was 0.142±0.005 at baseline, 0.318±0.02 with LAS in the presence of 5 mmol glucose (p<0.0001 vs baseline) and 0.211±0.013 with LAS in the presence of 25 mmol/l glucose (p<0.0001 vs baseline).

Conclusion: Oxidative stress is involved in the ability of high glucose to reduce the anti-aggregating effect of aspirin by impairing the aspirin-induced increase of NO synthesis. This information explains a potential mechanism involved in the aspirin resistance observed in diabetes.

Supported by: an EFSD/Sanofi Aventis grant

1325

The platelet-inhibitory effect of low-dose acetylsalicylic acid is dependent on glycemic control in type 2 diabetes

B.A. Lemkes1, L. Bahler1, P.W. Kamphuisen1, V.E.A. Gerdes1, A.K. Stroobants2, E.J. van den Dool1, R. Nieuwland3, J.B.L. Hoekstra1, F. Holleman1

1Internal Medicine, Academic Medical Centre, Vascular Medicine, Academic Medical Centre, 2Clinical Chemistry, Academic Medical Centre, Amsterdam, Netherlands.

Background and aims: The clinical benefit of low-dose acetylsalicylic acid (ASA) treatment in primary prevention of cardiovascular events in type 2 diabetes (DM2) remains controversial. The platelet response to ASA has been suggested to be diminished in diabetes, but the role of hyperglycaemia has not yet been elucidated. In this study we determined whether the baseline platelet activity and response to ASA differs in patients with DM2 as compared to healthy controls, (ii) glycemic control influences the platelet response to ASA in DM2 and (iii) higher doses of ASA improve the platelet response in DM2.

Materials and methods: This is a prospective, single-centre, open-label trial. We aim to include 125 subjects and report here the preliminary data for 102 subjects. DM2 patients are categorized by HbA1c value < 7.0% (DC1: n=33), 7.0-8.5% (DC2: n=33) and > 8.5% (DC3: n=32) and compared to healthy controls (HC: n=34). All subjects underwent three treatment periods, sequentially using 30 mg, 100 mg and 300 mg of ASA for ten days. Laboratory measurements were performed at baseline and following each treatment period. To assess the pharmacological efficacy of ASA, urinary 11-dehydrothromboxane B2 (11dTXB2) was measured by ELISA. Platelet function was measured by optical platelet aggregation and VerifyNow.

Results: Median baseline urinary 11dTXB2 excretion was 45 pg/mmol (IQR 36-59) in HC, compared to 69 in DC1 (IQR 37-93), 84 in DC2 (IQR 47-101) and 95 in DC3 (IQR 73-145) (p=0.007, ANOVA). Treatment with ASA 30 mg significantly reduced 11dTXB2 by 62%, 67%, 64% and 68% respectively. Absolute excretion remained significantly different between groups, and followed the same pattern as baseline (p=0.001). Subsequent treatment with 100 mg ASA further reduced 11dTXB2 in DC2 (p<0.001) and DC3 (p=0.03) Increasing ASA to 300 mg resulted in a further 10% reduction in DC1 (p=0.026).Verify Now showed incomplete suppression of arachidonic acid (AA)-induced platelet aggregation at 30 mg ASA in all DM2 groups when compared to healthy controls (p<0.001). This difference became smaller with ASA 100 mg, with no further changes at 300mg. Interestingly, optical aggregation induced by 1 mmol/L AA was completely suppressed by 30 mg ASA in all groups, but a concentration of 2 mmol/L resulted in an escape from the ASA suppression in DC3.

Conclusion: Our results show that urinary 11dTXB2 excretion as a measure of platelet activity is increased in DM2 and is highly associated with glycemic control. ASA 30 mg only partially suppresses platelet activity in DM2, but ASA 100 mg is sufficient for adequate suppression of urinary 11dTXB2 excretion.

Supported by: a NFCVE grant to BL

1326

In vitro platelet exposure to high glucose reduces the inhibitory effects exerted by chronic aspirin therapy on responses to agonists in non diabetic patients

I. Russo, C. Frascarelli, L. Mattiello, M. Viretto, G. Dondonko, K. Bonomo, M. Trovati, G. Anfossi

Department of Clinical and Biological Sciences, University of Turin, Internal Medicine and Metabolic Disease Unit, San Luigi Gonzaga Hospital, Orbassano - Torino, Italy.

Background and aims: We previously observed that “in vitro” incubation with high glucose of platelets from healthy subjects does not modify platelet responses to agonists but reduces the ability of aspirin added “in vitro” to inhibit platelet responses to agonists, suggesting that hyperglycaemia plays a role in the aspirin resistance described in diabetic patients. In the present study we investigated whether “in vitro” exposure of platelets to high glucose influences platelet responses to agonists in non diabetic patients on chronic aspirin treatment.

Materials and methods: We studied 56 non diabetic patients on chronic aspirin therapy (100 mg/day) owing to the presence of severe cardiovascular risk factors and/or previous cardiovascular events: M/F 33/23; age: 60.5±1.82 years; body mass index: 27.7±0.5 kg/m². Platelet sensitivity to aspirin was evaluated in platelet-rich plasma (PRP) by determining by Born’s method Maximal Aggregation (MA) in response to Sodium Arachidonate (NaAA); patients were defined as “aspirin resistant” when MA in response to NaAA was greater
than 20%. In PRP from both aspirin sensitive and aspirin resistant patients, we observed that lamotrigine increased platelet aggregation induced by 1 mmol/l NaAA, 10 mmol/l ADP, 4 μmol/l epinephrine and 4 μg/ml collagen in the presence or in the absence of a 60-min preincubation with high glucose (25 mmol/l).

Results: In aspirin sensitive patients (49/56), PRP incubation with high glucose significantly increased agonist-induced aggregation, being MA in response to NaAA 6.4±0.5% without vs 10.8±0.5% with 25 mmol/l glucose (p<0.0001), MA in response to ADP 67.7±4.8% without vs 77.0±4.7% with 25 mmol/l glucose (p<0.005), MA in response to epinephrine 24.7±3.0% without vs 28.0±4.1% with 25 mmol/l glucose (p<0.05), MA in response to Collagen 29.8±3.8% without vs 36.4±4.8% with 25 mmol/l glucose (p=0.006). The seven aspirin resistant patients presented higher baseline platelet responses to agonists vs the aspirin sensitive ones: in particular, MA was: 30.4±3.0% vs 6.4±0.5% (p<0.0001) in response to NaAA; 100.3±5.9% vs 67.7±4.8% (p=0.015) in response to ADP; 41.5±6.9% vs 24.7±3.0% (p=0.007) in response to epinephrine; 49.6±2.5% vs 29.8±3.8% (p=0.05) in response to Collagen. In vitro exposure to high glucose of PRP of aspirin resistant patients did not modify responses to agonists, being MA without or with 25 mmol/l glucose 30.4±3.0% and 28.1±4.1% with NaAA (ns); 100.3±5.9% and 98.6±7.9% with ADP (ns); 48.1±6.9% and 46.7±7.6% with epinephrine (ns); 49.6±2.5% and 54.0±9.3% with collagen (ns).

Conclusion: In aspirin sensitive non diabetic patients on chronic aspirin treatment, high glucose added “in vitro” increases platelet responses to agonists, demonstrating that it partially overcomes the inhibitory effect of aspirin on platelet responses with direct effects on platelets, adding another piece of information on the role of hyperglycaemia in the reduction of aspirin sensitivity in diabetes mellitus. The lack of this glucose effect in aspirin resistant patients indicates that when platelets are already aspirin resistant the modulating effect of glucose on platelet sensitivity to aspirin disappears.

Supported by: an EFSD/sanofi-aventis grant

1328

Abnormal glucose tolerance in atrial fibrillation and impact on inflammation, endothelial/platelet function, fibrinolysis, extracellular matrix metabolism and NT-pro-BNP

O. Johansen, I. Seljelevø, S.F. Ulimoen, S. Enger, H. Arnesen, A. Tvet; 1Medical department, Vestre Viken, Askier and Baerum Hospital, RUD; 2Department of Cardiology, Oslo University Hospital, Ullevål, Norway.

Background and aims: Although an abnormal glucose tolerance (AGT), i.e. diabetes mellitus (DM) or pre-DM, increases the risk for atrial fibrillation (AF) few studies have assessed the extent to which AGT modulates CV risk factors/parameters in patients with AF.

Materials and methods: In a case control study amongst 75-year old subjects with AF or in sinus rhythm (all previously undiagnosed with DM or pre-DM), we examined the prevalence of undiagnosed AGT (by a 75-g oral glucose tolerance test [OGTT] classified according to World Health Organization criteria) and explored its association to AF duration as well as to circulating CV biomarkers of inflammation (C-reactive protein [CRP], Interleukin [IL]-6), endothelial/platelet function (Monocyte chemotactic protein [MCP]-1, P-selectin, CD-40 ligand), fibrinolysis (tissue plasminogen activator antigen [tPAag], plasminogen activator inhibitor-1 [PAI-1] activity), extracellular matrix metabolism (matrix metalloproteinase [MMP]-9, tissue inhibitor metalloproteinase [TIMP]-1) and ventricular function (N-terminal fragment pro-brain natriuretic peptide [NT-pro-BNP]). Between group comparison was conducted non-parametric (Kruskal-Wallis).

Results: Prevalence of undiagnosed DM amongst the 108 subjects (male/female 73/35, BMI 25.4±3.2) in sinus rhythm and the 46 (male/female 34/12, BMI 25.3±3.7) with AF (median AF duration 5 years) where 3.7% and 13.0%, respectively (p=0.031). Patients with AF duration ≥ 5 years had a higher prevalence of DM and pre-DM (61.1%) as compared to AF duration < 5 years (25%, p=0.0014) or no AF (39.0%, p=0.17). Patients with AF duration ≥ 5 years also had elevated levels of IL-6 (4.27±3.10, p=0.017), MCP-1 (329±82, p=0.004), CD40 ligand (135±196, p=0.026), PAI-1 activity (16.0±5.5, p=0.004), TIMP-1 (165±26.3, p=0.008) and NT-ProBNP (1023±1212, p=0.001) as compared to those with AF < 5 years (IL-6: 2.89±1.42, MCP-1: 295±85, CD40 ligand: 77±73, PAI-1 activity: 13.7±6.8, TIMP-1: 142.9±20.7, NT-ProBNP 741±630) or no AF (IL-6: 2.80±1.85, MCP-1: 290±202, CD40 ligand: 91±95, PAI-1 activity: 10.1±6.7, TIMP-1: 156.2±27.4, NT-ProBNP: 186±335). A dosage related, and in part synergistic, impact on the CV risk biomarker levels of AF in the presence of AGT was seen for most parameters assessed; with statistical significance reached for MCP-1, PAI-1 activity and NT-ProBNP (table 1).

Conclusion: Undiagnosed dysglycaemia is prevalent in long standing AF and CV risk biomarkers were adversely modulated by the presence of both AF and AGT. The aggravated CV biomarker profile seen in patients with both AF (especially if long standing) and AGT may play a causal role for the increased CV morbidity and premature mortality observed in this patient group and calls for further attention and research.

Table 1. Levels of circulating CV risk biomarkers according to AF and OGTT status

<table>
<thead>
<tr>
<th></th>
<th>Sinus rhythm + normoglycaemia</th>
<th>AF + normo-glycaemia</th>
<th>AF + AGT</th>
<th>AF + AGT p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP (mg/l)</td>
<td>3.22±2.9</td>
<td>3.42±3.0</td>
<td>3.93±3.7</td>
<td>3.52±2.9</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td>2.64±1.63</td>
<td>2.94±1.19</td>
<td>3.01±2.11</td>
<td>4.19±3.30</td>
</tr>
<tr>
<td>MCP-1 (ng/mL)</td>
<td>31.1±6.21</td>
<td>288.0±73</td>
<td>262±69</td>
<td>3.99±9.8</td>
</tr>
<tr>
<td>P-selectin (ng/ml)</td>
<td>31.6±11.3</td>
<td>31.9±10.7</td>
<td>33.4±9.7</td>
<td>32.2±6.9</td>
</tr>
<tr>
<td>CD40 ligand (pg/ml)</td>
<td>88±50</td>
<td>81±72</td>
<td>90±133</td>
<td>128±698</td>
</tr>
<tr>
<td>tPAag (ng/ml)</td>
<td>15.7±4.2</td>
<td>15.5±6.4</td>
<td>15.0±4.4</td>
<td>17.5±3.6</td>
</tr>
<tr>
<td>PAI-1 activity (U/mL)</td>
<td>8.9±4.7</td>
<td>12.6±6.8</td>
<td>11.5±7.7</td>
<td>17.6±8.9</td>
</tr>
<tr>
<td>MPP-9 (ng/mL)</td>
<td>204.9±89.9</td>
<td>203.0±106.9</td>
<td>199.5±99.9</td>
<td>167.8±74.0</td>
</tr>
<tr>
<td>TIMP-1 (ng/mL)</td>
<td>153.4±26.9</td>
<td>146.5±21.9</td>
<td>159.6±28.0</td>
<td>160.4±28.8</td>
</tr>
<tr>
<td>NT-ProBNP (pg/ml)</td>
<td>114±63</td>
<td>720±565</td>
<td>281±513</td>
<td>1117±1255</td>
</tr>
<tr>
<td>HOMA-IR (%)</td>
<td>3.8±1.6</td>
<td>4.1±1.3</td>
<td>4.3±2.1</td>
<td>6.1±5.6</td>
</tr>
</tbody>
</table>

Figure Springer
1329
Plasminogen activator inhibitor-1 and thrombin activable fibrinolysis inhibitor in patients with type 2 diabetes
A. Blaszkowski, M. Galar, J. Sokolowski, J. Kloczko; Hematology, Medical University, Bialystok, Poland.

Background and aims: Hypofibrinolysis is a common finding in patients with diabetes mellitus and risk factor for development of cardiovascular disease. The present study was undertaken to assess the plasma levels of two main inhibitors of fibrinolysis - plasminogen activator inhibitor (PAI-1) and thrombin activable fibrinolysis inhibitor (TAFI) and their relation with clinical and metabolic parameters in diabetic patients with and without vascular complications.

Materials and methods: The study was carried out on 53 patients with type 2 diabetes mellitus (25 women, 28 men). In the examined group 21 patients had coronary heart disease (CHD), 22 hypertension and 17 diabetic retinopathy. The control group comprised 24 healthy subjects matched for sex and age. The PAI-1 level was measured using Asserachrom PAI-1 set and TAFI by means of Imuclone TAFI ELISA.

Results: In comparison to the healthy controls diabetics revealed significantly higher PAI-1 (27.7±16.4 vs 55.3±29.9 ng/ml, p<0.001) but lower TAFI levels (115.2±24.0 vs 87.3±20.3%, p=0.001). The diabetics with CHD and hypertension but not with retinopathy had significantly increased level of PAI-1 in comparison to the patients without these complications (67.8±33.7 vs 47.1±24.3 ng/ml, p=0.02; 67.0±30.8 vs 47.0±26.7 ng/ml, p=0.01; 57.3±27.5 vs 54.4±31.3 ng/ml, p=0.05, respectively). We found significant positive correlations between the levels of PAI-1 and BMI as well as the levels of triglycerides and negative correlations between PAI-1 and plasmin-antiplasmin complexes (PAP). There were no significant correlations between PAI-1 levels and the levels of HbA1c and GFR. There were no significant correlations between TAFI levels and BMI, lipids, HbA1c, PAP and GFR were found.

Conclusion: The data prove the important role of PAI-1 - but not TAFI - in the impairment of fibrinolysis and the development of cardiovascular complications in patients with type 2 diabetes mellitus.

1330
PAI-1 is an independent maker of metabolic disorders in young adults born small for gestational age
T. Meas1, S. Deghmoun1, D. Chevenne2, B. Gaborit3, M.-C. Alessi3, C. Lévy-Marchal1; 1Internal medicine, Université Paris 7, 2Service de biochimie hormonale, APHP, Paris, 3Faculté de médecine Timone, Marseille, France.

Background and aims: Insulin resistance, metabolic syndrome (MS) and cardiovascular diseases have been associated with being born small for gestational age (SGA). However, the mechanisms underlying these associations are still unknown. Fibrinolysis is regulated by plasminogen activator inhibitor type-1 (PAI-1), secreted by the adipose tissue. Increased PAI-1 levels predispose to the development of atherosclerotic plaques prone to rupture. In epidemiological studies PAI-1 levels have been associated with MS and identified as a predictive factor for myocardial infarction. Few studies have examined these associations in subjects born SGA.

Materials and methods: The study population is made of a community-based cohort of young adults, mean age 29.4 years, selected on their birth characteristics. 557 adults born SGA (birth weight under the 10th percentile) were compared to 671 subjects born appropriate for gestational age (AGA) (birth weight between 25th and 75th percentiles). MS was defined using the WHO definition. PAI-1 activity was measured in citrated plasma with a bioimmunoassay.

Results: BMI (24.1 ± 4.4 vs 24.2 ± 5.3 kg/m²) was similar between in AGA and SGA whereas body fat (22.0 ± 8.2 vs 23.2 ± 9.0 %) was significantly increased in the SGA group, p=0.01. MS was more prevalent in the SGA group (8.7%) versus AGA group(5.5%), p=0.03. PAI-1 concentration was correlated with waist circumference, plasma triglycerides, HOMA-IR and associated with male gender and MS in both groups. After adjustment on these variables, PAI-1 concentrations remained significantly increased in the SGA group (12.2 ± 21.2 U/ml vs 10.0 ± 13.3 U/ml, p=0.01). PAI-1 concentration above 4.9 UI/ml (median of PAI-1 concentration in the AGA group) was present in 94% of the subjects with MS. Moreover, OR for having elevated PAI-1 was 1.48 [1.08; 1.95] in the SGA group (p=0.005).

Conclusion: PAI-1 plasma concentrations were significantly increased in SGA subjects independently of MS. These data suggest that elevation of PAI-1 concentrations could be taken as an indication of an abnormal secretion at the level of the adipose tissue and could consequently be implicated in the development of the metabolic disorders reported in SGA subjects.
PS 133 Cardiovascular biochemistry

1331

Soluble receptor for advanced glycation endproducts and its inflammatory ligands EN-RAGE and HMGB1 in type 1 and type 2 diabetes mellitus

J. Škrha Jr.1,2, A. Germanova2, J. Svarcova1, M. Kalousova2, T. Zima1, J. Škrha1,2;
1 Third Department of Medicine, 2 Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.

Background and aims: The aim of the study was to compare concentration of soluble receptor for advanced glycation endproducts (sRAGE) and its natural pro-inflammatory ligands, EN-RAGE (extracellular newly identified RAGE-binding protein, S100A12) and HMGB1 (high mobility group box 1) with diabetes control, albuminuria, cell adhesion molecules and with VWF.

Materials and methods: Total number of 65 T1DM (age 47±13 yrs, diabetes duration 21±12 yrs) and 68 T2DM (age 64±10 yrs, diabetes duration 12±9 yrs) were examined. Control group consisted of 41 healthy persons of comparable age. Serum concentrations of sRAGE, EN-RAGE, HMGB1, ICAM-1, VCAM-1, P-selectin, E-selectin and vWF have been determined by ELISA kits. HbA1c was estimated by HPLC and albuminuria by radioimmunoassay. Both groups of T1DM and T2DM were divided according to microalbuminuria (MA) to MA+ subgroup with MA > 3 g/mol creatinine and MA− subgroup with MA < 3 g/mol creatinine.

Results: Serum sRAGE concentration was significantly higher in both T1DM (1137±58 μg/l, p<0.001) and T2DM (995±63 μg/l, p<0.001) compared to healthy persons and it was higher in MA+ than in MA− subgroups. In T1DM the RAGE ligand (HMGB1 and EN-RAGE) concentrations were more elevated in MA− than in MA+ subgroup in which levels were similar to controls. Significant positive relationship was found between sRAGE and HbA1c (r=0.36, p=0.01), diabetes duration (r=0.58, p<0.01), von Willebrand factor (vWF) (r=0.36, p=0.005) and albuminuria (r=0.43, p=0.001) in T2DM. sRAGE levels were not related to the above parameters in T1DM, but they significantly correlated with ICAM (r=0.39, p<0.01) and VCAM (r=0.63, p<0.001). Positive relationship was found between HMGB1 and MA (r=0.79, p<0.005), ICAM (r=0.84, p<0.05) and E-selectin (r=0.79, p<0.05) in MA+ T1DM. No relationship was observed between sRAGE and its ligands.

Conclusion: Serum sRAGE concentration reflects protective ability against AGEs created more significantly in diabetes with increased albuminuria. It corresponds to higher sRAGE levels in these patients. Our results demonstrate differences in RAGE ligands between T1DM and T2DM. Their higher activity for urinary creatinine excretion. The measurements were performed on both common carotid arteries avoiding areas of atherosclerotic plaque formation, and the mean IMT was used in this study.

Results: Baseline characteristics of the patients were: age 58.7 ± 8 years, mean body mass index (BMI) 25.1 ± 3.1 kg/m2, HbA1c value 6.9 ± 1.2 %, and UAE 8.2 ± 6.8 μg/mg creatinine. The mean duration of diabetes was 9.5 years. BMI, HbA1c and triglyceride levels were not significantly different between baseline and at 1 year (p=.160, p=.590, p=.418, respectively). Mean IMT was 0.70 ± 0.1 mm at baseline, and slightly increased to 0.75 ± 0.1 mm after 1 year, with a statistically significant difference (p=0.001). Baseline P-adiponectin and U-adiponectin were 13.0 ± 15.7 ug/mL, 4.7 ± 6.8 ug/mg creatinine, respectively.

Supported by: MSM0021620807
respectively, and at 1 year, 11.0 ± 1.14 μg/mL, 4.8 ± 6.5 μg/mg creatinine, not demonstrating a significant difference (p=0.226, p=0.913, respectively). We analyzed the two groups, one with the increased IMT at 1 year (n=53) compared to the baseline IMT and the other with the decreased IMT at 1 year (n=31). HbA1c was significantly higher in the increased IMT group compared to the decreased IMT group (7.1 ± 0.1 % vs 6.6 ± 0.2 %, p=0.039), while BMI, blood pressure and lipid levels were not significantly different between the two groups. U-adiponectin was higher in the increased IMT group than in the decreased IMT group, although there was no significant difference (5.1 ± 6.9 μg/mg creatinine vs 3.2 ± 4.6 μg/mg creatinine, p=0.133). U-adiponectin revealed a significant positive correlation with UAE (r=0.259, p=0.01), while it was not significantly correlated with IMT (r=0.100, p=0.350) in our study subjects.

Conclusion: Our study implies that U-adiponectin levels may reflect early glomerular vascular damage in the pre-albuminuric level in type 2 diabetic patients. On the other hand, U-adiponectin may not be associated with macrovascular damage. The exact mechanism and association between U-adiponectin and UAE need further investigating.

Supported by: Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea

1334
Formation of methionine-sulfoxide at position 1606 of Von Willebrand Factor inhibits cleavage by ADAMTS-13: a new prothrombotic mechanism promoted by oxidative stress in diabetes

F. Zaccardi1, D. Pitocci2, S. Lancellotti3, V. De Filippis4, B. Rocca5, R. De Cristofaro6, G. Ghirlanda7
1Internal Medicine, Catholic University, Rome; 2Hemostasis Research Center, Catholic University, Rome; 3University of Padua, Pharmacology, Catholic University, Rome, Italy.

Background and aims: An enhanced formation of reactive oxygen species and peroxynitrite occurs in diabetes. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and 3-nitrotyrosine (NT), respectively. Notably, ADAMTS-13 cleaves von Willebrand factor (VWF), which bind and activate platelets in the microcirculation, exclusively at the Tyr1605-Met1606 peptide bond. We hypothesized that peroxynitrite could oxidize either or both of these amino acid residues, thus potentially affecting ADAMTS-13-mediated cleavage.

Materials and methods: Non-smokers-healthy subjects (n=13, age 38-55), in diabetes, increased cytokine plasma levels could variably may contribute to prothrombotic effects, hindering the proteolytic processing by ADAMTS-13 of high-molecular-weight VWF multimers.

Conclusion: Our study implies that U-adiponectin levels may reflect early glomerular vascular damage in the pre-albuminuric level in type 2 diabetic patients. On the other hand, U-adiponectin may not be associated with macrovascular damage. The exact mechanism and association between U-adiponectin and UAE need further investigating.

Supported by: Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea

1335
Association of serum endothelin-1 with insulinnaemic status in prediabetic and newly diagnosed type 2 diabetic subjects

I. Khan1, S. Mohajan1,2, R.M. Mazumder1, D. Sikdar1, M.O. Faruque3, Z. Hassan1, L. Ali1
1Dept of Physiology and Molecular Biology, BIRD, Dhaka, 2Dept of Biochemistry and Cell Biology, BIRD, Dhaka, 3Dept of Biochemistry and Molecular Biology, Chittagong University, Chittagong, 4Dept of Biochemistry, Bangladesh Institute of Health Sciences, Dhaka, Bangladesh.

Background and aims: Endothelin-1 (ET-1), an arteriogenic marker, has been shown to be raised in T2DM subjects. However, the factors contributing to the elevation of ET-1 in T2DM is still unclear. Since IFG and IGT are intermediate stages in the development of diabetes, we have studied ET-1 in relation to glycaemic and insulinnaemic status in these prediabetic groups to get better insight on this issue.

Materials and methods: A total number of 160 subjects of Bangladeshi origin, consisting of 18 IFG, 47 IGT, 46 newly diagnosed T2DM patients and 49 healthy subjects were included in the study. Glucose was estimated by glucose-oxidase, lipids by enzymatic- colorimetric, and insulin and endothelin-1 were estimated by enzyme linked immunosorbant assay (ELISA). Results were expressed as mean±SD and appropriate tools were used in statistical comparison.

Results: Age and BMI were matched among all the groups. Absolute insulin (uIU) level in IGT and T2DM were significantly higher compared to the controls (p<0.001 for both). homA% (mean±SD) was significantly lower in IGT and T2DM groups (p=0.004 and <0.001) and higher in IGT (p=0.006) group compared to controls. homA% was significantly lower in IGT and T2DM groups (p=0.002 and 0.003 respectively) compared to the Control, but it did not show any significant difference between IFG and Control groups. Lipid levels were almost similar in all three groups compared to the Control except significantly higher triglyceride and total cholesterol level in T2DM groups (p<0.001 and p=0.024 respectively). Mean value of serum endothelin-1 was 6.85±4.4, 10.34±4.7, 10.14±6.8 and 10.48±5.7 in the Control, IFG, IGT and T2DM subjects respectively. This arteriogenic marker was found to be significantly higher in prediabetic (IFG: p=0.009 and IGT: p=0.006) and T2DM (p=0.001) groups. On Spearman’s correlation analyses ET-1 showed association with fasting glucose in T2DM subjects, although it did not show any significant correlation with homA% or homB in the prediabetic and T2DM groups. Multinomial logistic regression analyses showed that ET-1 was associated with all the three hyperglycemic groups (IFG: p=0.005; IGT: p=0.007 and T2DM: p=0.003) when adjusted for age, WHR and gender.

Conclusions: Endothelin-1 is raised in hyperglycemic conditions regardless the stages of its natural history and this elevation is directly associated with hyperglycemia rather than insulin deficiency or insulin resistance.

Supported by: BADAS, Bangladesh and IPICS, Upsala, Sweden

1336
Inducible Nitric Oxide Synthase (iNOS)/regulation by Ca²⁺/Calmodulin-independent protein kinase II in vascular Smooth Muscle Cells (vSMCs) from diabetic rats

N. Di Pietro1,2, P. Di Toma2, S. Di Silvestre1,2, C. Pipino2,3, M.A. Mariggiò1,2, M.O. Faruque3, M.A. Mariggiò1,2, A. Consolii3,4,2, M.A. Mariggiò1,2,3, M.O. Faruque3,4, M.A. Mariggiò1,2,3
1Department of Biomedical Sciences, University “G. d’Annunzio”; Aging Research Center, Ce.S.I., 2Department of Basic and Applied Sciences, University “G. d’Annunzio”; Aging Research Center, Ce.S.I., 3Department of Medicine and Aging Science, University “G. d’Annunzio”, Chieti, Italy.

Background and aims: In diabetes, increased cytokeine plasma levels could induce iNOS expression contributing to vascular damage. In addition to transcriptional regulation, iNOS activity may be posttranslationally regulated by palmitoylation and intracellular trafficking. It has been recently demonstrated that the multifunctional protein kinase CaMKII, a known contributor to vascular dysfunction in diabetes, may also play a significant role in iNOS-specific trafficking and activity following cytokine induction. Thus, the aim of the present study was to investigate the relationships between cytokeine increased iNOS activity and Ca²⁺/CaMKII/cAMP/Ala/delta2 pathway involve in vSMCs from diabetic rats (DR).

Materials and methods: We measured iNOS expression (RT-PCR, Western Blot) and activity (conversion L-(3H)-arginine into L-(3H)-citrulline), intracellular Ca²⁺ levels (fluorescence video imaging), CaMKII phosphorylation
We investigated type 2 diabetic patients, that did
from 10 diabetic (90% pancreatectomy, DM) and 10 control (sham surgery, CR) rats, after 24 hrs incubation with 20 µg/ml Lipopolysaccharide (LPS).

Results: LPS increased iNOS expression to the same extent in CR and DR, while iNOS activity was about 7 folds greater in CR. As to the effect of LPS on increased Nitric Oxide (NO) production in DR, exposure to LPS led to an increase of intracellular calcium levels (1.9 folds increase) and Ca²⁺-dependant Calmodulin phosphorylation (3 folds increase) followed, as expected, by the absence of iNOS/CaMKII delta2 co-immunoprecipitation. These LPS effects were associated to the greater induced iNOS-specific activity in DR. In CR, instead, LPS failed to affect these parameters, which were not different from basal levels after LPS stimulation. In addition, the increased iNOS activity in DR was accompanied by a significant increase in intracellular nitrotyrosine levels (1.5 folds increase).

Conclusion: In conclusion, as compared to CR VSMCs, CR cells showed a greater LPS induced iNOS activity associated to an activation of Ca²⁺/Calmodulin pathway. In addition, as we have previously shown, DR cells exhibit in this culture conditions a marked increase in O²⁻ levels. Thus, the LPS increased NO release in diabetic pro-oxidant milieu gets converted into peroxynitrite and then enhanced nitrotyrosine generation. Together these results indicate for the first time that signal pathway involving Calmodulin contributes to increase iNOS activity and nitrotyrosine generation in diabtes and might provide new insight in the mechanisms linking diabetes and atherosclerosis.

1337 Multifactorial risk factor intervention in type 2 diabetic patients significantly improves global arginine bioavailability ratio

N.J. Tripolt¹, A. Meinitzer², M. Eder³, W.B. Graninger³, T.R. Pieber³, T.C. Wascher³, H. Sourij²;¹ Internal Medicine, Div. of Endocrinology and Nuclear Medicine, Vascular Biology Research Group, Medical University of Graz, ²Clinical Institute of medical and chemical laboratory diagnostics, Medical University of Graz, ³Internal Medicine, Div. of Rheumatology, Medical University of Graz

Background and aims: Endothelial dysfunction is defined by reduced bioavailability of nitric oxide (NO) and has been shown to be associated with increased cardiovascular risk. The unique source for NO synthesis is arginine and ornithine and citrulline are the products of arginine metabolism. Global arginine bioavailability ratio (GABR) is defined as arginine/ornithine + citrulline. Recently published data showed an inverse association between GABR and cardiovascular events. The aim of our study was to investigate the impact of a multifactorial risk factor intervention on GABR as a cardiovascular surrogate parameter in type 2 diabetic patients.

Materials and methods: We investigated type 2 diabetic patients, that did not reach treatment targets according to current local guidelines in two out of three oft the following parameters: HbA1c <6.5%, HDL-cholesterol <100 mg/dl or blood pressure <130/80 mmHg. GABR was measured at baseline and after 3 months. During this time therapy was intensified according to current guidelines aiming to reach the treatment targets. Arginine, ornithine and citrulline were chromatographically determined after precolumn-derivatisation followed by fluorescence detection. Intima media thickness was measured by B-mode ultrasound.

Results: We investigated 41 patients (25 males/16 females) with a mean age of 60±10 years. Baseline characteristics and treatment outcomes are shown in table 1. Intensified risk factor management significantly improved GABR (0.33±0.12 at baseline vs. 0.58±0.14 after 3 months; p=0.018). A significant improvement was only seen in patients with short diabetes duration (<5 years) whereas in patients with longer diabetes duration improvement did not reach statistical significance. A linear model including the duration of diabetes, the change of LDL-cholesterol, change of HbA1c, change in blood pressure turned out diabetes duration as the only significant predictor (p=0.049) of GABR improvement. Furthermore the change of GABR was inversely correlated with mean intima media thickness (r=−0.381, p=0.014).

Conclusion: In type 2 diabetic patients intensified risk factor intervention improves global arginine bioavailability ratio as a parameter of endothelial function. Duration of diabetes seems to be an important factor influencing the capacity of GABR improvement.

1338 Formation of methylglyoxal-adducts in plasma is associated with LDL and triglyceride level: implications for diabetic atherosclerosis

Z. Turk¹, J. Boras²;¹Department for Laboratory Medicine, ²Department for Diabetic Complications, Vuk Vrhovac University Clinic for Diabetes, Zagreb, Croatia.

Background and aims: Protein glycation leading to AGE is enhanced in diabetes by increases in blood glucose per se, and collaterally, by endogenous production of reactive carbonyls. Low weight dicarbonyls are formed as glycolytic intermediates during metabolic conversion of glucose and/or during lipid peroxidation. Among AGE precursors, methylglyoxal (MG) is considered as one of the key intermediates. We hypothesized it to be a common product of both carboxyl and oxidative stress, and investigated the MG bio-genesis in relation to glycemic and lipid status in diabetic patients.

Material and methods: Serum and urine MG-adduct content was measured by DELFIA method in 83 diabetic patients and 20 controls. Fasting (FG) and postprandial (PPG) plasma glucose level, HbA1c, LDL and HDL cholesterol, plasma triglyceride and homocysteine level were determined along with routine biochemical parameters.

Results: Significant positive relationship was observed between serum level of MG-adducts and LDL (r=0.31 p=0.003) whereas fasting glucose correlated inversely (r=−0.33 p=0.001) as well as PPG (r=−0.23 p=0.041) and HbA1c (r=−0.22 p=0.036). Similarly, significant correlations were also found between urinary levels of MG-adducts and postprandial glucose (r=−0.28 p=0.023), serum triglycerides (r=0.31 p=0.003), homocysteine (r=−0.57 p=0.0007), HDL (r=−0.28 p=0.007) and urine albumine/creatinine ratio (r=0.53 p=0.002).

Stepwise linear regression was performed using serum or urine MG-adducts as dependent variable and HbA1c, fasting and postprandial glucose, LDL, HDL, triglycerides, serum creatinine, homocysteine and urine albumine/creatinine ratio as independent variables. Of these, only LDL-cholesterol (regression coefficient=0.29) and FG (regression coefficient=0.28) were independent predictors of MG-adducts in serum (p<0.00046), whereas urine albumine/creatinine ratio, PPG, and triglycerides were independently associated with their urine content (p<0.0062). LDL-cholesterol >3.0 mmol/L discriminate patients who had a higher serum level of MG-adducts (median (10th and 90th percentile) 465 (251-1254) vs 331 (169-706) mgEq/L, p=0.0052), although there was no between-subgroup difference in glycomic control. Patients on statin treatment had lower MG-adducts although the difference did not reach statistical significance. The positive relationship between LDL and MG-adducts (r=0.38, p=0.042) was noted in the patients (n=54) free of statin treatment, whereas in the statin-treated subgroup, there was an inverse tendency (r=−0.28, p=0.83) but no significant yet. A significant correlation between homocysteine and urinary excretion of MG-adducts (r=0.8; p=0.02) was recorded in patients with a history of macrovascular disease.

Conclusion: A highly significant relationship between LDL and MG-adduct production, as well as tight correlation between triglycerides and urinary MG-adduct excretion suggest that lipopidation and glyceraldehyde-3-phosphate route, along with the glycolytic pathway, might be an important source of MG generation. The glycoxidation methylglyoxal seems to be a common factor linking the two dominant metabolic changes in diabetes, hyperglycemia and intensive lipolysis, with vascular pathobiochemistry of diabetes.
1339
Vitamin B1 analogue benfotiamine improves survival and proliferation of diabetic or high glucose challenged resident cardiac stem cells
R.G. Katare, A. Okawa, A. Caporali, C. Emanueli, P. Madeddu; Bristol Heart Institute, University of Bristol, United Kingdom.

Background and aims: Diabetes mellitus (DM) is a potent and prevalent risk factor for coronary artery disease and heart failure. Furthermore, DM directly impinges on the heart’s function by accelerating the aging of cardiomyocytes and resident cardiac progenitor cells (CPCs). Treatments able to prevent CPC senescence and thereby preserve heart reparative capacity are urgently needed. Our earlier studies demonstrated the ability of vitamin B1 analogue benfotiamine (BFT) to prevent the development of diabetic cardiomyopathy. Here, we aimed to verify whether BFT may benefit the survival, proliferation and differentiation of resident CPCs.

Methods and results: Sca-1+ CPCs were extracted from left ventricle of STZ induced type-1 DM mice after 28 weeks of DM induction using commercially available kit. Flowcytometric analysis revealed marked reduction in the number (23±4% vs 12±2%, P<0.01) and increased apoptosis (28±3% vs 10±2%, P<0.001) of CPCs from diabetic mice compared to age-matched healthy controls (n=7 mice per group). When cultured under normal glucose (5%) conditions, diabetic CPCs showed increased apoptosis and reduced protein expression of the cell survival Pim-1/Bcl-2 signalling pathway and significantly lost their ability to differentiate into cardiomyocytes when exposed to differentiation medium. However, treating diabetic cells with BFT (70mg/kg/day, for 16 weeks), markedly inhibited the apoptosis of CPCs through activation of Bcl-2 and phosphorylation of Bad. Importantly, BFT treatment induced 2 fold increase in proliferation of CPCs that was markedly attenuated by DM (P<0.01). In addition BFT also increased the differentiating ability of CPCs into cardiomyocytes, as evidenced by measuring the percent of cells positive for α-sarcomeric actin and connexin-43. Finally, CD45−CD90−CD105+ CPCs isolated from atrial appendages of patients undergoing on-pump by pass cardiac surgery were exposed to high glucose (30µM) with or without BFT (150µM). Importantly, high glucose induced apoptosis (53±5% vs 12±4%, P<0.001) and reduced the proliferation (45±8% vs 80±4%, P<0.001) and differentiation potential of human CPCs, with these effects being prevented by BFT (P<0.01 for all comparisons).

Conclusion: Both DM and high glucose cause quantitative and functional deficits in CPCs. BFT contrasted these detrimental effects in a murine diabetic model as well as in in vitro assays using human CPCs exposed to high glucose. These data highlight the direct protective action of BFT on CPCs and potential underpinning mechanisms centred on survival Pim-1/Bcl-2 signalling pathway. Thus, BFT merit attention as a global therapeutic target to combat DM-associated cardiac damage.

Supported by: UK Diabetes

1340
Gene silencing of Toll-like receptor attenuates myocardial apoptosis in diabetic mice
Y. Zhang1, H. Zhu1, X. Zheng1, X. Zhang1, N. Jiang1, A. Shunnr1, N. Tong2, T. Peng1, W. Min1;
1University of Western Ontario, London, Canada, 2West China Hospital, Chengdu, China.

Background and aims: Myocardial apoptosis is an early event involved in the process of cardiomyopathy in diabetes mellitus. Toll-like receptors (TLR) signaling triggers cell apoptosis through multiple mechanisms. Up-regulation of TLR4 expression has been shown in diabetic hearts. This study aims to delineate the role of TLR4 in cardiac apoptosis, and to block this process through gene silencing of TLR4 in diabetic hearts.

Materials and methods: The C57BL/6 mice were made diabetic by ip injection of streptozotocin (STZ, 150mg/kg body weight). Three days after STZ treatment, the diabetes was confirmed by blood glucose level. Diabetic mice were treated with 50 µg of TLR4 shRNA (treatment group) or scrambled shRNA (control group). Other control groups include non-treated diabetic mice (diabetes group) and naïve mice (normal group).

Results: After 7 days of hyperglycemia, the level of TLR4 in the heart tissue was significantly elevated in the diabetic mice, as comparing normal mice. Treatment of TLR4 shRNA knocked down the gene expression as comparing control mice, as well as diminished its elevation in diabetic mice. Pathologically, apoptosis was evident in the cardiac tissues of diabetic mice, as detected by TUNEL assay. In contrast, treatment with TLR4 shRNA minimized apoptosis in heart tissues. Mechanistically, caspase 3 activation was remarkably inhibited in the mice that were treated with TLR4 shRNA, but not in the mice treated with control shRNA or non-treated mice. Furthermore, gene silencing of TLR4 resulted in suppression of apoptosis cascades, such as caspase 3, caspase 8 and Fas gene expression.

Conclusion: In summary, we demonstrated here a piece of novel evidence that TLR4 plays a critical role in cardiac apoptosis. This is the first demonstration of preventing in cardiac apoptosis in diabetic mice through gene silencing of TLR4 gene.

Supported by: LHRI
PS 134 Liver, lungs and bone

1341
Prevalence of glucose intolerance in patients with chronic hepatitis C
G. Radulian1, F. Rusu2, A.D. Dragomir3, G. Enache1, M. Jinga1, V. Stoica1, D. Cheta1, E.D. Rusu2;
1National Institute of Diabetes, Nutrition and Metabolic Diseases, 2Healthy Nutrition Foundation, 3University of Medicine Carol Davila, Bucharest, Romania.

Background and aims: The association of glucose intolerance with chronic hepatitis C (CHC) virus infection remains controversial. The aim of this study was to evaluate the prevalence of glucose intolerance by oral glucose tolerance test (OGTT) in patients with CHC in comparison with matched controls and to analyze if adipocytokines levels correlate with insulin secretion (IS) and insulin resistance (IR).

Materials and methods: 176 consecutive outpatients with CHC (group A) and 123 subjects individually (group B) matched for age, sex and body mass index (BMI) were included. OGTT was performed in all cases with HbA1c over 5.5%. Glucose intolerance was defined as IFG (impaired fasting glucose), IGT (impaired glucose tolerance) or diabetes. IR was determined using Homeostasis model assessment (HOMA-IR). The liver fibrosis was non-invasively assessed using the Forns index; a value < 4 excludes liver fibrosis and a value > 6.9 is a predictor for significant fibrosis.

Results: The average age was 56.2±10.28 in group A and 54.27±10.22 years in group B. After age and BMI adjustment, patients with CHC had significantly higher prevalence of glucose intolerance (23.86% vs 9.75%, P = 0.037). Median HOMA-IR (3.75 versus 1.23), adiponectin (6.72 versus 2.98 µg/ml), TNF alpha (2.79 versus 0.61 pg/ml), IL-6 (4.78 versus 1.81 pg/ml) were significantly higher in CHC patients (all P < 0.05). In patients with CHC, by multiple linear regression, independent predictors of HOMA-IR included the body mass index, apparent liver disease duration, and the serum levels of leptin, TNF alpha, IL-6 (positive correlation) and adiponectin (negative correlation). In patients with HCH infection, plasma insulin and C-peptide levels were lower (al p <0.05).

Conclusion: In hepatitis C patients, higher prevalence of glucose intolerance are present. Adipocytokines and inflammatory cytokines play an important part in this relationship. Screening for diabetes (HbA1c or OGTT) is necessary in patients with hepatitis C.

Supported by: Romanian National Authority for Scientific Research

1342
Prevalence and determinants of diabetes mellitus in Dutch patients with liver cirrhosis
N. Wijzol1, H.J.B. Beijers1, E.J. Schoon1, H.P. Sauerwein1, C.D.A. Stethouwer1, B. Bravenboer2;
1Department of Internal Medicine, Catharina Hospital, Eindhoven, 2Department of Gastroenterology, Catharina Hospital, Eindhoven, 3Department of Endocrinology and Metabolism, Academic Medical Centre, Amsterdam, 4Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Netherlands.

Background and aims: The reported prevalence of type 2 Diabetes mellitus (DM2) in patients with liver cirrhosis is 20-40%, about five times higher than in the general population. However, these data were never adjusted for classical risk factors for DM2, like age, body mass index (BMI) or family history of DM2 (first or second degree relatives). We therefore investigated the association between cirrhosis and DM2 controlling for known risk factors for DM2.

Materials and methods: We reviewed medical files for presence of DM2 and potential confounders in 94 patients with cirrhosis visiting our hospital between 2001 and 2009 (cases) and compared these to a control group of 107 patients with non-uter liver disease (NUD). Multiple logistic regression analysis was used to adjust for potential confounders.

Results: The etiology of our cirrhosis population was alcohol (59%), viral hepatitis (10%), biliary cirrhosis (3%) or cryptogenic (28%). Prevalence of DM2 was significantly higher in patients with cirrhosis than in controls: 35/94 (37%) vs. 7/107 (7%) (OR 8.5, 95%CI 3.5 - 20.2, p < 0.001). After adjustment for age, sex, family history of DM2, alcohol use and BMI, cirrhosis remained significantly associated with DM2 (OR 13.6, 95% CI 4.3 - 42.9, p < 0.001).

Most DM2 was already diagnosed before diagnosis of cirrhosis (21/35, 60%) or was incidentally found together with cirrhosis (5/35, 14%). In multivariate analysis in patients with cirrhosis, male sex (OR 4.6, 95% CI 1.3 - 15.9, p = 0.016), positive family history of DM2 (3.7, 95% CI 1.0 - 12.8, p = 0.042) and BMI (OR 1.2 per kg/m², 95% CI 1.0 - 1.3, p = 0.015) were positively associated with DM2, whereas alcohol consumption protected (moderate vs. no alcohol consumption (OR 0.11, 95% CI 0.02 - 0.57, p < 0.009), excessive vs. no alcohol consumption (OR 0.14, 95% CI 0.03 - 0.63, p = 0.010)). Etiology and severity of the cirrhosis, expressed in Child-Pugh score, were not associated. The final model explained about 30% of diabetes prevalence in cirrhosis.

Conclusion: Liver cirrhosis was strongly associated with DM2, even after adjustment for age, BMI and family history of DM2. Although sex, family history, BMI and alcohol consumption were significantly associated with the presence of DM2, this only explained part of the high DM2 prevalence in cirrhosis. Therefore a liver-specific factor, such as low-grade inflammation, might cause DM2 in cirrhosis.

1343
Chromatin structure and Sirt1 and PGC-1alpha expressions in liver cells of NOD mice
E.G. Ghiraldini1, I.M. Toni1, M.I.S. Mello1;
1Anatomy, Cell Biology, Physiology and Biophysics, 2Genetics, Evolution and Bioagents, State University of Campinas, Brazil.

Background and aims: Evidences point out that hyperglycemia caused by diabetes mellitus is the main factor that contributes to early-aging in diseased patients. This metabolic alteration could lead to changes in chromatin structure and dynamics, as those previously observed in hepatocytes of a group of NOD mice presenting glyceria higher than 600 mg/dl. Alterations in chromatin structure caused by epigenetic factors may change the expression profiles of genes involved in cell ageing. Sirt1 is a NAD-dependent deacetylase recently related to cellular metabolic changes and ageing. Together with the transcription factor PGC-1a, Sirt1 could act as a nutritional sensor. The aim of this study was to compare chromatin accessibility to micrococcal nuclease (MNase) and expressed Sirt1 and PGC-1a protein in liver cells of moderate and severe diabetic adult and non-diabetic mice.

Materials and methods: Young adults (8 weeks old) with moderate diabetes (glyceria: 200–400 mg/dl), severe (glyceria > 500 mg/dl) diabetic adults and old non-diabetic (56 weeks old) mouse groups were used (n = 5). Normoglycemic Balb/c and NOD mice with the same ages as the diabetic animals were used as controls. Chromatin accessibility was evaluated by Mnase assay, followed by DNA extraction and agarose gel electrophoresis. PGC-1a and Sirt1 were determined by Western Blot for the same groups.

Results: The chromatin in mice with severe diabetes presented the highest unwrapping degree (2.62 ± 0.44, Pgc1α) in comparison with that of the control with the same age (Balb 0.66 ± 0.22, NOD 0.46 ± 0.11). Although chromatin accessibility index of the older mice was higher in comparison with that of young mice (1.41 ± 0.2 vs 0.67 ± 0.18, Pgc1α), it was still lower than that in mice with severe diabetes (2.62 ± 0.44, Pgc1α). The Sirt1 protein was abundant in older mice with severe diabetes compared to their respective controls (moderate diabetic mice 1.62 ± 0.17 vs control Balb/c 0.92 ± 0.07, Pgc1α; severe diabetic mice 1.60 ± 0.18 vs control Balb/c 0.94 ± 0.09 and normoglycemic NOD 0.75 ± 0.09 Pgc1α) while old mice presented the lowest values (0.30 ± 0.03) in comparison to young mice (1.00) (Pgc1α). The PGC-1a abundance was higher than that of controls only when considering mice with severe diabetes (2.15 ± 0.4) vs Balb/c mice (0.66 ± 0.06) and normoglycemic NOD (0.88 ± 0.42). Similar to the Sirt1 expression, PGC-1a abundance was lower (0.51 ± 0.15 fold) in older mice in comparison with young ones.

Conclusion: Severe hyperglycemia induces enhancement of an open form of chromatin in hepatocytes, surpassing the phenotype exhibited in old specimens. Sirt1, together with PGC-1a, could act as nutritional sensor, because it is highly expressed in severe diabetic mice but attains normal levels in normoglycemic mice of same age. Therefore, the decondensed chromatin phenotype observed in hepatocytes of mice with severe diabetes is not assumed to be affected by Sirt1, as this protein, when acting as histone deacetylase, would lead to a more compact state of the chromatin structure. Considering that the expressions of Sirt1 and PGC-1a in old mice differed from diabetic adult mice, we suggest that the early ageing observed in diabetic individuals does not follow the same metabolic pathway as natural ageing.

Supported by: FAESP and CNPq

Effects of early undernutrition on the insulin sensitivity and on both glucose and ketone body transporters in the liver from suckling rats

E. Lizarraga-Mollinedo1, E. Fernández-Millán1, J. De Toro-Martín1, C. Martínez-Honduvilla1, C. Álvarez2, E. Escrivá2, J. De Toro-Martín1, C. Álvarez1,2, E. Escrivá1,2

Background and aims: The sucking imposes biochemical adaptations to nutrition, since milk is a high-fat low-carbohydrate diet. As well, this period is a critical window of growth for the brain, which accomplishes part of its development before weaning. Immature brain uses large amounts of glucose and ketone bodies to obtain energy and for biosynthesis, thus increased rates of hepatic gluconeogenesis and ketogenesis are compulsory. Consistently, plasma insulin and glucagon remain in low and high concentration respectively, throughout the suckling, adapting liver metabolism to diet. What is more, hepatic low insulin responsiveness is the most suitable condition during this period. The shortage of nutrients during development can have grave consequences later in life. Impaired glucose tolerance, diabetes and cognitive defects can arise from early undernutrition. As previously shown, insulin responses are enhanced in heart, skeletal muscle and adipose tissue of restricted rats, but the effects on liver sensitivity has not been explored yet. Changes in hepatic insulin sensitivity might alter the rate of the indicated metabolic pathways, modifying the production of endogenous substrates. Our aim is to search whether maternal undernutrition influences the insulin responses in the liver of suckling pups.

Materials and methods: Wistar rats were submitted to a 60% restriction of a commercial diet from 14th day of pregnancy and during lactation. 10-day old rats from restricted dams and their controls were studied. Rats were decapitated. Blood was got from the neck. Liver was rapidly frozen. Plasma insulin and glucagon were determined by RIA. Glycogen was quantified with amyloglucosidase and ketone bodies spectrophotometrically. Liver gluconeogenesis was evaluated by a glycerol test. Components of insulin signalling were analyzed by Western. IRS-1/2 associated PI3-kinase was assayed with [32P]ATP.

Results: Glycaemia was depressed in the restricted rats. Blood and liver ketone bodies remained above control values. Undernutrition decreased plasma insulin and glucagon. Liver glycogen was enhanced. Glucolysis gluconeogenesis did not change, nor liver expression of insulin receptor, but IRS-1/2 increased with undernutrition. PI3-kinase was more activated by insulin in restricted rats, as was Akt and GSK3 phosphorylation.

Conclusion: Early undernutrition increases the risk for defects in glucose homeostasis and for neurological damages. Herein we show that undernourished rats are hypoglycaemic, due to the liver insulin hypersensitivity (as in other tissues) together with a low plasma glucagon. These changes mean a dramatic modification of the most convenient hepatic metabolic setting during suckling. The high ketogenic ability in restricted animals is rather surprising, considering the enhanced insulin responsiveness. The improved plasma levels of ketone body probably constitutes an adaptation to nutritional restriction. It might prevent or minimize the impact on immature organs, as the brain. However, glucose is required for normal brain functioning under most conditions, including perinatal time. So imbalance between plasma glucose and ketone body concentrations may have deleterious consequences for the developing brain.

Supported by: CIBERDEM and MEC Spain

1345
The morphometric characteristics of pulmonary tissue and arteries in type 2 diabetic patients

O.A. Pivovarova1, B.N. Mankovsky2
1Internal medicine N2, Lugansk State Medical University, Lugansk, 2National Medical Academy of Postgraduate Education, Kiev, Ukraine.

Background and aims: Diabetes mellitus is associated with the damage of different organs. However, the changes of the lungs in patients with diabetes are not fully characterized. Therefore, the aim of our study was to investigate the morphometric characteristics of an alveolar tissue and pulmonary arteries in type 2 diabetic patients.

Materials and methods: We studied the materials obtained from the autopsy of 25 deceased subjects with type 2 diabetes mellitus (mean age - 58,3±1,3 years) and 11 deceased persons without diabetes (mean age - 50,2±1,6 years) as the control group. The causes of death in those subjects were not related to pulmonary disease. The tissue samples were sectioned and fixed in 10% neutral formal by standard histological methods and embedded in paraffin wax. The tissue slides were stained with hematoxylin-eosin. We analyzed the morphometric characteristics of pulmonary tissues and arteries using the light-optical microscope (Olympus, Japan, BX - 41).

Results: We found the trend toward an increase of the lumen of alveoli in those with diabetes compared to controls - 157,2±10,8 µm vs. 101,2±12,6 µm, respectively, 0,05<p<0,1 (data are presented as mean±SEM). These changes were accompanied by the significant decrease of the external diameter (100,8±1,6 µm vs. 172,3±27,4 µm, p<0,001) and internal diameter (76,03±5,5 µm vs. 111,3±18,6 µm, p<0,001) of pulmonary arteries in diabetic subjects compared to controls. Moreover, we found the significant decrease of the thickness of the arteries wall in those with diabetes (12,3±0,53 µm vs. 35,6±4,9 µm, p<0,001), the vascular index was 14,3±0,42 vs. 22,6±0,97, (p<0,001), in those with and without diabetes, respectively.

Conclusion: We may conclude that the revealed morphometric changes of tissue and arteries of type 2 diabetic patients may underlie the higher susceptibility to pulmonary diseases in these patients.

Supported by: OAP

1346
Serum levels of bone turnover markers in type 2 diabetes and their relationship with bone mineral density

P. Rozas-Moreno1, R. Reyes-García2, M. Muñoz-Torres2
1Endocrinology Division, Hospital General de Ciudad Real, 2Bone Metabolic Unit, Endocrinology Division, San Cecilio University Hospital, Granada, Spain.

Background and aims: Several studies indicate that hyperglycemia induces a low turnover state with osteoblast dysfunction. Studies of bone resorption in diabetes are limited, and the results are conflicting. Our aim was to analyse serum levels of bone turnover markers (BTM), PTH-i and 25 OH vitamin D in patients with type 2 diabetes mellitus (T2DM), and the relationship with bone mineral density (BMD). We also compared BTM between T2DM and controls.

Materials and methods: Case-Control study including 133 subjects, 78 patients with T2DM and 55 healthy controls. Lumbar spine and femoral BMD were measured by dual X-Ray absorptiometry (Hologic QDR 4500). We measured serum levels of bone alkaline phosphate (b-ALP) by an ELISA (OCTEIATM IDS Ltd Boldon UK), osteocalcin (OC) by radioimmunoassay (DiaSorin, Stillwater, Minnesota USA; TRAP (Bone TRAP * Assay. IDS Ltd); CTX by ELISA (Elecsys B CrossLaps,Roche Diagnostics SL, Barcelona, Spain); PTH-i (Intact PTH, Roche Diagnostics SL); 25 OH vitamin D (25-Hydroxyvitamin D 125I RIA DiaSorin).

Results: Mean age was 56,7±6,8 yr (57,8±6,4 and 55,1±7,1 in T2DM and control group respectively; p=0,024). Among the T2DM patients (n=78), 47,2% were females (n=35) and 52,8% males (n=43). In the control group 56,5% were females (n=30) and 43,5% males (n=25). Serum levels of bone resorption markers were lower in T2DM compared with controls (TRAP: T2DM 1.39±0.99 UI/l vs controls 1.85±0.81 UI/l, p<0,05; CTX: T2DM 0.20±0.12 ng/ml vs controls 0.33±0.15 ng/ml, p<0,05). There were no differences in bone formation markers (b-ALP: T2DM 14.83±6.5 µU/g vs controls 12.96±6.73 µU/g, p 0,11; OC: T2DM 1.48±1.25 ng/ml vs controls 1.45±1.2 ng/ml, p 0,91). PTH-i serum levels were lower in T2DM (PTH-i: T2DM 38.35±18.20 pg/ml vs controls 50.22±18.99 ng/ml, p<0,05). T2DM have lower levels of 25 OH vitamin D with respect to controls, although differences were not significant (T2DM 17.81±11.14 ng/ml vs controls 21.30±11.05 ng/ml, p 0,07). In T2DM there was a negative correlation between CTX levels and BMD at different sites (LS BMD -0.460, P<0,001; TF BMD -0.530, p<0,001).

Conclusion: T2DM patients have lower levels of bone resorption markers and PTH-i compared with controls. CTX serum levels were negatively correlated with BMD at different sites.
PS 135 Steatohepatitis

1347

Predictors of impaired glucose regulation in patients with non-alcoholic fatty liver disease

E. Hatzigelaki1, D. Karageorgopoulou2, A. Chounta1, A. Tsivou1, T. Economopoulos1, M. Falagas;1
12nd Dept. of Internal Medicine, “Attikon” University Hospital, 2Alfa Institute of Biomedical Sciences (AIBS), 34th Dept. of Internal Medicine, “Attikon” University Hospital, 1Dept. of Medicine, Henry Dunant Hospital and Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece.

Background and aims: Many patients with non-alcoholic fatty liver disease (NAFLD) have impaired glucose tolerance or type 2 diabetes mellitus (DM). We sought to identify characteristics of NAFLD patients associated with hyperglycemia.

Materials and methods: We prospectively studied a cohort of NAFLD patients. They underwent a 2-hour oral glucose tolerance test (using 75 g). Serum glucose and insulin were measured at 30 min intervals. Common biochemical laboratory tests were also done.

Results: We included 152 patients with NAFLD; 74 (48.7%) had hyperglycemia (45 had impaired fasting glucose or impaired glucose tolerance, and 29 had type 2 DM). Patients with hyperglycemia had higher body mass index (BMI; 30.5±4.5 vs. 28.5±4.8 kg/m², p=0.01), lower high-density lipoprotein cholesterol (HDL-C; 46.5±13.6 vs. 53.7±18.8 mg/dL, p=0.02), lower serum albumin (4.1±0.5 vs. 4.4±0.4 g/dL, p<0.01) and were older (53.0±10.7 vs. 47.3±11.4 years, p<0.01), in comparison with patients with normoglycemia. In multivariate analysis including the above 4 variables as covariates, age (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.03-1.13), BMI (OR: 1.12, 95% CI: 1.01-1.25), and HDL-C (OR: 0.95, 95% CI: 0.92-0.98) proved independent predictors of hyperglycemia in NAFLD patients. Additionally, 30-min insulin after the oral glucose challenge was lower in patients with hyperglycemia (74.2±49.7 vs. 94.5±53.9 μU/mL, p=0.02), while 90-min insulin (170.8±18.6 vs. 122.9±27.7 μU/mL, p<0.01) and 120-min insulin (164.0±101.2 vs. 85.3±61.9 μU/mL, p<0.01) were higher and insulin at 60 min did not differ between patients with or without hyperglycemia.

Conclusion: NAFLD patients with higher BMI, lower HDL-C, or older age were more likely to have impaired glucose metabolism. We suggest that oral glucose tolerance test should be considered for patients with non-alcoholic fatty liver disease, particularly in those with one or more with the above mentioned predictor characteristics of hyperglycemia, to readily diagnose and treat disorders of glucose metabolism.

1348

Non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus

B. Resuli1, F. Agaci1, B. Kraja2, I. Burda2, M. Kapia1, I. Burda1, F. Agaci1, B. Kraja2, I. Burda2, M. Kapia1, I. Burda1
1University Clinic of Gastrohepatology, University Hospital Center Mother Theresa, 2University Clinic of Gastrohepatology, University Hospital Center Mother Theresa, 3Clinic of Gastrohepatology, Ambulatory Service, Tirana, Albania.

Background and aim: Non-alcoholic fatty liver disease (NAFLD) is a growing medical and risk factor of NAFLD in patients with type 2 diabetes mellitus (DM).

Methods: 127 consecutive patients with type 2 DM [60 (47.2%) males and 67 (52.8%) females, mean age 59.3±9.3 years old] hospitalized in University Service of Endocrinology in Tirana, Albania during 2009 and fulfilling diagnostic criteria adopted by WHO 1999 were included in the study. The diagnosis of NAFLD was based on 1) sonographic findings, 2) ethanol intake equal or lower than 20 g/day and 3) exclusion of other liver diseases. The clinical and laboratory parameters, such as age, sex, mean duration of diabetes, body mass index (BMI), glycosylated hemoglobin (HbA1c), transaminases levels, serum cholesterol and triglyceride levels were analyzed as predictors of sonographic findings by using multiple logistic regression model.

Results: 74% (N=94) of the patients had NAFLD (39/94 (41.5%) mild, 45/94 (47.9%) moderate, 10/94 (10.6%) severe). The value of BMI, WHR (waist:hip ratio), ALT (alanine aminotransferase), serum cholesterol and triglyceride levels in 2 type 2 diabetes patients with NAFLD were significantly higher than in those without NAFLD [26.5 vs. 33.9 kg/m², 0.91 vs. 1.12, 26.8 vs. 40.19 (UI/L), 193.9 vs. 230.1 (mg/dL) and 1:17.1 vs. 227.9 (mg/dL), respectively, P<0.001]. All patients (N=13; 14%) with ALT greater than normal had NAFLD. In multivariable-adjusted models significant predictors were age (OR=1.04, 95% CI=0.03-0.85), BMI (OR=1.53, 95% CI=0.10-0.32) and HbA1c (OR=1.1, 95% CI=0.11-0.23).

Conclusion: In Albania, the incidence of NAFLD seems to be higher in patients with type 2 diabetes mellitus. Older age, obesity and HbA1c were the independent risk factors of NAFLD in diabetic patients.

1349

High prevalence of advanced NAFLD in type 2 diabetic patients with unremarkable liver enzymes and effect of liraglutide on NAFLD: meta-analysis of the LEAD Program

M.J. Armstrong1, A. Falahati2, B. Elbrend1, W.E. Schmidt1, S. Gough1, P.N. Newsome;1
1Centre for Liver Research, University of Birmingham, United Kingdom, 2Novo Nordisk A/S, Copenhagen, Denmark.

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in type 2 diabetes. Predicting patients at risk of progressing to the advanced stages of NAFLD (liver inflammation and fibrosis) is a clinical challenge as the majority of patients are asymptomatic and have normal liver enzyme levels. The NAFLD Fibrosis Score (NFS) is a well-validated non-invasive scoring system (comprising age, BMI, AST/ALT ratio, platelets and albumin) used to predict the severity of advanced liver fibrosis. The aims of this study are: (i) to estimate the severity of NAFLD using the NFS and (ii) to evaluate the effect of 1.8mg liraglutide, a once-daily human GLP-1 analogue, on NAFLD in a cohort of poorly controlled diabetic subjects.

Materials and methods: Meta-analysis was performed on individual data from patients enrolled in the Liraglutide Effect and Action in Diabetes (LEAD) program. ANCOVA analysis was performed on the intent-to-treat population to estimate change from baseline after 26 weeks.

Results: Data from 3967 adults at baseline: 53% male; 79% Caucasian; Age 56 years [10]; HbA1c 8.3% [1.0]; duration of diabetes 7.8 years [5.8]; systolic BP 131 [15.3]; BMI 31.6 kg/m2 [5.40]; males ALT 32 and females ALT 24 IU/L (values expressed as mean [SD]). 78% of subjects had metabolic syndrome based on ATP III classification. 54% of subjects had abnormal ALT (upper limit of normal range 30 IU/L for males and 19 IU/L for females), with mean ALT 39 IU/L. The NFS predicted that 6.4% had advanced liver fibrosis (score > 0.676) and 61.0% had an indeterminate score (1.455 to 0.676) requiring further liver specialist review. Duration of diabetes significantly correlated with ALT (r1 = 0.17, p<0.0001) and severity of NFS (r2 = 0.14, p<0.0001). Liraglutide significantly reduced ALT versus placebo (LS mean 3.48 vs 1.36; p<0.001), although the proportion of patients normalizing their ALT was similar (25.2% vs 22.7%). Liraglutide significantly improved NFS in comparison to placebo (LS mean -0.42 vs -0.13; p<0.001), with significant changes in BMI (LS mean -0.66; p<0.0001) and platelet count (LS mean +15.90; p<0.0001). There was no relationship between changes in NFS and HbA1c after 26 weeks liraglutide treatment (r = 0.00, p=0.96).

Conclusion: Advanced NAFLD fibrosis is present in a significant proportion of diabetic patients in the LEAD program, despite the absence of clinically significant serum transaminases. Duration of diabetes, but not level of glycaemic control was correlated with elevation of ALT and worsening severity of NFS. 26 weeks treatment with Liraglutide reduces ALT and NFS. The increase in platelets after Liraglutide treatment may indicate an effect independent of weight loss in NAFLD.

Supported by: MJA Welcome Trust Fellowship

1350

Insulinnaemia status and nonalcoholic fatty liver disease in Bangladeshi type 2 diabetic subjects

Z. Zeba, A. Alam, R. Zinnat, L. Ali; Biochemistry and Cell Biology, BIRDEM, Dhaka, Bangladesh.

Background and aims: Nonalcoholic fatty liver disease (NAFLD) is becoming a public health problem with increasing incidence and it has been shown to be associated with T2DM and other disorders of metabolic syndrome.
218 type 2 diabetic patients were included in this study. A control group consisted of 127 T2DM subjects without NAFLD. T2DM was diagnosed by WHO Study Group Criteria, and NAFLD was diagnosed by 4d ultrasound. Insulin was assayed by an ELISA technique, and insulin secretory capacity (HOMA% B) and insulin sensitivity (HOMA% S) were estimated by homeostasis model assessment using a HOMA-SIGMA software. Data were analyzed by appropriate univariate and multivariate tests including logistic regression analysis with NAFLD as dependent variable and variables as independent/confounding variables as appropriate.

Results: The NAFLD group was found to have higher BMI as compared to the control group (BMI, M± SD, 26.19± 3.69 vs 25.32± 3.47, p = 0.053); however, no significant difference was observed in case of WHR. The fasting blood glucose and lipid levels did not differ between the two groups. Serum fasting insulin was significantly higher in case of NAFLD group [fasting serum insulin in I.U/L of NAFLD vs Non-NAFLD, Median (Range), 19.8(3.0-81.6) vs 16.6(7.3-100.6), p = 0.005]. HOMA% B was significantly higher in NAFLD group compared to T2DM subjects [HOMA% B, NAFLD vs Non-NAFLD, 108.9 (63.0-462.70) vs 90.8 (11.1-451.3), p = 0.014]. In case of insulin sensitivity a significant difference was present between NAFLD and Non-NAFLD groups [HOMA% S, NAFLD vs Non-NAFLD, 31.9(5.8-212.10) vs 34(6.8-190.8), p = 0.005]. In logistic regression analysis, taking fatty liver as the dependent variable, and WHR, BMI, FBG, HOMA% S and HOMA% B as independent variables a significant negative association of fatty liver was found with HOMA% S (p = 0.033).

Conclusion: The data suggest that NAFLD is associated with insulin resistance in Bangladesh T2DM subjects, and the association of NAFLD and insulin resistance is independent to obesity and glycemic insulinemic status.

Supported by: BADAS

1351

Alpha-lipoic acid attenuates steatohepatitis through inhibiting CYP2E1 and endoplasmic reticulum stress

M. Kim1, 2, G.-S. Jung1, N.-K. Kim1, H.-S. Kim1, K.-G. Park1, A.-K. Min1, L.-K. Lee2;

1Department of Internal Medicine, Keimyung University School of Medicine, Daegu, 2Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.

Background and aims: Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity, and type 2 diabetes. In the insulin-resistant state, increased hepatic fat accumulation and reactive oxygen species (ROS) stimulates the activity of CYP2E1 and endoplasmic reticulum (ER) stress. Here, we examined whether alpha-lipoic acid (ALA) prevents steatohepatitis through the inhibition of molecular mediators involved in hepatic injury including CYP2E1 and ER stress.

Materials and methods: C57BL/6 mice were fed a methionine choline deficient (MCD) diet with or without ALA for 4 weeks. The plasma levels of ALT and AST were measured to check hepatic inflammation. For histological analysis, we conducted hematoxylin and eosin staining and Oil red O staining. We investigated the effect of ALA on CYP2E1 and ER stress in the liver of MCD-mice using Northern blot analysis and Western blot analysis.

Results: Dietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation and plasma ALT and AST levels. Upon histological examination, the livers of MCD mice exhibited steatohepatitis, including fat accumulation and infiltration by inflammatory cells. Mice fed an MCD diet supplemented with ALA exhibited significantly attenuated hepatic fat accumulation and inflammation, CYP2E1 expression in the liver of MCD mice was significantly lower than that of control mice, and ALA inhibited the MCD diet-induced expression of CYP2E1 at the mRNA and protein levels. Moreover, ALA inhibited MCD diet-induced expression of the nuclear factor-E2-related factor 2 (Nrf2) and Nrf2 target gene NAD(P)H quinone oxidoreductase 1. MCD diet increased the activation of ER stress markers, such as phosphorylation of eIF2α and expression of GRP78, ATF6, and CHOP, and also induced an increase in levels of MAP kinase activity, including JNK and ERK phosphorylation. MCD diet fed mice with ALA attenuated these expressions.

Conclusion: Taken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of CYP2E1 and ER stress. It provides the possibility that ALA can be used to prevent the development and progression of NAFLD in patients who have strong risk factors for NASH.

1352

Specifically-PNPLA3-mediated accumulation of liver fat in type 2 diabetic patient

J.-M. Petit1, B. Guin1, D. Masson1, L. Duvillard1, P. Buffier2, M.-C. Brindisi1, B. Bouillet2, P. Hilton1, I. Robin1, J. Cercueil1, B. Vergès2

1Diabetologie, 2Radiologie, INSERM U666, CHU du Roccye, Dijon, France.

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity, metabolic syndrome and type 2 diabetes. Recently, it has been shown in the general population that an allele in the adiponutrin (PNPLA3) gene (rs738409[G]) was strongly associated with increased hepatic fat levels, independently of visceral adiposity and insulin resistance. In this study, we set out to determine whether liver fat content (LFC), evaluated using 1H-MR Spectroscopy, was associated with PNPLA3 rs738409 polymorphism in people with type 2 diabetes. We also evaluated the influence of this polymorphism on the relationship between LFC and either visceral adiposity or intra media thickness (IMT).

Materials and methods: 218 type 2 diabetic patients were included in this study. LFC (1H-magnetic resonance spectroscopy), area of visceral fat (RMN), and IMT were measured.

Results: 139 (63.7 %) patients had steatosis. Patients with steatosis had a higher BMI (34.9 +/- 6.3 vs 32.9 +/- 6.8; p = 0.01), higher visceral fat area (284 +/- 94 vs 246 +/- 100 cm2, p = 0.005), higher plasma ALAT levels (42.8 +/- 22.5 vs 31.6 +/- 36.7 U/l, p < 0.001), and higher plasma triglyceride levels (2.42 +/- 1.77 vs 1.78 +/- 1.05 mmol/L, p = 0.004) than did patients without steatosis. The rs738409 minor G allele was associated with LFC. The number of patients with steatosis is significantly higher among minor G allele carriers in comparison to C allele homozygote carriers (70.3% vs 57.2%; p = 0.04) In the sub group of C allele homozygote carriers, LFC correlated with BMI (r = 0.27, p = 0.003), and visceral fat area (r = 0.30, p = 0.002) but not with IMT. In the sub group of minor G allele carriers, LFC correlated negatively with IMT (r = -0.23, p = 0.03), but not with BMI, or with visceral fat area. Circulating triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, AST and ALAT levels were similar for minor G and C allele homozygote carriers.

Conclusion: This study suggests that in people with type 2 diabetes, LFC is related to rs738409 polymorphism. Moreover, an interesting finding of this study was that the relationship between metabolic factors and LFC were very different in each subgroup of the rs738409 polymorphism. The lack of a relationship with visceral obesity and the negative correlation with IMT suggest that fatty liver associated with the minor G allele of the PNPLA3 rs738409 polymorphism may not be linked to metabolic disorders. The reason why liver fat content is negatively associated with carotid atherosclerosis among PNPLA3-minor G allele carriers is not yet known. The possibility that in such patient, hepatic triglyceride synthesis could protect other tissues from the potential lipotoxicity of free fatty acids needs to be evaluated.
Shankar, A. Ravi. 655, 656
Shankar, S. S. 655, 656
Shanmuganathan, M. V. 1221, 1222
Shannugundaram, M. V. 1085
Shao, S. 466
Shara, H. M. 806
Sharma, S. A. 50, 313, 322, 323
Sharma, A. 466, 544
Sharma, A. 475
Sharma, S. 881
Sharoysk, V. S. 491
Sharoysk, V. Y. 93, 348, 530
Shaw, J. 1168
Shaw, J. 412
Sheldan, B. 981
Shemaykin, A. 179
Shen, B.-J. 1158
Shen, C.-R. 130
Shen, Y. 480
Shen, Y. 739
Sheng, D. 242
Sheng, J. 895
Shenouda, S. K. 995
Sheng, J. 831
Sheng, D. 828
Shen, B.-J. 404
Sivov, P. 949
Sisovick, D. S. 155
Sitchin, I. 1163
Sitchin, I. 1215
Sivakumar, G. 1219
Sivakumar, S. 1310
Sivasalo, A. 1103
Siy, J. 260
Sjobom, P. 1212
Sjoholm, A. 641, 1315
Sjostrom, M. 654
Skalli, S. 1122
Skapare, E. 815
Skibov, J. 118, 120, 462
Skinner, T. C. 36, 990, 1028
Skjost, T. Vang. 866, 912
Skoutas, D. 1120
Skovlund, S. 953
Skrha Jr., J. 1331
Skrivarhaug, T. 334
Skrhao, J. 642
Skrha Jr., J. 1071
Skrina, A. 996
Sklar, J. 568
Sklar, J. 280
Skanov, A. 812
Sklar, J. 436
Sklar, J. 828
Sklar, J. 1022
Slettner, L. 355
Slegerland, R. J. 1021
Slijinskis, A. 905
Slovak, M. 1234
Skrovba, P. 664
Skrovezskova-Baran, I. 1176
Skrzypski, M. 708
Skupien, J. 1022, 1071
Smialowicz, A. 236
Smidt, K. 521
Smiley, D. 232
Smiley, D. 845
Smigel, M. 1155
Smilowicz, A. M. 154, 444, 1180
Smith, B. J. 623, 624
Smith, D. B. 837
Smith, E. 144
Smith, K. A. 375
Smith, M. S. 623, 624
Smith, M. S. 1108
Smith, N. L. 155
Smith, A. 604, 766, 848
Smits, P. 592
Smirnova, I. 317
Smulders, K. 876
Smulders, Y. M. 133, 632, 740
Smitra, A. 132
Snedecor, N. 876
Snedecor, G. R. 717, 772
Snoek, B. 227
Sokolowski, J. 291
Soleka, I. 684
Solum, N. G. 872
Soltani, M. A. 1150
Sole, P. 229
Sommerfeld, M. 743
Somogyi, A. 854
Sommerer, G. 80, 315
Sommerer, B. M. 727
Song, Y. 399, 684, 1208
Song, B. 895
Song, S. H. 1175, 1234
Song, Y. 306
Song, Z. 1155
Soper, C. 1204
Sorenzen, A. R. 974
Sorenzen, S. M. 1345
Sorheide, W. 126
Sorice, G. 607, 659, 722
Soria, F. 707
Sorri, J. 1337
Sousa, P. 407
Sovaida, P. C. 913
Spassky, R. 471
Spain, C. 1041
Spallone, V. 1111
Spanheimer, R. 1264
Spano, F. 745
Sparricino, G. 630
Sparks, L. 97
Spigel, P. 262, 348, 491
Speidel, D. 527
Speier, S. 475
Speers, C. 572
Speer-Hillen, J. M. 1041
Spin, M. 118, 120, 462
Spinhas, G. A. 349, 551, 665
Spinetti, G. 1160, 1314
Spin, B. 844
Spiri, D. 141
Spitzer, H. 876
Spranger, J. 68, 309
Spronk, H. M. 1322, 1323
Sprung, V. S. 55, 758, 1306
Sreckovich, B. M. 618
Srinivasan, P. A. 181, 193, 990
Staaf, J. 524
Stadler, M. 635
Staelens, B. 627, 644, 763, 880
Stage, E. 1079, 1080
Stahl, W. A. 1051, 1052
Stahl, A. 924
Staiger, H. 284, 697
Stalbenhove, A. F. H. 214
Stam, C. J. 227, 733
Stanekov, I. A. 93, 294
Stamenkova, M. G. 877
Stamenova, M. G. 834
Stam, C. J. 227
Stam, C. J. 917, 941
Starck, B. 673
Starck, B. 43, 1004
European Association for the Study of Diabetes

EASD Executive Committee

President: U. Smith, Gothenburg (retires 2011)
Vice-President: A.J.M. Boulton, Manchester (retires 2011)
Vice-President: F. Bosch, Barcelona (retires 2012)
Honorary Secretary: M. Stumvoll, Leipzig (retires 2010)
Honorary Treasurer: G. Spinas, Zurich (retires 2010)
Chairman of the Postgraduate Education Sub-Committee: J. Nolan, Dublin (retires 2010)
Editor-in-Chief, DIABETOLOGIA: E. Gale, Bristol (retires 2010)

EASD Council comprises of the Officers above and the following members:

Term expiring September 2010
F. Ashcroft, UK
V. Petrenko, Lithuania
A. Siebenhofer, Austria

Term expiring September 2011
T. Battelino, Slovenia
D. Matthews, UK
J. Philippe, Switzerland
J. Zierath, Sweden

Term Expiring September 2012
J.-M. Boavida, Portugal
C.-G. Östenson, Sweden
A. Pfeiffer, Germany
N. Wareham, UK

The Past President, E. Ferrannini, and the Secretary of the Postgraduate Education Sub-Committee, L. Czupryniak, are members of the Council ex officio.

HONORARY AUDITORS
K. Patterson, Glasgow and C. Tack, Nijmegen

HONORARY MEMBERS
G. Alberti, Newcastle; D. Andreani, Rome; J.-P. Assal, Geneva; E. Cerasi, Jerusalem; O.-B. Crofford, Melbourne (USA); A. Czyzyk, Warsaw; J.K. Davidson, Atlanta; T. Deckert, Hellerup; P. Freychet, Nice; L.G. Heding, Copenhagen; H. Keen, London; E. Kohner, London; P. Lefebvre, Liège; R. Luft, Stockholm; C. Lurie, New York; J. Nerup, Gentofte; J. Pirart, Brussels; S. Rahbar, Duarte; J. Roth, Whitestone; E. Shafrir, Jerusalem; D. Steiner, Chicago; R. Unger, Dallas; E. von Wasielewski, Munich; W. Waldhäusl, Vienna

GOLD MEMBERS
Astra Zeneca, Mölndal, Sweden; Bayer HealthCare, Berlin, Germany; Eli Lilly & Co., Suresnes, France; GlaxoSmithKline, Uxbridge, UK; LifeScan, Inc., High Wycombe, UK; Merck & Co. Inc., New Jersey, USA; Novartis Pharma AG, Basel, Switzerland; Novo Nordisk A/S, Bagsvaer, Denmark; sanofi-aventis, Paris, France; Servier, Neuilly-sur-Seine, France; Takeda, London, UK

SILVER MEMBERS
Abbott Diabetes Care, Berks, UK; Arkray Europe, Amstelveen, Netherlands; Boehringer Ingelheim GmbH, Ingelheim, Germany; Daiichi Sankyo Europe GmbH, Munich, Germany; Roche Diagnostics GmbH, Mannheim, Germany

ASSOCIATE MEMBERS
A. Menarini Diagnostics, Grassina, Italy; Amylin Europe Ltd., San Diego, USA; Becton Dickinson Europe, Pont-de-Clai, France; Medtronic International, Tolochenaz, Switzerland; Owen Mumford Ltd., Oxford, UK; Ypsomed GmbH, Sulzbach, Germany; Merck Serono s.a. Geneva, Switzerland

The EASD Executive Committee is also the Executive Committee of the European Foundation for the Study of Diabetes (EFSD).

EASD/EFSD office: Rheindorfer Weg 3, 40591 Düsseldorf, Germany - www.easd.org