Ferrule-top atomic force microscope. II. Imaging in tapping mode and at low temperature
Chavan, D.C.; Andres, D; Iannuzzi, D.

published in
Review of Scientific Instruments
2011

DOI (link to publisher)
10.1063/1.3579496

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 09. Oct. 2023
Note: Ferrule-top atomic force microscope. II. Imaging in tapping mode and at low temperature

D. Chavan, D. Andres, and D. Iannuzzi

Citation: Rev. Sci. Instrum. 82, 046107 (2011); doi: 10.1063/1.3579496

View online: http://dx.doi.org/10.1063/1.3579496

View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v82/i4

Published by the American Institute of Physics.

Related Articles

Compensator design for improved counterbalancing in high speed atomic force microscopy
Rev. Sci. Instrum. 82, 113712 (2011)

Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties
Rev. Sci. Instrum. 82, 113710 (2011)

Note: Curve fit models for atomic force microscopy cantilever calibration in water
Rev. Sci. Instrum. 82, 116107 (2011)

Electroplated CoPt magnets for actuation of stiff cantilevers
Rev. Sci. Instrum. 82, 115002 (2011)

Utilization of simple scaling laws for modulating tip-sample peak forces in atomic force microscopy characterization in liquid environments
J. Appl. Phys. 110, 094904 (2011)

Additional information on Rev. Sci. Instrum.

Journal Homepage: http://rsi.aip.org

Journal Information: http://rsi.aip.org/about/about_the_journal

Top downloads: http://rsi.aip.org/features/most_downloaded

Information for Authors: http://rsi.aip.org/authors
Note: Ferrule-top atomic force microscope. II. Imaging in tapping mode and at low temperature

D. Chavan, D. Andres, and D. Iannuzzi

1 Faculty of Sciences, Department of Physics and Astronomy and LaserLaB, Vrije Universiteit, Amsterdam, The Netherlands
2 Attocube Systems AG, Munich, Germany

(Received 27 January 2011; accepted 22 March 2011; published online 18 April 2011)

In a recent paper [D. Chavan et al., Rev. Sci. Instrum. 81, 123702 (2010)] we have demonstrated that ferrule-top cantilevers, obtained by carving the end of a ferrule fiber, can be used for contact mode atomic force microscopy in ambient conditions. Here we show that those probes can provide tapping mode images at both room and cryogenic temperatures (12 K). © 2011 American Institute of Physics. [doi:10.1063/1.3579496]

In 2006, one of us (D.I.) and his collaborators introduced a miniaturized optomechanical transducers for remote sensing: the fiber-top cantilever.1 In a fiber-top probe, the cleaved end of an optical fiber is carved in the form of a cantilever, whose mechanical deflection is then determined by coupling light from the opposite side of the fiber. Fiber-top cantilevers have been proven to provide a new platform for several applications, including gas sensing,2 refractive index measurements,3 and atomic force microscopy.4 Unfortunately, fiber-top cantilevers are currently fabricated by means of a time consuming process that does not adapt well to series production (namely, focused ion beam milling5). This problem was solved at the beginning of 2010 by introducing a larger (but still compact and monolithic) device that retains the advantages of fiber-top technology without the burden of the fabrication costs: the ferrule-top cantilever.6,7 In a ferrule-top device, the cantilever is carved out of a ferrule optical fiber. Because the dimensions of a ferrule are much larger than those of a fiber, ferrule-top cantilevers can be fabricated with a series of steps that adapt better to cost effective series production. In a previous paper,8 we demonstrated that a ferrule-top probe, equipped with a sharp conical tip on its free hanging end, can be successfully used for atomic force microscope imaging in air and liquids. The study, which was conducted with a custom-made scanner, was limited to contact mode. In this note, we show that a ferrule-top cantilever, now mounted on a commercial atomic force microscope, can provide tapping mode images at both room and cryogenic temperature (12 K).

The ferrule-top cantilever used in this experiment was fabricated following a similar procedure as that described in Ref. 8 (see Figs 1 and 2). The building block is a 3 mm × 3 mm × 7 mm double-bore ferrule made out of borosilicate glass, which is carved in the form of a cantilever via laser ablation. The two bore holes, with a diameter of 127 and 50 μm, are symmetrically positioned with respect to the central axis of the ferrule, with a center-to-center separation of 250 μm. The smaller bore hosts a highly doped optical fiber, on top of which is a sharp conical tip obtained via differential wet etching.9,10 This fiber, which forms the tip for scanning, is glued into the bore before carving the undercut that frees the cantilever. The larger bore hosts a standard single mode optical fiber, which is glued into the ferrule only after the carving process is completed. The cleaved end of this fiber is kept well below the cantilever itself, and the hole left in the cantilever just above the fiber is filled with a droplet of UV curable epoxy. At the end of the process, the probe is mounted on a metal deposition system, where it is coated with a thin Cr + Au layer. We refer the reader to Ref. 8 for a discussion of the resolution and capabilities of this fabrication method. Here we only want to stress that the cantilever used for the measurements presented in this note was 1600 μm long, 210 μm wide, and 30 μm thick with an expected spring constant of 20 N/m and a measured resonance frequency of 9.8 kHz.

The ferrule-top probe was mounted on an AttoAFM Ixs atomic force microscope (Attocube Systems AG; for details, see Ref. 11). This instrument, which can operate down to a few millidegrees Kelvin, usually relies on standard cantilevers, which are held just below the cleaved facet of an...
optical fiber. Light from a laser coupled into the opposite end of the fiber allows interferometric detection of cantilever’s deflections.12 The wavelength of the laser (Pro8000 WDM-source, 1543 nm) can be adjusted to tune the optical cavity to quadrature. This readout system is very similar to the one used to measure cantilever’s deflections in ferrule-top devices (see Refs. 6–8). One can thus plug the standard single mode optical fiber of the ferrule-top cantilever to the AttoAFM’s readout system, mount the ferrule-top probe on the head of the instrument and set the instrument to work without any change of setup, electronics, computer program, or data analysis technique. The monolithic structure of our probe, which removes the burden of the fiber-to-cantilever alignment, simplifies the mechanical assembly of the cantilever, minimizes drifts, and eliminates the three motors that would be needed to align the fiber with the cantilever when standard probes are used.

In Fig. 3, we report four images of a 20 nm high calibration sample (Anfatec AG, UMG01) obtained under different working conditions. The 200 × 200 pixels image reported in Fig. 3(a) and the 150 × 145 pixels image reported in Fig. 3(b) were obtained in air at room temperature using contact mode and tapping mode, respectively. The third 150 × 150 pixel image [inset (c)] was obtained in lowpressure exchange gas atmosphere (5 torr) at 12 K using contact mode. The fourth image [inset (d)], which, because of the tendency of the substrate to accumulate electrostatic charges, is limited to 150 × 33 pixels, was obtained in vacuum at 12 K using tapping mode. These measurements prove that ferrule-top probes can provide contact mode and tapping mode images of the same quality of those obtained with standard cantilevers, both at room and cryogenic temperatures.

This work was supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 201739.

10In Ref. 8, we made use of a single bore glass ferrule where we first ablated a v-groove to accommodate the etched fiber. The use of custom made double-bore glass ferrules eliminates the fabrication of v-groove, and thus further simplifies the fabrication process.