Study of Y(3S, 2S) \rightarrow \eta Y(1S) and Y(3S, 2S) \rightarrow p^+ p^- Y(1S) hadronic transitions
Lees, J.P.; Raven, H.G.; Snoek, H.; BaBar, Collaboration

published in
Physical Review D
2011

DOI (link to publisher)
10.1103/PhysRevD.84.092003

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
https://doi.org/10.1103/PhysRevD.84.092003

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 08. Oct. 2023
Study of $\mathcal{Y}(3S, 2S) \rightarrow \eta \mathcal{Y}(1S)$ and $\mathcal{Y}(3S, 2S) \rightarrow \pi^+ \pi^- \mathcal{Y}(1S)$ hadronic transitions
We study the $Y(3S, 2S) \rightarrow \eta Y(1S)$ and $Y(3S, 2S) \rightarrow \pi^+ \pi^- Y(1S)$ transitions with $122 \times 10^6 Y(3S)$ and $100 \times 10^6 Y(2S)$ mesons collected by the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ collider. We measure $\mathcal{B}[Y(2S) \rightarrow \eta Y(1S)] = (2.39 \pm 0.31 \text{(stat.)} \pm 0.14 \text{(syst.)}) \times 10^{-4}$ and $\Gamma[Y(2S) \rightarrow \eta Y(1S)] / \Gamma[Y(2S) \rightarrow \pi^+ \pi^- Y(1S)] = (1.35 \pm 0.17 \text{(stat.)} \pm 0.08 \text{(syst.)}) \times 10^{-3}$. We find no evidence for $Y(3S) \rightarrow \eta Y(1S)$ and obtain $\mathcal{B}[Y(3S) \rightarrow \eta Y(1S)] < 1.0 \times 10^{-4}$ and $\Gamma[Y(3S) \rightarrow \eta Y(1S)] / \Gamma[Y(3S) \rightarrow \pi^+ \pi^- Y(1S)] < 2.3 \times 10^{-3}$ as upper limits at the 90% confidence level. We also provide improved measurements of the $Y(2S) - Y(1S)$ and $Y(3S) - Y(1S)$ mass differences, $562.170 \pm 0.007 \text{(stat.)} \pm 0.088 \text{(syst.)} \text{MeV}/c^2$ and $893.813 \pm 0.015 \text{(stat.)} \pm 0.107 \text{(syst.)} \text{MeV}/c^2$, respectively.

DOI: 10.1103/PhysRevD.84.092003 PACS numbers: 14.40.Pq, 13.25.Gv

The QCD multipole expansion (QCDME) model [1] describes hadronic transitions between heavy quarkonia. Despite its success for hadronic transitions in charmonium, this model has limits in explaining all hadronic transitions in the bottomonium spectrum. The QCDME predicts the suppression of the transitions between bottomonia via a η meson with respect to those via a dipion, the former being associated with the spin-flip effects of the b quark. The

*Now at Temple University, Philadelphia, PA 19122, USA.
†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Now at the University of Huddersfield, Huddersfield HD1 3DH, UK.
§Now at University of South Alabama, Mobile, AL 36688, USA.
‖Also with Università di Sassari, Sassari, Italy.
Y(4S) \rightarrow \eta Y(1S) and Y(2S) \rightarrow \eta Y(1S) transitions have been observed at rates significantly different from the predicted values [2,3]. The measured width \(\Gamma[Y(2S) \rightarrow \eta Y(1S)]\) is smaller than predicted, while \(\Gamma[Y(4S) \rightarrow \eta Y(1S)]\) is larger than \(\Gamma[Y(4S) \rightarrow \pi^+ \pi^- Y(1S)]\), although it was expected to be suppressed in analogy with decays of the lower-mass \(Y\) resonances. Some suggest that the latter result could be related to above-\(BB\) threshold effects [4,5]. The \(Y(3S) \rightarrow \eta Y(1S)\) transitions have not been observed [2]. Precise measurements of the transitions between bottomonia via a \(\eta\) meson, as well as their rate with respect to the dipion transitions, could shed light on the chromomagnetic moment of the \(b\) quark.

In this paper, we study the transitions \(Y(nS) \rightarrow \eta Y(1S)\) and \(Y(nS) \rightarrow \pi^+ \pi^- Y(1S)\) with \(n = 3, 2\) and measure the ratios of partial widths \(\Gamma[Y(nS) \rightarrow \eta Y(1S)]/\Gamma[Y(nS) \rightarrow \pi^+ \pi^- Y(1S)]\). The transitions are studied for events in which the \(Y(1S)\) decays to either \(\mu^+ \mu^-\) or \(e^+ e^-\). The \(\eta\) meson is reconstructed from its \(\gamma \gamma\) and \(\pi^+ \pi^- \pi^0\) decay modes, where the \(\pi^0\) decays to \(\gamma \gamma\). The analysis thus considers the final states \(\pi^+ \pi^- \gamma \ell^+ \ell^-\), \(\gamma \gamma \ell^+ \ell^-\), and \(\pi^+ \pi^- \ell^+ \ell^-\), where \(\ell = e\) or \(\mu\).

We analyze \(BABAR\) data samples consisting of \((121.8 \pm 1.2) \times 10^6 Y(3S)\) and \((98.6 \pm 0.9) \times 10^6 Y(2S)\) mesons. These correspond to integrated luminosities of \(28.0 \text{ fb}^{-1}\) and \(13.6 \text{ fb}^{-1}\), respectively. We use \(2.6 \text{ fb}^{-1}\) collected 30 MeV below the \(Y(3S)\) resonance, and \(1.4 \text{ fb}^{-1}\) collected 30 MeV below the \(Y(2S)\) resonance (“off-peak” samples) for background studies.

The \(BABAR\) detector is described in detail elsewhere [6,7]. We briefly mention the features relevant to this analysis. Charged-particle momenta are measured in a five-layer double-sided silicon vertex tracker (SVT) and a 40-layer central drift chamber (DCH), both embedded in a 1.5-T axial magnetic field. Charged-particle identification is based on specific energy loss in the SVT and the DCH and on measurements of the photons produced in the fused-silica bars of a ring-imaging Cherenkov detector. A CsI(Tl) electromagnetic calorimeter (EMC) is used to detect and identify photons and to identify electrons, while muons are identified in the instrumented flux return of the magnet.

Monte Carlo (MC) simulated events, used for efficiency determination and selection optimization, are generated with EVTGEN [8]; GEANT4 [9] is used to simulate the detector response. The variations of conditions and beam backgrounds are taken into account in the simulation. The simulated events are then analyzed in the same manner as data. Large MC samples simulating inclusive \(Y(3S)\) and \(Y(2S)\) decays including all known and predicted transitions and continuum \(e^+ e^- \rightarrow e^+ e^- (\gamma)\) and \(e^+ e^- \rightarrow \mu^+ \mu^- (\gamma)\) processes are used to characterize the backgrounds. Background from continuum quark production is negligible. In the MC signal samples, the distribution of generated dilepton decays incorporates the \(Y(1S)\) polarization.

Dipion transitions are modeled according to the matrix elements measured by CLEO [10]. The angular distribution in \(Y(3S, 2S) \rightarrow \eta Y(1S)\) processes is generated as a vector decaying to a pseudoscalar and a vector. The \(\eta \rightarrow \pi^+ \pi^- \pi^0\) decays are modeled according to the known Dalitz plot parameters [11]. Final state radiation effects are described by PHOTOS [12].

Events of interest contain two oppositely charged particles, identified as either electrons or muons. A fit constraints them to originate from a common vertex and to have invariant mass \(M_{\ell\ell}\) equal to the known \(Y(1S)\) mass [11]. The fit must yield a \(\chi^2\) probability \(>10^{-5}\). Muon identification is based on the energy deposited in the EMC, and the number of coordinates and interaction lengths traversed in the instrumented flux return. Electron identification is based on specific energy loss in the SVT and DCH combined with energy deposition in the EMC.

Besides the lepton pair, we require a pair of oppositely charged tracks not identified as electrons and/or two neutral particles identified as photon candidates. Events with additional charged tracks are rejected. A fit constrains all final state particles to originate from a common vertex, to have a total energy equal to the sum of the beam energies, and an invariant mass equal to the \(Y(3S)\) or \(Y(2S)\) mass [11]. The fit must yield a \(\chi^2\) probability \(>10^{-5}\).

A trigger-level prescaling of Bhabha scattering events, whose signature is given by two electrons of large invariant mass and no additional charged track of transverse momentum \(>250\) MeV/c, causes the efficiency for the final states containing electrons to be smaller than for final states with muons. The di-electron efficiency drops to \(\sim 0\) for \(Y(2S)\) transitions in all final states considered, and it is \(<3\%\) for \(Y(3S) \rightarrow \eta Y(1S)\) in the \(\gamma \gamma e^+ e^-\) final state. These final states are not considered further.

The event selection criteria have been optimized separately for each final state. The background contributions have been studied using MC samples of inclusive \(Y(nS)\) decays and of \(e^+ e^- (\gamma)\) and \(\mu^+ \mu^- (\gamma)\) events. The MC background yield has been compared to real background yield from data and found to be compatible with it within the uncertainties. Also it has been verified that the distributions of all the discriminating variables are well-described by the MC background.

No further selection is applied for the \(\pi^+ \pi^- \ell^+ \ell^-\) final states, while the additional requirements summarized in Table I are needed for the other final states. To select the \(\pi^+ \pi^- \gamma \ell^+ \ell^-\) final states we require that the two-photon invariant mass \(M_{\gamma\gamma}\) be compatible with the \(\pi^0\) mass. Background events are rejected by applying selection criteria to the opening angle between the two pions, calculated in the \(e^+ e^-\) center-of-mass (CM) frame (\(\theta_{\pi\pi}\)), and also to the invariant mass of the dipion candidate.
TABLE I. Additional requirements applied to select $\pi^+\pi^-\gamma\gamma\ell^+\ell^-$ and $\gamma\gamma\ell^+\ell^-$ final states. Masses are expressed in MeV/c2, energies in GeV, and momenta in GeV/c.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$Y(2S)\rightarrow\eta Y(1S)$</th>
<th>$Y(3S)\rightarrow\eta Y(1S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-\gamma\mu^+\mu^-$</td>
<td>$\pi^+\pi^-\gamma\mu^+\mu^-$</td>
<td>$\pi^+\pi^-\gamma\mu^+\mu^-$</td>
</tr>
<tr>
<td>$M_{\text{conv}} < 310$</td>
<td>$M_{\text{conv}} < 280$</td>
<td>$30 < M_{\text{conv}} < 280$</td>
</tr>
<tr>
<td>$90 < M_{\gamma\gamma} < 180$</td>
<td>$100 < M_{\gamma\gamma} < 170$</td>
<td>$90 < M_{\gamma\gamma} < 150$</td>
</tr>
<tr>
<td>$\cos\theta_{\pi\pi} < 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(400 < $\Delta M_{\pi\pi} < 550$) \cup ($\Delta M_{\pi\pi} > 580$)

The PDFs used to model the signal and background shapes in each fit are given in Table II. The free parameters in each fit are the signal and background yields and the parameter of the background PDFs of Table II. The signal shape parameters are also floated in the fits to the $Y(nS)\rightarrow\pi^+\pi^-\ell^+\ell^-$ samples, while they are fixed to the values determined from MC samples in all other cases.

$$f(x) = \exp\left(-\frac{(x - \mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x - \mu)^2}\right).$$

The PDFs used to model the signal and background shapes in each fit are given in Table II. The free parameters in each fit are the signal and background yields and the parameter of the background PDFs of Table II. The signal shape parameters are also floated in the fits to the $Y(nS)\rightarrow\pi^+\pi^-\ell^+\ell^-$ samples, while they are fixed to the values determined from MC samples in all other cases.

The PDFs used to model the signal and background shapes in each fit are given in Table II. The free parameters in each fit are the signal and background yields and the parameter of the background PDFs of Table II. The signal shape parameters are also floated in the fits to the $Y(nS)\rightarrow\pi^+\pi^-\ell^+\ell^-$ samples, while they are fixed to the values determined from MC samples in all other cases.

$$f(x) = \exp\left(-\frac{(x - \mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x - \mu)^2}\right).$$

The PDFs used to model the signal and background shapes in each fit are given in Table II. The free parameters in each fit are the signal and background yields and the parameter of the background PDFs of Table II. The signal shape parameters are also floated in the fits to the $Y(nS)\rightarrow\pi^+\pi^-\ell^+\ell^-$ samples, while they are fixed to the values determined from MC samples in all other cases.

$$f(x) = \exp\left(-\frac{(x - \mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x - \mu)^2}\right).$$
for a fit that includes a signal yield $N/C7$ for $Y(3S) \rightarrow \eta Y(1S)$, we find no evidence of a signal in any of the final states considered and calculate 90% confidence level (CL) upper limits (UL) on the number of signal events (N_{UL}) as $\int_0^{N_{\text{UL}}} \mathcal{L}(N) dN = 0.9 \times \int_0^{\infty} \mathcal{L}(N) dN$. The efficiencies with which signal events satisfy the selection criteria (ϵ_{sel}) are determined using simulated signal samples. Corrections are applied to account for differences between data and MC in lepton identification and π^0 reconstruction efficiencies. The corrected values are also reported in Table III.

Possible sources of systematic uncertainty are considered in addition to those on the number of $Y(nS) (N_Y)$ and on the values for secondary branching fractions ($B_{\text{secondary}}$) [11]. The uncertainties on charged-particle track and single γ or π^0 reconstruction efficiencies are determined by a comparison between data and MC events using independent control samples of τ pair events, each τ decaying to either one or three charged-particle tracks. The systematic uncertainty on the muon or electron identification probability is estimated by comparing the values determined in the $Y(nS) \rightarrow \pi^+ \pi^- \eta Y(1S)$ mode in data and MC samples. For each discriminating variable, we compare the distribution for the signal component deconvolved from data with the maximum-likelihood fit used for the extraction of the yields [13] to the distribution obtained in the MC. The related systematic uncertainty is estimated as the change in event selection efficiency induced by the difference between the distributions. The systematic uncertainties on the $\Delta M_{\pi\pi}$ and $E^*_{\gamma,1,2}$ vetoes for cross-feed dipion and radiative transitions are estimated by comparing the corresponding efficiencies in data and MC samples. In order to take into account possible discrepancies between simulation and data, the dipion events are generated using values for the transition matrix elements varied of $\pm \sigma$ with respect to those measured by CLEO [10]. The difference in the efficiency is treated as a systematic uncertainty. The systematic uncertainty due to the choice of signal and background PDFs is estimated by using different functions, or different values for the fixed parameters. The complete list of contributions to the systematic uncertainty is summarized in Table IV. The total systematic uncertainty for each dataset is estimated by summing all the contributions in quadrature.

The value of the branching fraction (B), or UL on the branching fraction, for each mode is:

$$ B = \frac{N}{\epsilon_{\text{sel}} \times N_Y \times B_{\text{secondary}}} , $$

where N is the signal yield or UL on the signal yield. For a given channel, when both the leptonic $Y(1S)$ decays are available, their signal yields are first combined in a weighted average, where the weight is the inverse of the squared sum of the statistical and the systematic
immemorable th\text{e}ms. We have presented a study of \(Y(3S) \to Y(1S) \) and \(Y(2S) \to Y(1S) \) hadronic transitions. We have reported an improved measurement of \(B[Y(2S) \to \eta Y(1S)] \) and a 90\% CL UL on \(B[Y(3S) \to \eta Y(1S)] \) compatible with, and more precise than, earlier measurements \[2\], thus, further constraining theoretical predictions (see Table V).

We have also presented new measurements of \(B(Y(nS) \to \pi^+ \pi^- Y(1S)) \) with \(n = 3, 2 \), which we find to be compatible with earlier measurements \[11\]. Using the independent \textit{BABAR} measurement of \(B[Y(3S) \to XX(2S)] \times B[Y(2S) \to \pi^+ \pi^- Y(1S)] \) in the inclusive dipion spectrum \[15\], we extract the value \(B(Y(3S) \to XX(2S)) = (10.0 \pm 0.6)\% \).

Improved measurements of the ratios \(\Gamma[Y(nS) \to \eta Y(1S)]/\Gamma[Y(nS) \to \pi^+ \pi^- Y(1S)] \), for which systematic uncertainties partially cancel, have been presented also \[11\]. The suppression of the \(Y(nS) \to \eta Y(1S) \) transitions with respect to the \(Y(nS) \to \pi^+ \pi^- Y(1S) \) ones is confirmed to be higher than predicted by the QCDME \[1\] and not compatible with other models \[4,5\].

\begin{table}[h]
\centering
\caption{Functions used to model the signal and background PDFs.}
\begin{tabular}{|c|c|c|c|}
\hline
\text{Final state} & 1st Variable & Signal & Background \\
\hline
\(Y(nS) \to \pi^+ \pi^- \ell^+ \ell^- \) & \(\Delta M_{\pi\pi} \) & triple Gaussian & 0th order poly \\
\(Y(2S) \to \pi^+ \pi^- \gamma \gamma \mu^+ \mu^- \) & \(\Delta M_{\eta} \) & triple Gaussian & 0th order poly \\
\(Y(2S) \to \gamma \gamma \mu^+ \mu^- \) & \(\Delta M_{\eta} \) & triple Gaussian & 2nd order poly \\
\(Y(3S) \to \pi^+ \pi^- \gamma \ell^+ \ell^- \) & \(\Delta M_{\eta} \) & triple Gaussian & 2nd order poly \\
\(Y(3S) \to \gamma \gamma \mu^+ \mu^- \) & \(\Delta M'_{\eta} \) & double Gaussian & 1st order poly \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Efficiencies (\(\epsilon_{\text{stat}} \)) and number of signal events (\(N \)) for each channel; upper limit at 90\% CL (\(N_{\text{UL}} \)) is given in parentheses. Uncertainties are statistical only.}
\begin{tabular}{|c|c|c|}
\hline
\text{Transition} & \text{Final state} & \text{\(\epsilon_{\text{stat}} \) (\%)} & \text{\(N \)} \\
\hline
\(Y(2S) \to \pi^+ \pi^- Y(1S) \) & \(\pi^+ \pi^- \mu^+ \mu^- \) & 39.1 & 170 061 ± 413 \\
\(Y(2S) \to \eta Y(1S) \) & \(\pi^+ \pi^- \gamma \gamma \mu^+ \mu^- \) & 18.5 & 22 ± 5 \\
\(Y(3S) \to \pi^+ \pi^- Y(1S) \) & \(\pi^+ \pi^- \gamma \gamma \mu^+ \mu^- \) & 25.0 & 31 330 ± 186 \\
\(Y(3S) \to \eta Y(1S) \) & \(\pi^+ \pi^- \gamma \gamma \mu^+ \mu^- \) & 42.8 & 84 000 ± 247 \\
\hline
\end{tabular}
\end{table}

893.813 ± 0.015(stat.) ± 0.107(syst.) MeV/c^2, respectively, where the latter value is obtained as a weighted average of the values for the electron and muon samples. The systematic uncertainties are due mainly to the track momentum measurement, which is related to the knowledge of the amount of detector material and of the magnetic field \[14\].

TABLE IV. Sources of systematic uncertainty on the branching fractions \(B \) and on the ratios of partial widths, for each channel analyzed. All errors are given in percent. When both of the leptonic \(Y(1S) \) decays are analyzed, the values in parentheses refer to the corresponding \(e^+ e^- \) final states.
TABLE V. Measured branching fractions and ratios of partial widths for hadronic $Y(nS)$ transitions. The first uncertainty is statistical, the second systematic. All ULs are at 90% of CL. The PDG values and the relevant predictions are given also.

<table>
<thead>
<tr>
<th>This work</th>
<th>PDG [11]</th>
<th>Predictions [1,4,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}[Y(2S) \rightarrow \eta Y(1S)] (10^{-4})$</td>
<td>$2.39 \pm 0.31 \pm 0.14$</td>
<td>$2.1^{+0.8}_{-0.7}$</td>
</tr>
<tr>
<td>$\mathcal{B}[Y(2S) \rightarrow \pi^+ \pi^- Y(1S)] (10^{-2})$</td>
<td>$17.80 \pm 0.05 \pm 0.37$</td>
<td>18.1 ± 0.4</td>
</tr>
<tr>
<td>$\mathcal{B}[Y(2S) \rightarrow \pi^+ \pi^- Y(1S)] (10^{-3})$</td>
<td>$1.35 \pm 0.17 \pm 0.08$</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>$\mathcal{B}[Y(3S) \rightarrow \eta Y(1S)] (10^{-4})$</td>
<td><1.0</td>
<td><1.8</td>
</tr>
<tr>
<td>$\mathcal{B}[Y(3S) \rightarrow \pi^+ \pi^- Y(1S)] (10^{-2})$</td>
<td>$4.32 \pm 0.07 \pm 0.13$</td>
<td>4.40 ± 0.10</td>
</tr>
<tr>
<td>$\mathcal{B}[Y(3S) \rightarrow \pi^+ \pi^- Y(1S)] (10^{-3})$</td>
<td><2.3</td>
<td><4.2</td>
</tr>
</tbody>
</table>

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel).