Frequency domain mediolateral balance assessment using a center of pressure tracking task
Cofre Lizama, L.E.; Pijnappels, M.A.G.M.; Reeves, N.P.; Verschueren, S.; van Dieen, J.H.

published in
Journal of Biomechanics
2013

DOI (link to publisher)
10.1016/j.jbiomech.2013.08.018

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 29. May. 2021
Frequency domain mediolateral balance assessment using a center of pressure tracking task

L. Eduardo Cofré Lizama, Mirjam Pijnappels, N. Peter Reeves, Sabine M.P. Verschueren, Jaap H. van Dieën

1. Introduction

Balance impairments are a common cause of falls in the elderly population. Detriments of the somatosensory and neuromuscular systems have been identified as causes of imbalance when standing and walking in the elderly. The inability to adequately integrate sensory inputs as well as difficulties to perform dual-tasks in which cognition is required have also been identified as causes of balance impairments in older adults. Previous investigations have demonstrated that several biomechanical variables of balance control in the medio-lateral (ML) direction can identify fallers when standing (i.e., ML postural sway measures) and when inducing sideward stepping responses. There are also indications that center of mass displacement (CoM) in the frontal plane, when compared to sagittal, requires greater active control when walking. Evidence has shown that balance training targeting movements in the frontal plane may reduce the incidence of falls in community-dwelling elderly people.

Despite the discriminative capacity (fallers from non-fallers) of ML balance control reported in retrospective studies, only two of the biomechanical variables (i.e., spontaneous sway of the center of pressure (CoP)) during quiet standing and gluteus medius onset time in a stepping response task) have shown poor to moderate accuracy in prospectively predicting falls. It is possible that due to a ceiling effect of current balance assessment tools, including clinical measures, those tests...
are not sensitive enough to detect balance impairments and predict falls in high functioning elderly and in able-bodied subjects (Bhatt et al., 2011; Brauer et al., 2000; Faber et al., 2006; Muir et al., 2010; Pardasaney et al., 2012). Therefore, a more sensitive assessment method should challenge balance more to avoid ceiling effects and yet be simple enough to be applied in a clinical environment (Pardasaney et al., 2012; Woollacott, 2000). In this context, we propose a medio-lateral balance assessment (MELBA) method, which relies on a visual tracking task (VTT) and the ML CoP displacement as feedback on performance.

In the VTT subjects have to elicit voluntary ML CoP movements based on visual information of the target and subordinating proprioceptive and vestibular sub-systems to maintain stability. By increasing task difficulty (i.e. increasing target frequencies), the subject is challenged to respond fast and accurately. These aspects of the response are necessary when coping with perturbations in daily life situations and reflect the integrity and compensatory ability of the balance system. MELBA aims to quantify balance performance using a visual tracking task, whereby balance control is then characterized by gain and phase-shift between target and CoP signals. MELBA consists of a predictable target, which allows feed-forward mechanisms to control balance in order to determine maximal physical capacities, and a second, unpredictable target, which increases the demand of feedback mechanisms in order to quantify limitations in sensory integration.

This study aimed to determine the methodological properties of MELBA by assessing learning effects within and between sessions as well as reliability of the performance, i.e. the consistency of the method when no interventions are made. Additionally, balance performance between the two MELBA tasks (i.e., predictable versus unpredictable) was compared.

2. Methods

2.1. Subjects

Twenty healthy young adults, 12 women and 8 men, participated in this study (age: 28 ± 3 years; height: 1.75 ± 0.1 m; weight: 70 ± 8 kg). Participants did not report any musculoskeletal or neurological condition that may have affected balance. This research was approved by the local Ethical Committee, in accordance with the ethical standards of the declaration of Helsinki. All subjects were informed of the experimental procedures and signed an informed consent form prior to the experiment.

2.2. Task and procedure

Each participant performed a series of visual tracking tasks (VTT) while standing barefoot and with the arms crossed on a force-plate located in a quiet and low-intensity light room (for set-up details see Fig. 1). CoP data were obtained using a Kistler-9281B force plate (Kistler Instruments AG, Winterthur, Switzerland) sampling at 60 samples/s. D-flow 3.10.0 software (Motek Medical, The Netherlands) was used to produce target signals as well as to record and display target and CoP data on the screen. The delay of the system was calculated to be 16 ms which is equivalent to 1 sample.

A predictable target signal was constructed using 18 blocks of 5 s each composed by one sine wave, which increased from 0.3 to 2.0 Hz in steps of 0.1 Hz. This information was enhanced using a metronome synchronized with the maximum displacement of the target in order to increase sensory input abundance. The total task time was 90 s.

An unpredictable target signal was constructed using 15 blocks composed by the sum of 6 consecutive sine waves separated by 0.1 Hz. A pseudorandom phase-shift between sine waves between –1 and 1 periods was introduced in order to avoid predictability. After each block the lowest frequency, which started at 0.1 Hz was increased by 0.1 Hz higher until it reached 1.5 Hz. Duration was 10 s for blocks 1 and 2, 8 s for blocks 3 to 7, 6 s for blocks 8 to 11 and 4 s for blocks 12 to 15. Duration of the blocks was chosen in order to obtain at minimum of 2 cycles per frequency contained in the block. This target construction also allowed limiting the total task time to 100 s. The unpredictable target bandwidth started at a lower frequency than the predictable target, but results in the frequency range 0.1–2.0 Hz were not analyzed. An example of the two target signals is depicted in Fig. 1.
Fig. 1. These stance measures have been shown to be within the values of normal allowing CoP ML displacements to be within the BoS. On average, participants stood Figure illustrates the calculation of performance descriptors. First, the three averages of the PS and G values within PSX and GX, (PSY and GY, respectively) cutoff frequency for PSX and GX, respectively (vertical dashed line). Finally, the frequency (Hz) of last values above this threshold was used as required to obtain .1 Hz resolution. For each block we maintained estimates of gain and phase-shift only for the frequencies present in the target presented in that block. The results for all blocks of one trial were combined after estimation of the transfer functions, to obtain gain and phase-shift values at all frequencies. For the unpredictable target, phase-shift, gain and coherence were calculated as the average of the values at each frequency over blocks with overlapping frequency content. The phase-shift (PS) reflects the delay (in degrees) between target and CoP at each frequency, whereas gain (G) reflects the ratio between the target and CoP amplitudes; both in the frequency domain. Perfect performance implies PS = 0 and G = 1. In addition, the coherence (Coh) was determined, as a measure of linear correlation between the target and CoP in the frequency domain, which in this study was used to corroborate the assumption of input (target)/output (CoP) linearity and therewith the validity of estimates of PS and G. Considering that each coherence estimate was determined from 16 independent data windows (4 windows per block times 4 trials), the threshold for significance of coherence can be estimated at 181 (Ansari et al., 1997; Shumway and Stoffler, 2000). To characterize balance performance, 4 descriptors were calculated. First, the average of the three highest values for each measure in each trial was calculated and the values at which PS and G dropped below 75% of this allowed were determined as the cutoff frequencies (averaged PSX and GX). Second, PSY and GY were computed as the average of the G and PS values within the bandwidth determined by PSX and GX, respectively. For better clarity, calculations of performance descriptors are illustrated in Fig. 2.

2.4. Statistical analysis

To test for learning effects, repeated measures ANOVAs were performed on the average of phase-shift and gain over all frequencies and for the dependent measures PSX, GX, PSY and GY using 2 (predictable and unpredictable target) × 2 (assessment day) × 4 (trial number) models. In view of multiple testing, \(\alpha \) was Bonferroni corrected to .0083 (.05/6). To determine between-days reliability of performance descriptors, further analysis included intraclass correlations (ICC 2,1) for absolute agreement by using descrip- tors averaged across assessment days. Measures were considered to exhibit excellent reliability when ICC > .75 and fair to good reliability when ICC value was between .4 and .75 (Heiss, 1986). Assumption of normality of the data was confirmed by Shapiro-Wilk tests. Statistical analyses were performed using SPSS (PASW statistics 18) and Matlab.

3. Results

Participants did not report fatigue during or after the trials and were able to complete all trials. Fig. 3 illustrates average performance over subjects when tracking both targets. Descriptive statistics and repeated measures ANOVAs for the measures of PS and G are summarized in Table 1. Average values for Coh for the predictable target were .88 and .89, whereas for the unpredictable target these were .45 and .52 for sessions 1 and 2, respectively. These values were high above chance levels indications that the relation between the CoP and the predictable target was sufficiently strong and linear to allow estimation of transfer functions between target and CoP signals. Overall, a significant main effect was found for target (Table 1), indicating that participants exhibited better mediolateral balance performance (PS, G) when tracking the predictable target compared to the unpredictable target (Fig. 2). On average, when tracking the predictable target, participants performed nearly in-phase (PS \(\approx \) 0) and close to optimal (G \(\approx 1 \)) for input frequencies below 1.2 Hz. For the unpredictable target, near-optimal perform- ance values for PS and G were only observed during the second session in between .4 and 1.0 Hz.

Cut-off frequencies for PS and G (PSX and GX, respectively) were significantly higher when tracking the predictable target compared to the unpredictable target as indicated by a main effect of target on these parameters (Table 1 and Fig. 2). A similar effect was observed for PSY (greater PS) and GY (higher G). The between sessions effect was significant for PSX and PSY showing a learning effect after one week, whereas this learning effect was not statistically significant for GX and GY. A main effect of trial was observed only for PSY showing that significant differences were not coupled with changes in the cutoff frequency within a session. Compared to the predictable target, PSY was found to increase significantly more during the second session for the unpredictable target (target × day interaction). Compared to the predictable target, and the first assessment, no significant differences were found among trials (target × trial and day × trial interactions) for the performance descriptors. All factors interactions were also not significant.

Further analysis of reliability of the performance descriptors showed that for the predictable task, these measures were good (PSY = .68, GX = .72, GY = .71) to excellently reliable (PSX = .87). When using the unpredictable target, reliability was good (PSX = .64, PSY = .46, GX = .49 and GY = .66).

4. Discussion

This study explored learning effects within and between sessions and reliability of mediolateral balance performance descriptors when using visual tracking tasks based on center of pressure feedback; for both a predictable and an unpredictable target. Linearity between ML.
CoP and the target displacement was assessed using Coh measures. This measure showed a moderate to high linearity for the unpredictable and predictable VTTs, respectively, which allowed characterizing balance control with PS and G. Comparisons between MELBA tasks showed greater PS and higher G when tracking a predictable target. Significant learning effects for PS (greater PS) and G (greater ampli-
titude) between sessions (target × day interaction) and for PS within session (target × trial interaction) for G were observed when tracking an unpredictable target. Tracking accuracy and performance improvements were also significantly reflected in some of the performance descriptors (PSX and PSY), which, nevertheless, exhibited fair to good reliability. Lower reliability of the descriptors when using the unpredictable target can be explained by the significant learning effects observed in the PS and G measures.

Overall and for both targets (predictable and unpredictable), PS and G measures declined with increasing frequency content. This demonstrates that despite the simplicity of the task, it is challenging enough to observe a decline of the mediolateral balance performance in young healthy subjects, quantified by the cut-off frequencies (PSX and GX). This suggests the potential of MELBA as a balance assessment method in community-dwelling older adults and able-bodied population, since it is not likely to suffer from ceiling effects as observed with most of the currently available tools (Muir et al., 2010; Pardasaney et al., 2012).

The first part of the MELBA test, with a predictable target, allowed assessment of physical tracking capacities, as the complexity of the task was minimized by using predictable traces and timing of the target signal and including an auditory cue (sensory redundancy). It is probable that, due to the predictable nature of this task, reliance upon feedforward control for guiding the task is increased whereas feedback control remains in place for sensing outcomes of the motor commands executed. As performance was similar over sessions for this specific task, and its descriptors (PSX, PSY, GX and GY) exhibited a fair to excellent reliability, this task seems a good measure of physical capacity: the capability to control ML balance without strong dependence on reactive control to sensory inputs, which would be more challenged by the unpredictable target.
When tracking the unpredictable target, reliance on feedback control of balance is expected to be predominant which may also account for lower performance in this task compared to the predictable target (Peterka, 2002; Peterka and Loughlin, 2004). For instance, the continuous visual inputs processing induce a visuomotor delay, which may be responsible for a larger PS, compared to the predictable target. Gain decreases, on the other hand, may be the result of amplitude scaling in order to compensate for PS increases. Therefore comparatively lower PS and G demonstrate that despite physical resources to control balance are available, as shown when tracking the predictable target, visuomotor delay may constrain its utilization. This highlights the importance of cognition when producing motor commands to track an unpredictable target (Maki and McIlroy, 2007).

MELBA utilized visual tracking to assess balance by triggering voluntary balance responses when dealing with a constantly changing visual stimulus, especially for the unpredictable target. However, significant within (trial effect) and between sessions (day effect) learning effects using this target were found. Some available video games use CoP displacements as means to control the game. Such videogame-based interventions can engage elderly in balance training and improve the compliance towards their rehabilitation or prevention program (Smith et al., 2011). Moreover, balance and fall risk assessment based on virtual reality environments or video games have shown to be valid and to discriminate between fallers and non-fallers (Smith et al., 2011; Yamada et al., 2011). However, most of the measures used are related to functional scores and do not give insight in the underlying mechanisms. MELBA can provide a more objective measure of the balance performance by measuring phase-shift and gain in the frequency domain.

There are some limitations that need to be addressed. First, standing position and target displacements were normalized to body height and ankle width with pelvis and hip widths not considered in the model which may have affected performance (Bingham et al., 2011; Goodworth and Peterka, 2010; McIlroy and Maki, 1997). For example, when dealing with ground ML perturbations, hip torque is lower at wide compared to narrow stance for a similar CoM displacement which requires adjustment of neural feedback gains (Bingham et al., 2011). This may affect performance when assessing older adults whom it is known to exhibit a wider stance (McIlroy and Maki, 1997). Another limitation is that participants may have implemented different strategies to track the target. We chose to provide feedback of CoP given its ease of use. While subjects were explicitly instructed to maintain body alignment, which would impose a direct relationship between CoP and body center of mass (CoM) trajectories, failure to comply with this instruction may have affected task difficulty when CoM displacements were minimized for a given CoP displacement. Especially at higher frequencies, the variability of PS and G within and across participants increased. This might reflect such changes in movement strategy with increasing frequencies. Further study will explore this CoM/CoP relationship when tracking at a range of frequencies and its effect on performance as measured with MELBA. However, preliminary data not presented in the current paper show that in fact, CoM and CoP do relate in this tracking task. However, and as is to be expected, as frequency increases CoM displacement is reduced yet remains coherent with CoP movement.

Current validation of commercially available force sensors (i.e. video game forceplate controllers) for clinical assessment may introduce opportunities for making MELBA a clinical tool (Huurink et al., 2013). The data processing as well as interpretation could be obtained from a simplified version of the software utilized in this experiment which can be easily installed in any computer. We are currently collecting data from older adults in order to determine reference parameters from healthy older adult population. Summarizing, MELBA has potential as a ML balance assessment method and training tool. The predictable target (and its descriptors) offers insight in the maximal physical capacity of the balance system to deal with the tracking task whereas the unpredictable target can provide information on the underlying cognitive mechanisms and sensory integration for controlling balance. In addition, learning effects found when using the unpredictable target indicate that balance performance can be improved. Further studies are needed to explore the use of MELBA to quantify the effect of ageing in ML balance performance, its sensitivity to sensory manipulations, underlying tracking mechanisms, discriminative capacity between people with and without balance problems, correlation with history of falls and clinical relevance as an assessment method and training tool.

5. Conclusions

Performance in tracking a predictable target with the CoP was higher compared to tracking an unpredictable target. This may indicate higher reliance upon cognitive mechanisms for the unpredictable target, which causes a smaller phase-shift and lower gain. Performance measures in tracking a predictable target may be useful to assess maximal physical capacities on the mediolateral balance task. Performance descriptors derived from the linear transfer function between target and CoP signals provide fair to excellently reliable descriptors of balance control. Learning effects observed when using the unpredictable target may indicate MELBA’s potential as a balance training tool.

Conflict of interest statement

The authors of this paper declare that no financial and personal relationships with other people or organizations have inappropriately influenced the content of the work reported in this paper.

Acknowledgments

This research was funded by the European Commission through MOVE-AGE, an Erasmus Mundus Joint Doctorate program (2011–2015). Experimental set-up was supported by MOTEK Medical BV, Amsterdam, The Netherlands. Mirjam Pijnappels was financially supported by a TOP-NIG Grant (#91209021) from the Dutch Organization for Scientific Research (NWO).

References

