Mediterranean land systems: Representing diversity and intensity of complex land systems in a dynamic region
Malek, Ziga; Verburg, P.H.

published in
Landscape and Urban Planning
2017

DOI (link to publisher)
10.1016/j.landurbplan.2017.05.012

document version
Peer reviewed version
document license
CC BY-NC-ND

Link to publication in VU Research Portal

citation for published version (APA)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl
Mediterranean land systems: representing diversity and intensity of complex land systems in a dynamic region

Authors: Žiga Malek, Peter Verburg
Affiliation: Environmental Geography Group, Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, the Netherlands

Corresponding author:
Žiga Malek
Tel: +31 20 5988710
Fax: +31 20 6462457
z.malek@vu.nl

Co-author contact:
peter.verburg@vu.nl
Abstract

In the Mediterranean region, land systems have been shaped gradually through centuries. They provide services to a large and growing population in a region that is among the most vulnerable to future global change. The spatial extent and distribution of Mediterranean land systems is, however, unknown. In this paper, we present a new, expert-based classification of Mediterranean land systems, representing landscapes as integrated social-ecological systems. We combined data on land cover, management intensity and livestock available on the European and global scale in a geographic information system based approach. We put special emphasis on agro-silvo-pastoral mosaic systems: multifunctional Mediterranean landscapes hosting different human activities that are not represented in common land cover maps. By analyzing location conditions of the identified land systems, we demonstrated the significance of both bio-physical (precipitation, soil) and socio-economic (population density, market influence) factors driving the occurrence of these systems. Agro-silvo-pastoral mosaic systems were estimated to cover 23.3% of the Mediterranean ecoregion and exhibited to a certain extent similar characteristics as forest and cropland systems. A reanalysis using data that are available with global coverage indicated that the choice of datasets leads to significant uncertainties in the extent and spatial pattern of these systems. The resulting land systems typology can be used to prioritize and protect landscapes of high cultural and environmental significance.
1. Introduction

In light of recent socio-economic developments and anticipated climate change impacts in the Mediterranean region, there is an urgent need for investigating the capacity of the region to sustain a variety of ecosystem services for a growing population. On one side, the European part of the region is home to high-input intensive agricultural systems significant for regional food production. On the other, the Middle Eastern and North African part is among the regions with the highest population growth, and dependency on food imports - with over half of the population relying on food produced elsewhere (Wright & Cafiero, 2011). The region is extremely vulnerable to fluctuations in food supply and prices, and expected climate change coupled with demographic growth could contribute to further regional instability and conflicts (Evans, 2008; Sowers et al., 2010). Potential shocks to the society and economy have also been observed in the European part. The Greek financial crisis reportedly influenced the supply of agricultural products (Pfeiffer & Koutantou, 2015), impacting on land-use and environment.

In order to target policies to prioritize areas for agriculture, landscape conservation and biodiversity protection in the Mediterranean region, the characteristics and distribution of land systems need to be identified (Agnoletti, 2014). This is particularly valid for agro-silvo-pastoral mosaic systems where human influence and ecological conditions are intricately linked. Characteristics of such traditional landscapes are disregarded if represented by a single, dominant land cover type as is common in most current datasets (Turner et al., 2007; Verburg et al., 2011a). Moreover, when analyzing changes to these systems, land-use intensity is an important component besides changes in land cover, and has a significant environmental impact (Ellis & Ramankutty, 2008). Existing land cover and land systems mapping approaches are misrepresenting the extent or diversity of agro-silvo-pastoral mosaics (Zomer et al., 2009) and
often fail to integrate differences in land-use intensity. Although global and continental attempts
to map land systems in the Mediterranean region were made, they focused on generalized
cropland and grazing systems (van Asselen & Verburg, 2012; Dixon et al., 2001; FAO, 2011),
ignoring the specific mosaics unique to this region.

As a result of its environmental conditions, extremely long land-use history, and cultural
diversity, the Mediterranean region is characterized by a wide variety of land systems that are not
easily mapped. A good example is the dehesa/montado system, present in Spain and Portugal,
which is highly valuable in the cultural heritage context (Meeus, 1995). In this system different
activities, such as gathering of forest products, livestock grazing and cereal cultivation occur
simultaneously (Joffre et al., 1999). Using remote sensing imagery, we can receive information
on the tree density of these systems, but not on the extent of grazing or crop cultivation below
the trees (Plieninger & Schaar, 2008). Attempts to map these multifunctional systems have been
made. In the European CORINE land cover data, they are represented as “Agroforestry areas”,
however substantial areas are also defined as other classes (Bunce et al., 2008; EEA, 2015a).

In the Mediterranean region, landscapes are subject to two contrasting processes of change:
abandonment of rural, mountainous and less developed areas on one side, and intensification and
increasing human influence on the other (García-Llorente et al., 2012; Nieto-Romero et al.,
2014). Soil degradation and water shortages are the main environmental problems in the region,
as a consequence of land management and complex biophysical and climatic conditions
(Almagro et al., 2013; Guerra et al., 2015). Furthermore, projected climate and socio-economic
changes suggest that Mediterranean ecosystems are amongst the most vulnerable to future global
change (Schröter et al., 2005). Traditional agro-silvo-pastoral mosaic systems are particularly
under pressure, threatening the provision of numerous ecosystem services and biodiversity in
general (Zamora et al., 2007). A significant number of plant and animals species, a lot of them endemic, are related to extensive management practices and these traditional landscapes. This is why the Mediterranean region was identified as one of the Global Biodiversity Hotspots (Cuttelod et al., 2009).

In this paper we develop a spatial representation of Mediterranean land systems by integrating information on land management as an inseparable part of these landscapes. By investigating the location factors behind these land systems, we identify how different socio-economic and biophysical factors determine their distribution. At the same time, this study addresses the challenges of data and knowledge differences between different parts of the Mediterranean region. Finally, we evaluate the performance of our classification, by comparing it to existing studies in the region, and by analyzing the uncertainty related to available data.

2. Materials and methods

2.1 Study area

We defined the spatial extent of the Mediterranean region by focusing on areas surrounding the Mediterranean Sea that share similar climatic and other biophysical characteristics. We chose the spatial extent of the Mediterranean ecoregion (Fig. 1), as it describes the approximate extent of representative Mediterranean natural communities (Olson et al., 2001). We included the Nile Delta and similar ecoregions within the Mediterranean ecoregion, such as the Apennine deciduous montane forests in central Italy. The total study area covers 2.3 million km² in 27 countries. Around 400 million people live within the ecoregion boundaries, and yearly 250 million tourists visit the area (31% of all international tourists), making it among the regions with highest human influence (Cuttelod et al., 2009). The region is characterized by the
Mediterranean climate with dry summers and mild winters, when most precipitation takes place. The southern part of the region is predominantly arid and semi-arid, whereas the northern part is semi-arid to dry humid (Zomer et al., 2008). Although the mean annual precipitation of the whole area is around 500 mm, a quarter of the area has below 300 mm of rainfall. This limits rainfed agriculture, particularly in the Middle East and North Africa part of the region.

2.2 Classification overview

We classified combinations of land cover, livestock density, irrigation extent and different intensity proxies (Table 1) using a Geographic Information System (GIS) based approach. By combining land cover with data on land management, we considered the anthropogenic aspects of Mediterranean land systems. This is necessary, as the management of a specific location depends on local combinations of socio-economic and biophysical conditions (Lambin et al., 2001). Mediterranean land system classes were defined a-priori based on the common types distinguished in the literature.

We operated on a 2 km spatial resolution. Although a 2 km spatial resolution is arbitrary this would hold for any chosen resolution that aims to capture human-environment interactions. The choice of spatial resolution was based on: 1). The continental extent of the Mediterranean region and the spatial detail of available data. Although some of the data were available on a very high resolution (e.g. 25 m tree cover), most of it was available on a 1 km resolution (Table 1); 2). Land systems were defined by the set of activities at the farm or landscape level and not at the level of individual landscape components (Verburg et al., 2002), given the relatively small scale and high spatial variation within landscapes a 2 km spatial resolution was judged to be optimal for capturing variation in land systems; and 3). We aimed to represent global patterns of
Mediterranean land systems on a resolution able to capture the spatial variability of human-environment interactions in heterogeneous landscape mosaics (van Delden et al., 2011; Pickett & Cadenasso, 1995).

2.3 Data

More data and data with higher thematic and spatial resolution were available for the European part of the region (Fig. 1). In contrast to studies that only use data that are consistently available across an entire study area, we used the best data available for different parts of the region. However, we restricted ourselves to data that covered multiple countries. National data were used to train the classification (e.g. by looking at the dehesa/montado extent). The following criteria were used when choosing the data: 1). Highest spatial resolution; 2). Data were as recent as possible; 3). Data underwent validation; 4). The data were not generated by downscaling based on population density. This way we could ensure independence of the data and later analyze how the occurrence of land systems relates to population distributions. All input maps were resampled to a resolution of 2 x 2 km in an Lambert equal area projection.

For land cover variables, we used tree cover (Hansen et al., 2013), soil sealing data for Europe (EEA, 2015b), built up areas extent for the remaining part of the region (Jun et al., 2014), cropland extent (Fritz et al., 2015) and the extent of bare areas (Latham et al., 2014). For identifying the extent of areas with permanent crops, we used the CAPRI-dynaspat data for the European Union part of the region (Britz & Witzke, 2014), the CORINE land cover permanent crops extent for the rest of Europe and Turkey (EEA, 2015a), and the SPAM data for the MENA region (You et al., 2014).
Livestock distribution was obtained from the Gridded Livestock of the World v2.0 (Robinson et al., 2014). We combined the numbers of bovines, goats and sheep. Livestock distribution was used to identify rangelands and grazing mosaic systems, and to define the intensity of grazing based on an existing grazing systems classification (Dixon et al., 2001; FAO, 2011). We did not consider the distribution of pigs. Pigs are being grazed on a large extent in the dehesas/montados of the Iberian peninsula, where they are associated with traditional products such as the “jamón”. Pigs in other parts of the Mediterranean are mostly attributed to landless livestock management patterns. Based on the data these two different systems could not be distinguished.

Irrigation plays a significant role in the Mediterranean region, where agriculture is constrained by water availability (Almeida et al., 2013). Although irrigation cannot be related to agricultural intensity, irrigated systems have specific demands regarding water and energy (Fader et al., 2016). To map irrigated systems, we used the data on areas equipped for irrigation from the Global Map of Irrigation Areas (Siebert et al., 2005, 2013).

We used different indicators and proxies to characterize the intensity of land management, as data on this spatial scale is scarce. We used the European agricultural intensity map to identify areas with intensive rainfed cropland for the European Union part of the Mediterranean region (Temme & Verburg, 2011). For the remaining area, we used the global field size map, where we defined the areas with the largest field size class as intensive (Fritz et al., 2015). While it is not possible to directly translate field size to intensity, field sizes can indicate the degree of investment, mechanization and labor intensity of agriculture (Kuemmerle et al., 2013; Rodríguez & Wiegand, 2009). In addition, areas within the 10th percentile of crop yields in the non-EU Mediterranean region were identified as intensive. We focused on the most significant crops in the Mediterranean region: wheat and other cereals, together with vegetables for annual crops;
and tropical and temperate fruits (among them grapes), together with olives for permanent crops (Daccache et al., 2014).

For forest management intensity, we used the European forest management map with defined areas of high forest harvesting intensity (Hengeveld et al., 2012). We identified planted forests by looking at areas with a high share of plantation species using the European tree species map (Brus et al., 2012; Verkerk et al., 2015). For the non-European part of the Mediterranean region, no such data is available. Therefore we used the forest losses and gains data between 2000 and 2014 to identify areas with high intensity of forest management, defined by the cycles of felling and replanting. If the landscape, defined by the 2 km spatial resolution, experienced both high losses and high gains in the observed time, we assumed it being a high intensity forest. If a significant increase of forests occurred in the observed time, we defined it as a planted forest. We assumed it is unlikely, that in a semi-arid environment vast areas would be reforested naturally in such a short time.

2.4 Expert-based classification

We used an expert-based hierarchical classification procedure (Fig. 2, Supplement A). Classification rules were defined as conditional thresholds based on literature on Mediterranean farming, grazing, agro-silvo-pastoral and forest systems (full list of literature considered in Supplement B). This way, our classification followed common understanding of the characteristics of Mediterranean land systems. Expert-based hierarchical classification procedures have been used to identify land and farming systems in numerous cases (Dixon et al., 2001; van de Steeg et al., 2010). We follow a similar classification procedure as van Asselen and Verburg (2012) and the LADA project (FAO, 2011). However, none of these approaches dealt
with complex mosaic systems specific for the Mediterranean. Compared to statistical clustering classification (Ellis & Ramankutty, 2008; Letourneau et al., 2012; Václavík et al., 2013), expert-based classification is less sensitive to the selected distance metric and criteria for determining the order of clustering (van Asselen & Verburg, 2012). A detailed comparison between expert-based and statistically derived typologies for landscapes is provided by van der Zanden et al. (2016). Our hierarchy was based on management intensity. Land systems were identified using different intensity indicators, and systems with low intensities were defined as areas where these indicators do not show a high intensity. More intensive systems overwrote less intensive ones, when more than one system fulfilled the classification criteria.

First, we defined settlement systems as areas with a high percentage of built-up areas. On a 9 cell neighborhood we performed focal statistics and subsequently applied a majority filter to the European sealed soil and the global land cover 30 maps. By looking at the immediate neighboring cells as well, we identified larger built-up landscapes and removed individual cells with high shares of built-up areas. Other systems that were defined by the dominant land cover were systems occurring on bare (desert) areas, and wetlands (Supplement A). If later in the classification stage we identified a high intensity cropland system at the same location as a wetland, it was overwritten. For example, the Guadalquivir river estuary is defined as a wetland, however a large portion of it is cultivated. This way, we resolved inconsistencies between data sets and differences in definition (the high intensity cropping system is still in a wetland area). After this step we continued with the classification of cropland, forest, grazing systems and agro-silvo-pastoral mosaics.

Cropland, Forest, grazing and agro-silvo-pastoral mosaic land systems were at first defined by the cropland extent and tree cover. Cropland systems were associated with high cropland extent
and were further subdivided depending on their intensity, presence of irrigation and combinations of crop type. Forest systems occur on areas with a high tree density, and were subdivided based on their protection status and harvesting intensity. Grazing systems were subdivided based on whether they occur in semiarid or arid areas or grasslands, and their livestock density.

The remaining agro-silvo-pastoral mosaic systems represent multifunctional agroforestry landscapes. We identified them by looking at the activities they host: cropland, livestock grazing, woodlands. We classified them based on their tree cover (open or closed woodlands), cropland extent, and livestock density.

2.5 Analysis of location factors

The observed distribution of land systems reflects the continuity of land management as a response to socio-economic and biophysical conditions (Fuchs et al., 2013). We performed binominal logistic regressions to investigate the role of these conditions. This way we could calculate the probability of each location to host a specific land system, an approach often used to explain existing land-use patterns (Letourneau et al., 2012). Logistic regressions were performed for all land systems separately using 20 variables (Table 2).

Biophysical variables describe the suitability for growing crops, encouraging or constraining agricultural activities (Panagos et al., 2013). We selected seven soil characteristics: sand, clay and organic content, cation exchange capacity (CEC), pH, drainage and soil depth. We used the soil characteristics valid for natural vegetation conditions to omit potential correlation between e.g. forest cover and organic content (Stoorvogel et al., 2016). We also tested the soil characteristics of the current land cover situation. Temperature, precipitation, solar radiation and
potential evapotranspiration are climatic variables that limit growth of vegetation. Although
aridity limits the growth of vegetation, we had to omit the CGIAR aridity index map to avoid
multicollinearity (Zomer et al., 2008) as it was highly correlated to precipitation (Pearson
correlation >0.9). Lastly, we studied how potential natural vegetation explains the natural
vegetation characteristics of land systems.

Socio-economic factors were represented by five variables. Population density and density of
rural population characterize the type of activities expected in an area, and the degree of human
impact (Neumann et al., 2015). The market influence index specifies the capital available to
agricultural production, investing in its expansion or intensification (Verburg et al., 2011b).
Accessibility to national and international markets is an indicator for the potential to market
goods provided by the land systems (Verburg et al., 2011b). Finally, we investigated the role of
road infrastructure, by including the distance to roads.

The regression was performed on a balanced sample of 5% of all grid cells for each land system
(with a minimum sample of 1000 points - 500 for presence and 500 for absence). To reduce
spatial autocorrelation while retaining a sufficiently large sample size, we applied a minimum
distance of one cell (4 km) between the sample points. We performed a forward conditional
regression. We used the ROC (Receiver Operating Characteristic) as a measure for the goodness
of fit of our regression model. Multiple samples were taken to ensure robustness of the identified
relations. Only for very small land systems (e.g. planted forests) this was not possible. For none
of the land systems we found major differences between the results based on different samples.
2.6 Classification performance and data uncertainty

Assessing the performance of a land systems classification is a difficult task, and cannot be performed using traditional approaches applied in remote sensing or spatial simulation. Any classification system is as good as its potential use and the quality of the underlying data. For example, validation using high resolution satellite images or land cover products could only be used to identify the category of land system (forest, cropland systems), without validating the intensity. For being a useful classification, identified land systems should correspond to common descriptions of these systems and be related to land systems found in field studies. We performed a documented expert based validation, where we gathered studies from the whole Mediterranean region. We collected 190 studies on land management from peer reviewed papers, book chapters and conference proceedings (Supplement B). The studies were selected based on the following criteria: 1). The study clearly defined a land system characteristic, such as intensity or the mosaic nature of the system (e.g. intensive tomato production, dehesa); 2). The study was associated to a specific location (Mediterranean or nationwide studies were omitted); 3). It was based on an actual system and not on experiment sites. We registered the locations of all studies, together with the information of their land system characteristics (type, intensity, management). The accuracy of the final land systems map was then assessed by comparing how well it represents the documented land systems. Studies on urban areas (Mediterranean cities) were omitted, as they completely correspond with the locations of cities and would falsely contribute to a higher accuracy.

To analyze the uncertainty related to the differential quality of data, we applied the same classification criteria using the data with the lowest quality but global coverage (Table 1). High resolution data covering the European part of the region were thus not used. The two maps were
compared in terms of agreement or disagreement of quantity and location (Pontius & Santacruz, 2014).

3. Results

3.1 Land systems

The distribution of Mediterranean land systems is shown in Figs. 3, 4 and 5. Average values for land systems in terms of bare, tree and cropland cover, and livestock density are presented in Fig. 6 and Supplement C.

3.1.1 Bare and open grazing systems

Bare and open grazing systems cover 22.6% of the Mediterranean region, mostly in North Africa and the Middle East. They are divided into grazing systems in arid environments and grazing systems in open rangelands. Arid systems are further subdivided into bare areas and deserts without notable livestock presence, and extensive and intensive arid grazing. In some parts (e.g. Syria), livestock density in deserts can reach over a 1000 heads of combined sheep, goats and bovines per km². Open rangelands are subdivided into extensive and intensive, and occur primarily in open landscapes of the Iberian peninsula, North Africa, Turkey and the Western Balkans. They occur in areas without bare cover and have a relatively high percentage of cropland (over 20%).

3.1.2 Cropland systems

Cropland systems cover 37.8% of the region, significantly higher than the estimated global average of 8% (van Asselen & Verburg, 2012). This makes them the most represented land system group in the Mediterranean region. They are defined by a high average of cropland cover
of over 45% but also contain significant portions of tree and bare cover. Cropland systems are divided into three categories: extensive, intensive rainfed and irrigated, and are further subdivided into annual and permanent crop systems, and mosaics of annual and permanent crops. Extensive systems cover vast areas in North Africa, the Middle East and the Anatolian plateau in Turkey. Intensive rainfed cropland systems mostly occur in the Northern Mediterranean (Spain, Italy, France, parts of Turkey) with the notable exception of northern Tunisia. Irrigated systems occur throughout the region, often along major rivers (Nile in Egypt, Euphrates and Tigris in Turkey and Syria, Guadalquivir in Spain, Sebou and Sous in Morocco.

3.1.3 Forest systems

The global estimate for forest systems is 21% of the global surface (van Asselen & Verburg, 2012), whereas in the Mediterranean region we estimate these systems to cover 10.1%. Forest systems are characterized by a high, over 40% average tree cover. Notable portions of areas with higher tree density are however represented as agro-silvo-pastoral mosaic systems (e.g. closed wooded rangelands). Forest systems together with such dense tree cover mosaic systems cover 25.2% of the Mediterranean region. More than half of all forest areas are thus used for cultivation and grazing. Most of the forests are in the mountainous regions of the European Mediterranean. In the MENA region, continuous forest systems are situated in the Atlas mountains spanning from Morocco to Tunisia (Fig. 5). Extensive areas covered by Mediterranean forest systems occur on Corsica, the most forested Mediterranean island (Fig. 4b). Most of the forests are defined by medium intensity management (61.1%), followed by natural and semi-natural forests (25.5%). A lower extent of forests is characterized by high intensity management (10%) or as planted forests (3.4%), mostly occurring on the Iberian peninsula.
3.1.4 Agro-silvo-pastoral mosaics

Mosaic systems cover 23.3% of the Mediterranean - this is substantially higher compared to the 4–9% global estimates of mosaic cropland, grassland and forest systems (van Asselen & Verburg, 2012). They are characterized by a medium to high average cropland cover (14 to 60%), and hold a considerable portion of areas covered by tree cover. The four woodland/wooded rangeland classes, would be represented as forest cover in an approach focusing on dominant land cover. In this study, they however represent landscapes, where forest activities coincide with grazing and arable cultivation. The open woodland class represents areas with moderate average tree cover (17.2%) and a lower livestock density (31.2 animals/km²). Open wooded rangelands have a similar average tree cover (16.0%), however a higher average livestock density (84.5 animals/km²). The cropland and wooded rangeland mosaic systems are also defined by a high average cropland cover of 39.0%. All three open woodland systems occur in the whole Mediterranean region, with the most notable examples of the dehesa/montado system of the Iberian peninsula (Fig. 4c). Closed wooded rangelands are limited to areas in the Atlas mountains, Albania and Greece, Sicily, Sardinia and central Spain. They have a high average tree cover (38.5%) and a high average livestock density (98.5 animals/km²). In the remaining two systems, crop cultivation and livestock grazing occurs on the same space. The cropland and rangeland system mostly are mostly low-intensity cereal fields with livestock grazing. Such systems are present on vast areas in North-West Africa, the Iberian peninsula, the Anatolian plateau in Turkey and in the Middle East. The permanent crops and rangeland systems are present in Syria, Tunisia and Morocco (Fig. 5).
3.1.5 Settlement systems

Settlement systems occupy 5.4% of the Mediterranean region, with 4.1% being attributed to peri-urban areas, and 1.3% to urban areas. These systems have a high share of cropland cover (46 and 32% respectively), and high livestock density (78 and 51 animals/km² respectively). Most urban systems are found along the Mediterranean coastline, with few notable exceptions situated on the mainland (Amman, Ankara, Marrakesh, Madrid, etc.).

3.1.6 Wetlands

Wetland systems represent lakes and other wetlands that are not managed as irrigated cropland. Wetland systems are characterized by a high average value of bare cover (38.3%). Extensive salt lakes occur in the desert regions of North Africa, known as “chotts” or “sebkhas”. Often they are seasonal wetlands that dry out in the summer (Khaznadar et al., 2009), and are represented as deserts in land cover products. Wetlands in the Mediterranean also have a high average livestock density of 353 animals/km². Historically, wetlands in the MENA region have been a source of water and fodder for livestock, with numbers of livestock grazing still increasing (Houérou, 1993; Médail & Quézel, 1999).

3.2 Location factors

The results of the binominal logistic regression are summarized in Table 3 and Supplement D. Overall, we see high fits of the regression models, indicating that the selected location factors can explain a large fraction of the spatial variation in occurrence of the different land systems.
3.2.1 Bare and open grazing systems

Bare and open grazing systems generally occur in remote areas with a lower population density - with the exception of the intensive arid grazing system, that tends to occur close to markets. This system tends to occur in areas with higher solar radiation and lower potential evapotranspiration (PET). The two arid grazing systems occur in areas with low precipitation and their likelihood increases with rising altitudes.

3.2.2 Cropland systems

Cropland systems occur in areas with lower altitudes and gentle slopes. Temperature has a positive association with most cropland systems. Although these systems tend to be negatively related to population density, irrigated systems occur in areas with higher density of rural population. The location of these systems is positively related with market influence. This can be explained by the investments in the agricultural sector and the potential to sell products, which is possible in areas with a high market influence. Soil pH levels have a positive influence on the occurrence of cropland systems, whereas the soil organic content is negatively related to their occurrence.

3.2.3 Forest systems

Forest systems tend to be negatively related to population density. These systems are positively related to soil sand content, and negatively to pH levels and soil depth. When using soil characteristics based on current land cover, forest systems were positively related to organic content and soil depth. Clearly, to some extent these environmental conditions are a result of the influence of the forest ecosystem on the soil conditions itself. Forests are more frequently found on slopes and in areas with higher precipitation (except planted forests). Mediterranean natural
and semi-natural forests are positively related to altitude and temperature. Planted forests are positively related to well-drained soils. While Mediterranean planted forests can consist of native species well adapted to aridity, young plantations of introduced species such as the Monterey pine (*Pinus radiata*) have higher water demands and prefer well drained soils (Garmendia *et al.*, 2012).

3.2.4 Agro-silvo-pastoral mosaics

Although mosaic systems have very different characteristics amongst the sub-types, they do have some similarities. They tend to be negatively related to population density, soil pH and soil depth. The cropland/rangeland categories have similar characteristic as cropland systems in terms of relation to slope, and have a positive association with potential evapotranspiration like intensive cropland systems. The woodland/wooded rangeland categories are similar to forest systems in terms of relations to soils characteristics, as well as to slope and precipitation. The results show that agro-silvo-pastoral mosaics resemble either cropland or forests systems in terms of location specific characteristics. This is logical, as they are either croplands, or woodlands, where other activities occur on the same space.

3.2.5 Settlement systems and wetlands

Settlement systems are, almost by definition, positively related to population density, infrastructure and market accessibility. They occur on lower altitudes with gentler slopes. Wetlands occur on flat areas with lower altitudes, and have a negative association with temperature, population density and market influence.
3.3 Performance and data uncertainty

Studies used in the validation covered the whole region (Fig. 7), although more were found in the European part (122) as compared to the MENA region (68). Out of 190 documented studies, 134 had perfect agreement (71%), 42 partial agreement (22%), and 14 were misclassified (7%), compared to our map. Studies with partial agreement had a correct identification of the land systems group, however a different land systems subgroup. The accuracies of aggregated land system categories shows the extent of inter-category misclassifications and complete misclassifications (Table 4). The producer’s accuracy presents the extent of how well the documented land systems were represented on the land systems map. The user’s accuracy also takes into account the extent of land systems attributed to other systems. Interestingly, our user’s and producer’s accuracies are in a similar range as is common for remote sensing interpretations of land cover.

Using only data with global coverage to produce the land systems map shows the drawbacks of using such data. It is difficult to differentiate between systems of different intensities and type of crops if only using proxies for intensity (Fig. 8, Supplement E). The differences are smaller for systems classified with data on bare areas, irrigation, livestock and tree cover.

When using global data, urban and peri-urban systems in the European part are overestimated (Fig. 8). All agro-silvo-pastoral mosaic systems have a low agreement between the maps, indicating that using data with global coverage significantly underestimates these areas. Mosaic systems are mostly lost on the account of more intensive cropland systems. Extensive annual cropland and all three annual-permanent mosaic systems cover significantly more areas, with permanent crop systems experiencing substantial losses. The changes are not only in terms of
quantities of such systems, but mostly in their allocation, leading to a different spatial pattern (Fig. 8). Vast areas in Europe lose the fine detailed structure of cropland and agro-silvo-pastoral systems, and are represented by areas where both annual and permanent crops are cultivated (Supplement E).

4. Discussion

4.1 Classifying Mediterranean land systems

Representing the spatial pattern and intensity of human-environment interactions remains one of the most significant challenges in land systems science (Rounsevell et al., 2012; Turner et al., 2007). Several authors have previously combined data to improve information on land use and management. Global scale land system characterizations include those of Ellis and Ramankutty (2008) who mapped anthropogenic biomes using numerous socio-economic and bio-physical indicators. Van Asselen and Verburg (2012) mapped global land systems, and investigated their spatial determinants. Letourneau et al. (2012) classified land-use systems for use in the context of the integrated assessment model IMAGE. Václavík et al. (2013) classified land system archetypes based on similarities in a broad range of characteristics. Although recognizing similar systems on a global scale is useful for global assessments and modeling, these approaches fail to capture the diverse regional characteristics and do not always link to local systems and nomenclatures (Václavík et al., 2013). On the other end of the spectrum are farming system classifications operating at the farm level, ignoring the larger landscape context, which is important for many of the services provided by these systems (Dixon et al., 2001; van de Steeg et al., 2010). Regional scale characterizations were made by Levers et al. (2015) and van der Zanden et al. (2016), mapping land system archetypes and cultural landscapes of Europe
respectively. Levers et al. (2015) generalized Mediterranean mosaic archetypes to low intensity
cropland, grassland or mosaic systems, grouping them together with low intensity single function
systems. In the study of van der Zanden et al. (2016), several mosaic landscape types of different
intensities were identified, however disregarding woodland systems. Our approach moved
beyond existing classification systems by accounting for the specific land systems characteristic
for the Mediterranean region. We identified 6 agro-silvo-pastoral classes that are all, functionally
different, variations of mosaic land systems. Although the value of these mosaic systems for
society and biodiversity is known, this is the first time their spatial extent and pattern is mapped.

Thresholds used in our classification are often difficult to identify and are to some extent
arbitrary. For example, classifying different grazing systems is challenging, as transhumance is
still significant in the Mediterranean region – livestock may only be present in an area during a
particular time of the year. Sheep densities on barley fields might increase to 65 animals/ha for
one month each year, in order to supplement the animals’ summer diet (Correal et al., 2006). In
traditional continuous forage systems livestock densities are much lower, with up to 2 animals/ha
(Delgado et al., 2004). We focused on such systems, and did not include the temporal variability
of livestock. Another example are forest systems, defined as land with over 10% tree cover by
the FAO (FAO, 2000). This definition includes significant areas of woodlands hosting mosaic
systems.

4.2 Uncertainties in data

Significant improvements have been made in providing global data on land cover and
management intensity. Nevertheless, there are still considerable inconsistencies between
different global data sets contributing to the data uncertainty (Tuanmu & Jetz, 2014). Combining
different data sets derived from remote sensing, modeling or censuses can result in aggregating the inaccuracies of those data sets. As fully harmonized data on the different aspects are not available, the possible bias from inconsistencies between the different data layers is unavoidable. Sometimes, these inconsistencies reveal interesting information. We observed that the European sealed soil map defined protected agricultural areas (greenhouses) in south of Spain as sealed surfaces. This resulted in a misclassification of both the cropland and urban classes in this particular area. Although protected agriculture could be defined as a sealed surface, the same error does not occur in other regions with vast areas of protected agriculture (Greece, Italy). This prevented us from identifying protected agriculture as a separate land system using the combination of sealed or urban areas with cropland extent. Spatially explicit data on protected agriculture in the region is basically non-existent and is limited to a few areas in Italy, Israel and Spain (Aguilar et al., 2015; Levin et al., 2007; Picuno et al., 2011).

Additional data related issues are the over- and underrepresentation of particular systems. Despite the good coverage of high resolution remote sensing derived products (Hansen et al., 2013), areas covered by forests are underrepresented in the MENA region. Our analysis has shown a potential overestimation of intensive, and underestimation of mosaic land systems in the data poor parts of the Mediterranean (Fig. 8, Supplement E).

In terms of agricultural and forest management intensity, there is inadequate global data, or it is not available at sufficiently detailed spatial resolution (Hurtt et al., 2006; Ramankutty et al., 2008). To identify the intensity of Mediterranean land systems, we had to use a set of different proxies. Our combination of field size and yield used in the non-European part of the region did not consider the numerous aspects of both the input and output intensities (Erb et al., 2013). Yields and management are varying with time and incorporating multi-temporal data could
improve the identification of management intensity (Levers et al., 2015). Similar concerns hold for forest management. Although we used temporal changes in forest cover as a proxy for forest management for the non-European Mediterranean part, other data such as wood production and socio-economic statistics could be helpful (Verkerk et al., 2015).

This study presents a novel data assimilation approach to identify the extent and spatial patterns of Mediterranean land systems. As land systems are composed of different components, their characteristics will never be measured and observed by single sensors. Combining different datasets will, therefore, always be needed to update the map in the future.

4.3 Application of results

The resulting land systems map has a wide potential of use. The identified extent of agro-silvo-pastoral mosaics can be used for prioritization of landscapes for biodiversity and cultural heritage conservation. The results can also be used in earth system modeling, as using land systems in such models can provide a more accurate representation of the intensity of human-environment interactions (van Asselen & Verburg, 2012). When modeling climate impacts, using such a map can provide more information. For example, the albedo and greenhouse gas emissions and sequestration will be different between the systems. The results can also be used in land-change models or in integrated assessment models, to analyze consequences of future socio-economic changes (Verburg et al., 2011a). Using land systems we can capture changes in management intensity, as socio-economic changes often do not affect land cover directly.

To improve our approach, better data is needed for the Middle Eastern and North African part of the region. Vast areas of extensive cropland and agro-silvo-pastoral mosaic systems are present
there, significant for regional food security and biodiversity. These areas are also more representative for other cropland and woodland areas in semi-arid regions.

5. Conclusion

Mediterranean landscapes have been shaped through centuries by human activities in often harsh environmental conditions. This has resulted in diverse land systems with high cultural values and of high importance for regional food production. Our typology provides a first map that represents diverse land systems, including multifunctional landscapes and other aspects of land management in the Mediterranean region that have been widely studied but not represented in maps. This typology helps to improve the understanding of Mediterranean land systems and is a basis for assessments of future changes in regional climate, land use and land cover change and changes in management intensity. Compared to existing global and regional classifications our typology significantly improved the thematic resolution and particularly was able to represent agro-silvo-pastoral mosaic systems, which were mostly represented as single function low intensity grassland or cropland in other studies. The comparison with case studies throughout the region has shown that our map sufficiently well represents the variation in land systems across the region and, thus, can be used to support prioritization of areas for biodiversity protection, conservation of cultural landscapes, or food production.
References

Hengl T, de Jesus JM, MacMillan RA et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE, 9, e105992. doi - 10.1371/journal.pone.0105992

Houérou HNL (1993) Salt-tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Towards the rational use of high salinity tolerant plants (eds Lieth H, Masoom AAA), pp. 403–422. Springer Netherlands. doi - 10.1007/978-94-011-1858-3_42

Lambin EF, Turner BL, Geist HJ et al. (2001) The causes of land-use and land-cover change: moving beyond the myths. *Global Environmental Change*, 11, 261–269. doi - 10.1016/S0959-3780(01)00007-3

List of tables

Table 1. Data used in the hierarchical classification

Table 2: Location factors used in the regression analyses

Table 3: Regression coefficients for most significant Mediterranean land systems (full regression table in Supplement D; all coefficients significant at values below the 0.05 significance level)

Table 4: Shares of documented land system locations with perfect and partial agreement, and misclassification in %, together with the producer’s and user’s accuracy of the classification for aggregated land system categories
<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Original resolution</th>
<th>Spatial, temporal coverage</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Tree cover</td>
<td>30 m</td>
<td>Whole area, 2000 - 2014</td>
<td>%</td>
<td>Hansen et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Tree cover gain and loss</td>
<td>30 m</td>
<td>Whole area, 2000 - 2014</td>
<td>presence</td>
<td>Hansen et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Tree cover loss and gain ratio</td>
<td>30 m</td>
<td>Whole area, 2000 - 2014</td>
<td>%</td>
<td>Derived from Hansen et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>European forest management types</td>
<td>1 km</td>
<td>Europe, 2010</td>
<td>class</td>
<td>Hengeveld et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Plantation tree species occurrence</td>
<td>1 km</td>
<td>Europe, 2000-2010</td>
<td>class</td>
<td>Brus et al. (2012)</td>
</tr>
<tr>
<td>Bare and</td>
<td>Bare areas</td>
<td>30 m</td>
<td>Whole area, 2010</td>
<td>%</td>
<td>Latham et al. (2014)</td>
</tr>
<tr>
<td>artificial</td>
<td>Built up areas</td>
<td>30 m</td>
<td>Whole area, 2010</td>
<td>%</td>
<td>Jun et al. (2014)</td>
</tr>
<tr>
<td>Livestock and</td>
<td>Imperviousness</td>
<td>25 m</td>
<td>Europe, 2010</td>
<td>%</td>
<td>EEA (2015b)</td>
</tr>
<tr>
<td>cropland</td>
<td>Cropland extent</td>
<td>1 km</td>
<td>Whole area, 2014</td>
<td>%</td>
<td>Fritz et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Livestock density (bovines, goats and sheep)</td>
<td>1 km</td>
<td>Whole area, 2014</td>
<td>nr./ km²</td>
<td>Robinson et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Area equipped for irrigation</td>
<td>1 km</td>
<td>Whole area, 2006</td>
<td>ha</td>
<td>Siebert et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>European crop type map</td>
<td>vector</td>
<td>EU27, 2006</td>
<td>%</td>
<td>Britz and Witzke (2014)</td>
</tr>
<tr>
<td></td>
<td>CORINE permanent crop land cover (vineyards, orchards, olive groves)</td>
<td>100 m</td>
<td>Non EU Europe and Turkey, 2006</td>
<td>class</td>
<td>EEA (2015a)</td>
</tr>
<tr>
<td></td>
<td>SPAM permanent crop extent (oil, fruit, tropical fruit)</td>
<td>10 km</td>
<td>MENA, 2014</td>
<td>%</td>
<td>You et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Fertilizer intensity</td>
<td>1 km</td>
<td>EU 27, 2000</td>
<td>class</td>
<td>Temme and Verburg (2011)</td>
</tr>
<tr>
<td></td>
<td>Field size map</td>
<td>1 km</td>
<td>Whole area, 2015</td>
<td>class</td>
<td>Fritz et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Areas with highest annual crop yield 10⁰ quantile of yields as intensification qualifies</td>
<td>MENA, Turkey</td>
<td>Whole area, 2015, 10 km, 2010</td>
<td>t/ha</td>
<td>You et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Areas with highest permanent crop yields (olives, temperate and tropic fruits) – 10⁰ quantile of yields as intensification qualifies</td>
<td>Non EU Europe, MENA, Turkey</td>
<td>Whole area, 2015, 10 km, 2010</td>
<td>t/ha</td>
<td>You et al. (2014)</td>
</tr>
<tr>
<td>Other</td>
<td>Wetlands and lakes</td>
<td>250 m</td>
<td>Whole area, 2004</td>
<td>class</td>
<td>WWF (2004)</td>
</tr>
<tr>
<td></td>
<td>Terrestrial ecoregions</td>
<td>vector</td>
<td>Whole area, 2001</td>
<td>class</td>
<td>Olson et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Protected areas</td>
<td>vector</td>
<td>Whole area, 2001</td>
<td>class</td>
<td>IUCN (2015)</td>
</tr>
</tbody>
</table>
Table 2: Location factors used in the regression analyses

<table>
<thead>
<tr>
<th>Location Factor</th>
<th>Unit/description</th>
<th>Resolution</th>
<th>Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-economic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population density</td>
<td>People/km²</td>
<td>1 km</td>
<td>2010</td>
<td>CIESIN (2015)</td>
</tr>
<tr>
<td>Rural population</td>
<td>Rural population/km²</td>
<td>1 km</td>
<td>2000</td>
<td>CIESIN et al. (2011)</td>
</tr>
<tr>
<td>Market accessibility</td>
<td>Index (0-1)</td>
<td>1 km</td>
<td>2000-2010</td>
<td>Verburg et al. (2011b)</td>
</tr>
<tr>
<td>Market influence</td>
<td>USD/person (ppp)</td>
<td>1 km</td>
<td>2000-2010</td>
<td>Verburg et al. (2011b)</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Distance to roads (m)</td>
<td>vector</td>
<td>1999</td>
<td>NGIA (2015)</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td>Drainage class</td>
<td>1 km</td>
<td>2010</td>
<td>Hengl et al. (2014)</td>
</tr>
<tr>
<td>Sand content</td>
<td>Sand mass in %</td>
<td>1 km</td>
<td>2010</td>
<td>Stoorvogel (2016)</td>
</tr>
<tr>
<td>Clay content</td>
<td>Clay mass in %</td>
<td>1 km</td>
<td>2013</td>
<td>Stoorvogel (2016)</td>
</tr>
<tr>
<td>Cation Exchange</td>
<td>cmol/kg</td>
<td>1 km</td>
<td>2010</td>
<td>Hengl et al. (2014)</td>
</tr>
<tr>
<td>pH</td>
<td>log(h⁺)</td>
<td>1 km</td>
<td>2010</td>
<td>Hengl et al. (2014)</td>
</tr>
<tr>
<td>Organic carbon content</td>
<td>g/kg in the top 50 cm</td>
<td>1 km</td>
<td>2013</td>
<td>Stoorvogel (2016)</td>
</tr>
<tr>
<td>Soil depth</td>
<td>cm</td>
<td>1 km</td>
<td>2013</td>
<td>Stoorvogel (2016)</td>
</tr>
<tr>
<td>Terrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>m above sea level</td>
<td>1 km</td>
<td>2005</td>
<td>Hijmans et al. (2005)</td>
</tr>
<tr>
<td>Slope</td>
<td>Slope degrees</td>
<td>1 km</td>
<td>2005</td>
<td>derived from Hijmans et al. (2005)</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>annual precipitation (sum of monthly means) in mm</td>
<td>1 km</td>
<td>2005</td>
<td>Hijmans et al. (2005)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature (mean of monthly means) Celsius degree</td>
<td>1 km</td>
<td>2005</td>
<td>Hijmans et al. (2005)</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>Horizontal surface irradiation (kWh/m²), 1998-2011 mean</td>
<td>1.5 arc minute</td>
<td>2012</td>
<td>Huld et al. (2012)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Evapotranspiration (PET)</td>
<td>annual PET in mm</td>
<td>1 km</td>
<td>2007</td>
<td>Zomer et al. (2008)</td>
</tr>
<tr>
<td>Potential vegetation</td>
<td>Pot. vegetation classes</td>
<td>10 km</td>
<td>2010</td>
<td>Ellis & Ramankutty (2008)</td>
</tr>
<tr>
<td></td>
<td>Intensive arid grazing</td>
<td>Wetlands</td>
<td>Open wooded rangeland</td>
<td>Closed wooded rangeland</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Constant</td>
<td>-7.34</td>
<td>-0.38</td>
<td>-17.36</td>
<td>7.51</td>
</tr>
<tr>
<td>Socio-economic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population density</td>
<td>-1.46E-3</td>
<td>-7.69E-4</td>
<td>-1.20E-3</td>
<td>-1.57E-3</td>
</tr>
<tr>
<td>Rural population</td>
<td>-1.75E-3</td>
<td>-1.79E-3</td>
<td>-1.79E-3</td>
<td>-1.20E-3</td>
</tr>
<tr>
<td>Market accessibility</td>
<td>2.32</td>
<td>-3.11E-1</td>
<td>-4.40E-1</td>
<td>1.64</td>
</tr>
<tr>
<td>Market influence</td>
<td>-2.50E-2</td>
<td>-1.57E-2</td>
<td>-1.735E-2</td>
<td>2.39E-2</td>
</tr>
<tr>
<td>Road distance</td>
<td>-1.86E-5</td>
<td>2.00E-5</td>
<td>-3.08E-5</td>
<td>-8.64E-5</td>
</tr>
<tr>
<td>Soil characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>5.33E-2</td>
<td>-2.52E-2</td>
<td>-3.29E-2</td>
<td>3.32E-2</td>
</tr>
<tr>
<td>CEC</td>
<td>5.34E-2</td>
<td>-1.90E-2</td>
<td>-1.66E-2</td>
<td>-3.00E-1</td>
</tr>
<tr>
<td>pH</td>
<td>1.63E-1</td>
<td>-3.39E-1</td>
<td>2.19E-1</td>
<td>2.80E-1</td>
</tr>
<tr>
<td>Organic content</td>
<td>-5.36E-3</td>
<td>-8.42E-2</td>
<td>-8.57E-3</td>
<td>-7.35E-3</td>
</tr>
<tr>
<td>Soil depth</td>
<td>-9.12E-3</td>
<td>-8.35E-3</td>
<td>-1.52E-2</td>
<td></td>
</tr>
<tr>
<td>Drainage*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>1.39E-3</td>
<td>-1.78E-3</td>
<td>-3.20E-4</td>
<td>3.90E-4</td>
</tr>
<tr>
<td>Slope</td>
<td>7.64E-2</td>
<td>-4.88E-1</td>
<td>1.25E-1</td>
<td>1.25E-1</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>-2.91E-3</td>
<td>1.14E-3</td>
<td>2.85E-3</td>
<td>-2.56E-3</td>
</tr>
<tr>
<td>Temperature</td>
<td>-1.38E-1</td>
<td>1.87E-1</td>
<td>4.59E-1</td>
<td>4.13E-1</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>4.79E-3</td>
<td>3.72E-3</td>
<td>-4.58E-3</td>
<td>-1.79E-3</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>-1.78E-3</td>
<td></td>
<td>-1.97E-3</td>
<td>-5.26E-3</td>
</tr>
<tr>
<td>Potential natural vegetation**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential</td>
<td>-2.33 (7)</td>
<td></td>
<td>2.04 (2)</td>
<td>-4.47 (4)</td>
</tr>
<tr>
<td>natural</td>
<td>-1.85 (9)</td>
<td></td>
<td>3.11 (4)</td>
<td>-4.09 (7)</td>
</tr>
<tr>
<td>vegetation**</td>
<td>3.98 (10)</td>
<td></td>
<td>1.99 (6)</td>
<td>-2.02 (10)</td>
</tr>
<tr>
<td>ROC</td>
<td>0.86</td>
<td>0.92</td>
<td>0.82</td>
<td>0.84</td>
</tr>
</tbody>
</table>

*Drainage classes: scale from a to g; a = poorly drained, g = excessively drained

**Potential natural vegetation: 2 = tropical deciduous woodland, 3 = temperate evergreen woodland, 6 = mixed woodland, 7 = savanna, 8 = grassland and steppe, 9 = dense shrubland, 10 = open shrubland
<table>
<thead>
<tr>
<th>Land system category</th>
<th>Perfect</th>
<th>Partial</th>
<th>Misclassification</th>
<th>Producer's accuracy</th>
<th>User's accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangeland and grazing</td>
<td>56.5</td>
<td>26.1</td>
<td>17.4</td>
<td>66.7</td>
<td>88.9</td>
</tr>
<tr>
<td>Cropland</td>
<td>74.0</td>
<td>16.9</td>
<td>9.1</td>
<td>93.6</td>
<td>89.0</td>
</tr>
<tr>
<td>Forest</td>
<td>75.0</td>
<td>21.4</td>
<td>3.6</td>
<td>85.7</td>
<td>88.9</td>
</tr>
<tr>
<td>Agro-silvo-pastoral mosaics</td>
<td>69.2</td>
<td>28.9</td>
<td>1.9</td>
<td>84.6</td>
<td>87.8</td>
</tr>
<tr>
<td>(peri)Urban</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>61.5</td>
</tr>
</tbody>
</table>
List of figures

Fig. 1 Study area with the distribution of available high resolution (min. 1 km) spatial data layers (max. 15 data layers)

Fig. 2 Classification scheme. Detailed classification rules are presented in Supplement A.

Fig. 3 Distribution of Mediterranean land systems with locations of focus regions displayed in Fig. 4.

Fig. 4 Mediterranean land systems in more detail focusing on (a) Greece, (b) Sardinia and Corsica, (c) the Iberian peninsula, (d) Tunisia, (e) Morocco and (f) the Middle East

Fig. 5 Major Mediterranean land systems groups with percentage of total coverage of the Mediterranean ecoregion

Fig. 6 Average values of bare, cropland and tree cover, and livestock density per Mediterranean land system (Supplement C for detailed values and standard deviation)

Fig. 7 Locations and accuracy of the documented expert based validation

Fig. 8 Disagreement between the two land system map based on different data in terms of quantity and allocation
List of appendices

Supplement A: Classification details per land system

Supplement B: Studies used in the documented land systems validation per country

Supplement C: Average values for cropland, tree and bare cover, and livestock density per land system, standard deviations in brackets

Supplement D: Logistic regression results. All coefficients significant at values below the 0.05 significance level

Supplement E: Mediterranean land systems map generated using globally available data
Figure 8
Acknowledgements

The research in this paper has been supported by the European Research Council under the European Union’s Seventh Framework Programme project LUC4C (Grant No. 603542), OPERAs (Grant No. 308393) and ERC grant GLOLAND (no. 311819). We would like to thank Ilse Geijzendorffer, Ana Paula Garcia-Nieto, Marianela Fader, Wolfgang Cramer and Jetse Stoorvogel for their help. This paper contributes to the objectives of the Global Land Project (http://glp.earth/).