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ON THE ARRIVAL THEOREM FOR 

COMMUNICATION NETWORKS 

Nico M. van Dijk 

Free University, The Netherlands 

Abstract 

The arrival theorem is investigated for communication networks that exhibit 

a product form. Two types of blocking protocols are distinguished: 

• a delay protocol 

• a retransmission protocol. 

(i) Under the delay protocol the arrival theorem is shown to f all. 

(ii) Under the more realistic retransmission protocol, however, the arrival 

theorem is shown to be generally valid provided the product form 

conditions are guaranteed. 

The results show that the arrival theorem is no general consequence of 

product form expressions and extend the Standard result for closed Jackson 

networks to communication networks with blocking. Examples include: 

• Standard CSMA or BTMA protocols 

• Circuit switch structures 

• Rude-CSMA. 
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1 INTRODUCTION 

Background 

For over two decades queueing network modeling has become a most popular 

tooi for performance evaluation of computer and communication networks. Un-

questionably two major results that have motivated this direction are: 

Jackson's celebrated product form 

• The MVA-algorithm. 

This lat ter algorithm enables one to efficiently compute performance measure 

of interest such as throughputs and sojourn times for closed queueing net

works (cf. 15],[6],[9],[12]). The algorithm is essentially based on the so-

called: 

• Arrival Theorem 

The arrival theorem is a well-known result for closed Jackson queueing net

works, that is networks with fixed routing probabilities and no blocking. 

Roughly speaking, the theorem states: 

(1.1) 

Upon arrival a t a station a job observes 

the system as if in steady state at an 

arbitrary instant for the system 

without that job. 

As Jackson networks have become famous for their product form expression 

while proofs of the arrival theorem for these networks have been given in 

the l i terature based on these product forms (cf. [9],[10],[13],[18]), the 

general impression seems to have grown that the arrival theorem is generally 

valid for any closed queueing or communication network that exhibits a 

product form. However, no formal support in this direction seems to be 

available. 
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Motivation 

Particularly, over the last decade product form expressions have also been 

extended to communication networks or random access schemes such as CSMA, 

BTMA, Rude-CSMA and circuit switch structures (cf. [1], [2], [3], 14], [7], 

[11], [15]). In such networks, the transmission or broadcasting of different 

sources is dependent, for example due to limited resources or to avoid col-

lisions, so that transmission requests may get blocked. To compute perfor

mance measures of interest such as the loss probability or throughput of 

these systems, an analog of the Standard arrival theorem would be appealing. 

This would read as: 

(1.2) 

Upon transmission request by a source, 

this source observes the system as if 

in steady state at an arbitrary 

instant for the system 

without that source 

Objective 

This paper therefore aims to investigate this version of the arrival theorem 

for two types of blocking protocols: 

• The delay or stop protocol (protocol 1) 

• The retransmission protocol (protocol 2) 

Results 

For the delay protocol the arrival theorem is shown to fail marnier. In 

this case, it can apply only for special conditional probabilities. 

For the retransmission protocol, in contrast, the arrival theorem will 

apply under the conditions réquired to conclude the product form. Par

ticularly, also randomized blocking such as in Rude-CSMA is allowed. 



The result applies to a wide range of communication networks of which some 

illustration will be provided. This includes: 

• CSMA and BTMA-structures 

• Circuit switch architectures 

• MAN-systems, and 

• Rude-CSMA. 

Outline 

First, in section 2 we will give an instructive and somewhat counterintui-

tive example of the arrival theorem. Section 3 presents the general model 

and the condition for a product form result. The arrival theorem is then se-

parately investigated for the delay and retransmission protocol in section 

4.1 and 4.2. Section 5 contains some examples and an evaluation concludes 

the paper. 

2 TWO INSTRUCTIVE EXAMPLES 

Example 1 

Consider a two-source communication network in which each source is alterna-

tively in an idle (scheduling or non-transmitting) and busy (transmitting) 

mode. However, as there is only a single transmission channel, only one 

source can transmit and thus be busy at a time. When a source requests to 

start a transmission while the other source is already busy, this request is 

blocked and lost and the source has to remain idle to schedule a new request 

(retransmission). 

Idle Busy 

Assume that the time to schedule a next request is exponential with parame

ter 7 for some source h=l,2 and that the duration of a transmission is also 

exponential with parameter ft for source h=l,2. 
h 

Let the state (s ,s ) denote by s the status of source h where s =0 means 
1 2 h h 

idle and s =1 means busy, h=l,2. The steady state distribution at the set of 
h 
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possible states 

C - {(0,0),(1,0),(0,1)> 

is then determined by the global balance equations: 

(2.1) 

(i) ir(l .O) u - * (0 ,0 ) r 

(ii) ir(O.l) MX • « (0 ,0 ) r2 

(iii) ii(o,o)lr +y_l - it(i.o) u + it(o,i) u 
\ £t X Z 

where we note that (i) and (ii) can be interpreted as "balance per source" 

These also impiy (iii) and yield the "product form solution": 

(2.2) ir(s ,s ) = c iro (s i,s2)eC 

Here one may note that expression (2.2) factorizes to the individual sources 

as if they were independent and in isolation with mean idle time y~ and 
h 

mean busy time u~ for source h, up to the f act that the state (1,1) is not 
h 

possible, as reflected by the normalization constant c. This justifies the 

phrase: "product form". 
Arrival theorem example 

Now let us investigate the arrival theorem as formulated by (1.2). That is, 

let us determine the probability distribution of the status of source 2 when 

source 1 requests to start a transmission. We denote this distribution by 

^ ( s ). Then: 
2 

(2.3) 

* ( 0 , 0 ) r 
»2 

1 t l U J n ( 0 , 0 ) y x + n(0, l )y 1 

* ( 0 , l ) r 
ir f 1 1 -

M2 + r 2 

y
2 

n { U 71(0 ,0)y x + Tt (0 , l ) r i M2 + r 2 



which corresponds exactly with the probability distribution of source 2 when 

i t was in isolation following an alternating renewal process with means 1/y 

and 1/fi for being in idle or busy mode. For example, with y -y -\k =JJ =jx =1 

we have: 

(2.4) *x(o) = w1(l) - i 

As source 2 in isolation represents the system without source 1, in this 

case we can thus state: 

(2.5) The arrival theorem applies 

Example 2 

Now let us reconsider a modification in which, roughly speaking, the strict • 

dependence between the two sources is reduced to 50% as follows. Both sour-

ces are allowed to transmit at the same time, but in contrast a source is 

discouraged to schedule a transmission by a factor - when the other source 

is already transmitting. More precisely, the scheduling ra te of source 1 is 

given by: 

(2.6) 
1 
I ' i 

when s =0 
2 

when s =1 
2 

and similarly for source 2 depending on s 

Product f orm 

The set of possible states is now given by: 

C = {(0,0),(1,0),(0,1),(1,1)} 

and the global balance equations become: 
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ir(O.O) Ir+rJ. = ir(l.O) u + tr(O.l) u 
1 fc 1 Z 

*(1,0) [u + ; r , l = «(0,0) r + Tt(l.l) u 
1 Af <• 1 Z 

(2.7) 

it(o,i) [±3^ + M21 = ir(o.o) r2 + K(I.I) MX 

Kd.i) 1^ + M2J = «(o,i) \vx + .11(1,0) i r 2 

which are also verified by balance equations per source: 

(2.8) 

ir(O.O) fx - ir( l ,0) ^ (balance per source 1) 

n ( 0 , l ) \rx= « ( L D Mx (balance per source 1) 

« (0 ,0 ) y2 = ir(o, i ) n2 (balance per source 2) 

« (1 ,0) | y 2 * «(1 ,1) »i2 (balance per source 2) 

with the "product form" solution: 

(2.9) Tt(s ,S ) = • 

( S i , s 2 ) * (1,1) 

( S i , s 2 ) = (1,1) 

Here, the term "product form" must be interpreted in somewhat wider sense as 

also a scaling factor has been included. Roughly speaking, it could still be 

called a product form as the parameters \i and u are involved by factors 

(1/fi) and (l/ft ) when the source is busy. Essentially, the balance per 

source will be responsible for this product form feature as will be analyzed 

more detailed in section 3. 
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Arrival theorem counterexample 

Let us reinvestigate the arrival distribution as per (1.2) seen by source 1 

upon transmission request where we directly assume y -7 -n =ji =1. Then: 

w^O) 

* 2 (1) 

n(0, 0 ) 1 2 
3 

_ 1 
~ 3 

2 

2 

w^O) 

* 2 (1) 

w(0,0) l H 

n(0 , 

• *(0,1) 

1) 

1 
2 

2 
3 

_ 1 
~ 3 

2 

2 

w^O) 

* 2 (1) 
l t (0 ,0) l H • n(0 , l ) 1 

2 

2 
3 

_ 1 
~ 3 

2 

2 

As the arrival theorem (1.2) would have required (2.4), in this case, and 

despite the fact that the source dependence seems to be reduced, we have to 

conclude: 

The arrival theorem 

f a i l s 

3 GENERAL MODEL 

Consider a communiciation network of M sources, numbered 1.....M where each 

source is either in an idle (scheduling or non-transmitting) or busy (trans-

mitting) mode depending on the actual protocol in order as described below. 

In either case, let H={h ,h ,...,h } denote the set of busy sources. And as-
1 2 n 

sume that source h has 

an exponential scheduling rate y 
h 

an exponential transmission rate n 

Further, we introducé a blocking/delay function: A(h|H), 

we write: 

H + h = H u <h} 

H - h - H \ {h} 

and we denote the set of possible states by C. 
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Retransmission protocol (P ) 

Source H always schedules a next transmission request after an exponential 

period with parameter y . When the system is in state H and source héH r e -
n 

quests to s ta r t a transmission, this request is accepted with probability 

A(h|H) and blocked with probability l-A(h|H). When blocked, the request is 

lost and the source has to schedule a new request. 

Delay protocol (P ) 

When the system is in state H, the scheduling ra te for a next transmission 

request by source h is delayed by a factor A(h|H) and given by y A(h|H). 
n 

Particularly, when A(h|H)=0, the scheduling is stopped. A tranmission r e 

quest, however, is always accepted. 

One might question why this protocol distinction is made as they seem effec-

tively equivalent. Indeed, as will be clear from the global balance equa-

tions (3.3) below, in the exponential case the steady state distributions 

are the same. This itself is already amazing from a physical point of view. 

Viz., a scheduling of a next transmission may have been delayed or inter-

rupted during some period of its scheduling under the P -protocol, while up-

on the actual epoch of the request A(h|H)=l so that no blocking would have 

been experienced at all under the P -protocol. Indeed, in the non-

exponential case this equivalence will no longer be generally valid. As 

shown in [15] it remains valid only under the additional product f o r a condi-

tion below. More importantly in the line of the present paper, the protocol 

distinction will be essential when dealing with the arrival theorem. 

Invariance condition 

There exists a function P(.) at C such that for all H, H+heC: 

(3.1) P(H+h) - P(H) A(h|H) 

or equivalently, such that for any H={h ,h ,...,h } e C and any permuta-
1 2 n 

tion <i ,i , . . . , i ) e (1,2,...,n): 
1 2 n 
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(3.2) 

Remark 

The equivalence of the conditions (3.1) and (3.2) is directly related to 

Kolmogorov's invariance criterion for reversibility, see {8), p.21, and can 

be proven similarly to p.22 of this reference. We will briefly discuss the 

verification and provide some examples later on. 

Proposition 3.1 

Under the invariance condition (3.1), with c a normalizing constant and with 

w and ir the steady state distribution under protocol P and P respective-

ly, we have 

(3.3) n (H) = n (H) • P(H) 
1 2 

f n ±] 

Proof 

We need to verify the global balance equations for both protocols. These are 

given by: 

* ( H ) ^ H " h
 + " ( H ) ^ « H *h A ( h | H ) 

(3.4) 

where for the retransmission protocol we have deleted blocked transitions as 

they would provide exactly the same contribution to both the left and right 

hand side and where we must substitute w(H)=0 for H«C. These global balance 

equations in turn would be satisfied by verifying the more detailed balance 

equations per source: 

(3.5) *(H) }i - n(H-h) v A(hlH-h) (HeC) 
h h 

However, this source balance relation is immediately checked by substituting 

(3.1) and (3.4). The proof is hereby completed. n 

10 



Discussion of invariance condition 

The invariance condition may at first glance seem impractical for verifica-

tion. However, in many concrete examples the actual complexity will be sig-

nificantly reduced by exploiting the underlying structure. As such examples 

have been extensively studied in the literature (cf. [2], [3], [15], [17]) 

we only present some examples in section 5 for the purpose of illustration 

and would like to mention here one special case which covers a wide range of 

examples. 

Special case 3.1 (Coordinate convex) 

Assume that C, the set of admissible states, is such that 

H e C => H-h e C for all heH, HeC (3.7) 

while 
H+h e C 

(3.8) A(h| ' 
otherwise 

L|H) = { 1 

\ 0 

The product in (3.2) is then equal to 1 regardless of the order in which 

sources become busy so that: 

(3.9) P(H) • 1 (HeC) 

Some examples are given in section 5. 

4 THE ARRIVAL THEOREM 

Let us now investigate the arrival theorem as formulated by (1.2). More pre-

cisely, we wish to evaluate the steady state distribution of the state H of 

the other sources that a source, say a, observes when it completes a sched-

uling period and requests to start a transmission. We denote this distribu

tion by: 

n>) 
and also introducé the notation: 

IIM (H) and n _a (H) 

as given by (3.3) as «(.)=« (.)=w (.) for the system with sources 1,...,M 

and for the same system with source a excluded. 
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4.1 Delay protocol 

Recall the special coordinate convex case 3.1 and consider a state HeC and 

source OMÉH such that H+a € C. Hence, by virtue of (3.8): 

A(a|H) - 0 

Under the delay protocol the scheduling of source a is thus interrupted in 

state H so that a transmission request by source h can never take place when 

the other sources are in state H. Thus, necessarily: 

while 

n[J (H) - o 

V a (H) > ° 

We thus have to conclude as bef ore that: 

(4.1) The arr ival theorem fai ls . 

Remark 

With randomized delay factors A(a|H), as illustrated by example 2 of section 

2, essentially the same inconsistency remains present, but kept more hidden, 

so that the arrival theorem also fails in such cases. Statement (4.1) can 

thus be regarded as generally true under the delay protocol. 

4.2 Retransmission protocol 

First note that by substituting 

(4.2) c « c (Tj—rJ' 
- ï 

we can rewrite expression (3.3) for it(H) = n (H) as: 

(4.3) K (H) = c P(H) II u* n y ' 1 

M h€H h h«H h 
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Under the retransmission protocol, the arrival distribution upon transmis-

sion request by source a is given by: 

(4.4) <'«' -

ir (H) r 

E , n (H' ) 7 t-H' M 'cc 

c p(H) n M"1 n y"1 

h€H h MÊH,h*tt h 

r, ë p(H') n u"1 n r"1 

hSH' h * H ' , h * a 

However, in the latter expression the common normalization factor c cancels 

in the denominator and numerator, and the remaining summation in the denomi-

nator represents the normalization constant as according to (4.3) for the 

system with sources 1,...,M but source a excluded, that is without source cc. 

As also the numerator is of the product form (4.3), we have thus proven the 

arrival theorem result: 

(4.5) <(H) • v < « > ( H ) 

4.3 Conditional arrival theorem 

As a more detailed version of the arrival theorem one can also investigate 

the arrival distribution upon transmission request by a source a, given that 

the system state is contained in some set or has some property. 

Let us give one special case for which a conditional arrival theorem also 

applies for the delay protocol. Consider a specific source a and some subset 

S such that 

(4.6) A(a|H) = 1 for all HeS 

and consider the conditional arrival distribution for source a at S , 

13 



denoted by n (HjS ). Then, under both the delay and retransmission protocol 

and by recalling the rewritten form (4.3), we obtain as in (4.4): 

(4.7) u* (H|Sa) = 

L H'€S 

P(H) n | £ n rh / fc P(H) n i*~l n rh] 
h€H h£H,h*0C L H ' e s h e H h«ÉH,h*Ot J 

But by virtue of (4.3) again, the latter expression coincides exactly with 

the conditional steady state probability of state H at S for the system 

without source a. Hence: 

Under both the delay and retransmission protocol 

and with S satisfying (4.6), a conditional 

arrival theorem applies as: 

na (H|Sa) - it (H|Sa) 

Remark 

This result may at first instance seem trivial as source a cannot experience 

blocking at S . However, one should realize that the possible blocking out-

side S or the blocking experienced at S by other sources also indirectly 

influences the steady state probabilities and thus also the conditional 

steady state probabilities at S so that (4.8) is not trivial. For instance, 

in the CSMA example 5.1 below, (4.6) and thus (4.8) hold for: 

S5 = <H| 1,3,6 « H} 

while the distribution at S would be different if, for example, the link 

between 1 and 5 would be cancelled. 

J -
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5 EXAMPLES 

An extensive number of applications that satisfy the conditions (3.1), (3.2) 

or (3.7) and (3.8) can be found in [2], l3j, 115], and 117]. In this section 

we merely aim to provide some examples to lllustrate the potential of the 

general framework while keeping the paper self-contained. 

For each of these, as well as any other that can be adopted from these ref 

erences, the investigation of the arrival theorem, its validity under the 

retransmission protocol and its failure under the delay protocol, appear to 

be new. 

5.1 CSMA and BTMA protocol (cf. U],[2],[3],I7],Ï111,Ï14]) 

(i) CSMA 

Sources corresponding to transmitters can be graphicaliy represented such 

that adjacent sources (neighbors) cannot be busy (transmit) at the same 

time. 

In practice this is achieved by the so-called Carrier-Sense Multiple Access 

(CSMA) protocol in which a transmitter senses the state of its channel be-

fore it will start a transmlssion. If one of these channels is sensed busy 

the transmlssion is aborted (inhibited). For example, in the figure above, 

source 1 prohibits sources 3-6 to start a transmlssion. With N(h) the set of 

neighbors of source h, the coordinate convexity condition is guaranteed by: 

(5.1) C - \H\ h « N(h ) for all h ,h C H \ 
I ' 2 1 1 2 1 

15 



(il) BTMA 

In the figure above, sources 1 and 2 can transmit at the same time as they 

are outside hearing range. This may lead to a collision and losses at nodes 

3 and 4. To eliminate this so-called Hidden Terminal Problem, under the Busy 

Tone Multiple Access scheme, introduced in [14], a source which senses a 

busy channel from a transmitting neighbor will broadcast a busy tone signal 

to all lts neighbors to prevent any other neighbor to start a transmission. 

The coordinate convex set C given by (5.1) now still applies if we let N(h) 

represent all one- and two-step neighbors form h. 

5.2 Circuit switch networks (cf. [41 

*—® 

Consider the circuit switch network below with 4 types of sources and M 

trunks (links) at trunkgroup j=l,.. . ,7. A transmission by a source of type i 

requires a free trunk from each of the trunkgroups from S to D at the same 

time. With n the number of busy sources of type i, the coordinate convexlty 

condition (3.7) is now guaranteed by C the set of all states H with: 

n ( s Mf ( i= l 4 ) 

n, + n , * Ms 

n + n a M, 
3 4 6 

n + n + n + n * M . 
1 2 3 4 7 
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5.3 Rude-CSMA (cf. [11]) 

O O 

o 

o 
'o 

The following extension of the Standard CSMA-model was proposed in lil) un-

der the name of Rude-CSMA. Roughly speaking, it aims to take into the ac

count the environment without precise information which neighbors are busy 

and which not. A transmission request by source h while the other sources 

are in state H is accepted with probability 

N*(H) N*(H) 
A(h|H) m x ° y 1 

where N (H) and N (H) are the numbers of idle and busy neighbors of source h 

in state H, and where x and y are fixed given system values. For example, 

x=l and y=0 yields example 5.1. By simple algebra, condition (3.2) can then 

be checked with: 

P(H) 
B JH) B (H) 

0 1 
x y 

where 

B (H) = number of pairs of idle neighbors in state H. 

B (H) = number of pairs of busy neighbors in state H. 

Remark 

Other randomized examples satisfying the invariance condition (3.2) can be 

given with features like random gradings, collision detections or losses due 

to time-slotting (cf. [151). 

17 



EVALUATION 

An extension of the Standard arrival theorem for closed queueing networks is 

formulated for communication structures of interdependent sources. It is 

shown that a product form expression aione is no guarantee for the arrival 

theorem to be valid. The actual blocking protocol will also be crucial. The 

results are of practical interest for computational reductions. 
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